4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 * Copyright (c) 2018 by Delphix. All rights reserved.
21 #include <sys/dsl_crypt.h>
22 #include <sys/dsl_pool.h>
25 #include <sys/dsl_dir.h>
26 #include <sys/dsl_prop.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu_objset.h>
32 * This file's primary purpose is for managing master encryption keys in
33 * memory and on disk. For more info on how these keys are used, see the
34 * block comment in zio_crypt.c.
36 * All master keys are stored encrypted on disk in the form of the DSL
37 * Crypto Key ZAP object. The binary key data in this object is always
38 * randomly generated and is encrypted with the user's wrapping key. This
39 * layer of indirection allows the user to change their key without
40 * needing to re-encrypt the entire dataset. The ZAP also holds on to the
41 * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
42 * safely decrypt the master key. For more info on the user's key see the
43 * block comment in libzfs_crypto.c
45 * In-memory encryption keys are managed through the spa_keystore. The
46 * keystore consists of 3 AVL trees, which are as follows:
48 * The Wrapping Key Tree:
49 * The wrapping key (wkey) tree stores the user's keys that are fed into the
50 * kernel through 'zfs load-key' and related commands. Datasets inherit their
51 * parent's wkey by default, so these structures are refcounted. The wrapping
52 * keys remain in memory until they are explicitly unloaded (with
53 * "zfs unload-key"). Unloading is only possible when no datasets are using
56 * The DSL Crypto Key Tree:
57 * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
58 * master keys. They are used by the functions in zio_crypt.c to perform
59 * encryption, decryption, and authentication. Snapshots and clones of a given
60 * dataset will share a DSL Crypto Key, so they are also refcounted. Once the
61 * refcount on a key hits zero, it is immediately zeroed out and freed.
63 * The Crypto Key Mapping Tree:
64 * The zio layer needs to lookup master keys by their dataset object id. Since
65 * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
66 * dsl_key_mapping_t's which essentially just map the dataset object id to its
67 * appropriate DSL Crypto Key. The management for creating and destroying these
68 * mappings hooks into the code for owning and disowning datasets. Usually,
69 * there will only be one active dataset owner, but there are times
70 * (particularly during dataset creation and destruction) when this may not be
71 * true or the dataset may not be initialized enough to own. As a result, this
72 * object is also refcounted.
76 * This tunable allows datasets to be raw received even if the stream does
77 * not include IVset guids or if the guids don't match. This is used as part
78 * of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
80 int zfs_disable_ivset_guid_check
= 0;
83 dsl_wrapping_key_hold(dsl_wrapping_key_t
*wkey
, const void *tag
)
85 (void) zfs_refcount_add(&wkey
->wk_refcnt
, tag
);
89 dsl_wrapping_key_rele(dsl_wrapping_key_t
*wkey
, const void *tag
)
91 (void) zfs_refcount_remove(&wkey
->wk_refcnt
, tag
);
95 dsl_wrapping_key_free(dsl_wrapping_key_t
*wkey
)
97 ASSERT0(zfs_refcount_count(&wkey
->wk_refcnt
));
99 if (wkey
->wk_key
.ck_data
) {
100 memset(wkey
->wk_key
.ck_data
, 0,
101 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
102 kmem_free(wkey
->wk_key
.ck_data
,
103 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
106 zfs_refcount_destroy(&wkey
->wk_refcnt
);
107 kmem_free(wkey
, sizeof (dsl_wrapping_key_t
));
111 dsl_wrapping_key_create(uint8_t *wkeydata
, zfs_keyformat_t keyformat
,
112 uint64_t salt
, uint64_t iters
, dsl_wrapping_key_t
**wkey_out
)
114 dsl_wrapping_key_t
*wkey
;
116 /* allocate the wrapping key */
117 wkey
= kmem_alloc(sizeof (dsl_wrapping_key_t
), KM_SLEEP
);
119 /* allocate and initialize the underlying crypto key */
120 wkey
->wk_key
.ck_data
= kmem_alloc(WRAPPING_KEY_LEN
, KM_SLEEP
);
122 wkey
->wk_key
.ck_length
= CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN
);
123 memcpy(wkey
->wk_key
.ck_data
, wkeydata
, WRAPPING_KEY_LEN
);
125 /* initialize the rest of the struct */
126 zfs_refcount_create(&wkey
->wk_refcnt
);
127 wkey
->wk_keyformat
= keyformat
;
128 wkey
->wk_salt
= salt
;
129 wkey
->wk_iters
= iters
;
135 dsl_crypto_params_create_nvlist(dcp_cmd_t cmd
, nvlist_t
*props
,
136 nvlist_t
*crypto_args
, dsl_crypto_params_t
**dcp_out
)
139 uint64_t crypt
= ZIO_CRYPT_INHERIT
;
140 uint64_t keyformat
= ZFS_KEYFORMAT_NONE
;
141 uint64_t salt
= 0, iters
= 0;
142 dsl_crypto_params_t
*dcp
= NULL
;
143 dsl_wrapping_key_t
*wkey
= NULL
;
144 uint8_t *wkeydata
= NULL
;
145 uint_t wkeydata_len
= 0;
146 const char *keylocation
= NULL
;
148 dcp
= kmem_zalloc(sizeof (dsl_crypto_params_t
), KM_SLEEP
);
151 /* get relevant arguments from the nvlists */
153 (void) nvlist_lookup_uint64(props
,
154 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), &crypt
);
155 (void) nvlist_lookup_uint64(props
,
156 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), &keyformat
);
157 (void) nvlist_lookup_string(props
,
158 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), &keylocation
);
159 (void) nvlist_lookup_uint64(props
,
160 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), &salt
);
161 (void) nvlist_lookup_uint64(props
,
162 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), &iters
);
164 dcp
->cp_crypt
= crypt
;
167 if (crypto_args
!= NULL
) {
168 (void) nvlist_lookup_uint8_array(crypto_args
, "wkeydata",
169 &wkeydata
, &wkeydata_len
);
172 /* check for valid command */
173 if (dcp
->cp_cmd
>= DCP_CMD_MAX
) {
174 ret
= SET_ERROR(EINVAL
);
180 /* check for valid crypt */
181 if (dcp
->cp_crypt
>= ZIO_CRYPT_FUNCTIONS
) {
182 ret
= SET_ERROR(EINVAL
);
185 dcp
->cp_crypt
= crypt
;
188 /* check for valid keyformat */
189 if (keyformat
>= ZFS_KEYFORMAT_FORMATS
) {
190 ret
= SET_ERROR(EINVAL
);
194 /* check for a valid keylocation (of any kind) and copy it in */
195 if (keylocation
!= NULL
) {
196 if (!zfs_prop_valid_keylocation(keylocation
, B_FALSE
)) {
197 ret
= SET_ERROR(EINVAL
);
201 dcp
->cp_keylocation
= spa_strdup(keylocation
);
204 /* check wrapping key length, if given */
205 if (wkeydata
!= NULL
&& wkeydata_len
!= WRAPPING_KEY_LEN
) {
206 ret
= SET_ERROR(EINVAL
);
210 /* if the user asked for the default crypt, determine that now */
211 if (dcp
->cp_crypt
== ZIO_CRYPT_ON
)
212 dcp
->cp_crypt
= ZIO_CRYPT_ON_VALUE
;
214 /* create the wrapping key from the raw data */
215 if (wkeydata
!= NULL
) {
216 /* create the wrapping key with the verified parameters */
217 dsl_wrapping_key_create(wkeydata
, keyformat
, salt
,
223 * Remove the encryption properties from the nvlist since they are not
224 * maintained through the DSL.
226 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_ENCRYPTION
));
227 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
228 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
229 (void) nvlist_remove_all(props
,
230 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
237 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
243 dsl_crypto_params_free(dsl_crypto_params_t
*dcp
, boolean_t unload
)
248 if (dcp
->cp_keylocation
!= NULL
)
249 spa_strfree(dcp
->cp_keylocation
);
250 if (unload
&& dcp
->cp_wkey
!= NULL
)
251 dsl_wrapping_key_free(dcp
->cp_wkey
);
253 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
257 spa_crypto_key_compare(const void *a
, const void *b
)
259 const dsl_crypto_key_t
*dcka
= a
;
260 const dsl_crypto_key_t
*dckb
= b
;
262 if (dcka
->dck_obj
< dckb
->dck_obj
)
264 if (dcka
->dck_obj
> dckb
->dck_obj
)
270 spa_key_mapping_compare(const void *a
, const void *b
)
272 const dsl_key_mapping_t
*kma
= a
;
273 const dsl_key_mapping_t
*kmb
= b
;
275 if (kma
->km_dsobj
< kmb
->km_dsobj
)
277 if (kma
->km_dsobj
> kmb
->km_dsobj
)
283 spa_wkey_compare(const void *a
, const void *b
)
285 const dsl_wrapping_key_t
*wka
= a
;
286 const dsl_wrapping_key_t
*wkb
= b
;
288 if (wka
->wk_ddobj
< wkb
->wk_ddobj
)
290 if (wka
->wk_ddobj
> wkb
->wk_ddobj
)
296 spa_keystore_init(spa_keystore_t
*sk
)
298 rw_init(&sk
->sk_dk_lock
, NULL
, RW_DEFAULT
, NULL
);
299 rw_init(&sk
->sk_km_lock
, NULL
, RW_DEFAULT
, NULL
);
300 rw_init(&sk
->sk_wkeys_lock
, NULL
, RW_DEFAULT
, NULL
);
301 avl_create(&sk
->sk_dsl_keys
, spa_crypto_key_compare
,
302 sizeof (dsl_crypto_key_t
),
303 offsetof(dsl_crypto_key_t
, dck_avl_link
));
304 avl_create(&sk
->sk_key_mappings
, spa_key_mapping_compare
,
305 sizeof (dsl_key_mapping_t
),
306 offsetof(dsl_key_mapping_t
, km_avl_link
));
307 avl_create(&sk
->sk_wkeys
, spa_wkey_compare
, sizeof (dsl_wrapping_key_t
),
308 offsetof(dsl_wrapping_key_t
, wk_avl_link
));
312 spa_keystore_fini(spa_keystore_t
*sk
)
314 dsl_wrapping_key_t
*wkey
;
317 ASSERT(avl_is_empty(&sk
->sk_dsl_keys
));
318 ASSERT(avl_is_empty(&sk
->sk_key_mappings
));
320 while ((wkey
= avl_destroy_nodes(&sk
->sk_wkeys
, &cookie
)) != NULL
)
321 dsl_wrapping_key_free(wkey
);
323 avl_destroy(&sk
->sk_wkeys
);
324 avl_destroy(&sk
->sk_key_mappings
);
325 avl_destroy(&sk
->sk_dsl_keys
);
326 rw_destroy(&sk
->sk_wkeys_lock
);
327 rw_destroy(&sk
->sk_km_lock
);
328 rw_destroy(&sk
->sk_dk_lock
);
332 dsl_dir_get_encryption_root_ddobj(dsl_dir_t
*dd
, uint64_t *rddobj
)
334 if (dd
->dd_crypto_obj
== 0)
335 return (SET_ERROR(ENOENT
));
337 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
338 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1, rddobj
));
342 dsl_dir_get_encryption_version(dsl_dir_t
*dd
, uint64_t *version
)
346 if (dd
->dd_crypto_obj
== 0)
347 return (SET_ERROR(ENOENT
));
349 /* version 0 is implied by ENOENT */
350 (void) zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
351 DSL_CRYPTO_KEY_VERSION
, 8, 1, version
);
357 dsl_dir_incompatible_encryption_version(dsl_dir_t
*dd
)
360 uint64_t version
= 0;
362 ret
= dsl_dir_get_encryption_version(dd
, &version
);
366 return (version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
);
370 spa_keystore_wkey_hold_ddobj_impl(spa_t
*spa
, uint64_t ddobj
,
371 const void *tag
, dsl_wrapping_key_t
**wkey_out
)
374 dsl_wrapping_key_t search_wkey
;
375 dsl_wrapping_key_t
*found_wkey
;
377 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_wkeys_lock
));
379 /* init the search wrapping key */
380 search_wkey
.wk_ddobj
= ddobj
;
382 /* lookup the wrapping key */
383 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &search_wkey
, NULL
);
385 ret
= SET_ERROR(ENOENT
);
389 /* increment the refcount */
390 dsl_wrapping_key_hold(found_wkey
, tag
);
392 *wkey_out
= found_wkey
;
401 spa_keystore_wkey_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, const void *tag
,
402 dsl_wrapping_key_t
**wkey_out
)
405 dsl_wrapping_key_t
*wkey
;
407 boolean_t locked
= B_FALSE
;
409 if (!RW_WRITE_HELD(&spa
->spa_keystore
.sk_wkeys_lock
)) {
410 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_READER
);
414 /* get the ddobj that the keylocation property was inherited from */
415 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
419 /* lookup the wkey in the avl tree */
420 ret
= spa_keystore_wkey_hold_ddobj_impl(spa
, rddobj
, tag
, &wkey
);
424 /* unlock the wkey tree if we locked it */
426 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
433 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
440 dsl_crypto_can_set_keylocation(const char *dsname
, const char *keylocation
)
443 dsl_dir_t
*dd
= NULL
;
444 dsl_pool_t
*dp
= NULL
;
447 /* hold the dsl dir */
448 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
452 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
458 /* if dd is not encrypted, the value may only be "none" */
459 if (dd
->dd_crypto_obj
== 0) {
460 if (strcmp(keylocation
, "none") != 0) {
461 ret
= SET_ERROR(EACCES
);
469 /* check for a valid keylocation for encrypted datasets */
470 if (!zfs_prop_valid_keylocation(keylocation
, B_TRUE
)) {
471 ret
= SET_ERROR(EINVAL
);
475 /* check that this is an encryption root */
476 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
480 if (rddobj
!= dd
->dd_object
) {
481 ret
= SET_ERROR(EACCES
);
485 dsl_dir_rele(dd
, FTAG
);
486 dsl_pool_rele(dp
, FTAG
);
492 dsl_dir_rele(dd
, FTAG
);
494 dsl_pool_rele(dp
, FTAG
);
500 dsl_crypto_key_free(dsl_crypto_key_t
*dck
)
502 ASSERT(zfs_refcount_count(&dck
->dck_holds
) == 0);
504 /* destroy the zio_crypt_key_t */
505 zio_crypt_key_destroy(&dck
->dck_key
);
507 /* free the refcount, wrapping key, and lock */
508 zfs_refcount_destroy(&dck
->dck_holds
);
510 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
513 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
517 dsl_crypto_key_rele(dsl_crypto_key_t
*dck
, const void *tag
)
519 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0)
520 dsl_crypto_key_free(dck
);
524 dsl_crypto_key_open(objset_t
*mos
, dsl_wrapping_key_t
*wkey
,
525 uint64_t dckobj
, const void *tag
, dsl_crypto_key_t
**dck_out
)
528 uint64_t crypt
= 0, guid
= 0, version
= 0;
529 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
530 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
531 uint8_t iv
[WRAPPING_IV_LEN
];
532 uint8_t mac
[WRAPPING_MAC_LEN
];
533 dsl_crypto_key_t
*dck
;
535 /* allocate and initialize the key */
536 dck
= kmem_zalloc(sizeof (dsl_crypto_key_t
), KM_SLEEP
);
538 /* fetch all of the values we need from the ZAP */
539 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
544 /* handle a future crypto suite that we don't support */
545 if (crypt
>= ZIO_CRYPT_FUNCTIONS
) {
546 ret
= (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP
));
550 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &guid
);
554 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
555 MASTER_KEY_MAX_LEN
, raw_keydata
);
559 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
560 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
564 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
569 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
574 /* the initial on-disk format for encryption did not have a version */
575 (void) zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
578 * Unwrap the keys. If there is an error return EACCES to indicate
579 * an authentication failure.
581 ret
= zio_crypt_key_unwrap(&wkey
->wk_key
, crypt
, version
, guid
,
582 raw_keydata
, raw_hmac_keydata
, iv
, mac
, &dck
->dck_key
);
584 ret
= SET_ERROR(EACCES
);
588 /* finish initializing the dsl_crypto_key_t */
589 zfs_refcount_create(&dck
->dck_holds
);
590 dsl_wrapping_key_hold(wkey
, dck
);
591 dck
->dck_wkey
= wkey
;
592 dck
->dck_obj
= dckobj
;
593 zfs_refcount_add(&dck
->dck_holds
, tag
);
600 memset(dck
, 0, sizeof (dsl_crypto_key_t
));
601 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
609 spa_keystore_dsl_key_hold_impl(spa_t
*spa
, uint64_t dckobj
, const void *tag
,
610 dsl_crypto_key_t
**dck_out
)
613 dsl_crypto_key_t search_dck
;
614 dsl_crypto_key_t
*found_dck
;
616 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_dk_lock
));
618 /* init the search key */
619 search_dck
.dck_obj
= dckobj
;
621 /* find the matching key in the keystore */
622 found_dck
= avl_find(&spa
->spa_keystore
.sk_dsl_keys
, &search_dck
, NULL
);
624 ret
= SET_ERROR(ENOENT
);
628 /* increment the refcount */
629 zfs_refcount_add(&found_dck
->dck_holds
, tag
);
631 *dck_out
= found_dck
;
640 spa_keystore_dsl_key_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, const void *tag
,
641 dsl_crypto_key_t
**dck_out
)
645 dsl_crypto_key_t
*dck_io
= NULL
, *dck_ks
= NULL
;
646 dsl_wrapping_key_t
*wkey
= NULL
;
647 uint64_t dckobj
= dd
->dd_crypto_obj
;
649 /* Lookup the key in the tree of currently loaded keys */
650 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_READER
);
651 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
652 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
658 /* Lookup the wrapping key from the keystore */
659 ret
= spa_keystore_wkey_hold_dd(spa
, dd
, FTAG
, &wkey
);
662 return (SET_ERROR(EACCES
));
665 /* Read the key from disk */
666 ret
= dsl_crypto_key_open(spa
->spa_meta_objset
, wkey
, dckobj
,
669 dsl_wrapping_key_rele(wkey
, FTAG
);
675 * Add the key to the keystore. It may already exist if it was
676 * added while performing the read from disk. In this case discard
677 * it and return the key from the keystore.
679 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
680 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
682 avl_find(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, &where
);
683 avl_insert(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, where
);
686 dsl_crypto_key_free(dck_io
);
690 /* Release the wrapping key (the dsl key now has a reference to it) */
691 dsl_wrapping_key_rele(wkey
, FTAG
);
692 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
698 spa_keystore_dsl_key_rele(spa_t
*spa
, dsl_crypto_key_t
*dck
, const void *tag
)
700 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
702 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0) {
703 avl_remove(&spa
->spa_keystore
.sk_dsl_keys
, dck
);
704 dsl_crypto_key_free(dck
);
707 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
711 spa_keystore_load_wkey_impl(spa_t
*spa
, dsl_wrapping_key_t
*wkey
)
715 dsl_wrapping_key_t
*found_wkey
;
717 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
719 /* insert the wrapping key into the keystore */
720 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
721 if (found_wkey
!= NULL
) {
722 ret
= SET_ERROR(EEXIST
);
725 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
727 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
732 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
737 spa_keystore_load_wkey(const char *dsname
, dsl_crypto_params_t
*dcp
,
741 dsl_dir_t
*dd
= NULL
;
742 dsl_crypto_key_t
*dck
= NULL
;
743 dsl_wrapping_key_t
*wkey
= dcp
->cp_wkey
;
744 dsl_pool_t
*dp
= NULL
;
745 uint64_t rddobj
, keyformat
, salt
, iters
;
748 * We don't validate the wrapping key's keyformat, salt, or iters
749 * since they will never be needed after the DCK has been wrapped.
751 if (dcp
->cp_wkey
== NULL
||
752 dcp
->cp_cmd
!= DCP_CMD_NONE
||
753 dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
754 dcp
->cp_keylocation
!= NULL
)
755 return (SET_ERROR(EINVAL
));
757 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
761 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
762 ret
= SET_ERROR(ENOTSUP
);
766 /* hold the dsl dir */
767 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
773 /* confirm that dd is the encryption root */
774 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
775 if (ret
!= 0 || rddobj
!= dd
->dd_object
) {
776 ret
= SET_ERROR(EINVAL
);
780 /* initialize the wkey's ddobj */
781 wkey
->wk_ddobj
= dd
->dd_object
;
783 /* verify that the wkey is correct by opening its dsl key */
784 ret
= dsl_crypto_key_open(dp
->dp_meta_objset
, wkey
,
785 dd
->dd_crypto_obj
, FTAG
, &dck
);
789 /* initialize the wkey encryption parameters from the DSL Crypto Key */
790 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
791 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &keyformat
);
795 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
796 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
800 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
801 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
805 ASSERT3U(keyformat
, <, ZFS_KEYFORMAT_FORMATS
);
806 ASSERT3U(keyformat
, !=, ZFS_KEYFORMAT_NONE
);
807 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, iters
!= 0);
808 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, salt
!= 0);
809 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, iters
== 0);
810 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, salt
== 0);
812 wkey
->wk_keyformat
= keyformat
;
813 wkey
->wk_salt
= salt
;
814 wkey
->wk_iters
= iters
;
817 * At this point we have verified the wkey and confirmed that it can
818 * be used to decrypt a DSL Crypto Key. We can simply cleanup and
819 * return if this is all the user wanted to do.
824 /* insert the wrapping key into the keystore */
825 ret
= spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
);
829 dsl_crypto_key_rele(dck
, FTAG
);
830 dsl_dir_rele(dd
, FTAG
);
831 dsl_pool_rele(dp
, FTAG
);
833 /* create any zvols under this ds */
834 zvol_create_minors_recursive(dsname
);
840 dsl_crypto_key_rele(dck
, FTAG
);
842 dsl_dir_rele(dd
, FTAG
);
844 dsl_pool_rele(dp
, FTAG
);
850 spa_keystore_unload_wkey_impl(spa_t
*spa
, uint64_t ddobj
)
853 dsl_wrapping_key_t search_wkey
;
854 dsl_wrapping_key_t
*found_wkey
;
856 /* init the search wrapping key */
857 search_wkey
.wk_ddobj
= ddobj
;
859 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
861 /* remove the wrapping key from the keystore */
862 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
,
865 ret
= SET_ERROR(EACCES
);
867 } else if (zfs_refcount_count(&found_wkey
->wk_refcnt
) != 0) {
868 ret
= SET_ERROR(EBUSY
);
871 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
873 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
875 /* free the wrapping key */
876 dsl_wrapping_key_free(found_wkey
);
881 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
886 spa_keystore_unload_wkey(const char *dsname
)
889 dsl_dir_t
*dd
= NULL
;
890 dsl_pool_t
*dp
= NULL
;
893 ret
= spa_open(dsname
, &spa
, FTAG
);
898 * Wait for any outstanding txg IO to complete, releasing any
899 * remaining references on the wkey.
901 if (spa_mode(spa
) != SPA_MODE_READ
)
902 txg_wait_synced(spa
->spa_dsl_pool
, 0);
904 spa_close(spa
, FTAG
);
906 /* hold the dsl dir */
907 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
911 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
912 ret
= (SET_ERROR(ENOTSUP
));
916 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
922 /* unload the wkey */
923 ret
= spa_keystore_unload_wkey_impl(dp
->dp_spa
, dd
->dd_object
);
927 dsl_dir_rele(dd
, FTAG
);
928 dsl_pool_rele(dp
, FTAG
);
930 /* remove any zvols under this ds */
931 zvol_remove_minors(dp
->dp_spa
, dsname
, B_TRUE
);
937 dsl_dir_rele(dd
, FTAG
);
939 dsl_pool_rele(dp
, FTAG
);
945 key_mapping_add_ref(dsl_key_mapping_t
*km
, const void *tag
)
947 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
948 zfs_refcount_add(&km
->km_refcnt
, tag
);
952 * The locking here is a little tricky to ensure we don't cause unnecessary
953 * performance problems. We want to release a key mapping whenever someone
954 * decrements the refcount to 0, but freeing the mapping requires removing
955 * it from the spa_keystore, which requires holding sk_km_lock as a writer.
956 * Most of the time we don't want to hold this lock as a writer, since the
957 * same lock is held as a reader for each IO that needs to encrypt / decrypt
958 * data for any dataset and in practice we will only actually free the
959 * mapping after unmounting a dataset.
962 key_mapping_rele(spa_t
*spa
, dsl_key_mapping_t
*km
, const void *tag
)
964 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
966 if (zfs_refcount_remove(&km
->km_refcnt
, tag
) != 0)
970 * We think we are going to need to free the mapping. Add a
971 * reference to prevent most other releasers from thinking
972 * this might be their responsibility. This is inherently
973 * racy, so we will confirm that we are legitimately the
974 * last holder once we have the sk_km_lock as a writer.
976 zfs_refcount_add(&km
->km_refcnt
, FTAG
);
978 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
979 if (zfs_refcount_remove(&km
->km_refcnt
, FTAG
) != 0) {
980 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
984 avl_remove(&spa
->spa_keystore
.sk_key_mappings
, km
);
985 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
987 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
988 zfs_refcount_destroy(&km
->km_refcnt
);
989 kmem_free(km
, sizeof (dsl_key_mapping_t
));
993 spa_keystore_create_mapping(spa_t
*spa
, dsl_dataset_t
*ds
, const void *tag
,
994 dsl_key_mapping_t
**km_out
)
998 dsl_key_mapping_t
*km
, *found_km
;
999 boolean_t should_free
= B_FALSE
;
1001 /* Allocate and initialize the mapping */
1002 km
= kmem_zalloc(sizeof (dsl_key_mapping_t
), KM_SLEEP
);
1003 zfs_refcount_create(&km
->km_refcnt
);
1005 ret
= spa_keystore_dsl_key_hold_dd(spa
, ds
->ds_dir
, km
, &km
->km_key
);
1007 zfs_refcount_destroy(&km
->km_refcnt
);
1008 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1015 km
->km_dsobj
= ds
->ds_object
;
1017 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
1020 * If a mapping already exists, simply increment its refcount and
1021 * cleanup the one we made. We want to allocate / free outside of
1022 * the lock because this lock is also used by the zio layer to lookup
1023 * key mappings. Otherwise, use the one we created. Normally, there will
1024 * only be one active reference at a time (the objset owner), but there
1025 * are times when there could be multiple async users.
1027 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, km
, &where
);
1028 if (found_km
!= NULL
) {
1029 should_free
= B_TRUE
;
1030 zfs_refcount_add(&found_km
->km_refcnt
, tag
);
1034 zfs_refcount_add(&km
->km_refcnt
, tag
);
1035 avl_insert(&spa
->spa_keystore
.sk_key_mappings
, km
, where
);
1040 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1043 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
1044 zfs_refcount_destroy(&km
->km_refcnt
);
1045 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1052 spa_keystore_remove_mapping(spa_t
*spa
, uint64_t dsobj
, const void *tag
)
1055 dsl_key_mapping_t search_km
;
1056 dsl_key_mapping_t
*found_km
;
1058 /* init the search key mapping */
1059 search_km
.km_dsobj
= dsobj
;
1061 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1063 /* find the matching mapping */
1064 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
,
1066 if (found_km
== NULL
) {
1067 ret
= SET_ERROR(ENOENT
);
1071 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1073 key_mapping_rele(spa
, found_km
, tag
);
1078 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1083 * This function is primarily used by the zio and arc layer to lookup
1084 * DSL Crypto Keys for encryption. Callers must release the key with
1085 * spa_keystore_dsl_key_rele(). The function may also be called with
1086 * dck_out == NULL and tag == NULL to simply check that a key exists
1087 * without getting a reference to it.
1090 spa_keystore_lookup_key(spa_t
*spa
, uint64_t dsobj
, const void *tag
,
1091 dsl_crypto_key_t
**dck_out
)
1094 dsl_key_mapping_t search_km
;
1095 dsl_key_mapping_t
*found_km
;
1097 ASSERT((tag
!= NULL
&& dck_out
!= NULL
) ||
1098 (tag
== NULL
&& dck_out
== NULL
));
1100 /* init the search key mapping */
1101 search_km
.km_dsobj
= dsobj
;
1103 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1105 /* remove the mapping from the tree */
1106 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, &search_km
,
1108 if (found_km
== NULL
) {
1109 ret
= SET_ERROR(ENOENT
);
1113 if (found_km
&& tag
)
1114 zfs_refcount_add(&found_km
->km_key
->dck_holds
, tag
);
1116 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1118 if (dck_out
!= NULL
)
1119 *dck_out
= found_km
->km_key
;
1123 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1125 if (dck_out
!= NULL
)
1131 dmu_objset_check_wkey_loaded(dsl_dir_t
*dd
)
1134 dsl_wrapping_key_t
*wkey
= NULL
;
1136 ret
= spa_keystore_wkey_hold_dd(dd
->dd_pool
->dp_spa
, dd
, FTAG
,
1139 return (SET_ERROR(EACCES
));
1141 dsl_wrapping_key_rele(wkey
, FTAG
);
1147 dsl_dataset_get_keystatus(dsl_dir_t
*dd
)
1149 /* check if this dd has a has a dsl key */
1150 if (dd
->dd_crypto_obj
== 0)
1151 return (ZFS_KEYSTATUS_NONE
);
1153 return (dmu_objset_check_wkey_loaded(dd
) == 0 ?
1154 ZFS_KEYSTATUS_AVAILABLE
: ZFS_KEYSTATUS_UNAVAILABLE
);
1158 dsl_dir_get_crypt(dsl_dir_t
*dd
, uint64_t *crypt
)
1160 if (dd
->dd_crypto_obj
== 0) {
1161 *crypt
= ZIO_CRYPT_OFF
;
1165 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
1166 DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1, crypt
));
1170 dsl_crypto_key_sync_impl(objset_t
*mos
, uint64_t dckobj
, uint64_t crypt
,
1171 uint64_t root_ddobj
, uint64_t guid
, uint8_t *iv
, uint8_t *mac
,
1172 uint8_t *keydata
, uint8_t *hmac_keydata
, uint64_t keyformat
,
1173 uint64_t salt
, uint64_t iters
, dmu_tx_t
*tx
)
1175 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
1177 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1179 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1,
1181 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
1183 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
1185 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
1186 MASTER_KEY_MAX_LEN
, keydata
, tx
));
1187 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
1188 SHA512_HMAC_KEYLEN
, hmac_keydata
, tx
));
1189 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
1190 8, 1, &keyformat
, tx
));
1191 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
1193 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
1198 dsl_crypto_key_sync(dsl_crypto_key_t
*dck
, dmu_tx_t
*tx
)
1200 zio_crypt_key_t
*key
= &dck
->dck_key
;
1201 dsl_wrapping_key_t
*wkey
= dck
->dck_wkey
;
1202 uint8_t keydata
[MASTER_KEY_MAX_LEN
];
1203 uint8_t hmac_keydata
[SHA512_HMAC_KEYLEN
];
1204 uint8_t iv
[WRAPPING_IV_LEN
];
1205 uint8_t mac
[WRAPPING_MAC_LEN
];
1207 ASSERT(dmu_tx_is_syncing(tx
));
1208 ASSERT3U(key
->zk_crypt
, <, ZIO_CRYPT_FUNCTIONS
);
1210 /* encrypt and store the keys along with the IV and MAC */
1211 VERIFY0(zio_crypt_key_wrap(&dck
->dck_wkey
->wk_key
, key
, iv
, mac
,
1212 keydata
, hmac_keydata
));
1214 /* update the ZAP with the obtained values */
1215 dsl_crypto_key_sync_impl(tx
->tx_pool
->dp_meta_objset
, dck
->dck_obj
,
1216 key
->zk_crypt
, wkey
->wk_ddobj
, key
->zk_guid
, iv
, mac
, keydata
,
1217 hmac_keydata
, wkey
->wk_keyformat
, wkey
->wk_salt
, wkey
->wk_iters
,
1221 typedef struct spa_keystore_change_key_args
{
1222 const char *skcka_dsname
;
1223 dsl_crypto_params_t
*skcka_cp
;
1224 } spa_keystore_change_key_args_t
;
1227 spa_keystore_change_key_check(void *arg
, dmu_tx_t
*tx
)
1230 dsl_dir_t
*dd
= NULL
;
1231 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1232 spa_keystore_change_key_args_t
*skcka
= arg
;
1233 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1236 /* check for the encryption feature */
1237 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
1238 ret
= SET_ERROR(ENOTSUP
);
1242 /* check for valid key change command */
1243 if (dcp
->cp_cmd
!= DCP_CMD_NEW_KEY
&&
1244 dcp
->cp_cmd
!= DCP_CMD_INHERIT
&&
1245 dcp
->cp_cmd
!= DCP_CMD_FORCE_NEW_KEY
&&
1246 dcp
->cp_cmd
!= DCP_CMD_FORCE_INHERIT
) {
1247 ret
= SET_ERROR(EINVAL
);
1252 ret
= dsl_dir_hold(dp
, skcka
->skcka_dsname
, FTAG
, &dd
, NULL
);
1258 /* verify that the dataset is encrypted */
1259 if (dd
->dd_crypto_obj
== 0) {
1260 ret
= SET_ERROR(EINVAL
);
1264 /* clones must always use their origin's key */
1265 if (dsl_dir_is_clone(dd
)) {
1266 ret
= SET_ERROR(EINVAL
);
1270 /* lookup the ddobj we are inheriting the keylocation from */
1271 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
1275 /* Handle inheritance */
1276 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
||
1277 dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
) {
1278 /* no other encryption params should be given */
1279 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1280 dcp
->cp_keylocation
!= NULL
||
1281 dcp
->cp_wkey
!= NULL
) {
1282 ret
= SET_ERROR(EINVAL
);
1286 /* check that this is an encryption root */
1287 if (dd
->dd_object
!= rddobj
) {
1288 ret
= SET_ERROR(EINVAL
);
1292 /* check that the parent is encrypted */
1293 if (dd
->dd_parent
->dd_crypto_obj
== 0) {
1294 ret
= SET_ERROR(EINVAL
);
1298 /* if we are rewrapping check that both keys are loaded */
1299 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1300 ret
= dmu_objset_check_wkey_loaded(dd
);
1304 ret
= dmu_objset_check_wkey_loaded(dd
->dd_parent
);
1309 dsl_dir_rele(dd
, FTAG
);
1313 /* handle forcing an encryption root without rewrapping */
1314 if (dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1315 /* no other encryption params should be given */
1316 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1317 dcp
->cp_keylocation
!= NULL
||
1318 dcp
->cp_wkey
!= NULL
) {
1319 ret
= SET_ERROR(EINVAL
);
1323 /* check that this is not an encryption root */
1324 if (dd
->dd_object
== rddobj
) {
1325 ret
= SET_ERROR(EINVAL
);
1329 dsl_dir_rele(dd
, FTAG
);
1333 /* crypt cannot be changed after creation */
1334 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
) {
1335 ret
= SET_ERROR(EINVAL
);
1339 /* we are not inheritting our parent's wkey so we need one ourselves */
1340 if (dcp
->cp_wkey
== NULL
) {
1341 ret
= SET_ERROR(EINVAL
);
1345 /* check for a valid keyformat for the new wrapping key */
1346 if (dcp
->cp_wkey
->wk_keyformat
>= ZFS_KEYFORMAT_FORMATS
||
1347 dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_NONE
) {
1348 ret
= SET_ERROR(EINVAL
);
1353 * If this dataset is not currently an encryption root we need a new
1354 * keylocation for this dataset's new wrapping key. Otherwise we can
1355 * just keep the one we already had.
1357 if (dd
->dd_object
!= rddobj
&& dcp
->cp_keylocation
== NULL
) {
1358 ret
= SET_ERROR(EINVAL
);
1362 /* check that the keylocation is valid if it is not NULL */
1363 if (dcp
->cp_keylocation
!= NULL
&&
1364 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
)) {
1365 ret
= SET_ERROR(EINVAL
);
1369 /* passphrases require pbkdf2 salt and iters */
1370 if (dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_PASSPHRASE
) {
1371 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1372 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
) {
1373 ret
= SET_ERROR(EINVAL
);
1377 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0) {
1378 ret
= SET_ERROR(EINVAL
);
1383 /* make sure the dd's wkey is loaded */
1384 ret
= dmu_objset_check_wkey_loaded(dd
);
1388 dsl_dir_rele(dd
, FTAG
);
1394 dsl_dir_rele(dd
, FTAG
);
1400 * This function deals with the intricacies of updating wrapping
1401 * key references and encryption roots recursively in the event
1402 * of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1403 * parameter should always be set to B_FALSE when called
1407 spa_keystore_change_key_sync_impl(uint64_t rddobj
, uint64_t ddobj
,
1408 uint64_t new_rddobj
, dsl_wrapping_key_t
*wkey
, boolean_t skip
,
1413 zap_attribute_t
*za
;
1414 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1415 dsl_dir_t
*dd
= NULL
;
1416 dsl_crypto_key_t
*dck
= NULL
;
1417 uint64_t curr_rddobj
;
1419 ASSERT(RW_WRITE_HELD(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
));
1422 VERIFY0(dsl_dir_hold_obj(dp
, ddobj
, NULL
, FTAG
, &dd
));
1424 /* ignore special dsl dirs */
1425 if (dd
->dd_myname
[0] == '$' || dd
->dd_myname
[0] == '%') {
1426 dsl_dir_rele(dd
, FTAG
);
1430 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1431 VERIFY(ret
== 0 || ret
== ENOENT
);
1434 * Stop recursing if this dsl dir didn't inherit from the root
1435 * or if this dd is a clone.
1437 if (ret
== ENOENT
||
1438 (!skip
&& (curr_rddobj
!= rddobj
|| dsl_dir_is_clone(dd
)))) {
1439 dsl_dir_rele(dd
, FTAG
);
1444 * If we don't have a wrapping key just update the dck to reflect the
1445 * new encryption root. Otherwise rewrap the entire dck and re-sync it
1446 * to disk. If skip is set, we don't do any of this work.
1450 VERIFY0(zap_update(dp
->dp_meta_objset
,
1452 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1455 VERIFY0(spa_keystore_dsl_key_hold_dd(dp
->dp_spa
, dd
,
1457 dsl_wrapping_key_hold(wkey
, dck
);
1458 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
1459 dck
->dck_wkey
= wkey
;
1460 dsl_crypto_key_sync(dck
, tx
);
1461 spa_keystore_dsl_key_rele(dp
->dp_spa
, dck
, FTAG
);
1465 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
1466 za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
1468 /* Recurse into all child dsl dirs. */
1469 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1470 dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
1471 zap_cursor_retrieve(zc
, za
) == 0;
1472 zap_cursor_advance(zc
)) {
1473 spa_keystore_change_key_sync_impl(rddobj
,
1474 za
->za_first_integer
, new_rddobj
, wkey
, B_FALSE
, tx
);
1476 zap_cursor_fini(zc
);
1479 * Recurse into all dsl dirs of clones. We utilize the skip parameter
1480 * here so that we don't attempt to process the clones directly. This
1481 * is because the clone and its origin share the same dck, which has
1482 * already been updated.
1484 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1485 dsl_dir_phys(dd
)->dd_clones
);
1486 zap_cursor_retrieve(zc
, za
) == 0;
1487 zap_cursor_advance(zc
)) {
1488 dsl_dataset_t
*clone
;
1490 VERIFY0(dsl_dataset_hold_obj(dp
, za
->za_first_integer
,
1492 spa_keystore_change_key_sync_impl(rddobj
,
1493 clone
->ds_dir
->dd_object
, new_rddobj
, wkey
, B_TRUE
, tx
);
1494 dsl_dataset_rele(clone
, FTAG
);
1496 zap_cursor_fini(zc
);
1498 kmem_free(za
, sizeof (zap_attribute_t
));
1499 kmem_free(zc
, sizeof (zap_cursor_t
));
1501 dsl_dir_rele(dd
, FTAG
);
1505 spa_keystore_change_key_sync(void *arg
, dmu_tx_t
*tx
)
1509 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1510 spa_t
*spa
= dp
->dp_spa
;
1511 spa_keystore_change_key_args_t
*skcka
= arg
;
1512 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1513 dsl_wrapping_key_t
*wkey
= NULL
, *found_wkey
;
1514 dsl_wrapping_key_t wkey_search
;
1515 const char *keylocation
= dcp
->cp_keylocation
;
1516 uint64_t rddobj
, new_rddobj
;
1518 /* create and initialize the wrapping key */
1519 VERIFY0(dsl_dataset_hold(dp
, skcka
->skcka_dsname
, FTAG
, &ds
));
1520 ASSERT(!ds
->ds_is_snapshot
);
1522 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
||
1523 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1525 * We are changing to a new wkey. Set additional properties
1526 * which can be sent along with this ioctl. Note that this
1527 * command can set keylocation even if it can't normally be
1528 * set via 'zfs set' due to a non-local keylocation.
1530 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1531 wkey
= dcp
->cp_wkey
;
1532 wkey
->wk_ddobj
= ds
->ds_dir
->dd_object
;
1534 keylocation
= "prompt";
1537 if (keylocation
!= NULL
) {
1538 dsl_prop_set_sync_impl(ds
,
1539 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1540 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
1544 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
));
1545 new_rddobj
= ds
->ds_dir
->dd_object
;
1548 * We are inheritting the parent's wkey. Unset any local
1549 * keylocation and grab a reference to the wkey.
1551 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1552 VERIFY0(spa_keystore_wkey_hold_dd(spa
,
1553 ds
->ds_dir
->dd_parent
, FTAG
, &wkey
));
1556 dsl_prop_set_sync_impl(ds
,
1557 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), ZPROP_SRC_NONE
,
1560 rddobj
= ds
->ds_dir
->dd_object
;
1561 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
->dd_parent
,
1566 ASSERT(dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
||
1567 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
);
1570 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1572 /* recurse through all children and rewrap their keys */
1573 spa_keystore_change_key_sync_impl(rddobj
, ds
->ds_dir
->dd_object
,
1574 new_rddobj
, wkey
, B_FALSE
, tx
);
1577 * All references to the old wkey should be released now (if it
1578 * existed). Replace the wrapping key.
1580 wkey_search
.wk_ddobj
= ds
->ds_dir
->dd_object
;
1581 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &wkey_search
, NULL
);
1582 if (found_wkey
!= NULL
) {
1583 ASSERT0(zfs_refcount_count(&found_wkey
->wk_refcnt
));
1584 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
1585 dsl_wrapping_key_free(found_wkey
);
1588 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1589 avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
1590 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
1591 } else if (wkey
!= NULL
) {
1592 dsl_wrapping_key_rele(wkey
, FTAG
);
1595 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
1597 dsl_dataset_rele(ds
, FTAG
);
1601 spa_keystore_change_key(const char *dsname
, dsl_crypto_params_t
*dcp
)
1603 spa_keystore_change_key_args_t skcka
;
1605 /* initialize the args struct */
1606 skcka
.skcka_dsname
= dsname
;
1607 skcka
.skcka_cp
= dcp
;
1610 * Perform the actual work in syncing context. The blocks modified
1611 * here could be calculated but it would require holding the pool
1612 * lock and traversing all of the datasets that will have their keys
1615 return (dsl_sync_task(dsname
, spa_keystore_change_key_check
,
1616 spa_keystore_change_key_sync
, &skcka
, 15,
1617 ZFS_SPACE_CHECK_RESERVED
));
1621 dsl_dir_rename_crypt_check(dsl_dir_t
*dd
, dsl_dir_t
*newparent
)
1624 uint64_t curr_rddobj
, parent_rddobj
;
1626 if (dd
->dd_crypto_obj
== 0)
1629 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1634 * if this is not an encryption root, we must make sure we are not
1635 * moving dd to a new encryption root
1637 if (dd
->dd_object
!= curr_rddobj
) {
1638 ret
= dsl_dir_get_encryption_root_ddobj(newparent
,
1643 if (parent_rddobj
!= curr_rddobj
) {
1644 ret
= SET_ERROR(EACCES
);
1656 * Check to make sure that a promote from targetdd to origindd will not require
1660 dsl_dataset_promote_crypt_check(dsl_dir_t
*target
, dsl_dir_t
*origin
)
1663 uint64_t rddobj
, op_rddobj
, tp_rddobj
;
1665 /* If the dataset is not encrypted we don't need to check anything */
1666 if (origin
->dd_crypto_obj
== 0)
1670 * If we are not changing the first origin snapshot in a chain
1671 * the encryption root won't change either.
1673 if (dsl_dir_is_clone(origin
))
1677 * If the origin is the encryption root we will update
1678 * the DSL Crypto Key to point to the target instead.
1680 ret
= dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
);
1684 if (rddobj
== origin
->dd_object
)
1688 * The origin is inheriting its encryption root from its parent.
1689 * Check that the parent of the target has the same encryption root.
1691 ret
= dsl_dir_get_encryption_root_ddobj(origin
->dd_parent
, &op_rddobj
);
1693 return (SET_ERROR(EACCES
));
1697 ret
= dsl_dir_get_encryption_root_ddobj(target
->dd_parent
, &tp_rddobj
);
1699 return (SET_ERROR(EACCES
));
1703 if (op_rddobj
!= tp_rddobj
)
1704 return (SET_ERROR(EACCES
));
1710 dsl_dataset_promote_crypt_sync(dsl_dir_t
*target
, dsl_dir_t
*origin
,
1714 dsl_pool_t
*dp
= target
->dd_pool
;
1715 dsl_dataset_t
*targetds
;
1716 dsl_dataset_t
*originds
;
1719 if (origin
->dd_crypto_obj
== 0)
1721 if (dsl_dir_is_clone(origin
))
1724 VERIFY0(dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
));
1726 if (rddobj
!= origin
->dd_object
)
1730 * If the target is being promoted to the encryption root update the
1731 * DSL Crypto Key and keylocation to reflect that. We also need to
1732 * update the DSL Crypto Keys of all children inheritting their
1733 * encryption root to point to the new target. Otherwise, the check
1734 * function ensured that the encryption root will not change.
1736 keylocation
= kmem_alloc(ZAP_MAXVALUELEN
, KM_SLEEP
);
1738 VERIFY0(dsl_dataset_hold_obj(dp
,
1739 dsl_dir_phys(target
)->dd_head_dataset_obj
, FTAG
, &targetds
));
1740 VERIFY0(dsl_dataset_hold_obj(dp
,
1741 dsl_dir_phys(origin
)->dd_head_dataset_obj
, FTAG
, &originds
));
1743 VERIFY0(dsl_prop_get_dd(origin
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1744 1, ZAP_MAXVALUELEN
, keylocation
, NULL
, B_FALSE
));
1745 dsl_prop_set_sync_impl(targetds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1746 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1, keylocation
, tx
);
1747 dsl_prop_set_sync_impl(originds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1748 ZPROP_SRC_NONE
, 0, 0, NULL
, tx
);
1750 rw_enter(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1751 spa_keystore_change_key_sync_impl(rddobj
, origin
->dd_object
,
1752 target
->dd_object
, NULL
, B_FALSE
, tx
);
1753 rw_exit(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
);
1755 dsl_dataset_rele(targetds
, FTAG
);
1756 dsl_dataset_rele(originds
, FTAG
);
1757 kmem_free(keylocation
, ZAP_MAXVALUELEN
);
1761 dmu_objset_create_crypt_check(dsl_dir_t
*parentdd
, dsl_crypto_params_t
*dcp
,
1762 boolean_t
*will_encrypt
)
1765 uint64_t pcrypt
, crypt
;
1766 dsl_crypto_params_t dummy_dcp
= { 0 };
1768 if (will_encrypt
!= NULL
)
1769 *will_encrypt
= B_FALSE
;
1774 if (dcp
->cp_cmd
!= DCP_CMD_NONE
)
1775 return (SET_ERROR(EINVAL
));
1777 if (parentdd
!= NULL
) {
1778 ret
= dsl_dir_get_crypt(parentdd
, &pcrypt
);
1782 pcrypt
= ZIO_CRYPT_OFF
;
1785 crypt
= (dcp
->cp_crypt
== ZIO_CRYPT_INHERIT
) ? pcrypt
: dcp
->cp_crypt
;
1787 ASSERT3U(pcrypt
, !=, ZIO_CRYPT_INHERIT
);
1788 ASSERT3U(crypt
, !=, ZIO_CRYPT_INHERIT
);
1790 /* check for valid dcp with no encryption (inherited or local) */
1791 if (crypt
== ZIO_CRYPT_OFF
) {
1792 /* Must not specify encryption params */
1793 if (dcp
->cp_wkey
!= NULL
||
1794 (dcp
->cp_keylocation
!= NULL
&&
1795 strcmp(dcp
->cp_keylocation
, "none") != 0))
1796 return (SET_ERROR(EINVAL
));
1801 if (will_encrypt
!= NULL
)
1802 *will_encrypt
= B_TRUE
;
1805 * We will now definitely be encrypting. Check the feature flag. When
1806 * creating the pool the caller will check this for us since we won't
1807 * technically have the feature activated yet.
1809 if (parentdd
!= NULL
&&
1810 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1811 SPA_FEATURE_ENCRYPTION
)) {
1812 return (SET_ERROR(EOPNOTSUPP
));
1815 /* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1816 if (parentdd
!= NULL
&&
1817 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1818 SPA_FEATURE_BOOKMARK_V2
)) {
1819 return (SET_ERROR(EOPNOTSUPP
));
1822 /* handle inheritance */
1823 if (dcp
->cp_wkey
== NULL
) {
1824 ASSERT3P(parentdd
, !=, NULL
);
1826 /* key must be fully unspecified */
1827 if (dcp
->cp_keylocation
!= NULL
)
1828 return (SET_ERROR(EINVAL
));
1830 /* parent must have a key to inherit */
1831 if (pcrypt
== ZIO_CRYPT_OFF
)
1832 return (SET_ERROR(EINVAL
));
1834 /* check for parent key */
1835 ret
= dmu_objset_check_wkey_loaded(parentdd
);
1842 /* At this point we should have a fully specified key. Check location */
1843 if (dcp
->cp_keylocation
== NULL
||
1844 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
))
1845 return (SET_ERROR(EINVAL
));
1847 /* Must have fully specified keyformat */
1848 switch (dcp
->cp_wkey
->wk_keyformat
) {
1849 case ZFS_KEYFORMAT_HEX
:
1850 case ZFS_KEYFORMAT_RAW
:
1851 /* requires no pbkdf2 iters and salt */
1852 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0)
1853 return (SET_ERROR(EINVAL
));
1855 case ZFS_KEYFORMAT_PASSPHRASE
:
1856 /* requires pbkdf2 iters and salt */
1857 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1858 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
)
1859 return (SET_ERROR(EINVAL
));
1861 case ZFS_KEYFORMAT_NONE
:
1863 /* keyformat must be specified and valid */
1864 return (SET_ERROR(EINVAL
));
1871 dsl_dataset_create_crypt_sync(uint64_t dsobj
, dsl_dir_t
*dd
,
1872 dsl_dataset_t
*origin
, dsl_crypto_params_t
*dcp
, dmu_tx_t
*tx
)
1874 dsl_pool_t
*dp
= dd
->dd_pool
;
1876 dsl_wrapping_key_t
*wkey
;
1878 /* clones always use their origin's wrapping key */
1879 if (dsl_dir_is_clone(dd
)) {
1880 ASSERT3P(dcp
, ==, NULL
);
1883 * If this is an encrypted clone we just need to clone the
1884 * dck into dd. Zapify the dd so we can do that.
1886 if (origin
->ds_dir
->dd_crypto_obj
!= 0) {
1887 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1888 dsl_dir_zapify(dd
, tx
);
1891 dsl_crypto_key_clone_sync(origin
->ds_dir
, tx
);
1892 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1893 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1,
1894 &dd
->dd_crypto_obj
, tx
));
1901 * A NULL dcp at this point indicates this is the origin dataset
1902 * which does not have an objset to encrypt. Raw receives will handle
1903 * encryption separately later. In both cases we can simply return.
1905 if (dcp
== NULL
|| dcp
->cp_cmd
== DCP_CMD_RAW_RECV
)
1908 crypt
= dcp
->cp_crypt
;
1909 wkey
= dcp
->cp_wkey
;
1911 /* figure out the effective crypt */
1912 if (crypt
== ZIO_CRYPT_INHERIT
&& dd
->dd_parent
!= NULL
)
1913 VERIFY0(dsl_dir_get_crypt(dd
->dd_parent
, &crypt
));
1915 /* if we aren't doing encryption just return */
1916 if (crypt
== ZIO_CRYPT_OFF
|| crypt
== ZIO_CRYPT_INHERIT
)
1919 /* zapify the dd so that we can add the crypto key obj to it */
1920 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1921 dsl_dir_zapify(dd
, tx
);
1923 /* use the new key if given or inherit from the parent */
1925 VERIFY0(spa_keystore_wkey_hold_dd(dp
->dp_spa
,
1926 dd
->dd_parent
, FTAG
, &wkey
));
1928 wkey
->wk_ddobj
= dd
->dd_object
;
1931 ASSERT3P(wkey
, !=, NULL
);
1933 /* Create or clone the DSL crypto key and activate the feature */
1934 dd
->dd_crypto_obj
= dsl_crypto_key_create_sync(crypt
, wkey
, tx
);
1935 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1936 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1, &dd
->dd_crypto_obj
,
1938 dsl_dataset_activate_feature(dsobj
, SPA_FEATURE_ENCRYPTION
,
1939 (void *)B_TRUE
, tx
);
1942 * If we inherited the wrapping key we release our reference now.
1943 * Otherwise, this is a new key and we need to load it into the
1946 if (dcp
->cp_wkey
== NULL
) {
1947 dsl_wrapping_key_rele(wkey
, FTAG
);
1949 VERIFY0(spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
));
1953 typedef struct dsl_crypto_recv_key_arg
{
1954 uint64_t dcrka_dsobj
;
1955 uint64_t dcrka_fromobj
;
1956 dmu_objset_type_t dcrka_ostype
;
1957 nvlist_t
*dcrka_nvl
;
1958 boolean_t dcrka_do_key
;
1959 } dsl_crypto_recv_key_arg_t
;
1962 dsl_crypto_recv_raw_objset_check(dsl_dataset_t
*ds
, dsl_dataset_t
*fromds
,
1963 dmu_objset_type_t ostype
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
1968 uint8_t *buf
= NULL
;
1970 uint64_t intval
, nlevels
, blksz
, ibs
;
1971 uint64_t nblkptr
, maxblkid
;
1973 if (ostype
!= DMU_OST_ZFS
&& ostype
!= DMU_OST_ZVOL
)
1974 return (SET_ERROR(EINVAL
));
1976 /* raw receives also need info about the structure of the metadnode */
1977 ret
= nvlist_lookup_uint64(nvl
, "mdn_compress", &intval
);
1978 if (ret
!= 0 || intval
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
)
1979 return (SET_ERROR(EINVAL
));
1981 ret
= nvlist_lookup_uint64(nvl
, "mdn_checksum", &intval
);
1982 if (ret
!= 0 || intval
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
)
1983 return (SET_ERROR(EINVAL
));
1985 ret
= nvlist_lookup_uint64(nvl
, "mdn_nlevels", &nlevels
);
1986 if (ret
!= 0 || nlevels
> DN_MAX_LEVELS
)
1987 return (SET_ERROR(EINVAL
));
1989 ret
= nvlist_lookup_uint64(nvl
, "mdn_blksz", &blksz
);
1990 if (ret
!= 0 || blksz
< SPA_MINBLOCKSIZE
)
1991 return (SET_ERROR(EINVAL
));
1992 else if (blksz
> spa_maxblocksize(tx
->tx_pool
->dp_spa
))
1993 return (SET_ERROR(ENOTSUP
));
1995 ret
= nvlist_lookup_uint64(nvl
, "mdn_indblkshift", &ibs
);
1996 if (ret
!= 0 || ibs
< DN_MIN_INDBLKSHIFT
|| ibs
> DN_MAX_INDBLKSHIFT
)
1997 return (SET_ERROR(ENOTSUP
));
1999 ret
= nvlist_lookup_uint64(nvl
, "mdn_nblkptr", &nblkptr
);
2000 if (ret
!= 0 || nblkptr
!= DN_MAX_NBLKPTR
)
2001 return (SET_ERROR(ENOTSUP
));
2003 ret
= nvlist_lookup_uint64(nvl
, "mdn_maxblkid", &maxblkid
);
2005 return (SET_ERROR(EINVAL
));
2007 ret
= nvlist_lookup_uint8_array(nvl
, "portable_mac", &buf
, &len
);
2008 if (ret
!= 0 || len
!= ZIO_OBJSET_MAC_LEN
)
2009 return (SET_ERROR(EINVAL
));
2011 ret
= dmu_objset_from_ds(ds
, &os
);
2015 mdn
= DMU_META_DNODE(os
);
2018 * If we already created the objset, make sure its unchangeable
2019 * properties match the ones received in the nvlist.
2021 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2022 if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds
)) &&
2023 (mdn
->dn_nlevels
!= nlevels
|| mdn
->dn_datablksz
!= blksz
||
2024 mdn
->dn_indblkshift
!= ibs
|| mdn
->dn_nblkptr
!= nblkptr
)) {
2025 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2026 return (SET_ERROR(EINVAL
));
2028 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2031 * Check that the ivset guid of the fromds matches the one from the
2032 * send stream. Older versions of the encryption code did not have
2033 * an ivset guid on the from dataset and did not send one in the
2034 * stream. For these streams we provide the
2035 * zfs_disable_ivset_guid_check tunable to allow these datasets to
2036 * be received with a generated ivset guid.
2038 if (fromds
!= NULL
&& !zfs_disable_ivset_guid_check
) {
2039 uint64_t from_ivset_guid
= 0;
2042 (void) nvlist_lookup_uint64(nvl
, "from_ivset_guid", &intval
);
2043 (void) zap_lookup(tx
->tx_pool
->dp_meta_objset
,
2044 fromds
->ds_object
, DS_FIELD_IVSET_GUID
,
2045 sizeof (from_ivset_guid
), 1, &from_ivset_guid
);
2047 if (intval
== 0 || from_ivset_guid
== 0)
2048 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING
));
2050 if (intval
!= from_ivset_guid
)
2051 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH
));
2058 dsl_crypto_recv_raw_objset_sync(dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2059 nvlist_t
*nvl
, dmu_tx_t
*tx
)
2061 dsl_pool_t
*dp
= tx
->tx_pool
;
2065 uint8_t *portable_mac
;
2067 uint64_t compress
, checksum
, nlevels
, blksz
, ibs
, maxblkid
;
2068 boolean_t newds
= B_FALSE
;
2070 VERIFY0(dmu_objset_from_ds(ds
, &os
));
2071 mdn
= DMU_META_DNODE(os
);
2074 * Fetch the values we need from the nvlist. "to_ivset_guid" must
2075 * be set on the snapshot, which doesn't exist yet. The receive
2076 * code will take care of this for us later.
2078 compress
= fnvlist_lookup_uint64(nvl
, "mdn_compress");
2079 checksum
= fnvlist_lookup_uint64(nvl
, "mdn_checksum");
2080 nlevels
= fnvlist_lookup_uint64(nvl
, "mdn_nlevels");
2081 blksz
= fnvlist_lookup_uint64(nvl
, "mdn_blksz");
2082 ibs
= fnvlist_lookup_uint64(nvl
, "mdn_indblkshift");
2083 maxblkid
= fnvlist_lookup_uint64(nvl
, "mdn_maxblkid");
2084 VERIFY0(nvlist_lookup_uint8_array(nvl
, "portable_mac", &portable_mac
,
2087 /* if we haven't created an objset for the ds yet, do that now */
2088 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2089 if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds
))) {
2090 (void) dmu_objset_create_impl_dnstats(dp
->dp_spa
, ds
,
2091 dsl_dataset_get_blkptr(ds
), ostype
, nlevels
, blksz
,
2095 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2098 * Set the portable MAC. The local MAC will always be zero since the
2099 * incoming data will all be portable and user accounting will be
2100 * deferred until the next mount. Afterwards, flag the os to be
2101 * written out raw next time.
2103 arc_release(os
->os_phys_buf
, &os
->os_phys_buf
);
2104 memcpy(os
->os_phys
->os_portable_mac
, portable_mac
, ZIO_OBJSET_MAC_LEN
);
2105 memset(os
->os_phys
->os_local_mac
, 0, ZIO_OBJSET_MAC_LEN
);
2106 os
->os_flags
&= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE
;
2107 os
->os_next_write_raw
[tx
->tx_txg
& TXG_MASK
] = B_TRUE
;
2109 /* set metadnode compression and checksum */
2110 mdn
->dn_compress
= compress
;
2111 mdn
->dn_checksum
= checksum
;
2113 rw_enter(&mdn
->dn_struct_rwlock
, RW_WRITER
);
2114 dnode_new_blkid(mdn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
2115 rw_exit(&mdn
->dn_struct_rwlock
);
2118 * We can't normally dirty the dataset in syncing context unless
2119 * we are creating a new dataset. In this case, we perform a
2120 * pseudo txg sync here instead.
2123 dsl_dataset_dirty(ds
, tx
);
2125 zio
= zio_root(dp
->dp_spa
, NULL
, NULL
, ZIO_FLAG_MUSTSUCCEED
);
2126 dsl_dataset_sync(ds
, zio
, tx
);
2127 VERIFY0(zio_wait(zio
));
2128 dsl_dataset_sync_done(ds
, tx
);
2133 dsl_crypto_recv_raw_key_check(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2136 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2137 uint8_t *buf
= NULL
;
2139 uint64_t intval
, key_guid
, version
;
2140 boolean_t is_passphrase
= B_FALSE
;
2142 ASSERT(dsl_dataset_phys(ds
)->ds_flags
& DS_FLAG_INCONSISTENT
);
2145 * Read and check all the encryption values from the nvlist. We need
2146 * all of the fields of a DSL Crypto Key, as well as a fully specified
2149 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, &intval
);
2150 if (ret
!= 0 || intval
<= ZIO_CRYPT_OFF
)
2151 return (SET_ERROR(EINVAL
));
2154 * Flag a future crypto suite that we don't support differently, so
2155 * we can return a more useful error to the user.
2157 if (intval
>= ZIO_CRYPT_FUNCTIONS
)
2158 return (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP
));
2160 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, &intval
);
2162 return (SET_ERROR(EINVAL
));
2165 * If this is an incremental receive make sure the given key guid
2166 * matches the one we already have.
2168 if (ds
->ds_dir
->dd_crypto_obj
!= 0) {
2169 ret
= zap_lookup(mos
, ds
->ds_dir
->dd_crypto_obj
,
2170 DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2173 if (intval
!= key_guid
)
2174 return (SET_ERROR(EACCES
));
2177 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2179 if (ret
!= 0 || len
!= MASTER_KEY_MAX_LEN
)
2180 return (SET_ERROR(EINVAL
));
2182 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2184 if (ret
!= 0 || len
!= SHA512_HMAC_KEYLEN
)
2185 return (SET_ERROR(EINVAL
));
2187 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &buf
, &len
);
2188 if (ret
!= 0 || len
!= WRAPPING_IV_LEN
)
2189 return (SET_ERROR(EINVAL
));
2191 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &buf
, &len
);
2192 if (ret
!= 0 || len
!= WRAPPING_MAC_LEN
)
2193 return (SET_ERROR(EINVAL
));
2196 * We don't support receiving old on-disk formats. The version 0
2197 * implementation protected several fields in an objset that were
2198 * not always portable during a raw receive. As a result, we call
2199 * the old version an on-disk errata #3.
2201 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, &version
);
2202 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
)
2203 return (SET_ERROR(ENOTSUP
));
2205 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
2207 if (ret
!= 0 || intval
>= ZFS_KEYFORMAT_FORMATS
||
2208 intval
== ZFS_KEYFORMAT_NONE
)
2209 return (SET_ERROR(EINVAL
));
2211 is_passphrase
= (intval
== ZFS_KEYFORMAT_PASSPHRASE
);
2214 * for raw receives we allow any number of pbkdf2iters since there
2215 * won't be a chance for the user to change it.
2217 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
2219 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2220 return (SET_ERROR(EINVAL
));
2222 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
2224 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2225 return (SET_ERROR(EINVAL
));
2231 dsl_crypto_recv_raw_key_sync(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2233 dsl_pool_t
*dp
= tx
->tx_pool
;
2234 objset_t
*mos
= dp
->dp_meta_objset
;
2235 dsl_dir_t
*dd
= ds
->ds_dir
;
2237 uint64_t rddobj
, one
= 1;
2238 uint8_t *keydata
, *hmac_keydata
, *iv
, *mac
;
2239 uint64_t crypt
, key_guid
, keyformat
, iters
, salt
;
2240 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2241 const char *keylocation
= "prompt";
2243 /* lookup the values we need to create the DSL Crypto Key */
2244 crypt
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
);
2245 key_guid
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
);
2246 keyformat
= fnvlist_lookup_uint64(nvl
,
2247 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
2248 iters
= fnvlist_lookup_uint64(nvl
,
2249 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
2250 salt
= fnvlist_lookup_uint64(nvl
,
2251 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
2252 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2254 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2255 &hmac_keydata
, &len
));
2256 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &iv
, &len
));
2257 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &mac
, &len
));
2259 /* if this is a new dataset setup the DSL Crypto Key. */
2260 if (dd
->dd_crypto_obj
== 0) {
2261 /* zapify the dsl dir so we can add the key object to it */
2262 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
2263 dsl_dir_zapify(dd
, tx
);
2265 /* create the DSL Crypto Key on disk and activate the feature */
2266 dd
->dd_crypto_obj
= zap_create(mos
,
2267 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2268 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2269 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_REFCOUNT
,
2270 sizeof (uint64_t), 1, &one
, tx
));
2271 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2272 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_VERSION
,
2273 sizeof (uint64_t), 1, &version
, tx
));
2275 dsl_dataset_activate_feature(ds
->ds_object
,
2276 SPA_FEATURE_ENCRYPTION
, (void *)B_TRUE
, tx
);
2277 ds
->ds_feature
[SPA_FEATURE_ENCRYPTION
] = (void *)B_TRUE
;
2279 /* save the dd_crypto_obj on disk */
2280 VERIFY0(zap_add(mos
, dd
->dd_object
, DD_FIELD_CRYPTO_KEY_OBJ
,
2281 sizeof (uint64_t), 1, &dd
->dd_crypto_obj
, tx
));
2284 * Set the keylocation to prompt by default. If keylocation
2285 * has been provided via the properties, this will be overridden
2288 dsl_prop_set_sync_impl(ds
,
2289 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
2290 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
2293 rddobj
= dd
->dd_object
;
2295 VERIFY0(dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
));
2298 /* sync the key data to the ZAP object on disk */
2299 dsl_crypto_key_sync_impl(mos
, dd
->dd_crypto_obj
, crypt
,
2300 rddobj
, key_guid
, iv
, mac
, keydata
, hmac_keydata
, keyformat
, salt
,
2305 dsl_crypto_recv_key_check(void *arg
, dmu_tx_t
*tx
)
2308 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2309 dsl_dataset_t
*ds
= NULL
, *fromds
= NULL
;
2311 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2316 if (dcrka
->dcrka_fromobj
!= 0) {
2317 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_fromobj
,
2323 ret
= dsl_crypto_recv_raw_objset_check(ds
, fromds
,
2324 dcrka
->dcrka_ostype
, dcrka
->dcrka_nvl
, tx
);
2329 * We run this check even if we won't be doing this part of
2330 * the receive now so that we don't make the user wait until
2331 * the receive finishes to fail.
2333 ret
= dsl_crypto_recv_raw_key_check(ds
, dcrka
->dcrka_nvl
, tx
);
2339 dsl_dataset_rele(ds
, FTAG
);
2341 dsl_dataset_rele(fromds
, FTAG
);
2346 dsl_crypto_recv_key_sync(void *arg
, dmu_tx_t
*tx
)
2348 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2351 VERIFY0(dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2353 dsl_crypto_recv_raw_objset_sync(ds
, dcrka
->dcrka_ostype
,
2354 dcrka
->dcrka_nvl
, tx
);
2355 if (dcrka
->dcrka_do_key
)
2356 dsl_crypto_recv_raw_key_sync(ds
, dcrka
->dcrka_nvl
, tx
);
2357 dsl_dataset_rele(ds
, FTAG
);
2361 * This function is used to sync an nvlist representing a DSL Crypto Key and
2362 * the associated encryption parameters. The key will be written exactly as is
2363 * without wrapping it.
2366 dsl_crypto_recv_raw(const char *poolname
, uint64_t dsobj
, uint64_t fromobj
,
2367 dmu_objset_type_t ostype
, nvlist_t
*nvl
, boolean_t do_key
)
2369 dsl_crypto_recv_key_arg_t dcrka
;
2371 dcrka
.dcrka_dsobj
= dsobj
;
2372 dcrka
.dcrka_fromobj
= fromobj
;
2373 dcrka
.dcrka_ostype
= ostype
;
2374 dcrka
.dcrka_nvl
= nvl
;
2375 dcrka
.dcrka_do_key
= do_key
;
2377 return (dsl_sync_task(poolname
, dsl_crypto_recv_key_check
,
2378 dsl_crypto_recv_key_sync
, &dcrka
, 1, ZFS_SPACE_CHECK_NORMAL
));
2382 dsl_crypto_populate_key_nvlist(objset_t
*os
, uint64_t from_ivset_guid
,
2386 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
2389 nvlist_t
*nvl
= NULL
;
2390 uint64_t dckobj
= ds
->ds_dir
->dd_crypto_obj
;
2391 dsl_dir_t
*rdd
= NULL
;
2392 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2393 objset_t
*mos
= dp
->dp_meta_objset
;
2394 uint64_t crypt
= 0, key_guid
= 0, format
= 0;
2395 uint64_t iters
= 0, salt
= 0, version
= 0;
2396 uint64_t to_ivset_guid
= 0;
2397 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
2398 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
2399 uint8_t iv
[WRAPPING_IV_LEN
];
2400 uint8_t mac
[WRAPPING_MAC_LEN
];
2402 ASSERT(dckobj
!= 0);
2404 mdn
= DMU_META_DNODE(os
);
2406 nvl
= fnvlist_alloc();
2408 /* lookup values from the DSL Crypto Key */
2409 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
2414 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2418 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
2419 MASTER_KEY_MAX_LEN
, raw_keydata
);
2423 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
2424 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
2428 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
2433 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
2438 /* see zfs_disable_ivset_guid_check tunable for errata info */
2439 ret
= zap_lookup(mos
, ds
->ds_object
, DS_FIELD_IVSET_GUID
, 8, 1,
2442 ASSERT3U(dp
->dp_spa
->spa_errata
, !=, 0);
2445 * We don't support raw sends of legacy on-disk formats. See the
2446 * comment in dsl_crypto_recv_key_check() for details.
2448 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
2449 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
) {
2450 dp
->dp_spa
->spa_errata
= ZPOOL_ERRATA_ZOL_6845_ENCRYPTION
;
2451 ret
= SET_ERROR(ENOTSUP
);
2456 * Lookup wrapping key properties. An early version of the code did
2457 * not correctly add these values to the wrapping key or the DSL
2458 * Crypto Key on disk for non encryption roots, so to be safe we
2459 * always take the slightly circuitous route of looking it up from
2460 * the encryption root's key.
2462 ret
= dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
);
2466 dsl_pool_config_enter(dp
, FTAG
);
2468 ret
= dsl_dir_hold_obj(dp
, rddobj
, NULL
, FTAG
, &rdd
);
2472 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2473 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &format
);
2477 if (format
== ZFS_KEYFORMAT_PASSPHRASE
) {
2478 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2479 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
2483 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2484 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
2489 dsl_dir_rele(rdd
, FTAG
);
2490 dsl_pool_config_exit(dp
, FTAG
);
2492 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, crypt
);
2493 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, key_guid
);
2494 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, version
);
2495 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2496 raw_keydata
, MASTER_KEY_MAX_LEN
));
2497 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2498 raw_hmac_keydata
, SHA512_HMAC_KEYLEN
));
2499 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, iv
,
2501 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, mac
,
2503 VERIFY0(nvlist_add_uint8_array(nvl
, "portable_mac",
2504 os
->os_phys
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
));
2505 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), format
);
2506 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), iters
);
2507 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), salt
);
2508 fnvlist_add_uint64(nvl
, "mdn_checksum", mdn
->dn_checksum
);
2509 fnvlist_add_uint64(nvl
, "mdn_compress", mdn
->dn_compress
);
2510 fnvlist_add_uint64(nvl
, "mdn_nlevels", mdn
->dn_nlevels
);
2511 fnvlist_add_uint64(nvl
, "mdn_blksz", mdn
->dn_datablksz
);
2512 fnvlist_add_uint64(nvl
, "mdn_indblkshift", mdn
->dn_indblkshift
);
2513 fnvlist_add_uint64(nvl
, "mdn_nblkptr", mdn
->dn_nblkptr
);
2514 fnvlist_add_uint64(nvl
, "mdn_maxblkid", mdn
->dn_maxblkid
);
2515 fnvlist_add_uint64(nvl
, "to_ivset_guid", to_ivset_guid
);
2516 fnvlist_add_uint64(nvl
, "from_ivset_guid", from_ivset_guid
);
2522 dsl_pool_config_exit(dp
, FTAG
);
2525 dsl_dir_rele(rdd
, FTAG
);
2533 dsl_crypto_key_create_sync(uint64_t crypt
, dsl_wrapping_key_t
*wkey
,
2536 dsl_crypto_key_t dck
;
2537 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2538 uint64_t one
= 1ULL;
2540 ASSERT(dmu_tx_is_syncing(tx
));
2541 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
2542 ASSERT3U(crypt
, >, ZIO_CRYPT_OFF
);
2544 /* create the DSL Crypto Key ZAP object */
2545 dck
.dck_obj
= zap_create(tx
->tx_pool
->dp_meta_objset
,
2546 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2548 /* fill in the key (on the stack) and sync it to disk */
2549 dck
.dck_wkey
= wkey
;
2550 VERIFY0(zio_crypt_key_init(crypt
, &dck
.dck_key
));
2552 dsl_crypto_key_sync(&dck
, tx
);
2553 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2554 DSL_CRYPTO_KEY_REFCOUNT
, sizeof (uint64_t), 1, &one
, tx
));
2555 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2556 DSL_CRYPTO_KEY_VERSION
, sizeof (uint64_t), 1, &version
, tx
));
2558 zio_crypt_key_destroy(&dck
.dck_key
);
2559 memset(&dck
.dck_key
, 0, sizeof (zio_crypt_key_t
));
2561 return (dck
.dck_obj
);
2565 dsl_crypto_key_clone_sync(dsl_dir_t
*origindd
, dmu_tx_t
*tx
)
2567 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2569 ASSERT(dmu_tx_is_syncing(tx
));
2571 VERIFY0(zap_increment(mos
, origindd
->dd_crypto_obj
,
2572 DSL_CRYPTO_KEY_REFCOUNT
, 1, tx
));
2574 return (origindd
->dd_crypto_obj
);
2578 dsl_crypto_key_destroy_sync(uint64_t dckobj
, dmu_tx_t
*tx
)
2580 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2583 /* Decrement the refcount, destroy if this is the last reference */
2584 VERIFY0(zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2585 sizeof (uint64_t), 1, &refcnt
));
2588 VERIFY0(zap_increment(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2591 VERIFY0(zap_destroy(mos
, dckobj
, tx
));
2596 dsl_dataset_crypt_stats(dsl_dataset_t
*ds
, nvlist_t
*nv
)
2599 dsl_dir_t
*dd
= ds
->ds_dir
;
2600 dsl_dir_t
*enc_root
;
2601 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
2603 if (dd
->dd_crypto_obj
== 0)
2606 intval
= dsl_dataset_get_keystatus(dd
);
2607 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYSTATUS
, intval
);
2609 if (dsl_dir_get_crypt(dd
, &intval
) == 0)
2610 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_ENCRYPTION
, intval
);
2611 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2612 DSL_CRYPTO_KEY_GUID
, 8, 1, &intval
) == 0) {
2613 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEY_GUID
, intval
);
2615 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2616 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &intval
) == 0) {
2617 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYFORMAT
, intval
);
2619 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2620 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &intval
) == 0) {
2621 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_SALT
, intval
);
2623 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2624 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &intval
) == 0) {
2625 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_ITERS
, intval
);
2627 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, ds
->ds_object
,
2628 DS_FIELD_IVSET_GUID
, 8, 1, &intval
) == 0) {
2629 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_IVSET_GUID
, intval
);
2632 if (dsl_dir_get_encryption_root_ddobj(dd
, &intval
) == 0) {
2633 if (dsl_dir_hold_obj(dd
->dd_pool
, intval
, NULL
, FTAG
,
2635 dsl_dir_name(enc_root
, buf
);
2636 dsl_dir_rele(enc_root
, FTAG
);
2637 dsl_prop_nvlist_add_string(nv
,
2638 ZFS_PROP_ENCRYPTION_ROOT
, buf
);
2644 spa_crypt_get_salt(spa_t
*spa
, uint64_t dsobj
, uint8_t *salt
)
2647 dsl_crypto_key_t
*dck
= NULL
;
2649 /* look up the key from the spa's keystore */
2650 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2654 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2658 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2663 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2668 * Objset blocks are a special case for MAC generation. These blocks have 2
2669 * 256-bit MACs which are embedded within the block itself, rather than a
2670 * single 128 bit MAC. As a result, this function handles encoding and decoding
2671 * the MACs on its own, unlike other functions in this file.
2674 spa_do_crypt_objset_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
,
2675 abd_t
*abd
, uint_t datalen
, boolean_t byteswap
)
2678 dsl_crypto_key_t
*dck
= NULL
;
2679 void *buf
= abd_borrow_buf_copy(abd
, datalen
);
2680 objset_phys_t
*osp
= buf
;
2681 uint8_t portable_mac
[ZIO_OBJSET_MAC_LEN
];
2682 uint8_t local_mac
[ZIO_OBJSET_MAC_LEN
];
2683 const uint8_t zeroed_mac
[ZIO_OBJSET_MAC_LEN
] = {0};
2685 /* look up the key from the spa's keystore */
2686 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2690 /* calculate both HMACs */
2691 ret
= zio_crypt_do_objset_hmacs(&dck
->dck_key
, buf
, datalen
,
2692 byteswap
, portable_mac
, local_mac
);
2696 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2698 /* if we are generating encode the HMACs in the objset_phys_t */
2700 memcpy(osp
->os_portable_mac
, portable_mac
, ZIO_OBJSET_MAC_LEN
);
2701 memcpy(osp
->os_local_mac
, local_mac
, ZIO_OBJSET_MAC_LEN
);
2702 abd_return_buf_copy(abd
, buf
, datalen
);
2706 if (memcmp(portable_mac
, osp
->os_portable_mac
,
2707 ZIO_OBJSET_MAC_LEN
) != 0 ||
2708 memcmp(local_mac
, osp
->os_local_mac
, ZIO_OBJSET_MAC_LEN
) != 0) {
2710 * If the MAC is zeroed out, we failed to decrypt it.
2711 * This should only arise, at least on Linux,
2712 * if we hit edge case handling for useraccounting, since we
2713 * shouldn't get here without bailing out on error earlier
2716 * So if we're in that case, we can just fall through and
2717 * special-casing noticing that it's zero will handle it
2718 * elsewhere, since we can just regenerate it.
2720 if (memcmp(local_mac
, zeroed_mac
, ZIO_OBJSET_MAC_LEN
) != 0) {
2721 abd_return_buf(abd
, buf
, datalen
);
2722 return (SET_ERROR(ECKSUM
));
2726 abd_return_buf(abd
, buf
, datalen
);
2732 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2733 abd_return_buf(abd
, buf
, datalen
);
2738 spa_do_crypt_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
, abd_t
*abd
,
2739 uint_t datalen
, uint8_t *mac
)
2742 dsl_crypto_key_t
*dck
= NULL
;
2743 uint8_t *buf
= abd_borrow_buf_copy(abd
, datalen
);
2744 uint8_t digestbuf
[ZIO_DATA_MAC_LEN
];
2746 /* look up the key from the spa's keystore */
2747 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2751 /* perform the hmac */
2752 ret
= zio_crypt_do_hmac(&dck
->dck_key
, buf
, datalen
,
2753 digestbuf
, ZIO_DATA_MAC_LEN
);
2757 abd_return_buf(abd
, buf
, datalen
);
2758 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2761 * Truncate and fill in mac buffer if we were asked to generate a MAC.
2762 * Otherwise verify that the MAC matched what we expected.
2765 memcpy(mac
, digestbuf
, ZIO_DATA_MAC_LEN
);
2769 if (memcmp(digestbuf
, mac
, ZIO_DATA_MAC_LEN
) != 0)
2770 return (SET_ERROR(ECKSUM
));
2776 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2777 abd_return_buf(abd
, buf
, datalen
);
2782 * This function serves as a multiplexer for encryption and decryption of
2783 * all blocks (except the L2ARC). For encryption, it will populate the IV,
2784 * salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2785 * these fields to populate pabd (the plaintext).
2788 spa_do_crypt_abd(boolean_t encrypt
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2789 dmu_object_type_t ot
, boolean_t dedup
, boolean_t bswap
, uint8_t *salt
,
2790 uint8_t *iv
, uint8_t *mac
, uint_t datalen
, abd_t
*pabd
, abd_t
*cabd
,
2791 boolean_t
*no_crypt
)
2794 dsl_crypto_key_t
*dck
= NULL
;
2795 uint8_t *plainbuf
= NULL
, *cipherbuf
= NULL
;
2797 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
2799 /* look up the key from the spa's keystore */
2800 ret
= spa_keystore_lookup_key(spa
, zb
->zb_objset
, FTAG
, &dck
);
2802 ret
= SET_ERROR(EACCES
);
2807 plainbuf
= abd_borrow_buf_copy(pabd
, datalen
);
2808 cipherbuf
= abd_borrow_buf(cabd
, datalen
);
2810 plainbuf
= abd_borrow_buf(pabd
, datalen
);
2811 cipherbuf
= abd_borrow_buf_copy(cabd
, datalen
);
2815 * Both encryption and decryption functions need a salt for key
2816 * generation and an IV. When encrypting a non-dedup block, we
2817 * generate the salt and IV randomly to be stored by the caller. Dedup
2818 * blocks perform a (more expensive) HMAC of the plaintext to obtain
2819 * the salt and the IV. ZIL blocks have their salt and IV generated
2820 * at allocation time in zio_alloc_zil(). On decryption, we simply use
2821 * the provided values.
2823 if (encrypt
&& ot
!= DMU_OT_INTENT_LOG
&& !dedup
) {
2824 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2828 ret
= zio_crypt_generate_iv(iv
);
2831 } else if (encrypt
&& dedup
) {
2832 ret
= zio_crypt_generate_iv_salt_dedup(&dck
->dck_key
,
2833 plainbuf
, datalen
, iv
, salt
);
2838 /* call lower level function to perform encryption / decryption */
2839 ret
= zio_do_crypt_data(encrypt
, &dck
->dck_key
, ot
, bswap
, salt
, iv
,
2840 mac
, datalen
, plainbuf
, cipherbuf
, no_crypt
);
2843 * Handle injected decryption faults. Unfortunately, we cannot inject
2844 * faults for dnode blocks because we might trigger the panic in
2845 * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2846 * context is not prepared to handle malicious decryption failures.
2848 if (zio_injection_enabled
&& !encrypt
&& ot
!= DMU_OT_DNODE
&& ret
== 0)
2849 ret
= zio_handle_decrypt_injection(spa
, zb
, ot
, ECKSUM
);
2854 abd_return_buf(pabd
, plainbuf
, datalen
);
2855 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2857 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2858 abd_return_buf(cabd
, cipherbuf
, datalen
);
2861 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2867 /* zero out any state we might have changed while encrypting */
2868 memset(salt
, 0, ZIO_DATA_SALT_LEN
);
2869 memset(iv
, 0, ZIO_DATA_IV_LEN
);
2870 memset(mac
, 0, ZIO_DATA_MAC_LEN
);
2871 abd_return_buf(pabd
, plainbuf
, datalen
);
2872 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2874 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2875 abd_return_buf(cabd
, cipherbuf
, datalen
);
2878 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2883 ZFS_MODULE_PARAM(zfs
, zfs_
, disable_ivset_guid_check
, INT
, ZMOD_RW
,
2884 "Set to allow raw receives without IVset guids");