ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / os / linux / zfs / zfs_vnops_os.c
blobb464f615cdd3e39207e509790dceb631fce3744f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
74 * Programming rules.
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using zfs_enter(zfsvfs).
86 * A zfs_exit(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with zfs_verify_zp(zp). Both of these macros
88 * can return EIO from the calling function.
90 * (2) zrele() should always be the last thing except for zil_commit() (if
91 * necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92 * last reference, the vnode/znode can be freed, so the zp may point to
93 * freed memory. Second, the last reference will call zfs_zinactive(),
94 * which may induce a lot of work -- pushing cached pages (which acquires
95 * range locks) and syncing out cached atime changes. Third,
96 * zfs_zinactive() may require a new tx, which could deadlock the system
97 * if you were already holding one. This deadlock occurs because the tx
98 * currently being operated on prevents a txg from syncing, which
99 * prevents the new tx from progressing, resulting in a deadlock. If you
100 * must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101 * is a synonym for zrele().
103 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
104 * as they can span dmu_tx_assign() calls.
106 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107 * dmu_tx_assign(). This is critical because we don't want to block
108 * while holding locks.
110 * If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This
111 * reduces lock contention and CPU usage when we must wait (note that if
112 * throughput is constrained by the storage, nearly every transaction
113 * must wait).
115 * Note, in particular, that if a lock is sometimes acquired before
116 * the tx assigns, and sometimes after (e.g. z_lock), then failing
117 * to use a non-blocking assign can deadlock the system. The scenario:
119 * Thread A has grabbed a lock before calling dmu_tx_assign().
120 * Thread B is in an already-assigned tx, and blocks for this lock.
121 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122 * forever, because the previous txg can't quiesce until B's tx commits.
124 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
126 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127 * to indicate that this operation has already called dmu_tx_wait().
128 * This will ensure that we don't retry forever, waiting a short bit
129 * each time.
131 * (5) If the operation succeeded, generate the intent log entry for it
132 * before dropping locks. This ensures that the ordering of events
133 * in the intent log matches the order in which they actually occurred.
134 * During ZIL replay the zfs_log_* functions will update the sequence
135 * number to indicate the zil transaction has replayed.
137 * (6) At the end of each vnode op, the DMU tx must always commit,
138 * regardless of whether there were any errors.
140 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
141 * to ensure that synchronous semantics are provided when necessary.
143 * In general, this is how things should be ordered in each vnode op:
145 * zfs_enter(zfsvfs); // exit if unmounted
146 * top:
147 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
148 * rw_enter(...); // grab any other locks you need
149 * tx = dmu_tx_create(...); // get DMU tx
150 * dmu_tx_hold_*(); // hold each object you might modify
151 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152 * if (error) {
153 * rw_exit(...); // drop locks
154 * zfs_dirent_unlock(dl); // unlock directory entry
155 * zrele(...); // release held znodes
156 * if (error == ERESTART) {
157 * waited = B_TRUE;
158 * dmu_tx_wait(tx);
159 * dmu_tx_abort(tx);
160 * goto top;
162 * dmu_tx_abort(tx); // abort DMU tx
163 * zfs_exit(zfsvfs); // finished in zfs
164 * return (error); // really out of space
166 * error = do_real_work(); // do whatever this VOP does
167 * if (error == 0)
168 * zfs_log_*(...); // on success, make ZIL entry
169 * dmu_tx_commit(tx); // commit DMU tx -- error or not
170 * rw_exit(...); // drop locks
171 * zfs_dirent_unlock(dl); // unlock directory entry
172 * zrele(...); // release held znodes
173 * zil_commit(zilog, foid); // synchronous when necessary
174 * zfs_exit(zfsvfs); // finished in zfs
175 * return (error); // done, report error
178 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
180 (void) cr;
181 znode_t *zp = ITOZ(ip);
182 zfsvfs_t *zfsvfs = ITOZSB(ip);
183 int error;
185 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186 return (error);
188 /* Honor ZFS_APPENDONLY file attribute */
189 if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 ((flag & O_APPEND) == 0)) {
191 zfs_exit(zfsvfs, FTAG);
192 return (SET_ERROR(EPERM));
195 /* Keep a count of the synchronous opens in the znode */
196 if (flag & O_SYNC)
197 atomic_inc_32(&zp->z_sync_cnt);
199 zfs_exit(zfsvfs, FTAG);
200 return (0);
204 zfs_close(struct inode *ip, int flag, cred_t *cr)
206 (void) cr;
207 znode_t *zp = ITOZ(ip);
208 zfsvfs_t *zfsvfs = ITOZSB(ip);
209 int error;
211 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 return (error);
214 /* Decrement the synchronous opens in the znode */
215 if (flag & O_SYNC)
216 atomic_dec_32(&zp->z_sync_cnt);
218 zfs_exit(zfsvfs, FTAG);
219 return (0);
222 #if defined(_KERNEL)
224 static int zfs_fillpage(struct inode *ip, struct page *pp);
227 * When a file is memory mapped, we must keep the IO data synchronized
228 * between the DMU cache and the memory mapped pages. Update all mapped
229 * pages with the contents of the coresponding dmu buffer.
231 void
232 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
234 struct address_space *mp = ZTOI(zp)->i_mapping;
235 int64_t off = start & (PAGE_SIZE - 1);
237 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
238 uint64_t nbytes = MIN(PAGE_SIZE - off, len);
240 struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
241 if (pp) {
242 if (mapping_writably_mapped(mp))
243 flush_dcache_page(pp);
245 void *pb = kmap(pp);
246 int error = dmu_read(os, zp->z_id, start + off,
247 nbytes, pb + off, DMU_READ_PREFETCH);
248 kunmap(pp);
250 if (error) {
251 SetPageError(pp);
252 ClearPageUptodate(pp);
253 } else {
254 ClearPageError(pp);
255 SetPageUptodate(pp);
257 if (mapping_writably_mapped(mp))
258 flush_dcache_page(pp);
260 mark_page_accessed(pp);
263 unlock_page(pp);
264 put_page(pp);
267 len -= nbytes;
268 off = 0;
273 * When a file is memory mapped, we must keep the I/O data synchronized
274 * between the DMU cache and the memory mapped pages. Preferentially read
275 * from memory mapped pages, otherwise fallback to reading through the dmu.
278 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
280 struct inode *ip = ZTOI(zp);
281 struct address_space *mp = ip->i_mapping;
282 int64_t start = uio->uio_loffset;
283 int64_t off = start & (PAGE_SIZE - 1);
284 int len = nbytes;
285 int error = 0;
287 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
288 uint64_t bytes = MIN(PAGE_SIZE - off, len);
290 struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
291 if (pp) {
293 * If filemap_fault() retries there exists a window
294 * where the page will be unlocked and not up to date.
295 * In this case we must try and fill the page.
297 if (unlikely(!PageUptodate(pp))) {
298 error = zfs_fillpage(ip, pp);
299 if (error) {
300 unlock_page(pp);
301 put_page(pp);
302 return (error);
306 ASSERT(PageUptodate(pp) || PageDirty(pp));
308 unlock_page(pp);
310 void *pb = kmap(pp);
311 error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
312 kunmap(pp);
314 if (mapping_writably_mapped(mp))
315 flush_dcache_page(pp);
317 mark_page_accessed(pp);
318 put_page(pp);
319 } else {
320 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
321 uio, bytes);
324 len -= bytes;
325 off = 0;
327 if (error)
328 break;
331 return (error);
333 #endif /* _KERNEL */
335 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
338 * Write the bytes to a file.
340 * IN: zp - znode of file to be written to
341 * data - bytes to write
342 * len - number of bytes to write
343 * pos - offset to start writing at
345 * OUT: resid - remaining bytes to write
347 * RETURN: 0 if success
348 * positive error code if failure. EIO is returned
349 * for a short write when residp isn't provided.
351 * Timestamps:
352 * zp - ctime|mtime updated if byte count > 0
355 zfs_write_simple(znode_t *zp, const void *data, size_t len,
356 loff_t pos, size_t *residp)
358 fstrans_cookie_t cookie;
359 int error;
361 struct iovec iov;
362 iov.iov_base = (void *)data;
363 iov.iov_len = len;
365 zfs_uio_t uio;
366 zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
368 cookie = spl_fstrans_mark();
369 error = zfs_write(zp, &uio, 0, kcred);
370 spl_fstrans_unmark(cookie);
372 if (error == 0) {
373 if (residp != NULL)
374 *residp = zfs_uio_resid(&uio);
375 else if (zfs_uio_resid(&uio) != 0)
376 error = SET_ERROR(EIO);
379 return (error);
382 static void
383 zfs_rele_async_task(void *arg)
385 iput(arg);
388 void
389 zfs_zrele_async(znode_t *zp)
391 struct inode *ip = ZTOI(zp);
392 objset_t *os = ITOZSB(ip)->z_os;
394 ASSERT(atomic_read(&ip->i_count) > 0);
395 ASSERT(os != NULL);
398 * If decrementing the count would put us at 0, we can't do it inline
399 * here, because that would be synchronous. Instead, dispatch an iput
400 * to run later.
402 * For more information on the dangers of a synchronous iput, see the
403 * header comment of this file.
405 if (!atomic_add_unless(&ip->i_count, -1, 1)) {
406 VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
407 zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
413 * Lookup an entry in a directory, or an extended attribute directory.
414 * If it exists, return a held inode reference for it.
416 * IN: zdp - znode of directory to search.
417 * nm - name of entry to lookup.
418 * flags - LOOKUP_XATTR set if looking for an attribute.
419 * cr - credentials of caller.
420 * direntflags - directory lookup flags
421 * realpnp - returned pathname.
423 * OUT: zpp - znode of located entry, NULL if not found.
425 * RETURN: 0 on success, error code on failure.
427 * Timestamps:
428 * NA
431 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
432 int *direntflags, pathname_t *realpnp)
434 zfsvfs_t *zfsvfs = ZTOZSB(zdp);
435 int error = 0;
438 * Fast path lookup, however we must skip DNLC lookup
439 * for case folding or normalizing lookups because the
440 * DNLC code only stores the passed in name. This means
441 * creating 'a' and removing 'A' on a case insensitive
442 * file system would work, but DNLC still thinks 'a'
443 * exists and won't let you create it again on the next
444 * pass through fast path.
446 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
448 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
449 return (SET_ERROR(ENOTDIR));
450 } else if (zdp->z_sa_hdl == NULL) {
451 return (SET_ERROR(EIO));
454 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
455 error = zfs_fastaccesschk_execute(zdp, cr);
456 if (!error) {
457 *zpp = zdp;
458 zhold(*zpp);
459 return (0);
461 return (error);
465 if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
466 return (error);
468 *zpp = NULL;
470 if (flags & LOOKUP_XATTR) {
472 * We don't allow recursive attributes..
473 * Maybe someday we will.
475 if (zdp->z_pflags & ZFS_XATTR) {
476 zfs_exit(zfsvfs, FTAG);
477 return (SET_ERROR(EINVAL));
480 if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
481 zfs_exit(zfsvfs, FTAG);
482 return (error);
486 * Do we have permission to get into attribute directory?
489 if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
490 B_TRUE, cr, zfs_init_idmap))) {
491 zrele(*zpp);
492 *zpp = NULL;
495 zfs_exit(zfsvfs, FTAG);
496 return (error);
499 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
500 zfs_exit(zfsvfs, FTAG);
501 return (SET_ERROR(ENOTDIR));
505 * Check accessibility of directory.
508 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
509 zfs_init_idmap))) {
510 zfs_exit(zfsvfs, FTAG);
511 return (error);
514 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
515 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
516 zfs_exit(zfsvfs, FTAG);
517 return (SET_ERROR(EILSEQ));
520 error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
521 if ((error == 0) && (*zpp))
522 zfs_znode_update_vfs(*zpp);
524 zfs_exit(zfsvfs, FTAG);
525 return (error);
529 * Attempt to create a new entry in a directory. If the entry
530 * already exists, truncate the file if permissible, else return
531 * an error. Return the ip of the created or trunc'd file.
533 * IN: dzp - znode of directory to put new file entry in.
534 * name - name of new file entry.
535 * vap - attributes of new file.
536 * excl - flag indicating exclusive or non-exclusive mode.
537 * mode - mode to open file with.
538 * cr - credentials of caller.
539 * flag - file flag.
540 * vsecp - ACL to be set
541 * mnt_ns - user namespace of the mount
543 * OUT: zpp - znode of created or trunc'd entry.
545 * RETURN: 0 on success, error code on failure.
547 * Timestamps:
548 * dzp - ctime|mtime updated if new entry created
549 * zp - ctime|mtime always, atime if new
552 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
553 int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
554 zidmap_t *mnt_ns)
556 znode_t *zp;
557 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
558 zilog_t *zilog;
559 objset_t *os;
560 zfs_dirlock_t *dl;
561 dmu_tx_t *tx;
562 int error;
563 uid_t uid;
564 gid_t gid;
565 zfs_acl_ids_t acl_ids;
566 boolean_t fuid_dirtied;
567 boolean_t have_acl = B_FALSE;
568 boolean_t waited = B_FALSE;
569 boolean_t skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
572 * If we have an ephemeral id, ACL, or XVATTR then
573 * make sure file system is at proper version
576 gid = crgetgid(cr);
577 uid = crgetuid(cr);
579 if (zfsvfs->z_use_fuids == B_FALSE &&
580 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
581 return (SET_ERROR(EINVAL));
583 if (name == NULL)
584 return (SET_ERROR(EINVAL));
586 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
587 return (error);
588 os = zfsvfs->z_os;
589 zilog = zfsvfs->z_log;
591 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
592 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
593 zfs_exit(zfsvfs, FTAG);
594 return (SET_ERROR(EILSEQ));
597 if (vap->va_mask & ATTR_XVATTR) {
598 if ((error = secpolicy_xvattr((xvattr_t *)vap,
599 crgetuid(cr), cr, vap->va_mode)) != 0) {
600 zfs_exit(zfsvfs, FTAG);
601 return (error);
605 top:
606 *zpp = NULL;
607 if (*name == '\0') {
609 * Null component name refers to the directory itself.
611 zhold(dzp);
612 zp = dzp;
613 dl = NULL;
614 error = 0;
615 } else {
616 /* possible igrab(zp) */
617 int zflg = 0;
619 if (flag & FIGNORECASE)
620 zflg |= ZCILOOK;
622 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
623 NULL, NULL);
624 if (error) {
625 if (have_acl)
626 zfs_acl_ids_free(&acl_ids);
627 if (strcmp(name, "..") == 0)
628 error = SET_ERROR(EISDIR);
629 zfs_exit(zfsvfs, FTAG);
630 return (error);
634 if (zp == NULL) {
635 uint64_t txtype;
636 uint64_t projid = ZFS_DEFAULT_PROJID;
639 * Create a new file object and update the directory
640 * to reference it.
642 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
643 mnt_ns))) {
644 if (have_acl)
645 zfs_acl_ids_free(&acl_ids);
646 goto out;
650 * We only support the creation of regular files in
651 * extended attribute directories.
654 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
655 if (have_acl)
656 zfs_acl_ids_free(&acl_ids);
657 error = SET_ERROR(EINVAL);
658 goto out;
661 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
662 cr, vsecp, &acl_ids, mnt_ns)) != 0)
663 goto out;
664 have_acl = B_TRUE;
666 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
667 projid = zfs_inherit_projid(dzp);
668 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
669 zfs_acl_ids_free(&acl_ids);
670 error = SET_ERROR(EDQUOT);
671 goto out;
674 tx = dmu_tx_create(os);
676 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
677 ZFS_SA_BASE_ATTR_SIZE);
679 fuid_dirtied = zfsvfs->z_fuid_dirty;
680 if (fuid_dirtied)
681 zfs_fuid_txhold(zfsvfs, tx);
682 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
683 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
684 if (!zfsvfs->z_use_sa &&
685 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
686 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
687 0, acl_ids.z_aclp->z_acl_bytes);
690 error = dmu_tx_assign(tx,
691 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
692 if (error) {
693 zfs_dirent_unlock(dl);
694 if (error == ERESTART) {
695 waited = B_TRUE;
696 dmu_tx_wait(tx);
697 dmu_tx_abort(tx);
698 goto top;
700 zfs_acl_ids_free(&acl_ids);
701 dmu_tx_abort(tx);
702 zfs_exit(zfsvfs, FTAG);
703 return (error);
705 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
707 error = zfs_link_create(dl, zp, tx, ZNEW);
708 if (error != 0) {
710 * Since, we failed to add the directory entry for it,
711 * delete the newly created dnode.
713 zfs_znode_delete(zp, tx);
714 remove_inode_hash(ZTOI(zp));
715 zfs_acl_ids_free(&acl_ids);
716 dmu_tx_commit(tx);
717 goto out;
720 if (fuid_dirtied)
721 zfs_fuid_sync(zfsvfs, tx);
723 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
724 if (flag & FIGNORECASE)
725 txtype |= TX_CI;
726 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
727 vsecp, acl_ids.z_fuidp, vap);
728 zfs_acl_ids_free(&acl_ids);
729 dmu_tx_commit(tx);
730 } else {
731 int aflags = (flag & O_APPEND) ? V_APPEND : 0;
733 if (have_acl)
734 zfs_acl_ids_free(&acl_ids);
737 * A directory entry already exists for this name.
740 * Can't truncate an existing file if in exclusive mode.
742 if (excl) {
743 error = SET_ERROR(EEXIST);
744 goto out;
747 * Can't open a directory for writing.
749 if (S_ISDIR(ZTOI(zp)->i_mode)) {
750 error = SET_ERROR(EISDIR);
751 goto out;
754 * Verify requested access to file.
756 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
757 mnt_ns))) {
758 goto out;
761 mutex_enter(&dzp->z_lock);
762 dzp->z_seq++;
763 mutex_exit(&dzp->z_lock);
766 * Truncate regular files if requested.
768 if (S_ISREG(ZTOI(zp)->i_mode) &&
769 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
770 /* we can't hold any locks when calling zfs_freesp() */
771 if (dl) {
772 zfs_dirent_unlock(dl);
773 dl = NULL;
775 error = zfs_freesp(zp, 0, 0, mode, TRUE);
778 out:
780 if (dl)
781 zfs_dirent_unlock(dl);
783 if (error) {
784 if (zp)
785 zrele(zp);
786 } else {
787 zfs_znode_update_vfs(dzp);
788 zfs_znode_update_vfs(zp);
789 *zpp = zp;
792 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
793 zil_commit(zilog, 0);
795 zfs_exit(zfsvfs, FTAG);
796 return (error);
800 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
801 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
802 zidmap_t *mnt_ns)
804 (void) excl, (void) mode, (void) flag;
805 znode_t *zp = NULL, *dzp = ITOZ(dip);
806 zfsvfs_t *zfsvfs = ITOZSB(dip);
807 objset_t *os;
808 dmu_tx_t *tx;
809 int error;
810 uid_t uid;
811 gid_t gid;
812 zfs_acl_ids_t acl_ids;
813 uint64_t projid = ZFS_DEFAULT_PROJID;
814 boolean_t fuid_dirtied;
815 boolean_t have_acl = B_FALSE;
816 boolean_t waited = B_FALSE;
819 * If we have an ephemeral id, ACL, or XVATTR then
820 * make sure file system is at proper version
823 gid = crgetgid(cr);
824 uid = crgetuid(cr);
826 if (zfsvfs->z_use_fuids == B_FALSE &&
827 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
828 return (SET_ERROR(EINVAL));
830 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
831 return (error);
832 os = zfsvfs->z_os;
834 if (vap->va_mask & ATTR_XVATTR) {
835 if ((error = secpolicy_xvattr((xvattr_t *)vap,
836 crgetuid(cr), cr, vap->va_mode)) != 0) {
837 zfs_exit(zfsvfs, FTAG);
838 return (error);
842 top:
843 *ipp = NULL;
846 * Create a new file object and update the directory
847 * to reference it.
849 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
850 if (have_acl)
851 zfs_acl_ids_free(&acl_ids);
852 goto out;
855 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
856 cr, vsecp, &acl_ids, mnt_ns)) != 0)
857 goto out;
858 have_acl = B_TRUE;
860 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
861 projid = zfs_inherit_projid(dzp);
862 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
863 zfs_acl_ids_free(&acl_ids);
864 error = SET_ERROR(EDQUOT);
865 goto out;
868 tx = dmu_tx_create(os);
870 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
871 ZFS_SA_BASE_ATTR_SIZE);
872 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
874 fuid_dirtied = zfsvfs->z_fuid_dirty;
875 if (fuid_dirtied)
876 zfs_fuid_txhold(zfsvfs, tx);
877 if (!zfsvfs->z_use_sa &&
878 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
879 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
880 0, acl_ids.z_aclp->z_acl_bytes);
882 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
883 if (error) {
884 if (error == ERESTART) {
885 waited = B_TRUE;
886 dmu_tx_wait(tx);
887 dmu_tx_abort(tx);
888 goto top;
890 zfs_acl_ids_free(&acl_ids);
891 dmu_tx_abort(tx);
892 zfs_exit(zfsvfs, FTAG);
893 return (error);
895 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
897 if (fuid_dirtied)
898 zfs_fuid_sync(zfsvfs, tx);
900 /* Add to unlinked set */
901 zp->z_unlinked = B_TRUE;
902 zfs_unlinked_add(zp, tx);
903 zfs_acl_ids_free(&acl_ids);
904 dmu_tx_commit(tx);
905 out:
907 if (error) {
908 if (zp)
909 zrele(zp);
910 } else {
911 zfs_znode_update_vfs(dzp);
912 zfs_znode_update_vfs(zp);
913 *ipp = ZTOI(zp);
916 zfs_exit(zfsvfs, FTAG);
917 return (error);
921 * Remove an entry from a directory.
923 * IN: dzp - znode of directory to remove entry from.
924 * name - name of entry to remove.
925 * cr - credentials of caller.
926 * flags - case flags.
928 * RETURN: 0 if success
929 * error code if failure
931 * Timestamps:
932 * dzp - ctime|mtime
933 * ip - ctime (if nlink > 0)
936 static uint64_t null_xattr = 0;
939 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
941 znode_t *zp;
942 znode_t *xzp;
943 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
944 zilog_t *zilog;
945 uint64_t acl_obj, xattr_obj;
946 uint64_t xattr_obj_unlinked = 0;
947 uint64_t obj = 0;
948 uint64_t links;
949 zfs_dirlock_t *dl;
950 dmu_tx_t *tx;
951 boolean_t may_delete_now, delete_now = FALSE;
952 boolean_t unlinked, toobig = FALSE;
953 uint64_t txtype;
954 pathname_t *realnmp = NULL;
955 pathname_t realnm;
956 int error;
957 int zflg = ZEXISTS;
958 boolean_t waited = B_FALSE;
960 if (name == NULL)
961 return (SET_ERROR(EINVAL));
963 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
964 return (error);
965 zilog = zfsvfs->z_log;
967 if (flags & FIGNORECASE) {
968 zflg |= ZCILOOK;
969 pn_alloc(&realnm);
970 realnmp = &realnm;
973 top:
974 xattr_obj = 0;
975 xzp = NULL;
977 * Attempt to lock directory; fail if entry doesn't exist.
979 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
980 NULL, realnmp))) {
981 if (realnmp)
982 pn_free(realnmp);
983 zfs_exit(zfsvfs, FTAG);
984 return (error);
987 if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
988 goto out;
992 * Need to use rmdir for removing directories.
994 if (S_ISDIR(ZTOI(zp)->i_mode)) {
995 error = SET_ERROR(EPERM);
996 goto out;
999 mutex_enter(&zp->z_lock);
1000 may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1001 !zn_has_cached_data(zp, 0, LLONG_MAX);
1002 mutex_exit(&zp->z_lock);
1005 * We may delete the znode now, or we may put it in the unlinked set;
1006 * it depends on whether we're the last link, and on whether there are
1007 * other holds on the inode. So we dmu_tx_hold() the right things to
1008 * allow for either case.
1010 obj = zp->z_id;
1011 tx = dmu_tx_create(zfsvfs->z_os);
1012 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1013 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1014 zfs_sa_upgrade_txholds(tx, zp);
1015 zfs_sa_upgrade_txholds(tx, dzp);
1016 if (may_delete_now) {
1017 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1018 /* if the file is too big, only hold_free a token amount */
1019 dmu_tx_hold_free(tx, zp->z_id, 0,
1020 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1023 /* are there any extended attributes? */
1024 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1025 &xattr_obj, sizeof (xattr_obj));
1026 if (error == 0 && xattr_obj) {
1027 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1028 ASSERT0(error);
1029 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1030 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1033 mutex_enter(&zp->z_lock);
1034 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1035 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1036 mutex_exit(&zp->z_lock);
1038 /* charge as an update -- would be nice not to charge at all */
1039 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1042 * Mark this transaction as typically resulting in a net free of space
1044 dmu_tx_mark_netfree(tx);
1046 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1047 if (error) {
1048 zfs_dirent_unlock(dl);
1049 if (error == ERESTART) {
1050 waited = B_TRUE;
1051 dmu_tx_wait(tx);
1052 dmu_tx_abort(tx);
1053 zrele(zp);
1054 if (xzp)
1055 zrele(xzp);
1056 goto top;
1058 if (realnmp)
1059 pn_free(realnmp);
1060 dmu_tx_abort(tx);
1061 zrele(zp);
1062 if (xzp)
1063 zrele(xzp);
1064 zfs_exit(zfsvfs, FTAG);
1065 return (error);
1069 * Remove the directory entry.
1071 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1073 if (error) {
1074 dmu_tx_commit(tx);
1075 goto out;
1078 if (unlinked) {
1080 * Hold z_lock so that we can make sure that the ACL obj
1081 * hasn't changed. Could have been deleted due to
1082 * zfs_sa_upgrade().
1084 mutex_enter(&zp->z_lock);
1085 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1086 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1087 delete_now = may_delete_now && !toobig &&
1088 atomic_read(&ZTOI(zp)->i_count) == 1 &&
1089 !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1090 xattr_obj == xattr_obj_unlinked &&
1091 zfs_external_acl(zp) == acl_obj;
1092 VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1095 if (delete_now) {
1096 if (xattr_obj_unlinked) {
1097 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1098 mutex_enter(&xzp->z_lock);
1099 xzp->z_unlinked = B_TRUE;
1100 clear_nlink(ZTOI(xzp));
1101 links = 0;
1102 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1103 &links, sizeof (links), tx);
1104 ASSERT3U(error, ==, 0);
1105 mutex_exit(&xzp->z_lock);
1106 zfs_unlinked_add(xzp, tx);
1108 if (zp->z_is_sa)
1109 error = sa_remove(zp->z_sa_hdl,
1110 SA_ZPL_XATTR(zfsvfs), tx);
1111 else
1112 error = sa_update(zp->z_sa_hdl,
1113 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1114 sizeof (uint64_t), tx);
1115 ASSERT0(error);
1118 * Add to the unlinked set because a new reference could be
1119 * taken concurrently resulting in a deferred destruction.
1121 zfs_unlinked_add(zp, tx);
1122 mutex_exit(&zp->z_lock);
1123 } else if (unlinked) {
1124 mutex_exit(&zp->z_lock);
1125 zfs_unlinked_add(zp, tx);
1128 txtype = TX_REMOVE;
1129 if (flags & FIGNORECASE)
1130 txtype |= TX_CI;
1131 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1133 dmu_tx_commit(tx);
1134 out:
1135 if (realnmp)
1136 pn_free(realnmp);
1138 zfs_dirent_unlock(dl);
1139 zfs_znode_update_vfs(dzp);
1140 zfs_znode_update_vfs(zp);
1142 if (delete_now)
1143 zrele(zp);
1144 else
1145 zfs_zrele_async(zp);
1147 if (xzp) {
1148 zfs_znode_update_vfs(xzp);
1149 zfs_zrele_async(xzp);
1152 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1153 zil_commit(zilog, 0);
1155 zfs_exit(zfsvfs, FTAG);
1156 return (error);
1160 * Create a new directory and insert it into dzp using the name
1161 * provided. Return a pointer to the inserted directory.
1163 * IN: dzp - znode of directory to add subdir to.
1164 * dirname - name of new directory.
1165 * vap - attributes of new directory.
1166 * cr - credentials of caller.
1167 * flags - case flags.
1168 * vsecp - ACL to be set
1169 * mnt_ns - user namespace of the mount
1171 * OUT: zpp - znode of created directory.
1173 * RETURN: 0 if success
1174 * error code if failure
1176 * Timestamps:
1177 * dzp - ctime|mtime updated
1178 * zpp - ctime|mtime|atime updated
1181 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1182 cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1184 znode_t *zp;
1185 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1186 zilog_t *zilog;
1187 zfs_dirlock_t *dl;
1188 uint64_t txtype;
1189 dmu_tx_t *tx;
1190 int error;
1191 int zf = ZNEW;
1192 uid_t uid;
1193 gid_t gid = crgetgid(cr);
1194 zfs_acl_ids_t acl_ids;
1195 boolean_t fuid_dirtied;
1196 boolean_t waited = B_FALSE;
1198 ASSERT(S_ISDIR(vap->va_mode));
1201 * If we have an ephemeral id, ACL, or XVATTR then
1202 * make sure file system is at proper version
1205 uid = crgetuid(cr);
1206 if (zfsvfs->z_use_fuids == B_FALSE &&
1207 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1208 return (SET_ERROR(EINVAL));
1210 if (dirname == NULL)
1211 return (SET_ERROR(EINVAL));
1213 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1214 return (error);
1215 zilog = zfsvfs->z_log;
1217 if (dzp->z_pflags & ZFS_XATTR) {
1218 zfs_exit(zfsvfs, FTAG);
1219 return (SET_ERROR(EINVAL));
1222 if (zfsvfs->z_utf8 && u8_validate(dirname,
1223 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1224 zfs_exit(zfsvfs, FTAG);
1225 return (SET_ERROR(EILSEQ));
1227 if (flags & FIGNORECASE)
1228 zf |= ZCILOOK;
1230 if (vap->va_mask & ATTR_XVATTR) {
1231 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1232 crgetuid(cr), cr, vap->va_mode)) != 0) {
1233 zfs_exit(zfsvfs, FTAG);
1234 return (error);
1238 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1239 vsecp, &acl_ids, mnt_ns)) != 0) {
1240 zfs_exit(zfsvfs, FTAG);
1241 return (error);
1244 * First make sure the new directory doesn't exist.
1246 * Existence is checked first to make sure we don't return
1247 * EACCES instead of EEXIST which can cause some applications
1248 * to fail.
1250 top:
1251 *zpp = NULL;
1253 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1254 NULL, NULL))) {
1255 zfs_acl_ids_free(&acl_ids);
1256 zfs_exit(zfsvfs, FTAG);
1257 return (error);
1260 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1261 mnt_ns))) {
1262 zfs_acl_ids_free(&acl_ids);
1263 zfs_dirent_unlock(dl);
1264 zfs_exit(zfsvfs, FTAG);
1265 return (error);
1268 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1269 zfs_acl_ids_free(&acl_ids);
1270 zfs_dirent_unlock(dl);
1271 zfs_exit(zfsvfs, FTAG);
1272 return (SET_ERROR(EDQUOT));
1276 * Add a new entry to the directory.
1278 tx = dmu_tx_create(zfsvfs->z_os);
1279 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1280 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1281 fuid_dirtied = zfsvfs->z_fuid_dirty;
1282 if (fuid_dirtied)
1283 zfs_fuid_txhold(zfsvfs, tx);
1284 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1285 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1286 acl_ids.z_aclp->z_acl_bytes);
1289 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1290 ZFS_SA_BASE_ATTR_SIZE);
1292 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1293 if (error) {
1294 zfs_dirent_unlock(dl);
1295 if (error == ERESTART) {
1296 waited = B_TRUE;
1297 dmu_tx_wait(tx);
1298 dmu_tx_abort(tx);
1299 goto top;
1301 zfs_acl_ids_free(&acl_ids);
1302 dmu_tx_abort(tx);
1303 zfs_exit(zfsvfs, FTAG);
1304 return (error);
1308 * Create new node.
1310 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1313 * Now put new name in parent dir.
1315 error = zfs_link_create(dl, zp, tx, ZNEW);
1316 if (error != 0) {
1317 zfs_znode_delete(zp, tx);
1318 remove_inode_hash(ZTOI(zp));
1319 goto out;
1322 if (fuid_dirtied)
1323 zfs_fuid_sync(zfsvfs, tx);
1325 *zpp = zp;
1327 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1328 if (flags & FIGNORECASE)
1329 txtype |= TX_CI;
1330 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1331 acl_ids.z_fuidp, vap);
1333 out:
1334 zfs_acl_ids_free(&acl_ids);
1336 dmu_tx_commit(tx);
1338 zfs_dirent_unlock(dl);
1340 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1341 zil_commit(zilog, 0);
1343 if (error != 0) {
1344 zrele(zp);
1345 } else {
1346 zfs_znode_update_vfs(dzp);
1347 zfs_znode_update_vfs(zp);
1349 zfs_exit(zfsvfs, FTAG);
1350 return (error);
1354 * Remove a directory subdir entry. If the current working
1355 * directory is the same as the subdir to be removed, the
1356 * remove will fail.
1358 * IN: dzp - znode of directory to remove from.
1359 * name - name of directory to be removed.
1360 * cwd - inode of current working directory.
1361 * cr - credentials of caller.
1362 * flags - case flags
1364 * RETURN: 0 on success, error code on failure.
1366 * Timestamps:
1367 * dzp - ctime|mtime updated
1370 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1371 int flags)
1373 znode_t *zp;
1374 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1375 zilog_t *zilog;
1376 zfs_dirlock_t *dl;
1377 dmu_tx_t *tx;
1378 int error;
1379 int zflg = ZEXISTS;
1380 boolean_t waited = B_FALSE;
1382 if (name == NULL)
1383 return (SET_ERROR(EINVAL));
1385 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1386 return (error);
1387 zilog = zfsvfs->z_log;
1389 if (flags & FIGNORECASE)
1390 zflg |= ZCILOOK;
1391 top:
1392 zp = NULL;
1395 * Attempt to lock directory; fail if entry doesn't exist.
1397 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1398 NULL, NULL))) {
1399 zfs_exit(zfsvfs, FTAG);
1400 return (error);
1403 if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1404 goto out;
1407 if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1408 error = SET_ERROR(ENOTDIR);
1409 goto out;
1412 if (zp == cwd) {
1413 error = SET_ERROR(EINVAL);
1414 goto out;
1418 * Grab a lock on the directory to make sure that no one is
1419 * trying to add (or lookup) entries while we are removing it.
1421 rw_enter(&zp->z_name_lock, RW_WRITER);
1424 * Grab a lock on the parent pointer to make sure we play well
1425 * with the treewalk and directory rename code.
1427 rw_enter(&zp->z_parent_lock, RW_WRITER);
1429 tx = dmu_tx_create(zfsvfs->z_os);
1430 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1431 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1432 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1433 zfs_sa_upgrade_txholds(tx, zp);
1434 zfs_sa_upgrade_txholds(tx, dzp);
1435 dmu_tx_mark_netfree(tx);
1436 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1437 if (error) {
1438 rw_exit(&zp->z_parent_lock);
1439 rw_exit(&zp->z_name_lock);
1440 zfs_dirent_unlock(dl);
1441 if (error == ERESTART) {
1442 waited = B_TRUE;
1443 dmu_tx_wait(tx);
1444 dmu_tx_abort(tx);
1445 zrele(zp);
1446 goto top;
1448 dmu_tx_abort(tx);
1449 zrele(zp);
1450 zfs_exit(zfsvfs, FTAG);
1451 return (error);
1454 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1456 if (error == 0) {
1457 uint64_t txtype = TX_RMDIR;
1458 if (flags & FIGNORECASE)
1459 txtype |= TX_CI;
1460 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1461 B_FALSE);
1464 dmu_tx_commit(tx);
1466 rw_exit(&zp->z_parent_lock);
1467 rw_exit(&zp->z_name_lock);
1468 out:
1469 zfs_dirent_unlock(dl);
1471 zfs_znode_update_vfs(dzp);
1472 zfs_znode_update_vfs(zp);
1473 zrele(zp);
1475 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1476 zil_commit(zilog, 0);
1478 zfs_exit(zfsvfs, FTAG);
1479 return (error);
1483 * Read directory entries from the given directory cursor position and emit
1484 * name and position for each entry.
1486 * IN: ip - inode of directory to read.
1487 * ctx - directory entry context.
1488 * cr - credentials of caller.
1490 * RETURN: 0 if success
1491 * error code if failure
1493 * Timestamps:
1494 * ip - atime updated
1496 * Note that the low 4 bits of the cookie returned by zap is always zero.
1497 * This allows us to use the low range for "special" directory entries:
1498 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1499 * we use the offset 2 for the '.zfs' directory.
1502 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1504 (void) cr;
1505 znode_t *zp = ITOZ(ip);
1506 zfsvfs_t *zfsvfs = ITOZSB(ip);
1507 objset_t *os;
1508 zap_cursor_t zc;
1509 zap_attribute_t zap;
1510 int error;
1511 uint8_t prefetch;
1512 uint8_t type;
1513 int done = 0;
1514 uint64_t parent;
1515 uint64_t offset; /* must be unsigned; checks for < 1 */
1517 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1518 return (error);
1520 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1521 &parent, sizeof (parent))) != 0)
1522 goto out;
1525 * Quit if directory has been removed (posix)
1527 if (zp->z_unlinked)
1528 goto out;
1530 error = 0;
1531 os = zfsvfs->z_os;
1532 offset = ctx->pos;
1533 prefetch = zp->z_zn_prefetch;
1536 * Initialize the iterator cursor.
1538 if (offset <= 3) {
1540 * Start iteration from the beginning of the directory.
1542 zap_cursor_init(&zc, os, zp->z_id);
1543 } else {
1545 * The offset is a serialized cursor.
1547 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1551 * Transform to file-system independent format
1553 while (!done) {
1554 uint64_t objnum;
1556 * Special case `.', `..', and `.zfs'.
1558 if (offset == 0) {
1559 (void) strcpy(zap.za_name, ".");
1560 zap.za_normalization_conflict = 0;
1561 objnum = zp->z_id;
1562 type = DT_DIR;
1563 } else if (offset == 1) {
1564 (void) strcpy(zap.za_name, "..");
1565 zap.za_normalization_conflict = 0;
1566 objnum = parent;
1567 type = DT_DIR;
1568 } else if (offset == 2 && zfs_show_ctldir(zp)) {
1569 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1570 zap.za_normalization_conflict = 0;
1571 objnum = ZFSCTL_INO_ROOT;
1572 type = DT_DIR;
1573 } else {
1575 * Grab next entry.
1577 if ((error = zap_cursor_retrieve(&zc, &zap))) {
1578 if (error == ENOENT)
1579 break;
1580 else
1581 goto update;
1585 * Allow multiple entries provided the first entry is
1586 * the object id. Non-zpl consumers may safely make
1587 * use of the additional space.
1589 * XXX: This should be a feature flag for compatibility
1591 if (zap.za_integer_length != 8 ||
1592 zap.za_num_integers == 0) {
1593 cmn_err(CE_WARN, "zap_readdir: bad directory "
1594 "entry, obj = %lld, offset = %lld, "
1595 "length = %d, num = %lld\n",
1596 (u_longlong_t)zp->z_id,
1597 (u_longlong_t)offset,
1598 zap.za_integer_length,
1599 (u_longlong_t)zap.za_num_integers);
1600 error = SET_ERROR(ENXIO);
1601 goto update;
1604 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1605 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1608 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1609 objnum, type);
1610 if (done)
1611 break;
1613 /* Prefetch znode */
1614 if (prefetch) {
1615 dmu_prefetch(os, objnum, 0, 0, 0,
1616 ZIO_PRIORITY_SYNC_READ);
1620 * Move to the next entry, fill in the previous offset.
1622 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1623 zap_cursor_advance(&zc);
1624 offset = zap_cursor_serialize(&zc);
1625 } else {
1626 offset += 1;
1628 ctx->pos = offset;
1630 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1632 update:
1633 zap_cursor_fini(&zc);
1634 if (error == ENOENT)
1635 error = 0;
1636 out:
1637 zfs_exit(zfsvfs, FTAG);
1639 return (error);
1643 * Get the basic file attributes and place them in the provided kstat
1644 * structure. The inode is assumed to be the authoritative source
1645 * for most of the attributes. However, the znode currently has the
1646 * authoritative atime, blksize, and block count.
1648 * IN: ip - inode of file.
1650 * OUT: sp - kstat values.
1652 * RETURN: 0 (always succeeds)
1655 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1656 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1657 struct kstat *sp)
1658 #else
1659 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1660 #endif
1662 znode_t *zp = ITOZ(ip);
1663 zfsvfs_t *zfsvfs = ITOZSB(ip);
1664 uint32_t blksize;
1665 u_longlong_t nblocks;
1666 int error;
1668 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1669 return (error);
1671 mutex_enter(&zp->z_lock);
1673 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1674 zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1675 #else
1676 zpl_generic_fillattr(user_ns, ip, sp);
1677 #endif
1679 * +1 link count for root inode with visible '.zfs' directory.
1681 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1682 if (sp->nlink < ZFS_LINK_MAX)
1683 sp->nlink++;
1685 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1686 sp->blksize = blksize;
1687 sp->blocks = nblocks;
1689 if (unlikely(zp->z_blksz == 0)) {
1691 * Block size hasn't been set; suggest maximal I/O transfers.
1693 sp->blksize = zfsvfs->z_max_blksz;
1696 mutex_exit(&zp->z_lock);
1699 * Required to prevent NFS client from detecting different inode
1700 * numbers of snapshot root dentry before and after snapshot mount.
1702 if (zfsvfs->z_issnap) {
1703 if (ip->i_sb->s_root->d_inode == ip)
1704 sp->ino = ZFSCTL_INO_SNAPDIRS -
1705 dmu_objset_id(zfsvfs->z_os);
1708 zfs_exit(zfsvfs, FTAG);
1710 return (0);
1714 * For the operation of changing file's user/group/project, we need to
1715 * handle not only the main object that is assigned to the file directly,
1716 * but also the ones that are used by the file via hidden xattr directory.
1718 * Because the xattr directory may contains many EA entries, as to it may
1719 * be impossible to change all of them via the transaction of changing the
1720 * main object's user/group/project attributes. Then we have to change them
1721 * via other multiple independent transactions one by one. It may be not good
1722 * solution, but we have no better idea yet.
1724 static int
1725 zfs_setattr_dir(znode_t *dzp)
1727 struct inode *dxip = ZTOI(dzp);
1728 struct inode *xip = NULL;
1729 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1730 objset_t *os = zfsvfs->z_os;
1731 zap_cursor_t zc;
1732 zap_attribute_t zap;
1733 zfs_dirlock_t *dl;
1734 znode_t *zp = NULL;
1735 dmu_tx_t *tx = NULL;
1736 uint64_t uid, gid;
1737 sa_bulk_attr_t bulk[4];
1738 int count;
1739 int err;
1741 zap_cursor_init(&zc, os, dzp->z_id);
1742 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1743 count = 0;
1744 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1745 err = ENXIO;
1746 break;
1749 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1750 ZEXISTS, NULL, NULL);
1751 if (err == ENOENT)
1752 goto next;
1753 if (err)
1754 break;
1756 xip = ZTOI(zp);
1757 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1758 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1759 zp->z_projid == dzp->z_projid)
1760 goto next;
1762 tx = dmu_tx_create(os);
1763 if (!(zp->z_pflags & ZFS_PROJID))
1764 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1765 else
1766 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1768 err = dmu_tx_assign(tx, TXG_WAIT);
1769 if (err)
1770 break;
1772 mutex_enter(&dzp->z_lock);
1774 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1775 xip->i_uid = dxip->i_uid;
1776 uid = zfs_uid_read(dxip);
1777 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1778 &uid, sizeof (uid));
1781 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1782 xip->i_gid = dxip->i_gid;
1783 gid = zfs_gid_read(dxip);
1784 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1785 &gid, sizeof (gid));
1788 if (zp->z_projid != dzp->z_projid) {
1789 if (!(zp->z_pflags & ZFS_PROJID)) {
1790 zp->z_pflags |= ZFS_PROJID;
1791 SA_ADD_BULK_ATTR(bulk, count,
1792 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1793 sizeof (zp->z_pflags));
1796 zp->z_projid = dzp->z_projid;
1797 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1798 NULL, &zp->z_projid, sizeof (zp->z_projid));
1801 mutex_exit(&dzp->z_lock);
1803 if (likely(count > 0)) {
1804 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1805 dmu_tx_commit(tx);
1806 } else {
1807 dmu_tx_abort(tx);
1809 tx = NULL;
1810 if (err != 0 && err != ENOENT)
1811 break;
1813 next:
1814 if (zp) {
1815 zrele(zp);
1816 zp = NULL;
1817 zfs_dirent_unlock(dl);
1819 zap_cursor_advance(&zc);
1822 if (tx)
1823 dmu_tx_abort(tx);
1824 if (zp) {
1825 zrele(zp);
1826 zfs_dirent_unlock(dl);
1828 zap_cursor_fini(&zc);
1830 return (err == ENOENT ? 0 : err);
1834 * Set the file attributes to the values contained in the
1835 * vattr structure.
1837 * IN: zp - znode of file to be modified.
1838 * vap - new attribute values.
1839 * If ATTR_XVATTR set, then optional attrs are being set
1840 * flags - ATTR_UTIME set if non-default time values provided.
1841 * - ATTR_NOACLCHECK (CIFS context only).
1842 * cr - credentials of caller.
1843 * mnt_ns - user namespace of the mount
1845 * RETURN: 0 if success
1846 * error code if failure
1848 * Timestamps:
1849 * ip - ctime updated, mtime updated if size changed.
1852 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1854 struct inode *ip;
1855 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1856 objset_t *os = zfsvfs->z_os;
1857 zilog_t *zilog;
1858 dmu_tx_t *tx;
1859 vattr_t oldva;
1860 xvattr_t *tmpxvattr;
1861 uint_t mask = vap->va_mask;
1862 uint_t saved_mask = 0;
1863 int trim_mask = 0;
1864 uint64_t new_mode;
1865 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1866 uint64_t xattr_obj;
1867 uint64_t mtime[2], ctime[2], atime[2];
1868 uint64_t projid = ZFS_INVALID_PROJID;
1869 znode_t *attrzp;
1870 int need_policy = FALSE;
1871 int err, err2 = 0;
1872 zfs_fuid_info_t *fuidp = NULL;
1873 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
1874 xoptattr_t *xoap;
1875 zfs_acl_t *aclp;
1876 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1877 boolean_t fuid_dirtied = B_FALSE;
1878 boolean_t handle_eadir = B_FALSE;
1879 sa_bulk_attr_t *bulk, *xattr_bulk;
1880 int count = 0, xattr_count = 0, bulks = 8;
1882 if (mask == 0)
1883 return (0);
1885 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1886 return (err);
1887 ip = ZTOI(zp);
1890 * If this is a xvattr_t, then get a pointer to the structure of
1891 * optional attributes. If this is NULL, then we have a vattr_t.
1893 xoap = xva_getxoptattr(xvap);
1894 if (xoap != NULL && (mask & ATTR_XVATTR)) {
1895 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1896 if (!dmu_objset_projectquota_enabled(os) ||
1897 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1898 zfs_exit(zfsvfs, FTAG);
1899 return (SET_ERROR(ENOTSUP));
1902 projid = xoap->xoa_projid;
1903 if (unlikely(projid == ZFS_INVALID_PROJID)) {
1904 zfs_exit(zfsvfs, FTAG);
1905 return (SET_ERROR(EINVAL));
1908 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1909 projid = ZFS_INVALID_PROJID;
1910 else
1911 need_policy = TRUE;
1914 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1915 (xoap->xoa_projinherit !=
1916 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1917 (!dmu_objset_projectquota_enabled(os) ||
1918 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1919 zfs_exit(zfsvfs, FTAG);
1920 return (SET_ERROR(ENOTSUP));
1924 zilog = zfsvfs->z_log;
1927 * Make sure that if we have ephemeral uid/gid or xvattr specified
1928 * that file system is at proper version level
1931 if (zfsvfs->z_use_fuids == B_FALSE &&
1932 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1933 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1934 (mask & ATTR_XVATTR))) {
1935 zfs_exit(zfsvfs, FTAG);
1936 return (SET_ERROR(EINVAL));
1939 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1940 zfs_exit(zfsvfs, FTAG);
1941 return (SET_ERROR(EISDIR));
1944 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1945 zfs_exit(zfsvfs, FTAG);
1946 return (SET_ERROR(EINVAL));
1949 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1950 xva_init(tmpxvattr);
1952 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1953 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1956 * Immutable files can only alter immutable bit and atime
1958 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1959 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1960 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1961 err = SET_ERROR(EPERM);
1962 goto out3;
1965 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1966 err = SET_ERROR(EPERM);
1967 goto out3;
1971 * Verify timestamps doesn't overflow 32 bits.
1972 * ZFS can handle large timestamps, but 32bit syscalls can't
1973 * handle times greater than 2039. This check should be removed
1974 * once large timestamps are fully supported.
1976 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1977 if (((mask & ATTR_ATIME) &&
1978 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1979 ((mask & ATTR_MTIME) &&
1980 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1981 err = SET_ERROR(EOVERFLOW);
1982 goto out3;
1986 top:
1987 attrzp = NULL;
1988 aclp = NULL;
1990 /* Can this be moved to before the top label? */
1991 if (zfs_is_readonly(zfsvfs)) {
1992 err = SET_ERROR(EROFS);
1993 goto out3;
1997 * First validate permissions
2000 if (mask & ATTR_SIZE) {
2001 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2002 mnt_ns);
2003 if (err)
2004 goto out3;
2007 * XXX - Note, we are not providing any open
2008 * mode flags here (like FNDELAY), so we may
2009 * block if there are locks present... this
2010 * should be addressed in openat().
2012 /* XXX - would it be OK to generate a log record here? */
2013 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2014 if (err)
2015 goto out3;
2018 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2019 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2020 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2021 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2022 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2023 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2024 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2025 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2026 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2027 skipaclchk, cr, mnt_ns);
2030 if (mask & (ATTR_UID|ATTR_GID)) {
2031 int idmask = (mask & (ATTR_UID|ATTR_GID));
2032 int take_owner;
2033 int take_group;
2034 uid_t uid;
2035 gid_t gid;
2038 * NOTE: even if a new mode is being set,
2039 * we may clear S_ISUID/S_ISGID bits.
2042 if (!(mask & ATTR_MODE))
2043 vap->va_mode = zp->z_mode;
2046 * Take ownership or chgrp to group we are a member of
2049 uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2050 vap->va_uid);
2051 gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2052 vap->va_gid);
2053 take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2054 take_group = (mask & ATTR_GID) &&
2055 zfs_groupmember(zfsvfs, gid, cr);
2058 * If both ATTR_UID and ATTR_GID are set then take_owner and
2059 * take_group must both be set in order to allow taking
2060 * ownership.
2062 * Otherwise, send the check through secpolicy_vnode_setattr()
2066 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2067 take_owner && take_group) ||
2068 ((idmask == ATTR_UID) && take_owner) ||
2069 ((idmask == ATTR_GID) && take_group)) {
2070 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2071 skipaclchk, cr, mnt_ns) == 0) {
2073 * Remove setuid/setgid for non-privileged users
2075 (void) secpolicy_setid_clear(vap, cr);
2076 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2077 } else {
2078 need_policy = TRUE;
2080 } else {
2081 need_policy = TRUE;
2085 mutex_enter(&zp->z_lock);
2086 oldva.va_mode = zp->z_mode;
2087 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2088 if (mask & ATTR_XVATTR) {
2090 * Update xvattr mask to include only those attributes
2091 * that are actually changing.
2093 * the bits will be restored prior to actually setting
2094 * the attributes so the caller thinks they were set.
2096 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2097 if (xoap->xoa_appendonly !=
2098 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2099 need_policy = TRUE;
2100 } else {
2101 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2102 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2106 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2107 if (xoap->xoa_projinherit !=
2108 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2109 need_policy = TRUE;
2110 } else {
2111 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2112 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2116 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2117 if (xoap->xoa_nounlink !=
2118 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2119 need_policy = TRUE;
2120 } else {
2121 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2122 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2126 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2127 if (xoap->xoa_immutable !=
2128 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2129 need_policy = TRUE;
2130 } else {
2131 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2132 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2136 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2137 if (xoap->xoa_nodump !=
2138 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2139 need_policy = TRUE;
2140 } else {
2141 XVA_CLR_REQ(xvap, XAT_NODUMP);
2142 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2146 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2147 if (xoap->xoa_av_modified !=
2148 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2149 need_policy = TRUE;
2150 } else {
2151 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2152 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2156 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2157 if ((!S_ISREG(ip->i_mode) &&
2158 xoap->xoa_av_quarantined) ||
2159 xoap->xoa_av_quarantined !=
2160 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2161 need_policy = TRUE;
2162 } else {
2163 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2164 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2168 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2169 mutex_exit(&zp->z_lock);
2170 err = SET_ERROR(EPERM);
2171 goto out3;
2174 if (need_policy == FALSE &&
2175 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2176 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2177 need_policy = TRUE;
2181 mutex_exit(&zp->z_lock);
2183 if (mask & ATTR_MODE) {
2184 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2185 mnt_ns) == 0) {
2186 err = secpolicy_setid_setsticky_clear(ip, vap,
2187 &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2188 if (err)
2189 goto out3;
2190 trim_mask |= ATTR_MODE;
2191 } else {
2192 need_policy = TRUE;
2196 if (need_policy) {
2198 * If trim_mask is set then take ownership
2199 * has been granted or write_acl is present and user
2200 * has the ability to modify mode. In that case remove
2201 * UID|GID and or MODE from mask so that
2202 * secpolicy_vnode_setattr() doesn't revoke it.
2205 if (trim_mask) {
2206 saved_mask = vap->va_mask;
2207 vap->va_mask &= ~trim_mask;
2209 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2210 zfs_zaccess_unix, zp);
2211 if (err)
2212 goto out3;
2214 if (trim_mask)
2215 vap->va_mask |= saved_mask;
2219 * secpolicy_vnode_setattr, or take ownership may have
2220 * changed va_mask
2222 mask = vap->va_mask;
2224 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2225 handle_eadir = B_TRUE;
2226 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2227 &xattr_obj, sizeof (xattr_obj));
2229 if (err == 0 && xattr_obj) {
2230 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2231 if (err)
2232 goto out2;
2234 if (mask & ATTR_UID) {
2235 new_kuid = zfs_fuid_create(zfsvfs,
2236 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2237 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2238 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2239 new_kuid)) {
2240 if (attrzp)
2241 zrele(attrzp);
2242 err = SET_ERROR(EDQUOT);
2243 goto out2;
2247 if (mask & ATTR_GID) {
2248 new_kgid = zfs_fuid_create(zfsvfs,
2249 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2250 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2251 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2252 new_kgid)) {
2253 if (attrzp)
2254 zrele(attrzp);
2255 err = SET_ERROR(EDQUOT);
2256 goto out2;
2260 if (projid != ZFS_INVALID_PROJID &&
2261 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2262 if (attrzp)
2263 zrele(attrzp);
2264 err = EDQUOT;
2265 goto out2;
2268 tx = dmu_tx_create(os);
2270 if (mask & ATTR_MODE) {
2271 uint64_t pmode = zp->z_mode;
2272 uint64_t acl_obj;
2273 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2275 if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2276 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2277 err = EPERM;
2278 goto out;
2281 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2282 goto out;
2284 mutex_enter(&zp->z_lock);
2285 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2287 * Are we upgrading ACL from old V0 format
2288 * to V1 format?
2290 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2291 zfs_znode_acl_version(zp) ==
2292 ZFS_ACL_VERSION_INITIAL) {
2293 dmu_tx_hold_free(tx, acl_obj, 0,
2294 DMU_OBJECT_END);
2295 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2296 0, aclp->z_acl_bytes);
2297 } else {
2298 dmu_tx_hold_write(tx, acl_obj, 0,
2299 aclp->z_acl_bytes);
2301 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2302 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2303 0, aclp->z_acl_bytes);
2305 mutex_exit(&zp->z_lock);
2306 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2307 } else {
2308 if (((mask & ATTR_XVATTR) &&
2309 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2310 (projid != ZFS_INVALID_PROJID &&
2311 !(zp->z_pflags & ZFS_PROJID)))
2312 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2313 else
2314 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2317 if (attrzp) {
2318 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2321 fuid_dirtied = zfsvfs->z_fuid_dirty;
2322 if (fuid_dirtied)
2323 zfs_fuid_txhold(zfsvfs, tx);
2325 zfs_sa_upgrade_txholds(tx, zp);
2327 err = dmu_tx_assign(tx, TXG_WAIT);
2328 if (err)
2329 goto out;
2331 count = 0;
2333 * Set each attribute requested.
2334 * We group settings according to the locks they need to acquire.
2336 * Note: you cannot set ctime directly, although it will be
2337 * updated as a side-effect of calling this function.
2340 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2342 * For the existed object that is upgraded from old system,
2343 * its on-disk layout has no slot for the project ID attribute.
2344 * But quota accounting logic needs to access related slots by
2345 * offset directly. So we need to adjust old objects' layout
2346 * to make the project ID to some unified and fixed offset.
2348 if (attrzp)
2349 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2350 if (err == 0)
2351 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2353 if (unlikely(err == EEXIST))
2354 err = 0;
2355 else if (err != 0)
2356 goto out;
2357 else
2358 projid = ZFS_INVALID_PROJID;
2361 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2362 mutex_enter(&zp->z_acl_lock);
2363 mutex_enter(&zp->z_lock);
2365 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2366 &zp->z_pflags, sizeof (zp->z_pflags));
2368 if (attrzp) {
2369 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2370 mutex_enter(&attrzp->z_acl_lock);
2371 mutex_enter(&attrzp->z_lock);
2372 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2373 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2374 sizeof (attrzp->z_pflags));
2375 if (projid != ZFS_INVALID_PROJID) {
2376 attrzp->z_projid = projid;
2377 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2378 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2379 sizeof (attrzp->z_projid));
2383 if (mask & (ATTR_UID|ATTR_GID)) {
2385 if (mask & ATTR_UID) {
2386 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2387 new_uid = zfs_uid_read(ZTOI(zp));
2388 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2389 &new_uid, sizeof (new_uid));
2390 if (attrzp) {
2391 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2392 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2393 sizeof (new_uid));
2394 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2398 if (mask & ATTR_GID) {
2399 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2400 new_gid = zfs_gid_read(ZTOI(zp));
2401 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2402 NULL, &new_gid, sizeof (new_gid));
2403 if (attrzp) {
2404 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2405 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2406 sizeof (new_gid));
2407 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2410 if (!(mask & ATTR_MODE)) {
2411 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2412 NULL, &new_mode, sizeof (new_mode));
2413 new_mode = zp->z_mode;
2415 err = zfs_acl_chown_setattr(zp);
2416 ASSERT(err == 0);
2417 if (attrzp) {
2418 err = zfs_acl_chown_setattr(attrzp);
2419 ASSERT(err == 0);
2423 if (mask & ATTR_MODE) {
2424 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2425 &new_mode, sizeof (new_mode));
2426 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2427 ASSERT3P(aclp, !=, NULL);
2428 err = zfs_aclset_common(zp, aclp, cr, tx);
2429 ASSERT0(err);
2430 if (zp->z_acl_cached)
2431 zfs_acl_free(zp->z_acl_cached);
2432 zp->z_acl_cached = aclp;
2433 aclp = NULL;
2436 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2437 zp->z_atime_dirty = B_FALSE;
2438 ZFS_TIME_ENCODE(&ip->i_atime, atime);
2439 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2440 &atime, sizeof (atime));
2443 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2444 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2445 ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2446 vap->va_mtime, ZTOI(zp));
2448 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2449 mtime, sizeof (mtime));
2452 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2453 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2454 zpl_inode_set_ctime_to_ts(ZTOI(zp),
2455 zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2456 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2457 ctime, sizeof (ctime));
2460 if (projid != ZFS_INVALID_PROJID) {
2461 zp->z_projid = projid;
2462 SA_ADD_BULK_ATTR(bulk, count,
2463 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2464 sizeof (zp->z_projid));
2467 if (attrzp && mask) {
2468 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2469 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2470 sizeof (ctime));
2474 * Do this after setting timestamps to prevent timestamp
2475 * update from toggling bit
2478 if (xoap && (mask & ATTR_XVATTR)) {
2481 * restore trimmed off masks
2482 * so that return masks can be set for caller.
2485 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2486 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2488 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2489 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2491 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2492 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2494 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2495 XVA_SET_REQ(xvap, XAT_NODUMP);
2497 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2498 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2500 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2501 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2503 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2504 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2507 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2508 ASSERT(S_ISREG(ip->i_mode));
2510 zfs_xvattr_set(zp, xvap, tx);
2513 if (fuid_dirtied)
2514 zfs_fuid_sync(zfsvfs, tx);
2516 if (mask != 0)
2517 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2519 mutex_exit(&zp->z_lock);
2520 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2521 mutex_exit(&zp->z_acl_lock);
2523 if (attrzp) {
2524 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2525 mutex_exit(&attrzp->z_acl_lock);
2526 mutex_exit(&attrzp->z_lock);
2528 out:
2529 if (err == 0 && xattr_count > 0) {
2530 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2531 xattr_count, tx);
2532 ASSERT(err2 == 0);
2535 if (aclp)
2536 zfs_acl_free(aclp);
2538 if (fuidp) {
2539 zfs_fuid_info_free(fuidp);
2540 fuidp = NULL;
2543 if (err) {
2544 dmu_tx_abort(tx);
2545 if (attrzp)
2546 zrele(attrzp);
2547 if (err == ERESTART)
2548 goto top;
2549 } else {
2550 if (count > 0)
2551 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2552 dmu_tx_commit(tx);
2553 if (attrzp) {
2554 if (err2 == 0 && handle_eadir)
2555 err = zfs_setattr_dir(attrzp);
2556 zrele(attrzp);
2558 zfs_znode_update_vfs(zp);
2561 out2:
2562 if (os->os_sync == ZFS_SYNC_ALWAYS)
2563 zil_commit(zilog, 0);
2565 out3:
2566 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2567 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2568 kmem_free(tmpxvattr, sizeof (xvattr_t));
2569 zfs_exit(zfsvfs, FTAG);
2570 return (err);
2573 typedef struct zfs_zlock {
2574 krwlock_t *zl_rwlock; /* lock we acquired */
2575 znode_t *zl_znode; /* znode we held */
2576 struct zfs_zlock *zl_next; /* next in list */
2577 } zfs_zlock_t;
2580 * Drop locks and release vnodes that were held by zfs_rename_lock().
2582 static void
2583 zfs_rename_unlock(zfs_zlock_t **zlpp)
2585 zfs_zlock_t *zl;
2587 while ((zl = *zlpp) != NULL) {
2588 if (zl->zl_znode != NULL)
2589 zfs_zrele_async(zl->zl_znode);
2590 rw_exit(zl->zl_rwlock);
2591 *zlpp = zl->zl_next;
2592 kmem_free(zl, sizeof (*zl));
2597 * Search back through the directory tree, using the ".." entries.
2598 * Lock each directory in the chain to prevent concurrent renames.
2599 * Fail any attempt to move a directory into one of its own descendants.
2600 * XXX - z_parent_lock can overlap with map or grow locks
2602 static int
2603 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2605 zfs_zlock_t *zl;
2606 znode_t *zp = tdzp;
2607 uint64_t rootid = ZTOZSB(zp)->z_root;
2608 uint64_t oidp = zp->z_id;
2609 krwlock_t *rwlp = &szp->z_parent_lock;
2610 krw_t rw = RW_WRITER;
2613 * First pass write-locks szp and compares to zp->z_id.
2614 * Later passes read-lock zp and compare to zp->z_parent.
2616 do {
2617 if (!rw_tryenter(rwlp, rw)) {
2619 * Another thread is renaming in this path.
2620 * Note that if we are a WRITER, we don't have any
2621 * parent_locks held yet.
2623 if (rw == RW_READER && zp->z_id > szp->z_id) {
2625 * Drop our locks and restart
2627 zfs_rename_unlock(&zl);
2628 *zlpp = NULL;
2629 zp = tdzp;
2630 oidp = zp->z_id;
2631 rwlp = &szp->z_parent_lock;
2632 rw = RW_WRITER;
2633 continue;
2634 } else {
2636 * Wait for other thread to drop its locks
2638 rw_enter(rwlp, rw);
2642 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2643 zl->zl_rwlock = rwlp;
2644 zl->zl_znode = NULL;
2645 zl->zl_next = *zlpp;
2646 *zlpp = zl;
2648 if (oidp == szp->z_id) /* We're a descendant of szp */
2649 return (SET_ERROR(EINVAL));
2651 if (oidp == rootid) /* We've hit the top */
2652 return (0);
2654 if (rw == RW_READER) { /* i.e. not the first pass */
2655 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2656 if (error)
2657 return (error);
2658 zl->zl_znode = zp;
2660 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2661 &oidp, sizeof (oidp));
2662 rwlp = &zp->z_parent_lock;
2663 rw = RW_READER;
2665 } while (zp->z_id != sdzp->z_id);
2667 return (0);
2671 * Move an entry from the provided source directory to the target
2672 * directory. Change the entry name as indicated.
2674 * IN: sdzp - Source directory containing the "old entry".
2675 * snm - Old entry name.
2676 * tdzp - Target directory to contain the "new entry".
2677 * tnm - New entry name.
2678 * cr - credentials of caller.
2679 * flags - case flags
2680 * rflags - RENAME_* flags
2681 * wa_vap - attributes for RENAME_WHITEOUT (must be a char 0:0).
2682 * mnt_ns - user namespace of the mount
2684 * RETURN: 0 on success, error code on failure.
2686 * Timestamps:
2687 * sdzp,tdzp - ctime|mtime updated
2690 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2691 cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2693 znode_t *szp, *tzp;
2694 zfsvfs_t *zfsvfs = ZTOZSB(sdzp);
2695 zilog_t *zilog;
2696 zfs_dirlock_t *sdl, *tdl;
2697 dmu_tx_t *tx;
2698 zfs_zlock_t *zl;
2699 int cmp, serr, terr;
2700 int error = 0;
2701 int zflg = 0;
2702 boolean_t waited = B_FALSE;
2703 /* Needed for whiteout inode creation. */
2704 boolean_t fuid_dirtied;
2705 zfs_acl_ids_t acl_ids;
2706 boolean_t have_acl = B_FALSE;
2707 znode_t *wzp = NULL;
2710 if (snm == NULL || tnm == NULL)
2711 return (SET_ERROR(EINVAL));
2713 if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2714 return (SET_ERROR(EINVAL));
2716 /* Already checked by Linux VFS, but just to make sure. */
2717 if (rflags & RENAME_EXCHANGE &&
2718 (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2719 return (SET_ERROR(EINVAL));
2722 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2723 * right kind of vattr_t for the whiteout file. These are set
2724 * internally by ZFS so should never be incorrect.
2726 VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2727 VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2728 VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2730 if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2731 return (error);
2732 zilog = zfsvfs->z_log;
2734 if ((error = zfs_verify_zp(tdzp)) != 0) {
2735 zfs_exit(zfsvfs, FTAG);
2736 return (error);
2740 * We check i_sb because snapshots and the ctldir must have different
2741 * super blocks.
2743 if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2744 zfsctl_is_node(ZTOI(tdzp))) {
2745 zfs_exit(zfsvfs, FTAG);
2746 return (SET_ERROR(EXDEV));
2749 if (zfsvfs->z_utf8 && u8_validate(tnm,
2750 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2751 zfs_exit(zfsvfs, FTAG);
2752 return (SET_ERROR(EILSEQ));
2755 if (flags & FIGNORECASE)
2756 zflg |= ZCILOOK;
2758 top:
2759 szp = NULL;
2760 tzp = NULL;
2761 zl = NULL;
2764 * This is to prevent the creation of links into attribute space
2765 * by renaming a linked file into/outof an attribute directory.
2766 * See the comment in zfs_link() for why this is considered bad.
2768 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2769 zfs_exit(zfsvfs, FTAG);
2770 return (SET_ERROR(EINVAL));
2774 * Lock source and target directory entries. To prevent deadlock,
2775 * a lock ordering must be defined. We lock the directory with
2776 * the smallest object id first, or if it's a tie, the one with
2777 * the lexically first name.
2779 if (sdzp->z_id < tdzp->z_id) {
2780 cmp = -1;
2781 } else if (sdzp->z_id > tdzp->z_id) {
2782 cmp = 1;
2783 } else {
2785 * First compare the two name arguments without
2786 * considering any case folding.
2788 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2790 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2791 ASSERT(error == 0 || !zfsvfs->z_utf8);
2792 if (cmp == 0) {
2794 * POSIX: "If the old argument and the new argument
2795 * both refer to links to the same existing file,
2796 * the rename() function shall return successfully
2797 * and perform no other action."
2799 zfs_exit(zfsvfs, FTAG);
2800 return (0);
2803 * If the file system is case-folding, then we may
2804 * have some more checking to do. A case-folding file
2805 * system is either supporting mixed case sensitivity
2806 * access or is completely case-insensitive. Note
2807 * that the file system is always case preserving.
2809 * In mixed sensitivity mode case sensitive behavior
2810 * is the default. FIGNORECASE must be used to
2811 * explicitly request case insensitive behavior.
2813 * If the source and target names provided differ only
2814 * by case (e.g., a request to rename 'tim' to 'Tim'),
2815 * we will treat this as a special case in the
2816 * case-insensitive mode: as long as the source name
2817 * is an exact match, we will allow this to proceed as
2818 * a name-change request.
2820 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2821 (zfsvfs->z_case == ZFS_CASE_MIXED &&
2822 flags & FIGNORECASE)) &&
2823 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2824 &error) == 0) {
2826 * case preserving rename request, require exact
2827 * name matches
2829 zflg |= ZCIEXACT;
2830 zflg &= ~ZCILOOK;
2835 * If the source and destination directories are the same, we should
2836 * grab the z_name_lock of that directory only once.
2838 if (sdzp == tdzp) {
2839 zflg |= ZHAVELOCK;
2840 rw_enter(&sdzp->z_name_lock, RW_READER);
2843 if (cmp < 0) {
2844 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2845 ZEXISTS | zflg, NULL, NULL);
2846 terr = zfs_dirent_lock(&tdl,
2847 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2848 } else {
2849 terr = zfs_dirent_lock(&tdl,
2850 tdzp, tnm, &tzp, zflg, NULL, NULL);
2851 serr = zfs_dirent_lock(&sdl,
2852 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2853 NULL, NULL);
2856 if (serr) {
2858 * Source entry invalid or not there.
2860 if (!terr) {
2861 zfs_dirent_unlock(tdl);
2862 if (tzp)
2863 zrele(tzp);
2866 if (sdzp == tdzp)
2867 rw_exit(&sdzp->z_name_lock);
2869 if (strcmp(snm, "..") == 0)
2870 serr = EINVAL;
2871 zfs_exit(zfsvfs, FTAG);
2872 return (serr);
2874 if (terr) {
2875 zfs_dirent_unlock(sdl);
2876 zrele(szp);
2878 if (sdzp == tdzp)
2879 rw_exit(&sdzp->z_name_lock);
2881 if (strcmp(tnm, "..") == 0)
2882 terr = EINVAL;
2883 zfs_exit(zfsvfs, FTAG);
2884 return (terr);
2888 * If we are using project inheritance, means if the directory has
2889 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2890 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2891 * such case, we only allow renames into our tree when the project
2892 * IDs are the same.
2894 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2895 tdzp->z_projid != szp->z_projid) {
2896 error = SET_ERROR(EXDEV);
2897 goto out;
2901 * Must have write access at the source to remove the old entry
2902 * and write access at the target to create the new entry.
2903 * Note that if target and source are the same, this can be
2904 * done in a single check.
2906 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2907 goto out;
2909 if (S_ISDIR(ZTOI(szp)->i_mode)) {
2911 * Check to make sure rename is valid.
2912 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2914 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2915 goto out;
2919 * Does target exist?
2921 if (tzp) {
2922 if (rflags & RENAME_NOREPLACE) {
2923 error = SET_ERROR(EEXIST);
2924 goto out;
2927 * Source and target must be the same type (unless exchanging).
2929 if (!(rflags & RENAME_EXCHANGE)) {
2930 boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2931 boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2933 if (s_is_dir != t_is_dir) {
2934 error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2935 goto out;
2939 * POSIX dictates that when the source and target
2940 * entries refer to the same file object, rename
2941 * must do nothing and exit without error.
2943 if (szp->z_id == tzp->z_id) {
2944 error = 0;
2945 goto out;
2947 } else if (rflags & RENAME_EXCHANGE) {
2948 /* Target must exist for RENAME_EXCHANGE. */
2949 error = SET_ERROR(ENOENT);
2950 goto out;
2953 /* Set up inode creation for RENAME_WHITEOUT. */
2954 if (rflags & RENAME_WHITEOUT) {
2956 * Whiteout files are not regular files or directories, so to
2957 * match zfs_create() we do not inherit the project id.
2959 uint64_t wo_projid = ZFS_DEFAULT_PROJID;
2961 error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
2962 if (error)
2963 goto out;
2965 if (!have_acl) {
2966 error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
2967 &acl_ids, mnt_ns);
2968 if (error)
2969 goto out;
2970 have_acl = B_TRUE;
2973 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
2974 error = SET_ERROR(EDQUOT);
2975 goto out;
2979 tx = dmu_tx_create(zfsvfs->z_os);
2980 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2981 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2982 dmu_tx_hold_zap(tx, sdzp->z_id,
2983 (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
2984 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2985 if (sdzp != tdzp) {
2986 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2987 zfs_sa_upgrade_txholds(tx, tdzp);
2989 if (tzp) {
2990 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2991 zfs_sa_upgrade_txholds(tx, tzp);
2993 if (rflags & RENAME_WHITEOUT) {
2994 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2995 ZFS_SA_BASE_ATTR_SIZE);
2997 dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
2998 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2999 if (!zfsvfs->z_use_sa &&
3000 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3001 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3002 0, acl_ids.z_aclp->z_acl_bytes);
3005 fuid_dirtied = zfsvfs->z_fuid_dirty;
3006 if (fuid_dirtied)
3007 zfs_fuid_txhold(zfsvfs, tx);
3008 zfs_sa_upgrade_txholds(tx, szp);
3009 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3010 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3011 if (error) {
3012 if (zl != NULL)
3013 zfs_rename_unlock(&zl);
3014 zfs_dirent_unlock(sdl);
3015 zfs_dirent_unlock(tdl);
3017 if (sdzp == tdzp)
3018 rw_exit(&sdzp->z_name_lock);
3020 if (error == ERESTART) {
3021 waited = B_TRUE;
3022 dmu_tx_wait(tx);
3023 dmu_tx_abort(tx);
3024 zrele(szp);
3025 if (tzp)
3026 zrele(tzp);
3027 goto top;
3029 dmu_tx_abort(tx);
3030 zrele(szp);
3031 if (tzp)
3032 zrele(tzp);
3033 zfs_exit(zfsvfs, FTAG);
3034 return (error);
3038 * Unlink the source.
3040 szp->z_pflags |= ZFS_AV_MODIFIED;
3041 if (tdzp->z_pflags & ZFS_PROJINHERIT)
3042 szp->z_pflags |= ZFS_PROJINHERIT;
3044 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3045 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3046 VERIFY0(error);
3048 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3049 if (error)
3050 goto commit;
3053 * Unlink the target.
3055 if (tzp) {
3056 int tzflg = zflg;
3058 if (rflags & RENAME_EXCHANGE) {
3059 /* This inode will be re-linked soon. */
3060 tzflg |= ZRENAMING;
3062 tzp->z_pflags |= ZFS_AV_MODIFIED;
3063 if (sdzp->z_pflags & ZFS_PROJINHERIT)
3064 tzp->z_pflags |= ZFS_PROJINHERIT;
3066 error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3067 (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3068 ASSERT0(error);
3070 error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3071 if (error)
3072 goto commit_link_szp;
3076 * Create the new target links:
3077 * * We always link the target.
3078 * * RENAME_EXCHANGE: Link the old target to the source.
3079 * * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3081 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3082 if (error) {
3084 * If we have removed the existing target, a subsequent call to
3085 * zfs_link_create() to add back the same entry, but with a new
3086 * dnode (szp), should not fail.
3088 ASSERT3P(tzp, ==, NULL);
3089 goto commit_link_tzp;
3092 switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3093 case RENAME_EXCHANGE:
3094 error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3096 * The same argument as zfs_link_create() failing for
3097 * szp applies here, since the source directory must
3098 * have had an entry we are replacing.
3100 ASSERT0(error);
3101 if (error)
3102 goto commit_unlink_td_szp;
3103 break;
3104 case RENAME_WHITEOUT:
3105 zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3106 error = zfs_link_create(sdl, wzp, tx, ZNEW);
3107 if (error) {
3108 zfs_znode_delete(wzp, tx);
3109 remove_inode_hash(ZTOI(wzp));
3110 goto commit_unlink_td_szp;
3112 break;
3115 if (fuid_dirtied)
3116 zfs_fuid_sync(zfsvfs, tx);
3118 switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3119 case RENAME_EXCHANGE:
3120 zfs_log_rename_exchange(zilog, tx,
3121 (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3122 tdzp, tdl->dl_name, szp);
3123 break;
3124 case RENAME_WHITEOUT:
3125 zfs_log_rename_whiteout(zilog, tx,
3126 (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3127 tdzp, tdl->dl_name, szp, wzp);
3128 break;
3129 default:
3130 ASSERT0(rflags & ~RENAME_NOREPLACE);
3131 zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3132 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3133 break;
3136 commit:
3137 dmu_tx_commit(tx);
3138 out:
3139 if (have_acl)
3140 zfs_acl_ids_free(&acl_ids);
3142 zfs_znode_update_vfs(sdzp);
3143 if (sdzp == tdzp)
3144 rw_exit(&sdzp->z_name_lock);
3146 if (sdzp != tdzp)
3147 zfs_znode_update_vfs(tdzp);
3149 zfs_znode_update_vfs(szp);
3150 zrele(szp);
3151 if (wzp) {
3152 zfs_znode_update_vfs(wzp);
3153 zrele(wzp);
3155 if (tzp) {
3156 zfs_znode_update_vfs(tzp);
3157 zrele(tzp);
3160 if (zl != NULL)
3161 zfs_rename_unlock(&zl);
3163 zfs_dirent_unlock(sdl);
3164 zfs_dirent_unlock(tdl);
3166 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3167 zil_commit(zilog, 0);
3169 zfs_exit(zfsvfs, FTAG);
3170 return (error);
3173 * Clean-up path for broken link state.
3175 * At this point we are in a (very) bad state, so we need to do our
3176 * best to correct the state. In particular, all of the nlinks are
3177 * wrong because we were destroying and creating links with ZRENAMING.
3179 * In some form, all of these operations have to resolve the state:
3181 * * link_destroy() *must* succeed. Fortunately, this is very likely
3182 * since we only just created it.
3184 * * link_create()s are allowed to fail (though they shouldn't because
3185 * we only just unlinked them and are putting the entries back
3186 * during clean-up). But if they fail, we can just forcefully drop
3187 * the nlink value to (at the very least) avoid broken nlink values
3188 * -- though in the case of non-empty directories we will have to
3189 * panic (otherwise we'd have a leaked directory with a broken ..).
3191 commit_unlink_td_szp:
3192 VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3193 commit_link_tzp:
3194 if (tzp) {
3195 if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3196 VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3198 commit_link_szp:
3199 if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3200 VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3201 goto commit;
3205 * Insert the indicated symbolic reference entry into the directory.
3207 * IN: dzp - Directory to contain new symbolic link.
3208 * name - Name of directory entry in dip.
3209 * vap - Attributes of new entry.
3210 * link - Name for new symlink entry.
3211 * cr - credentials of caller.
3212 * flags - case flags
3213 * mnt_ns - user namespace of the mount
3215 * OUT: zpp - Znode for new symbolic link.
3217 * RETURN: 0 on success, error code on failure.
3219 * Timestamps:
3220 * dip - ctime|mtime updated
3223 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3224 znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3226 znode_t *zp;
3227 zfs_dirlock_t *dl;
3228 dmu_tx_t *tx;
3229 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
3230 zilog_t *zilog;
3231 uint64_t len = strlen(link);
3232 int error;
3233 int zflg = ZNEW;
3234 zfs_acl_ids_t acl_ids;
3235 boolean_t fuid_dirtied;
3236 uint64_t txtype = TX_SYMLINK;
3237 boolean_t waited = B_FALSE;
3239 ASSERT(S_ISLNK(vap->va_mode));
3241 if (name == NULL)
3242 return (SET_ERROR(EINVAL));
3244 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3245 return (error);
3246 zilog = zfsvfs->z_log;
3248 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3249 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3250 zfs_exit(zfsvfs, FTAG);
3251 return (SET_ERROR(EILSEQ));
3253 if (flags & FIGNORECASE)
3254 zflg |= ZCILOOK;
3256 if (len > MAXPATHLEN) {
3257 zfs_exit(zfsvfs, FTAG);
3258 return (SET_ERROR(ENAMETOOLONG));
3261 if ((error = zfs_acl_ids_create(dzp, 0,
3262 vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3263 zfs_exit(zfsvfs, FTAG);
3264 return (error);
3266 top:
3267 *zpp = NULL;
3270 * Attempt to lock directory; fail if entry already exists.
3272 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3273 if (error) {
3274 zfs_acl_ids_free(&acl_ids);
3275 zfs_exit(zfsvfs, FTAG);
3276 return (error);
3279 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3280 zfs_acl_ids_free(&acl_ids);
3281 zfs_dirent_unlock(dl);
3282 zfs_exit(zfsvfs, FTAG);
3283 return (error);
3286 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3287 zfs_acl_ids_free(&acl_ids);
3288 zfs_dirent_unlock(dl);
3289 zfs_exit(zfsvfs, FTAG);
3290 return (SET_ERROR(EDQUOT));
3292 tx = dmu_tx_create(zfsvfs->z_os);
3293 fuid_dirtied = zfsvfs->z_fuid_dirty;
3294 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3295 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3296 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3297 ZFS_SA_BASE_ATTR_SIZE + len);
3298 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3299 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3300 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3301 acl_ids.z_aclp->z_acl_bytes);
3303 if (fuid_dirtied)
3304 zfs_fuid_txhold(zfsvfs, tx);
3305 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3306 if (error) {
3307 zfs_dirent_unlock(dl);
3308 if (error == ERESTART) {
3309 waited = B_TRUE;
3310 dmu_tx_wait(tx);
3311 dmu_tx_abort(tx);
3312 goto top;
3314 zfs_acl_ids_free(&acl_ids);
3315 dmu_tx_abort(tx);
3316 zfs_exit(zfsvfs, FTAG);
3317 return (error);
3321 * Create a new object for the symlink.
3322 * for version 4 ZPL datasets the symlink will be an SA attribute
3324 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3326 if (fuid_dirtied)
3327 zfs_fuid_sync(zfsvfs, tx);
3329 mutex_enter(&zp->z_lock);
3330 if (zp->z_is_sa)
3331 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3332 link, len, tx);
3333 else
3334 zfs_sa_symlink(zp, link, len, tx);
3335 mutex_exit(&zp->z_lock);
3337 zp->z_size = len;
3338 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3339 &zp->z_size, sizeof (zp->z_size), tx);
3341 * Insert the new object into the directory.
3343 error = zfs_link_create(dl, zp, tx, ZNEW);
3344 if (error != 0) {
3345 zfs_znode_delete(zp, tx);
3346 remove_inode_hash(ZTOI(zp));
3347 } else {
3348 if (flags & FIGNORECASE)
3349 txtype |= TX_CI;
3350 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3352 zfs_znode_update_vfs(dzp);
3353 zfs_znode_update_vfs(zp);
3356 zfs_acl_ids_free(&acl_ids);
3358 dmu_tx_commit(tx);
3360 zfs_dirent_unlock(dl);
3362 if (error == 0) {
3363 *zpp = zp;
3365 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3366 zil_commit(zilog, 0);
3367 } else {
3368 zrele(zp);
3371 zfs_exit(zfsvfs, FTAG);
3372 return (error);
3376 * Return, in the buffer contained in the provided uio structure,
3377 * the symbolic path referred to by ip.
3379 * IN: ip - inode of symbolic link
3380 * uio - structure to contain the link path.
3381 * cr - credentials of caller.
3383 * RETURN: 0 if success
3384 * error code if failure
3386 * Timestamps:
3387 * ip - atime updated
3390 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3392 (void) cr;
3393 znode_t *zp = ITOZ(ip);
3394 zfsvfs_t *zfsvfs = ITOZSB(ip);
3395 int error;
3397 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3398 return (error);
3400 mutex_enter(&zp->z_lock);
3401 if (zp->z_is_sa)
3402 error = sa_lookup_uio(zp->z_sa_hdl,
3403 SA_ZPL_SYMLINK(zfsvfs), uio);
3404 else
3405 error = zfs_sa_readlink(zp, uio);
3406 mutex_exit(&zp->z_lock);
3408 zfs_exit(zfsvfs, FTAG);
3409 return (error);
3413 * Insert a new entry into directory tdzp referencing szp.
3415 * IN: tdzp - Directory to contain new entry.
3416 * szp - znode of new entry.
3417 * name - name of new entry.
3418 * cr - credentials of caller.
3419 * flags - case flags.
3421 * RETURN: 0 if success
3422 * error code if failure
3424 * Timestamps:
3425 * tdzp - ctime|mtime updated
3426 * szp - ctime updated
3429 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3430 int flags)
3432 struct inode *sip = ZTOI(szp);
3433 znode_t *tzp;
3434 zfsvfs_t *zfsvfs = ZTOZSB(tdzp);
3435 zilog_t *zilog;
3436 zfs_dirlock_t *dl;
3437 dmu_tx_t *tx;
3438 int error;
3439 int zf = ZNEW;
3440 uint64_t parent;
3441 uid_t owner;
3442 boolean_t waited = B_FALSE;
3443 boolean_t is_tmpfile = 0;
3444 uint64_t txg;
3445 #ifdef HAVE_TMPFILE
3446 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3447 #endif
3448 ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3450 if (name == NULL)
3451 return (SET_ERROR(EINVAL));
3453 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3454 return (error);
3455 zilog = zfsvfs->z_log;
3458 * POSIX dictates that we return EPERM here.
3459 * Better choices include ENOTSUP or EISDIR.
3461 if (S_ISDIR(sip->i_mode)) {
3462 zfs_exit(zfsvfs, FTAG);
3463 return (SET_ERROR(EPERM));
3466 if ((error = zfs_verify_zp(szp)) != 0) {
3467 zfs_exit(zfsvfs, FTAG);
3468 return (error);
3472 * If we are using project inheritance, means if the directory has
3473 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3474 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3475 * such case, we only allow hard link creation in our tree when the
3476 * project IDs are the same.
3478 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3479 tdzp->z_projid != szp->z_projid) {
3480 zfs_exit(zfsvfs, FTAG);
3481 return (SET_ERROR(EXDEV));
3485 * We check i_sb because snapshots and the ctldir must have different
3486 * super blocks.
3488 if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3489 zfs_exit(zfsvfs, FTAG);
3490 return (SET_ERROR(EXDEV));
3493 /* Prevent links to .zfs/shares files */
3495 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3496 &parent, sizeof (uint64_t))) != 0) {
3497 zfs_exit(zfsvfs, FTAG);
3498 return (error);
3500 if (parent == zfsvfs->z_shares_dir) {
3501 zfs_exit(zfsvfs, FTAG);
3502 return (SET_ERROR(EPERM));
3505 if (zfsvfs->z_utf8 && u8_validate(name,
3506 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3507 zfs_exit(zfsvfs, FTAG);
3508 return (SET_ERROR(EILSEQ));
3510 if (flags & FIGNORECASE)
3511 zf |= ZCILOOK;
3514 * We do not support links between attributes and non-attributes
3515 * because of the potential security risk of creating links
3516 * into "normal" file space in order to circumvent restrictions
3517 * imposed in attribute space.
3519 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3520 zfs_exit(zfsvfs, FTAG);
3521 return (SET_ERROR(EINVAL));
3524 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3525 cr, ZFS_OWNER);
3526 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3527 zfs_exit(zfsvfs, FTAG);
3528 return (SET_ERROR(EPERM));
3531 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3532 zfs_init_idmap))) {
3533 zfs_exit(zfsvfs, FTAG);
3534 return (error);
3537 top:
3539 * Attempt to lock directory; fail if entry already exists.
3541 error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3542 if (error) {
3543 zfs_exit(zfsvfs, FTAG);
3544 return (error);
3547 tx = dmu_tx_create(zfsvfs->z_os);
3548 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3549 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3550 if (is_tmpfile)
3551 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3553 zfs_sa_upgrade_txholds(tx, szp);
3554 zfs_sa_upgrade_txholds(tx, tdzp);
3555 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3556 if (error) {
3557 zfs_dirent_unlock(dl);
3558 if (error == ERESTART) {
3559 waited = B_TRUE;
3560 dmu_tx_wait(tx);
3561 dmu_tx_abort(tx);
3562 goto top;
3564 dmu_tx_abort(tx);
3565 zfs_exit(zfsvfs, FTAG);
3566 return (error);
3568 /* unmark z_unlinked so zfs_link_create will not reject */
3569 if (is_tmpfile)
3570 szp->z_unlinked = B_FALSE;
3571 error = zfs_link_create(dl, szp, tx, 0);
3573 if (error == 0) {
3574 uint64_t txtype = TX_LINK;
3576 * tmpfile is created to be in z_unlinkedobj, so remove it.
3577 * Also, we don't log in ZIL, because all previous file
3578 * operation on the tmpfile are ignored by ZIL. Instead we
3579 * always wait for txg to sync to make sure all previous
3580 * operation are sync safe.
3582 if (is_tmpfile) {
3583 VERIFY(zap_remove_int(zfsvfs->z_os,
3584 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3585 } else {
3586 if (flags & FIGNORECASE)
3587 txtype |= TX_CI;
3588 zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3590 } else if (is_tmpfile) {
3591 /* restore z_unlinked since when linking failed */
3592 szp->z_unlinked = B_TRUE;
3594 txg = dmu_tx_get_txg(tx);
3595 dmu_tx_commit(tx);
3597 zfs_dirent_unlock(dl);
3599 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3600 zil_commit(zilog, 0);
3602 if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3603 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3605 zfs_znode_update_vfs(tdzp);
3606 zfs_znode_update_vfs(szp);
3607 zfs_exit(zfsvfs, FTAG);
3608 return (error);
3611 static void
3612 zfs_putpage_sync_commit_cb(void *arg)
3614 struct page *pp = arg;
3616 ClearPageError(pp);
3617 end_page_writeback(pp);
3620 static void
3621 zfs_putpage_async_commit_cb(void *arg)
3623 struct page *pp = arg;
3624 znode_t *zp = ITOZ(pp->mapping->host);
3626 ClearPageError(pp);
3627 end_page_writeback(pp);
3628 atomic_dec_32(&zp->z_async_writes_cnt);
3632 * Push a page out to disk, once the page is on stable storage the
3633 * registered commit callback will be run as notification of completion.
3635 * IN: ip - page mapped for inode.
3636 * pp - page to push (page is locked)
3637 * wbc - writeback control data
3638 * for_sync - does the caller intend to wait synchronously for the
3639 * page writeback to complete?
3641 * RETURN: 0 if success
3642 * error code if failure
3644 * Timestamps:
3645 * ip - ctime|mtime updated
3648 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3649 boolean_t for_sync)
3651 znode_t *zp = ITOZ(ip);
3652 zfsvfs_t *zfsvfs = ITOZSB(ip);
3653 loff_t offset;
3654 loff_t pgoff;
3655 unsigned int pglen;
3656 dmu_tx_t *tx;
3657 caddr_t va;
3658 int err = 0;
3659 uint64_t mtime[2], ctime[2];
3660 inode_timespec_t tmp_ctime;
3661 sa_bulk_attr_t bulk[3];
3662 int cnt = 0;
3663 struct address_space *mapping;
3665 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3666 return (err);
3668 ASSERT(PageLocked(pp));
3670 pgoff = page_offset(pp); /* Page byte-offset in file */
3671 offset = i_size_read(ip); /* File length in bytes */
3672 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
3673 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3675 /* Page is beyond end of file */
3676 if (pgoff >= offset) {
3677 unlock_page(pp);
3678 zfs_exit(zfsvfs, FTAG);
3679 return (0);
3682 /* Truncate page length to end of file */
3683 if (pgoff + pglen > offset)
3684 pglen = offset - pgoff;
3686 #if 0
3688 * FIXME: Allow mmap writes past its quota. The correct fix
3689 * is to register a page_mkwrite() handler to count the page
3690 * against its quota when it is about to be dirtied.
3692 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3693 KUID_TO_SUID(ip->i_uid)) ||
3694 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3695 KGID_TO_SGID(ip->i_gid)) ||
3696 (zp->z_projid != ZFS_DEFAULT_PROJID &&
3697 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3698 zp->z_projid))) {
3699 err = EDQUOT;
3701 #endif
3704 * The ordering here is critical and must adhere to the following
3705 * rules in order to avoid deadlocking in either zfs_read() or
3706 * zfs_free_range() due to a lock inversion.
3708 * 1) The page must be unlocked prior to acquiring the range lock.
3709 * This is critical because zfs_read() calls find_lock_page()
3710 * which may block on the page lock while holding the range lock.
3712 * 2) Before setting or clearing write back on a page the range lock
3713 * must be held in order to prevent a lock inversion with the
3714 * zfs_free_range() function.
3716 * This presents a problem because upon entering this function the
3717 * page lock is already held. To safely acquire the range lock the
3718 * page lock must be dropped. This creates a window where another
3719 * process could truncate, invalidate, dirty, or write out the page.
3721 * Therefore, after successfully reacquiring the range and page locks
3722 * the current page state is checked. In the common case everything
3723 * will be as is expected and it can be written out. However, if
3724 * the page state has changed it must be handled accordingly.
3726 mapping = pp->mapping;
3727 redirty_page_for_writepage(wbc, pp);
3728 unlock_page(pp);
3730 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3731 pgoff, pglen, RL_WRITER);
3732 lock_page(pp);
3734 /* Page mapping changed or it was no longer dirty, we're done */
3735 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3736 unlock_page(pp);
3737 zfs_rangelock_exit(lr);
3738 zfs_exit(zfsvfs, FTAG);
3739 return (0);
3742 /* Another process started write block if required */
3743 if (PageWriteback(pp)) {
3744 unlock_page(pp);
3745 zfs_rangelock_exit(lr);
3747 if (wbc->sync_mode != WB_SYNC_NONE) {
3749 * Speed up any non-sync page writebacks since
3750 * they may take several seconds to complete.
3751 * Refer to the comment in zpl_fsync() (when
3752 * HAVE_FSYNC_RANGE is defined) for details.
3754 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3755 zil_commit(zfsvfs->z_log, zp->z_id);
3758 if (PageWriteback(pp))
3759 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3760 folio_wait_bit(page_folio(pp), PG_writeback);
3761 #else
3762 wait_on_page_bit(pp, PG_writeback);
3763 #endif
3766 zfs_exit(zfsvfs, FTAG);
3767 return (0);
3770 /* Clear the dirty flag the required locks are held */
3771 if (!clear_page_dirty_for_io(pp)) {
3772 unlock_page(pp);
3773 zfs_rangelock_exit(lr);
3774 zfs_exit(zfsvfs, FTAG);
3775 return (0);
3779 * Counterpart for redirty_page_for_writepage() above. This page
3780 * was in fact not skipped and should not be counted as if it were.
3782 wbc->pages_skipped--;
3783 if (!for_sync)
3784 atomic_inc_32(&zp->z_async_writes_cnt);
3785 set_page_writeback(pp);
3786 unlock_page(pp);
3788 tx = dmu_tx_create(zfsvfs->z_os);
3789 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3790 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3791 zfs_sa_upgrade_txholds(tx, zp);
3793 err = dmu_tx_assign(tx, TXG_NOWAIT);
3794 if (err != 0) {
3795 if (err == ERESTART)
3796 dmu_tx_wait(tx);
3798 dmu_tx_abort(tx);
3799 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3800 filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3801 #else
3802 __set_page_dirty_nobuffers(pp);
3803 #endif
3804 ClearPageError(pp);
3805 end_page_writeback(pp);
3806 if (!for_sync)
3807 atomic_dec_32(&zp->z_async_writes_cnt);
3808 zfs_rangelock_exit(lr);
3809 zfs_exit(zfsvfs, FTAG);
3810 return (err);
3813 va = kmap(pp);
3814 ASSERT3U(pglen, <=, PAGE_SIZE);
3815 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3816 kunmap(pp);
3818 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3819 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3820 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3821 &zp->z_pflags, 8);
3823 /* Preserve the mtime and ctime provided by the inode */
3824 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3825 tmp_ctime = zpl_inode_get_ctime(ip);
3826 ZFS_TIME_ENCODE(&tmp_ctime, ctime);
3827 zp->z_atime_dirty = B_FALSE;
3828 zp->z_seq++;
3830 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3832 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3833 for_sync ? zfs_putpage_sync_commit_cb :
3834 zfs_putpage_async_commit_cb, pp);
3836 dmu_tx_commit(tx);
3838 zfs_rangelock_exit(lr);
3840 if (wbc->sync_mode != WB_SYNC_NONE) {
3842 * Note that this is rarely called under writepages(), because
3843 * writepages() normally handles the entire commit for
3844 * performance reasons.
3846 zil_commit(zfsvfs->z_log, zp->z_id);
3847 } else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3849 * If the caller does not intend to wait synchronously
3850 * for this page writeback to complete and there are active
3851 * synchronous calls on this file, do a commit so that
3852 * the latter don't accidentally end up waiting for
3853 * our writeback to complete. Refer to the comment in
3854 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3856 zil_commit(zfsvfs->z_log, zp->z_id);
3859 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3861 zfs_exit(zfsvfs, FTAG);
3862 return (err);
3866 * Update the system attributes when the inode has been dirtied. For the
3867 * moment we only update the mode, atime, mtime, and ctime.
3870 zfs_dirty_inode(struct inode *ip, int flags)
3872 znode_t *zp = ITOZ(ip);
3873 zfsvfs_t *zfsvfs = ITOZSB(ip);
3874 dmu_tx_t *tx;
3875 uint64_t mode, atime[2], mtime[2], ctime[2];
3876 inode_timespec_t tmp_ctime;
3877 sa_bulk_attr_t bulk[4];
3878 int error = 0;
3879 int cnt = 0;
3881 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3882 return (0);
3884 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3885 return (error);
3887 #ifdef I_DIRTY_TIME
3889 * This is the lazytime semantic introduced in Linux 4.0
3890 * This flag will only be called from update_time when lazytime is set.
3891 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3892 * Fortunately mtime and ctime are managed within ZFS itself, so we
3893 * only need to dirty atime.
3895 if (flags == I_DIRTY_TIME) {
3896 zp->z_atime_dirty = B_TRUE;
3897 goto out;
3899 #endif
3901 tx = dmu_tx_create(zfsvfs->z_os);
3903 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3904 zfs_sa_upgrade_txholds(tx, zp);
3906 error = dmu_tx_assign(tx, TXG_WAIT);
3907 if (error) {
3908 dmu_tx_abort(tx);
3909 goto out;
3912 mutex_enter(&zp->z_lock);
3913 zp->z_atime_dirty = B_FALSE;
3915 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3916 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3917 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3918 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3920 /* Preserve the mode, mtime and ctime provided by the inode */
3921 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3922 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3923 tmp_ctime = zpl_inode_get_ctime(ip);
3924 ZFS_TIME_ENCODE(&tmp_ctime, ctime);
3925 mode = ip->i_mode;
3927 zp->z_mode = mode;
3929 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3930 mutex_exit(&zp->z_lock);
3932 dmu_tx_commit(tx);
3933 out:
3934 zfs_exit(zfsvfs, FTAG);
3935 return (error);
3938 void
3939 zfs_inactive(struct inode *ip)
3941 znode_t *zp = ITOZ(ip);
3942 zfsvfs_t *zfsvfs = ITOZSB(ip);
3943 uint64_t atime[2];
3944 int error;
3945 int need_unlock = 0;
3947 /* Only read lock if we haven't already write locked, e.g. rollback */
3948 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3949 need_unlock = 1;
3950 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3952 if (zp->z_sa_hdl == NULL) {
3953 if (need_unlock)
3954 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3955 return;
3958 if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3959 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3961 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3962 zfs_sa_upgrade_txholds(tx, zp);
3963 error = dmu_tx_assign(tx, TXG_WAIT);
3964 if (error) {
3965 dmu_tx_abort(tx);
3966 } else {
3967 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3968 mutex_enter(&zp->z_lock);
3969 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3970 (void *)&atime, sizeof (atime), tx);
3971 zp->z_atime_dirty = B_FALSE;
3972 mutex_exit(&zp->z_lock);
3973 dmu_tx_commit(tx);
3977 zfs_zinactive(zp);
3978 if (need_unlock)
3979 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3983 * Fill pages with data from the disk.
3985 static int
3986 zfs_fillpage(struct inode *ip, struct page *pp)
3988 zfsvfs_t *zfsvfs = ITOZSB(ip);
3989 loff_t i_size = i_size_read(ip);
3990 u_offset_t io_off = page_offset(pp);
3991 size_t io_len = PAGE_SIZE;
3993 ASSERT3U(io_off, <, i_size);
3995 if (io_off + io_len > i_size)
3996 io_len = i_size - io_off;
3998 void *va = kmap(pp);
3999 int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off,
4000 io_len, va, DMU_READ_PREFETCH);
4001 if (io_len != PAGE_SIZE)
4002 memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4003 kunmap(pp);
4005 if (error) {
4006 /* convert checksum errors into IO errors */
4007 if (error == ECKSUM)
4008 error = SET_ERROR(EIO);
4010 SetPageError(pp);
4011 ClearPageUptodate(pp);
4012 } else {
4013 ClearPageError(pp);
4014 SetPageUptodate(pp);
4017 return (error);
4021 * Uses zfs_fillpage to read data from the file and fill the page.
4023 * IN: ip - inode of file to get data from.
4024 * pp - page to read
4026 * RETURN: 0 on success, error code on failure.
4028 * Timestamps:
4029 * vp - atime updated
4032 zfs_getpage(struct inode *ip, struct page *pp)
4034 zfsvfs_t *zfsvfs = ITOZSB(ip);
4035 znode_t *zp = ITOZ(ip);
4036 int error;
4038 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4039 return (error);
4041 error = zfs_fillpage(ip, pp);
4042 if (error == 0)
4043 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4045 zfs_exit(zfsvfs, FTAG);
4047 return (error);
4051 * Check ZFS specific permissions to memory map a section of a file.
4053 * IN: ip - inode of the file to mmap
4054 * off - file offset
4055 * addrp - start address in memory region
4056 * len - length of memory region
4057 * vm_flags- address flags
4059 * RETURN: 0 if success
4060 * error code if failure
4063 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4064 unsigned long vm_flags)
4066 (void) addrp;
4067 znode_t *zp = ITOZ(ip);
4068 zfsvfs_t *zfsvfs = ITOZSB(ip);
4069 int error;
4071 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4072 return (error);
4074 if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4075 (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4076 zfs_exit(zfsvfs, FTAG);
4077 return (SET_ERROR(EPERM));
4080 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4081 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4082 zfs_exit(zfsvfs, FTAG);
4083 return (SET_ERROR(EACCES));
4086 if (off < 0 || len > MAXOFFSET_T - off) {
4087 zfs_exit(zfsvfs, FTAG);
4088 return (SET_ERROR(ENXIO));
4091 zfs_exit(zfsvfs, FTAG);
4092 return (0);
4096 * Free or allocate space in a file. Currently, this function only
4097 * supports the `F_FREESP' command. However, this command is somewhat
4098 * misnamed, as its functionality includes the ability to allocate as
4099 * well as free space.
4101 * IN: zp - znode of file to free data in.
4102 * cmd - action to take (only F_FREESP supported).
4103 * bfp - section of file to free/alloc.
4104 * flag - current file open mode flags.
4105 * offset - current file offset.
4106 * cr - credentials of caller.
4108 * RETURN: 0 on success, error code on failure.
4110 * Timestamps:
4111 * zp - ctime|mtime updated
4114 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4115 offset_t offset, cred_t *cr)
4117 (void) offset;
4118 zfsvfs_t *zfsvfs = ZTOZSB(zp);
4119 uint64_t off, len;
4120 int error;
4122 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4123 return (error);
4125 if (cmd != F_FREESP) {
4126 zfs_exit(zfsvfs, FTAG);
4127 return (SET_ERROR(EINVAL));
4131 * Callers might not be able to detect properly that we are read-only,
4132 * so check it explicitly here.
4134 if (zfs_is_readonly(zfsvfs)) {
4135 zfs_exit(zfsvfs, FTAG);
4136 return (SET_ERROR(EROFS));
4139 if (bfp->l_len < 0) {
4140 zfs_exit(zfsvfs, FTAG);
4141 return (SET_ERROR(EINVAL));
4145 * Permissions aren't checked on Solaris because on this OS
4146 * zfs_space() can only be called with an opened file handle.
4147 * On Linux we can get here through truncate_range() which
4148 * operates directly on inodes, so we need to check access rights.
4150 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4151 zfs_init_idmap))) {
4152 zfs_exit(zfsvfs, FTAG);
4153 return (error);
4156 off = bfp->l_start;
4157 len = bfp->l_len; /* 0 means from off to end of file */
4159 error = zfs_freesp(zp, off, len, flag, TRUE);
4161 zfs_exit(zfsvfs, FTAG);
4162 return (error);
4166 zfs_fid(struct inode *ip, fid_t *fidp)
4168 znode_t *zp = ITOZ(ip);
4169 zfsvfs_t *zfsvfs = ITOZSB(ip);
4170 uint32_t gen;
4171 uint64_t gen64;
4172 uint64_t object = zp->z_id;
4173 zfid_short_t *zfid;
4174 int size, i, error;
4176 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4177 return (error);
4179 if (fidp->fid_len < SHORT_FID_LEN) {
4180 fidp->fid_len = SHORT_FID_LEN;
4181 zfs_exit(zfsvfs, FTAG);
4182 return (SET_ERROR(ENOSPC));
4185 if ((error = zfs_verify_zp(zp)) != 0) {
4186 zfs_exit(zfsvfs, FTAG);
4187 return (error);
4190 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4191 &gen64, sizeof (uint64_t))) != 0) {
4192 zfs_exit(zfsvfs, FTAG);
4193 return (error);
4196 gen = (uint32_t)gen64;
4198 size = SHORT_FID_LEN;
4200 zfid = (zfid_short_t *)fidp;
4202 zfid->zf_len = size;
4204 for (i = 0; i < sizeof (zfid->zf_object); i++)
4205 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4207 /* Must have a non-zero generation number to distinguish from .zfs */
4208 if (gen == 0)
4209 gen = 1;
4210 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4211 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4213 zfs_exit(zfsvfs, FTAG);
4214 return (0);
4217 #if defined(_KERNEL)
4218 EXPORT_SYMBOL(zfs_open);
4219 EXPORT_SYMBOL(zfs_close);
4220 EXPORT_SYMBOL(zfs_lookup);
4221 EXPORT_SYMBOL(zfs_create);
4222 EXPORT_SYMBOL(zfs_tmpfile);
4223 EXPORT_SYMBOL(zfs_remove);
4224 EXPORT_SYMBOL(zfs_mkdir);
4225 EXPORT_SYMBOL(zfs_rmdir);
4226 EXPORT_SYMBOL(zfs_readdir);
4227 EXPORT_SYMBOL(zfs_getattr_fast);
4228 EXPORT_SYMBOL(zfs_setattr);
4229 EXPORT_SYMBOL(zfs_rename);
4230 EXPORT_SYMBOL(zfs_symlink);
4231 EXPORT_SYMBOL(zfs_readlink);
4232 EXPORT_SYMBOL(zfs_link);
4233 EXPORT_SYMBOL(zfs_inactive);
4234 EXPORT_SYMBOL(zfs_space);
4235 EXPORT_SYMBOL(zfs_fid);
4236 EXPORT_SYMBOL(zfs_getpage);
4237 EXPORT_SYMBOL(zfs_putpage);
4238 EXPORT_SYMBOL(zfs_dirty_inode);
4239 EXPORT_SYMBOL(zfs_map);
4241 /* CSTYLED */
4242 module_param(zfs_delete_blocks, ulong, 0644);
4243 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4245 /* CSTYLED */
4246 module_param(zfs_bclone_enabled, uint, 0644);
4247 MODULE_PARM_DESC(zfs_bclone_enabled, "Enable block cloning");
4249 #endif