ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / os / linux / zfs / zio_crypt.c
blob775ab8efbcdf75280904a56a355aa82d28c3ad8d
1 /*
2 * CDDL HEADER START
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
13 * CDDL HEADER END
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
29 #include <sys/qat.h>
32 * This file is responsible for handling all of the details of generating
33 * encryption parameters and performing encryption and authentication.
35 * BLOCK ENCRYPTION PARAMETERS:
36 * Encryption /Authentication Algorithm Suite (crypt):
37 * The encryption algorithm, mode, and key length we are going to use. We
38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39 * keys. All authentication is currently done with SHA512-HMAC.
41 * Plaintext:
42 * The unencrypted data that we want to encrypt.
44 * Initialization Vector (IV):
45 * An initialization vector for the encryption algorithms. This is used to
46 * "tweak" the encryption algorithms so that two blocks of the same data are
47 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49 * never reused with the same encryption key. This value is stored unencrypted
50 * and must simply be provided to the decryption function. We use a 96 bit IV
51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52 * derive the IV randomly. The first 64 bits of the IV are stored in the second
53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58 * format supports at most 2^15 slots per L0 dnode block, because the maximum
59 * block size is 16MB (2^24). In either case, for level 0 blocks this number
60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
62 * for the dnode code.
64 * Master key:
65 * This is the most important secret data of an encrypted dataset. It is used
66 * along with the salt to generate that actual encryption keys via HKDF. We
67 * do not use the master key to directly encrypt any data because there are
68 * theoretical limits on how much data can actually be safely encrypted with
69 * any encryption mode. The master key is stored encrypted on disk with the
70 * user's wrapping key. Its length is determined by the encryption algorithm.
71 * For details on how this is stored see the block comment in dsl_crypt.c
73 * Salt:
74 * Used as an input to the HKDF function, along with the master key. We use a
75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76 * can be used for encrypting many blocks, so we cache the current salt and the
77 * associated derived key in zio_crypt_t so we do not need to derive it again
78 * needlessly.
80 * Encryption Key:
81 * A secret binary key, generated from an HKDF function used to encrypt and
82 * decrypt data.
84 * Message Authentication Code (MAC)
85 * The MAC is an output of authenticated encryption modes such as AES-GCM and
86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87 * data on disk and return garbage to the application. Effectively, it is a
88 * checksum that can not be reproduced by an attacker. We store the MAC in the
89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90 * regular checksum of the ciphertext which can be used for scrubbing.
92 * OBJECT AUTHENTICATION:
93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94 * they contain some info that always needs to be readable. To prevent this
95 * data from being altered, we authenticate this data using SHA512-HMAC. This
96 * will produce a MAC (similar to the one produced via encryption) which can
97 * be used to verify the object was not modified. HMACs do not require key
98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
99 * data.
101 * ZIL ENCRYPTION:
102 * ZIL blocks have their bp written to disk ahead of the associated data, so we
103 * cannot store the MAC there as we normally do. For these blocks the MAC is
104 * stored in the embedded checksum within the zil_chain_t header. The salt and
105 * IV are generated for the block on bp allocation instead of at encryption
106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107 * for claiming even though all of the sensitive user data still needs to be
108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109 * pieces of the block need to be encrypted. All data that is not encrypted is
110 * authenticated using the AAD mechanisms that the supported encryption modes
111 * provide for. In order to preserve the semantics of the ZIL for encrypted
112 * datasets, the ZIL is not protected at the objset level as described below.
114 * DNODE ENCRYPTION:
115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118 * which pieces of the block need to be encrypted. For more details about
119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
121 * OBJECT SET AUTHENTICATION:
122 * Up to this point, everything we have encrypted and authenticated has been
123 * at level 0 (or -2 for the ZIL). If we did not do any further work the
124 * on-disk format would be susceptible to attacks that deleted or rearranged
125 * the order of level 0 blocks. Ideally, the cleanest solution would be to
126 * maintain a tree of authentication MACs going up the bp tree. However, this
127 * presents a problem for raw sends. Send files do not send information about
128 * indirect blocks so there would be no convenient way to transfer the MACs and
129 * they cannot be recalculated on the receive side without the master key which
130 * would defeat one of the purposes of raw sends in the first place. Instead,
131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132 * from the level below. We also include some portable fields from blk_prop such
133 * as the lsize and compression algorithm to prevent the data from being
134 * misinterpreted.
136 * At the objset level, we maintain 2 separate 256 bit MACs in the
137 * objset_phys_t. The first one is "portable" and is the logical root of the
138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
139 * used as the root MAC for the user accounting objects, which are also not
140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141 * of the send file. The useraccounting code ensures that the useraccounting
142 * info is not present upon a receive, so the local MAC can simply be cleared
143 * out at that time. For more info about objset_phys_t authentication, see
144 * zio_crypt_do_objset_hmacs().
146 * CONSIDERATIONS FOR DEDUP:
147 * In order for dedup to work, blocks that we want to dedup with one another
148 * need to use the same IV and encryption key, so that they will have the same
149 * ciphertext. Normally, one should never reuse an IV with the same encryption
150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
151 * blocks. In this case, however, since we are using the same plaintext as
152 * well all that we end up with is a duplicate of the original ciphertext we
153 * already had. As a result, an attacker with read access to the raw disk will
154 * be able to tell which blocks are the same but this information is given away
155 * by dedup anyway. In order to get the same IVs and encryption keys for
156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157 * here so that a reproducible checksum of the plaintext is never available to
158 * the attacker. The HMAC key is kept alongside the master key, encrypted on
159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161 * will only work within a clone family since encrypted dedup requires use of
162 * the same master and HMAC keys.
166 * After encrypting many blocks with the same key we may start to run up
167 * against the theoretical limits of how much data can securely be encrypted
168 * with a single key using the supported encryption modes. The most obvious
169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171 * This risk actually grows surprisingly quickly over time according to the
172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173 * generated n IVs with a cryptographically secure RNG, the approximate
174 * probability p(n) of a collision is given as:
176 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181 * we must not write more than 398,065,730 blocks with the same encryption key.
182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183 * generating a new random 64 bit salt for our HKDF encryption key generation
184 * function.
186 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
187 #define ZFS_CURRENT_MAX_SALT_USES \
188 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
191 typedef struct blkptr_auth_buf {
192 uint64_t bab_prop; /* blk_prop - portable mask */
193 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
194 uint64_t bab_pad; /* reserved for future use */
195 } blkptr_auth_buf_t;
197 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
198 {"", ZC_TYPE_NONE, 0, "inherit"},
199 {"", ZC_TYPE_NONE, 0, "on"},
200 {"", ZC_TYPE_NONE, 0, "off"},
201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
209 void
210 zio_crypt_key_destroy(zio_crypt_key_t *key)
212 rw_destroy(&key->zk_salt_lock);
214 /* free crypto templates */
215 crypto_destroy_ctx_template(key->zk_current_tmpl);
216 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
218 /* zero out sensitive data */
219 memset(key, 0, sizeof (zio_crypt_key_t));
223 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
225 int ret;
226 crypto_mechanism_t mech = {0};
227 uint_t keydata_len;
229 ASSERT(key != NULL);
230 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
233 * Workaround for GCC 12+ with UBSan enabled deficencies.
235 * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code
236 * below as violating -Warray-bounds
238 #if defined(__GNUC__) && !defined(__clang__) && \
239 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
240 defined(CONFIG_UBSAN))
241 #pragma GCC diagnostic push
242 #pragma GCC diagnostic ignored "-Warray-bounds"
243 #endif
244 keydata_len = zio_crypt_table[crypt].ci_keylen;
245 #if defined(__GNUC__) && !defined(__clang__) && \
246 ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \
247 defined(CONFIG_UBSAN))
248 #pragma GCC diagnostic pop
249 #endif
250 memset(key, 0, sizeof (zio_crypt_key_t));
251 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
253 /* fill keydata buffers and salt with random data */
254 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
255 if (ret != 0)
256 goto error;
258 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
259 if (ret != 0)
260 goto error;
262 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
263 if (ret != 0)
264 goto error;
266 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
267 if (ret != 0)
268 goto error;
270 /* derive the current key from the master key */
271 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
272 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
273 keydata_len);
274 if (ret != 0)
275 goto error;
277 /* initialize keys for the ICP */
278 key->zk_current_key.ck_data = key->zk_current_keydata;
279 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
281 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
282 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
285 * Initialize the crypto templates. It's ok if this fails because
286 * this is just an optimization.
288 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
289 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
290 &key->zk_current_tmpl);
291 if (ret != CRYPTO_SUCCESS)
292 key->zk_current_tmpl = NULL;
294 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
295 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
296 &key->zk_hmac_tmpl);
297 if (ret != CRYPTO_SUCCESS)
298 key->zk_hmac_tmpl = NULL;
300 key->zk_crypt = crypt;
301 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
302 key->zk_salt_count = 0;
304 return (0);
306 error:
307 zio_crypt_key_destroy(key);
308 return (ret);
311 static int
312 zio_crypt_key_change_salt(zio_crypt_key_t *key)
314 int ret = 0;
315 uint8_t salt[ZIO_DATA_SALT_LEN];
316 crypto_mechanism_t mech;
317 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
319 /* generate a new salt */
320 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
321 if (ret != 0)
322 goto error;
324 rw_enter(&key->zk_salt_lock, RW_WRITER);
326 /* someone beat us to the salt rotation, just unlock and return */
327 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
328 goto out_unlock;
330 /* derive the current key from the master key and the new salt */
331 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
332 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
333 if (ret != 0)
334 goto out_unlock;
336 /* assign the salt and reset the usage count */
337 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
338 key->zk_salt_count = 0;
340 /* destroy the old context template and create the new one */
341 crypto_destroy_ctx_template(key->zk_current_tmpl);
342 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
343 &key->zk_current_tmpl);
344 if (ret != CRYPTO_SUCCESS)
345 key->zk_current_tmpl = NULL;
347 rw_exit(&key->zk_salt_lock);
349 return (0);
351 out_unlock:
352 rw_exit(&key->zk_salt_lock);
353 error:
354 return (ret);
357 /* See comment above zfs_key_max_salt_uses definition for details */
359 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
361 int ret;
362 boolean_t salt_change;
364 rw_enter(&key->zk_salt_lock, RW_READER);
366 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
367 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
368 ZFS_CURRENT_MAX_SALT_USES);
370 rw_exit(&key->zk_salt_lock);
372 if (salt_change) {
373 ret = zio_crypt_key_change_salt(key);
374 if (ret != 0)
375 goto error;
378 return (0);
380 error:
381 return (ret);
385 * This function handles all encryption and decryption in zfs. When
386 * encrypting it expects puio to reference the plaintext and cuio to
387 * reference the ciphertext. cuio must have enough space for the
388 * ciphertext + room for a MAC. datalen should be the length of the
389 * plaintext / ciphertext alone.
391 static int
392 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
393 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
394 zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
396 int ret;
397 crypto_data_t plaindata, cipherdata;
398 CK_AES_CCM_PARAMS ccmp;
399 CK_AES_GCM_PARAMS gcmp;
400 crypto_mechanism_t mech;
401 zio_crypt_info_t crypt_info;
402 uint_t plain_full_len, maclen;
404 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
406 /* lookup the encryption info */
407 crypt_info = zio_crypt_table[crypt];
409 /* the mac will always be the last iovec_t in the cipher uio */
410 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
412 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
414 /* setup encryption mechanism (same as crypt) */
415 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
418 * Strangely, the ICP requires that plain_full_len must include
419 * the MAC length when decrypting, even though the UIO does not
420 * need to have the extra space allocated.
422 if (encrypt) {
423 plain_full_len = datalen;
424 } else {
425 plain_full_len = datalen + maclen;
429 * setup encryption params (currently only AES CCM and AES GCM
430 * are supported)
432 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
433 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
434 ccmp.ulAuthDataSize = auth_len;
435 ccmp.authData = authbuf;
436 ccmp.ulMACSize = maclen;
437 ccmp.nonce = ivbuf;
438 ccmp.ulDataSize = plain_full_len;
440 mech.cm_param = (char *)(&ccmp);
441 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
442 } else {
443 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
444 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
445 gcmp.ulAADLen = auth_len;
446 gcmp.pAAD = authbuf;
447 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
448 gcmp.pIv = ivbuf;
450 mech.cm_param = (char *)(&gcmp);
451 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
454 /* populate the cipher and plain data structs. */
455 plaindata.cd_format = CRYPTO_DATA_UIO;
456 plaindata.cd_offset = 0;
457 plaindata.cd_uio = puio;
458 plaindata.cd_length = plain_full_len;
460 cipherdata.cd_format = CRYPTO_DATA_UIO;
461 cipherdata.cd_offset = 0;
462 cipherdata.cd_uio = cuio;
463 cipherdata.cd_length = datalen + maclen;
465 /* perform the actual encryption */
466 if (encrypt) {
467 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
468 if (ret != CRYPTO_SUCCESS) {
469 ret = SET_ERROR(EIO);
470 goto error;
472 } else {
473 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
474 if (ret != CRYPTO_SUCCESS) {
475 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
476 ret = SET_ERROR(ECKSUM);
477 goto error;
481 return (0);
483 error:
484 return (ret);
488 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
489 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
491 int ret;
492 zfs_uio_t puio, cuio;
493 uint64_t aad[3];
494 iovec_t plain_iovecs[2], cipher_iovecs[3];
495 uint64_t crypt = key->zk_crypt;
496 uint_t enc_len, keydata_len, aad_len;
498 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
500 keydata_len = zio_crypt_table[crypt].ci_keylen;
502 /* generate iv for wrapping the master and hmac key */
503 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
504 if (ret != 0)
505 goto error;
507 /* initialize zfs_uio_ts */
508 plain_iovecs[0].iov_base = key->zk_master_keydata;
509 plain_iovecs[0].iov_len = keydata_len;
510 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
511 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
513 cipher_iovecs[0].iov_base = keydata_out;
514 cipher_iovecs[0].iov_len = keydata_len;
515 cipher_iovecs[1].iov_base = hmac_keydata_out;
516 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
517 cipher_iovecs[2].iov_base = mac;
518 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
521 * Although we don't support writing to the old format, we do
522 * support rewrapping the key so that the user can move and
523 * quarantine datasets on the old format.
525 if (key->zk_version == 0) {
526 aad_len = sizeof (uint64_t);
527 aad[0] = LE_64(key->zk_guid);
528 } else {
529 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
530 aad_len = sizeof (uint64_t) * 3;
531 aad[0] = LE_64(key->zk_guid);
532 aad[1] = LE_64(crypt);
533 aad[2] = LE_64(key->zk_version);
536 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
537 puio.uio_iov = plain_iovecs;
538 puio.uio_iovcnt = 2;
539 puio.uio_segflg = UIO_SYSSPACE;
540 cuio.uio_iov = cipher_iovecs;
541 cuio.uio_iovcnt = 3;
542 cuio.uio_segflg = UIO_SYSSPACE;
544 /* encrypt the keys and store the resulting ciphertext and mac */
545 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
546 &puio, &cuio, (uint8_t *)aad, aad_len);
547 if (ret != 0)
548 goto error;
550 return (0);
552 error:
553 return (ret);
557 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
558 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
559 uint8_t *mac, zio_crypt_key_t *key)
561 crypto_mechanism_t mech;
562 zfs_uio_t puio, cuio;
563 uint64_t aad[3];
564 iovec_t plain_iovecs[2], cipher_iovecs[3];
565 uint_t enc_len, keydata_len, aad_len;
566 int ret;
568 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
570 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
572 keydata_len = zio_crypt_table[crypt].ci_keylen;
574 /* initialize zfs_uio_ts */
575 plain_iovecs[0].iov_base = key->zk_master_keydata;
576 plain_iovecs[0].iov_len = keydata_len;
577 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
578 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
580 cipher_iovecs[0].iov_base = keydata;
581 cipher_iovecs[0].iov_len = keydata_len;
582 cipher_iovecs[1].iov_base = hmac_keydata;
583 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
584 cipher_iovecs[2].iov_base = mac;
585 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
587 if (version == 0) {
588 aad_len = sizeof (uint64_t);
589 aad[0] = LE_64(guid);
590 } else {
591 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
592 aad_len = sizeof (uint64_t) * 3;
593 aad[0] = LE_64(guid);
594 aad[1] = LE_64(crypt);
595 aad[2] = LE_64(version);
598 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
599 puio.uio_iov = plain_iovecs;
600 puio.uio_segflg = UIO_SYSSPACE;
601 puio.uio_iovcnt = 2;
602 cuio.uio_iov = cipher_iovecs;
603 cuio.uio_iovcnt = 3;
604 cuio.uio_segflg = UIO_SYSSPACE;
606 /* decrypt the keys and store the result in the output buffers */
607 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
608 &puio, &cuio, (uint8_t *)aad, aad_len);
609 if (ret != 0)
610 goto error;
612 /* generate a fresh salt */
613 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
614 if (ret != 0)
615 goto error;
617 /* derive the current key from the master key */
618 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
619 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
620 keydata_len);
621 if (ret != 0)
622 goto error;
624 /* initialize keys for ICP */
625 key->zk_current_key.ck_data = key->zk_current_keydata;
626 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
628 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
629 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
632 * Initialize the crypto templates. It's ok if this fails because
633 * this is just an optimization.
635 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
636 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
637 &key->zk_current_tmpl);
638 if (ret != CRYPTO_SUCCESS)
639 key->zk_current_tmpl = NULL;
641 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
642 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
643 &key->zk_hmac_tmpl);
644 if (ret != CRYPTO_SUCCESS)
645 key->zk_hmac_tmpl = NULL;
647 key->zk_crypt = crypt;
648 key->zk_version = version;
649 key->zk_guid = guid;
650 key->zk_salt_count = 0;
652 return (0);
654 error:
655 zio_crypt_key_destroy(key);
656 return (ret);
660 zio_crypt_generate_iv(uint8_t *ivbuf)
662 int ret;
664 /* randomly generate the IV */
665 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
666 if (ret != 0)
667 goto error;
669 return (0);
671 error:
672 memset(ivbuf, 0, ZIO_DATA_IV_LEN);
673 return (ret);
677 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
678 uint8_t *digestbuf, uint_t digestlen)
680 int ret;
681 crypto_mechanism_t mech;
682 crypto_data_t in_data, digest_data;
683 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
685 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
687 /* initialize sha512-hmac mechanism and crypto data */
688 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
689 mech.cm_param = NULL;
690 mech.cm_param_len = 0;
692 /* initialize the crypto data */
693 in_data.cd_format = CRYPTO_DATA_RAW;
694 in_data.cd_offset = 0;
695 in_data.cd_length = datalen;
696 in_data.cd_raw.iov_base = (char *)data;
697 in_data.cd_raw.iov_len = in_data.cd_length;
699 digest_data.cd_format = CRYPTO_DATA_RAW;
700 digest_data.cd_offset = 0;
701 digest_data.cd_length = SHA512_DIGEST_LENGTH;
702 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
703 digest_data.cd_raw.iov_len = digest_data.cd_length;
705 /* generate the hmac */
706 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
707 &digest_data);
708 if (ret != CRYPTO_SUCCESS) {
709 ret = SET_ERROR(EIO);
710 goto error;
713 memcpy(digestbuf, raw_digestbuf, digestlen);
715 return (0);
717 error:
718 memset(digestbuf, 0, digestlen);
719 return (ret);
723 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
724 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
726 int ret;
727 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
729 ret = zio_crypt_do_hmac(key, data, datalen,
730 digestbuf, SHA512_DIGEST_LENGTH);
731 if (ret != 0)
732 return (ret);
734 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
735 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
737 return (0);
741 * The following functions are used to encode and decode encryption parameters
742 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
743 * byte strings, which normally means that these strings would not need to deal
744 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
745 * byteswapped by lower layers and so we must "undo" that byteswap here upon
746 * decoding and encoding in a non-native byteorder. These functions require
747 * that the byteorder bit is correct before being called.
749 void
750 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
752 uint64_t val64;
753 uint32_t val32;
755 ASSERT(BP_IS_ENCRYPTED(bp));
757 if (!BP_SHOULD_BYTESWAP(bp)) {
758 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
759 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
760 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
761 BP_SET_IV2(bp, val32);
762 } else {
763 memcpy(&val64, salt, sizeof (uint64_t));
764 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
766 memcpy(&val64, iv, sizeof (uint64_t));
767 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
769 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
770 BP_SET_IV2(bp, BSWAP_32(val32));
774 void
775 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
777 uint64_t val64;
778 uint32_t val32;
780 ASSERT(BP_IS_PROTECTED(bp));
782 /* for convenience, so callers don't need to check */
783 if (BP_IS_AUTHENTICATED(bp)) {
784 memset(salt, 0, ZIO_DATA_SALT_LEN);
785 memset(iv, 0, ZIO_DATA_IV_LEN);
786 return;
789 if (!BP_SHOULD_BYTESWAP(bp)) {
790 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
791 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
793 val32 = (uint32_t)BP_GET_IV2(bp);
794 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
795 } else {
796 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
797 memcpy(salt, &val64, sizeof (uint64_t));
799 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
800 memcpy(iv, &val64, sizeof (uint64_t));
802 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
803 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
807 void
808 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
810 uint64_t val64;
812 ASSERT(BP_USES_CRYPT(bp));
813 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
815 if (!BP_SHOULD_BYTESWAP(bp)) {
816 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
817 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
818 sizeof (uint64_t));
819 } else {
820 memcpy(&val64, mac, sizeof (uint64_t));
821 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
823 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
824 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
828 void
829 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
831 uint64_t val64;
833 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
835 /* for convenience, so callers don't need to check */
836 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
837 memset(mac, 0, ZIO_DATA_MAC_LEN);
838 return;
841 if (!BP_SHOULD_BYTESWAP(bp)) {
842 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
843 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
844 sizeof (uint64_t));
845 } else {
846 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
847 memcpy(mac, &val64, sizeof (uint64_t));
849 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
850 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
854 void
855 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
857 zil_chain_t *zilc = data;
859 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
860 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
861 sizeof (uint64_t));
864 void
865 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
868 * The ZIL MAC is embedded in the block it protects, which will
869 * not have been byteswapped by the time this function has been called.
870 * As a result, we don't need to worry about byteswapping the MAC.
872 const zil_chain_t *zilc = data;
874 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
875 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
876 sizeof (uint64_t));
880 * This routine takes a block of dnodes (src_abd) and copies only the bonus
881 * buffers to the same offsets in the dst buffer. datalen should be the size
882 * of both the src_abd and the dst buffer (not just the length of the bonus
883 * buffers).
885 void
886 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
888 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
889 uint8_t *src;
890 dnode_phys_t *dnp, *sdnp, *ddnp;
892 src = abd_borrow_buf_copy(src_abd, datalen);
894 sdnp = (dnode_phys_t *)src;
895 ddnp = (dnode_phys_t *)dst;
897 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
898 dnp = &sdnp[i];
899 if (dnp->dn_type != DMU_OT_NONE &&
900 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
901 dnp->dn_bonuslen != 0) {
902 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
903 DN_MAX_BONUS_LEN(dnp));
907 abd_return_buf(src_abd, src, datalen);
911 * This function decides what fields from blk_prop are included in
912 * the on-disk various MAC algorithms.
914 static void
915 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
918 * Version 0 did not properly zero out all non-portable fields
919 * as it should have done. We maintain this code so that we can
920 * do read-only imports of pools on this version.
922 if (version == 0) {
923 BP_SET_DEDUP(bp, 0);
924 BP_SET_CHECKSUM(bp, 0);
925 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
926 return;
929 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
932 * The hole_birth feature might set these fields even if this bp
933 * is a hole. We zero them out here to guarantee that raw sends
934 * will function with or without the feature.
936 if (BP_IS_HOLE(bp)) {
937 bp->blk_prop = 0ULL;
938 return;
942 * At L0 we want to verify these fields to ensure that data blocks
943 * can not be reinterpreted. For instance, we do not want an attacker
944 * to trick us into returning raw lz4 compressed data to the user
945 * by modifying the compression bits. At higher levels, we cannot
946 * enforce this policy since raw sends do not convey any information
947 * about indirect blocks, so these values might be different on the
948 * receive side. Fortunately, this does not open any new attack
949 * vectors, since any alterations that can be made to a higher level
950 * bp must still verify the correct order of the layer below it.
952 if (BP_GET_LEVEL(bp) != 0) {
953 BP_SET_BYTEORDER(bp, 0);
954 BP_SET_COMPRESS(bp, 0);
957 * psize cannot be set to zero or it will trigger
958 * asserts, but the value doesn't really matter as
959 * long as it is constant.
961 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
964 BP_SET_DEDUP(bp, 0);
965 BP_SET_CHECKSUM(bp, 0);
968 static void
969 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
970 blkptr_auth_buf_t *bab, uint_t *bab_len)
972 blkptr_t tmpbp = *bp;
974 if (should_bswap)
975 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
977 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
978 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
980 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
983 * We always MAC blk_prop in LE to ensure portability. This
984 * must be done after decoding the mac, since the endianness
985 * will get zero'd out here.
987 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
988 bab->bab_prop = LE_64(tmpbp.blk_prop);
989 bab->bab_pad = 0ULL;
991 /* version 0 did not include the padding */
992 *bab_len = sizeof (blkptr_auth_buf_t);
993 if (version == 0)
994 *bab_len -= sizeof (uint64_t);
997 static int
998 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
999 boolean_t should_bswap, blkptr_t *bp)
1001 int ret;
1002 uint_t bab_len;
1003 blkptr_auth_buf_t bab;
1004 crypto_data_t cd;
1006 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1007 cd.cd_format = CRYPTO_DATA_RAW;
1008 cd.cd_offset = 0;
1009 cd.cd_length = bab_len;
1010 cd.cd_raw.iov_base = (char *)&bab;
1011 cd.cd_raw.iov_len = cd.cd_length;
1013 ret = crypto_mac_update(ctx, &cd);
1014 if (ret != CRYPTO_SUCCESS) {
1015 ret = SET_ERROR(EIO);
1016 goto error;
1019 return (0);
1021 error:
1022 return (ret);
1025 static void
1026 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1027 boolean_t should_bswap, blkptr_t *bp)
1029 uint_t bab_len;
1030 blkptr_auth_buf_t bab;
1032 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1033 SHA2Update(ctx, &bab, bab_len);
1036 static void
1037 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1038 boolean_t should_bswap, blkptr_t *bp)
1040 uint_t bab_len;
1041 blkptr_auth_buf_t bab;
1043 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1044 memcpy(*aadp, &bab, bab_len);
1045 *aadp += bab_len;
1046 *aad_len += bab_len;
1049 static int
1050 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1051 boolean_t should_bswap, dnode_phys_t *dnp)
1053 int ret, i;
1054 dnode_phys_t *adnp, tmp_dncore;
1055 size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1056 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1057 crypto_data_t cd;
1059 cd.cd_format = CRYPTO_DATA_RAW;
1060 cd.cd_offset = 0;
1063 * Authenticate the core dnode (masking out non-portable bits).
1064 * We only copy the first 64 bytes we operate on to avoid the overhead
1065 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1066 * with that.
1068 memcpy(&tmp_dncore, dnp, dn_core_size);
1069 adnp = &tmp_dncore;
1071 if (le_bswap) {
1072 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1073 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1074 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1075 adnp->dn_used = BSWAP_64(adnp->dn_used);
1077 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1078 adnp->dn_used = 0;
1080 cd.cd_length = dn_core_size;
1081 cd.cd_raw.iov_base = (char *)adnp;
1082 cd.cd_raw.iov_len = cd.cd_length;
1084 ret = crypto_mac_update(ctx, &cd);
1085 if (ret != CRYPTO_SUCCESS) {
1086 ret = SET_ERROR(EIO);
1087 goto error;
1090 for (i = 0; i < dnp->dn_nblkptr; i++) {
1091 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1092 should_bswap, &dnp->dn_blkptr[i]);
1093 if (ret != 0)
1094 goto error;
1097 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1098 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1099 should_bswap, DN_SPILL_BLKPTR(dnp));
1100 if (ret != 0)
1101 goto error;
1104 return (0);
1106 error:
1107 return (ret);
1111 * objset_phys_t blocks introduce a number of exceptions to the normal
1112 * authentication process. objset_phys_t's contain 2 separate HMACS for
1113 * protecting the integrity of their data. The portable_mac protects the
1114 * metadnode. This MAC can be sent with a raw send and protects against
1115 * reordering of data within the metadnode. The local_mac protects the user
1116 * accounting objects which are not sent from one system to another.
1118 * In addition, objset blocks are the only blocks that can be modified and
1119 * written to disk without the key loaded under certain circumstances. During
1120 * zil_claim() we need to be able to update the zil_header_t to complete
1121 * claiming log blocks and during raw receives we need to write out the
1122 * portable_mac from the send file. Both of these actions are possible
1123 * because these fields are not protected by either MAC so neither one will
1124 * need to modify the MACs without the key. However, when the modified blocks
1125 * are written out they will be byteswapped into the host machine's native
1126 * endianness which will modify fields protected by the MAC. As a result, MAC
1127 * calculation for objset blocks works slightly differently from other block
1128 * types. Where other block types MAC the data in whatever endianness is
1129 * written to disk, objset blocks always MAC little endian version of their
1130 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1131 * and le_bswap indicates whether a byteswap is needed to get this block
1132 * into little endian format.
1135 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1136 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1138 int ret;
1139 crypto_mechanism_t mech;
1140 crypto_context_t ctx;
1141 crypto_data_t cd;
1142 objset_phys_t *osp = data;
1143 uint64_t intval;
1144 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1145 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1146 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1148 /* initialize HMAC mechanism */
1149 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1150 mech.cm_param = NULL;
1151 mech.cm_param_len = 0;
1153 cd.cd_format = CRYPTO_DATA_RAW;
1154 cd.cd_offset = 0;
1156 /* calculate the portable MAC from the portable fields and metadnode */
1157 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1158 if (ret != CRYPTO_SUCCESS) {
1159 ret = SET_ERROR(EIO);
1160 goto error;
1163 /* add in the os_type */
1164 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1165 cd.cd_length = sizeof (uint64_t);
1166 cd.cd_raw.iov_base = (char *)&intval;
1167 cd.cd_raw.iov_len = cd.cd_length;
1169 ret = crypto_mac_update(ctx, &cd);
1170 if (ret != CRYPTO_SUCCESS) {
1171 ret = SET_ERROR(EIO);
1172 goto error;
1175 /* add in the portable os_flags */
1176 intval = osp->os_flags;
1177 if (should_bswap)
1178 intval = BSWAP_64(intval);
1179 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1180 if (!ZFS_HOST_BYTEORDER)
1181 intval = BSWAP_64(intval);
1183 cd.cd_length = sizeof (uint64_t);
1184 cd.cd_raw.iov_base = (char *)&intval;
1185 cd.cd_raw.iov_len = cd.cd_length;
1187 ret = crypto_mac_update(ctx, &cd);
1188 if (ret != CRYPTO_SUCCESS) {
1189 ret = SET_ERROR(EIO);
1190 goto error;
1193 /* add in fields from the metadnode */
1194 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1195 should_bswap, &osp->os_meta_dnode);
1196 if (ret)
1197 goto error;
1199 /* store the final digest in a temporary buffer and copy what we need */
1200 cd.cd_length = SHA512_DIGEST_LENGTH;
1201 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1202 cd.cd_raw.iov_len = cd.cd_length;
1204 ret = crypto_mac_final(ctx, &cd);
1205 if (ret != CRYPTO_SUCCESS) {
1206 ret = SET_ERROR(EIO);
1207 goto error;
1210 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1213 * This is necessary here as we check next whether
1214 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1215 * decide if the local_mac should be zeroed out. That flag will always
1216 * be set by dmu_objset_id_quota_upgrade_cb() and
1217 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1218 * completed.
1220 intval = osp->os_flags;
1221 if (should_bswap)
1222 intval = BSWAP_64(intval);
1223 boolean_t uacct_incomplete =
1224 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1227 * The local MAC protects the user, group and project accounting.
1228 * If these objects are not present, the local MAC is zeroed out.
1230 if (uacct_incomplete ||
1231 (datalen >= OBJSET_PHYS_SIZE_V3 &&
1232 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1233 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1234 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1235 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1236 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1237 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1238 (datalen <= OBJSET_PHYS_SIZE_V1)) {
1239 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1240 return (0);
1243 /* calculate the local MAC from the userused and groupused dnodes */
1244 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1245 if (ret != CRYPTO_SUCCESS) {
1246 ret = SET_ERROR(EIO);
1247 goto error;
1250 /* add in the non-portable os_flags */
1251 intval = osp->os_flags;
1252 if (should_bswap)
1253 intval = BSWAP_64(intval);
1254 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1255 if (!ZFS_HOST_BYTEORDER)
1256 intval = BSWAP_64(intval);
1258 cd.cd_length = sizeof (uint64_t);
1259 cd.cd_raw.iov_base = (char *)&intval;
1260 cd.cd_raw.iov_len = cd.cd_length;
1262 ret = crypto_mac_update(ctx, &cd);
1263 if (ret != CRYPTO_SUCCESS) {
1264 ret = SET_ERROR(EIO);
1265 goto error;
1268 /* add in fields from the user accounting dnodes */
1269 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1270 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1271 should_bswap, &osp->os_userused_dnode);
1272 if (ret)
1273 goto error;
1276 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1277 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1278 should_bswap, &osp->os_groupused_dnode);
1279 if (ret)
1280 goto error;
1283 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1284 datalen >= OBJSET_PHYS_SIZE_V3) {
1285 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1286 should_bswap, &osp->os_projectused_dnode);
1287 if (ret)
1288 goto error;
1291 /* store the final digest in a temporary buffer and copy what we need */
1292 cd.cd_length = SHA512_DIGEST_LENGTH;
1293 cd.cd_raw.iov_base = (char *)raw_local_mac;
1294 cd.cd_raw.iov_len = cd.cd_length;
1296 ret = crypto_mac_final(ctx, &cd);
1297 if (ret != CRYPTO_SUCCESS) {
1298 ret = SET_ERROR(EIO);
1299 goto error;
1302 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1304 return (0);
1306 error:
1307 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1308 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1309 return (ret);
1312 static void
1313 zio_crypt_destroy_uio(zfs_uio_t *uio)
1315 if (uio->uio_iov)
1316 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1320 * This function parses an uncompressed indirect block and returns a checksum
1321 * of all the portable fields from all of the contained bps. The portable
1322 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1323 * checksum, and psize bits. For an explanation of the purpose of this, see
1324 * the comment block on object set authentication.
1326 static int
1327 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1328 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1330 blkptr_t *bp;
1331 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1332 SHA2_CTX ctx;
1333 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1335 /* checksum all of the MACs from the layer below */
1336 SHA2Init(SHA512, &ctx);
1337 for (i = 0, bp = buf; i < epb; i++, bp++) {
1338 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1339 byteswap, bp);
1341 SHA2Final(digestbuf, &ctx);
1343 if (generate) {
1344 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1345 return (0);
1348 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1349 return (SET_ERROR(ECKSUM));
1351 return (0);
1355 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1356 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1358 int ret;
1361 * Unfortunately, callers of this function will not always have
1362 * easy access to the on-disk format version. This info is
1363 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1364 * is expected to be verifiable even when the key isn't loaded.
1365 * Here, instead of doing a ZAP lookup for the version for each
1366 * zio, we simply try both existing formats.
1368 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1369 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1370 if (ret == ECKSUM) {
1371 ASSERT(!generate);
1372 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1373 buf, datalen, 0, byteswap, cksum);
1376 return (ret);
1380 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1381 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1383 int ret;
1384 void *buf;
1386 buf = abd_borrow_buf_copy(abd, datalen);
1387 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1388 byteswap, cksum);
1389 abd_return_buf(abd, buf, datalen);
1391 return (ret);
1395 * Special case handling routine for encrypting / decrypting ZIL blocks.
1396 * We do not check for the older ZIL chain because the encryption feature
1397 * was not available before the newer ZIL chain was introduced. The goal
1398 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1399 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1401 static int
1402 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1403 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1404 zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1405 boolean_t *no_crypt)
1407 int ret;
1408 uint64_t txtype, lr_len;
1409 uint_t nr_src, nr_dst, crypt_len;
1410 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1411 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1412 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1413 zil_chain_t *zilc;
1414 lr_t *lr;
1415 uint8_t *aadbuf = zio_buf_alloc(datalen);
1417 /* cipherbuf always needs an extra iovec for the MAC */
1418 if (encrypt) {
1419 src = plainbuf;
1420 dst = cipherbuf;
1421 nr_src = 0;
1422 nr_dst = 1;
1423 } else {
1424 src = cipherbuf;
1425 dst = plainbuf;
1426 nr_src = 1;
1427 nr_dst = 0;
1429 memset(dst, 0, datalen);
1431 /* find the start and end record of the log block */
1432 zilc = (zil_chain_t *)src;
1433 slrp = src + sizeof (zil_chain_t);
1434 aadp = aadbuf;
1435 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1437 /* calculate the number of encrypted iovecs we will need */
1438 for (; slrp < blkend; slrp += lr_len) {
1439 lr = (lr_t *)slrp;
1441 if (!byteswap) {
1442 txtype = lr->lrc_txtype;
1443 lr_len = lr->lrc_reclen;
1444 } else {
1445 txtype = BSWAP_64(lr->lrc_txtype);
1446 lr_len = BSWAP_64(lr->lrc_reclen);
1449 nr_iovecs++;
1450 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1451 nr_iovecs++;
1454 nr_src += nr_iovecs;
1455 nr_dst += nr_iovecs;
1457 /* allocate the iovec arrays */
1458 if (nr_src != 0) {
1459 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1460 if (src_iovecs == NULL) {
1461 ret = SET_ERROR(ENOMEM);
1462 goto error;
1466 if (nr_dst != 0) {
1467 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1468 if (dst_iovecs == NULL) {
1469 ret = SET_ERROR(ENOMEM);
1470 goto error;
1475 * Copy the plain zil header over and authenticate everything except
1476 * the checksum that will store our MAC. If we are writing the data
1477 * the embedded checksum will not have been calculated yet, so we don't
1478 * authenticate that.
1480 memcpy(dst, src, sizeof (zil_chain_t));
1481 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1482 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1483 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1485 /* loop over records again, filling in iovecs */
1486 nr_iovecs = 0;
1487 slrp = src + sizeof (zil_chain_t);
1488 dlrp = dst + sizeof (zil_chain_t);
1490 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1491 lr = (lr_t *)slrp;
1493 if (!byteswap) {
1494 txtype = lr->lrc_txtype;
1495 lr_len = lr->lrc_reclen;
1496 } else {
1497 txtype = BSWAP_64(lr->lrc_txtype);
1498 lr_len = BSWAP_64(lr->lrc_reclen);
1501 /* copy the common lr_t */
1502 memcpy(dlrp, slrp, sizeof (lr_t));
1503 memcpy(aadp, slrp, sizeof (lr_t));
1504 aadp += sizeof (lr_t);
1505 aad_len += sizeof (lr_t);
1507 ASSERT3P(src_iovecs, !=, NULL);
1508 ASSERT3P(dst_iovecs, !=, NULL);
1511 * If this is a TX_WRITE record we want to encrypt everything
1512 * except the bp if exists. If the bp does exist we want to
1513 * authenticate it.
1515 if (txtype == TX_WRITE) {
1516 crypt_len = sizeof (lr_write_t) -
1517 sizeof (lr_t) - sizeof (blkptr_t);
1518 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1519 src_iovecs[nr_iovecs].iov_len = crypt_len;
1520 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1521 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1523 /* copy the bp now since it will not be encrypted */
1524 memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1525 slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1526 sizeof (blkptr_t));
1527 memcpy(aadp,
1528 slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1529 sizeof (blkptr_t));
1530 aadp += sizeof (blkptr_t);
1531 aad_len += sizeof (blkptr_t);
1532 nr_iovecs++;
1533 total_len += crypt_len;
1535 if (lr_len != sizeof (lr_write_t)) {
1536 crypt_len = lr_len - sizeof (lr_write_t);
1537 src_iovecs[nr_iovecs].iov_base =
1538 slrp + sizeof (lr_write_t);
1539 src_iovecs[nr_iovecs].iov_len = crypt_len;
1540 dst_iovecs[nr_iovecs].iov_base =
1541 dlrp + sizeof (lr_write_t);
1542 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1543 nr_iovecs++;
1544 total_len += crypt_len;
1546 } else if (txtype == TX_CLONE_RANGE) {
1547 const size_t o = offsetof(lr_clone_range_t, lr_nbps);
1548 crypt_len = o - sizeof (lr_t);
1549 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1550 src_iovecs[nr_iovecs].iov_len = crypt_len;
1551 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1552 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1554 /* copy the bps now since they will not be encrypted */
1555 memcpy(dlrp + o, slrp + o, lr_len - o);
1556 memcpy(aadp, slrp + o, lr_len - o);
1557 aadp += lr_len - o;
1558 aad_len += lr_len - o;
1559 nr_iovecs++;
1560 total_len += crypt_len;
1561 } else {
1562 crypt_len = lr_len - sizeof (lr_t);
1563 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1564 src_iovecs[nr_iovecs].iov_len = crypt_len;
1565 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1566 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1567 nr_iovecs++;
1568 total_len += crypt_len;
1572 *no_crypt = (nr_iovecs == 0);
1573 *enc_len = total_len;
1574 *authbuf = aadbuf;
1575 *auth_len = aad_len;
1577 if (encrypt) {
1578 puio->uio_iov = src_iovecs;
1579 puio->uio_iovcnt = nr_src;
1580 cuio->uio_iov = dst_iovecs;
1581 cuio->uio_iovcnt = nr_dst;
1582 } else {
1583 puio->uio_iov = dst_iovecs;
1584 puio->uio_iovcnt = nr_dst;
1585 cuio->uio_iov = src_iovecs;
1586 cuio->uio_iovcnt = nr_src;
1589 return (0);
1591 error:
1592 zio_buf_free(aadbuf, datalen);
1593 if (src_iovecs != NULL)
1594 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1595 if (dst_iovecs != NULL)
1596 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1598 *enc_len = 0;
1599 *authbuf = NULL;
1600 *auth_len = 0;
1601 *no_crypt = B_FALSE;
1602 puio->uio_iov = NULL;
1603 puio->uio_iovcnt = 0;
1604 cuio->uio_iov = NULL;
1605 cuio->uio_iovcnt = 0;
1606 return (ret);
1610 * Special case handling routine for encrypting / decrypting dnode blocks.
1612 static int
1613 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1614 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1615 zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1616 uint_t *auth_len, boolean_t *no_crypt)
1618 int ret;
1619 uint_t nr_src, nr_dst, crypt_len;
1620 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1621 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1622 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1623 uint8_t *src, *dst, *aadp;
1624 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1625 uint8_t *aadbuf = zio_buf_alloc(datalen);
1627 if (encrypt) {
1628 src = plainbuf;
1629 dst = cipherbuf;
1630 nr_src = 0;
1631 nr_dst = 1;
1632 } else {
1633 src = cipherbuf;
1634 dst = plainbuf;
1635 nr_src = 1;
1636 nr_dst = 0;
1639 sdnp = (dnode_phys_t *)src;
1640 ddnp = (dnode_phys_t *)dst;
1641 aadp = aadbuf;
1644 * Count the number of iovecs we will need to do the encryption by
1645 * counting the number of bonus buffers that need to be encrypted.
1647 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1649 * This block may still be byteswapped. However, all of the
1650 * values we use are either uint8_t's (for which byteswapping
1651 * is a noop) or a * != 0 check, which will work regardless
1652 * of whether or not we byteswap.
1654 if (sdnp[i].dn_type != DMU_OT_NONE &&
1655 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1656 sdnp[i].dn_bonuslen != 0) {
1657 nr_iovecs++;
1661 nr_src += nr_iovecs;
1662 nr_dst += nr_iovecs;
1664 if (nr_src != 0) {
1665 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1666 if (src_iovecs == NULL) {
1667 ret = SET_ERROR(ENOMEM);
1668 goto error;
1672 if (nr_dst != 0) {
1673 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1674 if (dst_iovecs == NULL) {
1675 ret = SET_ERROR(ENOMEM);
1676 goto error;
1680 nr_iovecs = 0;
1683 * Iterate through the dnodes again, this time filling in the uios
1684 * we allocated earlier. We also concatenate any data we want to
1685 * authenticate onto aadbuf.
1687 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1688 dnp = &sdnp[i];
1690 /* copy over the core fields and blkptrs (kept as plaintext) */
1691 memcpy(&ddnp[i], dnp,
1692 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1694 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1695 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1696 sizeof (blkptr_t));
1700 * Handle authenticated data. We authenticate everything in
1701 * the dnode that can be brought over when we do a raw send.
1702 * This includes all of the core fields as well as the MACs
1703 * stored in the bp checksums and all of the portable bits
1704 * from blk_prop. We include the dnode padding here in case it
1705 * ever gets used in the future. Some dn_flags and dn_used are
1706 * not portable so we mask those out values out of the
1707 * authenticated data.
1709 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1710 memcpy(aadp, dnp, crypt_len);
1711 adnp = (dnode_phys_t *)aadp;
1712 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1713 adnp->dn_used = 0;
1714 aadp += crypt_len;
1715 aad_len += crypt_len;
1717 for (j = 0; j < dnp->dn_nblkptr; j++) {
1718 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1719 version, byteswap, &dnp->dn_blkptr[j]);
1722 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1723 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1724 version, byteswap, DN_SPILL_BLKPTR(dnp));
1728 * If this bonus buffer needs to be encrypted, we prepare an
1729 * iovec_t. The encryption / decryption functions will fill
1730 * this in for us with the encrypted or decrypted data.
1731 * Otherwise we add the bonus buffer to the authenticated
1732 * data buffer and copy it over to the destination. The
1733 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1734 * we can guarantee alignment with the AES block size
1735 * (128 bits).
1737 crypt_len = DN_MAX_BONUS_LEN(dnp);
1738 if (dnp->dn_type != DMU_OT_NONE &&
1739 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1740 dnp->dn_bonuslen != 0) {
1741 ASSERT3U(nr_iovecs, <, nr_src);
1742 ASSERT3U(nr_iovecs, <, nr_dst);
1743 ASSERT3P(src_iovecs, !=, NULL);
1744 ASSERT3P(dst_iovecs, !=, NULL);
1745 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1746 src_iovecs[nr_iovecs].iov_len = crypt_len;
1747 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1748 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1750 nr_iovecs++;
1751 total_len += crypt_len;
1752 } else {
1753 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1754 memcpy(aadp, DN_BONUS(dnp), crypt_len);
1755 aadp += crypt_len;
1756 aad_len += crypt_len;
1760 *no_crypt = (nr_iovecs == 0);
1761 *enc_len = total_len;
1762 *authbuf = aadbuf;
1763 *auth_len = aad_len;
1765 if (encrypt) {
1766 puio->uio_iov = src_iovecs;
1767 puio->uio_iovcnt = nr_src;
1768 cuio->uio_iov = dst_iovecs;
1769 cuio->uio_iovcnt = nr_dst;
1770 } else {
1771 puio->uio_iov = dst_iovecs;
1772 puio->uio_iovcnt = nr_dst;
1773 cuio->uio_iov = src_iovecs;
1774 cuio->uio_iovcnt = nr_src;
1777 return (0);
1779 error:
1780 zio_buf_free(aadbuf, datalen);
1781 if (src_iovecs != NULL)
1782 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1783 if (dst_iovecs != NULL)
1784 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1786 *enc_len = 0;
1787 *authbuf = NULL;
1788 *auth_len = 0;
1789 *no_crypt = B_FALSE;
1790 puio->uio_iov = NULL;
1791 puio->uio_iovcnt = 0;
1792 cuio->uio_iov = NULL;
1793 cuio->uio_iovcnt = 0;
1794 return (ret);
1797 static int
1798 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1799 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1800 uint_t *enc_len)
1802 (void) encrypt;
1803 int ret;
1804 uint_t nr_plain = 1, nr_cipher = 2;
1805 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1807 /* allocate the iovecs for the plain and cipher data */
1808 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1809 KM_SLEEP);
1810 if (!plain_iovecs) {
1811 ret = SET_ERROR(ENOMEM);
1812 goto error;
1815 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1816 KM_SLEEP);
1817 if (!cipher_iovecs) {
1818 ret = SET_ERROR(ENOMEM);
1819 goto error;
1822 plain_iovecs[0].iov_base = plainbuf;
1823 plain_iovecs[0].iov_len = datalen;
1824 cipher_iovecs[0].iov_base = cipherbuf;
1825 cipher_iovecs[0].iov_len = datalen;
1827 *enc_len = datalen;
1828 puio->uio_iov = plain_iovecs;
1829 puio->uio_iovcnt = nr_plain;
1830 cuio->uio_iov = cipher_iovecs;
1831 cuio->uio_iovcnt = nr_cipher;
1833 return (0);
1835 error:
1836 if (plain_iovecs != NULL)
1837 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1838 if (cipher_iovecs != NULL)
1839 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1841 *enc_len = 0;
1842 puio->uio_iov = NULL;
1843 puio->uio_iovcnt = 0;
1844 cuio->uio_iov = NULL;
1845 cuio->uio_iovcnt = 0;
1846 return (ret);
1850 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1851 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1852 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1853 * requiring special handling to parse out pieces that are to be encrypted. The
1854 * authbuf is used by these special cases to store additional authenticated
1855 * data (AAD) for the encryption modes.
1857 static int
1858 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1859 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1860 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1861 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1863 int ret;
1864 iovec_t *mac_iov;
1866 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1868 /* route to handler */
1869 switch (ot) {
1870 case DMU_OT_INTENT_LOG:
1871 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1872 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1873 no_crypt);
1874 break;
1875 case DMU_OT_DNODE:
1876 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1877 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1878 auth_len, no_crypt);
1879 break;
1880 default:
1881 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1882 datalen, puio, cuio, enc_len);
1883 *authbuf = NULL;
1884 *auth_len = 0;
1885 *no_crypt = B_FALSE;
1886 break;
1889 if (ret != 0)
1890 goto error;
1892 /* populate the uios */
1893 puio->uio_segflg = UIO_SYSSPACE;
1894 cuio->uio_segflg = UIO_SYSSPACE;
1896 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1897 mac_iov->iov_base = mac;
1898 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1900 return (0);
1902 error:
1903 return (ret);
1907 * Primary encryption / decryption entrypoint for zio data.
1910 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1911 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1912 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1913 boolean_t *no_crypt)
1915 int ret;
1916 boolean_t locked = B_FALSE;
1917 uint64_t crypt = key->zk_crypt;
1918 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1919 uint_t enc_len, auth_len;
1920 zfs_uio_t puio, cuio;
1921 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1922 crypto_key_t tmp_ckey, *ckey = NULL;
1923 crypto_ctx_template_t tmpl;
1924 uint8_t *authbuf = NULL;
1926 memset(&puio, 0, sizeof (puio));
1927 memset(&cuio, 0, sizeof (cuio));
1930 * If the needed key is the current one, just use it. Otherwise we
1931 * need to generate a temporary one from the given salt + master key.
1932 * If we are encrypting, we must return a copy of the current salt
1933 * so that it can be stored in the blkptr_t.
1935 rw_enter(&key->zk_salt_lock, RW_READER);
1936 locked = B_TRUE;
1938 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1939 ckey = &key->zk_current_key;
1940 tmpl = key->zk_current_tmpl;
1941 } else {
1942 rw_exit(&key->zk_salt_lock);
1943 locked = B_FALSE;
1945 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1946 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1947 if (ret != 0)
1948 goto error;
1950 tmp_ckey.ck_data = enc_keydata;
1951 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1953 ckey = &tmp_ckey;
1954 tmpl = NULL;
1958 * Attempt to use QAT acceleration if we can. We currently don't
1959 * do this for metadnode and ZIL blocks, since they have a much
1960 * more involved buffer layout and the qat_crypt() function only
1961 * works in-place.
1963 if (qat_crypt_use_accel(datalen) &&
1964 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1965 uint8_t *srcbuf, *dstbuf;
1967 if (encrypt) {
1968 srcbuf = plainbuf;
1969 dstbuf = cipherbuf;
1970 } else {
1971 srcbuf = cipherbuf;
1972 dstbuf = plainbuf;
1975 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1976 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1977 if (ret == CPA_STATUS_SUCCESS) {
1978 if (locked) {
1979 rw_exit(&key->zk_salt_lock);
1980 locked = B_FALSE;
1983 return (0);
1985 /* If the hardware implementation fails fall back to software */
1988 /* create uios for encryption */
1989 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1990 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1991 &authbuf, &auth_len, no_crypt);
1992 if (ret != 0)
1993 goto error;
1995 /* perform the encryption / decryption in software */
1996 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1997 &puio, &cuio, authbuf, auth_len);
1998 if (ret != 0)
1999 goto error;
2001 if (locked) {
2002 rw_exit(&key->zk_salt_lock);
2005 if (authbuf != NULL)
2006 zio_buf_free(authbuf, datalen);
2007 if (ckey == &tmp_ckey)
2008 memset(enc_keydata, 0, keydata_len);
2009 zio_crypt_destroy_uio(&puio);
2010 zio_crypt_destroy_uio(&cuio);
2012 return (0);
2014 error:
2015 if (locked)
2016 rw_exit(&key->zk_salt_lock);
2017 if (authbuf != NULL)
2018 zio_buf_free(authbuf, datalen);
2019 if (ckey == &tmp_ckey)
2020 memset(enc_keydata, 0, keydata_len);
2021 zio_crypt_destroy_uio(&puio);
2022 zio_crypt_destroy_uio(&cuio);
2024 return (ret);
2028 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
2029 * linear buffers.
2032 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2033 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2034 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2036 int ret;
2037 void *ptmp, *ctmp;
2039 if (encrypt) {
2040 ptmp = abd_borrow_buf_copy(pabd, datalen);
2041 ctmp = abd_borrow_buf(cabd, datalen);
2042 } else {
2043 ptmp = abd_borrow_buf(pabd, datalen);
2044 ctmp = abd_borrow_buf_copy(cabd, datalen);
2047 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2048 datalen, ptmp, ctmp, no_crypt);
2049 if (ret != 0)
2050 goto error;
2052 if (encrypt) {
2053 abd_return_buf(pabd, ptmp, datalen);
2054 abd_return_buf_copy(cabd, ctmp, datalen);
2055 } else {
2056 abd_return_buf_copy(pabd, ptmp, datalen);
2057 abd_return_buf(cabd, ctmp, datalen);
2060 return (0);
2062 error:
2063 if (encrypt) {
2064 abd_return_buf(pabd, ptmp, datalen);
2065 abd_return_buf_copy(cabd, ctmp, datalen);
2066 } else {
2067 abd_return_buf_copy(pabd, ptmp, datalen);
2068 abd_return_buf(cabd, ctmp, datalen);
2071 return (ret);
2074 #if defined(_KERNEL)
2075 /* CSTYLED */
2076 module_param(zfs_key_max_salt_uses, ulong, 0644);
2077 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2078 "can be used for generating encryption keys before it is rotated");
2079 #endif