4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
54 #include <sys/zfeature.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
66 * Enable/disable nopwrite feature.
68 static int zfs_nopwrite_enabled
= 1;
71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72 * one TXG. After this threshold is crossed, additional dirty blocks from frees
73 * will wait until the next TXG.
74 * A value of zero will disable this throttle.
76 static uint_t zfs_per_txg_dirty_frees_percent
= 30;
79 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80 * By default this is enabled to ensure accurate hole reporting, it can result
81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82 * Disabling this option will result in holes never being reported in dirty
83 * files which is always safe.
85 static int zfs_dmu_offset_next_sync
= 1;
88 * Limit the amount we can prefetch with one call to this amount. This
89 * helps to limit the amount of memory that can be used by prefetching.
90 * Larger objects should be prefetched a bit at a time.
93 uint_t dmu_prefetch_max
= 8 * 1024 * 1024;
95 uint_t dmu_prefetch_max
= 8 * SPA_MAXBLOCKSIZE
;
98 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
99 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "unallocated" },
100 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "object directory" },
101 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "object array" },
102 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "packed nvlist" },
103 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "packed nvlist size" },
104 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj" },
105 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj header" },
106 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map header" },
107 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map" },
108 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, TRUE
, "ZIL intent log" },
109 {DMU_BSWAP_DNODE
, TRUE
, FALSE
, TRUE
, "DMU dnode" },
110 {DMU_BSWAP_OBJSET
, TRUE
, TRUE
, FALSE
, "DMU objset" },
111 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL directory" },
112 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL directory child map"},
113 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset snap map" },
114 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL props" },
115 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL dataset" },
116 {DMU_BSWAP_ZNODE
, TRUE
, FALSE
, FALSE
, "ZFS znode" },
117 {DMU_BSWAP_OLDACL
, TRUE
, FALSE
, TRUE
, "ZFS V0 ACL" },
118 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "ZFS plain file" },
119 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS directory" },
120 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "ZFS master node" },
121 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS delete queue" },
122 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "zvol object" },
123 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "zvol prop" },
124 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "other uint8[]" },
125 {DMU_BSWAP_UINT64
, FALSE
, FALSE
, TRUE
, "other uint64[]" },
126 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "other ZAP" },
127 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "persistent error log" },
128 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "SPA history" },
129 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA history offsets" },
130 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "Pool properties" },
131 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL permissions" },
132 {DMU_BSWAP_ACL
, TRUE
, FALSE
, TRUE
, "ZFS ACL" },
133 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "ZFS SYSACL" },
134 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "FUID table" },
135 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "FUID table size" },
136 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset next clones"},
137 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan work queue" },
138 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project used" },
139 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project quota"},
140 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "snapshot refcount tags"},
141 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT ZAP algorithm" },
142 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT statistics" },
143 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "System attributes" },
144 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA master node" },
145 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr registration" },
146 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr layouts" },
147 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan translations" },
148 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "deduplicated block" },
149 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL deadlist map" },
150 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL deadlist map hdr" },
151 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dir clones" },
152 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj subobj" }
155 dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
156 { byteswap_uint8_array
, "uint8" },
157 { byteswap_uint16_array
, "uint16" },
158 { byteswap_uint32_array
, "uint32" },
159 { byteswap_uint64_array
, "uint64" },
160 { zap_byteswap
, "zap" },
161 { dnode_buf_byteswap
, "dnode" },
162 { dmu_objset_byteswap
, "objset" },
163 { zfs_znode_byteswap
, "znode" },
164 { zfs_oldacl_byteswap
, "oldacl" },
165 { zfs_acl_byteswap
, "acl" }
169 dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
,
170 const void *tag
, dmu_buf_t
**dbp
)
175 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
176 blkid
= dbuf_whichblock(dn
, 0, offset
);
177 db
= dbuf_hold(dn
, blkid
, tag
);
178 rw_exit(&dn
->dn_struct_rwlock
);
182 return (SET_ERROR(EIO
));
190 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
191 const void *tag
, dmu_buf_t
**dbp
)
198 err
= dnode_hold(os
, object
, FTAG
, &dn
);
201 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
202 blkid
= dbuf_whichblock(dn
, 0, offset
);
203 db
= dbuf_hold(dn
, blkid
, tag
);
204 rw_exit(&dn
->dn_struct_rwlock
);
205 dnode_rele(dn
, FTAG
);
209 return (SET_ERROR(EIO
));
217 dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
218 const void *tag
, dmu_buf_t
**dbp
, int flags
)
221 int db_flags
= DB_RF_CANFAIL
;
223 if (flags
& DMU_READ_NO_PREFETCH
)
224 db_flags
|= DB_RF_NOPREFETCH
;
225 if (flags
& DMU_READ_NO_DECRYPT
)
226 db_flags
|= DB_RF_NO_DECRYPT
;
228 err
= dmu_buf_hold_noread_by_dnode(dn
, offset
, tag
, dbp
);
230 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
231 err
= dbuf_read(db
, NULL
, db_flags
);
242 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
243 const void *tag
, dmu_buf_t
**dbp
, int flags
)
246 int db_flags
= DB_RF_CANFAIL
;
248 if (flags
& DMU_READ_NO_PREFETCH
)
249 db_flags
|= DB_RF_NOPREFETCH
;
250 if (flags
& DMU_READ_NO_DECRYPT
)
251 db_flags
|= DB_RF_NO_DECRYPT
;
253 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
255 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
256 err
= dbuf_read(db
, NULL
, db_flags
);
269 return (DN_OLD_MAX_BONUSLEN
);
273 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
275 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
282 if (dn
->dn_bonus
!= db
) {
283 error
= SET_ERROR(EINVAL
);
284 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
285 error
= SET_ERROR(EINVAL
);
287 dnode_setbonuslen(dn
, newsize
, tx
);
296 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
298 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
305 if (!DMU_OT_IS_VALID(type
)) {
306 error
= SET_ERROR(EINVAL
);
307 } else if (dn
->dn_bonus
!= db
) {
308 error
= SET_ERROR(EINVAL
);
310 dnode_setbonus_type(dn
, type
, tx
);
319 dmu_get_bonustype(dmu_buf_t
*db_fake
)
321 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
323 dmu_object_type_t type
;
327 type
= dn
->dn_bonustype
;
334 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
339 error
= dnode_hold(os
, object
, FTAG
, &dn
);
340 dbuf_rm_spill(dn
, tx
);
341 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
342 dnode_rm_spill(dn
, tx
);
343 rw_exit(&dn
->dn_struct_rwlock
);
344 dnode_rele(dn
, FTAG
);
349 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
350 * has not yet been allocated a new bonus dbuf a will be allocated.
351 * Returns ENOENT, EIO, or 0.
353 int dmu_bonus_hold_by_dnode(dnode_t
*dn
, const void *tag
, dmu_buf_t
**dbp
,
358 uint32_t db_flags
= DB_RF_MUST_SUCCEED
;
360 if (flags
& DMU_READ_NO_PREFETCH
)
361 db_flags
|= DB_RF_NOPREFETCH
;
362 if (flags
& DMU_READ_NO_DECRYPT
)
363 db_flags
|= DB_RF_NO_DECRYPT
;
365 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
366 if (dn
->dn_bonus
== NULL
) {
367 if (!rw_tryupgrade(&dn
->dn_struct_rwlock
)) {
368 rw_exit(&dn
->dn_struct_rwlock
);
369 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
371 if (dn
->dn_bonus
== NULL
)
372 dbuf_create_bonus(dn
);
376 /* as long as the bonus buf is held, the dnode will be held */
377 if (zfs_refcount_add(&db
->db_holds
, tag
) == 1) {
378 VERIFY(dnode_add_ref(dn
, db
));
379 atomic_inc_32(&dn
->dn_dbufs_count
);
383 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
384 * hold and incrementing the dbuf count to ensure that dnode_move() sees
385 * a dnode hold for every dbuf.
387 rw_exit(&dn
->dn_struct_rwlock
);
389 error
= dbuf_read(db
, NULL
, db_flags
);
391 dnode_evict_bonus(dn
);
402 dmu_bonus_hold(objset_t
*os
, uint64_t object
, const void *tag
, dmu_buf_t
**dbp
)
407 error
= dnode_hold(os
, object
, FTAG
, &dn
);
411 error
= dmu_bonus_hold_by_dnode(dn
, tag
, dbp
, DMU_READ_NO_PREFETCH
);
412 dnode_rele(dn
, FTAG
);
418 * returns ENOENT, EIO, or 0.
420 * This interface will allocate a blank spill dbuf when a spill blk
421 * doesn't already exist on the dnode.
423 * if you only want to find an already existing spill db, then
424 * dmu_spill_hold_existing() should be used.
427 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, const void *tag
,
430 dmu_buf_impl_t
*db
= NULL
;
433 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
434 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
436 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
438 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
439 rw_exit(&dn
->dn_struct_rwlock
);
443 return (SET_ERROR(EIO
));
445 err
= dbuf_read(db
, NULL
, flags
);
456 dmu_spill_hold_existing(dmu_buf_t
*bonus
, const void *tag
, dmu_buf_t
**dbp
)
458 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
465 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
466 err
= SET_ERROR(EINVAL
);
468 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
470 if (!dn
->dn_have_spill
) {
471 err
= SET_ERROR(ENOENT
);
473 err
= dmu_spill_hold_by_dnode(dn
,
474 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
477 rw_exit(&dn
->dn_struct_rwlock
);
485 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, uint32_t flags
, const void *tag
,
488 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
491 uint32_t db_flags
= DB_RF_CANFAIL
;
493 if (flags
& DMU_READ_NO_DECRYPT
)
494 db_flags
|= DB_RF_NO_DECRYPT
;
498 err
= dmu_spill_hold_by_dnode(dn
, db_flags
, tag
, dbp
);
505 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
506 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
507 * and can induce severe lock contention when writing to several files
508 * whose dnodes are in the same block.
511 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
512 boolean_t read
, const void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
,
516 zstream_t
*zs
= NULL
;
517 uint64_t blkid
, nblks
, i
;
521 boolean_t missed
= B_FALSE
;
523 ASSERT(!read
|| length
<= DMU_MAX_ACCESS
);
526 * Note: We directly notify the prefetch code of this read, so that
527 * we can tell it about the multi-block read. dbuf_read() only knows
528 * about the one block it is accessing.
530 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
533 if ((flags
& DMU_READ_NO_DECRYPT
) != 0)
534 dbuf_flags
|= DB_RF_NO_DECRYPT
;
536 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
537 if (dn
->dn_datablkshift
) {
538 int blkshift
= dn
->dn_datablkshift
;
539 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
540 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
542 if (offset
+ length
> dn
->dn_datablksz
) {
543 zfs_panic_recover("zfs: accessing past end of object "
544 "%llx/%llx (size=%u access=%llu+%llu)",
545 (longlong_t
)dn
->dn_objset
->
546 os_dsl_dataset
->ds_object
,
547 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
548 (longlong_t
)offset
, (longlong_t
)length
);
549 rw_exit(&dn
->dn_struct_rwlock
);
550 return (SET_ERROR(EIO
));
554 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
557 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
,
559 blkid
= dbuf_whichblock(dn
, 0, offset
);
560 if ((flags
& DMU_READ_NO_PREFETCH
) == 0) {
562 * Prepare the zfetch before initiating the demand reads, so
563 * that if multiple threads block on same indirect block, we
564 * base predictions on the original less racy request order.
566 zs
= dmu_zfetch_prepare(&dn
->dn_zfetch
, blkid
, nblks
, read
,
569 for (i
= 0; i
< nblks
; i
++) {
570 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
573 dmu_zfetch_run(zs
, missed
, B_TRUE
);
574 rw_exit(&dn
->dn_struct_rwlock
);
575 dmu_buf_rele_array(dbp
, nblks
, tag
);
578 return (SET_ERROR(EIO
));
582 * Initiate async demand data read.
583 * We check the db_state after calling dbuf_read() because
584 * (1) dbuf_read() may change the state to CACHED due to a
585 * hit in the ARC, and (2) on a cache miss, a child will
586 * have been added to "zio" but not yet completed, so the
587 * state will not yet be CACHED.
590 if (i
== nblks
- 1 && blkid
+ i
< dn
->dn_maxblkid
&&
591 offset
+ length
< db
->db
.db_offset
+
593 if (offset
<= db
->db
.db_offset
)
594 dbuf_flags
|= DB_RF_PARTIAL_FIRST
;
596 dbuf_flags
|= DB_RF_PARTIAL_MORE
;
598 (void) dbuf_read(db
, zio
, dbuf_flags
);
599 if (db
->db_state
!= DB_CACHED
)
606 zfs_racct_write(length
, nblks
);
609 dmu_zfetch_run(zs
, missed
, B_TRUE
);
610 rw_exit(&dn
->dn_struct_rwlock
);
613 /* wait for async read i/o */
616 dmu_buf_rele_array(dbp
, nblks
, tag
);
620 /* wait for other io to complete */
621 for (i
= 0; i
< nblks
; i
++) {
622 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
623 mutex_enter(&db
->db_mtx
);
624 while (db
->db_state
== DB_READ
||
625 db
->db_state
== DB_FILL
)
626 cv_wait(&db
->db_changed
, &db
->db_mtx
);
627 if (db
->db_state
== DB_UNCACHED
)
628 err
= SET_ERROR(EIO
);
629 mutex_exit(&db
->db_mtx
);
631 dmu_buf_rele_array(dbp
, nblks
, tag
);
643 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
644 uint64_t length
, int read
, const void *tag
, int *numbufsp
,
650 err
= dnode_hold(os
, object
, FTAG
, &dn
);
654 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
655 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
657 dnode_rele(dn
, FTAG
);
663 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
664 uint64_t length
, boolean_t read
, const void *tag
, int *numbufsp
,
667 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
673 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
674 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
681 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, const void *tag
)
684 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
689 for (i
= 0; i
< numbufs
; i
++) {
691 dbuf_rele(dbp
[i
], tag
);
694 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
698 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
699 * indirect blocks prefetched will be those that point to the blocks containing
700 * the data starting at offset, and continuing to offset + len.
702 * Note that if the indirect blocks above the blocks being prefetched are not
703 * in cache, they will be asynchronously read in.
706 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
707 uint64_t len
, zio_priority_t pri
)
713 if (len
== 0) { /* they're interested in the bonus buffer */
714 dn
= DMU_META_DNODE(os
);
716 if (object
== 0 || object
>= DN_MAX_OBJECT
)
719 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
720 blkid
= dbuf_whichblock(dn
, level
,
721 object
* sizeof (dnode_phys_t
));
722 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
723 rw_exit(&dn
->dn_struct_rwlock
);
728 * See comment before the definition of dmu_prefetch_max.
730 len
= MIN(len
, dmu_prefetch_max
);
733 * XXX - Note, if the dnode for the requested object is not
734 * already cached, we will do a *synchronous* read in the
735 * dnode_hold() call. The same is true for any indirects.
737 err
= dnode_hold(os
, object
, FTAG
, &dn
);
742 * offset + len - 1 is the last byte we want to prefetch for, and offset
743 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
744 * last block we want to prefetch, and dbuf_whichblock(dn, level,
745 * offset) is the first. Then the number we need to prefetch is the
748 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
749 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
750 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
751 dbuf_whichblock(dn
, level
, offset
) + 1;
753 nblks
= (offset
< dn
->dn_datablksz
);
757 blkid
= dbuf_whichblock(dn
, level
, offset
);
758 for (int i
= 0; i
< nblks
; i
++)
759 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
761 rw_exit(&dn
->dn_struct_rwlock
);
763 dnode_rele(dn
, FTAG
);
767 * Get the next "chunk" of file data to free. We traverse the file from
768 * the end so that the file gets shorter over time (if we crashes in the
769 * middle, this will leave us in a better state). We find allocated file
770 * data by simply searching the allocated level 1 indirects.
772 * On input, *start should be the first offset that does not need to be
773 * freed (e.g. "offset + length"). On return, *start will be the first
774 * offset that should be freed and l1blks is set to the number of level 1
775 * indirect blocks found within the chunk.
778 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
, uint64_t *l1blks
)
781 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
782 /* bytes of data covered by a level-1 indirect block */
783 uint64_t iblkrange
= (uint64_t)dn
->dn_datablksz
*
784 EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
786 ASSERT3U(minimum
, <=, *start
);
789 * Check if we can free the entire range assuming that all of the
790 * L1 blocks in this range have data. If we can, we use this
791 * worst case value as an estimate so we can avoid having to look
792 * at the object's actual data.
794 uint64_t total_l1blks
=
795 (roundup(*start
, iblkrange
) - (minimum
/ iblkrange
* iblkrange
)) /
797 if (total_l1blks
<= maxblks
) {
798 *l1blks
= total_l1blks
;
802 ASSERT(ISP2(iblkrange
));
804 for (blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
808 * dnode_next_offset(BACKWARDS) will find an allocated L1
809 * indirect block at or before the input offset. We must
810 * decrement *start so that it is at the end of the region
815 err
= dnode_next_offset(dn
,
816 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
818 /* if there are no indirect blocks before start, we are done */
822 } else if (err
!= 0) {
827 /* set start to the beginning of this L1 indirect */
828 *start
= P2ALIGN(*start
, iblkrange
);
830 if (*start
< minimum
)
838 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
839 * otherwise return false.
840 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
843 dmu_objset_zfs_unmounting(objset_t
*os
)
846 if (dmu_objset_type(os
) == DMU_OST_ZFS
)
847 return (zfs_get_vfs_flag_unmounted(os
));
855 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
858 uint64_t object_size
;
860 uint64_t dirty_frees_threshold
;
861 dsl_pool_t
*dp
= dmu_objset_pool(os
);
864 return (SET_ERROR(EINVAL
));
866 object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
867 if (offset
>= object_size
)
870 if (zfs_per_txg_dirty_frees_percent
<= 100)
871 dirty_frees_threshold
=
872 zfs_per_txg_dirty_frees_percent
* zfs_dirty_data_max
/ 100;
874 dirty_frees_threshold
= zfs_dirty_data_max
/ 20;
876 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
877 length
= object_size
- offset
;
879 while (length
!= 0) {
880 uint64_t chunk_end
, chunk_begin
, chunk_len
;
884 if (dmu_objset_zfs_unmounting(dn
->dn_objset
))
885 return (SET_ERROR(EINTR
));
887 chunk_end
= chunk_begin
= offset
+ length
;
889 /* move chunk_begin backwards to the beginning of this chunk */
890 err
= get_next_chunk(dn
, &chunk_begin
, offset
, &l1blks
);
893 ASSERT3U(chunk_begin
, >=, offset
);
894 ASSERT3U(chunk_begin
, <=, chunk_end
);
896 chunk_len
= chunk_end
- chunk_begin
;
898 tx
= dmu_tx_create(os
);
899 dmu_tx_hold_free(tx
, dn
->dn_object
, chunk_begin
, chunk_len
);
902 * Mark this transaction as typically resulting in a net
903 * reduction in space used.
905 dmu_tx_mark_netfree(tx
);
906 err
= dmu_tx_assign(tx
, TXG_WAIT
);
912 uint64_t txg
= dmu_tx_get_txg(tx
);
914 mutex_enter(&dp
->dp_lock
);
915 uint64_t long_free_dirty
=
916 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
];
917 mutex_exit(&dp
->dp_lock
);
920 * To avoid filling up a TXG with just frees, wait for
921 * the next TXG to open before freeing more chunks if
922 * we have reached the threshold of frees.
924 if (dirty_frees_threshold
!= 0 &&
925 long_free_dirty
>= dirty_frees_threshold
) {
926 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay
);
928 txg_wait_open(dp
, 0, B_TRUE
);
933 * In order to prevent unnecessary write throttling, for each
934 * TXG, we track the cumulative size of L1 blocks being dirtied
935 * in dnode_free_range() below. We compare this number to a
936 * tunable threshold, past which we prevent new L1 dirty freeing
937 * blocks from being added into the open TXG. See
938 * dmu_free_long_range_impl() for details. The threshold
939 * prevents write throttle activation due to dirty freeing L1
940 * blocks taking up a large percentage of zfs_dirty_data_max.
942 mutex_enter(&dp
->dp_lock
);
943 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
] +=
944 l1blks
<< dn
->dn_indblkshift
;
945 mutex_exit(&dp
->dp_lock
);
946 DTRACE_PROBE3(free__long__range
,
947 uint64_t, long_free_dirty
, uint64_t, chunk_len
,
949 dnode_free_range(dn
, chunk_begin
, chunk_len
, tx
);
959 dmu_free_long_range(objset_t
*os
, uint64_t object
,
960 uint64_t offset
, uint64_t length
)
965 err
= dnode_hold(os
, object
, FTAG
, &dn
);
968 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
971 * It is important to zero out the maxblkid when freeing the entire
972 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
973 * will take the fast path, and (b) dnode_reallocate() can verify
974 * that the entire file has been freed.
976 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
979 dnode_rele(dn
, FTAG
);
984 dmu_free_long_object(objset_t
*os
, uint64_t object
)
989 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
993 tx
= dmu_tx_create(os
);
994 dmu_tx_hold_bonus(tx
, object
);
995 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
996 dmu_tx_mark_netfree(tx
);
997 err
= dmu_tx_assign(tx
, TXG_WAIT
);
999 err
= dmu_object_free(os
, object
, tx
);
1009 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
1010 uint64_t size
, dmu_tx_t
*tx
)
1013 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
1016 ASSERT(offset
< UINT64_MAX
);
1017 ASSERT(size
== DMU_OBJECT_END
|| size
<= UINT64_MAX
- offset
);
1018 dnode_free_range(dn
, offset
, size
, tx
);
1019 dnode_rele(dn
, FTAG
);
1024 dmu_read_impl(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1025 void *buf
, uint32_t flags
)
1028 int numbufs
, err
= 0;
1031 * Deal with odd block sizes, where there can't be data past the first
1032 * block. If we ever do the tail block optimization, we will need to
1033 * handle that here as well.
1035 if (dn
->dn_maxblkid
== 0) {
1036 uint64_t newsz
= offset
> dn
->dn_datablksz
? 0 :
1037 MIN(size
, dn
->dn_datablksz
- offset
);
1038 memset((char *)buf
+ newsz
, 0, size
- newsz
);
1043 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
1047 * NB: we could do this block-at-a-time, but it's nice
1048 * to be reading in parallel.
1050 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
1051 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
1055 for (i
= 0; i
< numbufs
; i
++) {
1058 dmu_buf_t
*db
= dbp
[i
];
1062 bufoff
= offset
- db
->db_offset
;
1063 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1065 (void) memcpy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
1069 buf
= (char *)buf
+ tocpy
;
1071 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1077 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1078 void *buf
, uint32_t flags
)
1083 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1087 err
= dmu_read_impl(dn
, offset
, size
, buf
, flags
);
1088 dnode_rele(dn
, FTAG
);
1093 dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
1096 return (dmu_read_impl(dn
, offset
, size
, buf
, flags
));
1100 dmu_write_impl(dmu_buf_t
**dbp
, int numbufs
, uint64_t offset
, uint64_t size
,
1101 const void *buf
, dmu_tx_t
*tx
)
1105 for (i
= 0; i
< numbufs
; i
++) {
1108 dmu_buf_t
*db
= dbp
[i
];
1112 bufoff
= offset
- db
->db_offset
;
1113 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1115 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1117 if (tocpy
== db
->db_size
)
1118 dmu_buf_will_fill(db
, tx
);
1120 dmu_buf_will_dirty(db
, tx
);
1122 (void) memcpy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
1124 if (tocpy
== db
->db_size
)
1125 dmu_buf_fill_done(db
, tx
);
1129 buf
= (char *)buf
+ tocpy
;
1134 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1135 const void *buf
, dmu_tx_t
*tx
)
1143 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
1144 FALSE
, FTAG
, &numbufs
, &dbp
));
1145 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1146 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1150 * Note: Lustre is an external consumer of this interface.
1153 dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1154 const void *buf
, dmu_tx_t
*tx
)
1162 VERIFY0(dmu_buf_hold_array_by_dnode(dn
, offset
, size
,
1163 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
));
1164 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1165 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1169 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1178 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
1179 FALSE
, FTAG
, &numbufs
, &dbp
));
1181 for (i
= 0; i
< numbufs
; i
++) {
1182 dmu_buf_t
*db
= dbp
[i
];
1184 dmu_buf_will_not_fill(db
, tx
);
1186 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1190 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
1191 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
1192 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
1196 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
1197 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
1198 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
1201 dmu_buf_write_embedded(db
,
1202 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
1203 uncompressed_size
, compressed_size
, byteorder
, tx
);
1205 dmu_buf_rele(db
, FTAG
);
1209 dmu_redact(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1215 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
, FALSE
, FTAG
,
1217 for (i
= 0; i
< numbufs
; i
++)
1218 dmu_buf_redact(dbp
[i
], tx
);
1219 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1224 dmu_read_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
)
1227 int numbufs
, i
, err
;
1230 * NB: we could do this block-at-a-time, but it's nice
1231 * to be reading in parallel.
1233 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1234 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1238 for (i
= 0; i
< numbufs
; i
++) {
1241 dmu_buf_t
*db
= dbp
[i
];
1245 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1246 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1248 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
, tocpy
,
1256 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1262 * Read 'size' bytes into the uio buffer.
1263 * From object zdb->db_object.
1264 * Starting at zfs_uio_offset(uio).
1266 * If the caller already has a dbuf in the target object
1267 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1268 * because we don't have to find the dnode_t for the object.
1271 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
)
1273 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1282 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1289 * Read 'size' bytes into the uio buffer.
1290 * From the specified object
1291 * Starting at offset zfs_uio_offset(uio).
1294 dmu_read_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
)
1302 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1306 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1308 dnode_rele(dn
, FTAG
);
1314 dmu_write_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1321 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1322 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1326 for (i
= 0; i
< numbufs
; i
++) {
1329 dmu_buf_t
*db
= dbp
[i
];
1333 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1334 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1336 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1338 if (tocpy
== db
->db_size
)
1339 dmu_buf_will_fill(db
, tx
);
1341 dmu_buf_will_dirty(db
, tx
);
1344 * XXX zfs_uiomove could block forever (eg.nfs-backed
1345 * pages). There needs to be a uiolockdown() function
1346 * to lock the pages in memory, so that zfs_uiomove won't
1349 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
,
1350 tocpy
, UIO_WRITE
, uio
);
1352 if (tocpy
== db
->db_size
)
1353 dmu_buf_fill_done(db
, tx
);
1361 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1366 * Write 'size' bytes from the uio buffer.
1367 * To object zdb->db_object.
1368 * Starting at offset zfs_uio_offset(uio).
1370 * If the caller already has a dbuf in the target object
1371 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1372 * because we don't have to find the dnode_t for the object.
1375 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
,
1378 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1387 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1394 * Write 'size' bytes from the uio buffer.
1395 * To the specified object.
1396 * Starting at offset zfs_uio_offset(uio).
1399 dmu_write_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
,
1408 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1412 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1414 dnode_rele(dn
, FTAG
);
1418 #endif /* _KERNEL */
1421 * Allocate a loaned anonymous arc buffer.
1424 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1426 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1428 return (arc_loan_buf(db
->db_objset
->os_spa
, B_FALSE
, size
));
1432 * Free a loaned arc buffer.
1435 dmu_return_arcbuf(arc_buf_t
*buf
)
1437 arc_return_buf(buf
, FTAG
);
1438 arc_buf_destroy(buf
, FTAG
);
1442 * A "lightweight" write is faster than a regular write (e.g.
1443 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1444 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1445 * data can not be read or overwritten until the transaction's txg has been
1446 * synced. This makes it appropriate for workloads that are known to be
1447 * (temporarily) write-only, like "zfs receive".
1449 * A single block is written, starting at the specified offset in bytes. If
1450 * the call is successful, it returns 0 and the provided abd has been
1451 * consumed (the caller should not free it).
1454 dmu_lightweight_write_by_dnode(dnode_t
*dn
, uint64_t offset
, abd_t
*abd
,
1455 const zio_prop_t
*zp
, zio_flag_t flags
, dmu_tx_t
*tx
)
1457 dbuf_dirty_record_t
*dr
=
1458 dbuf_dirty_lightweight(dn
, dbuf_whichblock(dn
, 0, offset
), tx
);
1460 return (SET_ERROR(EIO
));
1461 dr
->dt
.dll
.dr_abd
= abd
;
1462 dr
->dt
.dll
.dr_props
= *zp
;
1463 dr
->dt
.dll
.dr_flags
= flags
;
1468 * When possible directly assign passed loaned arc buffer to a dbuf.
1469 * If this is not possible copy the contents of passed arc buf via
1473 dmu_assign_arcbuf_by_dnode(dnode_t
*dn
, uint64_t offset
, arc_buf_t
*buf
,
1477 objset_t
*os
= dn
->dn_objset
;
1478 uint64_t object
= dn
->dn_object
;
1479 uint32_t blksz
= (uint32_t)arc_buf_lsize(buf
);
1482 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1483 blkid
= dbuf_whichblock(dn
, 0, offset
);
1484 db
= dbuf_hold(dn
, blkid
, FTAG
);
1486 return (SET_ERROR(EIO
));
1487 rw_exit(&dn
->dn_struct_rwlock
);
1490 * We can only assign if the offset is aligned and the arc buf is the
1491 * same size as the dbuf.
1493 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
) {
1494 zfs_racct_write(blksz
, 1);
1495 dbuf_assign_arcbuf(db
, buf
, tx
);
1496 dbuf_rele(db
, FTAG
);
1498 /* compressed bufs must always be assignable to their dbuf */
1499 ASSERT3U(arc_get_compression(buf
), ==, ZIO_COMPRESS_OFF
);
1500 ASSERT(!(buf
->b_flags
& ARC_BUF_FLAG_COMPRESSED
));
1502 dbuf_rele(db
, FTAG
);
1503 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1504 dmu_return_arcbuf(buf
);
1511 dmu_assign_arcbuf_by_dbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1515 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1517 DB_DNODE_ENTER(dbuf
);
1518 err
= dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf
), offset
, buf
, tx
);
1519 DB_DNODE_EXIT(dbuf
);
1525 dbuf_dirty_record_t
*dsa_dr
;
1526 dmu_sync_cb_t
*dsa_done
;
1532 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1535 dmu_sync_arg_t
*dsa
= varg
;
1536 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1537 blkptr_t
*bp
= zio
->io_bp
;
1539 if (zio
->io_error
== 0) {
1540 if (BP_IS_HOLE(bp
)) {
1542 * A block of zeros may compress to a hole, but the
1543 * block size still needs to be known for replay.
1545 BP_SET_LSIZE(bp
, db
->db_size
);
1546 } else if (!BP_IS_EMBEDDED(bp
)) {
1547 ASSERT(BP_GET_LEVEL(bp
) == 0);
1554 dmu_sync_late_arrival_ready(zio_t
*zio
)
1556 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1560 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1563 dmu_sync_arg_t
*dsa
= varg
;
1564 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1565 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1566 zgd_t
*zgd
= dsa
->dsa_zgd
;
1569 * Record the vdev(s) backing this blkptr so they can be flushed after
1570 * the writes for the lwb have completed.
1572 if (zio
->io_error
== 0) {
1573 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1576 mutex_enter(&db
->db_mtx
);
1577 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1578 if (zio
->io_error
== 0) {
1579 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1580 if (dr
->dt
.dl
.dr_nopwrite
) {
1581 blkptr_t
*bp
= zio
->io_bp
;
1582 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1583 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1585 ASSERT(BP_EQUAL(bp
, bp_orig
));
1586 VERIFY(BP_EQUAL(bp
, db
->db_blkptr
));
1587 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1588 VERIFY(zio_checksum_table
[chksum
].ci_flags
&
1589 ZCHECKSUM_FLAG_NOPWRITE
);
1591 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1592 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1593 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1596 * Old style holes are filled with all zeros, whereas
1597 * new-style holes maintain their lsize, type, level,
1598 * and birth time (see zio_write_compress). While we
1599 * need to reset the BP_SET_LSIZE() call that happened
1600 * in dmu_sync_ready for old style holes, we do *not*
1601 * want to wipe out the information contained in new
1602 * style holes. Thus, only zero out the block pointer if
1603 * it's an old style hole.
1605 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1606 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1607 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1609 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1611 cv_broadcast(&db
->db_changed
);
1612 mutex_exit(&db
->db_mtx
);
1614 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1616 kmem_free(dsa
, sizeof (*dsa
));
1620 dmu_sync_late_arrival_done(zio_t
*zio
)
1622 blkptr_t
*bp
= zio
->io_bp
;
1623 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1624 zgd_t
*zgd
= dsa
->dsa_zgd
;
1626 if (zio
->io_error
== 0) {
1628 * Record the vdev(s) backing this blkptr so they can be
1629 * flushed after the writes for the lwb have completed.
1631 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1633 if (!BP_IS_HOLE(bp
)) {
1634 blkptr_t
*bp_orig __maybe_unused
= &zio
->io_bp_orig
;
1635 ASSERT(!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
1636 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1637 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1638 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1639 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1643 dmu_tx_commit(dsa
->dsa_tx
);
1645 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1647 abd_free(zio
->io_abd
);
1648 kmem_free(dsa
, sizeof (*dsa
));
1652 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1653 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1655 dmu_sync_arg_t
*dsa
;
1659 error
= dbuf_read((dmu_buf_impl_t
*)zgd
->zgd_db
, NULL
,
1660 DB_RF_CANFAIL
| DB_RF_NOPREFETCH
);
1664 tx
= dmu_tx_create(os
);
1665 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1667 * This transaction does not produce any dirty data or log blocks, so
1668 * it should not be throttled. All other cases wait for TXG sync, by
1669 * which time the log block we are writing will be obsolete, so we can
1670 * skip waiting and just return error here instead.
1672 if (dmu_tx_assign(tx
, TXG_NOWAIT
| TXG_NOTHROTTLE
) != 0) {
1674 /* Make zl_get_data do txg_waited_synced() */
1675 return (SET_ERROR(EIO
));
1679 * In order to prevent the zgd's lwb from being free'd prior to
1680 * dmu_sync_late_arrival_done() being called, we have to ensure
1681 * the lwb's "max txg" takes this tx's txg into account.
1683 zil_lwb_add_txg(zgd
->zgd_lwb
, dmu_tx_get_txg(tx
));
1685 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1687 dsa
->dsa_done
= done
;
1692 * Since we are currently syncing this txg, it's nontrivial to
1693 * determine what BP to nopwrite against, so we disable nopwrite.
1695 * When syncing, the db_blkptr is initially the BP of the previous
1696 * txg. We can not nopwrite against it because it will be changed
1697 * (this is similar to the non-late-arrival case where the dbuf is
1698 * dirty in a future txg).
1700 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1701 * We can not nopwrite against it because although the BP will not
1702 * (typically) be changed, the data has not yet been persisted to this
1705 * Finally, when dbuf_write_done() is called, it is theoretically
1706 * possible to always nopwrite, because the data that was written in
1707 * this txg is the same data that we are trying to write. However we
1708 * would need to check that this dbuf is not dirty in any future
1709 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1710 * don't nopwrite in this case.
1712 zp
->zp_nopwrite
= B_FALSE
;
1714 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
1715 abd_get_from_buf(zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
),
1716 zgd
->zgd_db
->db_size
, zgd
->zgd_db
->db_size
, zp
,
1717 dmu_sync_late_arrival_ready
, NULL
, dmu_sync_late_arrival_done
,
1718 dsa
, ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, zb
));
1724 * Intent log support: sync the block associated with db to disk.
1725 * N.B. and XXX: the caller is responsible for making sure that the
1726 * data isn't changing while dmu_sync() is writing it.
1730 * EEXIST: this txg has already been synced, so there's nothing to do.
1731 * The caller should not log the write.
1733 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1734 * The caller should not log the write.
1736 * EALREADY: this block is already in the process of being synced.
1737 * The caller should track its progress (somehow).
1739 * EIO: could not do the I/O.
1740 * The caller should do a txg_wait_synced().
1742 * 0: the I/O has been initiated.
1743 * The caller should log this blkptr in the done callback.
1744 * It is possible that the I/O will fail, in which case
1745 * the error will be reported to the done callback and
1746 * propagated to pio from zio_done().
1749 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1751 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1752 objset_t
*os
= db
->db_objset
;
1753 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1754 dbuf_dirty_record_t
*dr
, *dr_next
;
1755 dmu_sync_arg_t
*dsa
;
1756 zbookmark_phys_t zb
;
1760 ASSERT(pio
!= NULL
);
1763 SET_BOOKMARK(&zb
, ds
->ds_object
,
1764 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1768 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
, &zp
);
1772 * If we're frozen (running ziltest), we always need to generate a bp.
1774 if (txg
> spa_freeze_txg(os
->os_spa
))
1775 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1778 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1779 * and us. If we determine that this txg is not yet syncing,
1780 * but it begins to sync a moment later, that's OK because the
1781 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1783 mutex_enter(&db
->db_mtx
);
1785 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1787 * This txg has already synced. There's nothing to do.
1789 mutex_exit(&db
->db_mtx
);
1790 return (SET_ERROR(EEXIST
));
1793 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1795 * This txg is currently syncing, so we can't mess with
1796 * the dirty record anymore; just write a new log block.
1798 mutex_exit(&db
->db_mtx
);
1799 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1802 dr
= dbuf_find_dirty_eq(db
, txg
);
1806 * There's no dr for this dbuf, so it must have been freed.
1807 * There's no need to log writes to freed blocks, so we're done.
1809 mutex_exit(&db
->db_mtx
);
1810 return (SET_ERROR(ENOENT
));
1813 dr_next
= list_next(&db
->db_dirty_records
, dr
);
1814 ASSERT(dr_next
== NULL
|| dr_next
->dr_txg
< txg
);
1816 if (db
->db_blkptr
!= NULL
) {
1818 * We need to fill in zgd_bp with the current blkptr so that
1819 * the nopwrite code can check if we're writing the same
1820 * data that's already on disk. We can only nopwrite if we
1821 * are sure that after making the copy, db_blkptr will not
1822 * change until our i/o completes. We ensure this by
1823 * holding the db_mtx, and only allowing nopwrite if the
1824 * block is not already dirty (see below). This is verified
1825 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1828 *zgd
->zgd_bp
= *db
->db_blkptr
;
1832 * Assume the on-disk data is X, the current syncing data (in
1833 * txg - 1) is Y, and the current in-memory data is Z (currently
1836 * We usually want to perform a nopwrite if X and Z are the
1837 * same. However, if Y is different (i.e. the BP is going to
1838 * change before this write takes effect), then a nopwrite will
1839 * be incorrect - we would override with X, which could have
1840 * been freed when Y was written.
1842 * (Note that this is not a concern when we are nop-writing from
1843 * syncing context, because X and Y must be identical, because
1844 * all previous txgs have been synced.)
1846 * Therefore, we disable nopwrite if the current BP could change
1847 * before this TXG. There are two ways it could change: by
1848 * being dirty (dr_next is non-NULL), or by being freed
1849 * (dnode_block_freed()). This behavior is verified by
1850 * zio_done(), which VERIFYs that the override BP is identical
1851 * to the on-disk BP.
1855 if (dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1856 zp
.zp_nopwrite
= B_FALSE
;
1859 ASSERT(dr
->dr_txg
== txg
);
1860 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1861 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1863 * We have already issued a sync write for this buffer,
1864 * or this buffer has already been synced. It could not
1865 * have been dirtied since, or we would have cleared the state.
1867 mutex_exit(&db
->db_mtx
);
1868 return (SET_ERROR(EALREADY
));
1871 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1872 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1873 mutex_exit(&db
->db_mtx
);
1875 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1877 dsa
->dsa_done
= done
;
1881 zio_nowait(arc_write(pio
, os
->os_spa
, txg
, zgd
->zgd_bp
,
1882 dr
->dt
.dl
.dr_data
, !DBUF_IS_CACHEABLE(db
), dbuf_is_l2cacheable(db
),
1883 &zp
, dmu_sync_ready
, NULL
, dmu_sync_done
, dsa
,
1884 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, &zb
));
1890 dmu_object_set_nlevels(objset_t
*os
, uint64_t object
, int nlevels
, dmu_tx_t
*tx
)
1895 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1898 err
= dnode_set_nlevels(dn
, nlevels
, tx
);
1899 dnode_rele(dn
, FTAG
);
1904 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1910 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1913 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1914 dnode_rele(dn
, FTAG
);
1919 dmu_object_set_maxblkid(objset_t
*os
, uint64_t object
, uint64_t maxblkid
,
1925 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1928 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
1929 dnode_new_blkid(dn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
1930 rw_exit(&dn
->dn_struct_rwlock
);
1931 dnode_rele(dn
, FTAG
);
1936 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1942 * Send streams include each object's checksum function. This
1943 * check ensures that the receiving system can understand the
1944 * checksum function transmitted.
1946 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1948 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1949 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1950 dn
->dn_checksum
= checksum
;
1951 dnode_setdirty(dn
, tx
);
1952 dnode_rele(dn
, FTAG
);
1956 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1962 * Send streams include each object's compression function. This
1963 * check ensures that the receiving system can understand the
1964 * compression function transmitted.
1966 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1968 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1969 dn
->dn_compress
= compress
;
1970 dnode_setdirty(dn
, tx
);
1971 dnode_rele(dn
, FTAG
);
1975 * When the "redundant_metadata" property is set to "most", only indirect
1976 * blocks of this level and higher will have an additional ditto block.
1978 static const int zfs_redundant_metadata_most_ditto_level
= 2;
1981 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
1983 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1984 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1986 enum zio_checksum checksum
= os
->os_checksum
;
1987 enum zio_compress compress
= os
->os_compress
;
1988 uint8_t complevel
= os
->os_complevel
;
1989 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1990 boolean_t dedup
= B_FALSE
;
1991 boolean_t nopwrite
= B_FALSE
;
1992 boolean_t dedup_verify
= os
->os_dedup_verify
;
1993 boolean_t encrypt
= B_FALSE
;
1994 int copies
= os
->os_copies
;
1997 * We maintain different write policies for each of the following
2000 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2001 * 3. all other level 0 blocks
2005 * XXX -- we should design a compression algorithm
2006 * that specializes in arrays of bps.
2008 compress
= zio_compress_select(os
->os_spa
,
2009 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
2012 * Metadata always gets checksummed. If the data
2013 * checksum is multi-bit correctable, and it's not a
2014 * ZBT-style checksum, then it's suitable for metadata
2015 * as well. Otherwise, the metadata checksum defaults
2018 if (!(zio_checksum_table
[checksum
].ci_flags
&
2019 ZCHECKSUM_FLAG_METADATA
) ||
2020 (zio_checksum_table
[checksum
].ci_flags
&
2021 ZCHECKSUM_FLAG_EMBEDDED
))
2022 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
2024 switch (os
->os_redundant_metadata
) {
2025 case ZFS_REDUNDANT_METADATA_ALL
:
2028 case ZFS_REDUNDANT_METADATA_MOST
:
2029 if (level
>= zfs_redundant_metadata_most_ditto_level
||
2030 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))
2033 case ZFS_REDUNDANT_METADATA_SOME
:
2034 if (DMU_OT_IS_CRITICAL(type
))
2037 case ZFS_REDUNDANT_METADATA_NONE
:
2040 } else if (wp
& WP_NOFILL
) {
2044 * If we're writing preallocated blocks, we aren't actually
2045 * writing them so don't set any policy properties. These
2046 * blocks are currently only used by an external subsystem
2047 * outside of zfs (i.e. dump) and not written by the zio
2050 compress
= ZIO_COMPRESS_OFF
;
2051 checksum
= ZIO_CHECKSUM_OFF
;
2053 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
2055 complevel
= zio_complevel_select(os
->os_spa
, compress
,
2056 complevel
, complevel
);
2058 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
2059 zio_checksum_select(dn
->dn_checksum
, checksum
) :
2063 * Determine dedup setting. If we are in dmu_sync(),
2064 * we won't actually dedup now because that's all
2065 * done in syncing context; but we do want to use the
2066 * dedup checksum. If the checksum is not strong
2067 * enough to ensure unique signatures, force
2070 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
2071 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
2072 if (!(zio_checksum_table
[checksum
].ci_flags
&
2073 ZCHECKSUM_FLAG_DEDUP
))
2074 dedup_verify
= B_TRUE
;
2078 * Enable nopwrite if we have secure enough checksum
2079 * algorithm (see comment in zio_nop_write) and
2080 * compression is enabled. We don't enable nopwrite if
2081 * dedup is enabled as the two features are mutually
2084 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
2085 ZCHECKSUM_FLAG_NOPWRITE
) &&
2086 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
2090 * All objects in an encrypted objset are protected from modification
2091 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2092 * in the bp, so we cannot use all copies. Encrypted objects are also
2093 * not subject to nopwrite since writing the same data will still
2094 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2095 * to avoid ambiguity in the dedup code since the DDT does not store
2098 if (os
->os_encrypted
&& (wp
& WP_NOFILL
) == 0) {
2101 if (DMU_OT_IS_ENCRYPTED(type
)) {
2102 copies
= MIN(copies
, SPA_DVAS_PER_BP
- 1);
2109 (type
== DMU_OT_DNODE
|| type
== DMU_OT_OBJSET
)) {
2110 compress
= ZIO_COMPRESS_EMPTY
;
2114 zp
->zp_compress
= compress
;
2115 zp
->zp_complevel
= complevel
;
2116 zp
->zp_checksum
= checksum
;
2117 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
2118 zp
->zp_level
= level
;
2119 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
2120 zp
->zp_dedup
= dedup
;
2121 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
2122 zp
->zp_nopwrite
= nopwrite
;
2123 zp
->zp_encrypt
= encrypt
;
2124 zp
->zp_byteorder
= ZFS_HOST_BYTEORDER
;
2125 memset(zp
->zp_salt
, 0, ZIO_DATA_SALT_LEN
);
2126 memset(zp
->zp_iv
, 0, ZIO_DATA_IV_LEN
);
2127 memset(zp
->zp_mac
, 0, ZIO_DATA_MAC_LEN
);
2128 zp
->zp_zpl_smallblk
= DMU_OT_IS_FILE(zp
->zp_type
) ?
2129 os
->os_zpl_special_smallblock
: 0;
2131 ASSERT3U(zp
->zp_compress
, !=, ZIO_COMPRESS_INHERIT
);
2135 * Reports the location of data and holes in an object. In order to
2136 * accurately report holes all dirty data must be synced to disk. This
2137 * causes extremely poor performance when seeking for holes in a dirty file.
2138 * As a compromise, only provide hole data when the dnode is clean. When
2139 * a dnode is dirty report the dnode as having no holes by returning EBUSY
2140 * which is always safe to do.
2143 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
2146 int restarted
= 0, err
;
2149 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2153 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2155 if (dnode_is_dirty(dn
)) {
2157 * If the zfs_dmu_offset_next_sync module option is enabled
2158 * then hole reporting has been requested. Dirty dnodes
2159 * must be synced to disk to accurately report holes.
2161 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2162 * held by the caller only a single restart will be required.
2163 * We tolerate callers which do not hold the rangelock by
2164 * returning EBUSY and not reporting holes after one restart.
2166 if (zfs_dmu_offset_next_sync
) {
2167 rw_exit(&dn
->dn_struct_rwlock
);
2168 dnode_rele(dn
, FTAG
);
2171 return (SET_ERROR(EBUSY
));
2173 txg_wait_synced(dmu_objset_pool(os
), 0);
2178 err
= SET_ERROR(EBUSY
);
2180 err
= dnode_next_offset(dn
, DNODE_FIND_HAVELOCK
|
2181 (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
2184 rw_exit(&dn
->dn_struct_rwlock
);
2185 dnode_rele(dn
, FTAG
);
2191 dmu_read_l0_bps(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t length
,
2192 blkptr_t
*bps
, size_t *nbpsp
)
2194 dmu_buf_t
**dbp
, *dbuf
;
2199 error
= dmu_buf_hold_array(os
, object
, offset
, length
, FALSE
, FTAG
,
2202 if (error
== ESRCH
) {
2203 error
= SET_ERROR(ENXIO
);
2208 ASSERT3U(numbufs
, <=, *nbpsp
);
2210 for (int i
= 0; i
< numbufs
; i
++) {
2212 db
= (dmu_buf_impl_t
*)dbuf
;
2214 mutex_enter(&db
->db_mtx
);
2216 if (!list_is_empty(&db
->db_dirty_records
)) {
2217 dbuf_dirty_record_t
*dr
;
2219 dr
= list_head(&db
->db_dirty_records
);
2220 if (dr
->dt
.dl
.dr_brtwrite
) {
2222 * This is very special case where we clone a
2223 * block and in the same transaction group we
2224 * read its BP (most likely to clone the clone).
2226 bp
= &dr
->dt
.dl
.dr_overridden_by
;
2229 * The block was modified in the same
2230 * transaction group.
2232 mutex_exit(&db
->db_mtx
);
2233 error
= SET_ERROR(EAGAIN
);
2240 mutex_exit(&db
->db_mtx
);
2244 * The block was created in this transaction group,
2245 * so it has no BP yet.
2247 error
= SET_ERROR(EAGAIN
);
2251 * Make sure we clone only data blocks.
2253 if (BP_IS_METADATA(bp
) && !BP_IS_HOLE(bp
)) {
2254 error
= SET_ERROR(EINVAL
);
2263 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
2269 dmu_brt_clone(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t length
,
2270 dmu_tx_t
*tx
, const blkptr_t
*bps
, size_t nbps
)
2273 dmu_buf_t
**dbp
, *dbuf
;
2275 struct dirty_leaf
*dl
;
2276 dbuf_dirty_record_t
*dr
;
2278 int error
= 0, i
, numbufs
;
2282 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, length
, FALSE
, FTAG
,
2284 ASSERT3U(nbps
, ==, numbufs
);
2287 * Before we start cloning make sure that the dbufs sizes match new BPs
2288 * sizes. If they don't, that's a no-go, as we are not able to shrink
2291 for (i
= 0; i
< numbufs
; i
++) {
2293 db
= (dmu_buf_impl_t
*)dbuf
;
2296 ASSERT0(db
->db_level
);
2297 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2298 ASSERT(db
->db_blkid
!= DMU_SPILL_BLKID
);
2300 if (!BP_IS_HOLE(bp
) && BP_GET_LSIZE(bp
) != dbuf
->db_size
) {
2301 error
= SET_ERROR(EXDEV
);
2306 for (i
= 0; i
< numbufs
; i
++) {
2308 db
= (dmu_buf_impl_t
*)dbuf
;
2311 ASSERT0(db
->db_level
);
2312 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2313 ASSERT(db
->db_blkid
!= DMU_SPILL_BLKID
);
2314 ASSERT(BP_IS_HOLE(bp
) || dbuf
->db_size
== BP_GET_LSIZE(bp
));
2316 dmu_buf_will_clone(dbuf
, tx
);
2318 mutex_enter(&db
->db_mtx
);
2320 dr
= list_head(&db
->db_dirty_records
);
2322 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2324 dl
->dr_overridden_by
= *bp
;
2325 dl
->dr_brtwrite
= B_TRUE
;
2326 dl
->dr_override_state
= DR_OVERRIDDEN
;
2327 if (BP_IS_HOLE(bp
)) {
2328 dl
->dr_overridden_by
.blk_birth
= 0;
2329 dl
->dr_overridden_by
.blk_phys_birth
= 0;
2331 dl
->dr_overridden_by
.blk_birth
= dr
->dr_txg
;
2332 if (!BP_IS_EMBEDDED(bp
)) {
2333 dl
->dr_overridden_by
.blk_phys_birth
=
2334 BP_PHYSICAL_BIRTH(bp
);
2338 mutex_exit(&db
->db_mtx
);
2341 * When data in embedded into BP there is no need to create
2342 * BRT entry as there is no data block. Just copy the BP as
2343 * it contains the data.
2345 if (!BP_IS_HOLE(bp
) && !BP_IS_EMBEDDED(bp
)) {
2346 brt_pending_add(spa
, bp
, tx
);
2350 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
2356 __dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2358 dnode_phys_t
*dnp
= dn
->dn_phys
;
2360 doi
->doi_data_block_size
= dn
->dn_datablksz
;
2361 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
2362 1ULL << dn
->dn_indblkshift
: 0;
2363 doi
->doi_type
= dn
->dn_type
;
2364 doi
->doi_bonus_type
= dn
->dn_bonustype
;
2365 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
2366 doi
->doi_dnodesize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2367 doi
->doi_indirection
= dn
->dn_nlevels
;
2368 doi
->doi_checksum
= dn
->dn_checksum
;
2369 doi
->doi_compress
= dn
->dn_compress
;
2370 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
2371 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
2372 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
2373 doi
->doi_fill_count
= 0;
2374 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
2375 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
2379 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2381 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2382 mutex_enter(&dn
->dn_mtx
);
2384 __dmu_object_info_from_dnode(dn
, doi
);
2386 mutex_exit(&dn
->dn_mtx
);
2387 rw_exit(&dn
->dn_struct_rwlock
);
2391 * Get information on a DMU object.
2392 * If doi is NULL, just indicates whether the object exists.
2395 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
2398 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
2404 dmu_object_info_from_dnode(dn
, doi
);
2406 dnode_rele(dn
, FTAG
);
2411 * As above, but faster; can be used when you have a held dbuf in hand.
2414 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
2416 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2419 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
2424 * Faster still when you only care about the size.
2427 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
2428 u_longlong_t
*nblk512
)
2430 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2436 *blksize
= dn
->dn_datablksz
;
2437 /* add in number of slots used for the dnode itself */
2438 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
2439 SPA_MINBLOCKSHIFT
) + dn
->dn_num_slots
;
2444 dmu_object_dnsize_from_db(dmu_buf_t
*db_fake
, int *dnsize
)
2446 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2451 *dnsize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2456 byteswap_uint64_array(void *vbuf
, size_t size
)
2458 uint64_t *buf
= vbuf
;
2459 size_t count
= size
>> 3;
2462 ASSERT((size
& 7) == 0);
2464 for (i
= 0; i
< count
; i
++)
2465 buf
[i
] = BSWAP_64(buf
[i
]);
2469 byteswap_uint32_array(void *vbuf
, size_t size
)
2471 uint32_t *buf
= vbuf
;
2472 size_t count
= size
>> 2;
2475 ASSERT((size
& 3) == 0);
2477 for (i
= 0; i
< count
; i
++)
2478 buf
[i
] = BSWAP_32(buf
[i
]);
2482 byteswap_uint16_array(void *vbuf
, size_t size
)
2484 uint16_t *buf
= vbuf
;
2485 size_t count
= size
>> 1;
2488 ASSERT((size
& 1) == 0);
2490 for (i
= 0; i
< count
; i
++)
2491 buf
[i
] = BSWAP_16(buf
[i
]);
2495 byteswap_uint8_array(void *vbuf
, size_t size
)
2497 (void) vbuf
, (void) size
;
2518 arc_fini(); /* arc depends on l2arc, so arc must go first */
2530 EXPORT_SYMBOL(dmu_bonus_hold
);
2531 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode
);
2532 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus
);
2533 EXPORT_SYMBOL(dmu_buf_rele_array
);
2534 EXPORT_SYMBOL(dmu_prefetch
);
2535 EXPORT_SYMBOL(dmu_free_range
);
2536 EXPORT_SYMBOL(dmu_free_long_range
);
2537 EXPORT_SYMBOL(dmu_free_long_object
);
2538 EXPORT_SYMBOL(dmu_read
);
2539 EXPORT_SYMBOL(dmu_read_by_dnode
);
2540 EXPORT_SYMBOL(dmu_write
);
2541 EXPORT_SYMBOL(dmu_write_by_dnode
);
2542 EXPORT_SYMBOL(dmu_prealloc
);
2543 EXPORT_SYMBOL(dmu_object_info
);
2544 EXPORT_SYMBOL(dmu_object_info_from_dnode
);
2545 EXPORT_SYMBOL(dmu_object_info_from_db
);
2546 EXPORT_SYMBOL(dmu_object_size_from_db
);
2547 EXPORT_SYMBOL(dmu_object_dnsize_from_db
);
2548 EXPORT_SYMBOL(dmu_object_set_nlevels
);
2549 EXPORT_SYMBOL(dmu_object_set_blocksize
);
2550 EXPORT_SYMBOL(dmu_object_set_maxblkid
);
2551 EXPORT_SYMBOL(dmu_object_set_checksum
);
2552 EXPORT_SYMBOL(dmu_object_set_compress
);
2553 EXPORT_SYMBOL(dmu_offset_next
);
2554 EXPORT_SYMBOL(dmu_write_policy
);
2555 EXPORT_SYMBOL(dmu_sync
);
2556 EXPORT_SYMBOL(dmu_request_arcbuf
);
2557 EXPORT_SYMBOL(dmu_return_arcbuf
);
2558 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode
);
2559 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf
);
2560 EXPORT_SYMBOL(dmu_buf_hold
);
2561 EXPORT_SYMBOL(dmu_ot
);
2563 ZFS_MODULE_PARAM(zfs
, zfs_
, nopwrite_enabled
, INT
, ZMOD_RW
,
2564 "Enable NOP writes");
2566 ZFS_MODULE_PARAM(zfs
, zfs_
, per_txg_dirty_frees_percent
, UINT
, ZMOD_RW
,
2567 "Percentage of dirtied blocks from frees in one TXG");
2569 ZFS_MODULE_PARAM(zfs
, zfs_
, dmu_offset_next_sync
, INT
, ZMOD_RW
,
2570 "Enable forcing txg sync to find holes");
2573 ZFS_MODULE_PARAM(zfs
, , dmu_prefetch_max
, UINT
, ZMOD_RW
,
2574 "Limit one prefetch call to this size");