ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / zcommon / zfs_fletcher.c
blob619ddef0243ad51df7d3c35e3995205b0aec2f7d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2016 by Delphix. All rights reserved.
35 * Fletcher Checksums
36 * ------------------
38 * ZFS's 2nd and 4th order Fletcher checksums are defined by the following
39 * recurrence relations:
41 * a = a + f
42 * i i-1 i-1
44 * b = b + a
45 * i i-1 i
47 * c = c + b (fletcher-4 only)
48 * i i-1 i
50 * d = d + c (fletcher-4 only)
51 * i i-1 i
53 * Where
54 * a_0 = b_0 = c_0 = d_0 = 0
55 * and
56 * f_0 .. f_(n-1) are the input data.
58 * Using standard techniques, these translate into the following series:
60 * __n_ __n_
61 * \ | \ |
62 * a = > f b = > i * f
63 * n /___| n - i n /___| n - i
64 * i = 1 i = 1
67 * __n_ __n_
68 * \ | i*(i+1) \ | i*(i+1)*(i+2)
69 * c = > ------- f d = > ------------- f
70 * n /___| 2 n - i n /___| 6 n - i
71 * i = 1 i = 1
73 * For fletcher-2, the f_is are 64-bit, and [ab]_i are 64-bit accumulators.
74 * Since the additions are done mod (2^64), errors in the high bits may not
75 * be noticed. For this reason, fletcher-2 is deprecated.
77 * For fletcher-4, the f_is are 32-bit, and [abcd]_i are 64-bit accumulators.
78 * A conservative estimate of how big the buffer can get before we overflow
79 * can be estimated using f_i = 0xffffffff for all i:
81 * % bc
82 * f=2^32-1;d=0; for (i = 1; d<2^64; i++) { d += f*i*(i+1)*(i+2)/6 }; (i-1)*4
83 * 2264
84 * quit
85 * %
87 * So blocks of up to 2k will not overflow. Our largest block size is
88 * 128k, which has 32k 4-byte words, so we can compute the largest possible
89 * accumulators, then divide by 2^64 to figure the max amount of overflow:
91 * % bc
92 * a=b=c=d=0; f=2^32-1; for (i=1; i<=32*1024; i++) { a+=f; b+=a; c+=b; d+=c }
93 * a/2^64;b/2^64;c/2^64;d/2^64
94 * 0
95 * 0
96 * 1365
97 * 11186858
98 * quit
99 * %
101 * So a and b cannot overflow. To make sure each bit of input has some
102 * effect on the contents of c and d, we can look at what the factors of
103 * the coefficients in the equations for c_n and d_n are. The number of 2s
104 * in the factors determines the lowest set bit in the multiplier. Running
105 * through the cases for n*(n+1)/2 reveals that the highest power of 2 is
106 * 2^14, and for n*(n+1)*(n+2)/6 it is 2^15. So while some data may overflow
107 * the 64-bit accumulators, every bit of every f_i effects every accumulator,
108 * even for 128k blocks.
110 * If we wanted to make a stronger version of fletcher4 (fletcher4c?),
111 * we could do our calculations mod (2^32 - 1) by adding in the carries
112 * periodically, and store the number of carries in the top 32-bits.
114 * --------------------
115 * Checksum Performance
116 * --------------------
118 * There are two interesting components to checksum performance: cached and
119 * uncached performance. With cached data, fletcher-2 is about four times
120 * faster than fletcher-4. With uncached data, the performance difference is
121 * negligible, since the cost of a cache fill dominates the processing time.
122 * Even though fletcher-4 is slower than fletcher-2, it is still a pretty
123 * efficient pass over the data.
125 * In normal operation, the data which is being checksummed is in a buffer
126 * which has been filled either by:
128 * 1. a compression step, which will be mostly cached, or
129 * 2. a memcpy() or copyin(), which will be uncached
130 * (because the copy is cache-bypassing).
132 * For both cached and uncached data, both fletcher checksums are much faster
133 * than sha-256, and slower than 'off', which doesn't touch the data at all.
136 #include <sys/types.h>
137 #include <sys/sysmacros.h>
138 #include <sys/byteorder.h>
139 #include <sys/simd.h>
140 #include <sys/spa.h>
141 #include <sys/zio_checksum.h>
142 #include <sys/zfs_context.h>
143 #include <zfs_fletcher.h>
145 #define FLETCHER_MIN_SIMD_SIZE 64
147 static void fletcher_4_scalar_init(fletcher_4_ctx_t *ctx);
148 static void fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp);
149 static void fletcher_4_scalar_native(fletcher_4_ctx_t *ctx,
150 const void *buf, uint64_t size);
151 static void fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx,
152 const void *buf, uint64_t size);
153 static boolean_t fletcher_4_scalar_valid(void);
155 static const fletcher_4_ops_t fletcher_4_scalar_ops = {
156 .init_native = fletcher_4_scalar_init,
157 .fini_native = fletcher_4_scalar_fini,
158 .compute_native = fletcher_4_scalar_native,
159 .init_byteswap = fletcher_4_scalar_init,
160 .fini_byteswap = fletcher_4_scalar_fini,
161 .compute_byteswap = fletcher_4_scalar_byteswap,
162 .valid = fletcher_4_scalar_valid,
163 .uses_fpu = B_FALSE,
164 .name = "scalar"
167 static fletcher_4_ops_t fletcher_4_fastest_impl = {
168 .name = "fastest",
169 .valid = fletcher_4_scalar_valid
172 static const fletcher_4_ops_t *fletcher_4_impls[] = {
173 &fletcher_4_scalar_ops,
174 &fletcher_4_superscalar_ops,
175 &fletcher_4_superscalar4_ops,
176 #if defined(HAVE_SSE2)
177 &fletcher_4_sse2_ops,
178 #endif
179 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
180 &fletcher_4_ssse3_ops,
181 #endif
182 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
183 &fletcher_4_avx2_ops,
184 #endif
185 #if defined(__x86_64) && defined(HAVE_AVX512F)
186 &fletcher_4_avx512f_ops,
187 #endif
188 #if defined(__x86_64) && defined(HAVE_AVX512BW)
189 &fletcher_4_avx512bw_ops,
190 #endif
191 #if defined(__aarch64__) && !defined(__FreeBSD__)
192 &fletcher_4_aarch64_neon_ops,
193 #endif
196 /* Hold all supported implementations */
197 static uint32_t fletcher_4_supp_impls_cnt = 0;
198 static fletcher_4_ops_t *fletcher_4_supp_impls[ARRAY_SIZE(fletcher_4_impls)];
200 /* Select fletcher4 implementation */
201 #define IMPL_FASTEST (UINT32_MAX)
202 #define IMPL_CYCLE (UINT32_MAX - 1)
203 #define IMPL_SCALAR (0)
205 static uint32_t fletcher_4_impl_chosen = IMPL_FASTEST;
207 #define IMPL_READ(i) (*(volatile uint32_t *) &(i))
209 static struct fletcher_4_impl_selector {
210 const char *fis_name;
211 uint32_t fis_sel;
212 } fletcher_4_impl_selectors[] = {
213 { "cycle", IMPL_CYCLE },
214 { "fastest", IMPL_FASTEST },
215 { "scalar", IMPL_SCALAR }
218 #if defined(_KERNEL)
219 static kstat_t *fletcher_4_kstat;
221 static struct fletcher_4_kstat {
222 uint64_t native;
223 uint64_t byteswap;
224 } fletcher_4_stat_data[ARRAY_SIZE(fletcher_4_impls) + 1];
225 #endif
227 /* Indicate that benchmark has been completed */
228 static boolean_t fletcher_4_initialized = B_FALSE;
230 void
231 fletcher_init(zio_cksum_t *zcp)
233 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
237 fletcher_2_incremental_native(void *buf, size_t size, void *data)
239 zio_cksum_t *zcp = data;
241 const uint64_t *ip = buf;
242 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
243 uint64_t a0, b0, a1, b1;
245 a0 = zcp->zc_word[0];
246 a1 = zcp->zc_word[1];
247 b0 = zcp->zc_word[2];
248 b1 = zcp->zc_word[3];
250 for (; ip < ipend; ip += 2) {
251 a0 += ip[0];
252 a1 += ip[1];
253 b0 += a0;
254 b1 += a1;
257 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
258 return (0);
261 void
262 fletcher_2_native(const void *buf, uint64_t size,
263 const void *ctx_template, zio_cksum_t *zcp)
265 (void) ctx_template;
266 fletcher_init(zcp);
267 (void) fletcher_2_incremental_native((void *) buf, size, zcp);
271 fletcher_2_incremental_byteswap(void *buf, size_t size, void *data)
273 zio_cksum_t *zcp = data;
275 const uint64_t *ip = buf;
276 const uint64_t *ipend = ip + (size / sizeof (uint64_t));
277 uint64_t a0, b0, a1, b1;
279 a0 = zcp->zc_word[0];
280 a1 = zcp->zc_word[1];
281 b0 = zcp->zc_word[2];
282 b1 = zcp->zc_word[3];
284 for (; ip < ipend; ip += 2) {
285 a0 += BSWAP_64(ip[0]);
286 a1 += BSWAP_64(ip[1]);
287 b0 += a0;
288 b1 += a1;
291 ZIO_SET_CHECKSUM(zcp, a0, a1, b0, b1);
292 return (0);
295 void
296 fletcher_2_byteswap(const void *buf, uint64_t size,
297 const void *ctx_template, zio_cksum_t *zcp)
299 (void) ctx_template;
300 fletcher_init(zcp);
301 (void) fletcher_2_incremental_byteswap((void *) buf, size, zcp);
304 static void
305 fletcher_4_scalar_init(fletcher_4_ctx_t *ctx)
307 ZIO_SET_CHECKSUM(&ctx->scalar, 0, 0, 0, 0);
310 static void
311 fletcher_4_scalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
313 memcpy(zcp, &ctx->scalar, sizeof (zio_cksum_t));
316 static void
317 fletcher_4_scalar_native(fletcher_4_ctx_t *ctx, const void *buf,
318 uint64_t size)
320 const uint32_t *ip = buf;
321 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
322 uint64_t a, b, c, d;
324 a = ctx->scalar.zc_word[0];
325 b = ctx->scalar.zc_word[1];
326 c = ctx->scalar.zc_word[2];
327 d = ctx->scalar.zc_word[3];
329 for (; ip < ipend; ip++) {
330 a += ip[0];
331 b += a;
332 c += b;
333 d += c;
336 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
339 static void
340 fletcher_4_scalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf,
341 uint64_t size)
343 const uint32_t *ip = buf;
344 const uint32_t *ipend = ip + (size / sizeof (uint32_t));
345 uint64_t a, b, c, d;
347 a = ctx->scalar.zc_word[0];
348 b = ctx->scalar.zc_word[1];
349 c = ctx->scalar.zc_word[2];
350 d = ctx->scalar.zc_word[3];
352 for (; ip < ipend; ip++) {
353 a += BSWAP_32(ip[0]);
354 b += a;
355 c += b;
356 d += c;
359 ZIO_SET_CHECKSUM(&ctx->scalar, a, b, c, d);
362 static boolean_t
363 fletcher_4_scalar_valid(void)
365 return (B_TRUE);
369 fletcher_4_impl_set(const char *val)
371 int err = -EINVAL;
372 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
373 size_t i, val_len;
375 val_len = strlen(val);
376 while ((val_len > 0) && !!isspace(val[val_len-1])) /* trim '\n' */
377 val_len--;
379 /* check mandatory implementations */
380 for (i = 0; i < ARRAY_SIZE(fletcher_4_impl_selectors); i++) {
381 const char *name = fletcher_4_impl_selectors[i].fis_name;
383 if (val_len == strlen(name) &&
384 strncmp(val, name, val_len) == 0) {
385 impl = fletcher_4_impl_selectors[i].fis_sel;
386 err = 0;
387 break;
391 if (err != 0 && fletcher_4_initialized) {
392 /* check all supported implementations */
393 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
394 const char *name = fletcher_4_supp_impls[i]->name;
396 if (val_len == strlen(name) &&
397 strncmp(val, name, val_len) == 0) {
398 impl = i;
399 err = 0;
400 break;
405 if (err == 0) {
406 atomic_swap_32(&fletcher_4_impl_chosen, impl);
407 membar_producer();
410 return (err);
414 * Returns the Fletcher 4 operations for checksums. When a SIMD
415 * implementation is not allowed in the current context, then fallback
416 * to the fastest generic implementation.
418 static inline const fletcher_4_ops_t *
419 fletcher_4_impl_get(void)
421 if (!kfpu_allowed())
422 return (&fletcher_4_superscalar4_ops);
424 const fletcher_4_ops_t *ops = NULL;
425 uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
427 switch (impl) {
428 case IMPL_FASTEST:
429 ASSERT(fletcher_4_initialized);
430 ops = &fletcher_4_fastest_impl;
431 break;
432 case IMPL_CYCLE:
433 /* Cycle through supported implementations */
434 ASSERT(fletcher_4_initialized);
435 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
436 static uint32_t cycle_count = 0;
437 uint32_t idx = (++cycle_count) % fletcher_4_supp_impls_cnt;
438 ops = fletcher_4_supp_impls[idx];
439 break;
440 default:
441 ASSERT3U(fletcher_4_supp_impls_cnt, >, 0);
442 ASSERT3U(impl, <, fletcher_4_supp_impls_cnt);
443 ops = fletcher_4_supp_impls[impl];
444 break;
447 ASSERT3P(ops, !=, NULL);
449 return (ops);
452 static inline void
453 fletcher_4_native_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
455 fletcher_4_ctx_t ctx;
456 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
458 if (ops->uses_fpu == B_TRUE) {
459 kfpu_begin();
461 ops->init_native(&ctx);
462 ops->compute_native(&ctx, buf, size);
463 ops->fini_native(&ctx, zcp);
464 if (ops->uses_fpu == B_TRUE) {
465 kfpu_end();
469 void
470 fletcher_4_native(const void *buf, uint64_t size,
471 const void *ctx_template, zio_cksum_t *zcp)
473 (void) ctx_template;
474 const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
476 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
478 if (size == 0 || p2size == 0) {
479 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
481 if (size > 0)
482 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
483 buf, size);
484 } else {
485 fletcher_4_native_impl(buf, p2size, zcp);
487 if (p2size < size)
488 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp,
489 (char *)buf + p2size, size - p2size);
493 void
494 fletcher_4_native_varsize(const void *buf, uint64_t size, zio_cksum_t *zcp)
496 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
497 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
500 static inline void
501 fletcher_4_byteswap_impl(const void *buf, uint64_t size, zio_cksum_t *zcp)
503 fletcher_4_ctx_t ctx;
504 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
506 if (ops->uses_fpu == B_TRUE) {
507 kfpu_begin();
509 ops->init_byteswap(&ctx);
510 ops->compute_byteswap(&ctx, buf, size);
511 ops->fini_byteswap(&ctx, zcp);
512 if (ops->uses_fpu == B_TRUE) {
513 kfpu_end();
517 void
518 fletcher_4_byteswap(const void *buf, uint64_t size,
519 const void *ctx_template, zio_cksum_t *zcp)
521 (void) ctx_template;
522 const uint64_t p2size = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
524 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
526 if (size == 0 || p2size == 0) {
527 ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
529 if (size > 0)
530 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
531 buf, size);
532 } else {
533 fletcher_4_byteswap_impl(buf, p2size, zcp);
535 if (p2size < size)
536 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp,
537 (char *)buf + p2size, size - p2size);
541 /* Incremental Fletcher 4 */
543 #define ZFS_FLETCHER_4_INC_MAX_SIZE (8ULL << 20)
545 static inline void
546 fletcher_4_incremental_combine(zio_cksum_t *zcp, const uint64_t size,
547 const zio_cksum_t *nzcp)
549 const uint64_t c1 = size / sizeof (uint32_t);
550 const uint64_t c2 = c1 * (c1 + 1) / 2;
551 const uint64_t c3 = c2 * (c1 + 2) / 3;
554 * Value of 'c3' overflows on buffer sizes close to 16MiB. For that
555 * reason we split incremental fletcher4 computation of large buffers
556 * to steps of (ZFS_FLETCHER_4_INC_MAX_SIZE) size.
558 ASSERT3U(size, <=, ZFS_FLETCHER_4_INC_MAX_SIZE);
560 zcp->zc_word[3] += nzcp->zc_word[3] + c1 * zcp->zc_word[2] +
561 c2 * zcp->zc_word[1] + c3 * zcp->zc_word[0];
562 zcp->zc_word[2] += nzcp->zc_word[2] + c1 * zcp->zc_word[1] +
563 c2 * zcp->zc_word[0];
564 zcp->zc_word[1] += nzcp->zc_word[1] + c1 * zcp->zc_word[0];
565 zcp->zc_word[0] += nzcp->zc_word[0];
568 static inline void
569 fletcher_4_incremental_impl(boolean_t native, const void *buf, uint64_t size,
570 zio_cksum_t *zcp)
572 while (size > 0) {
573 zio_cksum_t nzc;
574 uint64_t len = MIN(size, ZFS_FLETCHER_4_INC_MAX_SIZE);
576 if (native)
577 fletcher_4_native(buf, len, NULL, &nzc);
578 else
579 fletcher_4_byteswap(buf, len, NULL, &nzc);
581 fletcher_4_incremental_combine(zcp, len, &nzc);
583 size -= len;
584 buf += len;
589 fletcher_4_incremental_native(void *buf, size_t size, void *data)
591 zio_cksum_t *zcp = data;
592 /* Use scalar impl to directly update cksum of small blocks */
593 if (size < SPA_MINBLOCKSIZE)
594 fletcher_4_scalar_native((fletcher_4_ctx_t *)zcp, buf, size);
595 else
596 fletcher_4_incremental_impl(B_TRUE, buf, size, zcp);
597 return (0);
601 fletcher_4_incremental_byteswap(void *buf, size_t size, void *data)
603 zio_cksum_t *zcp = data;
604 /* Use scalar impl to directly update cksum of small blocks */
605 if (size < SPA_MINBLOCKSIZE)
606 fletcher_4_scalar_byteswap((fletcher_4_ctx_t *)zcp, buf, size);
607 else
608 fletcher_4_incremental_impl(B_FALSE, buf, size, zcp);
609 return (0);
612 #if defined(_KERNEL)
614 * Fletcher 4 kstats
616 static int
617 fletcher_4_kstat_headers(char *buf, size_t size)
619 ssize_t off = 0;
621 off += snprintf(buf + off, size, "%-17s", "implementation");
622 off += snprintf(buf + off, size - off, "%-15s", "native");
623 (void) snprintf(buf + off, size - off, "%-15s\n", "byteswap");
625 return (0);
628 static int
629 fletcher_4_kstat_data(char *buf, size_t size, void *data)
631 struct fletcher_4_kstat *fastest_stat =
632 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
633 struct fletcher_4_kstat *curr_stat = (struct fletcher_4_kstat *)data;
634 ssize_t off = 0;
636 if (curr_stat == fastest_stat) {
637 off += snprintf(buf + off, size - off, "%-17s", "fastest");
638 off += snprintf(buf + off, size - off, "%-15s",
639 fletcher_4_supp_impls[fastest_stat->native]->name);
640 (void) snprintf(buf + off, size - off, "%-15s\n",
641 fletcher_4_supp_impls[fastest_stat->byteswap]->name);
642 } else {
643 ptrdiff_t id = curr_stat - fletcher_4_stat_data;
645 off += snprintf(buf + off, size - off, "%-17s",
646 fletcher_4_supp_impls[id]->name);
647 off += snprintf(buf + off, size - off, "%-15llu",
648 (u_longlong_t)curr_stat->native);
649 (void) snprintf(buf + off, size - off, "%-15llu\n",
650 (u_longlong_t)curr_stat->byteswap);
653 return (0);
656 static void *
657 fletcher_4_kstat_addr(kstat_t *ksp, loff_t n)
659 if (n <= fletcher_4_supp_impls_cnt)
660 ksp->ks_private = (void *) (fletcher_4_stat_data + n);
661 else
662 ksp->ks_private = NULL;
664 return (ksp->ks_private);
666 #endif
668 #define FLETCHER_4_FASTEST_FN_COPY(type, src) \
670 fletcher_4_fastest_impl.init_ ## type = src->init_ ## type; \
671 fletcher_4_fastest_impl.fini_ ## type = src->fini_ ## type; \
672 fletcher_4_fastest_impl.compute_ ## type = src->compute_ ## type; \
673 fletcher_4_fastest_impl.uses_fpu = src->uses_fpu; \
676 #define FLETCHER_4_BENCH_NS (MSEC2NSEC(1)) /* 1ms */
678 typedef void fletcher_checksum_func_t(const void *, uint64_t, const void *,
679 zio_cksum_t *);
681 #if defined(_KERNEL)
682 static void
683 fletcher_4_benchmark_impl(boolean_t native, char *data, uint64_t data_size)
686 struct fletcher_4_kstat *fastest_stat =
687 &fletcher_4_stat_data[fletcher_4_supp_impls_cnt];
688 hrtime_t start;
689 uint64_t run_bw, run_time_ns, best_run = 0;
690 zio_cksum_t zc;
691 uint32_t i, l, sel_save = IMPL_READ(fletcher_4_impl_chosen);
693 fletcher_checksum_func_t *fletcher_4_test = native ?
694 fletcher_4_native : fletcher_4_byteswap;
696 for (i = 0; i < fletcher_4_supp_impls_cnt; i++) {
697 struct fletcher_4_kstat *stat = &fletcher_4_stat_data[i];
698 uint64_t run_count = 0;
700 /* temporary set an implementation */
701 fletcher_4_impl_chosen = i;
703 kpreempt_disable();
704 start = gethrtime();
705 do {
706 for (l = 0; l < 32; l++, run_count++)
707 fletcher_4_test(data, data_size, NULL, &zc);
709 run_time_ns = gethrtime() - start;
710 } while (run_time_ns < FLETCHER_4_BENCH_NS);
711 kpreempt_enable();
713 run_bw = data_size * run_count * NANOSEC;
714 run_bw /= run_time_ns; /* B/s */
716 if (native)
717 stat->native = run_bw;
718 else
719 stat->byteswap = run_bw;
721 if (run_bw > best_run) {
722 best_run = run_bw;
724 if (native) {
725 fastest_stat->native = i;
726 FLETCHER_4_FASTEST_FN_COPY(native,
727 fletcher_4_supp_impls[i]);
728 } else {
729 fastest_stat->byteswap = i;
730 FLETCHER_4_FASTEST_FN_COPY(byteswap,
731 fletcher_4_supp_impls[i]);
736 /* restore original selection */
737 atomic_swap_32(&fletcher_4_impl_chosen, sel_save);
739 #endif /* _KERNEL */
742 * Initialize and benchmark all supported implementations.
744 static void
745 fletcher_4_benchmark(void)
747 fletcher_4_ops_t *curr_impl;
748 int i, c;
750 /* Move supported implementations into fletcher_4_supp_impls */
751 for (i = 0, c = 0; i < ARRAY_SIZE(fletcher_4_impls); i++) {
752 curr_impl = (fletcher_4_ops_t *)fletcher_4_impls[i];
754 if (curr_impl->valid && curr_impl->valid())
755 fletcher_4_supp_impls[c++] = curr_impl;
757 membar_producer(); /* complete fletcher_4_supp_impls[] init */
758 fletcher_4_supp_impls_cnt = c; /* number of supported impl */
760 #if defined(_KERNEL)
761 static const size_t data_size = 1 << SPA_OLD_MAXBLOCKSHIFT; /* 128kiB */
762 char *databuf = vmem_alloc(data_size, KM_SLEEP);
764 for (i = 0; i < data_size / sizeof (uint64_t); i++)
765 ((uint64_t *)databuf)[i] = (uintptr_t)(databuf+i); /* warm-up */
767 fletcher_4_benchmark_impl(B_FALSE, databuf, data_size);
768 fletcher_4_benchmark_impl(B_TRUE, databuf, data_size);
770 vmem_free(databuf, data_size);
771 #else
773 * Skip the benchmark in user space to avoid impacting libzpool
774 * consumers (zdb, zhack, zinject, ztest). The last implementation
775 * is assumed to be the fastest and used by default.
777 memcpy(&fletcher_4_fastest_impl,
778 fletcher_4_supp_impls[fletcher_4_supp_impls_cnt - 1],
779 sizeof (fletcher_4_fastest_impl));
780 fletcher_4_fastest_impl.name = "fastest";
781 membar_producer();
782 #endif /* _KERNEL */
785 void
786 fletcher_4_init(void)
788 /* Determine the fastest available implementation. */
789 fletcher_4_benchmark();
791 #if defined(_KERNEL)
792 /* Install kstats for all implementations */
793 fletcher_4_kstat = kstat_create("zfs", 0, "fletcher_4_bench", "misc",
794 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
795 if (fletcher_4_kstat != NULL) {
796 fletcher_4_kstat->ks_data = NULL;
797 fletcher_4_kstat->ks_ndata = UINT32_MAX;
798 kstat_set_raw_ops(fletcher_4_kstat,
799 fletcher_4_kstat_headers,
800 fletcher_4_kstat_data,
801 fletcher_4_kstat_addr);
802 kstat_install(fletcher_4_kstat);
804 #endif
806 /* Finish initialization */
807 fletcher_4_initialized = B_TRUE;
810 void
811 fletcher_4_fini(void)
813 #if defined(_KERNEL)
814 if (fletcher_4_kstat != NULL) {
815 kstat_delete(fletcher_4_kstat);
816 fletcher_4_kstat = NULL;
818 #endif
821 /* ABD adapters */
823 static void
824 abd_fletcher_4_init(zio_abd_checksum_data_t *cdp)
826 const fletcher_4_ops_t *ops = fletcher_4_impl_get();
827 cdp->acd_private = (void *) ops;
829 if (ops->uses_fpu == B_TRUE) {
830 kfpu_begin();
832 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
833 ops->init_native(cdp->acd_ctx);
834 else
835 ops->init_byteswap(cdp->acd_ctx);
839 static void
840 abd_fletcher_4_fini(zio_abd_checksum_data_t *cdp)
842 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
844 ASSERT(ops);
846 if (cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE)
847 ops->fini_native(cdp->acd_ctx, cdp->acd_zcp);
848 else
849 ops->fini_byteswap(cdp->acd_ctx, cdp->acd_zcp);
851 if (ops->uses_fpu == B_TRUE) {
852 kfpu_end();
857 static void
858 abd_fletcher_4_simd2scalar(boolean_t native, void *data, size_t size,
859 zio_abd_checksum_data_t *cdp)
861 zio_cksum_t *zcp = cdp->acd_zcp;
863 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
865 abd_fletcher_4_fini(cdp);
866 cdp->acd_private = (void *)&fletcher_4_scalar_ops;
868 if (native)
869 fletcher_4_incremental_native(data, size, zcp);
870 else
871 fletcher_4_incremental_byteswap(data, size, zcp);
874 static int
875 abd_fletcher_4_iter(void *data, size_t size, void *private)
877 zio_abd_checksum_data_t *cdp = (zio_abd_checksum_data_t *)private;
878 fletcher_4_ctx_t *ctx = cdp->acd_ctx;
879 fletcher_4_ops_t *ops = (fletcher_4_ops_t *)cdp->acd_private;
880 boolean_t native = cdp->acd_byteorder == ZIO_CHECKSUM_NATIVE;
881 uint64_t asize = P2ALIGN(size, FLETCHER_MIN_SIMD_SIZE);
883 ASSERT(IS_P2ALIGNED(size, sizeof (uint32_t)));
885 if (asize > 0) {
886 if (native)
887 ops->compute_native(ctx, data, asize);
888 else
889 ops->compute_byteswap(ctx, data, asize);
891 size -= asize;
892 data = (char *)data + asize;
895 if (size > 0) {
896 ASSERT3U(size, <, FLETCHER_MIN_SIMD_SIZE);
897 /* At this point we have to switch to scalar impl */
898 abd_fletcher_4_simd2scalar(native, data, size, cdp);
901 return (0);
904 zio_abd_checksum_func_t fletcher_4_abd_ops = {
905 .acf_init = abd_fletcher_4_init,
906 .acf_fini = abd_fletcher_4_fini,
907 .acf_iter = abd_fletcher_4_iter
910 #if defined(_KERNEL)
912 #define IMPL_FMT(impl, i) (((impl) == (i)) ? "[%s] " : "%s ")
914 #if defined(__linux__)
916 static int
917 fletcher_4_param_get(char *buffer, zfs_kernel_param_t *unused)
919 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
920 char *fmt;
921 int cnt = 0;
923 /* list fastest */
924 fmt = IMPL_FMT(impl, IMPL_FASTEST);
925 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt, "fastest");
927 /* list all supported implementations */
928 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
929 fmt = IMPL_FMT(impl, i);
930 cnt += kmem_scnprintf(buffer + cnt, PAGE_SIZE - cnt, fmt,
931 fletcher_4_supp_impls[i]->name);
934 return (cnt);
937 static int
938 fletcher_4_param_set(const char *val, zfs_kernel_param_t *unused)
940 return (fletcher_4_impl_set(val));
943 #else
945 #include <sys/sbuf.h>
947 static int
948 fletcher_4_param(ZFS_MODULE_PARAM_ARGS)
950 int err;
952 if (req->newptr == NULL) {
953 const uint32_t impl = IMPL_READ(fletcher_4_impl_chosen);
954 const int init_buflen = 64;
955 const char *fmt;
956 struct sbuf *s;
958 s = sbuf_new_for_sysctl(NULL, NULL, init_buflen, req);
960 /* list fastest */
961 fmt = IMPL_FMT(impl, IMPL_FASTEST);
962 (void) sbuf_printf(s, fmt, "fastest");
964 /* list all supported implementations */
965 for (uint32_t i = 0; i < fletcher_4_supp_impls_cnt; ++i) {
966 fmt = IMPL_FMT(impl, i);
967 (void) sbuf_printf(s, fmt,
968 fletcher_4_supp_impls[i]->name);
971 err = sbuf_finish(s);
972 sbuf_delete(s);
974 return (err);
977 char buf[16];
979 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
980 if (err)
981 return (err);
982 return (-fletcher_4_impl_set(buf));
985 #endif
987 #undef IMPL_FMT
990 * Choose a fletcher 4 implementation in ZFS.
991 * Users can choose "cycle" to exercise all implementations, but this is
992 * for testing purpose therefore it can only be set in user space.
994 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs, zfs_, fletcher_4_impl,
995 fletcher_4_param_set, fletcher_4_param_get, ZMOD_RW,
996 "Select fletcher 4 implementation.");
998 EXPORT_SYMBOL(fletcher_init);
999 EXPORT_SYMBOL(fletcher_2_incremental_native);
1000 EXPORT_SYMBOL(fletcher_2_incremental_byteswap);
1001 EXPORT_SYMBOL(fletcher_4_init);
1002 EXPORT_SYMBOL(fletcher_4_fini);
1003 EXPORT_SYMBOL(fletcher_2_native);
1004 EXPORT_SYMBOL(fletcher_2_byteswap);
1005 EXPORT_SYMBOL(fletcher_4_native);
1006 EXPORT_SYMBOL(fletcher_4_native_varsize);
1007 EXPORT_SYMBOL(fletcher_4_byteswap);
1008 EXPORT_SYMBOL(fletcher_4_incremental_native);
1009 EXPORT_SYMBOL(fletcher_4_incremental_byteswap);
1010 EXPORT_SYMBOL(fletcher_4_abd_ops);
1011 #endif