4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
20 #include <sys/zio_crypt.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
32 * This file is responsible for handling all of the details of generating
33 * encryption parameters and performing encryption and authentication.
35 * BLOCK ENCRYPTION PARAMETERS:
36 * Encryption /Authentication Algorithm Suite (crypt):
37 * The encryption algorithm, mode, and key length we are going to use. We
38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39 * keys. All authentication is currently done with SHA512-HMAC.
42 * The unencrypted data that we want to encrypt.
44 * Initialization Vector (IV):
45 * An initialization vector for the encryption algorithms. This is used to
46 * "tweak" the encryption algorithms so that two blocks of the same data are
47 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49 * never reused with the same encryption key. This value is stored unencrypted
50 * and must simply be provided to the decryption function. We use a 96 bit IV
51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52 * derive the IV randomly. The first 64 bits of the IV are stored in the second
53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58 * format supports at most 2^15 slots per L0 dnode block, because the maximum
59 * block size is 16MB (2^24). In either case, for level 0 blocks this number
60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
65 * This is the most important secret data of an encrypted dataset. It is used
66 * along with the salt to generate that actual encryption keys via HKDF. We
67 * do not use the master key to directly encrypt any data because there are
68 * theoretical limits on how much data can actually be safely encrypted with
69 * any encryption mode. The master key is stored encrypted on disk with the
70 * user's wrapping key. Its length is determined by the encryption algorithm.
71 * For details on how this is stored see the block comment in dsl_crypt.c
74 * Used as an input to the HKDF function, along with the master key. We use a
75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76 * can be used for encrypting many blocks, so we cache the current salt and the
77 * associated derived key in zio_crypt_t so we do not need to derive it again
81 * A secret binary key, generated from an HKDF function used to encrypt and
84 * Message Authentication Code (MAC)
85 * The MAC is an output of authenticated encryption modes such as AES-GCM and
86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87 * data on disk and return garbage to the application. Effectively, it is a
88 * checksum that can not be reproduced by an attacker. We store the MAC in the
89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90 * regular checksum of the ciphertext which can be used for scrubbing.
92 * OBJECT AUTHENTICATION:
93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94 * they contain some info that always needs to be readable. To prevent this
95 * data from being altered, we authenticate this data using SHA512-HMAC. This
96 * will produce a MAC (similar to the one produced via encryption) which can
97 * be used to verify the object was not modified. HMACs do not require key
98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
102 * ZIL blocks have their bp written to disk ahead of the associated data, so we
103 * cannot store the MAC there as we normally do. For these blocks the MAC is
104 * stored in the embedded checksum within the zil_chain_t header. The salt and
105 * IV are generated for the block on bp allocation instead of at encryption
106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107 * for claiming even though all of the sensitive user data still needs to be
108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109 * pieces of the block need to be encrypted. All data that is not encrypted is
110 * authenticated using the AAD mechanisms that the supported encryption modes
111 * provide for. In order to preserve the semantics of the ZIL for encrypted
112 * datasets, the ZIL is not protected at the objset level as described below.
115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118 * which pieces of the block need to be encrypted. For more details about
119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
121 * OBJECT SET AUTHENTICATION:
122 * Up to this point, everything we have encrypted and authenticated has been
123 * at level 0 (or -2 for the ZIL). If we did not do any further work the
124 * on-disk format would be susceptible to attacks that deleted or rearranged
125 * the order of level 0 blocks. Ideally, the cleanest solution would be to
126 * maintain a tree of authentication MACs going up the bp tree. However, this
127 * presents a problem for raw sends. Send files do not send information about
128 * indirect blocks so there would be no convenient way to transfer the MACs and
129 * they cannot be recalculated on the receive side without the master key which
130 * would defeat one of the purposes of raw sends in the first place. Instead,
131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132 * from the level below. We also include some portable fields from blk_prop such
133 * as the lsize and compression algorithm to prevent the data from being
136 * At the objset level, we maintain 2 separate 256 bit MACs in the
137 * objset_phys_t. The first one is "portable" and is the logical root of the
138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
139 * used as the root MAC for the user accounting objects, which are also not
140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141 * of the send file. The useraccounting code ensures that the useraccounting
142 * info is not present upon a receive, so the local MAC can simply be cleared
143 * out at that time. For more info about objset_phys_t authentication, see
144 * zio_crypt_do_objset_hmacs().
146 * CONSIDERATIONS FOR DEDUP:
147 * In order for dedup to work, blocks that we want to dedup with one another
148 * need to use the same IV and encryption key, so that they will have the same
149 * ciphertext. Normally, one should never reuse an IV with the same encryption
150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
151 * blocks. In this case, however, since we are using the same plaintext as
152 * well all that we end up with is a duplicate of the original ciphertext we
153 * already had. As a result, an attacker with read access to the raw disk will
154 * be able to tell which blocks are the same but this information is given away
155 * by dedup anyway. In order to get the same IVs and encryption keys for
156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157 * here so that a reproducible checksum of the plaintext is never available to
158 * the attacker. The HMAC key is kept alongside the master key, encrypted on
159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161 * will only work within a clone family since encrypted dedup requires use of
162 * the same master and HMAC keys.
166 * After encrypting many blocks with the same key we may start to run up
167 * against the theoretical limits of how much data can securely be encrypted
168 * with a single key using the supported encryption modes. The most obvious
169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171 * This risk actually grows surprisingly quickly over time according to the
172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173 * generated n IVs with a cryptographically secure RNG, the approximate
174 * probability p(n) of a collision is given as:
176 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181 * we must not write more than 398,065,730 blocks with the same encryption key.
182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183 * generating a new random 64 bit salt for our HKDF encryption key generation
186 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
187 #define ZFS_CURRENT_MAX_SALT_USES \
188 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189 static unsigned long zfs_key_max_salt_uses
= ZFS_KEY_MAX_SALT_USES_DEFAULT
;
191 typedef struct blkptr_auth_buf
{
192 uint64_t bab_prop
; /* blk_prop - portable mask */
193 uint8_t bab_mac
[ZIO_DATA_MAC_LEN
]; /* MAC from blk_cksum */
194 uint64_t bab_pad
; /* reserved for future use */
197 const zio_crypt_info_t zio_crypt_table
[ZIO_CRYPT_FUNCTIONS
] = {
198 {"", ZC_TYPE_NONE
, 0, "inherit"},
199 {"", ZC_TYPE_NONE
, 0, "on"},
200 {"", ZC_TYPE_NONE
, 0, "off"},
201 {SUN_CKM_AES_CCM
, ZC_TYPE_CCM
, 16, "aes-128-ccm"},
202 {SUN_CKM_AES_CCM
, ZC_TYPE_CCM
, 24, "aes-192-ccm"},
203 {SUN_CKM_AES_CCM
, ZC_TYPE_CCM
, 32, "aes-256-ccm"},
204 {SUN_CKM_AES_GCM
, ZC_TYPE_GCM
, 16, "aes-128-gcm"},
205 {SUN_CKM_AES_GCM
, ZC_TYPE_GCM
, 24, "aes-192-gcm"},
206 {SUN_CKM_AES_GCM
, ZC_TYPE_GCM
, 32, "aes-256-gcm"}
210 zio_crypt_key_destroy(zio_crypt_key_t
*key
)
212 rw_destroy(&key
->zk_salt_lock
);
214 /* free crypto templates */
215 crypto_destroy_ctx_template(key
->zk_current_tmpl
);
216 crypto_destroy_ctx_template(key
->zk_hmac_tmpl
);
218 /* zero out sensitive data */
219 memset(key
, 0, sizeof (zio_crypt_key_t
));
223 zio_crypt_key_init(uint64_t crypt
, zio_crypt_key_t
*key
)
226 crypto_mechanism_t mech
= {0};
230 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
233 * Workaround for GCC 12+ with UBSan enabled deficencies.
235 * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
236 * below as violating -Warray-bounds
238 #if defined(__GNUC__) && !defined(__clang__) && \
239 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
240 defined(CONFIG_UBSAN))
241 #pragma GCC diagnostic push
242 #pragma GCC diagnostic ignored "-Warray-bounds"
244 keydata_len
= zio_crypt_table
[crypt
].ci_keylen
;
245 #if defined(__GNUC__) && !defined(__clang__) && \
246 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
247 defined(CONFIG_UBSAN))
248 #pragma GCC diagnostic pop
250 memset(key
, 0, sizeof (zio_crypt_key_t
));
251 rw_init(&key
->zk_salt_lock
, NULL
, RW_DEFAULT
, NULL
);
253 /* fill keydata buffers and salt with random data */
254 ret
= random_get_bytes((uint8_t *)&key
->zk_guid
, sizeof (uint64_t));
258 ret
= random_get_bytes(key
->zk_master_keydata
, keydata_len
);
262 ret
= random_get_bytes(key
->zk_hmac_keydata
, SHA512_HMAC_KEYLEN
);
266 ret
= random_get_bytes(key
->zk_salt
, ZIO_DATA_SALT_LEN
);
270 /* derive the current key from the master key */
271 ret
= hkdf_sha512(key
->zk_master_keydata
, keydata_len
, NULL
, 0,
272 key
->zk_salt
, ZIO_DATA_SALT_LEN
, key
->zk_current_keydata
,
277 /* initialize keys for the ICP */
278 key
->zk_current_key
.ck_data
= key
->zk_current_keydata
;
279 key
->zk_current_key
.ck_length
= CRYPTO_BYTES2BITS(keydata_len
);
281 key
->zk_hmac_key
.ck_data
= &key
->zk_hmac_key
;
282 key
->zk_hmac_key
.ck_length
= CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN
);
285 * Initialize the crypto templates. It's ok if this fails because
286 * this is just an optimization.
288 mech
.cm_type
= crypto_mech2id(zio_crypt_table
[crypt
].ci_mechname
);
289 ret
= crypto_create_ctx_template(&mech
, &key
->zk_current_key
,
290 &key
->zk_current_tmpl
);
291 if (ret
!= CRYPTO_SUCCESS
)
292 key
->zk_current_tmpl
= NULL
;
294 mech
.cm_type
= crypto_mech2id(SUN_CKM_SHA512_HMAC
);
295 ret
= crypto_create_ctx_template(&mech
, &key
->zk_hmac_key
,
297 if (ret
!= CRYPTO_SUCCESS
)
298 key
->zk_hmac_tmpl
= NULL
;
300 key
->zk_crypt
= crypt
;
301 key
->zk_version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
302 key
->zk_salt_count
= 0;
307 zio_crypt_key_destroy(key
);
312 zio_crypt_key_change_salt(zio_crypt_key_t
*key
)
315 uint8_t salt
[ZIO_DATA_SALT_LEN
];
316 crypto_mechanism_t mech
;
317 uint_t keydata_len
= zio_crypt_table
[key
->zk_crypt
].ci_keylen
;
319 /* generate a new salt */
320 ret
= random_get_bytes(salt
, ZIO_DATA_SALT_LEN
);
324 rw_enter(&key
->zk_salt_lock
, RW_WRITER
);
326 /* someone beat us to the salt rotation, just unlock and return */
327 if (key
->zk_salt_count
< ZFS_CURRENT_MAX_SALT_USES
)
330 /* derive the current key from the master key and the new salt */
331 ret
= hkdf_sha512(key
->zk_master_keydata
, keydata_len
, NULL
, 0,
332 salt
, ZIO_DATA_SALT_LEN
, key
->zk_current_keydata
, keydata_len
);
336 /* assign the salt and reset the usage count */
337 memcpy(key
->zk_salt
, salt
, ZIO_DATA_SALT_LEN
);
338 key
->zk_salt_count
= 0;
340 /* destroy the old context template and create the new one */
341 crypto_destroy_ctx_template(key
->zk_current_tmpl
);
342 ret
= crypto_create_ctx_template(&mech
, &key
->zk_current_key
,
343 &key
->zk_current_tmpl
);
344 if (ret
!= CRYPTO_SUCCESS
)
345 key
->zk_current_tmpl
= NULL
;
347 rw_exit(&key
->zk_salt_lock
);
352 rw_exit(&key
->zk_salt_lock
);
357 /* See comment above zfs_key_max_salt_uses definition for details */
359 zio_crypt_key_get_salt(zio_crypt_key_t
*key
, uint8_t *salt
)
362 boolean_t salt_change
;
364 rw_enter(&key
->zk_salt_lock
, RW_READER
);
366 memcpy(salt
, key
->zk_salt
, ZIO_DATA_SALT_LEN
);
367 salt_change
= (atomic_inc_64_nv(&key
->zk_salt_count
) >=
368 ZFS_CURRENT_MAX_SALT_USES
);
370 rw_exit(&key
->zk_salt_lock
);
373 ret
= zio_crypt_key_change_salt(key
);
385 * This function handles all encryption and decryption in zfs. When
386 * encrypting it expects puio to reference the plaintext and cuio to
387 * reference the ciphertext. cuio must have enough space for the
388 * ciphertext + room for a MAC. datalen should be the length of the
389 * plaintext / ciphertext alone.
392 zio_do_crypt_uio(boolean_t encrypt
, uint64_t crypt
, crypto_key_t
*key
,
393 crypto_ctx_template_t tmpl
, uint8_t *ivbuf
, uint_t datalen
,
394 zfs_uio_t
*puio
, zfs_uio_t
*cuio
, uint8_t *authbuf
, uint_t auth_len
)
397 crypto_data_t plaindata
, cipherdata
;
398 CK_AES_CCM_PARAMS ccmp
;
399 CK_AES_GCM_PARAMS gcmp
;
400 crypto_mechanism_t mech
;
401 zio_crypt_info_t crypt_info
;
402 uint_t plain_full_len
, maclen
;
404 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
406 /* lookup the encryption info */
407 crypt_info
= zio_crypt_table
[crypt
];
409 /* the mac will always be the last iovec_t in the cipher uio */
410 maclen
= cuio
->uio_iov
[cuio
->uio_iovcnt
- 1].iov_len
;
412 ASSERT(maclen
<= ZIO_DATA_MAC_LEN
);
414 /* setup encryption mechanism (same as crypt) */
415 mech
.cm_type
= crypto_mech2id(crypt_info
.ci_mechname
);
418 * Strangely, the ICP requires that plain_full_len must include
419 * the MAC length when decrypting, even though the UIO does not
420 * need to have the extra space allocated.
423 plain_full_len
= datalen
;
425 plain_full_len
= datalen
+ maclen
;
429 * setup encryption params (currently only AES CCM and AES GCM
432 if (crypt_info
.ci_crypt_type
== ZC_TYPE_CCM
) {
433 ccmp
.ulNonceSize
= ZIO_DATA_IV_LEN
;
434 ccmp
.ulAuthDataSize
= auth_len
;
435 ccmp
.authData
= authbuf
;
436 ccmp
.ulMACSize
= maclen
;
438 ccmp
.ulDataSize
= plain_full_len
;
440 mech
.cm_param
= (char *)(&ccmp
);
441 mech
.cm_param_len
= sizeof (CK_AES_CCM_PARAMS
);
443 gcmp
.ulIvLen
= ZIO_DATA_IV_LEN
;
444 gcmp
.ulIvBits
= CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN
);
445 gcmp
.ulAADLen
= auth_len
;
447 gcmp
.ulTagBits
= CRYPTO_BYTES2BITS(maclen
);
450 mech
.cm_param
= (char *)(&gcmp
);
451 mech
.cm_param_len
= sizeof (CK_AES_GCM_PARAMS
);
454 /* populate the cipher and plain data structs. */
455 plaindata
.cd_format
= CRYPTO_DATA_UIO
;
456 plaindata
.cd_offset
= 0;
457 plaindata
.cd_uio
= puio
;
458 plaindata
.cd_length
= plain_full_len
;
460 cipherdata
.cd_format
= CRYPTO_DATA_UIO
;
461 cipherdata
.cd_offset
= 0;
462 cipherdata
.cd_uio
= cuio
;
463 cipherdata
.cd_length
= datalen
+ maclen
;
465 /* perform the actual encryption */
467 ret
= crypto_encrypt(&mech
, &plaindata
, key
, tmpl
, &cipherdata
);
468 if (ret
!= CRYPTO_SUCCESS
) {
469 ret
= SET_ERROR(EIO
);
473 ret
= crypto_decrypt(&mech
, &cipherdata
, key
, tmpl
, &plaindata
);
474 if (ret
!= CRYPTO_SUCCESS
) {
475 ASSERT3U(ret
, ==, CRYPTO_INVALID_MAC
);
476 ret
= SET_ERROR(ECKSUM
);
488 zio_crypt_key_wrap(crypto_key_t
*cwkey
, zio_crypt_key_t
*key
, uint8_t *iv
,
489 uint8_t *mac
, uint8_t *keydata_out
, uint8_t *hmac_keydata_out
)
492 zfs_uio_t puio
, cuio
;
494 iovec_t plain_iovecs
[2], cipher_iovecs
[3];
495 uint64_t crypt
= key
->zk_crypt
;
496 uint_t enc_len
, keydata_len
, aad_len
;
498 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
500 keydata_len
= zio_crypt_table
[crypt
].ci_keylen
;
502 /* generate iv for wrapping the master and hmac key */
503 ret
= random_get_pseudo_bytes(iv
, WRAPPING_IV_LEN
);
507 /* initialize zfs_uio_ts */
508 plain_iovecs
[0].iov_base
= key
->zk_master_keydata
;
509 plain_iovecs
[0].iov_len
= keydata_len
;
510 plain_iovecs
[1].iov_base
= key
->zk_hmac_keydata
;
511 plain_iovecs
[1].iov_len
= SHA512_HMAC_KEYLEN
;
513 cipher_iovecs
[0].iov_base
= keydata_out
;
514 cipher_iovecs
[0].iov_len
= keydata_len
;
515 cipher_iovecs
[1].iov_base
= hmac_keydata_out
;
516 cipher_iovecs
[1].iov_len
= SHA512_HMAC_KEYLEN
;
517 cipher_iovecs
[2].iov_base
= mac
;
518 cipher_iovecs
[2].iov_len
= WRAPPING_MAC_LEN
;
521 * Although we don't support writing to the old format, we do
522 * support rewrapping the key so that the user can move and
523 * quarantine datasets on the old format.
525 if (key
->zk_version
== 0) {
526 aad_len
= sizeof (uint64_t);
527 aad
[0] = LE_64(key
->zk_guid
);
529 ASSERT3U(key
->zk_version
, ==, ZIO_CRYPT_KEY_CURRENT_VERSION
);
530 aad_len
= sizeof (uint64_t) * 3;
531 aad
[0] = LE_64(key
->zk_guid
);
532 aad
[1] = LE_64(crypt
);
533 aad
[2] = LE_64(key
->zk_version
);
536 enc_len
= zio_crypt_table
[crypt
].ci_keylen
+ SHA512_HMAC_KEYLEN
;
537 puio
.uio_iov
= plain_iovecs
;
539 puio
.uio_segflg
= UIO_SYSSPACE
;
540 cuio
.uio_iov
= cipher_iovecs
;
542 cuio
.uio_segflg
= UIO_SYSSPACE
;
544 /* encrypt the keys and store the resulting ciphertext and mac */
545 ret
= zio_do_crypt_uio(B_TRUE
, crypt
, cwkey
, NULL
, iv
, enc_len
,
546 &puio
, &cuio
, (uint8_t *)aad
, aad_len
);
557 zio_crypt_key_unwrap(crypto_key_t
*cwkey
, uint64_t crypt
, uint64_t version
,
558 uint64_t guid
, uint8_t *keydata
, uint8_t *hmac_keydata
, uint8_t *iv
,
559 uint8_t *mac
, zio_crypt_key_t
*key
)
561 crypto_mechanism_t mech
;
562 zfs_uio_t puio
, cuio
;
564 iovec_t plain_iovecs
[2], cipher_iovecs
[3];
565 uint_t enc_len
, keydata_len
, aad_len
;
568 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
570 rw_init(&key
->zk_salt_lock
, NULL
, RW_DEFAULT
, NULL
);
572 keydata_len
= zio_crypt_table
[crypt
].ci_keylen
;
574 /* initialize zfs_uio_ts */
575 plain_iovecs
[0].iov_base
= key
->zk_master_keydata
;
576 plain_iovecs
[0].iov_len
= keydata_len
;
577 plain_iovecs
[1].iov_base
= key
->zk_hmac_keydata
;
578 plain_iovecs
[1].iov_len
= SHA512_HMAC_KEYLEN
;
580 cipher_iovecs
[0].iov_base
= keydata
;
581 cipher_iovecs
[0].iov_len
= keydata_len
;
582 cipher_iovecs
[1].iov_base
= hmac_keydata
;
583 cipher_iovecs
[1].iov_len
= SHA512_HMAC_KEYLEN
;
584 cipher_iovecs
[2].iov_base
= mac
;
585 cipher_iovecs
[2].iov_len
= WRAPPING_MAC_LEN
;
588 aad_len
= sizeof (uint64_t);
589 aad
[0] = LE_64(guid
);
591 ASSERT3U(version
, ==, ZIO_CRYPT_KEY_CURRENT_VERSION
);
592 aad_len
= sizeof (uint64_t) * 3;
593 aad
[0] = LE_64(guid
);
594 aad
[1] = LE_64(crypt
);
595 aad
[2] = LE_64(version
);
598 enc_len
= keydata_len
+ SHA512_HMAC_KEYLEN
;
599 puio
.uio_iov
= plain_iovecs
;
600 puio
.uio_segflg
= UIO_SYSSPACE
;
602 cuio
.uio_iov
= cipher_iovecs
;
604 cuio
.uio_segflg
= UIO_SYSSPACE
;
606 /* decrypt the keys and store the result in the output buffers */
607 ret
= zio_do_crypt_uio(B_FALSE
, crypt
, cwkey
, NULL
, iv
, enc_len
,
608 &puio
, &cuio
, (uint8_t *)aad
, aad_len
);
612 /* generate a fresh salt */
613 ret
= random_get_bytes(key
->zk_salt
, ZIO_DATA_SALT_LEN
);
617 /* derive the current key from the master key */
618 ret
= hkdf_sha512(key
->zk_master_keydata
, keydata_len
, NULL
, 0,
619 key
->zk_salt
, ZIO_DATA_SALT_LEN
, key
->zk_current_keydata
,
624 /* initialize keys for ICP */
625 key
->zk_current_key
.ck_data
= key
->zk_current_keydata
;
626 key
->zk_current_key
.ck_length
= CRYPTO_BYTES2BITS(keydata_len
);
628 key
->zk_hmac_key
.ck_data
= key
->zk_hmac_keydata
;
629 key
->zk_hmac_key
.ck_length
= CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN
);
632 * Initialize the crypto templates. It's ok if this fails because
633 * this is just an optimization.
635 mech
.cm_type
= crypto_mech2id(zio_crypt_table
[crypt
].ci_mechname
);
636 ret
= crypto_create_ctx_template(&mech
, &key
->zk_current_key
,
637 &key
->zk_current_tmpl
);
638 if (ret
!= CRYPTO_SUCCESS
)
639 key
->zk_current_tmpl
= NULL
;
641 mech
.cm_type
= crypto_mech2id(SUN_CKM_SHA512_HMAC
);
642 ret
= crypto_create_ctx_template(&mech
, &key
->zk_hmac_key
,
644 if (ret
!= CRYPTO_SUCCESS
)
645 key
->zk_hmac_tmpl
= NULL
;
647 key
->zk_crypt
= crypt
;
648 key
->zk_version
= version
;
650 key
->zk_salt_count
= 0;
655 zio_crypt_key_destroy(key
);
660 zio_crypt_generate_iv(uint8_t *ivbuf
)
664 /* randomly generate the IV */
665 ret
= random_get_pseudo_bytes(ivbuf
, ZIO_DATA_IV_LEN
);
672 memset(ivbuf
, 0, ZIO_DATA_IV_LEN
);
677 zio_crypt_do_hmac(zio_crypt_key_t
*key
, uint8_t *data
, uint_t datalen
,
678 uint8_t *digestbuf
, uint_t digestlen
)
681 crypto_mechanism_t mech
;
682 crypto_data_t in_data
, digest_data
;
683 uint8_t raw_digestbuf
[SHA512_DIGEST_LENGTH
];
685 ASSERT3U(digestlen
, <=, SHA512_DIGEST_LENGTH
);
687 /* initialize sha512-hmac mechanism and crypto data */
688 mech
.cm_type
= crypto_mech2id(SUN_CKM_SHA512_HMAC
);
689 mech
.cm_param
= NULL
;
690 mech
.cm_param_len
= 0;
692 /* initialize the crypto data */
693 in_data
.cd_format
= CRYPTO_DATA_RAW
;
694 in_data
.cd_offset
= 0;
695 in_data
.cd_length
= datalen
;
696 in_data
.cd_raw
.iov_base
= (char *)data
;
697 in_data
.cd_raw
.iov_len
= in_data
.cd_length
;
699 digest_data
.cd_format
= CRYPTO_DATA_RAW
;
700 digest_data
.cd_offset
= 0;
701 digest_data
.cd_length
= SHA512_DIGEST_LENGTH
;
702 digest_data
.cd_raw
.iov_base
= (char *)raw_digestbuf
;
703 digest_data
.cd_raw
.iov_len
= digest_data
.cd_length
;
705 /* generate the hmac */
706 ret
= crypto_mac(&mech
, &in_data
, &key
->zk_hmac_key
, key
->zk_hmac_tmpl
,
708 if (ret
!= CRYPTO_SUCCESS
) {
709 ret
= SET_ERROR(EIO
);
713 memcpy(digestbuf
, raw_digestbuf
, digestlen
);
718 memset(digestbuf
, 0, digestlen
);
723 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t
*key
, uint8_t *data
,
724 uint_t datalen
, uint8_t *ivbuf
, uint8_t *salt
)
727 uint8_t digestbuf
[SHA512_DIGEST_LENGTH
];
729 ret
= zio_crypt_do_hmac(key
, data
, datalen
,
730 digestbuf
, SHA512_DIGEST_LENGTH
);
734 memcpy(salt
, digestbuf
, ZIO_DATA_SALT_LEN
);
735 memcpy(ivbuf
, digestbuf
+ ZIO_DATA_SALT_LEN
, ZIO_DATA_IV_LEN
);
741 * The following functions are used to encode and decode encryption parameters
742 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
743 * byte strings, which normally means that these strings would not need to deal
744 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
745 * byteswapped by lower layers and so we must "undo" that byteswap here upon
746 * decoding and encoding in a non-native byteorder. These functions require
747 * that the byteorder bit is correct before being called.
750 zio_crypt_encode_params_bp(blkptr_t
*bp
, uint8_t *salt
, uint8_t *iv
)
755 ASSERT(BP_IS_ENCRYPTED(bp
));
757 if (!BP_SHOULD_BYTESWAP(bp
)) {
758 memcpy(&bp
->blk_dva
[2].dva_word
[0], salt
, sizeof (uint64_t));
759 memcpy(&bp
->blk_dva
[2].dva_word
[1], iv
, sizeof (uint64_t));
760 memcpy(&val32
, iv
+ sizeof (uint64_t), sizeof (uint32_t));
761 BP_SET_IV2(bp
, val32
);
763 memcpy(&val64
, salt
, sizeof (uint64_t));
764 bp
->blk_dva
[2].dva_word
[0] = BSWAP_64(val64
);
766 memcpy(&val64
, iv
, sizeof (uint64_t));
767 bp
->blk_dva
[2].dva_word
[1] = BSWAP_64(val64
);
769 memcpy(&val32
, iv
+ sizeof (uint64_t), sizeof (uint32_t));
770 BP_SET_IV2(bp
, BSWAP_32(val32
));
775 zio_crypt_decode_params_bp(const blkptr_t
*bp
, uint8_t *salt
, uint8_t *iv
)
780 ASSERT(BP_IS_PROTECTED(bp
));
782 /* for convenience, so callers don't need to check */
783 if (BP_IS_AUTHENTICATED(bp
)) {
784 memset(salt
, 0, ZIO_DATA_SALT_LEN
);
785 memset(iv
, 0, ZIO_DATA_IV_LEN
);
789 if (!BP_SHOULD_BYTESWAP(bp
)) {
790 memcpy(salt
, &bp
->blk_dva
[2].dva_word
[0], sizeof (uint64_t));
791 memcpy(iv
, &bp
->blk_dva
[2].dva_word
[1], sizeof (uint64_t));
793 val32
= (uint32_t)BP_GET_IV2(bp
);
794 memcpy(iv
+ sizeof (uint64_t), &val32
, sizeof (uint32_t));
796 val64
= BSWAP_64(bp
->blk_dva
[2].dva_word
[0]);
797 memcpy(salt
, &val64
, sizeof (uint64_t));
799 val64
= BSWAP_64(bp
->blk_dva
[2].dva_word
[1]);
800 memcpy(iv
, &val64
, sizeof (uint64_t));
802 val32
= BSWAP_32((uint32_t)BP_GET_IV2(bp
));
803 memcpy(iv
+ sizeof (uint64_t), &val32
, sizeof (uint32_t));
808 zio_crypt_encode_mac_bp(blkptr_t
*bp
, uint8_t *mac
)
812 ASSERT(BP_USES_CRYPT(bp
));
813 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_OBJSET
);
815 if (!BP_SHOULD_BYTESWAP(bp
)) {
816 memcpy(&bp
->blk_cksum
.zc_word
[2], mac
, sizeof (uint64_t));
817 memcpy(&bp
->blk_cksum
.zc_word
[3], mac
+ sizeof (uint64_t),
820 memcpy(&val64
, mac
, sizeof (uint64_t));
821 bp
->blk_cksum
.zc_word
[2] = BSWAP_64(val64
);
823 memcpy(&val64
, mac
+ sizeof (uint64_t), sizeof (uint64_t));
824 bp
->blk_cksum
.zc_word
[3] = BSWAP_64(val64
);
829 zio_crypt_decode_mac_bp(const blkptr_t
*bp
, uint8_t *mac
)
833 ASSERT(BP_USES_CRYPT(bp
) || BP_IS_HOLE(bp
));
835 /* for convenience, so callers don't need to check */
836 if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
837 memset(mac
, 0, ZIO_DATA_MAC_LEN
);
841 if (!BP_SHOULD_BYTESWAP(bp
)) {
842 memcpy(mac
, &bp
->blk_cksum
.zc_word
[2], sizeof (uint64_t));
843 memcpy(mac
+ sizeof (uint64_t), &bp
->blk_cksum
.zc_word
[3],
846 val64
= BSWAP_64(bp
->blk_cksum
.zc_word
[2]);
847 memcpy(mac
, &val64
, sizeof (uint64_t));
849 val64
= BSWAP_64(bp
->blk_cksum
.zc_word
[3]);
850 memcpy(mac
+ sizeof (uint64_t), &val64
, sizeof (uint64_t));
855 zio_crypt_encode_mac_zil(void *data
, uint8_t *mac
)
857 zil_chain_t
*zilc
= data
;
859 memcpy(&zilc
->zc_eck
.zec_cksum
.zc_word
[2], mac
, sizeof (uint64_t));
860 memcpy(&zilc
->zc_eck
.zec_cksum
.zc_word
[3], mac
+ sizeof (uint64_t),
865 zio_crypt_decode_mac_zil(const void *data
, uint8_t *mac
)
868 * The ZIL MAC is embedded in the block it protects, which will
869 * not have been byteswapped by the time this function has been called.
870 * As a result, we don't need to worry about byteswapping the MAC.
872 const zil_chain_t
*zilc
= data
;
874 memcpy(mac
, &zilc
->zc_eck
.zec_cksum
.zc_word
[2], sizeof (uint64_t));
875 memcpy(mac
+ sizeof (uint64_t), &zilc
->zc_eck
.zec_cksum
.zc_word
[3],
880 * This routine takes a block of dnodes (src_abd) and copies only the bonus
881 * buffers to the same offsets in the dst buffer. datalen should be the size
882 * of both the src_abd and the dst buffer (not just the length of the bonus
886 zio_crypt_copy_dnode_bonus(abd_t
*src_abd
, uint8_t *dst
, uint_t datalen
)
888 uint_t i
, max_dnp
= datalen
>> DNODE_SHIFT
;
890 dnode_phys_t
*dnp
, *sdnp
, *ddnp
;
892 src
= abd_borrow_buf_copy(src_abd
, datalen
);
894 sdnp
= (dnode_phys_t
*)src
;
895 ddnp
= (dnode_phys_t
*)dst
;
897 for (i
= 0; i
< max_dnp
; i
+= sdnp
[i
].dn_extra_slots
+ 1) {
899 if (dnp
->dn_type
!= DMU_OT_NONE
&&
900 DMU_OT_IS_ENCRYPTED(dnp
->dn_bonustype
) &&
901 dnp
->dn_bonuslen
!= 0) {
902 memcpy(DN_BONUS(&ddnp
[i
]), DN_BONUS(dnp
),
903 DN_MAX_BONUS_LEN(dnp
));
907 abd_return_buf(src_abd
, src
, datalen
);
911 * This function decides what fields from blk_prop are included in
912 * the on-disk various MAC algorithms.
915 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t
*bp
, uint64_t version
)
918 * Version 0 did not properly zero out all non-portable fields
919 * as it should have done. We maintain this code so that we can
920 * do read-only imports of pools on this version.
924 BP_SET_CHECKSUM(bp
, 0);
925 BP_SET_PSIZE(bp
, SPA_MINBLOCKSIZE
);
929 ASSERT3U(version
, ==, ZIO_CRYPT_KEY_CURRENT_VERSION
);
932 * The hole_birth feature might set these fields even if this bp
933 * is a hole. We zero them out here to guarantee that raw sends
934 * will function with or without the feature.
936 if (BP_IS_HOLE(bp
)) {
942 * At L0 we want to verify these fields to ensure that data blocks
943 * can not be reinterpreted. For instance, we do not want an attacker
944 * to trick us into returning raw lz4 compressed data to the user
945 * by modifying the compression bits. At higher levels, we cannot
946 * enforce this policy since raw sends do not convey any information
947 * about indirect blocks, so these values might be different on the
948 * receive side. Fortunately, this does not open any new attack
949 * vectors, since any alterations that can be made to a higher level
950 * bp must still verify the correct order of the layer below it.
952 if (BP_GET_LEVEL(bp
) != 0) {
953 BP_SET_BYTEORDER(bp
, 0);
954 BP_SET_COMPRESS(bp
, 0);
957 * psize cannot be set to zero or it will trigger
958 * asserts, but the value doesn't really matter as
959 * long as it is constant.
961 BP_SET_PSIZE(bp
, SPA_MINBLOCKSIZE
);
965 BP_SET_CHECKSUM(bp
, 0);
969 zio_crypt_bp_auth_init(uint64_t version
, boolean_t should_bswap
, blkptr_t
*bp
,
970 blkptr_auth_buf_t
*bab
, uint_t
*bab_len
)
972 blkptr_t tmpbp
= *bp
;
975 byteswap_uint64_array(&tmpbp
, sizeof (blkptr_t
));
977 ASSERT(BP_USES_CRYPT(&tmpbp
) || BP_IS_HOLE(&tmpbp
));
978 ASSERT0(BP_IS_EMBEDDED(&tmpbp
));
980 zio_crypt_decode_mac_bp(&tmpbp
, bab
->bab_mac
);
983 * We always MAC blk_prop in LE to ensure portability. This
984 * must be done after decoding the mac, since the endianness
985 * will get zero'd out here.
987 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp
, version
);
988 bab
->bab_prop
= LE_64(tmpbp
.blk_prop
);
991 /* version 0 did not include the padding */
992 *bab_len
= sizeof (blkptr_auth_buf_t
);
994 *bab_len
-= sizeof (uint64_t);
998 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx
, uint64_t version
,
999 boolean_t should_bswap
, blkptr_t
*bp
)
1003 blkptr_auth_buf_t bab
;
1006 zio_crypt_bp_auth_init(version
, should_bswap
, bp
, &bab
, &bab_len
);
1007 cd
.cd_format
= CRYPTO_DATA_RAW
;
1009 cd
.cd_length
= bab_len
;
1010 cd
.cd_raw
.iov_base
= (char *)&bab
;
1011 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1013 ret
= crypto_mac_update(ctx
, &cd
);
1014 if (ret
!= CRYPTO_SUCCESS
) {
1015 ret
= SET_ERROR(EIO
);
1026 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX
*ctx
, uint64_t version
,
1027 boolean_t should_bswap
, blkptr_t
*bp
)
1030 blkptr_auth_buf_t bab
;
1032 zio_crypt_bp_auth_init(version
, should_bswap
, bp
, &bab
, &bab_len
);
1033 SHA2Update(ctx
, &bab
, bab_len
);
1037 zio_crypt_bp_do_aad_updates(uint8_t **aadp
, uint_t
*aad_len
, uint64_t version
,
1038 boolean_t should_bswap
, blkptr_t
*bp
)
1041 blkptr_auth_buf_t bab
;
1043 zio_crypt_bp_auth_init(version
, should_bswap
, bp
, &bab
, &bab_len
);
1044 memcpy(*aadp
, &bab
, bab_len
);
1046 *aad_len
+= bab_len
;
1050 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx
, uint64_t version
,
1051 boolean_t should_bswap
, dnode_phys_t
*dnp
)
1054 dnode_phys_t
*adnp
, tmp_dncore
;
1055 size_t dn_core_size
= offsetof(dnode_phys_t
, dn_blkptr
);
1056 boolean_t le_bswap
= (should_bswap
== ZFS_HOST_BYTEORDER
);
1059 cd
.cd_format
= CRYPTO_DATA_RAW
;
1063 * Authenticate the core dnode (masking out non-portable bits).
1064 * We only copy the first 64 bytes we operate on to avoid the overhead
1065 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1068 memcpy(&tmp_dncore
, dnp
, dn_core_size
);
1072 adnp
->dn_datablkszsec
= BSWAP_16(adnp
->dn_datablkszsec
);
1073 adnp
->dn_bonuslen
= BSWAP_16(adnp
->dn_bonuslen
);
1074 adnp
->dn_maxblkid
= BSWAP_64(adnp
->dn_maxblkid
);
1075 adnp
->dn_used
= BSWAP_64(adnp
->dn_used
);
1077 adnp
->dn_flags
&= DNODE_CRYPT_PORTABLE_FLAGS_MASK
;
1080 cd
.cd_length
= dn_core_size
;
1081 cd
.cd_raw
.iov_base
= (char *)adnp
;
1082 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1084 ret
= crypto_mac_update(ctx
, &cd
);
1085 if (ret
!= CRYPTO_SUCCESS
) {
1086 ret
= SET_ERROR(EIO
);
1090 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++) {
1091 ret
= zio_crypt_bp_do_hmac_updates(ctx
, version
,
1092 should_bswap
, &dnp
->dn_blkptr
[i
]);
1097 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1098 ret
= zio_crypt_bp_do_hmac_updates(ctx
, version
,
1099 should_bswap
, DN_SPILL_BLKPTR(dnp
));
1111 * objset_phys_t blocks introduce a number of exceptions to the normal
1112 * authentication process. objset_phys_t's contain 2 separate HMACS for
1113 * protecting the integrity of their data. The portable_mac protects the
1114 * metadnode. This MAC can be sent with a raw send and protects against
1115 * reordering of data within the metadnode. The local_mac protects the user
1116 * accounting objects which are not sent from one system to another.
1118 * In addition, objset blocks are the only blocks that can be modified and
1119 * written to disk without the key loaded under certain circumstances. During
1120 * zil_claim() we need to be able to update the zil_header_t to complete
1121 * claiming log blocks and during raw receives we need to write out the
1122 * portable_mac from the send file. Both of these actions are possible
1123 * because these fields are not protected by either MAC so neither one will
1124 * need to modify the MACs without the key. However, when the modified blocks
1125 * are written out they will be byteswapped into the host machine's native
1126 * endianness which will modify fields protected by the MAC. As a result, MAC
1127 * calculation for objset blocks works slightly differently from other block
1128 * types. Where other block types MAC the data in whatever endianness is
1129 * written to disk, objset blocks always MAC little endian version of their
1130 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1131 * and le_bswap indicates whether a byteswap is needed to get this block
1132 * into little endian format.
1135 zio_crypt_do_objset_hmacs(zio_crypt_key_t
*key
, void *data
, uint_t datalen
,
1136 boolean_t should_bswap
, uint8_t *portable_mac
, uint8_t *local_mac
)
1139 crypto_mechanism_t mech
;
1140 crypto_context_t ctx
;
1142 objset_phys_t
*osp
= data
;
1144 boolean_t le_bswap
= (should_bswap
== ZFS_HOST_BYTEORDER
);
1145 uint8_t raw_portable_mac
[SHA512_DIGEST_LENGTH
];
1146 uint8_t raw_local_mac
[SHA512_DIGEST_LENGTH
];
1148 /* initialize HMAC mechanism */
1149 mech
.cm_type
= crypto_mech2id(SUN_CKM_SHA512_HMAC
);
1150 mech
.cm_param
= NULL
;
1151 mech
.cm_param_len
= 0;
1153 cd
.cd_format
= CRYPTO_DATA_RAW
;
1156 /* calculate the portable MAC from the portable fields and metadnode */
1157 ret
= crypto_mac_init(&mech
, &key
->zk_hmac_key
, NULL
, &ctx
);
1158 if (ret
!= CRYPTO_SUCCESS
) {
1159 ret
= SET_ERROR(EIO
);
1163 /* add in the os_type */
1164 intval
= (le_bswap
) ? osp
->os_type
: BSWAP_64(osp
->os_type
);
1165 cd
.cd_length
= sizeof (uint64_t);
1166 cd
.cd_raw
.iov_base
= (char *)&intval
;
1167 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1169 ret
= crypto_mac_update(ctx
, &cd
);
1170 if (ret
!= CRYPTO_SUCCESS
) {
1171 ret
= SET_ERROR(EIO
);
1175 /* add in the portable os_flags */
1176 intval
= osp
->os_flags
;
1178 intval
= BSWAP_64(intval
);
1179 intval
&= OBJSET_CRYPT_PORTABLE_FLAGS_MASK
;
1180 if (!ZFS_HOST_BYTEORDER
)
1181 intval
= BSWAP_64(intval
);
1183 cd
.cd_length
= sizeof (uint64_t);
1184 cd
.cd_raw
.iov_base
= (char *)&intval
;
1185 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1187 ret
= crypto_mac_update(ctx
, &cd
);
1188 if (ret
!= CRYPTO_SUCCESS
) {
1189 ret
= SET_ERROR(EIO
);
1193 /* add in fields from the metadnode */
1194 ret
= zio_crypt_do_dnode_hmac_updates(ctx
, key
->zk_version
,
1195 should_bswap
, &osp
->os_meta_dnode
);
1199 /* store the final digest in a temporary buffer and copy what we need */
1200 cd
.cd_length
= SHA512_DIGEST_LENGTH
;
1201 cd
.cd_raw
.iov_base
= (char *)raw_portable_mac
;
1202 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1204 ret
= crypto_mac_final(ctx
, &cd
);
1205 if (ret
!= CRYPTO_SUCCESS
) {
1206 ret
= SET_ERROR(EIO
);
1210 memcpy(portable_mac
, raw_portable_mac
, ZIO_OBJSET_MAC_LEN
);
1213 * This is necessary here as we check next whether
1214 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1215 * decide if the local_mac should be zeroed out. That flag will always
1216 * be set by dmu_objset_id_quota_upgrade_cb() and
1217 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1220 intval
= osp
->os_flags
;
1222 intval
= BSWAP_64(intval
);
1223 boolean_t uacct_incomplete
=
1224 !(intval
& OBJSET_FLAG_USERACCOUNTING_COMPLETE
);
1227 * The local MAC protects the user, group and project accounting.
1228 * If these objects are not present, the local MAC is zeroed out.
1230 if (uacct_incomplete
||
1231 (datalen
>= OBJSET_PHYS_SIZE_V3
&&
1232 osp
->os_userused_dnode
.dn_type
== DMU_OT_NONE
&&
1233 osp
->os_groupused_dnode
.dn_type
== DMU_OT_NONE
&&
1234 osp
->os_projectused_dnode
.dn_type
== DMU_OT_NONE
) ||
1235 (datalen
>= OBJSET_PHYS_SIZE_V2
&&
1236 osp
->os_userused_dnode
.dn_type
== DMU_OT_NONE
&&
1237 osp
->os_groupused_dnode
.dn_type
== DMU_OT_NONE
) ||
1238 (datalen
<= OBJSET_PHYS_SIZE_V1
)) {
1239 memset(local_mac
, 0, ZIO_OBJSET_MAC_LEN
);
1243 /* calculate the local MAC from the userused and groupused dnodes */
1244 ret
= crypto_mac_init(&mech
, &key
->zk_hmac_key
, NULL
, &ctx
);
1245 if (ret
!= CRYPTO_SUCCESS
) {
1246 ret
= SET_ERROR(EIO
);
1250 /* add in the non-portable os_flags */
1251 intval
= osp
->os_flags
;
1253 intval
= BSWAP_64(intval
);
1254 intval
&= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK
;
1255 if (!ZFS_HOST_BYTEORDER
)
1256 intval
= BSWAP_64(intval
);
1258 cd
.cd_length
= sizeof (uint64_t);
1259 cd
.cd_raw
.iov_base
= (char *)&intval
;
1260 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1262 ret
= crypto_mac_update(ctx
, &cd
);
1263 if (ret
!= CRYPTO_SUCCESS
) {
1264 ret
= SET_ERROR(EIO
);
1268 /* add in fields from the user accounting dnodes */
1269 if (osp
->os_userused_dnode
.dn_type
!= DMU_OT_NONE
) {
1270 ret
= zio_crypt_do_dnode_hmac_updates(ctx
, key
->zk_version
,
1271 should_bswap
, &osp
->os_userused_dnode
);
1276 if (osp
->os_groupused_dnode
.dn_type
!= DMU_OT_NONE
) {
1277 ret
= zio_crypt_do_dnode_hmac_updates(ctx
, key
->zk_version
,
1278 should_bswap
, &osp
->os_groupused_dnode
);
1283 if (osp
->os_projectused_dnode
.dn_type
!= DMU_OT_NONE
&&
1284 datalen
>= OBJSET_PHYS_SIZE_V3
) {
1285 ret
= zio_crypt_do_dnode_hmac_updates(ctx
, key
->zk_version
,
1286 should_bswap
, &osp
->os_projectused_dnode
);
1291 /* store the final digest in a temporary buffer and copy what we need */
1292 cd
.cd_length
= SHA512_DIGEST_LENGTH
;
1293 cd
.cd_raw
.iov_base
= (char *)raw_local_mac
;
1294 cd
.cd_raw
.iov_len
= cd
.cd_length
;
1296 ret
= crypto_mac_final(ctx
, &cd
);
1297 if (ret
!= CRYPTO_SUCCESS
) {
1298 ret
= SET_ERROR(EIO
);
1302 memcpy(local_mac
, raw_local_mac
, ZIO_OBJSET_MAC_LEN
);
1307 memset(portable_mac
, 0, ZIO_OBJSET_MAC_LEN
);
1308 memset(local_mac
, 0, ZIO_OBJSET_MAC_LEN
);
1313 zio_crypt_destroy_uio(zfs_uio_t
*uio
)
1316 kmem_free(uio
->uio_iov
, uio
->uio_iovcnt
* sizeof (iovec_t
));
1320 * This function parses an uncompressed indirect block and returns a checksum
1321 * of all the portable fields from all of the contained bps. The portable
1322 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1323 * checksum, and psize bits. For an explanation of the purpose of this, see
1324 * the comment block on object set authentication.
1327 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate
, void *buf
,
1328 uint_t datalen
, uint64_t version
, boolean_t byteswap
, uint8_t *cksum
)
1331 int i
, epb
= datalen
>> SPA_BLKPTRSHIFT
;
1333 uint8_t digestbuf
[SHA512_DIGEST_LENGTH
];
1335 /* checksum all of the MACs from the layer below */
1336 SHA2Init(SHA512
, &ctx
);
1337 for (i
= 0, bp
= buf
; i
< epb
; i
++, bp
++) {
1338 zio_crypt_bp_do_indrect_checksum_updates(&ctx
, version
,
1341 SHA2Final(digestbuf
, &ctx
);
1344 memcpy(cksum
, digestbuf
, ZIO_DATA_MAC_LEN
);
1348 if (memcmp(digestbuf
, cksum
, ZIO_DATA_MAC_LEN
) != 0)
1349 return (SET_ERROR(ECKSUM
));
1355 zio_crypt_do_indirect_mac_checksum(boolean_t generate
, void *buf
,
1356 uint_t datalen
, boolean_t byteswap
, uint8_t *cksum
)
1361 * Unfortunately, callers of this function will not always have
1362 * easy access to the on-disk format version. This info is
1363 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1364 * is expected to be verifiable even when the key isn't loaded.
1365 * Here, instead of doing a ZAP lookup for the version for each
1366 * zio, we simply try both existing formats.
1368 ret
= zio_crypt_do_indirect_mac_checksum_impl(generate
, buf
,
1369 datalen
, ZIO_CRYPT_KEY_CURRENT_VERSION
, byteswap
, cksum
);
1370 if (ret
== ECKSUM
) {
1372 ret
= zio_crypt_do_indirect_mac_checksum_impl(generate
,
1373 buf
, datalen
, 0, byteswap
, cksum
);
1380 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate
, abd_t
*abd
,
1381 uint_t datalen
, boolean_t byteswap
, uint8_t *cksum
)
1386 buf
= abd_borrow_buf_copy(abd
, datalen
);
1387 ret
= zio_crypt_do_indirect_mac_checksum(generate
, buf
, datalen
,
1389 abd_return_buf(abd
, buf
, datalen
);
1395 * Special case handling routine for encrypting / decrypting ZIL blocks.
1396 * We do not check for the older ZIL chain because the encryption feature
1397 * was not available before the newer ZIL chain was introduced. The goal
1398 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1399 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1402 zio_crypt_init_uios_zil(boolean_t encrypt
, uint8_t *plainbuf
,
1403 uint8_t *cipherbuf
, uint_t datalen
, boolean_t byteswap
, zfs_uio_t
*puio
,
1404 zfs_uio_t
*cuio
, uint_t
*enc_len
, uint8_t **authbuf
, uint_t
*auth_len
,
1405 boolean_t
*no_crypt
)
1408 uint64_t txtype
, lr_len
;
1409 uint_t nr_src
, nr_dst
, crypt_len
;
1410 uint_t aad_len
= 0, nr_iovecs
= 0, total_len
= 0;
1411 iovec_t
*src_iovecs
= NULL
, *dst_iovecs
= NULL
;
1412 uint8_t *src
, *dst
, *slrp
, *dlrp
, *blkend
, *aadp
;
1415 uint8_t *aadbuf
= zio_buf_alloc(datalen
);
1417 /* cipherbuf always needs an extra iovec for the MAC */
1429 memset(dst
, 0, datalen
);
1431 /* find the start and end record of the log block */
1432 zilc
= (zil_chain_t
*)src
;
1433 slrp
= src
+ sizeof (zil_chain_t
);
1435 blkend
= src
+ ((byteswap
) ? BSWAP_64(zilc
->zc_nused
) : zilc
->zc_nused
);
1437 /* calculate the number of encrypted iovecs we will need */
1438 for (; slrp
< blkend
; slrp
+= lr_len
) {
1442 txtype
= lr
->lrc_txtype
;
1443 lr_len
= lr
->lrc_reclen
;
1445 txtype
= BSWAP_64(lr
->lrc_txtype
);
1446 lr_len
= BSWAP_64(lr
->lrc_reclen
);
1450 if (txtype
== TX_WRITE
&& lr_len
!= sizeof (lr_write_t
))
1454 nr_src
+= nr_iovecs
;
1455 nr_dst
+= nr_iovecs
;
1457 /* allocate the iovec arrays */
1459 src_iovecs
= kmem_alloc(nr_src
* sizeof (iovec_t
), KM_SLEEP
);
1460 if (src_iovecs
== NULL
) {
1461 ret
= SET_ERROR(ENOMEM
);
1467 dst_iovecs
= kmem_alloc(nr_dst
* sizeof (iovec_t
), KM_SLEEP
);
1468 if (dst_iovecs
== NULL
) {
1469 ret
= SET_ERROR(ENOMEM
);
1475 * Copy the plain zil header over and authenticate everything except
1476 * the checksum that will store our MAC. If we are writing the data
1477 * the embedded checksum will not have been calculated yet, so we don't
1478 * authenticate that.
1480 memcpy(dst
, src
, sizeof (zil_chain_t
));
1481 memcpy(aadp
, src
, sizeof (zil_chain_t
) - sizeof (zio_eck_t
));
1482 aadp
+= sizeof (zil_chain_t
) - sizeof (zio_eck_t
);
1483 aad_len
+= sizeof (zil_chain_t
) - sizeof (zio_eck_t
);
1485 /* loop over records again, filling in iovecs */
1487 slrp
= src
+ sizeof (zil_chain_t
);
1488 dlrp
= dst
+ sizeof (zil_chain_t
);
1490 for (; slrp
< blkend
; slrp
+= lr_len
, dlrp
+= lr_len
) {
1494 txtype
= lr
->lrc_txtype
;
1495 lr_len
= lr
->lrc_reclen
;
1497 txtype
= BSWAP_64(lr
->lrc_txtype
);
1498 lr_len
= BSWAP_64(lr
->lrc_reclen
);
1501 /* copy the common lr_t */
1502 memcpy(dlrp
, slrp
, sizeof (lr_t
));
1503 memcpy(aadp
, slrp
, sizeof (lr_t
));
1504 aadp
+= sizeof (lr_t
);
1505 aad_len
+= sizeof (lr_t
);
1507 ASSERT3P(src_iovecs
, !=, NULL
);
1508 ASSERT3P(dst_iovecs
, !=, NULL
);
1511 * If this is a TX_WRITE record we want to encrypt everything
1512 * except the bp if exists. If the bp does exist we want to
1515 if (txtype
== TX_WRITE
) {
1516 crypt_len
= sizeof (lr_write_t
) -
1517 sizeof (lr_t
) - sizeof (blkptr_t
);
1518 src_iovecs
[nr_iovecs
].iov_base
= slrp
+ sizeof (lr_t
);
1519 src_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1520 dst_iovecs
[nr_iovecs
].iov_base
= dlrp
+ sizeof (lr_t
);
1521 dst_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1523 /* copy the bp now since it will not be encrypted */
1524 memcpy(dlrp
+ sizeof (lr_write_t
) - sizeof (blkptr_t
),
1525 slrp
+ sizeof (lr_write_t
) - sizeof (blkptr_t
),
1528 slrp
+ sizeof (lr_write_t
) - sizeof (blkptr_t
),
1530 aadp
+= sizeof (blkptr_t
);
1531 aad_len
+= sizeof (blkptr_t
);
1533 total_len
+= crypt_len
;
1535 if (lr_len
!= sizeof (lr_write_t
)) {
1536 crypt_len
= lr_len
- sizeof (lr_write_t
);
1537 src_iovecs
[nr_iovecs
].iov_base
=
1538 slrp
+ sizeof (lr_write_t
);
1539 src_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1540 dst_iovecs
[nr_iovecs
].iov_base
=
1541 dlrp
+ sizeof (lr_write_t
);
1542 dst_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1544 total_len
+= crypt_len
;
1546 } else if (txtype
== TX_CLONE_RANGE
) {
1547 const size_t o
= offsetof(lr_clone_range_t
, lr_nbps
);
1548 crypt_len
= o
- sizeof (lr_t
);
1549 src_iovecs
[nr_iovecs
].iov_base
= slrp
+ sizeof (lr_t
);
1550 src_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1551 dst_iovecs
[nr_iovecs
].iov_base
= dlrp
+ sizeof (lr_t
);
1552 dst_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1554 /* copy the bps now since they will not be encrypted */
1555 memcpy(dlrp
+ o
, slrp
+ o
, lr_len
- o
);
1556 memcpy(aadp
, slrp
+ o
, lr_len
- o
);
1558 aad_len
+= lr_len
- o
;
1560 total_len
+= crypt_len
;
1562 crypt_len
= lr_len
- sizeof (lr_t
);
1563 src_iovecs
[nr_iovecs
].iov_base
= slrp
+ sizeof (lr_t
);
1564 src_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1565 dst_iovecs
[nr_iovecs
].iov_base
= dlrp
+ sizeof (lr_t
);
1566 dst_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1568 total_len
+= crypt_len
;
1572 *no_crypt
= (nr_iovecs
== 0);
1573 *enc_len
= total_len
;
1575 *auth_len
= aad_len
;
1578 puio
->uio_iov
= src_iovecs
;
1579 puio
->uio_iovcnt
= nr_src
;
1580 cuio
->uio_iov
= dst_iovecs
;
1581 cuio
->uio_iovcnt
= nr_dst
;
1583 puio
->uio_iov
= dst_iovecs
;
1584 puio
->uio_iovcnt
= nr_dst
;
1585 cuio
->uio_iov
= src_iovecs
;
1586 cuio
->uio_iovcnt
= nr_src
;
1592 zio_buf_free(aadbuf
, datalen
);
1593 if (src_iovecs
!= NULL
)
1594 kmem_free(src_iovecs
, nr_src
* sizeof (iovec_t
));
1595 if (dst_iovecs
!= NULL
)
1596 kmem_free(dst_iovecs
, nr_dst
* sizeof (iovec_t
));
1601 *no_crypt
= B_FALSE
;
1602 puio
->uio_iov
= NULL
;
1603 puio
->uio_iovcnt
= 0;
1604 cuio
->uio_iov
= NULL
;
1605 cuio
->uio_iovcnt
= 0;
1610 * Special case handling routine for encrypting / decrypting dnode blocks.
1613 zio_crypt_init_uios_dnode(boolean_t encrypt
, uint64_t version
,
1614 uint8_t *plainbuf
, uint8_t *cipherbuf
, uint_t datalen
, boolean_t byteswap
,
1615 zfs_uio_t
*puio
, zfs_uio_t
*cuio
, uint_t
*enc_len
, uint8_t **authbuf
,
1616 uint_t
*auth_len
, boolean_t
*no_crypt
)
1619 uint_t nr_src
, nr_dst
, crypt_len
;
1620 uint_t aad_len
= 0, nr_iovecs
= 0, total_len
= 0;
1621 uint_t i
, j
, max_dnp
= datalen
>> DNODE_SHIFT
;
1622 iovec_t
*src_iovecs
= NULL
, *dst_iovecs
= NULL
;
1623 uint8_t *src
, *dst
, *aadp
;
1624 dnode_phys_t
*dnp
, *adnp
, *sdnp
, *ddnp
;
1625 uint8_t *aadbuf
= zio_buf_alloc(datalen
);
1639 sdnp
= (dnode_phys_t
*)src
;
1640 ddnp
= (dnode_phys_t
*)dst
;
1644 * Count the number of iovecs we will need to do the encryption by
1645 * counting the number of bonus buffers that need to be encrypted.
1647 for (i
= 0; i
< max_dnp
; i
+= sdnp
[i
].dn_extra_slots
+ 1) {
1649 * This block may still be byteswapped. However, all of the
1650 * values we use are either uint8_t's (for which byteswapping
1651 * is a noop) or a * != 0 check, which will work regardless
1652 * of whether or not we byteswap.
1654 if (sdnp
[i
].dn_type
!= DMU_OT_NONE
&&
1655 DMU_OT_IS_ENCRYPTED(sdnp
[i
].dn_bonustype
) &&
1656 sdnp
[i
].dn_bonuslen
!= 0) {
1661 nr_src
+= nr_iovecs
;
1662 nr_dst
+= nr_iovecs
;
1665 src_iovecs
= kmem_alloc(nr_src
* sizeof (iovec_t
), KM_SLEEP
);
1666 if (src_iovecs
== NULL
) {
1667 ret
= SET_ERROR(ENOMEM
);
1673 dst_iovecs
= kmem_alloc(nr_dst
* sizeof (iovec_t
), KM_SLEEP
);
1674 if (dst_iovecs
== NULL
) {
1675 ret
= SET_ERROR(ENOMEM
);
1683 * Iterate through the dnodes again, this time filling in the uios
1684 * we allocated earlier. We also concatenate any data we want to
1685 * authenticate onto aadbuf.
1687 for (i
= 0; i
< max_dnp
; i
+= sdnp
[i
].dn_extra_slots
+ 1) {
1690 /* copy over the core fields and blkptrs (kept as plaintext) */
1691 memcpy(&ddnp
[i
], dnp
,
1692 (uint8_t *)DN_BONUS(dnp
) - (uint8_t *)dnp
);
1694 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1695 memcpy(DN_SPILL_BLKPTR(&ddnp
[i
]), DN_SPILL_BLKPTR(dnp
),
1700 * Handle authenticated data. We authenticate everything in
1701 * the dnode that can be brought over when we do a raw send.
1702 * This includes all of the core fields as well as the MACs
1703 * stored in the bp checksums and all of the portable bits
1704 * from blk_prop. We include the dnode padding here in case it
1705 * ever gets used in the future. Some dn_flags and dn_used are
1706 * not portable so we mask those out values out of the
1707 * authenticated data.
1709 crypt_len
= offsetof(dnode_phys_t
, dn_blkptr
);
1710 memcpy(aadp
, dnp
, crypt_len
);
1711 adnp
= (dnode_phys_t
*)aadp
;
1712 adnp
->dn_flags
&= DNODE_CRYPT_PORTABLE_FLAGS_MASK
;
1715 aad_len
+= crypt_len
;
1717 for (j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
1718 zio_crypt_bp_do_aad_updates(&aadp
, &aad_len
,
1719 version
, byteswap
, &dnp
->dn_blkptr
[j
]);
1722 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1723 zio_crypt_bp_do_aad_updates(&aadp
, &aad_len
,
1724 version
, byteswap
, DN_SPILL_BLKPTR(dnp
));
1728 * If this bonus buffer needs to be encrypted, we prepare an
1729 * iovec_t. The encryption / decryption functions will fill
1730 * this in for us with the encrypted or decrypted data.
1731 * Otherwise we add the bonus buffer to the authenticated
1732 * data buffer and copy it over to the destination. The
1733 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1734 * we can guarantee alignment with the AES block size
1737 crypt_len
= DN_MAX_BONUS_LEN(dnp
);
1738 if (dnp
->dn_type
!= DMU_OT_NONE
&&
1739 DMU_OT_IS_ENCRYPTED(dnp
->dn_bonustype
) &&
1740 dnp
->dn_bonuslen
!= 0) {
1741 ASSERT3U(nr_iovecs
, <, nr_src
);
1742 ASSERT3U(nr_iovecs
, <, nr_dst
);
1743 ASSERT3P(src_iovecs
, !=, NULL
);
1744 ASSERT3P(dst_iovecs
, !=, NULL
);
1745 src_iovecs
[nr_iovecs
].iov_base
= DN_BONUS(dnp
);
1746 src_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1747 dst_iovecs
[nr_iovecs
].iov_base
= DN_BONUS(&ddnp
[i
]);
1748 dst_iovecs
[nr_iovecs
].iov_len
= crypt_len
;
1751 total_len
+= crypt_len
;
1753 memcpy(DN_BONUS(&ddnp
[i
]), DN_BONUS(dnp
), crypt_len
);
1754 memcpy(aadp
, DN_BONUS(dnp
), crypt_len
);
1756 aad_len
+= crypt_len
;
1760 *no_crypt
= (nr_iovecs
== 0);
1761 *enc_len
= total_len
;
1763 *auth_len
= aad_len
;
1766 puio
->uio_iov
= src_iovecs
;
1767 puio
->uio_iovcnt
= nr_src
;
1768 cuio
->uio_iov
= dst_iovecs
;
1769 cuio
->uio_iovcnt
= nr_dst
;
1771 puio
->uio_iov
= dst_iovecs
;
1772 puio
->uio_iovcnt
= nr_dst
;
1773 cuio
->uio_iov
= src_iovecs
;
1774 cuio
->uio_iovcnt
= nr_src
;
1780 zio_buf_free(aadbuf
, datalen
);
1781 if (src_iovecs
!= NULL
)
1782 kmem_free(src_iovecs
, nr_src
* sizeof (iovec_t
));
1783 if (dst_iovecs
!= NULL
)
1784 kmem_free(dst_iovecs
, nr_dst
* sizeof (iovec_t
));
1789 *no_crypt
= B_FALSE
;
1790 puio
->uio_iov
= NULL
;
1791 puio
->uio_iovcnt
= 0;
1792 cuio
->uio_iov
= NULL
;
1793 cuio
->uio_iovcnt
= 0;
1798 zio_crypt_init_uios_normal(boolean_t encrypt
, uint8_t *plainbuf
,
1799 uint8_t *cipherbuf
, uint_t datalen
, zfs_uio_t
*puio
, zfs_uio_t
*cuio
,
1804 uint_t nr_plain
= 1, nr_cipher
= 2;
1805 iovec_t
*plain_iovecs
= NULL
, *cipher_iovecs
= NULL
;
1807 /* allocate the iovecs for the plain and cipher data */
1808 plain_iovecs
= kmem_alloc(nr_plain
* sizeof (iovec_t
),
1810 if (!plain_iovecs
) {
1811 ret
= SET_ERROR(ENOMEM
);
1815 cipher_iovecs
= kmem_alloc(nr_cipher
* sizeof (iovec_t
),
1817 if (!cipher_iovecs
) {
1818 ret
= SET_ERROR(ENOMEM
);
1822 plain_iovecs
[0].iov_base
= plainbuf
;
1823 plain_iovecs
[0].iov_len
= datalen
;
1824 cipher_iovecs
[0].iov_base
= cipherbuf
;
1825 cipher_iovecs
[0].iov_len
= datalen
;
1828 puio
->uio_iov
= plain_iovecs
;
1829 puio
->uio_iovcnt
= nr_plain
;
1830 cuio
->uio_iov
= cipher_iovecs
;
1831 cuio
->uio_iovcnt
= nr_cipher
;
1836 if (plain_iovecs
!= NULL
)
1837 kmem_free(plain_iovecs
, nr_plain
* sizeof (iovec_t
));
1838 if (cipher_iovecs
!= NULL
)
1839 kmem_free(cipher_iovecs
, nr_cipher
* sizeof (iovec_t
));
1842 puio
->uio_iov
= NULL
;
1843 puio
->uio_iovcnt
= 0;
1844 cuio
->uio_iov
= NULL
;
1845 cuio
->uio_iovcnt
= 0;
1850 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1851 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1852 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1853 * requiring special handling to parse out pieces that are to be encrypted. The
1854 * authbuf is used by these special cases to store additional authenticated
1855 * data (AAD) for the encryption modes.
1858 zio_crypt_init_uios(boolean_t encrypt
, uint64_t version
, dmu_object_type_t ot
,
1859 uint8_t *plainbuf
, uint8_t *cipherbuf
, uint_t datalen
, boolean_t byteswap
,
1860 uint8_t *mac
, zfs_uio_t
*puio
, zfs_uio_t
*cuio
, uint_t
*enc_len
,
1861 uint8_t **authbuf
, uint_t
*auth_len
, boolean_t
*no_crypt
)
1866 ASSERT(DMU_OT_IS_ENCRYPTED(ot
) || ot
== DMU_OT_NONE
);
1868 /* route to handler */
1870 case DMU_OT_INTENT_LOG
:
1871 ret
= zio_crypt_init_uios_zil(encrypt
, plainbuf
, cipherbuf
,
1872 datalen
, byteswap
, puio
, cuio
, enc_len
, authbuf
, auth_len
,
1876 ret
= zio_crypt_init_uios_dnode(encrypt
, version
, plainbuf
,
1877 cipherbuf
, datalen
, byteswap
, puio
, cuio
, enc_len
, authbuf
,
1878 auth_len
, no_crypt
);
1881 ret
= zio_crypt_init_uios_normal(encrypt
, plainbuf
, cipherbuf
,
1882 datalen
, puio
, cuio
, enc_len
);
1885 *no_crypt
= B_FALSE
;
1892 /* populate the uios */
1893 puio
->uio_segflg
= UIO_SYSSPACE
;
1894 cuio
->uio_segflg
= UIO_SYSSPACE
;
1896 mac_iov
= ((iovec_t
*)&cuio
->uio_iov
[cuio
->uio_iovcnt
- 1]);
1897 mac_iov
->iov_base
= mac
;
1898 mac_iov
->iov_len
= ZIO_DATA_MAC_LEN
;
1907 * Primary encryption / decryption entrypoint for zio data.
1910 zio_do_crypt_data(boolean_t encrypt
, zio_crypt_key_t
*key
,
1911 dmu_object_type_t ot
, boolean_t byteswap
, uint8_t *salt
, uint8_t *iv
,
1912 uint8_t *mac
, uint_t datalen
, uint8_t *plainbuf
, uint8_t *cipherbuf
,
1913 boolean_t
*no_crypt
)
1916 boolean_t locked
= B_FALSE
;
1917 uint64_t crypt
= key
->zk_crypt
;
1918 uint_t keydata_len
= zio_crypt_table
[crypt
].ci_keylen
;
1919 uint_t enc_len
, auth_len
;
1920 zfs_uio_t puio
, cuio
;
1921 uint8_t enc_keydata
[MASTER_KEY_MAX_LEN
];
1922 crypto_key_t tmp_ckey
, *ckey
= NULL
;
1923 crypto_ctx_template_t tmpl
;
1924 uint8_t *authbuf
= NULL
;
1926 memset(&puio
, 0, sizeof (puio
));
1927 memset(&cuio
, 0, sizeof (cuio
));
1930 * If the needed key is the current one, just use it. Otherwise we
1931 * need to generate a temporary one from the given salt + master key.
1932 * If we are encrypting, we must return a copy of the current salt
1933 * so that it can be stored in the blkptr_t.
1935 rw_enter(&key
->zk_salt_lock
, RW_READER
);
1938 if (memcmp(salt
, key
->zk_salt
, ZIO_DATA_SALT_LEN
) == 0) {
1939 ckey
= &key
->zk_current_key
;
1940 tmpl
= key
->zk_current_tmpl
;
1942 rw_exit(&key
->zk_salt_lock
);
1945 ret
= hkdf_sha512(key
->zk_master_keydata
, keydata_len
, NULL
, 0,
1946 salt
, ZIO_DATA_SALT_LEN
, enc_keydata
, keydata_len
);
1950 tmp_ckey
.ck_data
= enc_keydata
;
1951 tmp_ckey
.ck_length
= CRYPTO_BYTES2BITS(keydata_len
);
1958 * Attempt to use QAT acceleration if we can. We currently don't
1959 * do this for metadnode and ZIL blocks, since they have a much
1960 * more involved buffer layout and the qat_crypt() function only
1963 if (qat_crypt_use_accel(datalen
) &&
1964 ot
!= DMU_OT_INTENT_LOG
&& ot
!= DMU_OT_DNODE
) {
1965 uint8_t *srcbuf
, *dstbuf
;
1975 ret
= qat_crypt((encrypt
) ? QAT_ENCRYPT
: QAT_DECRYPT
, srcbuf
,
1976 dstbuf
, NULL
, 0, iv
, mac
, ckey
, key
->zk_crypt
, datalen
);
1977 if (ret
== CPA_STATUS_SUCCESS
) {
1979 rw_exit(&key
->zk_salt_lock
);
1985 /* If the hardware implementation fails fall back to software */
1988 /* create uios for encryption */
1989 ret
= zio_crypt_init_uios(encrypt
, key
->zk_version
, ot
, plainbuf
,
1990 cipherbuf
, datalen
, byteswap
, mac
, &puio
, &cuio
, &enc_len
,
1991 &authbuf
, &auth_len
, no_crypt
);
1995 /* perform the encryption / decryption in software */
1996 ret
= zio_do_crypt_uio(encrypt
, key
->zk_crypt
, ckey
, tmpl
, iv
, enc_len
,
1997 &puio
, &cuio
, authbuf
, auth_len
);
2002 rw_exit(&key
->zk_salt_lock
);
2005 if (authbuf
!= NULL
)
2006 zio_buf_free(authbuf
, datalen
);
2007 if (ckey
== &tmp_ckey
)
2008 memset(enc_keydata
, 0, keydata_len
);
2009 zio_crypt_destroy_uio(&puio
);
2010 zio_crypt_destroy_uio(&cuio
);
2016 rw_exit(&key
->zk_salt_lock
);
2017 if (authbuf
!= NULL
)
2018 zio_buf_free(authbuf
, datalen
);
2019 if (ckey
== &tmp_ckey
)
2020 memset(enc_keydata
, 0, keydata_len
);
2021 zio_crypt_destroy_uio(&puio
);
2022 zio_crypt_destroy_uio(&cuio
);
2028 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2032 zio_do_crypt_abd(boolean_t encrypt
, zio_crypt_key_t
*key
, dmu_object_type_t ot
,
2033 boolean_t byteswap
, uint8_t *salt
, uint8_t *iv
, uint8_t *mac
,
2034 uint_t datalen
, abd_t
*pabd
, abd_t
*cabd
, boolean_t
*no_crypt
)
2040 ptmp
= abd_borrow_buf_copy(pabd
, datalen
);
2041 ctmp
= abd_borrow_buf(cabd
, datalen
);
2043 ptmp
= abd_borrow_buf(pabd
, datalen
);
2044 ctmp
= abd_borrow_buf_copy(cabd
, datalen
);
2047 ret
= zio_do_crypt_data(encrypt
, key
, ot
, byteswap
, salt
, iv
, mac
,
2048 datalen
, ptmp
, ctmp
, no_crypt
);
2053 abd_return_buf(pabd
, ptmp
, datalen
);
2054 abd_return_buf_copy(cabd
, ctmp
, datalen
);
2056 abd_return_buf_copy(pabd
, ptmp
, datalen
);
2057 abd_return_buf(cabd
, ctmp
, datalen
);
2064 abd_return_buf(pabd
, ptmp
, datalen
);
2065 abd_return_buf_copy(cabd
, ctmp
, datalen
);
2067 abd_return_buf_copy(pabd
, ptmp
, datalen
);
2068 abd_return_buf(cabd
, ctmp
, datalen
);
2074 #if defined(_KERNEL)
2076 module_param(zfs_key_max_salt_uses
, ulong
, 0644);
2077 MODULE_PARM_DESC(zfs_key_max_salt_uses
, "Max number of times a salt value "
2078 "can be used for generating encryption keys before it is rotated");