4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 #include <linux/compat.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zfs_vnops.h>
36 #include <sys/zfs_project.h>
37 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
38 defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
39 #include <linux/pagemap.h>
41 #ifdef HAVE_FILE_FADVISE
42 #include <linux/fadvise.h>
44 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
45 #include <linux/writeback.h>
49 * When using fallocate(2) to preallocate space, inflate the requested
50 * capacity check by 10% to account for the required metadata blocks.
52 static unsigned int zfs_fallocate_reserve_percent
= 110;
55 zpl_open(struct inode
*ip
, struct file
*filp
)
59 fstrans_cookie_t cookie
;
61 error
= generic_file_open(ip
, filp
);
66 cookie
= spl_fstrans_mark();
67 error
= -zfs_open(ip
, filp
->f_mode
, filp
->f_flags
, cr
);
68 spl_fstrans_unmark(cookie
);
70 ASSERT3S(error
, <=, 0);
76 zpl_release(struct inode
*ip
, struct file
*filp
)
80 fstrans_cookie_t cookie
;
82 cookie
= spl_fstrans_mark();
83 if (ITOZ(ip
)->z_atime_dirty
)
84 zfs_mark_inode_dirty(ip
);
87 error
= -zfs_close(ip
, filp
->f_flags
, cr
);
88 spl_fstrans_unmark(cookie
);
90 ASSERT3S(error
, <=, 0);
96 zpl_iterate(struct file
*filp
, zpl_dir_context_t
*ctx
)
100 fstrans_cookie_t cookie
;
103 cookie
= spl_fstrans_mark();
104 error
= -zfs_readdir(file_inode(filp
), ctx
, cr
);
105 spl_fstrans_unmark(cookie
);
107 ASSERT3S(error
, <=, 0);
112 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
114 zpl_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
116 zpl_dir_context_t ctx
=
117 ZPL_DIR_CONTEXT_INIT(dirent
, filldir
, filp
->f_pos
);
120 error
= zpl_iterate(filp
, &ctx
);
121 filp
->f_pos
= ctx
.pos
;
125 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
127 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
129 * Linux 2.6.35 - 3.0 API,
130 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
131 * redundant. The dentry is still accessible via filp->f_path.dentry,
132 * and we are guaranteed that filp will never be NULL.
135 zpl_fsync(struct file
*filp
, int datasync
)
137 struct inode
*inode
= filp
->f_mapping
->host
;
140 fstrans_cookie_t cookie
;
143 cookie
= spl_fstrans_mark();
144 error
= -zfs_fsync(ITOZ(inode
), datasync
, cr
);
145 spl_fstrans_unmark(cookie
);
147 ASSERT3S(error
, <=, 0);
152 #ifdef HAVE_FILE_AIO_FSYNC
154 zpl_aio_fsync(struct kiocb
*kiocb
, int datasync
)
156 return (zpl_fsync(kiocb
->ki_filp
, datasync
));
160 #elif defined(HAVE_FSYNC_RANGE)
163 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
164 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
165 * lock is no longer held by the caller, for zfs we don't require the lock
166 * to be held so we don't acquire it.
169 zpl_fsync(struct file
*filp
, loff_t start
, loff_t end
, int datasync
)
171 struct inode
*inode
= filp
->f_mapping
->host
;
172 znode_t
*zp
= ITOZ(inode
);
173 zfsvfs_t
*zfsvfs
= ITOZSB(inode
);
176 fstrans_cookie_t cookie
;
179 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
180 * tandem so that sync writes can detect if there are any non-sync
181 * writes going on and vice-versa. The "vice-versa" part to this logic
182 * is located in zfs_putpage() where non-sync writes check if there are
183 * any ongoing sync writes. If any sync and non-sync writes overlap,
184 * we do a commit to complete the non-sync writes since the latter can
185 * potentially take several seconds to complete and thus block sync
186 * writes in the upcoming call to filemap_write_and_wait_range().
188 atomic_inc_32(&zp
->z_sync_writes_cnt
);
190 * If the following check does not detect an overlapping non-sync write
191 * (say because it's just about to start), then it is guaranteed that
192 * the non-sync write will detect this sync write. This is because we
193 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
194 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
195 * zfs_putpage() respectively.
197 if (atomic_load_32(&zp
->z_async_writes_cnt
) > 0) {
198 if ((error
= zpl_enter(zfsvfs
, FTAG
)) != 0) {
199 atomic_dec_32(&zp
->z_sync_writes_cnt
);
202 zil_commit(zfsvfs
->z_log
, zp
->z_id
);
203 zpl_exit(zfsvfs
, FTAG
);
206 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
209 * The sync write is not complete yet but we decrement
210 * z_sync_writes_cnt since zfs_fsync() increments and decrements
211 * it internally. If a non-sync write starts just after the decrement
212 * operation but before we call zfs_fsync(), it may not detect this
213 * overlapping sync write but it does not matter since we have already
214 * gone past filemap_write_and_wait_range() and we won't block due to
215 * the non-sync write.
217 atomic_dec_32(&zp
->z_sync_writes_cnt
);
223 cookie
= spl_fstrans_mark();
224 error
= -zfs_fsync(zp
, datasync
, cr
);
225 spl_fstrans_unmark(cookie
);
227 ASSERT3S(error
, <=, 0);
232 #ifdef HAVE_FILE_AIO_FSYNC
234 zpl_aio_fsync(struct kiocb
*kiocb
, int datasync
)
236 return (zpl_fsync(kiocb
->ki_filp
, kiocb
->ki_pos
, -1, datasync
));
241 #error "Unsupported fops->fsync() implementation"
245 zfs_io_flags(struct kiocb
*kiocb
)
249 #if defined(IOCB_DSYNC)
250 if (kiocb
->ki_flags
& IOCB_DSYNC
)
253 #if defined(IOCB_SYNC)
254 if (kiocb
->ki_flags
& IOCB_SYNC
)
257 #if defined(IOCB_APPEND)
258 if (kiocb
->ki_flags
& IOCB_APPEND
)
261 #if defined(IOCB_DIRECT)
262 if (kiocb
->ki_flags
& IOCB_DIRECT
)
269 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
270 * is true. This is needed since datasets with inherited "relatime" property
271 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
272 * `zfs set relatime=...`), which is what relatime test in VFS by
273 * relatime_need_update() is based on.
276 zpl_file_accessed(struct file
*filp
)
278 struct inode
*ip
= filp
->f_mapping
->host
;
280 if (!IS_NOATIME(ip
) && ITOZSB(ip
)->z_relatime
) {
281 if (zfs_relatime_need_update(ip
))
288 #if defined(HAVE_VFS_RW_ITERATE)
291 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
292 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
293 * manipulate the iov_iter are available. In which case the full iov_iter
294 * can be attached to the uio and correctly handled in the lower layers.
295 * Otherwise, for older kernels extract the iovec and pass it instead.
298 zpl_uio_init(zfs_uio_t
*uio
, struct kiocb
*kiocb
, struct iov_iter
*to
,
299 loff_t pos
, ssize_t count
, size_t skip
)
301 #if defined(HAVE_VFS_IOV_ITER)
302 zfs_uio_iov_iter_init(uio
, to
, pos
, count
, skip
);
304 zfs_uio_iovec_init(uio
, zfs_uio_iter_iov(to
), to
->nr_segs
, pos
,
305 zfs_uio_iov_iter_type(to
) & ITER_KVEC
?
306 UIO_SYSSPACE
: UIO_USERSPACE
,
312 zpl_iter_read(struct kiocb
*kiocb
, struct iov_iter
*to
)
315 fstrans_cookie_t cookie
;
316 struct file
*filp
= kiocb
->ki_filp
;
317 ssize_t count
= iov_iter_count(to
);
320 zpl_uio_init(&uio
, kiocb
, to
, kiocb
->ki_pos
, count
, 0);
323 cookie
= spl_fstrans_mark();
325 int error
= -zfs_read(ITOZ(filp
->f_mapping
->host
), &uio
,
326 filp
->f_flags
| zfs_io_flags(kiocb
), cr
);
328 spl_fstrans_unmark(cookie
);
334 ssize_t read
= count
- uio
.uio_resid
;
335 kiocb
->ki_pos
+= read
;
337 zpl_file_accessed(filp
);
342 static inline ssize_t
343 zpl_generic_write_checks(struct kiocb
*kiocb
, struct iov_iter
*from
,
346 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
347 ssize_t ret
= generic_write_checks(kiocb
, from
);
353 struct file
*file
= kiocb
->ki_filp
;
354 struct address_space
*mapping
= file
->f_mapping
;
355 struct inode
*ip
= mapping
->host
;
356 int isblk
= S_ISBLK(ip
->i_mode
);
358 *countp
= iov_iter_count(from
);
359 ssize_t ret
= generic_write_checks(file
, &kiocb
->ki_pos
, countp
, isblk
);
368 zpl_iter_write(struct kiocb
*kiocb
, struct iov_iter
*from
)
371 fstrans_cookie_t cookie
;
372 struct file
*filp
= kiocb
->ki_filp
;
373 struct inode
*ip
= filp
->f_mapping
->host
;
378 ret
= zpl_generic_write_checks(kiocb
, from
, &count
);
382 zpl_uio_init(&uio
, kiocb
, from
, kiocb
->ki_pos
, count
, from
->iov_offset
);
385 cookie
= spl_fstrans_mark();
387 int error
= -zfs_write(ITOZ(ip
), &uio
,
388 filp
->f_flags
| zfs_io_flags(kiocb
), cr
);
390 spl_fstrans_unmark(cookie
);
396 ssize_t wrote
= count
- uio
.uio_resid
;
397 kiocb
->ki_pos
+= wrote
;
402 #else /* !HAVE_VFS_RW_ITERATE */
405 zpl_aio_read(struct kiocb
*kiocb
, const struct iovec
*iov
,
406 unsigned long nr_segs
, loff_t pos
)
409 fstrans_cookie_t cookie
;
410 struct file
*filp
= kiocb
->ki_filp
;
414 ret
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
419 zfs_uio_iovec_init(&uio
, iov
, nr_segs
, kiocb
->ki_pos
, UIO_USERSPACE
,
423 cookie
= spl_fstrans_mark();
425 int error
= -zfs_read(ITOZ(filp
->f_mapping
->host
), &uio
,
426 filp
->f_flags
| zfs_io_flags(kiocb
), cr
);
428 spl_fstrans_unmark(cookie
);
434 ssize_t read
= count
- uio
.uio_resid
;
435 kiocb
->ki_pos
+= read
;
437 zpl_file_accessed(filp
);
443 zpl_aio_write(struct kiocb
*kiocb
, const struct iovec
*iov
,
444 unsigned long nr_segs
, loff_t pos
)
447 fstrans_cookie_t cookie
;
448 struct file
*filp
= kiocb
->ki_filp
;
449 struct inode
*ip
= filp
->f_mapping
->host
;
453 ret
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_READ
);
457 ret
= generic_write_checks(filp
, &pos
, &count
, S_ISBLK(ip
->i_mode
));
464 zfs_uio_iovec_init(&uio
, iov
, nr_segs
, kiocb
->ki_pos
, UIO_USERSPACE
,
468 cookie
= spl_fstrans_mark();
470 int error
= -zfs_write(ITOZ(ip
), &uio
,
471 filp
->f_flags
| zfs_io_flags(kiocb
), cr
);
473 spl_fstrans_unmark(cookie
);
479 ssize_t wrote
= count
- uio
.uio_resid
;
480 kiocb
->ki_pos
+= wrote
;
484 #endif /* HAVE_VFS_RW_ITERATE */
486 #if defined(HAVE_VFS_RW_ITERATE)
488 zpl_direct_IO_impl(int rw
, struct kiocb
*kiocb
, struct iov_iter
*iter
)
491 return (zpl_iter_write(kiocb
, iter
));
493 return (zpl_iter_read(kiocb
, iter
));
495 #if defined(HAVE_VFS_DIRECT_IO_ITER)
497 zpl_direct_IO(struct kiocb
*kiocb
, struct iov_iter
*iter
)
499 return (zpl_direct_IO_impl(iov_iter_rw(iter
), kiocb
, iter
));
501 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
503 zpl_direct_IO(struct kiocb
*kiocb
, struct iov_iter
*iter
, loff_t pos
)
505 ASSERT3S(pos
, ==, kiocb
->ki_pos
);
506 return (zpl_direct_IO_impl(iov_iter_rw(iter
), kiocb
, iter
));
508 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
510 zpl_direct_IO(int rw
, struct kiocb
*kiocb
, struct iov_iter
*iter
, loff_t pos
)
512 ASSERT3S(pos
, ==, kiocb
->ki_pos
);
513 return (zpl_direct_IO_impl(rw
, kiocb
, iter
));
516 #error "Unknown direct IO interface"
519 #else /* HAVE_VFS_RW_ITERATE */
521 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
523 zpl_direct_IO(int rw
, struct kiocb
*kiocb
, const struct iovec
*iov
,
524 loff_t pos
, unsigned long nr_segs
)
527 return (zpl_aio_write(kiocb
, iov
, nr_segs
, pos
));
529 return (zpl_aio_read(kiocb
, iov
, nr_segs
, pos
));
531 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
533 zpl_direct_IO(int rw
, struct kiocb
*kiocb
, struct iov_iter
*iter
, loff_t pos
)
535 const struct iovec
*iovp
= iov_iter_iovec(iter
);
536 unsigned long nr_segs
= iter
->nr_segs
;
538 ASSERT3S(pos
, ==, kiocb
->ki_pos
);
540 return (zpl_aio_write(kiocb
, iovp
, nr_segs
, pos
));
542 return (zpl_aio_read(kiocb
, iovp
, nr_segs
, pos
));
545 #error "Unknown direct IO interface"
548 #endif /* HAVE_VFS_RW_ITERATE */
551 zpl_llseek(struct file
*filp
, loff_t offset
, int whence
)
553 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
554 fstrans_cookie_t cookie
;
556 if (whence
== SEEK_DATA
|| whence
== SEEK_HOLE
) {
557 struct inode
*ip
= filp
->f_mapping
->host
;
558 loff_t maxbytes
= ip
->i_sb
->s_maxbytes
;
561 spl_inode_lock_shared(ip
);
562 cookie
= spl_fstrans_mark();
563 error
= -zfs_holey(ITOZ(ip
), whence
, &offset
);
564 spl_fstrans_unmark(cookie
);
566 error
= lseek_execute(filp
, ip
, offset
, maxbytes
);
567 spl_inode_unlock_shared(ip
);
571 #endif /* SEEK_HOLE && SEEK_DATA */
573 return (generic_file_llseek(filp
, offset
, whence
));
577 * It's worth taking a moment to describe how mmap is implemented
578 * for zfs because it differs considerably from other Linux filesystems.
579 * However, this issue is handled the same way under OpenSolaris.
581 * The issue is that by design zfs bypasses the Linux page cache and
582 * leaves all caching up to the ARC. This has been shown to work
583 * well for the common read(2)/write(2) case. However, mmap(2)
584 * is problem because it relies on being tightly integrated with the
585 * page cache. To handle this we cache mmap'ed files twice, once in
586 * the ARC and a second time in the page cache. The code is careful
587 * to keep both copies synchronized.
589 * When a file with an mmap'ed region is written to using write(2)
590 * both the data in the ARC and existing pages in the page cache
591 * are updated. For a read(2) data will be read first from the page
592 * cache then the ARC if needed. Neither a write(2) or read(2) will
593 * will ever result in new pages being added to the page cache.
595 * New pages are added to the page cache only via .readpage() which
596 * is called when the vfs needs to read a page off disk to back the
597 * virtual memory region. These pages may be modified without
598 * notifying the ARC and will be written out periodically via
599 * .writepage(). This will occur due to either a sync or the usual
600 * page aging behavior. Note because a read(2) of a mmap'ed file
601 * will always check the page cache first even when the ARC is out
602 * of date correct data will still be returned.
604 * While this implementation ensures correct behavior it does have
605 * have some drawbacks. The most obvious of which is that it
606 * increases the required memory footprint when access mmap'ed
607 * files. It also adds additional complexity to the code keeping
608 * both caches synchronized.
610 * Longer term it may be possible to cleanly resolve this wart by
611 * mapping page cache pages directly on to the ARC buffers. The
612 * Linux address space operations are flexible enough to allow
613 * selection of which pages back a particular index. The trick
614 * would be working out the details of which subsystem is in
615 * charge, the ARC, the page cache, or both. It may also prove
616 * helpful to move the ARC buffers to a scatter-gather lists
617 * rather than a vmalloc'ed region.
620 zpl_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
622 struct inode
*ip
= filp
->f_mapping
->host
;
624 fstrans_cookie_t cookie
;
626 cookie
= spl_fstrans_mark();
627 error
= -zfs_map(ip
, vma
->vm_pgoff
, (caddr_t
*)vma
->vm_start
,
628 (size_t)(vma
->vm_end
- vma
->vm_start
), vma
->vm_flags
);
629 spl_fstrans_unmark(cookie
);
633 error
= generic_file_mmap(filp
, vma
);
637 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
638 znode_t
*zp
= ITOZ(ip
);
639 mutex_enter(&zp
->z_lock
);
640 zp
->z_is_mapped
= B_TRUE
;
641 mutex_exit(&zp
->z_lock
);
648 * Populate a page with data for the Linux page cache. This function is
649 * only used to support mmap(2). There will be an identical copy of the
650 * data in the ARC which is kept up to date via .write() and .writepage().
653 zpl_readpage_common(struct page
*pp
)
655 fstrans_cookie_t cookie
;
657 ASSERT(PageLocked(pp
));
659 cookie
= spl_fstrans_mark();
660 int error
= -zfs_getpage(pp
->mapping
->host
, pp
);
661 spl_fstrans_unmark(cookie
);
668 #ifdef HAVE_VFS_READ_FOLIO
670 zpl_read_folio(struct file
*filp
, struct folio
*folio
)
672 return (zpl_readpage_common(&folio
->page
));
676 zpl_readpage(struct file
*filp
, struct page
*pp
)
678 return (zpl_readpage_common(pp
));
683 zpl_readpage_filler(void *data
, struct page
*pp
)
685 return (zpl_readpage_common(pp
));
689 * Populate a set of pages with data for the Linux page cache. This
690 * function will only be called for read ahead and never for demand
691 * paging. For simplicity, the code relies on read_cache_pages() to
692 * correctly lock each page for IO and call zpl_readpage().
694 #ifdef HAVE_VFS_READPAGES
696 zpl_readpages(struct file
*filp
, struct address_space
*mapping
,
697 struct list_head
*pages
, unsigned nr_pages
)
699 return (read_cache_pages(mapping
, pages
, zpl_readpage_filler
, NULL
));
703 zpl_readahead(struct readahead_control
*ractl
)
707 while ((page
= readahead_page(ractl
)) != NULL
) {
710 ret
= zpl_readpage_filler(NULL
, page
);
719 zpl_putpage(struct page
*pp
, struct writeback_control
*wbc
, void *data
)
721 boolean_t
*for_sync
= data
;
722 fstrans_cookie_t cookie
;
724 ASSERT(PageLocked(pp
));
725 ASSERT(!PageWriteback(pp
));
727 cookie
= spl_fstrans_mark();
728 (void) zfs_putpage(pp
->mapping
->host
, pp
, wbc
, *for_sync
);
729 spl_fstrans_unmark(cookie
);
734 #ifdef HAVE_WRITEPAGE_T_FOLIO
736 zpl_putfolio(struct folio
*pp
, struct writeback_control
*wbc
, void *data
)
738 (void) zpl_putpage(&pp
->page
, wbc
, data
);
744 zpl_write_cache_pages(struct address_space
*mapping
,
745 struct writeback_control
*wbc
, void *data
)
749 #ifdef HAVE_WRITEPAGE_T_FOLIO
750 result
= write_cache_pages(mapping
, wbc
, zpl_putfolio
, data
);
752 result
= write_cache_pages(mapping
, wbc
, zpl_putpage
, data
);
758 zpl_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
760 znode_t
*zp
= ITOZ(mapping
->host
);
761 zfsvfs_t
*zfsvfs
= ITOZSB(mapping
->host
);
762 enum writeback_sync_modes sync_mode
;
765 if ((result
= zpl_enter(zfsvfs
, FTAG
)) != 0)
767 if (zfsvfs
->z_os
->os_sync
== ZFS_SYNC_ALWAYS
)
768 wbc
->sync_mode
= WB_SYNC_ALL
;
769 zpl_exit(zfsvfs
, FTAG
);
770 sync_mode
= wbc
->sync_mode
;
773 * We don't want to run write_cache_pages() in SYNC mode here, because
774 * that would make putpage() wait for a single page to be committed to
775 * disk every single time, resulting in atrocious performance. Instead
776 * we run it once in non-SYNC mode so that the ZIL gets all the data,
777 * and then we commit it all in one go.
779 boolean_t for_sync
= (sync_mode
== WB_SYNC_ALL
);
780 wbc
->sync_mode
= WB_SYNC_NONE
;
781 result
= zpl_write_cache_pages(mapping
, wbc
, &for_sync
);
782 if (sync_mode
!= wbc
->sync_mode
) {
783 if ((result
= zpl_enter_verify_zp(zfsvfs
, zp
, FTAG
)) != 0)
785 if (zfsvfs
->z_log
!= NULL
)
786 zil_commit(zfsvfs
->z_log
, zp
->z_id
);
787 zpl_exit(zfsvfs
, FTAG
);
790 * We need to call write_cache_pages() again (we can't just
791 * return after the commit) because the previous call in
792 * non-SYNC mode does not guarantee that we got all the dirty
793 * pages (see the implementation of write_cache_pages() for
794 * details). That being said, this is a no-op in most cases.
796 wbc
->sync_mode
= sync_mode
;
797 result
= zpl_write_cache_pages(mapping
, wbc
, &for_sync
);
803 * Write out dirty pages to the ARC, this function is only required to
804 * support mmap(2). Mapped pages may be dirtied by memory operations
805 * which never call .write(). These dirty pages are kept in sync with
806 * the ARC buffers via this hook.
809 zpl_writepage(struct page
*pp
, struct writeback_control
*wbc
)
811 if (ITOZSB(pp
->mapping
->host
)->z_os
->os_sync
== ZFS_SYNC_ALWAYS
)
812 wbc
->sync_mode
= WB_SYNC_ALL
;
814 boolean_t for_sync
= (wbc
->sync_mode
== WB_SYNC_ALL
);
816 return (zpl_putpage(pp
, wbc
, &for_sync
));
820 * The flag combination which matches the behavior of zfs_space() is
821 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
822 * flag was introduced in the 2.6.38 kernel.
824 * The original mode=0 (allocate space) behavior can be reasonably emulated
825 * by checking if enough space exists and creating a sparse file, as real
826 * persistent space reservation is not possible due to COW, snapshots, etc.
829 zpl_fallocate_common(struct inode
*ip
, int mode
, loff_t offset
, loff_t len
)
833 fstrans_cookie_t cookie
;
836 int test_mode
= FALLOC_FL_PUNCH_HOLE
;
837 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
838 test_mode
|= FALLOC_FL_ZERO_RANGE
;
841 if ((mode
& ~(FALLOC_FL_KEEP_SIZE
| test_mode
)) != 0)
842 return (-EOPNOTSUPP
);
844 if (offset
< 0 || len
<= 0)
848 olen
= i_size_read(ip
);
851 cookie
= spl_fstrans_mark();
852 if (mode
& (test_mode
)) {
855 if (mode
& FALLOC_FL_KEEP_SIZE
) {
859 if (offset
+ len
> olen
)
863 bf
.l_whence
= SEEK_SET
;
868 error
= -zfs_space(ITOZ(ip
), F_FREESP
, &bf
, O_RDWR
, offset
, cr
);
869 } else if ((mode
& ~FALLOC_FL_KEEP_SIZE
) == 0) {
870 unsigned int percent
= zfs_fallocate_reserve_percent
;
871 struct kstatfs statfs
;
873 /* Legacy mode, disable fallocate compatibility. */
880 * Use zfs_statvfs() instead of dmu_objset_space() since it
881 * also checks project quota limits, which are relevant here.
883 error
= zfs_statvfs(ip
, &statfs
);
888 * Shrink available space a bit to account for overhead/races.
889 * We know the product previously fit into availbytes from
890 * dmu_objset_space(), so the smaller product will also fit.
892 if (len
> statfs
.f_bavail
* (statfs
.f_bsize
* 100 / percent
)) {
896 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> olen
)
897 error
= zfs_freesp(ITOZ(ip
), offset
+ len
, 0, 0, FALSE
);
900 spl_fstrans_unmark(cookie
);
901 spl_inode_unlock(ip
);
909 zpl_fallocate(struct file
*filp
, int mode
, loff_t offset
, loff_t len
)
911 return zpl_fallocate_common(file_inode(filp
),
916 zpl_ioctl_getversion(struct file
*filp
, void __user
*arg
)
918 uint32_t generation
= file_inode(filp
)->i_generation
;
920 return (copy_to_user(arg
, &generation
, sizeof (generation
)));
923 #ifdef HAVE_FILE_FADVISE
925 zpl_fadvise(struct file
*filp
, loff_t offset
, loff_t len
, int advice
)
927 struct inode
*ip
= file_inode(filp
);
928 znode_t
*zp
= ITOZ(ip
);
929 zfsvfs_t
*zfsvfs
= ITOZSB(ip
);
930 objset_t
*os
= zfsvfs
->z_os
;
933 if (S_ISFIFO(ip
->i_mode
))
936 if (offset
< 0 || len
< 0)
939 if ((error
= zpl_enter_verify_zp(zfsvfs
, zp
, FTAG
)) != 0)
943 case POSIX_FADV_SEQUENTIAL
:
944 case POSIX_FADV_WILLNEED
:
945 #ifdef HAVE_GENERIC_FADVISE
946 if (zn_has_cached_data(zp
, offset
, offset
+ len
- 1))
947 error
= generic_fadvise(filp
, offset
, len
, advice
);
950 * Pass on the caller's size directly, but note that
951 * dmu_prefetch_max will effectively cap it. If there
952 * really is a larger sequential access pattern, perhaps
953 * dmu_zfetch will detect it.
956 len
= i_size_read(ip
) - offset
;
958 dmu_prefetch(os
, zp
->z_id
, 0, offset
, len
,
959 ZIO_PRIORITY_ASYNC_READ
);
961 case POSIX_FADV_NORMAL
:
962 case POSIX_FADV_RANDOM
:
963 case POSIX_FADV_DONTNEED
:
964 case POSIX_FADV_NOREUSE
:
965 /* ignored for now */
972 zfs_exit(zfsvfs
, FTAG
);
976 #endif /* HAVE_FILE_FADVISE */
978 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
979 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
982 __zpl_ioctl_getflags(struct inode
*ip
)
984 uint64_t zfs_flags
= ITOZ(ip
)->z_pflags
;
985 uint32_t ioctl_flags
= 0;
987 if (zfs_flags
& ZFS_IMMUTABLE
)
988 ioctl_flags
|= FS_IMMUTABLE_FL
;
990 if (zfs_flags
& ZFS_APPENDONLY
)
991 ioctl_flags
|= FS_APPEND_FL
;
993 if (zfs_flags
& ZFS_NODUMP
)
994 ioctl_flags
|= FS_NODUMP_FL
;
996 if (zfs_flags
& ZFS_PROJINHERIT
)
997 ioctl_flags
|= ZFS_PROJINHERIT_FL
;
999 return (ioctl_flags
& ZFS_FL_USER_VISIBLE
);
1003 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
1004 * attributes common to both Linux and Solaris are mapped.
1007 zpl_ioctl_getflags(struct file
*filp
, void __user
*arg
)
1012 flags
= __zpl_ioctl_getflags(file_inode(filp
));
1013 err
= copy_to_user(arg
, &flags
, sizeof (flags
));
1019 * fchange() is a helper macro to detect if we have been asked to change a
1020 * flag. This is ugly, but the requirement that we do this is a consequence of
1021 * how the Linux file attribute interface was designed. Another consequence is
1022 * that concurrent modification of files suffers from a TOCTOU race. Neither
1023 * are things we can fix without modifying the kernel-userland interface, which
1024 * is outside of our jurisdiction.
1027 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
1030 __zpl_ioctl_setflags(struct inode
*ip
, uint32_t ioctl_flags
, xvattr_t
*xva
)
1032 uint64_t zfs_flags
= ITOZ(ip
)->z_pflags
;
1035 if (ioctl_flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| FS_NODUMP_FL
|
1036 ZFS_PROJINHERIT_FL
))
1037 return (-EOPNOTSUPP
);
1039 if (ioctl_flags
& ~ZFS_FL_USER_MODIFIABLE
)
1042 if ((fchange(ioctl_flags
, zfs_flags
, FS_IMMUTABLE_FL
, ZFS_IMMUTABLE
) ||
1043 fchange(ioctl_flags
, zfs_flags
, FS_APPEND_FL
, ZFS_APPENDONLY
)) &&
1044 !capable(CAP_LINUX_IMMUTABLE
))
1047 if (!zpl_inode_owner_or_capable(zfs_init_idmap
, ip
))
1051 xoap
= xva_getxoptattr(xva
);
1053 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \
1054 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \
1055 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \
1056 XVA_SET_REQ(xva, (xflag)); \
1057 (xfield) = ((ioctl_flags & (iflag)) != 0); \
1061 FLAG_CHANGE(FS_IMMUTABLE_FL
, ZFS_IMMUTABLE
, XAT_IMMUTABLE
,
1062 xoap
->xoa_immutable
);
1063 FLAG_CHANGE(FS_APPEND_FL
, ZFS_APPENDONLY
, XAT_APPENDONLY
,
1064 xoap
->xoa_appendonly
);
1065 FLAG_CHANGE(FS_NODUMP_FL
, ZFS_NODUMP
, XAT_NODUMP
,
1067 FLAG_CHANGE(ZFS_PROJINHERIT_FL
, ZFS_PROJINHERIT
, XAT_PROJINHERIT
,
1068 xoap
->xoa_projinherit
);
1076 zpl_ioctl_setflags(struct file
*filp
, void __user
*arg
)
1078 struct inode
*ip
= file_inode(filp
);
1080 cred_t
*cr
= CRED();
1083 fstrans_cookie_t cookie
;
1085 if (copy_from_user(&flags
, arg
, sizeof (flags
)))
1088 err
= __zpl_ioctl_setflags(ip
, flags
, &xva
);
1093 cookie
= spl_fstrans_mark();
1094 err
= -zfs_setattr(ITOZ(ip
), (vattr_t
*)&xva
, 0, cr
, zfs_init_idmap
);
1095 spl_fstrans_unmark(cookie
);
1102 zpl_ioctl_getxattr(struct file
*filp
, void __user
*arg
)
1104 zfsxattr_t fsx
= { 0 };
1105 struct inode
*ip
= file_inode(filp
);
1108 fsx
.fsx_xflags
= __zpl_ioctl_getflags(ip
);
1109 fsx
.fsx_projid
= ITOZ(ip
)->z_projid
;
1110 err
= copy_to_user(arg
, &fsx
, sizeof (fsx
));
1116 zpl_ioctl_setxattr(struct file
*filp
, void __user
*arg
)
1118 struct inode
*ip
= file_inode(filp
);
1120 cred_t
*cr
= CRED();
1124 fstrans_cookie_t cookie
;
1126 if (copy_from_user(&fsx
, arg
, sizeof (fsx
)))
1129 if (!zpl_is_valid_projid(fsx
.fsx_projid
))
1132 err
= __zpl_ioctl_setflags(ip
, fsx
.fsx_xflags
, &xva
);
1136 xoap
= xva_getxoptattr(&xva
);
1137 XVA_SET_REQ(&xva
, XAT_PROJID
);
1138 xoap
->xoa_projid
= fsx
.fsx_projid
;
1141 cookie
= spl_fstrans_mark();
1142 err
= -zfs_setattr(ITOZ(ip
), (vattr_t
*)&xva
, 0, cr
, zfs_init_idmap
);
1143 spl_fstrans_unmark(cookie
);
1150 * Expose Additional File Level Attributes of ZFS.
1153 zpl_ioctl_getdosflags(struct file
*filp
, void __user
*arg
)
1155 struct inode
*ip
= file_inode(filp
);
1156 uint64_t dosflags
= ITOZ(ip
)->z_pflags
;
1157 dosflags
&= ZFS_DOS_FL_USER_VISIBLE
;
1158 int err
= copy_to_user(arg
, &dosflags
, sizeof (dosflags
));
1164 __zpl_ioctl_setdosflags(struct inode
*ip
, uint64_t ioctl_flags
, xvattr_t
*xva
)
1166 uint64_t zfs_flags
= ITOZ(ip
)->z_pflags
;
1169 if (ioctl_flags
& (~ZFS_DOS_FL_USER_VISIBLE
))
1170 return (-EOPNOTSUPP
);
1172 if ((fchange(ioctl_flags
, zfs_flags
, ZFS_IMMUTABLE
, ZFS_IMMUTABLE
) ||
1173 fchange(ioctl_flags
, zfs_flags
, ZFS_APPENDONLY
, ZFS_APPENDONLY
)) &&
1174 !capable(CAP_LINUX_IMMUTABLE
))
1177 if (!zpl_inode_owner_or_capable(zfs_init_idmap
, ip
))
1181 xoap
= xva_getxoptattr(xva
);
1183 #define FLAG_CHANGE(iflag, xflag, xfield) do { \
1184 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \
1185 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \
1186 XVA_SET_REQ(xva, (xflag)); \
1187 (xfield) = ((ioctl_flags & (iflag)) != 0); \
1191 FLAG_CHANGE(ZFS_IMMUTABLE
, XAT_IMMUTABLE
, xoap
->xoa_immutable
);
1192 FLAG_CHANGE(ZFS_APPENDONLY
, XAT_APPENDONLY
, xoap
->xoa_appendonly
);
1193 FLAG_CHANGE(ZFS_NODUMP
, XAT_NODUMP
, xoap
->xoa_nodump
);
1194 FLAG_CHANGE(ZFS_READONLY
, XAT_READONLY
, xoap
->xoa_readonly
);
1195 FLAG_CHANGE(ZFS_HIDDEN
, XAT_HIDDEN
, xoap
->xoa_hidden
);
1196 FLAG_CHANGE(ZFS_SYSTEM
, XAT_SYSTEM
, xoap
->xoa_system
);
1197 FLAG_CHANGE(ZFS_ARCHIVE
, XAT_ARCHIVE
, xoap
->xoa_archive
);
1198 FLAG_CHANGE(ZFS_NOUNLINK
, XAT_NOUNLINK
, xoap
->xoa_nounlink
);
1199 FLAG_CHANGE(ZFS_REPARSE
, XAT_REPARSE
, xoap
->xoa_reparse
);
1200 FLAG_CHANGE(ZFS_OFFLINE
, XAT_OFFLINE
, xoap
->xoa_offline
);
1201 FLAG_CHANGE(ZFS_SPARSE
, XAT_SPARSE
, xoap
->xoa_sparse
);
1209 * Set Additional File Level Attributes of ZFS.
1212 zpl_ioctl_setdosflags(struct file
*filp
, void __user
*arg
)
1214 struct inode
*ip
= file_inode(filp
);
1216 cred_t
*cr
= CRED();
1219 fstrans_cookie_t cookie
;
1221 if (copy_from_user(&dosflags
, arg
, sizeof (dosflags
)))
1224 err
= __zpl_ioctl_setdosflags(ip
, dosflags
, &xva
);
1229 cookie
= spl_fstrans_mark();
1230 err
= -zfs_setattr(ITOZ(ip
), (vattr_t
*)&xva
, 0, cr
, zfs_init_idmap
);
1231 spl_fstrans_unmark(cookie
);
1238 zpl_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
1241 case FS_IOC_GETVERSION
:
1242 return (zpl_ioctl_getversion(filp
, (void *)arg
));
1243 case FS_IOC_GETFLAGS
:
1244 return (zpl_ioctl_getflags(filp
, (void *)arg
));
1245 case FS_IOC_SETFLAGS
:
1246 return (zpl_ioctl_setflags(filp
, (void *)arg
));
1247 case ZFS_IOC_FSGETXATTR
:
1248 return (zpl_ioctl_getxattr(filp
, (void *)arg
));
1249 case ZFS_IOC_FSSETXATTR
:
1250 return (zpl_ioctl_setxattr(filp
, (void *)arg
));
1251 case ZFS_IOC_GETDOSFLAGS
:
1252 return (zpl_ioctl_getdosflags(filp
, (void *)arg
));
1253 case ZFS_IOC_SETDOSFLAGS
:
1254 return (zpl_ioctl_setdosflags(filp
, (void *)arg
));
1255 case ZFS_IOC_COMPAT_FICLONE
:
1256 return (zpl_ioctl_ficlone(filp
, (void *)arg
));
1257 case ZFS_IOC_COMPAT_FICLONERANGE
:
1258 return (zpl_ioctl_ficlonerange(filp
, (void *)arg
));
1259 case ZFS_IOC_COMPAT_FIDEDUPERANGE
:
1260 return (zpl_ioctl_fideduperange(filp
, (void *)arg
));
1266 #ifdef CONFIG_COMPAT
1268 zpl_compat_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
1271 case FS_IOC32_GETVERSION
:
1272 cmd
= FS_IOC_GETVERSION
;
1274 case FS_IOC32_GETFLAGS
:
1275 cmd
= FS_IOC_GETFLAGS
;
1277 case FS_IOC32_SETFLAGS
:
1278 cmd
= FS_IOC_SETFLAGS
;
1283 return (zpl_ioctl(filp
, cmd
, (unsigned long)compat_ptr(arg
)));
1285 #endif /* CONFIG_COMPAT */
1287 const struct address_space_operations zpl_address_space_operations
= {
1288 #ifdef HAVE_VFS_READPAGES
1289 .readpages
= zpl_readpages
,
1291 .readahead
= zpl_readahead
,
1293 #ifdef HAVE_VFS_READ_FOLIO
1294 .read_folio
= zpl_read_folio
,
1296 .readpage
= zpl_readpage
,
1298 .writepage
= zpl_writepage
,
1299 .writepages
= zpl_writepages
,
1300 .direct_IO
= zpl_direct_IO
,
1301 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1302 .set_page_dirty
= __set_page_dirty_nobuffers
,
1304 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1305 .dirty_folio
= filemap_dirty_folio
,
1309 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
1310 const struct file_operations_extend zpl_file_operations
= {
1313 const struct file_operations zpl_file_operations
= {
1316 .release
= zpl_release
,
1317 .llseek
= zpl_llseek
,
1318 #ifdef HAVE_VFS_RW_ITERATE
1319 #ifdef HAVE_NEW_SYNC_READ
1320 .read
= new_sync_read
,
1321 .write
= new_sync_write
,
1323 .read_iter
= zpl_iter_read
,
1324 .write_iter
= zpl_iter_write
,
1325 #ifdef HAVE_VFS_IOV_ITER
1326 #ifdef HAVE_COPY_SPLICE_READ
1327 .splice_read
= copy_splice_read
,
1329 .splice_read
= generic_file_splice_read
,
1331 .splice_write
= iter_file_splice_write
,
1334 .read
= do_sync_read
,
1335 .write
= do_sync_write
,
1336 .aio_read
= zpl_aio_read
,
1337 .aio_write
= zpl_aio_write
,
1341 #ifdef HAVE_FILE_AIO_FSYNC
1342 .aio_fsync
= zpl_aio_fsync
,
1344 .fallocate
= zpl_fallocate
,
1345 #ifdef HAVE_VFS_COPY_FILE_RANGE
1346 .copy_file_range
= zpl_copy_file_range
,
1348 #ifdef HAVE_VFS_CLONE_FILE_RANGE
1349 .clone_file_range
= zpl_clone_file_range
,
1351 #ifdef HAVE_VFS_REMAP_FILE_RANGE
1352 .remap_file_range
= zpl_remap_file_range
,
1354 #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
1355 .dedupe_file_range
= zpl_dedupe_file_range
,
1357 #ifdef HAVE_FILE_FADVISE
1358 .fadvise
= zpl_fadvise
,
1360 .unlocked_ioctl
= zpl_ioctl
,
1361 #ifdef CONFIG_COMPAT
1362 .compat_ioctl
= zpl_compat_ioctl
,
1364 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
1366 .copy_file_range
= zpl_copy_file_range
,
1367 .clone_file_range
= zpl_clone_file_range
,
1371 const struct file_operations zpl_dir_file_operations
= {
1372 .llseek
= generic_file_llseek
,
1373 .read
= generic_read_dir
,
1374 #if defined(HAVE_VFS_ITERATE_SHARED)
1375 .iterate_shared
= zpl_iterate
,
1376 #elif defined(HAVE_VFS_ITERATE)
1377 .iterate
= zpl_iterate
,
1379 .readdir
= zpl_readdir
,
1382 .unlocked_ioctl
= zpl_ioctl
,
1383 #ifdef CONFIG_COMPAT
1384 .compat_ioctl
= zpl_compat_ioctl
,
1389 module_param(zfs_fallocate_reserve_percent
, uint
, 0644);
1390 MODULE_PARM_DESC(zfs_fallocate_reserve_percent
,
1391 "Percentage of length to use for the available capacity check");