4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2016 by Delphix. All rights reserved.
38 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39 * recurrence relations:
47 * c = c + b (fletcher-4 only)
50 * d = d + c (fletcher-4 only)
54 * a_0 = b_0 = c_0 = d_0 = 0
56 * f_0 .. f_(n-1) are the input data.
58 * Using standard techniques, these translate into the following series:
63 * n /___| n - i n /___| n - i
68 * \ | i*(i+1) \ | i*(i+1)*(i+2)
69 * c = > ------- f d = > ------------- f
70 * n /___| 2 n - i n /___| 6 n - i
73 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74 * Since the additions are done mod (2^64), errors in the high bits may not
75 * be noticed. For this reason, fletcher-2 is deprecated.
77 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78 * A conservative estimate of how big the buffer can get before we overflow
79 * can be estimated using f_i = 0xffffffff for all i:
82 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
87 * So blocks of up to 2k will not overflow. Our largest block size is
88 * 128k, which has 32k 4-byte words, so we can compute the largest possible
89 * accumulators, then divide by 2^64 to figure the max amount of overflow:
92 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93 * a/2^64;b/2^64;c/2^64;d/2^64
101 * So a and b cannot overflow. To make sure each bit of input has some
102 * effect on the contents of c and d, we can look at what the factors of
103 * the coefficients in the equations for c_n and d_n are. The number of 2s
104 * in the factors determines the lowest set bit in the multiplier. Running
105 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
107 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108 * even for 128k blocks.
110 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111 * we could do our calculations mod (2^32 - 1) by adding in the carries
112 * periodically, and store the number of carries in the top 32-bits.
114 * --------------------
115 * Checksum Performance
116 * --------------------
118 * There are two interesting components to checksum performance: cached and
119 * uncached performance. With cached data, fletcher-2 is about four times
120 * faster than fletcher-4. With uncached data, the performance difference is
121 * negligible, since the cost of a cache fill dominates the processing time.
122 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123 * efficient pass over the data.
125 * In normal operation, the data which is being checksummed is in a buffer
126 * which has been filled either by:
128 * 1. a compression step, which will be mostly cached, or
129 * 2. a memcpy() or copyin(), which will be uncached
130 * (because the copy is cache-bypassing).
132 * For both cached and uncached data, both fletcher checksums are much faster
133 * than sha-256, and slower than 'off', which doesn't touch the data at all.
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/simd.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
145 #define FLETCHER_MIN_SIMD_SIZE 64
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t
*ctx
);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t
*ctx
, zio_cksum_t
*zcp
);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t
*ctx
,
150 const void *buf
, uint64_t size
);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t
*ctx
,
152 const void *buf
, uint64_t size
);
153 static boolean_t
fletcher_4_scalar_valid(void);
155 static const fletcher_4_ops_t fletcher_4_scalar_ops
= {
156 .init_native
= fletcher_4_scalar_init
,
157 .fini_native
= fletcher_4_scalar_fini
,
158 .compute_native
= fletcher_4_scalar_native
,
159 .init_byteswap
= fletcher_4_scalar_init
,
160 .fini_byteswap
= fletcher_4_scalar_fini
,
161 .compute_byteswap
= fletcher_4_scalar_byteswap
,
162 .valid
= fletcher_4_scalar_valid
,
167 static fletcher_4_ops_t fletcher_4_fastest_impl
= {
169 .valid
= fletcher_4_scalar_valid
172 static const fletcher_4_ops_t
*fletcher_4_impls
[] = {
173 &fletcher_4_scalar_ops
,
174 &fletcher_4_superscalar_ops
,
175 &fletcher_4_superscalar4_ops
,
176 #if defined(HAVE_SSE2)
177 &fletcher_4_sse2_ops
,
179 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
180 &fletcher_4_ssse3_ops
,
182 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
183 &fletcher_4_avx2_ops
,
185 #if defined(__x86_64) && defined(HAVE_AVX512F)
186 &fletcher_4_avx512f_ops
,
188 #if defined(__x86_64) && defined(HAVE_AVX512BW)
189 &fletcher_4_avx512bw_ops
,
191 #if defined(__aarch64__) && !defined(__FreeBSD__)
192 &fletcher_4_aarch64_neon_ops
,
196 /* Hold all supported implementations */
197 static uint32_t fletcher_4_supp_impls_cnt
= 0;
198 static fletcher_4_ops_t
*fletcher_4_supp_impls
[ARRAY_SIZE(fletcher_4_impls
)];
200 /* Select fletcher4 implementation */
201 #define IMPL_FASTEST (UINT32_MAX)
202 #define IMPL_CYCLE (UINT32_MAX - 1)
203 #define IMPL_SCALAR (0)
205 static uint32_t fletcher_4_impl_chosen
= IMPL_FASTEST
;
207 #define IMPL_READ(i) (*(volatile uint32_t *) &(i))
209 static struct fletcher_4_impl_selector
{
210 const char *fis_name
;
212 } fletcher_4_impl_selectors
[] = {
213 { "cycle", IMPL_CYCLE
},
214 { "fastest", IMPL_FASTEST
},
215 { "scalar", IMPL_SCALAR
}
219 static kstat_t
*fletcher_4_kstat
;
221 static struct fletcher_4_kstat
{
224 } fletcher_4_stat_data
[ARRAY_SIZE(fletcher_4_impls
) + 1];
227 /* Indicate that benchmark has been completed */
228 static boolean_t fletcher_4_initialized
= B_FALSE
;
231 fletcher_init(zio_cksum_t
*zcp
)
233 ZIO_SET_CHECKSUM(zcp
, 0, 0, 0, 0);
237 fletcher_2_incremental_native(void *buf
, size_t size
, void *data
)
239 zio_cksum_t
*zcp
= data
;
241 const uint64_t *ip
= buf
;
242 const uint64_t *ipend
= ip
+ (size
/ sizeof (uint64_t));
243 uint64_t a0
, b0
, a1
, b1
;
245 a0
= zcp
->zc_word
[0];
246 a1
= zcp
->zc_word
[1];
247 b0
= zcp
->zc_word
[2];
248 b1
= zcp
->zc_word
[3];
250 for (; ip
< ipend
; ip
+= 2) {
257 ZIO_SET_CHECKSUM(zcp
, a0
, a1
, b0
, b1
);
262 fletcher_2_native(const void *buf
, uint64_t size
,
263 const void *ctx_template
, zio_cksum_t
*zcp
)
267 (void) fletcher_2_incremental_native((void *) buf
, size
, zcp
);
271 fletcher_2_incremental_byteswap(void *buf
, size_t size
, void *data
)
273 zio_cksum_t
*zcp
= data
;
275 const uint64_t *ip
= buf
;
276 const uint64_t *ipend
= ip
+ (size
/ sizeof (uint64_t));
277 uint64_t a0
, b0
, a1
, b1
;
279 a0
= zcp
->zc_word
[0];
280 a1
= zcp
->zc_word
[1];
281 b0
= zcp
->zc_word
[2];
282 b1
= zcp
->zc_word
[3];
284 for (; ip
< ipend
; ip
+= 2) {
285 a0
+= BSWAP_64(ip
[0]);
286 a1
+= BSWAP_64(ip
[1]);
291 ZIO_SET_CHECKSUM(zcp
, a0
, a1
, b0
, b1
);
296 fletcher_2_byteswap(const void *buf
, uint64_t size
,
297 const void *ctx_template
, zio_cksum_t
*zcp
)
301 (void) fletcher_2_incremental_byteswap((void *) buf
, size
, zcp
);
305 fletcher_4_scalar_init(fletcher_4_ctx_t
*ctx
)
307 ZIO_SET_CHECKSUM(&ctx
->scalar
, 0, 0, 0, 0);
311 fletcher_4_scalar_fini(fletcher_4_ctx_t
*ctx
, zio_cksum_t
*zcp
)
313 memcpy(zcp
, &ctx
->scalar
, sizeof (zio_cksum_t
));
317 fletcher_4_scalar_native(fletcher_4_ctx_t
*ctx
, const void *buf
,
320 const uint32_t *ip
= buf
;
321 const uint32_t *ipend
= ip
+ (size
/ sizeof (uint32_t));
324 a
= ctx
->scalar
.zc_word
[0];
325 b
= ctx
->scalar
.zc_word
[1];
326 c
= ctx
->scalar
.zc_word
[2];
327 d
= ctx
->scalar
.zc_word
[3];
329 for (; ip
< ipend
; ip
++) {
336 ZIO_SET_CHECKSUM(&ctx
->scalar
, a
, b
, c
, d
);
340 fletcher_4_scalar_byteswap(fletcher_4_ctx_t
*ctx
, const void *buf
,
343 const uint32_t *ip
= buf
;
344 const uint32_t *ipend
= ip
+ (size
/ sizeof (uint32_t));
347 a
= ctx
->scalar
.zc_word
[0];
348 b
= ctx
->scalar
.zc_word
[1];
349 c
= ctx
->scalar
.zc_word
[2];
350 d
= ctx
->scalar
.zc_word
[3];
352 for (; ip
< ipend
; ip
++) {
353 a
+= BSWAP_32(ip
[0]);
359 ZIO_SET_CHECKSUM(&ctx
->scalar
, a
, b
, c
, d
);
363 fletcher_4_scalar_valid(void)
369 fletcher_4_impl_set(const char *val
)
372 uint32_t impl
= IMPL_READ(fletcher_4_impl_chosen
);
375 val_len
= strlen(val
);
376 while ((val_len
> 0) && !!isspace(val
[val_len
-1])) /* trim '\n' */
379 /* check mandatory implementations */
380 for (i
= 0; i
< ARRAY_SIZE(fletcher_4_impl_selectors
); i
++) {
381 const char *name
= fletcher_4_impl_selectors
[i
].fis_name
;
383 if (val_len
== strlen(name
) &&
384 strncmp(val
, name
, val_len
) == 0) {
385 impl
= fletcher_4_impl_selectors
[i
].fis_sel
;
391 if (err
!= 0 && fletcher_4_initialized
) {
392 /* check all supported implementations */
393 for (i
= 0; i
< fletcher_4_supp_impls_cnt
; i
++) {
394 const char *name
= fletcher_4_supp_impls
[i
]->name
;
396 if (val_len
== strlen(name
) &&
397 strncmp(val
, name
, val_len
) == 0) {
406 atomic_swap_32(&fletcher_4_impl_chosen
, impl
);
414 * Returns the Fletcher 4 operations for checksums. When a SIMD
415 * implementation is not allowed in the current context, then fallback
416 * to the fastest generic implementation.
418 static inline const fletcher_4_ops_t
*
419 fletcher_4_impl_get(void)
422 return (&fletcher_4_superscalar4_ops
);
424 const fletcher_4_ops_t
*ops
= NULL
;
425 uint32_t impl
= IMPL_READ(fletcher_4_impl_chosen
);
429 ASSERT(fletcher_4_initialized
);
430 ops
= &fletcher_4_fastest_impl
;
433 /* Cycle through supported implementations */
434 ASSERT(fletcher_4_initialized
);
435 ASSERT3U(fletcher_4_supp_impls_cnt
, >, 0);
436 static uint32_t cycle_count
= 0;
437 uint32_t idx
= (++cycle_count
) % fletcher_4_supp_impls_cnt
;
438 ops
= fletcher_4_supp_impls
[idx
];
441 ASSERT3U(fletcher_4_supp_impls_cnt
, >, 0);
442 ASSERT3U(impl
, <, fletcher_4_supp_impls_cnt
);
443 ops
= fletcher_4_supp_impls
[impl
];
447 ASSERT3P(ops
, !=, NULL
);
453 fletcher_4_native_impl(const void *buf
, uint64_t size
, zio_cksum_t
*zcp
)
455 fletcher_4_ctx_t ctx
;
456 const fletcher_4_ops_t
*ops
= fletcher_4_impl_get();
458 if (ops
->uses_fpu
== B_TRUE
) {
461 ops
->init_native(&ctx
);
462 ops
->compute_native(&ctx
, buf
, size
);
463 ops
->fini_native(&ctx
, zcp
);
464 if (ops
->uses_fpu
== B_TRUE
) {
470 fletcher_4_native(const void *buf
, uint64_t size
,
471 const void *ctx_template
, zio_cksum_t
*zcp
)
474 const uint64_t p2size
= P2ALIGN(size
, FLETCHER_MIN_SIMD_SIZE
);
476 ASSERT(IS_P2ALIGNED(size
, sizeof (uint32_t)));
478 if (size
== 0 || p2size
== 0) {
479 ZIO_SET_CHECKSUM(zcp
, 0, 0, 0, 0);
482 fletcher_4_scalar_native((fletcher_4_ctx_t
*)zcp
,
485 fletcher_4_native_impl(buf
, p2size
, zcp
);
488 fletcher_4_scalar_native((fletcher_4_ctx_t
*)zcp
,
489 (char *)buf
+ p2size
, size
- p2size
);
494 fletcher_4_native_varsize(const void *buf
, uint64_t size
, zio_cksum_t
*zcp
)
496 ZIO_SET_CHECKSUM(zcp
, 0, 0, 0, 0);
497 fletcher_4_scalar_native((fletcher_4_ctx_t
*)zcp
, buf
, size
);
501 fletcher_4_byteswap_impl(const void *buf
, uint64_t size
, zio_cksum_t
*zcp
)
503 fletcher_4_ctx_t ctx
;
504 const fletcher_4_ops_t
*ops
= fletcher_4_impl_get();
506 if (ops
->uses_fpu
== B_TRUE
) {
509 ops
->init_byteswap(&ctx
);
510 ops
->compute_byteswap(&ctx
, buf
, size
);
511 ops
->fini_byteswap(&ctx
, zcp
);
512 if (ops
->uses_fpu
== B_TRUE
) {
518 fletcher_4_byteswap(const void *buf
, uint64_t size
,
519 const void *ctx_template
, zio_cksum_t
*zcp
)
522 const uint64_t p2size
= P2ALIGN(size
, FLETCHER_MIN_SIMD_SIZE
);
524 ASSERT(IS_P2ALIGNED(size
, sizeof (uint32_t)));
526 if (size
== 0 || p2size
== 0) {
527 ZIO_SET_CHECKSUM(zcp
, 0, 0, 0, 0);
530 fletcher_4_scalar_byteswap((fletcher_4_ctx_t
*)zcp
,
533 fletcher_4_byteswap_impl(buf
, p2size
, zcp
);
536 fletcher_4_scalar_byteswap((fletcher_4_ctx_t
*)zcp
,
537 (char *)buf
+ p2size
, size
- p2size
);
541 /* Incremental Fletcher 4 */
543 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
546 fletcher_4_incremental_combine(zio_cksum_t
*zcp
, const uint64_t size
,
547 const zio_cksum_t
*nzcp
)
549 const uint64_t c1
= size
/ sizeof (uint32_t);
550 const uint64_t c2
= c1
* (c1
+ 1) / 2;
551 const uint64_t c3
= c2
* (c1
+ 2) / 3;
554 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
555 * reason we split incremental fletcher4 computation of large buffers
556 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
558 ASSERT3U(size
, <=, ZFS_FLETCHER_4_INC_MAX_SIZE
);
560 zcp
->zc_word
[3] += nzcp
->zc_word
[3] + c1
* zcp
->zc_word
[2] +
561 c2
* zcp
->zc_word
[1] + c3
* zcp
->zc_word
[0];
562 zcp
->zc_word
[2] += nzcp
->zc_word
[2] + c1
* zcp
->zc_word
[1] +
563 c2
* zcp
->zc_word
[0];
564 zcp
->zc_word
[1] += nzcp
->zc_word
[1] + c1
* zcp
->zc_word
[0];
565 zcp
->zc_word
[0] += nzcp
->zc_word
[0];
569 fletcher_4_incremental_impl(boolean_t native
, const void *buf
, uint64_t size
,
574 uint64_t len
= MIN(size
, ZFS_FLETCHER_4_INC_MAX_SIZE
);
577 fletcher_4_native(buf
, len
, NULL
, &nzc
);
579 fletcher_4_byteswap(buf
, len
, NULL
, &nzc
);
581 fletcher_4_incremental_combine(zcp
, len
, &nzc
);
589 fletcher_4_incremental_native(void *buf
, size_t size
, void *data
)
591 zio_cksum_t
*zcp
= data
;
592 /* Use scalar impl to directly update cksum of small blocks */
593 if (size
< SPA_MINBLOCKSIZE
)
594 fletcher_4_scalar_native((fletcher_4_ctx_t
*)zcp
, buf
, size
);
596 fletcher_4_incremental_impl(B_TRUE
, buf
, size
, zcp
);
601 fletcher_4_incremental_byteswap(void *buf
, size_t size
, void *data
)
603 zio_cksum_t
*zcp
= data
;
604 /* Use scalar impl to directly update cksum of small blocks */
605 if (size
< SPA_MINBLOCKSIZE
)
606 fletcher_4_scalar_byteswap((fletcher_4_ctx_t
*)zcp
, buf
, size
);
608 fletcher_4_incremental_impl(B_FALSE
, buf
, size
, zcp
);
617 fletcher_4_kstat_headers(char *buf
, size_t size
)
621 off
+= snprintf(buf
+ off
, size
, "%-17s", "implementation");
622 off
+= snprintf(buf
+ off
, size
- off
, "%-15s", "native");
623 (void) snprintf(buf
+ off
, size
- off
, "%-15s\n", "byteswap");
629 fletcher_4_kstat_data(char *buf
, size_t size
, void *data
)
631 struct fletcher_4_kstat
*fastest_stat
=
632 &fletcher_4_stat_data
[fletcher_4_supp_impls_cnt
];
633 struct fletcher_4_kstat
*curr_stat
= (struct fletcher_4_kstat
*)data
;
636 if (curr_stat
== fastest_stat
) {
637 off
+= snprintf(buf
+ off
, size
- off
, "%-17s", "fastest");
638 off
+= snprintf(buf
+ off
, size
- off
, "%-15s",
639 fletcher_4_supp_impls
[fastest_stat
->native
]->name
);
640 (void) snprintf(buf
+ off
, size
- off
, "%-15s\n",
641 fletcher_4_supp_impls
[fastest_stat
->byteswap
]->name
);
643 ptrdiff_t id
= curr_stat
- fletcher_4_stat_data
;
645 off
+= snprintf(buf
+ off
, size
- off
, "%-17s",
646 fletcher_4_supp_impls
[id
]->name
);
647 off
+= snprintf(buf
+ off
, size
- off
, "%-15llu",
648 (u_longlong_t
)curr_stat
->native
);
649 (void) snprintf(buf
+ off
, size
- off
, "%-15llu\n",
650 (u_longlong_t
)curr_stat
->byteswap
);
657 fletcher_4_kstat_addr(kstat_t
*ksp
, loff_t n
)
659 if (n
<= fletcher_4_supp_impls_cnt
)
660 ksp
->ks_private
= (void *) (fletcher_4_stat_data
+ n
);
662 ksp
->ks_private
= NULL
;
664 return (ksp
->ks_private
);
668 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \
670 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
671 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
672 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
673 fletcher_4_fastest_impl.uses_fpu = src->uses_fpu; \
676 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */
678 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
683 fletcher_4_benchmark_impl(boolean_t native
, char *data
, uint64_t data_size
)
686 struct fletcher_4_kstat
*fastest_stat
=
687 &fletcher_4_stat_data
[fletcher_4_supp_impls_cnt
];
689 uint64_t run_bw
, run_time_ns
, best_run
= 0;
691 uint32_t i
, l
, sel_save
= IMPL_READ(fletcher_4_impl_chosen
);
693 fletcher_checksum_func_t
*fletcher_4_test
= native
?
694 fletcher_4_native
: fletcher_4_byteswap
;
696 for (i
= 0; i
< fletcher_4_supp_impls_cnt
; i
++) {
697 struct fletcher_4_kstat
*stat
= &fletcher_4_stat_data
[i
];
698 uint64_t run_count
= 0;
700 /* temporary set an implementation */
701 fletcher_4_impl_chosen
= i
;
706 for (l
= 0; l
< 32; l
++, run_count
++)
707 fletcher_4_test(data
, data_size
, NULL
, &zc
);
709 run_time_ns
= gethrtime() - start
;
710 } while (run_time_ns
< FLETCHER_4_BENCH_NS
);
713 run_bw
= data_size
* run_count
* NANOSEC
;
714 run_bw
/= run_time_ns
; /* B/s */
717 stat
->native
= run_bw
;
719 stat
->byteswap
= run_bw
;
721 if (run_bw
> best_run
) {
725 fastest_stat
->native
= i
;
726 FLETCHER_4_FASTEST_FN_COPY(native
,
727 fletcher_4_supp_impls
[i
]);
729 fastest_stat
->byteswap
= i
;
730 FLETCHER_4_FASTEST_FN_COPY(byteswap
,
731 fletcher_4_supp_impls
[i
]);
736 /* restore original selection */
737 atomic_swap_32(&fletcher_4_impl_chosen
, sel_save
);
742 * Initialize and benchmark all supported implementations.
745 fletcher_4_benchmark(void)
747 fletcher_4_ops_t
*curr_impl
;
750 /* Move supported implementations into fletcher_4_supp_impls */
751 for (i
= 0, c
= 0; i
< ARRAY_SIZE(fletcher_4_impls
); i
++) {
752 curr_impl
= (fletcher_4_ops_t
*)fletcher_4_impls
[i
];
754 if (curr_impl
->valid
&& curr_impl
->valid())
755 fletcher_4_supp_impls
[c
++] = curr_impl
;
757 membar_producer(); /* complete fletcher_4_supp_impls[] init */
758 fletcher_4_supp_impls_cnt
= c
; /* number of supported impl */
761 static const size_t data_size
= 1 << SPA_OLD_MAXBLOCKSHIFT
; /* 128kiB */
762 char *databuf
= vmem_alloc(data_size
, KM_SLEEP
);
764 for (i
= 0; i
< data_size
/ sizeof (uint64_t); i
++)
765 ((uint64_t *)databuf
)[i
] = (uintptr_t)(databuf
+i
); /* warm-up */
767 fletcher_4_benchmark_impl(B_FALSE
, databuf
, data_size
);
768 fletcher_4_benchmark_impl(B_TRUE
, databuf
, data_size
);
770 vmem_free(databuf
, data_size
);
773 * Skip the benchmark in user space to avoid impacting libzpool
774 * consumers (zdb, zhack, zinject, ztest). The last implementation
775 * is assumed to be the fastest and used by default.
777 memcpy(&fletcher_4_fastest_impl
,
778 fletcher_4_supp_impls
[fletcher_4_supp_impls_cnt
- 1],
779 sizeof (fletcher_4_fastest_impl
));
780 fletcher_4_fastest_impl
.name
= "fastest";
786 fletcher_4_init(void)
788 /* Determine the fastest available implementation. */
789 fletcher_4_benchmark();
792 /* Install kstats for all implementations */
793 fletcher_4_kstat
= kstat_create("zfs", 0, "fletcher_4_bench", "misc",
794 KSTAT_TYPE_RAW
, 0, KSTAT_FLAG_VIRTUAL
);
795 if (fletcher_4_kstat
!= NULL
) {
796 fletcher_4_kstat
->ks_data
= NULL
;
797 fletcher_4_kstat
->ks_ndata
= UINT32_MAX
;
798 kstat_set_raw_ops(fletcher_4_kstat
,
799 fletcher_4_kstat_headers
,
800 fletcher_4_kstat_data
,
801 fletcher_4_kstat_addr
);
802 kstat_install(fletcher_4_kstat
);
806 /* Finish initialization */
807 fletcher_4_initialized
= B_TRUE
;
811 fletcher_4_fini(void)
814 if (fletcher_4_kstat
!= NULL
) {
815 kstat_delete(fletcher_4_kstat
);
816 fletcher_4_kstat
= NULL
;
824 abd_fletcher_4_init(zio_abd_checksum_data_t
*cdp
)
826 const fletcher_4_ops_t
*ops
= fletcher_4_impl_get();
827 cdp
->acd_private
= (void *) ops
;
829 if (ops
->uses_fpu
== B_TRUE
) {
832 if (cdp
->acd_byteorder
== ZIO_CHECKSUM_NATIVE
)
833 ops
->init_native(cdp
->acd_ctx
);
835 ops
->init_byteswap(cdp
->acd_ctx
);
840 abd_fletcher_4_fini(zio_abd_checksum_data_t
*cdp
)
842 fletcher_4_ops_t
*ops
= (fletcher_4_ops_t
*)cdp
->acd_private
;
846 if (cdp
->acd_byteorder
== ZIO_CHECKSUM_NATIVE
)
847 ops
->fini_native(cdp
->acd_ctx
, cdp
->acd_zcp
);
849 ops
->fini_byteswap(cdp
->acd_ctx
, cdp
->acd_zcp
);
851 if (ops
->uses_fpu
== B_TRUE
) {
858 abd_fletcher_4_simd2scalar(boolean_t native
, void *data
, size_t size
,
859 zio_abd_checksum_data_t
*cdp
)
861 zio_cksum_t
*zcp
= cdp
->acd_zcp
;
863 ASSERT3U(size
, <, FLETCHER_MIN_SIMD_SIZE
);
865 abd_fletcher_4_fini(cdp
);
866 cdp
->acd_private
= (void *)&fletcher_4_scalar_ops
;
869 fletcher_4_incremental_native(data
, size
, zcp
);
871 fletcher_4_incremental_byteswap(data
, size
, zcp
);
875 abd_fletcher_4_iter(void *data
, size_t size
, void *private)
877 zio_abd_checksum_data_t
*cdp
= (zio_abd_checksum_data_t
*)private;
878 fletcher_4_ctx_t
*ctx
= cdp
->acd_ctx
;
879 fletcher_4_ops_t
*ops
= (fletcher_4_ops_t
*)cdp
->acd_private
;
880 boolean_t native
= cdp
->acd_byteorder
== ZIO_CHECKSUM_NATIVE
;
881 uint64_t asize
= P2ALIGN(size
, FLETCHER_MIN_SIMD_SIZE
);
883 ASSERT(IS_P2ALIGNED(size
, sizeof (uint32_t)));
887 ops
->compute_native(ctx
, data
, asize
);
889 ops
->compute_byteswap(ctx
, data
, asize
);
892 data
= (char *)data
+ asize
;
896 ASSERT3U(size
, <, FLETCHER_MIN_SIMD_SIZE
);
897 /* At this point we have to switch to scalar impl */
898 abd_fletcher_4_simd2scalar(native
, data
, size
, cdp
);
904 zio_abd_checksum_func_t fletcher_4_abd_ops
= {
905 .acf_init
= abd_fletcher_4_init
,
906 .acf_fini
= abd_fletcher_4_fini
,
907 .acf_iter
= abd_fletcher_4_iter
912 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ")
914 #if defined(__linux__)
917 fletcher_4_param_get(char *buffer
, zfs_kernel_param_t
*unused
)
919 const uint32_t impl
= IMPL_READ(fletcher_4_impl_chosen
);
924 fmt
= IMPL_FMT(impl
, IMPL_FASTEST
);
925 cnt
+= kmem_scnprintf(buffer
+ cnt
, PAGE_SIZE
- cnt
, fmt
, "fastest");
927 /* list all supported implementations */
928 for (uint32_t i
= 0; i
< fletcher_4_supp_impls_cnt
; ++i
) {
929 fmt
= IMPL_FMT(impl
, i
);
930 cnt
+= kmem_scnprintf(buffer
+ cnt
, PAGE_SIZE
- cnt
, fmt
,
931 fletcher_4_supp_impls
[i
]->name
);
938 fletcher_4_param_set(const char *val
, zfs_kernel_param_t
*unused
)
940 return (fletcher_4_impl_set(val
));
945 #include <sys/sbuf.h>
948 fletcher_4_param(ZFS_MODULE_PARAM_ARGS
)
952 if (req
->newptr
== NULL
) {
953 const uint32_t impl
= IMPL_READ(fletcher_4_impl_chosen
);
954 const int init_buflen
= 64;
958 s
= sbuf_new_for_sysctl(NULL
, NULL
, init_buflen
, req
);
961 fmt
= IMPL_FMT(impl
, IMPL_FASTEST
);
962 (void) sbuf_printf(s
, fmt
, "fastest");
964 /* list all supported implementations */
965 for (uint32_t i
= 0; i
< fletcher_4_supp_impls_cnt
; ++i
) {
966 fmt
= IMPL_FMT(impl
, i
);
967 (void) sbuf_printf(s
, fmt
,
968 fletcher_4_supp_impls
[i
]->name
);
971 err
= sbuf_finish(s
);
979 err
= sysctl_handle_string(oidp
, buf
, sizeof (buf
), req
);
982 return (-fletcher_4_impl_set(buf
));
990 * Choose a fletcher 4 implementation in ZFS.
991 * Users can choose "cycle" to exercise all implementations, but this is
992 * for testing purpose therefore it can only be set in user space.
994 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs
, zfs_
, fletcher_4_impl
,
995 fletcher_4_param_set
, fletcher_4_param_get
, ZMOD_RW
,
996 "Select fletcher 4 implementation.");
998 EXPORT_SYMBOL(fletcher_init
);
999 EXPORT_SYMBOL(fletcher_2_incremental_native
);
1000 EXPORT_SYMBOL(fletcher_2_incremental_byteswap
);
1001 EXPORT_SYMBOL(fletcher_4_init
);
1002 EXPORT_SYMBOL(fletcher_4_fini
);
1003 EXPORT_SYMBOL(fletcher_2_native
);
1004 EXPORT_SYMBOL(fletcher_2_byteswap
);
1005 EXPORT_SYMBOL(fletcher_4_native
);
1006 EXPORT_SYMBOL(fletcher_4_native_varsize
);
1007 EXPORT_SYMBOL(fletcher_4_byteswap
);
1008 EXPORT_SYMBOL(fletcher_4_incremental_native
);
1009 EXPORT_SYMBOL(fletcher_4_incremental_byteswap
);
1010 EXPORT_SYMBOL(fletcher_4_abd_ops
);