ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / zfs / dmu.c
blob3f626031de52be4caaa21d605033ec200e723880
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
35 #include <sys/dmu.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dbuf.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
50 #include <sys/zap.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
53 #include <sys/sa.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/brt.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
60 #ifdef _KERNEL
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
63 #endif
66 * Enable/disable nopwrite feature.
68 static int zfs_nopwrite_enabled = 1;
71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72 * one TXG. After this threshold is crossed, additional dirty blocks from frees
73 * will wait until the next TXG.
74 * A value of zero will disable this throttle.
76 static uint_t zfs_per_txg_dirty_frees_percent = 30;
79 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80 * By default this is enabled to ensure accurate hole reporting, it can result
81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82 * Disabling this option will result in holes never being reported in dirty
83 * files which is always safe.
85 static int zfs_dmu_offset_next_sync = 1;
88 * Limit the amount we can prefetch with one call to this amount. This
89 * helps to limit the amount of memory that can be used by prefetching.
90 * Larger objects should be prefetched a bit at a time.
92 #ifdef _ILP32
93 uint_t dmu_prefetch_max = 8 * 1024 * 1024;
94 #else
95 uint_t dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
96 #endif
98 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
99 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
100 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
101 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
102 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
103 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
104 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
105 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
106 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
107 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
108 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
109 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
110 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
111 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
112 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
113 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
114 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
115 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
116 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
117 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
118 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
119 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
121 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
122 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
123 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
124 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
125 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
126 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
127 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
128 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
129 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
130 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
131 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
132 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
133 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
134 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
135 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
136 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
137 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
140 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
141 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
142 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
143 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
144 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
145 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
146 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
147 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
148 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
149 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
150 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
151 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
152 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
155 dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
156 { byteswap_uint8_array, "uint8" },
157 { byteswap_uint16_array, "uint16" },
158 { byteswap_uint32_array, "uint32" },
159 { byteswap_uint64_array, "uint64" },
160 { zap_byteswap, "zap" },
161 { dnode_buf_byteswap, "dnode" },
162 { dmu_objset_byteswap, "objset" },
163 { zfs_znode_byteswap, "znode" },
164 { zfs_oldacl_byteswap, "oldacl" },
165 { zfs_acl_byteswap, "acl" }
169 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
170 const void *tag, dmu_buf_t **dbp)
172 uint64_t blkid;
173 dmu_buf_impl_t *db;
175 rw_enter(&dn->dn_struct_rwlock, RW_READER);
176 blkid = dbuf_whichblock(dn, 0, offset);
177 db = dbuf_hold(dn, blkid, tag);
178 rw_exit(&dn->dn_struct_rwlock);
180 if (db == NULL) {
181 *dbp = NULL;
182 return (SET_ERROR(EIO));
185 *dbp = &db->db;
186 return (0);
190 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
191 const void *tag, dmu_buf_t **dbp)
193 dnode_t *dn;
194 uint64_t blkid;
195 dmu_buf_impl_t *db;
196 int err;
198 err = dnode_hold(os, object, FTAG, &dn);
199 if (err)
200 return (err);
201 rw_enter(&dn->dn_struct_rwlock, RW_READER);
202 blkid = dbuf_whichblock(dn, 0, offset);
203 db = dbuf_hold(dn, blkid, tag);
204 rw_exit(&dn->dn_struct_rwlock);
205 dnode_rele(dn, FTAG);
207 if (db == NULL) {
208 *dbp = NULL;
209 return (SET_ERROR(EIO));
212 *dbp = &db->db;
213 return (err);
217 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
218 const void *tag, dmu_buf_t **dbp, int flags)
220 int err;
221 int db_flags = DB_RF_CANFAIL;
223 if (flags & DMU_READ_NO_PREFETCH)
224 db_flags |= DB_RF_NOPREFETCH;
225 if (flags & DMU_READ_NO_DECRYPT)
226 db_flags |= DB_RF_NO_DECRYPT;
228 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
229 if (err == 0) {
230 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
231 err = dbuf_read(db, NULL, db_flags);
232 if (err != 0) {
233 dbuf_rele(db, tag);
234 *dbp = NULL;
238 return (err);
242 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
243 const void *tag, dmu_buf_t **dbp, int flags)
245 int err;
246 int db_flags = DB_RF_CANFAIL;
248 if (flags & DMU_READ_NO_PREFETCH)
249 db_flags |= DB_RF_NOPREFETCH;
250 if (flags & DMU_READ_NO_DECRYPT)
251 db_flags |= DB_RF_NO_DECRYPT;
253 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
254 if (err == 0) {
255 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
256 err = dbuf_read(db, NULL, db_flags);
257 if (err != 0) {
258 dbuf_rele(db, tag);
259 *dbp = NULL;
263 return (err);
267 dmu_bonus_max(void)
269 return (DN_OLD_MAX_BONUSLEN);
273 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
276 dnode_t *dn;
277 int error;
279 DB_DNODE_ENTER(db);
280 dn = DB_DNODE(db);
282 if (dn->dn_bonus != db) {
283 error = SET_ERROR(EINVAL);
284 } else if (newsize < 0 || newsize > db_fake->db_size) {
285 error = SET_ERROR(EINVAL);
286 } else {
287 dnode_setbonuslen(dn, newsize, tx);
288 error = 0;
291 DB_DNODE_EXIT(db);
292 return (error);
296 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
298 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
299 dnode_t *dn;
300 int error;
302 DB_DNODE_ENTER(db);
303 dn = DB_DNODE(db);
305 if (!DMU_OT_IS_VALID(type)) {
306 error = SET_ERROR(EINVAL);
307 } else if (dn->dn_bonus != db) {
308 error = SET_ERROR(EINVAL);
309 } else {
310 dnode_setbonus_type(dn, type, tx);
311 error = 0;
314 DB_DNODE_EXIT(db);
315 return (error);
318 dmu_object_type_t
319 dmu_get_bonustype(dmu_buf_t *db_fake)
321 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
322 dnode_t *dn;
323 dmu_object_type_t type;
325 DB_DNODE_ENTER(db);
326 dn = DB_DNODE(db);
327 type = dn->dn_bonustype;
328 DB_DNODE_EXIT(db);
330 return (type);
334 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
336 dnode_t *dn;
337 int error;
339 error = dnode_hold(os, object, FTAG, &dn);
340 dbuf_rm_spill(dn, tx);
341 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
342 dnode_rm_spill(dn, tx);
343 rw_exit(&dn->dn_struct_rwlock);
344 dnode_rele(dn, FTAG);
345 return (error);
349 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
350 * has not yet been allocated a new bonus dbuf a will be allocated.
351 * Returns ENOENT, EIO, or 0.
353 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
354 uint32_t flags)
356 dmu_buf_impl_t *db;
357 int error;
358 uint32_t db_flags = DB_RF_MUST_SUCCEED;
360 if (flags & DMU_READ_NO_PREFETCH)
361 db_flags |= DB_RF_NOPREFETCH;
362 if (flags & DMU_READ_NO_DECRYPT)
363 db_flags |= DB_RF_NO_DECRYPT;
365 rw_enter(&dn->dn_struct_rwlock, RW_READER);
366 if (dn->dn_bonus == NULL) {
367 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
368 rw_exit(&dn->dn_struct_rwlock);
369 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
371 if (dn->dn_bonus == NULL)
372 dbuf_create_bonus(dn);
374 db = dn->dn_bonus;
376 /* as long as the bonus buf is held, the dnode will be held */
377 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
378 VERIFY(dnode_add_ref(dn, db));
379 atomic_inc_32(&dn->dn_dbufs_count);
383 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
384 * hold and incrementing the dbuf count to ensure that dnode_move() sees
385 * a dnode hold for every dbuf.
387 rw_exit(&dn->dn_struct_rwlock);
389 error = dbuf_read(db, NULL, db_flags);
390 if (error) {
391 dnode_evict_bonus(dn);
392 dbuf_rele(db, tag);
393 *dbp = NULL;
394 return (error);
397 *dbp = &db->db;
398 return (0);
402 dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag, dmu_buf_t **dbp)
404 dnode_t *dn;
405 int error;
407 error = dnode_hold(os, object, FTAG, &dn);
408 if (error)
409 return (error);
411 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
412 dnode_rele(dn, FTAG);
414 return (error);
418 * returns ENOENT, EIO, or 0.
420 * This interface will allocate a blank spill dbuf when a spill blk
421 * doesn't already exist on the dnode.
423 * if you only want to find an already existing spill db, then
424 * dmu_spill_hold_existing() should be used.
427 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, const void *tag,
428 dmu_buf_t **dbp)
430 dmu_buf_impl_t *db = NULL;
431 int err;
433 if ((flags & DB_RF_HAVESTRUCT) == 0)
434 rw_enter(&dn->dn_struct_rwlock, RW_READER);
436 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
438 if ((flags & DB_RF_HAVESTRUCT) == 0)
439 rw_exit(&dn->dn_struct_rwlock);
441 if (db == NULL) {
442 *dbp = NULL;
443 return (SET_ERROR(EIO));
445 err = dbuf_read(db, NULL, flags);
446 if (err == 0)
447 *dbp = &db->db;
448 else {
449 dbuf_rele(db, tag);
450 *dbp = NULL;
452 return (err);
456 dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp)
458 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
459 dnode_t *dn;
460 int err;
462 DB_DNODE_ENTER(db);
463 dn = DB_DNODE(db);
465 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
466 err = SET_ERROR(EINVAL);
467 } else {
468 rw_enter(&dn->dn_struct_rwlock, RW_READER);
470 if (!dn->dn_have_spill) {
471 err = SET_ERROR(ENOENT);
472 } else {
473 err = dmu_spill_hold_by_dnode(dn,
474 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
477 rw_exit(&dn->dn_struct_rwlock);
480 DB_DNODE_EXIT(db);
481 return (err);
485 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
486 dmu_buf_t **dbp)
488 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
489 dnode_t *dn;
490 int err;
491 uint32_t db_flags = DB_RF_CANFAIL;
493 if (flags & DMU_READ_NO_DECRYPT)
494 db_flags |= DB_RF_NO_DECRYPT;
496 DB_DNODE_ENTER(db);
497 dn = DB_DNODE(db);
498 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
499 DB_DNODE_EXIT(db);
501 return (err);
505 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
506 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
507 * and can induce severe lock contention when writing to several files
508 * whose dnodes are in the same block.
511 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
512 boolean_t read, const void *tag, int *numbufsp, dmu_buf_t ***dbpp,
513 uint32_t flags)
515 dmu_buf_t **dbp;
516 zstream_t *zs = NULL;
517 uint64_t blkid, nblks, i;
518 uint32_t dbuf_flags;
519 int err;
520 zio_t *zio = NULL;
521 boolean_t missed = B_FALSE;
523 ASSERT(!read || length <= DMU_MAX_ACCESS);
526 * Note: We directly notify the prefetch code of this read, so that
527 * we can tell it about the multi-block read. dbuf_read() only knows
528 * about the one block it is accessing.
530 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
531 DB_RF_NOPREFETCH;
533 if ((flags & DMU_READ_NO_DECRYPT) != 0)
534 dbuf_flags |= DB_RF_NO_DECRYPT;
536 rw_enter(&dn->dn_struct_rwlock, RW_READER);
537 if (dn->dn_datablkshift) {
538 int blkshift = dn->dn_datablkshift;
539 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
540 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
541 } else {
542 if (offset + length > dn->dn_datablksz) {
543 zfs_panic_recover("zfs: accessing past end of object "
544 "%llx/%llx (size=%u access=%llu+%llu)",
545 (longlong_t)dn->dn_objset->
546 os_dsl_dataset->ds_object,
547 (longlong_t)dn->dn_object, dn->dn_datablksz,
548 (longlong_t)offset, (longlong_t)length);
549 rw_exit(&dn->dn_struct_rwlock);
550 return (SET_ERROR(EIO));
552 nblks = 1;
554 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
556 if (read)
557 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL,
558 ZIO_FLAG_CANFAIL);
559 blkid = dbuf_whichblock(dn, 0, offset);
560 if ((flags & DMU_READ_NO_PREFETCH) == 0) {
562 * Prepare the zfetch before initiating the demand reads, so
563 * that if multiple threads block on same indirect block, we
564 * base predictions on the original less racy request order.
566 zs = dmu_zfetch_prepare(&dn->dn_zfetch, blkid, nblks, read,
567 B_TRUE);
569 for (i = 0; i < nblks; i++) {
570 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
571 if (db == NULL) {
572 if (zs)
573 dmu_zfetch_run(zs, missed, B_TRUE);
574 rw_exit(&dn->dn_struct_rwlock);
575 dmu_buf_rele_array(dbp, nblks, tag);
576 if (read)
577 zio_nowait(zio);
578 return (SET_ERROR(EIO));
582 * Initiate async demand data read.
583 * We check the db_state after calling dbuf_read() because
584 * (1) dbuf_read() may change the state to CACHED due to a
585 * hit in the ARC, and (2) on a cache miss, a child will
586 * have been added to "zio" but not yet completed, so the
587 * state will not yet be CACHED.
589 if (read) {
590 if (i == nblks - 1 && blkid + i < dn->dn_maxblkid &&
591 offset + length < db->db.db_offset +
592 db->db.db_size) {
593 if (offset <= db->db.db_offset)
594 dbuf_flags |= DB_RF_PARTIAL_FIRST;
595 else
596 dbuf_flags |= DB_RF_PARTIAL_MORE;
598 (void) dbuf_read(db, zio, dbuf_flags);
599 if (db->db_state != DB_CACHED)
600 missed = B_TRUE;
602 dbp[i] = &db->db;
605 if (!read)
606 zfs_racct_write(length, nblks);
608 if (zs)
609 dmu_zfetch_run(zs, missed, B_TRUE);
610 rw_exit(&dn->dn_struct_rwlock);
612 if (read) {
613 /* wait for async read i/o */
614 err = zio_wait(zio);
615 if (err) {
616 dmu_buf_rele_array(dbp, nblks, tag);
617 return (err);
620 /* wait for other io to complete */
621 for (i = 0; i < nblks; i++) {
622 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
623 mutex_enter(&db->db_mtx);
624 while (db->db_state == DB_READ ||
625 db->db_state == DB_FILL)
626 cv_wait(&db->db_changed, &db->db_mtx);
627 if (db->db_state == DB_UNCACHED)
628 err = SET_ERROR(EIO);
629 mutex_exit(&db->db_mtx);
630 if (err) {
631 dmu_buf_rele_array(dbp, nblks, tag);
632 return (err);
637 *numbufsp = nblks;
638 *dbpp = dbp;
639 return (0);
643 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
644 uint64_t length, int read, const void *tag, int *numbufsp,
645 dmu_buf_t ***dbpp)
647 dnode_t *dn;
648 int err;
650 err = dnode_hold(os, object, FTAG, &dn);
651 if (err)
652 return (err);
654 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
655 numbufsp, dbpp, DMU_READ_PREFETCH);
657 dnode_rele(dn, FTAG);
659 return (err);
663 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
664 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
665 dmu_buf_t ***dbpp)
667 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
668 dnode_t *dn;
669 int err;
671 DB_DNODE_ENTER(db);
672 dn = DB_DNODE(db);
673 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
674 numbufsp, dbpp, DMU_READ_PREFETCH);
675 DB_DNODE_EXIT(db);
677 return (err);
680 void
681 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, const void *tag)
683 int i;
684 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
686 if (numbufs == 0)
687 return;
689 for (i = 0; i < numbufs; i++) {
690 if (dbp[i])
691 dbuf_rele(dbp[i], tag);
694 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
698 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
699 * indirect blocks prefetched will be those that point to the blocks containing
700 * the data starting at offset, and continuing to offset + len.
702 * Note that if the indirect blocks above the blocks being prefetched are not
703 * in cache, they will be asynchronously read in.
705 void
706 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
707 uint64_t len, zio_priority_t pri)
709 dnode_t *dn;
710 uint64_t blkid;
711 int nblks, err;
713 if (len == 0) { /* they're interested in the bonus buffer */
714 dn = DMU_META_DNODE(os);
716 if (object == 0 || object >= DN_MAX_OBJECT)
717 return;
719 rw_enter(&dn->dn_struct_rwlock, RW_READER);
720 blkid = dbuf_whichblock(dn, level,
721 object * sizeof (dnode_phys_t));
722 dbuf_prefetch(dn, level, blkid, pri, 0);
723 rw_exit(&dn->dn_struct_rwlock);
724 return;
728 * See comment before the definition of dmu_prefetch_max.
730 len = MIN(len, dmu_prefetch_max);
733 * XXX - Note, if the dnode for the requested object is not
734 * already cached, we will do a *synchronous* read in the
735 * dnode_hold() call. The same is true for any indirects.
737 err = dnode_hold(os, object, FTAG, &dn);
738 if (err != 0)
739 return;
742 * offset + len - 1 is the last byte we want to prefetch for, and offset
743 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
744 * last block we want to prefetch, and dbuf_whichblock(dn, level,
745 * offset) is the first. Then the number we need to prefetch is the
746 * last - first + 1.
748 rw_enter(&dn->dn_struct_rwlock, RW_READER);
749 if (level > 0 || dn->dn_datablkshift != 0) {
750 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
751 dbuf_whichblock(dn, level, offset) + 1;
752 } else {
753 nblks = (offset < dn->dn_datablksz);
756 if (nblks != 0) {
757 blkid = dbuf_whichblock(dn, level, offset);
758 for (int i = 0; i < nblks; i++)
759 dbuf_prefetch(dn, level, blkid + i, pri, 0);
761 rw_exit(&dn->dn_struct_rwlock);
763 dnode_rele(dn, FTAG);
767 * Get the next "chunk" of file data to free. We traverse the file from
768 * the end so that the file gets shorter over time (if we crashes in the
769 * middle, this will leave us in a better state). We find allocated file
770 * data by simply searching the allocated level 1 indirects.
772 * On input, *start should be the first offset that does not need to be
773 * freed (e.g. "offset + length"). On return, *start will be the first
774 * offset that should be freed and l1blks is set to the number of level 1
775 * indirect blocks found within the chunk.
777 static int
778 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
780 uint64_t blks;
781 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
782 /* bytes of data covered by a level-1 indirect block */
783 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
784 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
786 ASSERT3U(minimum, <=, *start);
789 * Check if we can free the entire range assuming that all of the
790 * L1 blocks in this range have data. If we can, we use this
791 * worst case value as an estimate so we can avoid having to look
792 * at the object's actual data.
794 uint64_t total_l1blks =
795 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
796 iblkrange;
797 if (total_l1blks <= maxblks) {
798 *l1blks = total_l1blks;
799 *start = minimum;
800 return (0);
802 ASSERT(ISP2(iblkrange));
804 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
805 int err;
808 * dnode_next_offset(BACKWARDS) will find an allocated L1
809 * indirect block at or before the input offset. We must
810 * decrement *start so that it is at the end of the region
811 * to search.
813 (*start)--;
815 err = dnode_next_offset(dn,
816 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
818 /* if there are no indirect blocks before start, we are done */
819 if (err == ESRCH) {
820 *start = minimum;
821 break;
822 } else if (err != 0) {
823 *l1blks = blks;
824 return (err);
827 /* set start to the beginning of this L1 indirect */
828 *start = P2ALIGN(*start, iblkrange);
830 if (*start < minimum)
831 *start = minimum;
832 *l1blks = blks;
834 return (0);
838 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
839 * otherwise return false.
840 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
842 static boolean_t
843 dmu_objset_zfs_unmounting(objset_t *os)
845 #ifdef _KERNEL
846 if (dmu_objset_type(os) == DMU_OST_ZFS)
847 return (zfs_get_vfs_flag_unmounted(os));
848 #else
849 (void) os;
850 #endif
851 return (B_FALSE);
854 static int
855 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
856 uint64_t length)
858 uint64_t object_size;
859 int err;
860 uint64_t dirty_frees_threshold;
861 dsl_pool_t *dp = dmu_objset_pool(os);
863 if (dn == NULL)
864 return (SET_ERROR(EINVAL));
866 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
867 if (offset >= object_size)
868 return (0);
870 if (zfs_per_txg_dirty_frees_percent <= 100)
871 dirty_frees_threshold =
872 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
873 else
874 dirty_frees_threshold = zfs_dirty_data_max / 20;
876 if (length == DMU_OBJECT_END || offset + length > object_size)
877 length = object_size - offset;
879 while (length != 0) {
880 uint64_t chunk_end, chunk_begin, chunk_len;
881 uint64_t l1blks;
882 dmu_tx_t *tx;
884 if (dmu_objset_zfs_unmounting(dn->dn_objset))
885 return (SET_ERROR(EINTR));
887 chunk_end = chunk_begin = offset + length;
889 /* move chunk_begin backwards to the beginning of this chunk */
890 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
891 if (err)
892 return (err);
893 ASSERT3U(chunk_begin, >=, offset);
894 ASSERT3U(chunk_begin, <=, chunk_end);
896 chunk_len = chunk_end - chunk_begin;
898 tx = dmu_tx_create(os);
899 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
902 * Mark this transaction as typically resulting in a net
903 * reduction in space used.
905 dmu_tx_mark_netfree(tx);
906 err = dmu_tx_assign(tx, TXG_WAIT);
907 if (err) {
908 dmu_tx_abort(tx);
909 return (err);
912 uint64_t txg = dmu_tx_get_txg(tx);
914 mutex_enter(&dp->dp_lock);
915 uint64_t long_free_dirty =
916 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
917 mutex_exit(&dp->dp_lock);
920 * To avoid filling up a TXG with just frees, wait for
921 * the next TXG to open before freeing more chunks if
922 * we have reached the threshold of frees.
924 if (dirty_frees_threshold != 0 &&
925 long_free_dirty >= dirty_frees_threshold) {
926 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
927 dmu_tx_commit(tx);
928 txg_wait_open(dp, 0, B_TRUE);
929 continue;
933 * In order to prevent unnecessary write throttling, for each
934 * TXG, we track the cumulative size of L1 blocks being dirtied
935 * in dnode_free_range() below. We compare this number to a
936 * tunable threshold, past which we prevent new L1 dirty freeing
937 * blocks from being added into the open TXG. See
938 * dmu_free_long_range_impl() for details. The threshold
939 * prevents write throttle activation due to dirty freeing L1
940 * blocks taking up a large percentage of zfs_dirty_data_max.
942 mutex_enter(&dp->dp_lock);
943 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
944 l1blks << dn->dn_indblkshift;
945 mutex_exit(&dp->dp_lock);
946 DTRACE_PROBE3(free__long__range,
947 uint64_t, long_free_dirty, uint64_t, chunk_len,
948 uint64_t, txg);
949 dnode_free_range(dn, chunk_begin, chunk_len, tx);
951 dmu_tx_commit(tx);
953 length -= chunk_len;
955 return (0);
959 dmu_free_long_range(objset_t *os, uint64_t object,
960 uint64_t offset, uint64_t length)
962 dnode_t *dn;
963 int err;
965 err = dnode_hold(os, object, FTAG, &dn);
966 if (err != 0)
967 return (err);
968 err = dmu_free_long_range_impl(os, dn, offset, length);
971 * It is important to zero out the maxblkid when freeing the entire
972 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
973 * will take the fast path, and (b) dnode_reallocate() can verify
974 * that the entire file has been freed.
976 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
977 dn->dn_maxblkid = 0;
979 dnode_rele(dn, FTAG);
980 return (err);
984 dmu_free_long_object(objset_t *os, uint64_t object)
986 dmu_tx_t *tx;
987 int err;
989 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
990 if (err != 0)
991 return (err);
993 tx = dmu_tx_create(os);
994 dmu_tx_hold_bonus(tx, object);
995 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
996 dmu_tx_mark_netfree(tx);
997 err = dmu_tx_assign(tx, TXG_WAIT);
998 if (err == 0) {
999 err = dmu_object_free(os, object, tx);
1000 dmu_tx_commit(tx);
1001 } else {
1002 dmu_tx_abort(tx);
1005 return (err);
1009 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
1010 uint64_t size, dmu_tx_t *tx)
1012 dnode_t *dn;
1013 int err = dnode_hold(os, object, FTAG, &dn);
1014 if (err)
1015 return (err);
1016 ASSERT(offset < UINT64_MAX);
1017 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
1018 dnode_free_range(dn, offset, size, tx);
1019 dnode_rele(dn, FTAG);
1020 return (0);
1023 static int
1024 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
1025 void *buf, uint32_t flags)
1027 dmu_buf_t **dbp;
1028 int numbufs, err = 0;
1031 * Deal with odd block sizes, where there can't be data past the first
1032 * block. If we ever do the tail block optimization, we will need to
1033 * handle that here as well.
1035 if (dn->dn_maxblkid == 0) {
1036 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
1037 MIN(size, dn->dn_datablksz - offset);
1038 memset((char *)buf + newsz, 0, size - newsz);
1039 size = newsz;
1042 while (size > 0) {
1043 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
1044 int i;
1047 * NB: we could do this block-at-a-time, but it's nice
1048 * to be reading in parallel.
1050 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1051 TRUE, FTAG, &numbufs, &dbp, flags);
1052 if (err)
1053 break;
1055 for (i = 0; i < numbufs; i++) {
1056 uint64_t tocpy;
1057 int64_t bufoff;
1058 dmu_buf_t *db = dbp[i];
1060 ASSERT(size > 0);
1062 bufoff = offset - db->db_offset;
1063 tocpy = MIN(db->db_size - bufoff, size);
1065 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1067 offset += tocpy;
1068 size -= tocpy;
1069 buf = (char *)buf + tocpy;
1071 dmu_buf_rele_array(dbp, numbufs, FTAG);
1073 return (err);
1077 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1078 void *buf, uint32_t flags)
1080 dnode_t *dn;
1081 int err;
1083 err = dnode_hold(os, object, FTAG, &dn);
1084 if (err != 0)
1085 return (err);
1087 err = dmu_read_impl(dn, offset, size, buf, flags);
1088 dnode_rele(dn, FTAG);
1089 return (err);
1093 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1094 uint32_t flags)
1096 return (dmu_read_impl(dn, offset, size, buf, flags));
1099 static void
1100 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1101 const void *buf, dmu_tx_t *tx)
1103 int i;
1105 for (i = 0; i < numbufs; i++) {
1106 uint64_t tocpy;
1107 int64_t bufoff;
1108 dmu_buf_t *db = dbp[i];
1110 ASSERT(size > 0);
1112 bufoff = offset - db->db_offset;
1113 tocpy = MIN(db->db_size - bufoff, size);
1115 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1117 if (tocpy == db->db_size)
1118 dmu_buf_will_fill(db, tx);
1119 else
1120 dmu_buf_will_dirty(db, tx);
1122 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1124 if (tocpy == db->db_size)
1125 dmu_buf_fill_done(db, tx);
1127 offset += tocpy;
1128 size -= tocpy;
1129 buf = (char *)buf + tocpy;
1133 void
1134 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1135 const void *buf, dmu_tx_t *tx)
1137 dmu_buf_t **dbp;
1138 int numbufs;
1140 if (size == 0)
1141 return;
1143 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1144 FALSE, FTAG, &numbufs, &dbp));
1145 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1146 dmu_buf_rele_array(dbp, numbufs, FTAG);
1150 * Note: Lustre is an external consumer of this interface.
1152 void
1153 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1154 const void *buf, dmu_tx_t *tx)
1156 dmu_buf_t **dbp;
1157 int numbufs;
1159 if (size == 0)
1160 return;
1162 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1163 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1164 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1165 dmu_buf_rele_array(dbp, numbufs, FTAG);
1168 void
1169 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1170 dmu_tx_t *tx)
1172 dmu_buf_t **dbp;
1173 int numbufs, i;
1175 if (size == 0)
1176 return;
1178 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1179 FALSE, FTAG, &numbufs, &dbp));
1181 for (i = 0; i < numbufs; i++) {
1182 dmu_buf_t *db = dbp[i];
1184 dmu_buf_will_not_fill(db, tx);
1186 dmu_buf_rele_array(dbp, numbufs, FTAG);
1189 void
1190 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1191 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1192 int compressed_size, int byteorder, dmu_tx_t *tx)
1194 dmu_buf_t *db;
1196 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1197 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1198 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1199 FTAG, &db));
1201 dmu_buf_write_embedded(db,
1202 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1203 uncompressed_size, compressed_size, byteorder, tx);
1205 dmu_buf_rele(db, FTAG);
1208 void
1209 dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1210 dmu_tx_t *tx)
1212 int numbufs, i;
1213 dmu_buf_t **dbp;
1215 VERIFY0(dmu_buf_hold_array(os, object, offset, size, FALSE, FTAG,
1216 &numbufs, &dbp));
1217 for (i = 0; i < numbufs; i++)
1218 dmu_buf_redact(dbp[i], tx);
1219 dmu_buf_rele_array(dbp, numbufs, FTAG);
1222 #ifdef _KERNEL
1224 dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size)
1226 dmu_buf_t **dbp;
1227 int numbufs, i, err;
1230 * NB: we could do this block-at-a-time, but it's nice
1231 * to be reading in parallel.
1233 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1234 TRUE, FTAG, &numbufs, &dbp, 0);
1235 if (err)
1236 return (err);
1238 for (i = 0; i < numbufs; i++) {
1239 uint64_t tocpy;
1240 int64_t bufoff;
1241 dmu_buf_t *db = dbp[i];
1243 ASSERT(size > 0);
1245 bufoff = zfs_uio_offset(uio) - db->db_offset;
1246 tocpy = MIN(db->db_size - bufoff, size);
1248 err = zfs_uio_fault_move((char *)db->db_data + bufoff, tocpy,
1249 UIO_READ, uio);
1251 if (err)
1252 break;
1254 size -= tocpy;
1256 dmu_buf_rele_array(dbp, numbufs, FTAG);
1258 return (err);
1262 * Read 'size' bytes into the uio buffer.
1263 * From object zdb->db_object.
1264 * Starting at zfs_uio_offset(uio).
1266 * If the caller already has a dbuf in the target object
1267 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1268 * because we don't have to find the dnode_t for the object.
1271 dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size)
1273 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1274 dnode_t *dn;
1275 int err;
1277 if (size == 0)
1278 return (0);
1280 DB_DNODE_ENTER(db);
1281 dn = DB_DNODE(db);
1282 err = dmu_read_uio_dnode(dn, uio, size);
1283 DB_DNODE_EXIT(db);
1285 return (err);
1289 * Read 'size' bytes into the uio buffer.
1290 * From the specified object
1291 * Starting at offset zfs_uio_offset(uio).
1294 dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size)
1296 dnode_t *dn;
1297 int err;
1299 if (size == 0)
1300 return (0);
1302 err = dnode_hold(os, object, FTAG, &dn);
1303 if (err)
1304 return (err);
1306 err = dmu_read_uio_dnode(dn, uio, size);
1308 dnode_rele(dn, FTAG);
1310 return (err);
1314 dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size, dmu_tx_t *tx)
1316 dmu_buf_t **dbp;
1317 int numbufs;
1318 int err = 0;
1319 int i;
1321 err = dmu_buf_hold_array_by_dnode(dn, zfs_uio_offset(uio), size,
1322 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1323 if (err)
1324 return (err);
1326 for (i = 0; i < numbufs; i++) {
1327 uint64_t tocpy;
1328 int64_t bufoff;
1329 dmu_buf_t *db = dbp[i];
1331 ASSERT(size > 0);
1333 bufoff = zfs_uio_offset(uio) - db->db_offset;
1334 tocpy = MIN(db->db_size - bufoff, size);
1336 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1338 if (tocpy == db->db_size)
1339 dmu_buf_will_fill(db, tx);
1340 else
1341 dmu_buf_will_dirty(db, tx);
1344 * XXX zfs_uiomove could block forever (eg.nfs-backed
1345 * pages). There needs to be a uiolockdown() function
1346 * to lock the pages in memory, so that zfs_uiomove won't
1347 * block.
1349 err = zfs_uio_fault_move((char *)db->db_data + bufoff,
1350 tocpy, UIO_WRITE, uio);
1352 if (tocpy == db->db_size)
1353 dmu_buf_fill_done(db, tx);
1355 if (err)
1356 break;
1358 size -= tocpy;
1361 dmu_buf_rele_array(dbp, numbufs, FTAG);
1362 return (err);
1366 * Write 'size' bytes from the uio buffer.
1367 * To object zdb->db_object.
1368 * Starting at offset zfs_uio_offset(uio).
1370 * If the caller already has a dbuf in the target object
1371 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1372 * because we don't have to find the dnode_t for the object.
1375 dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
1376 dmu_tx_t *tx)
1378 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1379 dnode_t *dn;
1380 int err;
1382 if (size == 0)
1383 return (0);
1385 DB_DNODE_ENTER(db);
1386 dn = DB_DNODE(db);
1387 err = dmu_write_uio_dnode(dn, uio, size, tx);
1388 DB_DNODE_EXIT(db);
1390 return (err);
1394 * Write 'size' bytes from the uio buffer.
1395 * To the specified object.
1396 * Starting at offset zfs_uio_offset(uio).
1399 dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
1400 dmu_tx_t *tx)
1402 dnode_t *dn;
1403 int err;
1405 if (size == 0)
1406 return (0);
1408 err = dnode_hold(os, object, FTAG, &dn);
1409 if (err)
1410 return (err);
1412 err = dmu_write_uio_dnode(dn, uio, size, tx);
1414 dnode_rele(dn, FTAG);
1416 return (err);
1418 #endif /* _KERNEL */
1421 * Allocate a loaned anonymous arc buffer.
1423 arc_buf_t *
1424 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1426 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1428 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1432 * Free a loaned arc buffer.
1434 void
1435 dmu_return_arcbuf(arc_buf_t *buf)
1437 arc_return_buf(buf, FTAG);
1438 arc_buf_destroy(buf, FTAG);
1442 * A "lightweight" write is faster than a regular write (e.g.
1443 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1444 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1445 * data can not be read or overwritten until the transaction's txg has been
1446 * synced. This makes it appropriate for workloads that are known to be
1447 * (temporarily) write-only, like "zfs receive".
1449 * A single block is written, starting at the specified offset in bytes. If
1450 * the call is successful, it returns 0 and the provided abd has been
1451 * consumed (the caller should not free it).
1454 dmu_lightweight_write_by_dnode(dnode_t *dn, uint64_t offset, abd_t *abd,
1455 const zio_prop_t *zp, zio_flag_t flags, dmu_tx_t *tx)
1457 dbuf_dirty_record_t *dr =
1458 dbuf_dirty_lightweight(dn, dbuf_whichblock(dn, 0, offset), tx);
1459 if (dr == NULL)
1460 return (SET_ERROR(EIO));
1461 dr->dt.dll.dr_abd = abd;
1462 dr->dt.dll.dr_props = *zp;
1463 dr->dt.dll.dr_flags = flags;
1464 return (0);
1468 * When possible directly assign passed loaned arc buffer to a dbuf.
1469 * If this is not possible copy the contents of passed arc buf via
1470 * dmu_write().
1473 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1474 dmu_tx_t *tx)
1476 dmu_buf_impl_t *db;
1477 objset_t *os = dn->dn_objset;
1478 uint64_t object = dn->dn_object;
1479 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1480 uint64_t blkid;
1482 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1483 blkid = dbuf_whichblock(dn, 0, offset);
1484 db = dbuf_hold(dn, blkid, FTAG);
1485 if (db == NULL)
1486 return (SET_ERROR(EIO));
1487 rw_exit(&dn->dn_struct_rwlock);
1490 * We can only assign if the offset is aligned and the arc buf is the
1491 * same size as the dbuf.
1493 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1494 zfs_racct_write(blksz, 1);
1495 dbuf_assign_arcbuf(db, buf, tx);
1496 dbuf_rele(db, FTAG);
1497 } else {
1498 /* compressed bufs must always be assignable to their dbuf */
1499 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1500 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1502 dbuf_rele(db, FTAG);
1503 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1504 dmu_return_arcbuf(buf);
1507 return (0);
1511 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1512 dmu_tx_t *tx)
1514 int err;
1515 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1517 DB_DNODE_ENTER(dbuf);
1518 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1519 DB_DNODE_EXIT(dbuf);
1521 return (err);
1524 typedef struct {
1525 dbuf_dirty_record_t *dsa_dr;
1526 dmu_sync_cb_t *dsa_done;
1527 zgd_t *dsa_zgd;
1528 dmu_tx_t *dsa_tx;
1529 } dmu_sync_arg_t;
1531 static void
1532 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1534 (void) buf;
1535 dmu_sync_arg_t *dsa = varg;
1536 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1537 blkptr_t *bp = zio->io_bp;
1539 if (zio->io_error == 0) {
1540 if (BP_IS_HOLE(bp)) {
1542 * A block of zeros may compress to a hole, but the
1543 * block size still needs to be known for replay.
1545 BP_SET_LSIZE(bp, db->db_size);
1546 } else if (!BP_IS_EMBEDDED(bp)) {
1547 ASSERT(BP_GET_LEVEL(bp) == 0);
1548 BP_SET_FILL(bp, 1);
1553 static void
1554 dmu_sync_late_arrival_ready(zio_t *zio)
1556 dmu_sync_ready(zio, NULL, zio->io_private);
1559 static void
1560 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1562 (void) buf;
1563 dmu_sync_arg_t *dsa = varg;
1564 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1565 dmu_buf_impl_t *db = dr->dr_dbuf;
1566 zgd_t *zgd = dsa->dsa_zgd;
1569 * Record the vdev(s) backing this blkptr so they can be flushed after
1570 * the writes for the lwb have completed.
1572 if (zio->io_error == 0) {
1573 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1576 mutex_enter(&db->db_mtx);
1577 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1578 if (zio->io_error == 0) {
1579 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1580 if (dr->dt.dl.dr_nopwrite) {
1581 blkptr_t *bp = zio->io_bp;
1582 blkptr_t *bp_orig = &zio->io_bp_orig;
1583 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1585 ASSERT(BP_EQUAL(bp, bp_orig));
1586 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1587 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1588 VERIFY(zio_checksum_table[chksum].ci_flags &
1589 ZCHECKSUM_FLAG_NOPWRITE);
1591 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1592 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1593 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1596 * Old style holes are filled with all zeros, whereas
1597 * new-style holes maintain their lsize, type, level,
1598 * and birth time (see zio_write_compress). While we
1599 * need to reset the BP_SET_LSIZE() call that happened
1600 * in dmu_sync_ready for old style holes, we do *not*
1601 * want to wipe out the information contained in new
1602 * style holes. Thus, only zero out the block pointer if
1603 * it's an old style hole.
1605 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1606 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1607 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1608 } else {
1609 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1611 cv_broadcast(&db->db_changed);
1612 mutex_exit(&db->db_mtx);
1614 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1616 kmem_free(dsa, sizeof (*dsa));
1619 static void
1620 dmu_sync_late_arrival_done(zio_t *zio)
1622 blkptr_t *bp = zio->io_bp;
1623 dmu_sync_arg_t *dsa = zio->io_private;
1624 zgd_t *zgd = dsa->dsa_zgd;
1626 if (zio->io_error == 0) {
1628 * Record the vdev(s) backing this blkptr so they can be
1629 * flushed after the writes for the lwb have completed.
1631 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1633 if (!BP_IS_HOLE(bp)) {
1634 blkptr_t *bp_orig __maybe_unused = &zio->io_bp_orig;
1635 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1636 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1637 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1638 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1639 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1643 dmu_tx_commit(dsa->dsa_tx);
1645 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1647 abd_free(zio->io_abd);
1648 kmem_free(dsa, sizeof (*dsa));
1651 static int
1652 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1653 zio_prop_t *zp, zbookmark_phys_t *zb)
1655 dmu_sync_arg_t *dsa;
1656 dmu_tx_t *tx;
1657 int error;
1659 error = dbuf_read((dmu_buf_impl_t *)zgd->zgd_db, NULL,
1660 DB_RF_CANFAIL | DB_RF_NOPREFETCH);
1661 if (error != 0)
1662 return (error);
1664 tx = dmu_tx_create(os);
1665 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1667 * This transaction does not produce any dirty data or log blocks, so
1668 * it should not be throttled. All other cases wait for TXG sync, by
1669 * which time the log block we are writing will be obsolete, so we can
1670 * skip waiting and just return error here instead.
1672 if (dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE) != 0) {
1673 dmu_tx_abort(tx);
1674 /* Make zl_get_data do txg_waited_synced() */
1675 return (SET_ERROR(EIO));
1679 * In order to prevent the zgd's lwb from being free'd prior to
1680 * dmu_sync_late_arrival_done() being called, we have to ensure
1681 * the lwb's "max txg" takes this tx's txg into account.
1683 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1685 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1686 dsa->dsa_dr = NULL;
1687 dsa->dsa_done = done;
1688 dsa->dsa_zgd = zgd;
1689 dsa->dsa_tx = tx;
1692 * Since we are currently syncing this txg, it's nontrivial to
1693 * determine what BP to nopwrite against, so we disable nopwrite.
1695 * When syncing, the db_blkptr is initially the BP of the previous
1696 * txg. We can not nopwrite against it because it will be changed
1697 * (this is similar to the non-late-arrival case where the dbuf is
1698 * dirty in a future txg).
1700 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1701 * We can not nopwrite against it because although the BP will not
1702 * (typically) be changed, the data has not yet been persisted to this
1703 * location.
1705 * Finally, when dbuf_write_done() is called, it is theoretically
1706 * possible to always nopwrite, because the data that was written in
1707 * this txg is the same data that we are trying to write. However we
1708 * would need to check that this dbuf is not dirty in any future
1709 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1710 * don't nopwrite in this case.
1712 zp->zp_nopwrite = B_FALSE;
1714 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1715 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1716 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1717 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done,
1718 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1720 return (0);
1724 * Intent log support: sync the block associated with db to disk.
1725 * N.B. and XXX: the caller is responsible for making sure that the
1726 * data isn't changing while dmu_sync() is writing it.
1728 * Return values:
1730 * EEXIST: this txg has already been synced, so there's nothing to do.
1731 * The caller should not log the write.
1733 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1734 * The caller should not log the write.
1736 * EALREADY: this block is already in the process of being synced.
1737 * The caller should track its progress (somehow).
1739 * EIO: could not do the I/O.
1740 * The caller should do a txg_wait_synced().
1742 * 0: the I/O has been initiated.
1743 * The caller should log this blkptr in the done callback.
1744 * It is possible that the I/O will fail, in which case
1745 * the error will be reported to the done callback and
1746 * propagated to pio from zio_done().
1749 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1751 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1752 objset_t *os = db->db_objset;
1753 dsl_dataset_t *ds = os->os_dsl_dataset;
1754 dbuf_dirty_record_t *dr, *dr_next;
1755 dmu_sync_arg_t *dsa;
1756 zbookmark_phys_t zb;
1757 zio_prop_t zp;
1758 dnode_t *dn;
1760 ASSERT(pio != NULL);
1761 ASSERT(txg != 0);
1763 SET_BOOKMARK(&zb, ds->ds_object,
1764 db->db.db_object, db->db_level, db->db_blkid);
1766 DB_DNODE_ENTER(db);
1767 dn = DB_DNODE(db);
1768 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1769 DB_DNODE_EXIT(db);
1772 * If we're frozen (running ziltest), we always need to generate a bp.
1774 if (txg > spa_freeze_txg(os->os_spa))
1775 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1778 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1779 * and us. If we determine that this txg is not yet syncing,
1780 * but it begins to sync a moment later, that's OK because the
1781 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1783 mutex_enter(&db->db_mtx);
1785 if (txg <= spa_last_synced_txg(os->os_spa)) {
1787 * This txg has already synced. There's nothing to do.
1789 mutex_exit(&db->db_mtx);
1790 return (SET_ERROR(EEXIST));
1793 if (txg <= spa_syncing_txg(os->os_spa)) {
1795 * This txg is currently syncing, so we can't mess with
1796 * the dirty record anymore; just write a new log block.
1798 mutex_exit(&db->db_mtx);
1799 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1802 dr = dbuf_find_dirty_eq(db, txg);
1804 if (dr == NULL) {
1806 * There's no dr for this dbuf, so it must have been freed.
1807 * There's no need to log writes to freed blocks, so we're done.
1809 mutex_exit(&db->db_mtx);
1810 return (SET_ERROR(ENOENT));
1813 dr_next = list_next(&db->db_dirty_records, dr);
1814 ASSERT(dr_next == NULL || dr_next->dr_txg < txg);
1816 if (db->db_blkptr != NULL) {
1818 * We need to fill in zgd_bp with the current blkptr so that
1819 * the nopwrite code can check if we're writing the same
1820 * data that's already on disk. We can only nopwrite if we
1821 * are sure that after making the copy, db_blkptr will not
1822 * change until our i/o completes. We ensure this by
1823 * holding the db_mtx, and only allowing nopwrite if the
1824 * block is not already dirty (see below). This is verified
1825 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1826 * not changed.
1828 *zgd->zgd_bp = *db->db_blkptr;
1832 * Assume the on-disk data is X, the current syncing data (in
1833 * txg - 1) is Y, and the current in-memory data is Z (currently
1834 * in dmu_sync).
1836 * We usually want to perform a nopwrite if X and Z are the
1837 * same. However, if Y is different (i.e. the BP is going to
1838 * change before this write takes effect), then a nopwrite will
1839 * be incorrect - we would override with X, which could have
1840 * been freed when Y was written.
1842 * (Note that this is not a concern when we are nop-writing from
1843 * syncing context, because X and Y must be identical, because
1844 * all previous txgs have been synced.)
1846 * Therefore, we disable nopwrite if the current BP could change
1847 * before this TXG. There are two ways it could change: by
1848 * being dirty (dr_next is non-NULL), or by being freed
1849 * (dnode_block_freed()). This behavior is verified by
1850 * zio_done(), which VERIFYs that the override BP is identical
1851 * to the on-disk BP.
1853 DB_DNODE_ENTER(db);
1854 dn = DB_DNODE(db);
1855 if (dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
1856 zp.zp_nopwrite = B_FALSE;
1857 DB_DNODE_EXIT(db);
1859 ASSERT(dr->dr_txg == txg);
1860 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1861 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1863 * We have already issued a sync write for this buffer,
1864 * or this buffer has already been synced. It could not
1865 * have been dirtied since, or we would have cleared the state.
1867 mutex_exit(&db->db_mtx);
1868 return (SET_ERROR(EALREADY));
1871 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1872 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1873 mutex_exit(&db->db_mtx);
1875 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1876 dsa->dsa_dr = dr;
1877 dsa->dsa_done = done;
1878 dsa->dsa_zgd = zgd;
1879 dsa->dsa_tx = NULL;
1881 zio_nowait(arc_write(pio, os->os_spa, txg, zgd->zgd_bp,
1882 dr->dt.dl.dr_data, !DBUF_IS_CACHEABLE(db), dbuf_is_l2cacheable(db),
1883 &zp, dmu_sync_ready, NULL, dmu_sync_done, dsa,
1884 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1886 return (0);
1890 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
1892 dnode_t *dn;
1893 int err;
1895 err = dnode_hold(os, object, FTAG, &dn);
1896 if (err)
1897 return (err);
1898 err = dnode_set_nlevels(dn, nlevels, tx);
1899 dnode_rele(dn, FTAG);
1900 return (err);
1904 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1905 dmu_tx_t *tx)
1907 dnode_t *dn;
1908 int err;
1910 err = dnode_hold(os, object, FTAG, &dn);
1911 if (err)
1912 return (err);
1913 err = dnode_set_blksz(dn, size, ibs, tx);
1914 dnode_rele(dn, FTAG);
1915 return (err);
1919 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
1920 dmu_tx_t *tx)
1922 dnode_t *dn;
1923 int err;
1925 err = dnode_hold(os, object, FTAG, &dn);
1926 if (err)
1927 return (err);
1928 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1929 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
1930 rw_exit(&dn->dn_struct_rwlock);
1931 dnode_rele(dn, FTAG);
1932 return (0);
1935 void
1936 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1937 dmu_tx_t *tx)
1939 dnode_t *dn;
1942 * Send streams include each object's checksum function. This
1943 * check ensures that the receiving system can understand the
1944 * checksum function transmitted.
1946 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
1948 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1949 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
1950 dn->dn_checksum = checksum;
1951 dnode_setdirty(dn, tx);
1952 dnode_rele(dn, FTAG);
1955 void
1956 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1957 dmu_tx_t *tx)
1959 dnode_t *dn;
1962 * Send streams include each object's compression function. This
1963 * check ensures that the receiving system can understand the
1964 * compression function transmitted.
1966 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
1968 VERIFY0(dnode_hold(os, object, FTAG, &dn));
1969 dn->dn_compress = compress;
1970 dnode_setdirty(dn, tx);
1971 dnode_rele(dn, FTAG);
1975 * When the "redundant_metadata" property is set to "most", only indirect
1976 * blocks of this level and higher will have an additional ditto block.
1978 static const int zfs_redundant_metadata_most_ditto_level = 2;
1980 void
1981 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1983 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1984 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1985 (wp & WP_SPILL));
1986 enum zio_checksum checksum = os->os_checksum;
1987 enum zio_compress compress = os->os_compress;
1988 uint8_t complevel = os->os_complevel;
1989 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1990 boolean_t dedup = B_FALSE;
1991 boolean_t nopwrite = B_FALSE;
1992 boolean_t dedup_verify = os->os_dedup_verify;
1993 boolean_t encrypt = B_FALSE;
1994 int copies = os->os_copies;
1997 * We maintain different write policies for each of the following
1998 * types of data:
1999 * 1. metadata
2000 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2001 * 3. all other level 0 blocks
2003 if (ismd) {
2005 * XXX -- we should design a compression algorithm
2006 * that specializes in arrays of bps.
2008 compress = zio_compress_select(os->os_spa,
2009 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2012 * Metadata always gets checksummed. If the data
2013 * checksum is multi-bit correctable, and it's not a
2014 * ZBT-style checksum, then it's suitable for metadata
2015 * as well. Otherwise, the metadata checksum defaults
2016 * to fletcher4.
2018 if (!(zio_checksum_table[checksum].ci_flags &
2019 ZCHECKSUM_FLAG_METADATA) ||
2020 (zio_checksum_table[checksum].ci_flags &
2021 ZCHECKSUM_FLAG_EMBEDDED))
2022 checksum = ZIO_CHECKSUM_FLETCHER_4;
2024 switch (os->os_redundant_metadata) {
2025 case ZFS_REDUNDANT_METADATA_ALL:
2026 copies++;
2027 break;
2028 case ZFS_REDUNDANT_METADATA_MOST:
2029 if (level >= zfs_redundant_metadata_most_ditto_level ||
2030 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))
2031 copies++;
2032 break;
2033 case ZFS_REDUNDANT_METADATA_SOME:
2034 if (DMU_OT_IS_CRITICAL(type))
2035 copies++;
2036 break;
2037 case ZFS_REDUNDANT_METADATA_NONE:
2038 break;
2040 } else if (wp & WP_NOFILL) {
2041 ASSERT(level == 0);
2044 * If we're writing preallocated blocks, we aren't actually
2045 * writing them so don't set any policy properties. These
2046 * blocks are currently only used by an external subsystem
2047 * outside of zfs (i.e. dump) and not written by the zio
2048 * pipeline.
2050 compress = ZIO_COMPRESS_OFF;
2051 checksum = ZIO_CHECKSUM_OFF;
2052 } else {
2053 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2054 compress);
2055 complevel = zio_complevel_select(os->os_spa, compress,
2056 complevel, complevel);
2058 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2059 zio_checksum_select(dn->dn_checksum, checksum) :
2060 dedup_checksum;
2063 * Determine dedup setting. If we are in dmu_sync(),
2064 * we won't actually dedup now because that's all
2065 * done in syncing context; but we do want to use the
2066 * dedup checksum. If the checksum is not strong
2067 * enough to ensure unique signatures, force
2068 * dedup_verify.
2070 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2071 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2072 if (!(zio_checksum_table[checksum].ci_flags &
2073 ZCHECKSUM_FLAG_DEDUP))
2074 dedup_verify = B_TRUE;
2078 * Enable nopwrite if we have secure enough checksum
2079 * algorithm (see comment in zio_nop_write) and
2080 * compression is enabled. We don't enable nopwrite if
2081 * dedup is enabled as the two features are mutually
2082 * exclusive.
2084 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2085 ZCHECKSUM_FLAG_NOPWRITE) &&
2086 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2090 * All objects in an encrypted objset are protected from modification
2091 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2092 * in the bp, so we cannot use all copies. Encrypted objects are also
2093 * not subject to nopwrite since writing the same data will still
2094 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2095 * to avoid ambiguity in the dedup code since the DDT does not store
2096 * object types.
2098 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2099 encrypt = B_TRUE;
2101 if (DMU_OT_IS_ENCRYPTED(type)) {
2102 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2103 nopwrite = B_FALSE;
2104 } else {
2105 dedup = B_FALSE;
2108 if (level <= 0 &&
2109 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2110 compress = ZIO_COMPRESS_EMPTY;
2114 zp->zp_compress = compress;
2115 zp->zp_complevel = complevel;
2116 zp->zp_checksum = checksum;
2117 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2118 zp->zp_level = level;
2119 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2120 zp->zp_dedup = dedup;
2121 zp->zp_dedup_verify = dedup && dedup_verify;
2122 zp->zp_nopwrite = nopwrite;
2123 zp->zp_encrypt = encrypt;
2124 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2125 memset(zp->zp_salt, 0, ZIO_DATA_SALT_LEN);
2126 memset(zp->zp_iv, 0, ZIO_DATA_IV_LEN);
2127 memset(zp->zp_mac, 0, ZIO_DATA_MAC_LEN);
2128 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2129 os->os_zpl_special_smallblock : 0;
2131 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2135 * Reports the location of data and holes in an object. In order to
2136 * accurately report holes all dirty data must be synced to disk. This
2137 * causes extremely poor performance when seeking for holes in a dirty file.
2138 * As a compromise, only provide hole data when the dnode is clean. When
2139 * a dnode is dirty report the dnode as having no holes by returning EBUSY
2140 * which is always safe to do.
2143 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2145 dnode_t *dn;
2146 int restarted = 0, err;
2148 restart:
2149 err = dnode_hold(os, object, FTAG, &dn);
2150 if (err)
2151 return (err);
2153 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2155 if (dnode_is_dirty(dn)) {
2157 * If the zfs_dmu_offset_next_sync module option is enabled
2158 * then hole reporting has been requested. Dirty dnodes
2159 * must be synced to disk to accurately report holes.
2161 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2162 * held by the caller only a single restart will be required.
2163 * We tolerate callers which do not hold the rangelock by
2164 * returning EBUSY and not reporting holes after one restart.
2166 if (zfs_dmu_offset_next_sync) {
2167 rw_exit(&dn->dn_struct_rwlock);
2168 dnode_rele(dn, FTAG);
2170 if (restarted)
2171 return (SET_ERROR(EBUSY));
2173 txg_wait_synced(dmu_objset_pool(os), 0);
2174 restarted = 1;
2175 goto restart;
2178 err = SET_ERROR(EBUSY);
2179 } else {
2180 err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK |
2181 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2184 rw_exit(&dn->dn_struct_rwlock);
2185 dnode_rele(dn, FTAG);
2187 return (err);
2191 dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2192 blkptr_t *bps, size_t *nbpsp)
2194 dmu_buf_t **dbp, *dbuf;
2195 dmu_buf_impl_t *db;
2196 blkptr_t *bp;
2197 int error, numbufs;
2199 error = dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2200 &numbufs, &dbp);
2201 if (error != 0) {
2202 if (error == ESRCH) {
2203 error = SET_ERROR(ENXIO);
2205 return (error);
2208 ASSERT3U(numbufs, <=, *nbpsp);
2210 for (int i = 0; i < numbufs; i++) {
2211 dbuf = dbp[i];
2212 db = (dmu_buf_impl_t *)dbuf;
2214 mutex_enter(&db->db_mtx);
2216 if (!list_is_empty(&db->db_dirty_records)) {
2217 dbuf_dirty_record_t *dr;
2219 dr = list_head(&db->db_dirty_records);
2220 if (dr->dt.dl.dr_brtwrite) {
2222 * This is very special case where we clone a
2223 * block and in the same transaction group we
2224 * read its BP (most likely to clone the clone).
2226 bp = &dr->dt.dl.dr_overridden_by;
2227 } else {
2229 * The block was modified in the same
2230 * transaction group.
2232 mutex_exit(&db->db_mtx);
2233 error = SET_ERROR(EAGAIN);
2234 goto out;
2236 } else {
2237 bp = db->db_blkptr;
2240 mutex_exit(&db->db_mtx);
2242 if (bp == NULL) {
2244 * The block was created in this transaction group,
2245 * so it has no BP yet.
2247 error = SET_ERROR(EAGAIN);
2248 goto out;
2251 * Make sure we clone only data blocks.
2253 if (BP_IS_METADATA(bp) && !BP_IS_HOLE(bp)) {
2254 error = SET_ERROR(EINVAL);
2255 goto out;
2258 bps[i] = *bp;
2261 *nbpsp = numbufs;
2262 out:
2263 dmu_buf_rele_array(dbp, numbufs, FTAG);
2265 return (error);
2269 dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset, uint64_t length,
2270 dmu_tx_t *tx, const blkptr_t *bps, size_t nbps)
2272 spa_t *spa;
2273 dmu_buf_t **dbp, *dbuf;
2274 dmu_buf_impl_t *db;
2275 struct dirty_leaf *dl;
2276 dbuf_dirty_record_t *dr;
2277 const blkptr_t *bp;
2278 int error = 0, i, numbufs;
2280 spa = os->os_spa;
2282 VERIFY0(dmu_buf_hold_array(os, object, offset, length, FALSE, FTAG,
2283 &numbufs, &dbp));
2284 ASSERT3U(nbps, ==, numbufs);
2287 * Before we start cloning make sure that the dbufs sizes match new BPs
2288 * sizes. If they don't, that's a no-go, as we are not able to shrink
2289 * dbufs.
2291 for (i = 0; i < numbufs; i++) {
2292 dbuf = dbp[i];
2293 db = (dmu_buf_impl_t *)dbuf;
2294 bp = &bps[i];
2296 ASSERT0(db->db_level);
2297 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2298 ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2300 if (!BP_IS_HOLE(bp) && BP_GET_LSIZE(bp) != dbuf->db_size) {
2301 error = SET_ERROR(EXDEV);
2302 goto out;
2306 for (i = 0; i < numbufs; i++) {
2307 dbuf = dbp[i];
2308 db = (dmu_buf_impl_t *)dbuf;
2309 bp = &bps[i];
2311 ASSERT0(db->db_level);
2312 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2313 ASSERT(db->db_blkid != DMU_SPILL_BLKID);
2314 ASSERT(BP_IS_HOLE(bp) || dbuf->db_size == BP_GET_LSIZE(bp));
2316 dmu_buf_will_clone(dbuf, tx);
2318 mutex_enter(&db->db_mtx);
2320 dr = list_head(&db->db_dirty_records);
2321 VERIFY(dr != NULL);
2322 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2323 dl = &dr->dt.dl;
2324 dl->dr_overridden_by = *bp;
2325 dl->dr_brtwrite = B_TRUE;
2326 dl->dr_override_state = DR_OVERRIDDEN;
2327 if (BP_IS_HOLE(bp)) {
2328 dl->dr_overridden_by.blk_birth = 0;
2329 dl->dr_overridden_by.blk_phys_birth = 0;
2330 } else {
2331 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2332 if (!BP_IS_EMBEDDED(bp)) {
2333 dl->dr_overridden_by.blk_phys_birth =
2334 BP_PHYSICAL_BIRTH(bp);
2338 mutex_exit(&db->db_mtx);
2341 * When data in embedded into BP there is no need to create
2342 * BRT entry as there is no data block. Just copy the BP as
2343 * it contains the data.
2345 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
2346 brt_pending_add(spa, bp, tx);
2349 out:
2350 dmu_buf_rele_array(dbp, numbufs, FTAG);
2352 return (error);
2355 void
2356 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2358 dnode_phys_t *dnp = dn->dn_phys;
2360 doi->doi_data_block_size = dn->dn_datablksz;
2361 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2362 1ULL << dn->dn_indblkshift : 0;
2363 doi->doi_type = dn->dn_type;
2364 doi->doi_bonus_type = dn->dn_bonustype;
2365 doi->doi_bonus_size = dn->dn_bonuslen;
2366 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2367 doi->doi_indirection = dn->dn_nlevels;
2368 doi->doi_checksum = dn->dn_checksum;
2369 doi->doi_compress = dn->dn_compress;
2370 doi->doi_nblkptr = dn->dn_nblkptr;
2371 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2372 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2373 doi->doi_fill_count = 0;
2374 for (int i = 0; i < dnp->dn_nblkptr; i++)
2375 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2378 void
2379 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2381 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2382 mutex_enter(&dn->dn_mtx);
2384 __dmu_object_info_from_dnode(dn, doi);
2386 mutex_exit(&dn->dn_mtx);
2387 rw_exit(&dn->dn_struct_rwlock);
2391 * Get information on a DMU object.
2392 * If doi is NULL, just indicates whether the object exists.
2395 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2397 dnode_t *dn;
2398 int err = dnode_hold(os, object, FTAG, &dn);
2400 if (err)
2401 return (err);
2403 if (doi != NULL)
2404 dmu_object_info_from_dnode(dn, doi);
2406 dnode_rele(dn, FTAG);
2407 return (0);
2411 * As above, but faster; can be used when you have a held dbuf in hand.
2413 void
2414 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2416 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2418 DB_DNODE_ENTER(db);
2419 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2420 DB_DNODE_EXIT(db);
2424 * Faster still when you only care about the size.
2426 void
2427 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2428 u_longlong_t *nblk512)
2430 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2431 dnode_t *dn;
2433 DB_DNODE_ENTER(db);
2434 dn = DB_DNODE(db);
2436 *blksize = dn->dn_datablksz;
2437 /* add in number of slots used for the dnode itself */
2438 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2439 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2440 DB_DNODE_EXIT(db);
2443 void
2444 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2446 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2447 dnode_t *dn;
2449 DB_DNODE_ENTER(db);
2450 dn = DB_DNODE(db);
2451 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2452 DB_DNODE_EXIT(db);
2455 void
2456 byteswap_uint64_array(void *vbuf, size_t size)
2458 uint64_t *buf = vbuf;
2459 size_t count = size >> 3;
2460 int i;
2462 ASSERT((size & 7) == 0);
2464 for (i = 0; i < count; i++)
2465 buf[i] = BSWAP_64(buf[i]);
2468 void
2469 byteswap_uint32_array(void *vbuf, size_t size)
2471 uint32_t *buf = vbuf;
2472 size_t count = size >> 2;
2473 int i;
2475 ASSERT((size & 3) == 0);
2477 for (i = 0; i < count; i++)
2478 buf[i] = BSWAP_32(buf[i]);
2481 void
2482 byteswap_uint16_array(void *vbuf, size_t size)
2484 uint16_t *buf = vbuf;
2485 size_t count = size >> 1;
2486 int i;
2488 ASSERT((size & 1) == 0);
2490 for (i = 0; i < count; i++)
2491 buf[i] = BSWAP_16(buf[i]);
2494 void
2495 byteswap_uint8_array(void *vbuf, size_t size)
2497 (void) vbuf, (void) size;
2500 void
2501 dmu_init(void)
2503 abd_init();
2504 zfs_dbgmsg_init();
2505 sa_cache_init();
2506 dmu_objset_init();
2507 dnode_init();
2508 zfetch_init();
2509 dmu_tx_init();
2510 l2arc_init();
2511 arc_init();
2512 dbuf_init();
2515 void
2516 dmu_fini(void)
2518 arc_fini(); /* arc depends on l2arc, so arc must go first */
2519 l2arc_fini();
2520 dmu_tx_fini();
2521 zfetch_fini();
2522 dbuf_fini();
2523 dnode_fini();
2524 dmu_objset_fini();
2525 sa_cache_fini();
2526 zfs_dbgmsg_fini();
2527 abd_fini();
2530 EXPORT_SYMBOL(dmu_bonus_hold);
2531 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2532 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2533 EXPORT_SYMBOL(dmu_buf_rele_array);
2534 EXPORT_SYMBOL(dmu_prefetch);
2535 EXPORT_SYMBOL(dmu_free_range);
2536 EXPORT_SYMBOL(dmu_free_long_range);
2537 EXPORT_SYMBOL(dmu_free_long_object);
2538 EXPORT_SYMBOL(dmu_read);
2539 EXPORT_SYMBOL(dmu_read_by_dnode);
2540 EXPORT_SYMBOL(dmu_write);
2541 EXPORT_SYMBOL(dmu_write_by_dnode);
2542 EXPORT_SYMBOL(dmu_prealloc);
2543 EXPORT_SYMBOL(dmu_object_info);
2544 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2545 EXPORT_SYMBOL(dmu_object_info_from_db);
2546 EXPORT_SYMBOL(dmu_object_size_from_db);
2547 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2548 EXPORT_SYMBOL(dmu_object_set_nlevels);
2549 EXPORT_SYMBOL(dmu_object_set_blocksize);
2550 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2551 EXPORT_SYMBOL(dmu_object_set_checksum);
2552 EXPORT_SYMBOL(dmu_object_set_compress);
2553 EXPORT_SYMBOL(dmu_offset_next);
2554 EXPORT_SYMBOL(dmu_write_policy);
2555 EXPORT_SYMBOL(dmu_sync);
2556 EXPORT_SYMBOL(dmu_request_arcbuf);
2557 EXPORT_SYMBOL(dmu_return_arcbuf);
2558 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2559 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2560 EXPORT_SYMBOL(dmu_buf_hold);
2561 EXPORT_SYMBOL(dmu_ot);
2563 ZFS_MODULE_PARAM(zfs, zfs_, nopwrite_enabled, INT, ZMOD_RW,
2564 "Enable NOP writes");
2566 ZFS_MODULE_PARAM(zfs, zfs_, per_txg_dirty_frees_percent, UINT, ZMOD_RW,
2567 "Percentage of dirtied blocks from frees in one TXG");
2569 ZFS_MODULE_PARAM(zfs, zfs_, dmu_offset_next_sync, INT, ZMOD_RW,
2570 "Enable forcing txg sync to find holes");
2572 /* CSTYLED */
2573 ZFS_MODULE_PARAM(zfs, , dmu_prefetch_max, UINT, ZMOD_RW,
2574 "Limit one prefetch call to this size");