4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
40 #include <sys/arc_impl.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
56 #include <sys/range_tree.h>
59 #include <sys/zfs_vfsops.h>
63 * Grand theory statement on scan queue sorting
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
96 * Implementation Notes
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
106 * Backwards compatibility
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
118 typedef int (scan_cb_t
)(dsl_pool_t
*, const blkptr_t
*,
119 const zbookmark_phys_t
*);
121 static scan_cb_t dsl_scan_scrub_cb
;
123 static int scan_ds_queue_compare(const void *a
, const void *b
);
124 static int scan_prefetch_queue_compare(const void *a
, const void *b
);
125 static void scan_ds_queue_clear(dsl_scan_t
*scn
);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
);
127 static boolean_t
scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
,
129 static void scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
);
130 static void scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
);
131 static void scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
);
132 static uint64_t dsl_scan_count_data_disks(spa_t
*spa
);
133 static void read_by_block_level(dsl_scan_t
*scn
, zbookmark_phys_t zb
);
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent
;
136 static int zfs_scan_blkstats
= 0;
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
145 static uint_t zfs_scan_report_txgs
= 0;
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
153 static int zfs_scan_strict_mem_lim
= B_FALSE
;
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
163 static uint64_t zfs_scan_vdev_limit
= 16 << 20;
165 static uint_t zfs_scan_issue_strategy
= 0;
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy
= B_FALSE
;
169 static uint64_t zfs_scan_max_ext_gap
= 2 << 20; /* in bytes */
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
176 static uint_t zfs_scan_fill_weight
= 3;
177 static uint64_t fill_weight
;
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min
= 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max
= 128 << 20; /* bytes */
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact
= 20;
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact
= 20;
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms
= 1000;
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms
= 500;
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms
= 1000;
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms
= 3000;
202 static uint_t zfs_scan_checkpoint_intval
= 7200; /* in seconds */
203 int zfs_scan_suspend_progress
= 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io
= B_FALSE
; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch
= B_FALSE
; /* set to disable scrub prefetch */
206 static const enum ddt_class zfs_scrub_ddt_class_max
= DDT_CLASS_DUPLICATE
;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks
= UINT64_MAX
;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees
= 100000;
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer
= B_FALSE
;
216 * We wait a few txgs after importing a pool to begin scanning so that
217 * the import / mounting code isn't held up by scrub / resilver IO.
218 * Unfortunately, it is a bit difficult to determine exactly how long
219 * this will take since userspace will trigger fs mounts asynchronously
220 * and the kernel will create zvol minors asynchronously. As a result,
221 * the value provided here is a bit arbitrary, but represents a
222 * reasonable estimate of how many txgs it will take to finish fully
225 #define SCAN_IMPORT_WAIT_TXGS 5
227 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
232 * Enable/disable the processing of the free_bpobj object.
234 static int zfs_free_bpobj_enabled
= 1;
236 /* Error blocks to be scrubbed in one txg. */
237 static uint_t zfs_scrub_error_blocks_per_txg
= 1 << 12;
239 /* the order has to match pool_scan_type */
240 static scan_cb_t
*scan_funcs
[POOL_SCAN_FUNCS
] = {
242 dsl_scan_scrub_cb
, /* POOL_SCAN_SCRUB */
243 dsl_scan_scrub_cb
, /* POOL_SCAN_RESILVER */
246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
254 * This controls what conditions are placed on dsl_scan_sync_state():
255 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258 * write out the scn_phys_cached version.
259 * See dsl_scan_sync_state for details.
268 * This struct represents the minimum information needed to reconstruct a
269 * zio for sequential scanning. This is useful because many of these will
270 * accumulate in the sequential IO queues before being issued, so saving
271 * memory matters here.
273 typedef struct scan_io
{
274 /* fields from blkptr_t */
275 uint64_t sio_blk_prop
;
276 uint64_t sio_phys_birth
;
278 zio_cksum_t sio_cksum
;
279 uint32_t sio_nr_dvas
;
281 /* fields from zio_t */
283 zbookmark_phys_t sio_zb
;
285 /* members for queue sorting */
287 avl_node_t sio_addr_node
; /* link into issuing queue */
288 list_node_t sio_list_node
; /* link for issuing to disk */
292 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293 * depending on how many were in the original bp. Only the
294 * first DVA is really used for sorting and issuing purposes.
295 * The other DVAs (if provided) simply exist so that the zio
296 * layer can find additional copies to repair from in the
297 * event of an error. This array must go at the end of the
298 * struct to allow this for the variable number of elements.
303 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
306 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
307 #define SIO_GET_END_OFFSET(sio) \
308 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309 #define SIO_GET_MUSED(sio) \
310 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
312 struct dsl_scan_io_queue
{
313 dsl_scan_t
*q_scn
; /* associated dsl_scan_t */
314 vdev_t
*q_vd
; /* top-level vdev that this queue represents */
315 zio_t
*q_zio
; /* scn_zio_root child for waiting on IO */
317 /* trees used for sorting I/Os and extents of I/Os */
318 range_tree_t
*q_exts_by_addr
;
319 zfs_btree_t q_exts_by_size
;
320 avl_tree_t q_sios_by_addr
;
321 uint64_t q_sio_memused
;
322 uint64_t q_last_ext_addr
;
324 /* members for zio rate limiting */
325 uint64_t q_maxinflight_bytes
;
326 uint64_t q_inflight_bytes
;
327 kcondvar_t q_zio_cv
; /* used under vd->vdev_scan_io_queue_lock */
329 /* per txg statistics */
330 uint64_t q_total_seg_size_this_txg
;
331 uint64_t q_segs_this_txg
;
332 uint64_t q_total_zio_size_this_txg
;
333 uint64_t q_zios_this_txg
;
336 /* private data for dsl_scan_prefetch_cb() */
337 typedef struct scan_prefetch_ctx
{
338 zfs_refcount_t spc_refcnt
; /* refcount for memory management */
339 dsl_scan_t
*spc_scn
; /* dsl_scan_t for the pool */
340 boolean_t spc_root
; /* is this prefetch for an objset? */
341 uint8_t spc_indblkshift
; /* dn_indblkshift of current dnode */
342 uint16_t spc_datablkszsec
; /* dn_idatablkszsec of current dnode */
343 } scan_prefetch_ctx_t
;
345 /* private data for dsl_scan_prefetch() */
346 typedef struct scan_prefetch_issue_ctx
{
347 avl_node_t spic_avl_node
; /* link into scn->scn_prefetch_queue */
348 scan_prefetch_ctx_t
*spic_spc
; /* spc for the callback */
349 blkptr_t spic_bp
; /* bp to prefetch */
350 zbookmark_phys_t spic_zb
; /* bookmark to prefetch */
351 } scan_prefetch_issue_ctx_t
;
353 static void scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
354 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
);
355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
,
358 static dsl_scan_io_queue_t
*scan_io_queue_create(vdev_t
*vd
);
359 static void scan_io_queues_destroy(dsl_scan_t
*scn
);
361 static kmem_cache_t
*sio_cache
[SPA_DVAS_PER_BP
];
363 /* sio->sio_nr_dvas must be set so we know which cache to free from */
365 sio_free(scan_io_t
*sio
)
367 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
368 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
370 kmem_cache_free(sio_cache
[sio
->sio_nr_dvas
- 1], sio
);
373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
375 sio_alloc(unsigned short nr_dvas
)
377 ASSERT3U(nr_dvas
, >, 0);
378 ASSERT3U(nr_dvas
, <=, SPA_DVAS_PER_BP
);
380 return (kmem_cache_alloc(sio_cache
[nr_dvas
- 1], KM_SLEEP
));
387 * This is used in ext_size_compare() to weight segments
388 * based on how sparse they are. This cannot be changed
389 * mid-scan and the tree comparison functions don't currently
390 * have a mechanism for passing additional context to the
391 * compare functions. Thus we store this value globally and
392 * we only allow it to be set at module initialization time
394 fill_weight
= zfs_scan_fill_weight
;
396 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
399 (void) snprintf(name
, sizeof (name
), "sio_cache_%d", i
);
400 sio_cache
[i
] = kmem_cache_create(name
,
401 (sizeof (scan_io_t
) + ((i
+ 1) * sizeof (dva_t
))),
402 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
409 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
410 kmem_cache_destroy(sio_cache
[i
]);
414 static inline boolean_t
415 dsl_scan_is_running(const dsl_scan_t
*scn
)
417 return (scn
->scn_phys
.scn_state
== DSS_SCANNING
);
421 dsl_scan_resilvering(dsl_pool_t
*dp
)
423 return (dsl_scan_is_running(dp
->dp_scan
) &&
424 dp
->dp_scan
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
);
428 sio2bp(const scan_io_t
*sio
, blkptr_t
*bp
)
430 memset(bp
, 0, sizeof (*bp
));
431 bp
->blk_prop
= sio
->sio_blk_prop
;
432 bp
->blk_phys_birth
= sio
->sio_phys_birth
;
433 bp
->blk_birth
= sio
->sio_birth
;
434 bp
->blk_fill
= 1; /* we always only work with data pointers */
435 bp
->blk_cksum
= sio
->sio_cksum
;
437 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
438 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
440 memcpy(bp
->blk_dva
, sio
->sio_dva
, sio
->sio_nr_dvas
* sizeof (dva_t
));
444 bp2sio(const blkptr_t
*bp
, scan_io_t
*sio
, int dva_i
)
446 sio
->sio_blk_prop
= bp
->blk_prop
;
447 sio
->sio_phys_birth
= bp
->blk_phys_birth
;
448 sio
->sio_birth
= bp
->blk_birth
;
449 sio
->sio_cksum
= bp
->blk_cksum
;
450 sio
->sio_nr_dvas
= BP_GET_NDVAS(bp
);
453 * Copy the DVAs to the sio. We need all copies of the block so
454 * that the self healing code can use the alternate copies if the
455 * first is corrupted. We want the DVA at index dva_i to be first
456 * in the sio since this is the primary one that we want to issue.
458 for (int i
= 0, j
= dva_i
; i
< sio
->sio_nr_dvas
; i
++, j
++) {
459 sio
->sio_dva
[i
] = bp
->blk_dva
[j
% sio
->sio_nr_dvas
];
464 dsl_scan_init(dsl_pool_t
*dp
, uint64_t txg
)
468 spa_t
*spa
= dp
->dp_spa
;
471 scn
= dp
->dp_scan
= kmem_zalloc(sizeof (dsl_scan_t
), KM_SLEEP
);
475 * It's possible that we're resuming a scan after a reboot so
476 * make sure that the scan_async_destroying flag is initialized
479 ASSERT(!scn
->scn_async_destroying
);
480 scn
->scn_async_destroying
= spa_feature_is_active(dp
->dp_spa
,
481 SPA_FEATURE_ASYNC_DESTROY
);
484 * Calculate the max number of in-flight bytes for pool-wide
485 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486 * Limits for the issuing phase are done per top-level vdev and
487 * are handled separately.
489 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
490 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
492 avl_create(&scn
->scn_queue
, scan_ds_queue_compare
, sizeof (scan_ds_t
),
493 offsetof(scan_ds_t
, sds_node
));
494 avl_create(&scn
->scn_prefetch_queue
, scan_prefetch_queue_compare
,
495 sizeof (scan_prefetch_issue_ctx_t
),
496 offsetof(scan_prefetch_issue_ctx_t
, spic_avl_node
));
498 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
499 "scrub_func", sizeof (uint64_t), 1, &f
);
502 * There was an old-style scrub in progress. Restart a
503 * new-style scrub from the beginning.
505 scn
->scn_restart_txg
= txg
;
506 zfs_dbgmsg("old-style scrub was in progress for %s; "
507 "restarting new-style scrub in txg %llu",
509 (longlong_t
)scn
->scn_restart_txg
);
512 * Load the queue obj from the old location so that it
513 * can be freed by dsl_scan_done().
515 (void) zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
516 "scrub_queue", sizeof (uint64_t), 1,
517 &scn
->scn_phys
.scn_queue_obj
);
519 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
520 DMU_POOL_ERRORSCRUB
, sizeof (uint64_t),
521 ERRORSCRUB_PHYS_NUMINTS
, &scn
->errorscrub_phys
);
523 if (err
!= 0 && err
!= ENOENT
)
526 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
527 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
531 * Detect if the pool contains the signature of #2094. If it
532 * does properly update the scn->scn_phys structure and notify
533 * the administrator by setting an errata for the pool.
535 if (err
== EOVERFLOW
) {
536 uint64_t zaptmp
[SCAN_PHYS_NUMINTS
+ 1];
537 VERIFY3S(SCAN_PHYS_NUMINTS
, ==, 24);
538 VERIFY3S(offsetof(dsl_scan_phys_t
, scn_flags
), ==,
539 (23 * sizeof (uint64_t)));
541 err
= zap_lookup(dp
->dp_meta_objset
,
542 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_SCAN
,
543 sizeof (uint64_t), SCAN_PHYS_NUMINTS
+ 1, &zaptmp
);
545 uint64_t overflow
= zaptmp
[SCAN_PHYS_NUMINTS
];
547 if (overflow
& ~DSL_SCAN_FLAGS_MASK
||
548 scn
->scn_async_destroying
) {
550 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY
;
554 memcpy(&scn
->scn_phys
, zaptmp
,
555 SCAN_PHYS_NUMINTS
* sizeof (uint64_t));
556 scn
->scn_phys
.scn_flags
= overflow
;
558 /* Required scrub already in progress. */
559 if (scn
->scn_phys
.scn_state
== DSS_FINISHED
||
560 scn
->scn_phys
.scn_state
== DSS_CANCELED
)
562 ZPOOL_ERRATA_ZOL_2094_SCRUB
;
572 * We might be restarting after a reboot, so jump the issued
573 * counter to how far we've scanned. We know we're consistent
576 scn
->scn_issued_before_pass
= scn
->scn_phys
.scn_examined
-
577 scn
->scn_phys
.scn_skipped
;
579 if (dsl_scan_is_running(scn
) &&
580 spa_prev_software_version(dp
->dp_spa
) < SPA_VERSION_SCAN
) {
582 * A new-type scrub was in progress on an old
583 * pool, and the pool was accessed by old
584 * software. Restart from the beginning, since
585 * the old software may have changed the pool in
588 scn
->scn_restart_txg
= txg
;
589 zfs_dbgmsg("new-style scrub for %s was modified "
590 "by old software; restarting in txg %llu",
592 (longlong_t
)scn
->scn_restart_txg
);
593 } else if (dsl_scan_resilvering(dp
)) {
595 * If a resilver is in progress and there are already
596 * errors, restart it instead of finishing this scan and
597 * then restarting it. If there haven't been any errors
598 * then remember that the incore DTL is valid.
600 if (scn
->scn_phys
.scn_errors
> 0) {
601 scn
->scn_restart_txg
= txg
;
602 zfs_dbgmsg("resilver can't excise DTL_MISSING "
603 "when finished; restarting on %s in txg "
606 (u_longlong_t
)scn
->scn_restart_txg
);
608 /* it's safe to excise DTL when finished */
609 spa
->spa_scrub_started
= B_TRUE
;
614 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
616 /* reload the queue into the in-core state */
617 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
621 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
622 scn
->scn_phys
.scn_queue_obj
);
623 zap_cursor_retrieve(&zc
, &za
) == 0;
624 (void) zap_cursor_advance(&zc
)) {
625 scan_ds_queue_insert(scn
,
626 zfs_strtonum(za
.za_name
, NULL
),
627 za
.za_first_integer
);
629 zap_cursor_fini(&zc
);
632 spa_scan_stat_init(spa
);
633 vdev_scan_stat_init(spa
->spa_root_vdev
);
639 dsl_scan_fini(dsl_pool_t
*dp
)
641 if (dp
->dp_scan
!= NULL
) {
642 dsl_scan_t
*scn
= dp
->dp_scan
;
644 if (scn
->scn_taskq
!= NULL
)
645 taskq_destroy(scn
->scn_taskq
);
647 scan_ds_queue_clear(scn
);
648 avl_destroy(&scn
->scn_queue
);
649 scan_ds_prefetch_queue_clear(scn
);
650 avl_destroy(&scn
->scn_prefetch_queue
);
652 kmem_free(dp
->dp_scan
, sizeof (dsl_scan_t
));
658 dsl_scan_restarting(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
660 return (scn
->scn_restart_txg
!= 0 &&
661 scn
->scn_restart_txg
<= tx
->tx_txg
);
665 dsl_scan_resilver_scheduled(dsl_pool_t
*dp
)
667 return ((dp
->dp_scan
&& dp
->dp_scan
->scn_restart_txg
!= 0) ||
668 (spa_async_tasks(dp
->dp_spa
) & SPA_ASYNC_RESILVER
));
672 dsl_scan_scrubbing(const dsl_pool_t
*dp
)
674 dsl_scan_phys_t
*scn_phys
= &dp
->dp_scan
->scn_phys
;
676 return (scn_phys
->scn_state
== DSS_SCANNING
&&
677 scn_phys
->scn_func
== POOL_SCAN_SCRUB
);
681 dsl_errorscrubbing(const dsl_pool_t
*dp
)
683 dsl_errorscrub_phys_t
*errorscrub_phys
= &dp
->dp_scan
->errorscrub_phys
;
685 return (errorscrub_phys
->dep_state
== DSS_ERRORSCRUBBING
&&
686 errorscrub_phys
->dep_func
== POOL_SCAN_ERRORSCRUB
);
690 dsl_errorscrub_is_paused(const dsl_scan_t
*scn
)
692 return (dsl_errorscrubbing(scn
->scn_dp
) &&
693 scn
->errorscrub_phys
.dep_paused_flags
);
697 dsl_scan_is_paused_scrub(const dsl_scan_t
*scn
)
699 return (dsl_scan_scrubbing(scn
->scn_dp
) &&
700 scn
->scn_phys
.scn_flags
& DSF_SCRUB_PAUSED
);
704 dsl_errorscrub_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
706 scn
->errorscrub_phys
.dep_cursor
=
707 zap_cursor_serialize(&scn
->errorscrub_cursor
);
709 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
710 DMU_POOL_DIRECTORY_OBJECT
,
711 DMU_POOL_ERRORSCRUB
, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS
,
712 &scn
->errorscrub_phys
, tx
));
716 dsl_errorscrub_setup_sync(void *arg
, dmu_tx_t
*tx
)
718 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
719 pool_scan_func_t
*funcp
= arg
;
720 dsl_pool_t
*dp
= scn
->scn_dp
;
721 spa_t
*spa
= dp
->dp_spa
;
723 ASSERT(!dsl_scan_is_running(scn
));
724 ASSERT(!dsl_errorscrubbing(scn
->scn_dp
));
725 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
727 memset(&scn
->errorscrub_phys
, 0, sizeof (scn
->errorscrub_phys
));
728 scn
->errorscrub_phys
.dep_func
= *funcp
;
729 scn
->errorscrub_phys
.dep_state
= DSS_ERRORSCRUBBING
;
730 scn
->errorscrub_phys
.dep_start_time
= gethrestime_sec();
731 scn
->errorscrub_phys
.dep_to_examine
= spa_get_last_errlog_size(spa
);
732 scn
->errorscrub_phys
.dep_examined
= 0;
733 scn
->errorscrub_phys
.dep_errors
= 0;
734 scn
->errorscrub_phys
.dep_cursor
= 0;
735 zap_cursor_init_serialized(&scn
->errorscrub_cursor
,
736 spa
->spa_meta_objset
, spa
->spa_errlog_last
,
737 scn
->errorscrub_phys
.dep_cursor
);
739 vdev_config_dirty(spa
->spa_root_vdev
);
740 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_START
);
742 dsl_errorscrub_sync_state(scn
, tx
);
744 spa_history_log_internal(spa
, "error scrub setup", tx
,
745 "func=%u mintxg=%u maxtxg=%llu",
746 *funcp
, 0, (u_longlong_t
)tx
->tx_txg
);
750 dsl_errorscrub_setup_check(void *arg
, dmu_tx_t
*tx
)
753 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
755 if (dsl_scan_is_running(scn
) || (dsl_errorscrubbing(scn
->scn_dp
))) {
756 return (SET_ERROR(EBUSY
));
759 if (spa_get_last_errlog_size(scn
->scn_dp
->dp_spa
) == 0) {
766 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
767 * Because we can be running in the block sorting algorithm, we do not always
768 * want to write out the record, only when it is "safe" to do so. This safety
769 * condition is achieved by making sure that the sorting queues are empty
770 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
771 * is inconsistent with how much actual scanning progress has been made. The
772 * kind of sync to be performed is specified by the sync_type argument. If the
773 * sync is optional, we only sync if the queues are empty. If the sync is
774 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
775 * third possible state is a "cached" sync. This is done in response to:
776 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
777 * destroyed, so we wouldn't be able to restart scanning from it.
778 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
779 * superseded by a newer snapshot.
780 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
781 * swapped with its clone.
782 * In all cases, a cached sync simply rewrites the last record we've written,
783 * just slightly modified. For the modifications that are performed to the
784 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
785 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
788 dsl_scan_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
, state_sync_type_t sync_type
)
791 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
793 ASSERT(sync_type
!= SYNC_MANDATORY
|| scn
->scn_queues_pending
== 0);
794 if (scn
->scn_queues_pending
== 0) {
795 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
796 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
797 dsl_scan_io_queue_t
*q
= vd
->vdev_scan_io_queue
;
802 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
803 ASSERT3P(avl_first(&q
->q_sios_by_addr
), ==, NULL
);
804 ASSERT3P(zfs_btree_first(&q
->q_exts_by_size
, NULL
), ==,
806 ASSERT3P(range_tree_first(q
->q_exts_by_addr
), ==, NULL
);
807 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
810 if (scn
->scn_phys
.scn_queue_obj
!= 0)
811 scan_ds_queue_sync(scn
, tx
);
812 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
813 DMU_POOL_DIRECTORY_OBJECT
,
814 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
815 &scn
->scn_phys
, tx
));
816 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
,
817 sizeof (scn
->scn_phys
));
819 if (scn
->scn_checkpointing
)
820 zfs_dbgmsg("finish scan checkpoint for %s",
823 scn
->scn_checkpointing
= B_FALSE
;
824 scn
->scn_last_checkpoint
= ddi_get_lbolt();
825 } else if (sync_type
== SYNC_CACHED
) {
826 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
827 DMU_POOL_DIRECTORY_OBJECT
,
828 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
829 &scn
->scn_phys_cached
, tx
));
834 dsl_scan_setup_check(void *arg
, dmu_tx_t
*tx
)
837 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
838 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
840 if (dsl_scan_is_running(scn
) || vdev_rebuild_active(rvd
) ||
841 dsl_errorscrubbing(scn
->scn_dp
))
842 return (SET_ERROR(EBUSY
));
848 dsl_scan_setup_sync(void *arg
, dmu_tx_t
*tx
)
851 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
852 pool_scan_func_t
*funcp
= arg
;
853 dmu_object_type_t ot
= 0;
854 dsl_pool_t
*dp
= scn
->scn_dp
;
855 spa_t
*spa
= dp
->dp_spa
;
857 ASSERT(!dsl_scan_is_running(scn
));
858 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
859 memset(&scn
->scn_phys
, 0, sizeof (scn
->scn_phys
));
862 * If we are starting a fresh scrub, we erase the error scrub
863 * information from disk.
865 memset(&scn
->errorscrub_phys
, 0, sizeof (scn
->errorscrub_phys
));
866 dsl_errorscrub_sync_state(scn
, tx
);
868 scn
->scn_phys
.scn_func
= *funcp
;
869 scn
->scn_phys
.scn_state
= DSS_SCANNING
;
870 scn
->scn_phys
.scn_min_txg
= 0;
871 scn
->scn_phys
.scn_max_txg
= tx
->tx_txg
;
872 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASSES
- 1; /* the entire DDT */
873 scn
->scn_phys
.scn_start_time
= gethrestime_sec();
874 scn
->scn_phys
.scn_errors
= 0;
875 scn
->scn_phys
.scn_to_examine
= spa
->spa_root_vdev
->vdev_stat
.vs_alloc
;
876 scn
->scn_issued_before_pass
= 0;
877 scn
->scn_restart_txg
= 0;
878 scn
->scn_done_txg
= 0;
879 scn
->scn_last_checkpoint
= 0;
880 scn
->scn_checkpointing
= B_FALSE
;
881 spa_scan_stat_init(spa
);
882 vdev_scan_stat_init(spa
->spa_root_vdev
);
884 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
885 scn
->scn_phys
.scn_ddt_class_max
= zfs_scrub_ddt_class_max
;
887 /* rewrite all disk labels */
888 vdev_config_dirty(spa
->spa_root_vdev
);
890 if (vdev_resilver_needed(spa
->spa_root_vdev
,
891 &scn
->scn_phys
.scn_min_txg
, &scn
->scn_phys
.scn_max_txg
)) {
892 nvlist_t
*aux
= fnvlist_alloc();
893 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
895 spa_event_notify(spa
, NULL
, aux
,
896 ESC_ZFS_RESILVER_START
);
899 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_START
);
902 spa
->spa_scrub_started
= B_TRUE
;
904 * If this is an incremental scrub, limit the DDT scrub phase
905 * to just the auto-ditto class (for correctness); the rest
906 * of the scrub should go faster using top-down pruning.
908 if (scn
->scn_phys
.scn_min_txg
> TXG_INITIAL
)
909 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASS_DITTO
;
912 * When starting a resilver clear any existing rebuild state.
913 * This is required to prevent stale rebuild status from
914 * being reported when a rebuild is run, then a resilver and
915 * finally a scrub. In which case only the scrub status
916 * should be reported by 'zpool status'.
918 if (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) {
919 vdev_t
*rvd
= spa
->spa_root_vdev
;
920 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
921 vdev_t
*vd
= rvd
->vdev_child
[i
];
922 vdev_rebuild_clear_sync(
923 (void *)(uintptr_t)vd
->vdev_id
, tx
);
928 /* back to the generic stuff */
930 if (zfs_scan_blkstats
) {
931 if (dp
->dp_blkstats
== NULL
) {
933 vmem_alloc(sizeof (zfs_all_blkstats_t
), KM_SLEEP
);
935 memset(&dp
->dp_blkstats
->zab_type
, 0,
936 sizeof (dp
->dp_blkstats
->zab_type
));
938 if (dp
->dp_blkstats
) {
939 vmem_free(dp
->dp_blkstats
, sizeof (zfs_all_blkstats_t
));
940 dp
->dp_blkstats
= NULL
;
944 if (spa_version(spa
) < SPA_VERSION_DSL_SCRUB
)
945 ot
= DMU_OT_ZAP_OTHER
;
947 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
,
948 ot
? ot
: DMU_OT_SCAN_QUEUE
, DMU_OT_NONE
, 0, tx
);
950 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
952 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
954 spa_history_log_internal(spa
, "scan setup", tx
,
955 "func=%u mintxg=%llu maxtxg=%llu",
956 *funcp
, (u_longlong_t
)scn
->scn_phys
.scn_min_txg
,
957 (u_longlong_t
)scn
->scn_phys
.scn_max_txg
);
961 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
962 * error scrub or resilver. Can also be called to resume a paused scrub or
966 dsl_scan(dsl_pool_t
*dp
, pool_scan_func_t func
)
968 spa_t
*spa
= dp
->dp_spa
;
969 dsl_scan_t
*scn
= dp
->dp_scan
;
972 * Purge all vdev caches and probe all devices. We do this here
973 * rather than in sync context because this requires a writer lock
974 * on the spa_config lock, which we can't do from sync context. The
975 * spa_scrub_reopen flag indicates that vdev_open() should not
976 * attempt to start another scrub.
978 spa_vdev_state_enter(spa
, SCL_NONE
);
979 spa
->spa_scrub_reopen
= B_TRUE
;
980 vdev_reopen(spa
->spa_root_vdev
);
981 spa
->spa_scrub_reopen
= B_FALSE
;
982 (void) spa_vdev_state_exit(spa
, NULL
, 0);
984 if (func
== POOL_SCAN_RESILVER
) {
985 dsl_scan_restart_resilver(spa
->spa_dsl_pool
, 0);
989 if (func
== POOL_SCAN_ERRORSCRUB
) {
990 if (dsl_errorscrub_is_paused(dp
->dp_scan
)) {
992 * got error scrub start cmd, resume paused error scrub.
994 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
997 spa_event_notify(spa
, NULL
, NULL
,
998 ESC_ZFS_ERRORSCRUB_RESUME
);
1001 return (SET_ERROR(err
));
1004 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1005 dsl_errorscrub_setup_check
, dsl_errorscrub_setup_sync
,
1006 &func
, 0, ZFS_SPACE_CHECK_RESERVED
));
1009 if (func
== POOL_SCAN_SCRUB
&& dsl_scan_is_paused_scrub(scn
)) {
1010 /* got scrub start cmd, resume paused scrub */
1011 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
1014 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_RESUME
);
1015 return (SET_ERROR(ECANCELED
));
1017 return (SET_ERROR(err
));
1020 return (dsl_sync_task(spa_name(spa
), dsl_scan_setup_check
,
1021 dsl_scan_setup_sync
, &func
, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1025 dsl_errorscrub_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
1027 dsl_pool_t
*dp
= scn
->scn_dp
;
1028 spa_t
*spa
= dp
->dp_spa
;
1031 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_FINISH
);
1032 spa_history_log_internal(spa
, "error scrub done", tx
,
1033 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1035 spa_history_log_internal(spa
, "error scrub canceled", tx
,
1036 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1039 scn
->errorscrub_phys
.dep_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
1040 spa
->spa_scrub_active
= B_FALSE
;
1041 spa_errlog_rotate(spa
);
1042 scn
->errorscrub_phys
.dep_end_time
= gethrestime_sec();
1043 zap_cursor_fini(&scn
->errorscrub_cursor
);
1045 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1046 spa
->spa_errata
= 0;
1048 ASSERT(!dsl_errorscrubbing(scn
->scn_dp
));
1052 dsl_scan_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
1054 static const char *old_names
[] = {
1056 "scrub_ddt_bookmark",
1057 "scrub_ddt_class_max",
1066 dsl_pool_t
*dp
= scn
->scn_dp
;
1067 spa_t
*spa
= dp
->dp_spa
;
1070 /* Remove any remnants of an old-style scrub. */
1071 for (i
= 0; old_names
[i
]; i
++) {
1072 (void) zap_remove(dp
->dp_meta_objset
,
1073 DMU_POOL_DIRECTORY_OBJECT
, old_names
[i
], tx
);
1076 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
1077 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1078 scn
->scn_phys
.scn_queue_obj
, tx
));
1079 scn
->scn_phys
.scn_queue_obj
= 0;
1081 scan_ds_queue_clear(scn
);
1082 scan_ds_prefetch_queue_clear(scn
);
1084 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1087 * If we were "restarted" from a stopped state, don't bother
1088 * with anything else.
1090 if (!dsl_scan_is_running(scn
)) {
1091 ASSERT(!scn
->scn_is_sorted
);
1095 if (scn
->scn_is_sorted
) {
1096 scan_io_queues_destroy(scn
);
1097 scn
->scn_is_sorted
= B_FALSE
;
1099 if (scn
->scn_taskq
!= NULL
) {
1100 taskq_destroy(scn
->scn_taskq
);
1101 scn
->scn_taskq
= NULL
;
1105 scn
->scn_phys
.scn_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
1107 spa_notify_waiters(spa
);
1109 if (dsl_scan_restarting(scn
, tx
))
1110 spa_history_log_internal(spa
, "scan aborted, restarting", tx
,
1111 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1113 spa_history_log_internal(spa
, "scan cancelled", tx
,
1114 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1116 spa_history_log_internal(spa
, "scan done", tx
,
1117 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1119 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
1120 spa
->spa_scrub_active
= B_FALSE
;
1123 * If the scrub/resilver completed, update all DTLs to
1124 * reflect this. Whether it succeeded or not, vacate
1125 * all temporary scrub DTLs.
1127 * As the scrub does not currently support traversing
1128 * data that have been freed but are part of a checkpoint,
1129 * we don't mark the scrub as done in the DTLs as faults
1130 * may still exist in those vdevs.
1133 !spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
1134 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1135 scn
->scn_phys
.scn_max_txg
, B_TRUE
, B_FALSE
);
1137 if (scn
->scn_phys
.scn_min_txg
) {
1138 nvlist_t
*aux
= fnvlist_alloc();
1139 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
1141 spa_event_notify(spa
, NULL
, aux
,
1142 ESC_ZFS_RESILVER_FINISH
);
1145 spa_event_notify(spa
, NULL
, NULL
,
1146 ESC_ZFS_SCRUB_FINISH
);
1149 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1150 0, B_TRUE
, B_FALSE
);
1152 spa_errlog_rotate(spa
);
1155 * Don't clear flag until after vdev_dtl_reassess to ensure that
1156 * DTL_MISSING will get updated when possible.
1158 spa
->spa_scrub_started
= B_FALSE
;
1161 * We may have finished replacing a device.
1162 * Let the async thread assess this and handle the detach.
1164 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
1167 * Clear any resilver_deferred flags in the config.
1168 * If there are drives that need resilvering, kick
1169 * off an asynchronous request to start resilver.
1170 * vdev_clear_resilver_deferred() may update the config
1171 * before the resilver can restart. In the event of
1172 * a crash during this period, the spa loading code
1173 * will find the drives that need to be resilvered
1174 * and start the resilver then.
1176 if (spa_feature_is_enabled(spa
, SPA_FEATURE_RESILVER_DEFER
) &&
1177 vdev_clear_resilver_deferred(spa
->spa_root_vdev
, tx
)) {
1178 spa_history_log_internal(spa
,
1179 "starting deferred resilver", tx
, "errors=%llu",
1180 (u_longlong_t
)spa_approx_errlog_size(spa
));
1181 spa_async_request(spa
, SPA_ASYNC_RESILVER
);
1184 /* Clear recent error events (i.e. duplicate events tracking) */
1186 zfs_ereport_clear(spa
, NULL
);
1189 scn
->scn_phys
.scn_end_time
= gethrestime_sec();
1191 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1192 spa
->spa_errata
= 0;
1194 ASSERT(!dsl_scan_is_running(scn
));
1198 dsl_errorscrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1200 pool_scrub_cmd_t
*cmd
= arg
;
1201 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1202 dsl_scan_t
*scn
= dp
->dp_scan
;
1204 if (*cmd
== POOL_SCRUB_PAUSE
) {
1206 * can't pause a error scrub when there is no in-progress
1209 if (!dsl_errorscrubbing(dp
))
1210 return (SET_ERROR(ENOENT
));
1212 /* can't pause a paused error scrub */
1213 if (dsl_errorscrub_is_paused(scn
))
1214 return (SET_ERROR(EBUSY
));
1215 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1216 return (SET_ERROR(ENOTSUP
));
1223 dsl_errorscrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1225 pool_scrub_cmd_t
*cmd
= arg
;
1226 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1227 spa_t
*spa
= dp
->dp_spa
;
1228 dsl_scan_t
*scn
= dp
->dp_scan
;
1230 if (*cmd
== POOL_SCRUB_PAUSE
) {
1231 spa
->spa_scan_pass_errorscrub_pause
= gethrestime_sec();
1232 scn
->errorscrub_phys
.dep_paused_flags
= B_TRUE
;
1233 dsl_errorscrub_sync_state(scn
, tx
);
1234 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_PAUSED
);
1236 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1237 if (dsl_errorscrub_is_paused(scn
)) {
1239 * We need to keep track of how much time we spend
1240 * paused per pass so that we can adjust the error scrub
1241 * rate shown in the output of 'zpool status'.
1243 spa
->spa_scan_pass_errorscrub_spent_paused
+=
1245 spa
->spa_scan_pass_errorscrub_pause
;
1247 spa
->spa_scan_pass_errorscrub_pause
= 0;
1248 scn
->errorscrub_phys
.dep_paused_flags
= B_FALSE
;
1250 zap_cursor_init_serialized(
1251 &scn
->errorscrub_cursor
,
1252 spa
->spa_meta_objset
, spa
->spa_errlog_last
,
1253 scn
->errorscrub_phys
.dep_cursor
);
1255 dsl_errorscrub_sync_state(scn
, tx
);
1261 dsl_errorscrub_cancel_check(void *arg
, dmu_tx_t
*tx
)
1264 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1265 /* can't cancel a error scrub when there is no one in-progress */
1266 if (!dsl_errorscrubbing(scn
->scn_dp
))
1267 return (SET_ERROR(ENOENT
));
1272 dsl_errorscrub_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1275 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1277 dsl_errorscrub_done(scn
, B_FALSE
, tx
);
1278 dsl_errorscrub_sync_state(scn
, tx
);
1279 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
,
1280 ESC_ZFS_ERRORSCRUB_ABORT
);
1284 dsl_scan_cancel_check(void *arg
, dmu_tx_t
*tx
)
1287 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1289 if (!dsl_scan_is_running(scn
))
1290 return (SET_ERROR(ENOENT
));
1295 dsl_scan_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1298 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1300 dsl_scan_done(scn
, B_FALSE
, tx
);
1301 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
1302 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
, ESC_ZFS_SCRUB_ABORT
);
1306 dsl_scan_cancel(dsl_pool_t
*dp
)
1308 if (dsl_errorscrubbing(dp
)) {
1309 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1310 dsl_errorscrub_cancel_check
, dsl_errorscrub_cancel_sync
,
1311 NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1313 return (dsl_sync_task(spa_name(dp
->dp_spa
), dsl_scan_cancel_check
,
1314 dsl_scan_cancel_sync
, NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1318 dsl_scrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1320 pool_scrub_cmd_t
*cmd
= arg
;
1321 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1322 dsl_scan_t
*scn
= dp
->dp_scan
;
1324 if (*cmd
== POOL_SCRUB_PAUSE
) {
1325 /* can't pause a scrub when there is no in-progress scrub */
1326 if (!dsl_scan_scrubbing(dp
))
1327 return (SET_ERROR(ENOENT
));
1329 /* can't pause a paused scrub */
1330 if (dsl_scan_is_paused_scrub(scn
))
1331 return (SET_ERROR(EBUSY
));
1332 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1333 return (SET_ERROR(ENOTSUP
));
1340 dsl_scrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1342 pool_scrub_cmd_t
*cmd
= arg
;
1343 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1344 spa_t
*spa
= dp
->dp_spa
;
1345 dsl_scan_t
*scn
= dp
->dp_scan
;
1347 if (*cmd
== POOL_SCRUB_PAUSE
) {
1348 /* can't pause a scrub when there is no in-progress scrub */
1349 spa
->spa_scan_pass_scrub_pause
= gethrestime_sec();
1350 scn
->scn_phys
.scn_flags
|= DSF_SCRUB_PAUSED
;
1351 scn
->scn_phys_cached
.scn_flags
|= DSF_SCRUB_PAUSED
;
1352 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1353 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_PAUSED
);
1354 spa_notify_waiters(spa
);
1356 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1357 if (dsl_scan_is_paused_scrub(scn
)) {
1359 * We need to keep track of how much time we spend
1360 * paused per pass so that we can adjust the scrub rate
1361 * shown in the output of 'zpool status'
1363 spa
->spa_scan_pass_scrub_spent_paused
+=
1364 gethrestime_sec() - spa
->spa_scan_pass_scrub_pause
;
1365 spa
->spa_scan_pass_scrub_pause
= 0;
1366 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1367 scn
->scn_phys_cached
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1368 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1374 * Set scrub pause/resume state if it makes sense to do so
1377 dsl_scrub_set_pause_resume(const dsl_pool_t
*dp
, pool_scrub_cmd_t cmd
)
1379 if (dsl_errorscrubbing(dp
)) {
1380 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1381 dsl_errorscrub_pause_resume_check
,
1382 dsl_errorscrub_pause_resume_sync
, &cmd
, 3,
1383 ZFS_SPACE_CHECK_RESERVED
));
1385 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1386 dsl_scrub_pause_resume_check
, dsl_scrub_pause_resume_sync
, &cmd
, 3,
1387 ZFS_SPACE_CHECK_RESERVED
));
1391 /* start a new scan, or restart an existing one. */
1393 dsl_scan_restart_resilver(dsl_pool_t
*dp
, uint64_t txg
)
1397 tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
1398 VERIFY(0 == dmu_tx_assign(tx
, TXG_WAIT
));
1400 txg
= dmu_tx_get_txg(tx
);
1401 dp
->dp_scan
->scn_restart_txg
= txg
;
1404 dp
->dp_scan
->scn_restart_txg
= txg
;
1406 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1407 dp
->dp_spa
->spa_name
, (longlong_t
)txg
);
1411 dsl_free(dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bp
)
1413 zio_free(dp
->dp_spa
, txg
, bp
);
1417 dsl_free_sync(zio_t
*pio
, dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bpp
)
1419 ASSERT(dsl_pool_sync_context(dp
));
1420 zio_nowait(zio_free_sync(pio
, dp
->dp_spa
, txg
, bpp
, pio
->io_flags
));
1424 scan_ds_queue_compare(const void *a
, const void *b
)
1426 const scan_ds_t
*sds_a
= a
, *sds_b
= b
;
1428 if (sds_a
->sds_dsobj
< sds_b
->sds_dsobj
)
1430 if (sds_a
->sds_dsobj
== sds_b
->sds_dsobj
)
1436 scan_ds_queue_clear(dsl_scan_t
*scn
)
1438 void *cookie
= NULL
;
1440 while ((sds
= avl_destroy_nodes(&scn
->scn_queue
, &cookie
)) != NULL
) {
1441 kmem_free(sds
, sizeof (*sds
));
1446 scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t *txg
)
1448 scan_ds_t srch
, *sds
;
1450 srch
.sds_dsobj
= dsobj
;
1451 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1452 if (sds
!= NULL
&& txg
!= NULL
)
1453 *txg
= sds
->sds_txg
;
1454 return (sds
!= NULL
);
1458 scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
)
1463 sds
= kmem_zalloc(sizeof (*sds
), KM_SLEEP
);
1464 sds
->sds_dsobj
= dsobj
;
1467 VERIFY3P(avl_find(&scn
->scn_queue
, sds
, &where
), ==, NULL
);
1468 avl_insert(&scn
->scn_queue
, sds
, where
);
1472 scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
)
1474 scan_ds_t srch
, *sds
;
1476 srch
.sds_dsobj
= dsobj
;
1478 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1479 VERIFY(sds
!= NULL
);
1480 avl_remove(&scn
->scn_queue
, sds
);
1481 kmem_free(sds
, sizeof (*sds
));
1485 scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
1487 dsl_pool_t
*dp
= scn
->scn_dp
;
1488 spa_t
*spa
= dp
->dp_spa
;
1489 dmu_object_type_t ot
= (spa_version(spa
) >= SPA_VERSION_DSL_SCRUB
) ?
1490 DMU_OT_SCAN_QUEUE
: DMU_OT_ZAP_OTHER
;
1492 ASSERT0(scn
->scn_queues_pending
);
1493 ASSERT(scn
->scn_phys
.scn_queue_obj
!= 0);
1495 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1496 scn
->scn_phys
.scn_queue_obj
, tx
));
1497 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
, ot
,
1498 DMU_OT_NONE
, 0, tx
);
1499 for (scan_ds_t
*sds
= avl_first(&scn
->scn_queue
);
1500 sds
!= NULL
; sds
= AVL_NEXT(&scn
->scn_queue
, sds
)) {
1501 VERIFY0(zap_add_int_key(dp
->dp_meta_objset
,
1502 scn
->scn_phys
.scn_queue_obj
, sds
->sds_dsobj
,
1508 * Computes the memory limit state that we're currently in. A sorted scan
1509 * needs quite a bit of memory to hold the sorting queue, so we need to
1510 * reasonably constrain the size so it doesn't impact overall system
1511 * performance. We compute two limits:
1512 * 1) Hard memory limit: if the amount of memory used by the sorting
1513 * queues on a pool gets above this value, we stop the metadata
1514 * scanning portion and start issuing the queued up and sorted
1515 * I/Os to reduce memory usage.
1516 * This limit is calculated as a fraction of physmem (by default 5%).
1517 * We constrain the lower bound of the hard limit to an absolute
1518 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1519 * the upper bound to 5% of the total pool size - no chance we'll
1520 * ever need that much memory, but just to keep the value in check.
1521 * 2) Soft memory limit: once we hit the hard memory limit, we start
1522 * issuing I/O to reduce queue memory usage, but we don't want to
1523 * completely empty out the queues, since we might be able to find I/Os
1524 * that will fill in the gaps of our non-sequential IOs at some point
1525 * in the future. So we stop the issuing of I/Os once the amount of
1526 * memory used drops below the soft limit (at which point we stop issuing
1527 * I/O and start scanning metadata again).
1529 * This limit is calculated by subtracting a fraction of the hard
1530 * limit from the hard limit. By default this fraction is 5%, so
1531 * the soft limit is 95% of the hard limit. We cap the size of the
1532 * difference between the hard and soft limits at an absolute
1533 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1534 * sufficient to not cause too frequent switching between the
1535 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1536 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1537 * that should take at least a decent fraction of a second).
1540 dsl_scan_should_clear(dsl_scan_t
*scn
)
1542 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1543 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
1544 uint64_t alloc
, mlim_hard
, mlim_soft
, mused
;
1546 alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
1547 alloc
+= metaslab_class_get_alloc(spa_special_class(spa
));
1548 alloc
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
1550 mlim_hard
= MAX((physmem
/ zfs_scan_mem_lim_fact
) * PAGESIZE
,
1551 zfs_scan_mem_lim_min
);
1552 mlim_hard
= MIN(mlim_hard
, alloc
/ 20);
1553 mlim_soft
= mlim_hard
- MIN(mlim_hard
/ zfs_scan_mem_lim_soft_fact
,
1554 zfs_scan_mem_lim_soft_max
);
1556 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
1557 vdev_t
*tvd
= rvd
->vdev_child
[i
];
1558 dsl_scan_io_queue_t
*queue
;
1560 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
1561 queue
= tvd
->vdev_scan_io_queue
;
1562 if (queue
!= NULL
) {
1564 * # of extents in exts_by_addr = # in exts_by_size.
1565 * B-tree efficiency is ~75%, but can be as low as 50%.
1567 mused
+= zfs_btree_numnodes(&queue
->q_exts_by_size
) *
1568 ((sizeof (range_seg_gap_t
) + sizeof (uint64_t)) *
1569 3 / 2) + queue
->q_sio_memused
;
1571 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
1574 dprintf("current scan memory usage: %llu bytes\n", (longlong_t
)mused
);
1577 ASSERT0(scn
->scn_queues_pending
);
1580 * If we are above our hard limit, we need to clear out memory.
1581 * If we are below our soft limit, we need to accumulate sequential IOs.
1582 * Otherwise, we should keep doing whatever we are currently doing.
1584 if (mused
>= mlim_hard
)
1586 else if (mused
< mlim_soft
)
1589 return (scn
->scn_clearing
);
1593 dsl_scan_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1595 /* we never skip user/group accounting objects */
1596 if (zb
&& (int64_t)zb
->zb_object
< 0)
1599 if (scn
->scn_suspending
)
1600 return (B_TRUE
); /* we're already suspending */
1602 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
))
1603 return (B_FALSE
); /* we're resuming */
1605 /* We only know how to resume from level-0 and objset blocks. */
1606 if (zb
&& (zb
->zb_level
!= 0 && zb
->zb_level
!= ZB_ROOT_LEVEL
))
1611 * - we have scanned for at least the minimum time (default 1 sec
1612 * for scrub, 3 sec for resilver), and either we have sufficient
1613 * dirty data that we are starting to write more quickly
1614 * (default 30%), someone is explicitly waiting for this txg
1615 * to complete, or we have used up all of the time in the txg
1616 * timeout (default 5 sec).
1618 * - the spa is shutting down because this pool is being exported
1619 * or the machine is rebooting.
1621 * - the scan queue has reached its memory use limit
1623 uint64_t curr_time_ns
= gethrtime();
1624 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1625 uint64_t sync_time_ns
= curr_time_ns
-
1626 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1627 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
1628 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
1629 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
1630 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
1632 if ((NSEC2MSEC(scan_time_ns
) > mintime
&&
1633 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
1634 txg_sync_waiting(scn
->scn_dp
) ||
1635 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1636 spa_shutting_down(scn
->scn_dp
->dp_spa
) ||
1637 (zfs_scan_strict_mem_lim
&& dsl_scan_should_clear(scn
))) {
1638 if (zb
&& zb
->zb_level
== ZB_ROOT_LEVEL
) {
1639 dprintf("suspending at first available bookmark "
1640 "%llx/%llx/%llx/%llx\n",
1641 (longlong_t
)zb
->zb_objset
,
1642 (longlong_t
)zb
->zb_object
,
1643 (longlong_t
)zb
->zb_level
,
1644 (longlong_t
)zb
->zb_blkid
);
1645 SET_BOOKMARK(&scn
->scn_phys
.scn_bookmark
,
1646 zb
->zb_objset
, 0, 0, 0);
1647 } else if (zb
!= NULL
) {
1648 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1649 (longlong_t
)zb
->zb_objset
,
1650 (longlong_t
)zb
->zb_object
,
1651 (longlong_t
)zb
->zb_level
,
1652 (longlong_t
)zb
->zb_blkid
);
1653 scn
->scn_phys
.scn_bookmark
= *zb
;
1656 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
1657 dprintf("suspending at at DDT bookmark "
1658 "%llx/%llx/%llx/%llx\n",
1659 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
1660 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
1661 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
1662 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
1665 scn
->scn_suspending
= B_TRUE
;
1672 dsl_error_scrub_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1676 * - we have scrubbed for at least the minimum time (default 1 sec
1677 * for error scrub), someone is explicitly waiting for this txg
1678 * to complete, or we have used up all of the time in the txg
1679 * timeout (default 5 sec).
1681 * - the spa is shutting down because this pool is being exported
1682 * or the machine is rebooting.
1684 uint64_t curr_time_ns
= gethrtime();
1685 uint64_t error_scrub_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1686 uint64_t sync_time_ns
= curr_time_ns
-
1687 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1688 int mintime
= zfs_scrub_min_time_ms
;
1690 if ((NSEC2MSEC(error_scrub_time_ns
) > mintime
&&
1691 (txg_sync_waiting(scn
->scn_dp
) ||
1692 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1693 spa_shutting_down(scn
->scn_dp
->dp_spa
)) {
1695 dprintf("error scrub suspending at bookmark "
1696 "%llx/%llx/%llx/%llx\n",
1697 (longlong_t
)zb
->zb_objset
,
1698 (longlong_t
)zb
->zb_object
,
1699 (longlong_t
)zb
->zb_level
,
1700 (longlong_t
)zb
->zb_blkid
);
1707 typedef struct zil_scan_arg
{
1709 zil_header_t
*zsa_zh
;
1713 dsl_scan_zil_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *arg
,
1717 zil_scan_arg_t
*zsa
= arg
;
1718 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1719 dsl_scan_t
*scn
= dp
->dp_scan
;
1720 zil_header_t
*zh
= zsa
->zsa_zh
;
1721 zbookmark_phys_t zb
;
1723 ASSERT(!BP_IS_REDACTED(bp
));
1724 if (BP_IS_HOLE(bp
) || bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
)
1728 * One block ("stubby") can be allocated a long time ago; we
1729 * want to visit that one because it has been allocated
1730 * (on-disk) even if it hasn't been claimed (even though for
1731 * scrub there's nothing to do to it).
1733 if (claim_txg
== 0 && bp
->blk_birth
>= spa_min_claim_txg(dp
->dp_spa
))
1736 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1737 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
, bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
1739 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1744 dsl_scan_zil_record(zilog_t
*zilog
, const lr_t
*lrc
, void *arg
,
1748 if (lrc
->lrc_txtype
== TX_WRITE
) {
1749 zil_scan_arg_t
*zsa
= arg
;
1750 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1751 dsl_scan_t
*scn
= dp
->dp_scan
;
1752 zil_header_t
*zh
= zsa
->zsa_zh
;
1753 const lr_write_t
*lr
= (const lr_write_t
*)lrc
;
1754 const blkptr_t
*bp
= &lr
->lr_blkptr
;
1755 zbookmark_phys_t zb
;
1757 ASSERT(!BP_IS_REDACTED(bp
));
1758 if (BP_IS_HOLE(bp
) ||
1759 bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
)
1763 * birth can be < claim_txg if this record's txg is
1764 * already txg sync'ed (but this log block contains
1765 * other records that are not synced)
1767 if (claim_txg
== 0 || bp
->blk_birth
< claim_txg
)
1770 ASSERT3U(BP_GET_LSIZE(bp
), !=, 0);
1771 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1772 lr
->lr_foid
, ZB_ZIL_LEVEL
,
1773 lr
->lr_offset
/ BP_GET_LSIZE(bp
));
1775 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1781 dsl_scan_zil(dsl_pool_t
*dp
, zil_header_t
*zh
)
1783 uint64_t claim_txg
= zh
->zh_claim_txg
;
1784 zil_scan_arg_t zsa
= { dp
, zh
};
1787 ASSERT(spa_writeable(dp
->dp_spa
));
1790 * We only want to visit blocks that have been claimed but not yet
1791 * replayed (or, in read-only mode, blocks that *would* be claimed).
1796 zilog
= zil_alloc(dp
->dp_meta_objset
, zh
);
1798 (void) zil_parse(zilog
, dsl_scan_zil_block
, dsl_scan_zil_record
, &zsa
,
1799 claim_txg
, B_FALSE
);
1805 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1806 * here is to sort the AVL tree by the order each block will be needed.
1809 scan_prefetch_queue_compare(const void *a
, const void *b
)
1811 const scan_prefetch_issue_ctx_t
*spic_a
= a
, *spic_b
= b
;
1812 const scan_prefetch_ctx_t
*spc_a
= spic_a
->spic_spc
;
1813 const scan_prefetch_ctx_t
*spc_b
= spic_b
->spic_spc
;
1815 return (zbookmark_compare(spc_a
->spc_datablkszsec
,
1816 spc_a
->spc_indblkshift
, spc_b
->spc_datablkszsec
,
1817 spc_b
->spc_indblkshift
, &spic_a
->spic_zb
, &spic_b
->spic_zb
));
1821 scan_prefetch_ctx_rele(scan_prefetch_ctx_t
*spc
, const void *tag
)
1823 if (zfs_refcount_remove(&spc
->spc_refcnt
, tag
) == 0) {
1824 zfs_refcount_destroy(&spc
->spc_refcnt
);
1825 kmem_free(spc
, sizeof (scan_prefetch_ctx_t
));
1829 static scan_prefetch_ctx_t
*
1830 scan_prefetch_ctx_create(dsl_scan_t
*scn
, dnode_phys_t
*dnp
, const void *tag
)
1832 scan_prefetch_ctx_t
*spc
;
1834 spc
= kmem_alloc(sizeof (scan_prefetch_ctx_t
), KM_SLEEP
);
1835 zfs_refcount_create(&spc
->spc_refcnt
);
1836 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1839 spc
->spc_datablkszsec
= dnp
->dn_datablkszsec
;
1840 spc
->spc_indblkshift
= dnp
->dn_indblkshift
;
1841 spc
->spc_root
= B_FALSE
;
1843 spc
->spc_datablkszsec
= 0;
1844 spc
->spc_indblkshift
= 0;
1845 spc
->spc_root
= B_TRUE
;
1852 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t
*spc
, const void *tag
)
1854 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1858 scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
)
1860 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1861 void *cookie
= NULL
;
1862 scan_prefetch_issue_ctx_t
*spic
= NULL
;
1864 mutex_enter(&spa
->spa_scrub_lock
);
1865 while ((spic
= avl_destroy_nodes(&scn
->scn_prefetch_queue
,
1866 &cookie
)) != NULL
) {
1867 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1868 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1870 mutex_exit(&spa
->spa_scrub_lock
);
1874 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t
*spc
,
1875 const zbookmark_phys_t
*zb
)
1877 zbookmark_phys_t
*last_zb
= &spc
->spc_scn
->scn_prefetch_bookmark
;
1878 dnode_phys_t tmp_dnp
;
1879 dnode_phys_t
*dnp
= (spc
->spc_root
) ? NULL
: &tmp_dnp
;
1881 if (zb
->zb_objset
!= last_zb
->zb_objset
)
1883 if ((int64_t)zb
->zb_object
< 0)
1886 tmp_dnp
.dn_datablkszsec
= spc
->spc_datablkszsec
;
1887 tmp_dnp
.dn_indblkshift
= spc
->spc_indblkshift
;
1889 if (zbookmark_subtree_completed(dnp
, zb
, last_zb
))
1896 dsl_scan_prefetch(scan_prefetch_ctx_t
*spc
, blkptr_t
*bp
, zbookmark_phys_t
*zb
)
1899 dsl_scan_t
*scn
= spc
->spc_scn
;
1900 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1901 scan_prefetch_issue_ctx_t
*spic
;
1903 if (zfs_no_scrub_prefetch
|| BP_IS_REDACTED(bp
))
1906 if (BP_IS_HOLE(bp
) || bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
||
1907 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
1908 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
))
1911 if (dsl_scan_check_prefetch_resume(spc
, zb
))
1914 scan_prefetch_ctx_add_ref(spc
, scn
);
1915 spic
= kmem_alloc(sizeof (scan_prefetch_issue_ctx_t
), KM_SLEEP
);
1916 spic
->spic_spc
= spc
;
1917 spic
->spic_bp
= *bp
;
1918 spic
->spic_zb
= *zb
;
1921 * Add the IO to the queue of blocks to prefetch. This allows us to
1922 * prioritize blocks that we will need first for the main traversal
1925 mutex_enter(&spa
->spa_scrub_lock
);
1926 if (avl_find(&scn
->scn_prefetch_queue
, spic
, &idx
) != NULL
) {
1927 /* this block is already queued for prefetch */
1928 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1929 scan_prefetch_ctx_rele(spc
, scn
);
1930 mutex_exit(&spa
->spa_scrub_lock
);
1934 avl_insert(&scn
->scn_prefetch_queue
, spic
, idx
);
1935 cv_broadcast(&spa
->spa_scrub_io_cv
);
1936 mutex_exit(&spa
->spa_scrub_lock
);
1940 dsl_scan_prefetch_dnode(dsl_scan_t
*scn
, dnode_phys_t
*dnp
,
1941 uint64_t objset
, uint64_t object
)
1944 zbookmark_phys_t zb
;
1945 scan_prefetch_ctx_t
*spc
;
1947 if (dnp
->dn_nblkptr
== 0 && !(dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
1950 SET_BOOKMARK(&zb
, objset
, object
, 0, 0);
1952 spc
= scan_prefetch_ctx_create(scn
, dnp
, FTAG
);
1954 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++) {
1955 zb
.zb_level
= BP_GET_LEVEL(&dnp
->dn_blkptr
[i
]);
1957 dsl_scan_prefetch(spc
, &dnp
->dn_blkptr
[i
], &zb
);
1960 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1962 zb
.zb_blkid
= DMU_SPILL_BLKID
;
1963 dsl_scan_prefetch(spc
, DN_SPILL_BLKPTR(dnp
), &zb
);
1966 scan_prefetch_ctx_rele(spc
, FTAG
);
1970 dsl_scan_prefetch_cb(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1971 arc_buf_t
*buf
, void *private)
1974 scan_prefetch_ctx_t
*spc
= private;
1975 dsl_scan_t
*scn
= spc
->spc_scn
;
1976 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1978 /* broadcast that the IO has completed for rate limiting purposes */
1979 mutex_enter(&spa
->spa_scrub_lock
);
1980 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
1981 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
1982 cv_broadcast(&spa
->spa_scrub_io_cv
);
1983 mutex_exit(&spa
->spa_scrub_lock
);
1985 /* if there was an error or we are done prefetching, just cleanup */
1986 if (buf
== NULL
|| scn
->scn_prefetch_stop
)
1989 if (BP_GET_LEVEL(bp
) > 0) {
1992 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
1993 zbookmark_phys_t czb
;
1995 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
1996 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
1997 zb
->zb_level
- 1, zb
->zb_blkid
* epb
+ i
);
1998 dsl_scan_prefetch(spc
, cbp
, &czb
);
2000 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
2003 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
2005 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
2006 i
+= cdnp
->dn_extra_slots
+ 1,
2007 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
2008 dsl_scan_prefetch_dnode(scn
, cdnp
,
2009 zb
->zb_objset
, zb
->zb_blkid
* epb
+ i
);
2011 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
2012 objset_phys_t
*osp
= buf
->b_data
;
2014 dsl_scan_prefetch_dnode(scn
, &osp
->os_meta_dnode
,
2015 zb
->zb_objset
, DMU_META_DNODE_OBJECT
);
2017 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
2018 if (OBJSET_BUF_HAS_PROJECTUSED(buf
)) {
2019 dsl_scan_prefetch_dnode(scn
,
2020 &osp
->os_projectused_dnode
, zb
->zb_objset
,
2021 DMU_PROJECTUSED_OBJECT
);
2023 dsl_scan_prefetch_dnode(scn
,
2024 &osp
->os_groupused_dnode
, zb
->zb_objset
,
2025 DMU_GROUPUSED_OBJECT
);
2026 dsl_scan_prefetch_dnode(scn
,
2027 &osp
->os_userused_dnode
, zb
->zb_objset
,
2028 DMU_USERUSED_OBJECT
);
2034 arc_buf_destroy(buf
, private);
2035 scan_prefetch_ctx_rele(spc
, scn
);
2039 dsl_scan_prefetch_thread(void *arg
)
2041 dsl_scan_t
*scn
= arg
;
2042 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
2043 scan_prefetch_issue_ctx_t
*spic
;
2045 /* loop until we are told to stop */
2046 while (!scn
->scn_prefetch_stop
) {
2047 arc_flags_t flags
= ARC_FLAG_NOWAIT
|
2048 ARC_FLAG_PRESCIENT_PREFETCH
| ARC_FLAG_PREFETCH
;
2049 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
2051 mutex_enter(&spa
->spa_scrub_lock
);
2054 * Wait until we have an IO to issue and are not above our
2055 * maximum in flight limit.
2057 while (!scn
->scn_prefetch_stop
&&
2058 (avl_numnodes(&scn
->scn_prefetch_queue
) == 0 ||
2059 spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)) {
2060 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
2063 /* recheck if we should stop since we waited for the cv */
2064 if (scn
->scn_prefetch_stop
) {
2065 mutex_exit(&spa
->spa_scrub_lock
);
2069 /* remove the prefetch IO from the tree */
2070 spic
= avl_first(&scn
->scn_prefetch_queue
);
2071 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(&spic
->spic_bp
);
2072 avl_remove(&scn
->scn_prefetch_queue
, spic
);
2074 mutex_exit(&spa
->spa_scrub_lock
);
2076 if (BP_IS_PROTECTED(&spic
->spic_bp
)) {
2077 ASSERT(BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_DNODE
||
2078 BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_OBJSET
);
2079 ASSERT3U(BP_GET_LEVEL(&spic
->spic_bp
), ==, 0);
2080 zio_flags
|= ZIO_FLAG_RAW
;
2083 /* We don't need data L1 buffer since we do not prefetch L0. */
2084 blkptr_t
*bp
= &spic
->spic_bp
;
2085 if (BP_GET_LEVEL(bp
) == 1 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
2086 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
2087 flags
|= ARC_FLAG_NO_BUF
;
2089 /* issue the prefetch asynchronously */
2090 (void) arc_read(scn
->scn_zio_root
, spa
, bp
,
2091 dsl_scan_prefetch_cb
, spic
->spic_spc
, ZIO_PRIORITY_SCRUB
,
2092 zio_flags
, &flags
, &spic
->spic_zb
);
2094 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
2097 ASSERT(scn
->scn_prefetch_stop
);
2099 /* free any prefetches we didn't get to complete */
2100 mutex_enter(&spa
->spa_scrub_lock
);
2101 while ((spic
= avl_first(&scn
->scn_prefetch_queue
)) != NULL
) {
2102 avl_remove(&scn
->scn_prefetch_queue
, spic
);
2103 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
2104 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
2106 ASSERT0(avl_numnodes(&scn
->scn_prefetch_queue
));
2107 mutex_exit(&spa
->spa_scrub_lock
);
2111 dsl_scan_check_resume(dsl_scan_t
*scn
, const dnode_phys_t
*dnp
,
2112 const zbookmark_phys_t
*zb
)
2115 * We never skip over user/group accounting objects (obj<0)
2117 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
) &&
2118 (int64_t)zb
->zb_object
>= 0) {
2120 * If we already visited this bp & everything below (in
2121 * a prior txg sync), don't bother doing it again.
2123 if (zbookmark_subtree_completed(dnp
, zb
,
2124 &scn
->scn_phys
.scn_bookmark
))
2128 * If we found the block we're trying to resume from, or
2129 * we went past it, zero it out to indicate that it's OK
2130 * to start checking for suspending again.
2132 if (zbookmark_subtree_tbd(dnp
, zb
,
2133 &scn
->scn_phys
.scn_bookmark
)) {
2134 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2135 (longlong_t
)zb
->zb_objset
,
2136 (longlong_t
)zb
->zb_object
,
2137 (longlong_t
)zb
->zb_level
,
2138 (longlong_t
)zb
->zb_blkid
);
2139 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (*zb
));
2145 static void dsl_scan_visitbp(blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2146 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2147 dmu_objset_type_t ostype
, dmu_tx_t
*tx
);
2148 inline __attribute__((always_inline
)) static void dsl_scan_visitdnode(
2149 dsl_scan_t
*, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2150 dnode_phys_t
*dnp
, uint64_t object
, dmu_tx_t
*tx
);
2153 * Return nonzero on i/o error.
2154 * Return new buf to write out in *bufp.
2156 inline __attribute__((always_inline
)) static int
2157 dsl_scan_recurse(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2158 dnode_phys_t
*dnp
, const blkptr_t
*bp
,
2159 const zbookmark_phys_t
*zb
, dmu_tx_t
*tx
)
2161 dsl_pool_t
*dp
= scn
->scn_dp
;
2162 spa_t
*spa
= dp
->dp_spa
;
2163 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
2166 ASSERT(!BP_IS_REDACTED(bp
));
2169 * There is an unlikely case of encountering dnodes with contradicting
2170 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2171 * or modified before commit 4254acb was merged. As it is not possible
2172 * to know which of the two is correct, report an error.
2175 dnp
->dn_bonuslen
> DN_MAX_BONUS_LEN(dnp
)) {
2176 scn
->scn_phys
.scn_errors
++;
2177 spa_log_error(spa
, zb
, &bp
->blk_birth
);
2178 return (SET_ERROR(EINVAL
));
2181 if (BP_GET_LEVEL(bp
) > 0) {
2182 arc_flags_t flags
= ARC_FLAG_WAIT
;
2185 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2188 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2189 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2191 scn
->scn_phys
.scn_errors
++;
2194 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
2195 zbookmark_phys_t czb
;
2197 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2199 zb
->zb_blkid
* epb
+ i
);
2200 dsl_scan_visitbp(cbp
, &czb
, dnp
,
2201 ds
, scn
, ostype
, tx
);
2203 arc_buf_destroy(buf
, &buf
);
2204 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
2205 arc_flags_t flags
= ARC_FLAG_WAIT
;
2208 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
2211 if (BP_IS_PROTECTED(bp
)) {
2212 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
2213 zio_flags
|= ZIO_FLAG_RAW
;
2216 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2217 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2219 scn
->scn_phys
.scn_errors
++;
2222 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
2223 i
+= cdnp
->dn_extra_slots
+ 1,
2224 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
2225 dsl_scan_visitdnode(scn
, ds
, ostype
,
2226 cdnp
, zb
->zb_blkid
* epb
+ i
, tx
);
2229 arc_buf_destroy(buf
, &buf
);
2230 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
2231 arc_flags_t flags
= ARC_FLAG_WAIT
;
2235 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2236 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2238 scn
->scn_phys
.scn_errors
++;
2244 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2245 &osp
->os_meta_dnode
, DMU_META_DNODE_OBJECT
, tx
);
2247 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
2249 * We also always visit user/group/project accounting
2250 * objects, and never skip them, even if we are
2251 * suspending. This is necessary so that the
2252 * space deltas from this txg get integrated.
2254 if (OBJSET_BUF_HAS_PROJECTUSED(buf
))
2255 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2256 &osp
->os_projectused_dnode
,
2257 DMU_PROJECTUSED_OBJECT
, tx
);
2258 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2259 &osp
->os_groupused_dnode
,
2260 DMU_GROUPUSED_OBJECT
, tx
);
2261 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2262 &osp
->os_userused_dnode
,
2263 DMU_USERUSED_OBJECT
, tx
);
2265 arc_buf_destroy(buf
, &buf
);
2266 } else if (!zfs_blkptr_verify(spa
, bp
,
2267 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
)) {
2269 * Sanity check the block pointer contents, this is handled
2270 * by arc_read() for the cases above.
2272 scn
->scn_phys
.scn_errors
++;
2273 spa_log_error(spa
, zb
, &bp
->blk_birth
);
2274 return (SET_ERROR(EINVAL
));
2280 inline __attribute__((always_inline
)) static void
2281 dsl_scan_visitdnode(dsl_scan_t
*scn
, dsl_dataset_t
*ds
,
2282 dmu_objset_type_t ostype
, dnode_phys_t
*dnp
,
2283 uint64_t object
, dmu_tx_t
*tx
)
2287 for (j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
2288 zbookmark_phys_t czb
;
2290 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2291 dnp
->dn_nlevels
- 1, j
);
2292 dsl_scan_visitbp(&dnp
->dn_blkptr
[j
],
2293 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2296 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
2297 zbookmark_phys_t czb
;
2298 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2299 0, DMU_SPILL_BLKID
);
2300 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp
),
2301 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2306 * The arguments are in this order because mdb can only print the
2307 * first 5; we want them to be useful.
2310 dsl_scan_visitbp(blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2311 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2312 dmu_objset_type_t ostype
, dmu_tx_t
*tx
)
2314 dsl_pool_t
*dp
= scn
->scn_dp
;
2315 blkptr_t
*bp_toread
= NULL
;
2317 if (dsl_scan_check_suspend(scn
, zb
))
2320 if (dsl_scan_check_resume(scn
, dnp
, zb
))
2323 scn
->scn_visited_this_txg
++;
2325 if (BP_IS_HOLE(bp
)) {
2326 scn
->scn_holes_this_txg
++;
2330 if (BP_IS_REDACTED(bp
)) {
2331 ASSERT(dsl_dataset_feature_is_active(ds
,
2332 SPA_FEATURE_REDACTED_DATASETS
));
2337 * Check if this block contradicts any filesystem flags.
2339 spa_feature_t f
= SPA_FEATURE_LARGE_BLOCKS
;
2340 if (BP_GET_LSIZE(bp
) > SPA_OLD_MAXBLOCKSIZE
)
2341 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2343 f
= zio_checksum_to_feature(BP_GET_CHECKSUM(bp
));
2344 if (f
!= SPA_FEATURE_NONE
)
2345 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2347 f
= zio_compress_to_feature(BP_GET_COMPRESS(bp
));
2348 if (f
!= SPA_FEATURE_NONE
)
2349 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2351 if (bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
) {
2352 scn
->scn_lt_min_this_txg
++;
2356 bp_toread
= kmem_alloc(sizeof (blkptr_t
), KM_SLEEP
);
2359 if (dsl_scan_recurse(scn
, ds
, ostype
, dnp
, bp_toread
, zb
, tx
) != 0)
2363 * If dsl_scan_ddt() has already visited this block, it will have
2364 * already done any translations or scrubbing, so don't call the
2367 if (ddt_class_contains(dp
->dp_spa
,
2368 scn
->scn_phys
.scn_ddt_class_max
, bp
)) {
2369 scn
->scn_ddt_contained_this_txg
++;
2374 * If this block is from the future (after cur_max_txg), then we
2375 * are doing this on behalf of a deleted snapshot, and we will
2376 * revisit the future block on the next pass of this dataset.
2377 * Don't scan it now unless we need to because something
2378 * under it was modified.
2380 if (BP_PHYSICAL_BIRTH(bp
) > scn
->scn_phys
.scn_cur_max_txg
) {
2381 scn
->scn_gt_max_this_txg
++;
2385 scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, zb
);
2388 kmem_free(bp_toread
, sizeof (blkptr_t
));
2392 dsl_scan_visit_rootbp(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, blkptr_t
*bp
,
2395 zbookmark_phys_t zb
;
2396 scan_prefetch_ctx_t
*spc
;
2398 SET_BOOKMARK(&zb
, ds
? ds
->ds_object
: DMU_META_OBJSET
,
2399 ZB_ROOT_OBJECT
, ZB_ROOT_LEVEL
, ZB_ROOT_BLKID
);
2401 if (ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
)) {
2402 SET_BOOKMARK(&scn
->scn_prefetch_bookmark
,
2403 zb
.zb_objset
, 0, 0, 0);
2405 scn
->scn_prefetch_bookmark
= scn
->scn_phys
.scn_bookmark
;
2408 scn
->scn_objsets_visited_this_txg
++;
2410 spc
= scan_prefetch_ctx_create(scn
, NULL
, FTAG
);
2411 dsl_scan_prefetch(spc
, bp
, &zb
);
2412 scan_prefetch_ctx_rele(spc
, FTAG
);
2414 dsl_scan_visitbp(bp
, &zb
, NULL
, ds
, scn
, DMU_OST_NONE
, tx
);
2416 dprintf_ds(ds
, "finished scan%s", "");
2420 ds_destroyed_scn_phys(dsl_dataset_t
*ds
, dsl_scan_phys_t
*scn_phys
)
2422 if (scn_phys
->scn_bookmark
.zb_objset
== ds
->ds_object
) {
2423 if (ds
->ds_is_snapshot
) {
2426 * - scn_cur_{min,max}_txg stays the same.
2427 * - Setting the flag is not really necessary if
2428 * scn_cur_max_txg == scn_max_txg, because there
2429 * is nothing after this snapshot that we care
2430 * about. However, we set it anyway and then
2431 * ignore it when we retraverse it in
2432 * dsl_scan_visitds().
2434 scn_phys
->scn_bookmark
.zb_objset
=
2435 dsl_dataset_phys(ds
)->ds_next_snap_obj
;
2436 zfs_dbgmsg("destroying ds %llu on %s; currently "
2437 "traversing; reset zb_objset to %llu",
2438 (u_longlong_t
)ds
->ds_object
,
2439 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2440 (u_longlong_t
)dsl_dataset_phys(ds
)->
2442 scn_phys
->scn_flags
|= DSF_VISIT_DS_AGAIN
;
2444 SET_BOOKMARK(&scn_phys
->scn_bookmark
,
2445 ZB_DESTROYED_OBJSET
, 0, 0, 0);
2446 zfs_dbgmsg("destroying ds %llu on %s; currently "
2447 "traversing; reset bookmark to -1,0,0,0",
2448 (u_longlong_t
)ds
->ds_object
,
2449 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
);
2455 * Invoked when a dataset is destroyed. We need to make sure that:
2457 * 1) If it is the dataset that was currently being scanned, we write
2458 * a new dsl_scan_phys_t and marking the objset reference in it
2460 * 2) Remove it from the work queue, if it was present.
2462 * If the dataset was actually a snapshot, instead of marking the dataset
2463 * as destroyed, we instead substitute the next snapshot in line.
2466 dsl_scan_ds_destroyed(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2468 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2469 dsl_scan_t
*scn
= dp
->dp_scan
;
2472 if (!dsl_scan_is_running(scn
))
2475 ds_destroyed_scn_phys(ds
, &scn
->scn_phys
);
2476 ds_destroyed_scn_phys(ds
, &scn
->scn_phys_cached
);
2478 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2479 scan_ds_queue_remove(scn
, ds
->ds_object
);
2480 if (ds
->ds_is_snapshot
)
2481 scan_ds_queue_insert(scn
,
2482 dsl_dataset_phys(ds
)->ds_next_snap_obj
, mintxg
);
2485 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2486 ds
->ds_object
, &mintxg
) == 0) {
2487 ASSERT3U(dsl_dataset_phys(ds
)->ds_num_children
, <=, 1);
2488 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2489 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2490 if (ds
->ds_is_snapshot
) {
2492 * We keep the same mintxg; it could be >
2493 * ds_creation_txg if the previous snapshot was
2496 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2497 scn
->scn_phys
.scn_queue_obj
,
2498 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2500 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2501 "replacing with %llu",
2502 (u_longlong_t
)ds
->ds_object
,
2503 dp
->dp_spa
->spa_name
,
2504 (u_longlong_t
)dsl_dataset_phys(ds
)->
2507 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2509 (u_longlong_t
)ds
->ds_object
,
2510 dp
->dp_spa
->spa_name
);
2515 * dsl_scan_sync() should be called after this, and should sync
2516 * out our changed state, but just to be safe, do it here.
2518 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2522 ds_snapshotted_bookmark(dsl_dataset_t
*ds
, zbookmark_phys_t
*scn_bookmark
)
2524 if (scn_bookmark
->zb_objset
== ds
->ds_object
) {
2525 scn_bookmark
->zb_objset
=
2526 dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
2527 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2528 "reset zb_objset to %llu",
2529 (u_longlong_t
)ds
->ds_object
,
2530 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2531 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2536 * Called when a dataset is snapshotted. If we were currently traversing
2537 * this snapshot, we reset our bookmark to point at the newly created
2538 * snapshot. We also modify our work queue to remove the old snapshot and
2539 * replace with the new one.
2542 dsl_scan_ds_snapshotted(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2544 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2545 dsl_scan_t
*scn
= dp
->dp_scan
;
2548 if (!dsl_scan_is_running(scn
))
2551 ASSERT(dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0);
2553 ds_snapshotted_bookmark(ds
, &scn
->scn_phys
.scn_bookmark
);
2554 ds_snapshotted_bookmark(ds
, &scn
->scn_phys_cached
.scn_bookmark
);
2556 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2557 scan_ds_queue_remove(scn
, ds
->ds_object
);
2558 scan_ds_queue_insert(scn
,
2559 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
);
2562 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2563 ds
->ds_object
, &mintxg
) == 0) {
2564 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2565 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2566 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2567 scn
->scn_phys
.scn_queue_obj
,
2568 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
, tx
) == 0);
2569 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2570 "replacing with %llu",
2571 (u_longlong_t
)ds
->ds_object
,
2572 dp
->dp_spa
->spa_name
,
2573 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2576 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2580 ds_clone_swapped_bookmark(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
,
2581 zbookmark_phys_t
*scn_bookmark
)
2583 if (scn_bookmark
->zb_objset
== ds1
->ds_object
) {
2584 scn_bookmark
->zb_objset
= ds2
->ds_object
;
2585 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2586 "reset zb_objset to %llu",
2587 (u_longlong_t
)ds1
->ds_object
,
2588 ds1
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2589 (u_longlong_t
)ds2
->ds_object
);
2590 } else if (scn_bookmark
->zb_objset
== ds2
->ds_object
) {
2591 scn_bookmark
->zb_objset
= ds1
->ds_object
;
2592 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2593 "reset zb_objset to %llu",
2594 (u_longlong_t
)ds2
->ds_object
,
2595 ds2
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2596 (u_longlong_t
)ds1
->ds_object
);
2601 * Called when an origin dataset and its clone are swapped. If we were
2602 * currently traversing the dataset, we need to switch to traversing the
2603 * newly promoted clone.
2606 dsl_scan_ds_clone_swapped(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
, dmu_tx_t
*tx
)
2608 dsl_pool_t
*dp
= ds1
->ds_dir
->dd_pool
;
2609 dsl_scan_t
*scn
= dp
->dp_scan
;
2610 uint64_t mintxg1
, mintxg2
;
2611 boolean_t ds1_queued
, ds2_queued
;
2613 if (!dsl_scan_is_running(scn
))
2616 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys
.scn_bookmark
);
2617 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys_cached
.scn_bookmark
);
2620 * Handle the in-memory scan queue.
2622 ds1_queued
= scan_ds_queue_contains(scn
, ds1
->ds_object
, &mintxg1
);
2623 ds2_queued
= scan_ds_queue_contains(scn
, ds2
->ds_object
, &mintxg2
);
2625 /* Sanity checking. */
2627 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2628 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2631 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2632 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2635 if (ds1_queued
&& ds2_queued
) {
2637 * If both are queued, we don't need to do anything.
2638 * The swapping code below would not handle this case correctly,
2639 * since we can't insert ds2 if it is already there. That's
2640 * because scan_ds_queue_insert() prohibits a duplicate insert
2643 } else if (ds1_queued
) {
2644 scan_ds_queue_remove(scn
, ds1
->ds_object
);
2645 scan_ds_queue_insert(scn
, ds2
->ds_object
, mintxg1
);
2646 } else if (ds2_queued
) {
2647 scan_ds_queue_remove(scn
, ds2
->ds_object
);
2648 scan_ds_queue_insert(scn
, ds1
->ds_object
, mintxg2
);
2652 * Handle the on-disk scan queue.
2653 * The on-disk state is an out-of-date version of the in-memory state,
2654 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2655 * be different. Therefore we need to apply the swap logic to the
2656 * on-disk state independently of the in-memory state.
2658 ds1_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2659 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, &mintxg1
) == 0;
2660 ds2_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2661 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, &mintxg2
) == 0;
2663 /* Sanity checking. */
2665 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2666 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2669 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2670 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2673 if (ds1_queued
&& ds2_queued
) {
2675 * If both are queued, we don't need to do anything.
2676 * Alternatively, we could check for EEXIST from
2677 * zap_add_int_key() and back out to the original state, but
2678 * that would be more work than checking for this case upfront.
2680 } else if (ds1_queued
) {
2681 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2682 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, tx
));
2683 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2684 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, mintxg1
, tx
));
2685 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2686 "replacing with %llu",
2687 (u_longlong_t
)ds1
->ds_object
,
2688 dp
->dp_spa
->spa_name
,
2689 (u_longlong_t
)ds2
->ds_object
);
2690 } else if (ds2_queued
) {
2691 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2692 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, tx
));
2693 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2694 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, mintxg2
, tx
));
2695 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2696 "replacing with %llu",
2697 (u_longlong_t
)ds2
->ds_object
,
2698 dp
->dp_spa
->spa_name
,
2699 (u_longlong_t
)ds1
->ds_object
);
2702 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2706 enqueue_clones_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2708 uint64_t originobj
= *(uint64_t *)arg
;
2711 dsl_scan_t
*scn
= dp
->dp_scan
;
2713 if (dsl_dir_phys(hds
->ds_dir
)->dd_origin_obj
!= originobj
)
2716 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2720 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= originobj
) {
2721 dsl_dataset_t
*prev
;
2722 err
= dsl_dataset_hold_obj(dp
,
2723 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2725 dsl_dataset_rele(ds
, FTAG
);
2730 scan_ds_queue_insert(scn
, ds
->ds_object
,
2731 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2732 dsl_dataset_rele(ds
, FTAG
);
2737 dsl_scan_visitds(dsl_scan_t
*scn
, uint64_t dsobj
, dmu_tx_t
*tx
)
2739 dsl_pool_t
*dp
= scn
->scn_dp
;
2742 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2744 if (scn
->scn_phys
.scn_cur_min_txg
>=
2745 scn
->scn_phys
.scn_max_txg
) {
2747 * This can happen if this snapshot was created after the
2748 * scan started, and we already completed a previous snapshot
2749 * that was created after the scan started. This snapshot
2750 * only references blocks with:
2752 * birth < our ds_creation_txg
2753 * cur_min_txg is no less than ds_creation_txg.
2754 * We have already visited these blocks.
2756 * birth > scn_max_txg
2757 * The scan requested not to visit these blocks.
2759 * Subsequent snapshots (and clones) can reference our
2760 * blocks, or blocks with even higher birth times.
2761 * Therefore we do not need to visit them either,
2762 * so we do not add them to the work queue.
2764 * Note that checking for cur_min_txg >= cur_max_txg
2765 * is not sufficient, because in that case we may need to
2766 * visit subsequent snapshots. This happens when min_txg > 0,
2767 * which raises cur_min_txg. In this case we will visit
2768 * this dataset but skip all of its blocks, because the
2769 * rootbp's birth time is < cur_min_txg. Then we will
2770 * add the next snapshots/clones to the work queue.
2772 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2773 dsl_dataset_name(ds
, dsname
);
2774 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2775 "cur_min_txg (%llu) >= max_txg (%llu)",
2776 (longlong_t
)dsobj
, dsname
,
2777 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2778 (longlong_t
)scn
->scn_phys
.scn_max_txg
);
2779 kmem_free(dsname
, MAXNAMELEN
);
2785 * Only the ZIL in the head (non-snapshot) is valid. Even though
2786 * snapshots can have ZIL block pointers (which may be the same
2787 * BP as in the head), they must be ignored. In addition, $ORIGIN
2788 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2789 * need to look for a ZIL in it either. So we traverse the ZIL here,
2790 * rather than in scan_recurse(), because the regular snapshot
2791 * block-sharing rules don't apply to it.
2793 if (!dsl_dataset_is_snapshot(ds
) &&
2794 (dp
->dp_origin_snap
== NULL
||
2795 ds
->ds_dir
!= dp
->dp_origin_snap
->ds_dir
)) {
2797 if (dmu_objset_from_ds(ds
, &os
) != 0) {
2800 dsl_scan_zil(dp
, &os
->os_zil_header
);
2804 * Iterate over the bps in this ds.
2806 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
2807 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2808 dsl_scan_visit_rootbp(scn
, ds
, &dsl_dataset_phys(ds
)->ds_bp
, tx
);
2809 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2811 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2812 dsl_dataset_name(ds
, dsname
);
2813 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2815 (longlong_t
)dsobj
, dsname
,
2816 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2817 (longlong_t
)scn
->scn_phys
.scn_cur_max_txg
,
2818 (int)scn
->scn_suspending
);
2819 kmem_free(dsname
, ZFS_MAX_DATASET_NAME_LEN
);
2821 if (scn
->scn_suspending
)
2825 * We've finished this pass over this dataset.
2829 * If we did not completely visit this dataset, do another pass.
2831 if (scn
->scn_phys
.scn_flags
& DSF_VISIT_DS_AGAIN
) {
2832 zfs_dbgmsg("incomplete pass on %s; visiting again",
2833 dp
->dp_spa
->spa_name
);
2834 scn
->scn_phys
.scn_flags
&= ~DSF_VISIT_DS_AGAIN
;
2835 scan_ds_queue_insert(scn
, ds
->ds_object
,
2836 scn
->scn_phys
.scn_cur_max_txg
);
2841 * Add descendant datasets to work queue.
2843 if (dsl_dataset_phys(ds
)->ds_next_snap_obj
!= 0) {
2844 scan_ds_queue_insert(scn
,
2845 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2846 dsl_dataset_phys(ds
)->ds_creation_txg
);
2848 if (dsl_dataset_phys(ds
)->ds_num_children
> 1) {
2849 boolean_t usenext
= B_FALSE
;
2850 if (dsl_dataset_phys(ds
)->ds_next_clones_obj
!= 0) {
2853 * A bug in a previous version of the code could
2854 * cause upgrade_clones_cb() to not set
2855 * ds_next_snap_obj when it should, leading to a
2856 * missing entry. Therefore we can only use the
2857 * next_clones_obj when its count is correct.
2859 int err
= zap_count(dp
->dp_meta_objset
,
2860 dsl_dataset_phys(ds
)->ds_next_clones_obj
, &count
);
2862 count
== dsl_dataset_phys(ds
)->ds_num_children
- 1)
2869 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
2870 dsl_dataset_phys(ds
)->ds_next_clones_obj
);
2871 zap_cursor_retrieve(&zc
, &za
) == 0;
2872 (void) zap_cursor_advance(&zc
)) {
2873 scan_ds_queue_insert(scn
,
2874 zfs_strtonum(za
.za_name
, NULL
),
2875 dsl_dataset_phys(ds
)->ds_creation_txg
);
2877 zap_cursor_fini(&zc
);
2879 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2880 enqueue_clones_cb
, &ds
->ds_object
,
2886 dsl_dataset_rele(ds
, FTAG
);
2890 enqueue_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2895 dsl_scan_t
*scn
= dp
->dp_scan
;
2897 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2901 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0) {
2902 dsl_dataset_t
*prev
;
2903 err
= dsl_dataset_hold_obj(dp
,
2904 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2906 dsl_dataset_rele(ds
, FTAG
);
2911 * If this is a clone, we don't need to worry about it for now.
2913 if (dsl_dataset_phys(prev
)->ds_next_snap_obj
!= ds
->ds_object
) {
2914 dsl_dataset_rele(ds
, FTAG
);
2915 dsl_dataset_rele(prev
, FTAG
);
2918 dsl_dataset_rele(ds
, FTAG
);
2922 scan_ds_queue_insert(scn
, ds
->ds_object
,
2923 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2924 dsl_dataset_rele(ds
, FTAG
);
2929 dsl_scan_ddt_entry(dsl_scan_t
*scn
, enum zio_checksum checksum
,
2930 ddt_entry_t
*dde
, dmu_tx_t
*tx
)
2933 const ddt_key_t
*ddk
= &dde
->dde_key
;
2934 ddt_phys_t
*ddp
= dde
->dde_phys
;
2936 zbookmark_phys_t zb
= { 0 };
2938 if (!dsl_scan_is_running(scn
))
2942 * This function is special because it is the only thing
2943 * that can add scan_io_t's to the vdev scan queues from
2944 * outside dsl_scan_sync(). For the most part this is ok
2945 * as long as it is called from within syncing context.
2946 * However, dsl_scan_sync() expects that no new sio's will
2947 * be added between when all the work for a scan is done
2948 * and the next txg when the scan is actually marked as
2949 * completed. This check ensures we do not issue new sio's
2950 * during this period.
2952 if (scn
->scn_done_txg
!= 0)
2955 for (int p
= 0; p
< DDT_PHYS_TYPES
; p
++, ddp
++) {
2956 if (ddp
->ddp_phys_birth
== 0 ||
2957 ddp
->ddp_phys_birth
> scn
->scn_phys
.scn_max_txg
)
2959 ddt_bp_create(checksum
, ddk
, ddp
, &bp
);
2961 scn
->scn_visited_this_txg
++;
2962 scan_funcs
[scn
->scn_phys
.scn_func
](scn
->scn_dp
, &bp
, &zb
);
2967 * Scrub/dedup interaction.
2969 * If there are N references to a deduped block, we don't want to scrub it
2970 * N times -- ideally, we should scrub it exactly once.
2972 * We leverage the fact that the dde's replication class (enum ddt_class)
2973 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2974 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2976 * To prevent excess scrubbing, the scrub begins by walking the DDT
2977 * to find all blocks with refcnt > 1, and scrubs each of these once.
2978 * Since there are two replication classes which contain blocks with
2979 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2980 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2982 * There would be nothing more to say if a block's refcnt couldn't change
2983 * during a scrub, but of course it can so we must account for changes
2984 * in a block's replication class.
2986 * Here's an example of what can occur:
2988 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2989 * when visited during the top-down scrub phase, it will be scrubbed twice.
2990 * This negates our scrub optimization, but is otherwise harmless.
2992 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2993 * on each visit during the top-down scrub phase, it will never be scrubbed.
2994 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2995 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2996 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2997 * while a scrub is in progress, it scrubs the block right then.
3000 dsl_scan_ddt(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
3002 ddt_bookmark_t
*ddb
= &scn
->scn_phys
.scn_ddt_bookmark
;
3003 ddt_entry_t dde
= {{{{0}}}};
3007 while ((error
= ddt_walk(scn
->scn_dp
->dp_spa
, ddb
, &dde
)) == 0) {
3010 if (ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
)
3012 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3013 (longlong_t
)ddb
->ddb_class
,
3014 (longlong_t
)ddb
->ddb_type
,
3015 (longlong_t
)ddb
->ddb_checksum
,
3016 (longlong_t
)ddb
->ddb_cursor
);
3018 /* There should be no pending changes to the dedup table */
3019 ddt
= scn
->scn_dp
->dp_spa
->spa_ddt
[ddb
->ddb_checksum
];
3020 ASSERT(avl_first(&ddt
->ddt_tree
) == NULL
);
3022 dsl_scan_ddt_entry(scn
, ddb
->ddb_checksum
, &dde
, tx
);
3025 if (dsl_scan_check_suspend(scn
, NULL
))
3029 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3030 "suspending=%u", (longlong_t
)n
, scn
->scn_dp
->dp_spa
->spa_name
,
3031 (int)scn
->scn_phys
.scn_ddt_class_max
, (int)scn
->scn_suspending
);
3033 ASSERT(error
== 0 || error
== ENOENT
);
3034 ASSERT(error
!= ENOENT
||
3035 ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
);
3039 dsl_scan_ds_maxtxg(dsl_dataset_t
*ds
)
3041 uint64_t smt
= ds
->ds_dir
->dd_pool
->dp_scan
->scn_phys
.scn_max_txg
;
3042 if (ds
->ds_is_snapshot
)
3043 return (MIN(smt
, dsl_dataset_phys(ds
)->ds_creation_txg
));
3048 dsl_scan_visit(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
3051 dsl_pool_t
*dp
= scn
->scn_dp
;
3053 if (scn
->scn_phys
.scn_ddt_bookmark
.ddb_class
<=
3054 scn
->scn_phys
.scn_ddt_class_max
) {
3055 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
3056 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
3057 dsl_scan_ddt(scn
, tx
);
3058 if (scn
->scn_suspending
)
3062 if (scn
->scn_phys
.scn_bookmark
.zb_objset
== DMU_META_OBJSET
) {
3063 /* First do the MOS & ORIGIN */
3065 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
3066 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
3067 dsl_scan_visit_rootbp(scn
, NULL
,
3068 &dp
->dp_meta_rootbp
, tx
);
3069 spa_set_rootblkptr(dp
->dp_spa
, &dp
->dp_meta_rootbp
);
3070 if (scn
->scn_suspending
)
3073 if (spa_version(dp
->dp_spa
) < SPA_VERSION_DSL_SCRUB
) {
3074 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
3075 enqueue_cb
, NULL
, DS_FIND_CHILDREN
));
3077 dsl_scan_visitds(scn
,
3078 dp
->dp_origin_snap
->ds_object
, tx
);
3080 ASSERT(!scn
->scn_suspending
);
3081 } else if (scn
->scn_phys
.scn_bookmark
.zb_objset
!=
3082 ZB_DESTROYED_OBJSET
) {
3083 uint64_t dsobj
= scn
->scn_phys
.scn_bookmark
.zb_objset
;
3085 * If we were suspended, continue from here. Note if the
3086 * ds we were suspended on was deleted, the zb_objset may
3087 * be -1, so we will skip this and find a new objset
3090 dsl_scan_visitds(scn
, dsobj
, tx
);
3091 if (scn
->scn_suspending
)
3096 * In case we suspended right at the end of the ds, zero the
3097 * bookmark so we don't think that we're still trying to resume.
3099 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (zbookmark_phys_t
));
3102 * Keep pulling things out of the dataset avl queue. Updates to the
3103 * persistent zap-object-as-queue happen only at checkpoints.
3105 while ((sds
= avl_first(&scn
->scn_queue
)) != NULL
) {
3107 uint64_t dsobj
= sds
->sds_dsobj
;
3108 uint64_t txg
= sds
->sds_txg
;
3110 /* dequeue and free the ds from the queue */
3111 scan_ds_queue_remove(scn
, dsobj
);
3114 /* set up min / max txg */
3115 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
3117 scn
->scn_phys
.scn_cur_min_txg
=
3118 MAX(scn
->scn_phys
.scn_min_txg
, txg
);
3120 scn
->scn_phys
.scn_cur_min_txg
=
3121 MAX(scn
->scn_phys
.scn_min_txg
,
3122 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
3124 scn
->scn_phys
.scn_cur_max_txg
= dsl_scan_ds_maxtxg(ds
);
3125 dsl_dataset_rele(ds
, FTAG
);
3127 dsl_scan_visitds(scn
, dsobj
, tx
);
3128 if (scn
->scn_suspending
)
3132 /* No more objsets to fetch, we're done */
3133 scn
->scn_phys
.scn_bookmark
.zb_objset
= ZB_DESTROYED_OBJSET
;
3134 ASSERT0(scn
->scn_suspending
);
3138 dsl_scan_count_data_disks(spa_t
*spa
)
3140 vdev_t
*rvd
= spa
->spa_root_vdev
;
3141 uint64_t i
, leaves
= 0;
3143 for (i
= 0; i
< rvd
->vdev_children
; i
++) {
3144 vdev_t
*vd
= rvd
->vdev_child
[i
];
3145 if (vd
->vdev_islog
|| vd
->vdev_isspare
|| vd
->vdev_isl2cache
)
3147 leaves
+= vdev_get_ndisks(vd
) - vdev_get_nparity(vd
);
3153 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t
*q
, const blkptr_t
*bp
)
3156 uint64_t cur_size
= 0;
3158 for (i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
3159 cur_size
+= DVA_GET_ASIZE(&bp
->blk_dva
[i
]);
3162 q
->q_total_zio_size_this_txg
+= cur_size
;
3163 q
->q_zios_this_txg
++;
3167 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t
*q
, uint64_t start
,
3170 q
->q_total_seg_size_this_txg
+= end
- start
;
3171 q
->q_segs_this_txg
++;
3175 scan_io_queue_check_suspend(dsl_scan_t
*scn
)
3177 /* See comment in dsl_scan_check_suspend() */
3178 uint64_t curr_time_ns
= gethrtime();
3179 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
3180 uint64_t sync_time_ns
= curr_time_ns
-
3181 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
3182 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
3183 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
3184 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
3185 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
3187 return ((NSEC2MSEC(scan_time_ns
) > mintime
&&
3188 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
3189 txg_sync_waiting(scn
->scn_dp
) ||
3190 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
3191 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3195 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3196 * disk. This consumes the io_list and frees the scan_io_t's. This is
3197 * called when emptying queues, either when we're up against the memory
3198 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3199 * processing the list before we finished. Any sios that were not issued
3200 * will remain in the io_list.
3203 scan_io_queue_issue(dsl_scan_io_queue_t
*queue
, list_t
*io_list
)
3205 dsl_scan_t
*scn
= queue
->q_scn
;
3207 boolean_t suspended
= B_FALSE
;
3209 while ((sio
= list_head(io_list
)) != NULL
) {
3212 if (scan_io_queue_check_suspend(scn
)) {
3218 scan_exec_io(scn
->scn_dp
, &bp
, sio
->sio_flags
,
3219 &sio
->sio_zb
, queue
);
3220 (void) list_remove_head(io_list
);
3221 scan_io_queues_update_zio_stats(queue
, &bp
);
3228 * This function removes sios from an IO queue which reside within a given
3229 * range_seg_t and inserts them (in offset order) into a list. Note that
3230 * we only ever return a maximum of 32 sios at once. If there are more sios
3231 * to process within this segment that did not make it onto the list we
3232 * return B_TRUE and otherwise B_FALSE.
3235 scan_io_queue_gather(dsl_scan_io_queue_t
*queue
, range_seg_t
*rs
, list_t
*list
)
3237 scan_io_t
*srch_sio
, *sio
, *next_sio
;
3239 uint_t num_sios
= 0;
3240 int64_t bytes_issued
= 0;
3243 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3245 srch_sio
= sio_alloc(1);
3246 srch_sio
->sio_nr_dvas
= 1;
3247 SIO_SET_OFFSET(srch_sio
, rs_get_start(rs
, queue
->q_exts_by_addr
));
3250 * The exact start of the extent might not contain any matching zios,
3251 * so if that's the case, examine the next one in the tree.
3253 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
3257 sio
= avl_nearest(&queue
->q_sios_by_addr
, idx
, AVL_AFTER
);
3259 while (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
3260 queue
->q_exts_by_addr
) && num_sios
<= 32) {
3261 ASSERT3U(SIO_GET_OFFSET(sio
), >=, rs_get_start(rs
,
3262 queue
->q_exts_by_addr
));
3263 ASSERT3U(SIO_GET_END_OFFSET(sio
), <=, rs_get_end(rs
,
3264 queue
->q_exts_by_addr
));
3266 next_sio
= AVL_NEXT(&queue
->q_sios_by_addr
, sio
);
3267 avl_remove(&queue
->q_sios_by_addr
, sio
);
3268 if (avl_is_empty(&queue
->q_sios_by_addr
))
3269 atomic_add_64(&queue
->q_scn
->scn_queues_pending
, -1);
3270 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
3272 bytes_issued
+= SIO_GET_ASIZE(sio
);
3274 list_insert_tail(list
, sio
);
3279 * We limit the number of sios we process at once to 32 to avoid
3280 * biting off more than we can chew. If we didn't take everything
3281 * in the segment we update it to reflect the work we were able to
3282 * complete. Otherwise, we remove it from the range tree entirely.
3284 if (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
3285 queue
->q_exts_by_addr
)) {
3286 range_tree_adjust_fill(queue
->q_exts_by_addr
, rs
,
3288 range_tree_resize_segment(queue
->q_exts_by_addr
, rs
,
3289 SIO_GET_OFFSET(sio
), rs_get_end(rs
,
3290 queue
->q_exts_by_addr
) - SIO_GET_OFFSET(sio
));
3291 queue
->q_last_ext_addr
= SIO_GET_OFFSET(sio
);
3294 uint64_t rstart
= rs_get_start(rs
, queue
->q_exts_by_addr
);
3295 uint64_t rend
= rs_get_end(rs
, queue
->q_exts_by_addr
);
3296 range_tree_remove(queue
->q_exts_by_addr
, rstart
, rend
- rstart
);
3297 queue
->q_last_ext_addr
= -1;
3303 * This is called from the queue emptying thread and selects the next
3304 * extent from which we are to issue I/Os. The behavior of this function
3305 * depends on the state of the scan, the current memory consumption and
3306 * whether or not we are performing a scan shutdown.
3307 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3308 * needs to perform a checkpoint
3309 * 2) We select the largest available extent if we are up against the
3311 * 3) Otherwise we don't select any extents.
3313 static range_seg_t
*
3314 scan_io_queue_fetch_ext(dsl_scan_io_queue_t
*queue
)
3316 dsl_scan_t
*scn
= queue
->q_scn
;
3317 range_tree_t
*rt
= queue
->q_exts_by_addr
;
3319 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3320 ASSERT(scn
->scn_is_sorted
);
3322 if (!scn
->scn_checkpointing
&& !scn
->scn_clearing
)
3326 * During normal clearing, we want to issue our largest segments
3327 * first, keeping IO as sequential as possible, and leaving the
3328 * smaller extents for later with the hope that they might eventually
3329 * grow to larger sequential segments. However, when the scan is
3330 * checkpointing, no new extents will be added to the sorting queue,
3331 * so the way we are sorted now is as good as it will ever get.
3332 * In this case, we instead switch to issuing extents in LBA order.
3334 if ((zfs_scan_issue_strategy
< 1 && scn
->scn_checkpointing
) ||
3335 zfs_scan_issue_strategy
== 1)
3336 return (range_tree_first(rt
));
3339 * Try to continue previous extent if it is not completed yet. After
3340 * shrink in scan_io_queue_gather() it may no longer be the best, but
3341 * otherwise we leave shorter remnant every txg.
3344 uint64_t size
= 1ULL << rt
->rt_shift
;
3345 range_seg_t
*addr_rs
;
3346 if (queue
->q_last_ext_addr
!= -1) {
3347 start
= queue
->q_last_ext_addr
;
3348 addr_rs
= range_tree_find(rt
, start
, size
);
3349 if (addr_rs
!= NULL
)
3354 * Nothing to continue, so find new best extent.
3356 uint64_t *v
= zfs_btree_first(&queue
->q_exts_by_size
, NULL
);
3359 queue
->q_last_ext_addr
= start
= *v
<< rt
->rt_shift
;
3362 * We need to get the original entry in the by_addr tree so we can
3365 addr_rs
= range_tree_find(rt
, start
, size
);
3366 ASSERT3P(addr_rs
, !=, NULL
);
3367 ASSERT3U(rs_get_start(addr_rs
, rt
), ==, start
);
3368 ASSERT3U(rs_get_end(addr_rs
, rt
), >, start
);
3373 scan_io_queues_run_one(void *arg
)
3375 dsl_scan_io_queue_t
*queue
= arg
;
3376 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
3377 boolean_t suspended
= B_FALSE
;
3383 ASSERT(queue
->q_scn
->scn_is_sorted
);
3385 list_create(&sio_list
, sizeof (scan_io_t
),
3386 offsetof(scan_io_t
, sio_nodes
.sio_list_node
));
3387 zio
= zio_null(queue
->q_scn
->scn_zio_root
, queue
->q_scn
->scn_dp
->dp_spa
,
3388 NULL
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
3389 mutex_enter(q_lock
);
3392 /* Calculate maximum in-flight bytes for this vdev. */
3393 queue
->q_maxinflight_bytes
= MAX(1, zfs_scan_vdev_limit
*
3394 (vdev_get_ndisks(queue
->q_vd
) - vdev_get_nparity(queue
->q_vd
)));
3396 /* reset per-queue scan statistics for this txg */
3397 queue
->q_total_seg_size_this_txg
= 0;
3398 queue
->q_segs_this_txg
= 0;
3399 queue
->q_total_zio_size_this_txg
= 0;
3400 queue
->q_zios_this_txg
= 0;
3402 /* loop until we run out of time or sios */
3403 while ((rs
= scan_io_queue_fetch_ext(queue
)) != NULL
) {
3404 uint64_t seg_start
= 0, seg_end
= 0;
3405 boolean_t more_left
;
3407 ASSERT(list_is_empty(&sio_list
));
3409 /* loop while we still have sios left to process in this rs */
3411 scan_io_t
*first_sio
, *last_sio
;
3414 * We have selected which extent needs to be
3415 * processed next. Gather up the corresponding sios.
3417 more_left
= scan_io_queue_gather(queue
, rs
, &sio_list
);
3418 ASSERT(!list_is_empty(&sio_list
));
3419 first_sio
= list_head(&sio_list
);
3420 last_sio
= list_tail(&sio_list
);
3422 seg_end
= SIO_GET_END_OFFSET(last_sio
);
3424 seg_start
= SIO_GET_OFFSET(first_sio
);
3427 * Issuing sios can take a long time so drop the
3428 * queue lock. The sio queue won't be updated by
3429 * other threads since we're in syncing context so
3430 * we can be sure that our trees will remain exactly
3434 suspended
= scan_io_queue_issue(queue
, &sio_list
);
3435 mutex_enter(q_lock
);
3439 } while (more_left
);
3441 /* update statistics for debugging purposes */
3442 scan_io_queues_update_seg_stats(queue
, seg_start
, seg_end
);
3449 * If we were suspended in the middle of processing,
3450 * requeue any unfinished sios and exit.
3452 while ((sio
= list_remove_head(&sio_list
)) != NULL
)
3453 scan_io_queue_insert_impl(queue
, sio
);
3455 queue
->q_zio
= NULL
;
3458 list_destroy(&sio_list
);
3462 * Performs an emptying run on all scan queues in the pool. This just
3463 * punches out one thread per top-level vdev, each of which processes
3464 * only that vdev's scan queue. We can parallelize the I/O here because
3465 * we know that each queue's I/Os only affect its own top-level vdev.
3467 * This function waits for the queue runs to complete, and must be
3468 * called from dsl_scan_sync (or in general, syncing context).
3471 scan_io_queues_run(dsl_scan_t
*scn
)
3473 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3475 ASSERT(scn
->scn_is_sorted
);
3476 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_READER
));
3478 if (scn
->scn_queues_pending
== 0)
3481 if (scn
->scn_taskq
== NULL
) {
3482 int nthreads
= spa
->spa_root_vdev
->vdev_children
;
3485 * We need to make this taskq *always* execute as many
3486 * threads in parallel as we have top-level vdevs and no
3487 * less, otherwise strange serialization of the calls to
3488 * scan_io_queues_run_one can occur during spa_sync runs
3489 * and that significantly impacts performance.
3491 scn
->scn_taskq
= taskq_create("dsl_scan_iss", nthreads
,
3492 minclsyspri
, nthreads
, nthreads
, TASKQ_PREPOPULATE
);
3495 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3496 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3498 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
3499 if (vd
->vdev_scan_io_queue
!= NULL
) {
3500 VERIFY(taskq_dispatch(scn
->scn_taskq
,
3501 scan_io_queues_run_one
, vd
->vdev_scan_io_queue
,
3502 TQ_SLEEP
) != TASKQID_INVALID
);
3504 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
3508 * Wait for the queues to finish issuing their IOs for this run
3509 * before we return. There may still be IOs in flight at this
3512 taskq_wait(scn
->scn_taskq
);
3516 dsl_scan_async_block_should_pause(dsl_scan_t
*scn
)
3518 uint64_t elapsed_nanosecs
;
3523 if (zfs_async_block_max_blocks
!= 0 &&
3524 scn
->scn_visited_this_txg
>= zfs_async_block_max_blocks
) {
3528 if (zfs_max_async_dedup_frees
!= 0 &&
3529 scn
->scn_dedup_frees_this_txg
>= zfs_max_async_dedup_frees
) {
3533 elapsed_nanosecs
= gethrtime() - scn
->scn_sync_start_time
;
3534 return (elapsed_nanosecs
/ NANOSEC
> zfs_txg_timeout
||
3535 (NSEC2MSEC(elapsed_nanosecs
) > scn
->scn_async_block_min_time_ms
&&
3536 txg_sync_waiting(scn
->scn_dp
)) ||
3537 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3541 dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
3543 dsl_scan_t
*scn
= arg
;
3545 if (!scn
->scn_is_bptree
||
3546 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)) {
3547 if (dsl_scan_async_block_should_pause(scn
))
3548 return (SET_ERROR(ERESTART
));
3551 zio_nowait(zio_free_sync(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
3552 dmu_tx_get_txg(tx
), bp
, 0));
3553 dsl_dir_diduse_space(tx
->tx_pool
->dp_free_dir
, DD_USED_HEAD
,
3554 -bp_get_dsize_sync(scn
->scn_dp
->dp_spa
, bp
),
3555 -BP_GET_PSIZE(bp
), -BP_GET_UCSIZE(bp
), tx
);
3556 scn
->scn_visited_this_txg
++;
3557 if (BP_GET_DEDUP(bp
))
3558 scn
->scn_dedup_frees_this_txg
++;
3563 dsl_scan_update_stats(dsl_scan_t
*scn
)
3565 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3567 uint64_t seg_size_total
= 0, zio_size_total
= 0;
3568 uint64_t seg_count_total
= 0, zio_count_total
= 0;
3570 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3571 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3572 dsl_scan_io_queue_t
*queue
= vd
->vdev_scan_io_queue
;
3577 seg_size_total
+= queue
->q_total_seg_size_this_txg
;
3578 zio_size_total
+= queue
->q_total_zio_size_this_txg
;
3579 seg_count_total
+= queue
->q_segs_this_txg
;
3580 zio_count_total
+= queue
->q_zios_this_txg
;
3583 if (seg_count_total
== 0 || zio_count_total
== 0) {
3584 scn
->scn_avg_seg_size_this_txg
= 0;
3585 scn
->scn_avg_zio_size_this_txg
= 0;
3586 scn
->scn_segs_this_txg
= 0;
3587 scn
->scn_zios_this_txg
= 0;
3591 scn
->scn_avg_seg_size_this_txg
= seg_size_total
/ seg_count_total
;
3592 scn
->scn_avg_zio_size_this_txg
= zio_size_total
/ zio_count_total
;
3593 scn
->scn_segs_this_txg
= seg_count_total
;
3594 scn
->scn_zios_this_txg
= zio_count_total
;
3598 bpobj_dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3602 return (dsl_scan_free_block_cb(arg
, bp
, tx
));
3606 dsl_scan_obsolete_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3610 dsl_scan_t
*scn
= arg
;
3611 const dva_t
*dva
= &bp
->blk_dva
[0];
3613 if (dsl_scan_async_block_should_pause(scn
))
3614 return (SET_ERROR(ERESTART
));
3616 spa_vdev_indirect_mark_obsolete(scn
->scn_dp
->dp_spa
,
3617 DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
),
3618 DVA_GET_ASIZE(dva
), tx
);
3619 scn
->scn_visited_this_txg
++;
3624 dsl_scan_active(dsl_scan_t
*scn
)
3626 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3627 uint64_t used
= 0, comp
, uncomp
;
3628 boolean_t clones_left
;
3630 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3632 if (spa_shutting_down(spa
))
3634 if ((dsl_scan_is_running(scn
) && !dsl_scan_is_paused_scrub(scn
)) ||
3635 (scn
->scn_async_destroying
&& !scn
->scn_async_stalled
))
3638 if (spa_version(scn
->scn_dp
->dp_spa
) >= SPA_VERSION_DEADLISTS
) {
3639 (void) bpobj_space(&scn
->scn_dp
->dp_free_bpobj
,
3640 &used
, &comp
, &uncomp
);
3642 clones_left
= spa_livelist_delete_check(spa
);
3643 return ((used
!= 0) || (clones_left
));
3647 dsl_errorscrub_active(dsl_scan_t
*scn
)
3649 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3650 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3652 if (spa_shutting_down(spa
))
3654 if (dsl_errorscrubbing(scn
->scn_dp
))
3660 dsl_scan_check_deferred(vdev_t
*vd
)
3662 boolean_t need_resilver
= B_FALSE
;
3664 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3666 dsl_scan_check_deferred(vd
->vdev_child
[c
]);
3669 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
3670 !vd
->vdev_ops
->vdev_op_leaf
)
3671 return (need_resilver
);
3673 if (!vd
->vdev_resilver_deferred
)
3674 need_resilver
= B_TRUE
;
3676 return (need_resilver
);
3680 dsl_scan_need_resilver(spa_t
*spa
, const dva_t
*dva
, size_t psize
,
3681 uint64_t phys_birth
)
3685 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
3687 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
3689 * The indirect vdev can point to multiple
3690 * vdevs. For simplicity, always create
3691 * the resilver zio_t. zio_vdev_io_start()
3692 * will bypass the child resilver i/o's if
3693 * they are on vdevs that don't have DTL's.
3698 if (DVA_GET_GANG(dva
)) {
3700 * Gang members may be spread across multiple
3701 * vdevs, so the best estimate we have is the
3702 * scrub range, which has already been checked.
3703 * XXX -- it would be better to change our
3704 * allocation policy to ensure that all
3705 * gang members reside on the same vdev.
3711 * Check if the top-level vdev must resilver this offset.
3712 * When the offset does not intersect with a dirty leaf DTL
3713 * then it may be possible to skip the resilver IO. The psize
3714 * is provided instead of asize to simplify the check for RAIDZ.
3716 if (!vdev_dtl_need_resilver(vd
, dva
, psize
, phys_birth
))
3720 * Check that this top-level vdev has a device under it which
3721 * is resilvering and is not deferred.
3723 if (!dsl_scan_check_deferred(vd
))
3730 dsl_process_async_destroys(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3732 dsl_scan_t
*scn
= dp
->dp_scan
;
3733 spa_t
*spa
= dp
->dp_spa
;
3736 if (spa_suspend_async_destroy(spa
))
3739 if (zfs_free_bpobj_enabled
&&
3740 spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
3741 scn
->scn_is_bptree
= B_FALSE
;
3742 scn
->scn_async_block_min_time_ms
= zfs_free_min_time_ms
;
3743 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3744 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3745 err
= bpobj_iterate(&dp
->dp_free_bpobj
,
3746 bpobj_dsl_scan_free_block_cb
, scn
, tx
);
3747 VERIFY0(zio_wait(scn
->scn_zio_root
));
3748 scn
->scn_zio_root
= NULL
;
3750 if (err
!= 0 && err
!= ERESTART
)
3751 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3754 if (err
== 0 && spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
3755 ASSERT(scn
->scn_async_destroying
);
3756 scn
->scn_is_bptree
= B_TRUE
;
3757 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3758 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3759 err
= bptree_iterate(dp
->dp_meta_objset
,
3760 dp
->dp_bptree_obj
, B_TRUE
, dsl_scan_free_block_cb
, scn
, tx
);
3761 VERIFY0(zio_wait(scn
->scn_zio_root
));
3762 scn
->scn_zio_root
= NULL
;
3764 if (err
== EIO
|| err
== ECKSUM
) {
3766 } else if (err
!= 0 && err
!= ERESTART
) {
3767 zfs_panic_recover("error %u from "
3768 "traverse_dataset_destroyed()", err
);
3771 if (bptree_is_empty(dp
->dp_meta_objset
, dp
->dp_bptree_obj
)) {
3772 /* finished; deactivate async destroy feature */
3773 spa_feature_decr(spa
, SPA_FEATURE_ASYNC_DESTROY
, tx
);
3774 ASSERT(!spa_feature_is_active(spa
,
3775 SPA_FEATURE_ASYNC_DESTROY
));
3776 VERIFY0(zap_remove(dp
->dp_meta_objset
,
3777 DMU_POOL_DIRECTORY_OBJECT
,
3778 DMU_POOL_BPTREE_OBJ
, tx
));
3779 VERIFY0(bptree_free(dp
->dp_meta_objset
,
3780 dp
->dp_bptree_obj
, tx
));
3781 dp
->dp_bptree_obj
= 0;
3782 scn
->scn_async_destroying
= B_FALSE
;
3783 scn
->scn_async_stalled
= B_FALSE
;
3786 * If we didn't make progress, mark the async
3787 * destroy as stalled, so that we will not initiate
3788 * a spa_sync() on its behalf. Note that we only
3789 * check this if we are not finished, because if the
3790 * bptree had no blocks for us to visit, we can
3791 * finish without "making progress".
3793 scn
->scn_async_stalled
=
3794 (scn
->scn_visited_this_txg
== 0);
3797 if (scn
->scn_visited_this_txg
) {
3798 zfs_dbgmsg("freed %llu blocks in %llums from "
3799 "free_bpobj/bptree on %s in txg %llu; err=%u",
3800 (longlong_t
)scn
->scn_visited_this_txg
,
3802 NSEC2MSEC(gethrtime() - scn
->scn_sync_start_time
),
3803 spa
->spa_name
, (longlong_t
)tx
->tx_txg
, err
);
3804 scn
->scn_visited_this_txg
= 0;
3805 scn
->scn_dedup_frees_this_txg
= 0;
3808 * Write out changes to the DDT and the BRT that may be required
3809 * as a result of the blocks freed. This ensures that the DDT
3810 * and the BRT are clean when a scrub/resilver runs.
3812 ddt_sync(spa
, tx
->tx_txg
);
3813 brt_sync(spa
, tx
->tx_txg
);
3817 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3818 zfs_free_leak_on_eio
&&
3819 (dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
!= 0 ||
3820 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
!= 0 ||
3821 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
!= 0)) {
3823 * We have finished background destroying, but there is still
3824 * some space left in the dp_free_dir. Transfer this leaked
3825 * space to the dp_leak_dir.
3827 if (dp
->dp_leak_dir
== NULL
) {
3828 rrw_enter(&dp
->dp_config_rwlock
, RW_WRITER
, FTAG
);
3829 (void) dsl_dir_create_sync(dp
, dp
->dp_root_dir
,
3831 VERIFY0(dsl_pool_open_special_dir(dp
,
3832 LEAK_DIR_NAME
, &dp
->dp_leak_dir
));
3833 rrw_exit(&dp
->dp_config_rwlock
, FTAG
);
3835 dsl_dir_diduse_space(dp
->dp_leak_dir
, DD_USED_HEAD
,
3836 dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3837 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3838 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3839 dsl_dir_diduse_space(dp
->dp_free_dir
, DD_USED_HEAD
,
3840 -dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3841 -dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3842 -dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3845 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3846 !spa_livelist_delete_check(spa
)) {
3847 /* finished; verify that space accounting went to zero */
3848 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
);
3849 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
);
3850 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
);
3853 spa_notify_waiters(spa
);
3855 EQUIV(bpobj_is_open(&dp
->dp_obsolete_bpobj
),
3856 0 == zap_contains(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
3857 DMU_POOL_OBSOLETE_BPOBJ
));
3858 if (err
== 0 && bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
3859 ASSERT(spa_feature_is_active(dp
->dp_spa
,
3860 SPA_FEATURE_OBSOLETE_COUNTS
));
3862 scn
->scn_is_bptree
= B_FALSE
;
3863 scn
->scn_async_block_min_time_ms
= zfs_obsolete_min_time_ms
;
3864 err
= bpobj_iterate(&dp
->dp_obsolete_bpobj
,
3865 dsl_scan_obsolete_block_cb
, scn
, tx
);
3866 if (err
!= 0 && err
!= ERESTART
)
3867 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3869 if (bpobj_is_empty(&dp
->dp_obsolete_bpobj
))
3870 dsl_pool_destroy_obsolete_bpobj(dp
, tx
);
3876 name_to_bookmark(char *buf
, zbookmark_phys_t
*zb
)
3878 zb
->zb_objset
= zfs_strtonum(buf
, &buf
);
3879 ASSERT(*buf
== ':');
3880 zb
->zb_object
= zfs_strtonum(buf
+ 1, &buf
);
3881 ASSERT(*buf
== ':');
3882 zb
->zb_level
= (int)zfs_strtonum(buf
+ 1, &buf
);
3883 ASSERT(*buf
== ':');
3884 zb
->zb_blkid
= zfs_strtonum(buf
+ 1, &buf
);
3885 ASSERT(*buf
== '\0');
3889 name_to_object(char *buf
, uint64_t *obj
)
3891 *obj
= zfs_strtonum(buf
, &buf
);
3892 ASSERT(*buf
== '\0');
3896 read_by_block_level(dsl_scan_t
*scn
, zbookmark_phys_t zb
)
3898 dsl_pool_t
*dp
= scn
->scn_dp
;
3901 if (dsl_dataset_hold_obj(dp
, zb
.zb_objset
, FTAG
, &ds
) != 0)
3904 if (dmu_objset_from_ds(ds
, &os
) != 0) {
3905 dsl_dataset_rele(ds
, FTAG
);
3910 * If the key is not loaded dbuf_dnode_findbp() will error out with
3911 * EACCES. However in that case dnode_hold() will eventually call
3912 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3913 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3914 * Avoid this by checking here if the keys are loaded, if not return.
3915 * If the keys are not loaded the head_errlog feature is meaningless
3916 * as we cannot figure out the birth txg of the block pointer.
3918 if (dsl_dataset_get_keystatus(ds
->ds_dir
) ==
3919 ZFS_KEYSTATUS_UNAVAILABLE
) {
3920 dsl_dataset_rele(ds
, FTAG
);
3927 if (dnode_hold(os
, zb
.zb_object
, FTAG
, &dn
) != 0) {
3928 dsl_dataset_rele(ds
, FTAG
);
3932 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
3933 int error
= dbuf_dnode_findbp(dn
, zb
.zb_level
, zb
.zb_blkid
, &bp
, NULL
,
3937 rw_exit(&dn
->dn_struct_rwlock
);
3938 dnode_rele(dn
, FTAG
);
3939 dsl_dataset_rele(ds
, FTAG
);
3943 if (!error
&& BP_IS_HOLE(&bp
)) {
3944 rw_exit(&dn
->dn_struct_rwlock
);
3945 dnode_rele(dn
, FTAG
);
3946 dsl_dataset_rele(ds
, FTAG
);
3950 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
|
3951 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCRUB
;
3953 /* If it's an intent log block, failure is expected. */
3954 if (zb
.zb_level
== ZB_ZIL_LEVEL
)
3955 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
3957 ASSERT(!BP_IS_EMBEDDED(&bp
));
3958 scan_exec_io(dp
, &bp
, zio_flags
, &zb
, NULL
);
3959 rw_exit(&dn
->dn_struct_rwlock
);
3960 dnode_rele(dn
, FTAG
);
3961 dsl_dataset_rele(ds
, FTAG
);
3965 * We keep track of the scrubbed error blocks in "count". This will be used
3966 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3967 * function is modelled after check_filesystem().
3970 scrub_filesystem(spa_t
*spa
, uint64_t fs
, zbookmark_err_phys_t
*zep
,
3974 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
3975 dsl_scan_t
*scn
= dp
->dp_scan
;
3977 int error
= dsl_dataset_hold_obj(dp
, fs
, FTAG
, &ds
);
3981 uint64_t latest_txg
;
3982 uint64_t txg_to_consider
= spa
->spa_syncing_txg
;
3983 boolean_t check_snapshot
= B_TRUE
;
3985 error
= find_birth_txg(ds
, zep
, &latest_txg
);
3988 * If find_birth_txg() errors out, then err on the side of caution and
3989 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3990 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3991 * scrub all objects.
3993 if (error
== 0 && zep
->zb_birth
== latest_txg
) {
3994 /* Block neither free nor re written. */
3995 zbookmark_phys_t zb
;
3996 zep_to_zb(fs
, zep
, &zb
);
3997 scn
->scn_zio_root
= zio_root(spa
, NULL
, NULL
,
3999 /* We have already acquired the config lock for spa */
4000 read_by_block_level(scn
, zb
);
4002 (void) zio_wait(scn
->scn_zio_root
);
4003 scn
->scn_zio_root
= NULL
;
4005 scn
->errorscrub_phys
.dep_examined
++;
4006 scn
->errorscrub_phys
.dep_to_examine
--;
4008 if ((*count
) == zfs_scrub_error_blocks_per_txg
||
4009 dsl_error_scrub_check_suspend(scn
, &zb
)) {
4010 dsl_dataset_rele(ds
, FTAG
);
4011 return (SET_ERROR(EFAULT
));
4014 check_snapshot
= B_FALSE
;
4015 } else if (error
== 0) {
4016 txg_to_consider
= latest_txg
;
4020 * Retrieve the number of snapshots if the dataset is not a snapshot.
4022 uint64_t snap_count
= 0;
4023 if (dsl_dataset_phys(ds
)->ds_snapnames_zapobj
!= 0) {
4025 error
= zap_count(spa
->spa_meta_objset
,
4026 dsl_dataset_phys(ds
)->ds_snapnames_zapobj
, &snap_count
);
4029 dsl_dataset_rele(ds
, FTAG
);
4034 if (snap_count
== 0) {
4035 /* Filesystem without snapshots. */
4036 dsl_dataset_rele(ds
, FTAG
);
4040 uint64_t snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4041 uint64_t snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4043 dsl_dataset_rele(ds
, FTAG
);
4045 /* Check only snapshots created from this file system. */
4046 while (snap_obj
!= 0 && zep
->zb_birth
< snap_obj_txg
&&
4047 snap_obj_txg
<= txg_to_consider
) {
4049 error
= dsl_dataset_hold_obj(dp
, snap_obj
, FTAG
, &ds
);
4053 if (dsl_dir_phys(ds
->ds_dir
)->dd_head_dataset_obj
!= fs
) {
4054 snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4055 snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4056 dsl_dataset_rele(ds
, FTAG
);
4060 boolean_t affected
= B_TRUE
;
4061 if (check_snapshot
) {
4063 error
= find_birth_txg(ds
, zep
, &blk_txg
);
4066 * Scrub the snapshot also when zb_birth == 0 or when
4067 * find_birth_txg() returns an error.
4069 affected
= (error
== 0 && zep
->zb_birth
== blk_txg
) ||
4070 (error
!= 0) || (zep
->zb_birth
== 0);
4073 /* Scrub snapshots. */
4075 zbookmark_phys_t zb
;
4076 zep_to_zb(snap_obj
, zep
, &zb
);
4077 scn
->scn_zio_root
= zio_root(spa
, NULL
, NULL
,
4079 /* We have already acquired the config lock for spa */
4080 read_by_block_level(scn
, zb
);
4082 (void) zio_wait(scn
->scn_zio_root
);
4083 scn
->scn_zio_root
= NULL
;
4085 scn
->errorscrub_phys
.dep_examined
++;
4086 scn
->errorscrub_phys
.dep_to_examine
--;
4088 if ((*count
) == zfs_scrub_error_blocks_per_txg
||
4089 dsl_error_scrub_check_suspend(scn
, &zb
)) {
4090 dsl_dataset_rele(ds
, FTAG
);
4094 snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4095 snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4096 dsl_dataset_rele(ds
, FTAG
);
4102 dsl_errorscrub_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
4104 spa_t
*spa
= dp
->dp_spa
;
4105 dsl_scan_t
*scn
= dp
->dp_scan
;
4108 * Only process scans in sync pass 1.
4111 if (spa_sync_pass(spa
) > 1)
4115 * If the spa is shutting down, then stop scanning. This will
4116 * ensure that the scan does not dirty any new data during the
4119 if (spa_shutting_down(spa
))
4122 if (!dsl_errorscrub_active(scn
) || dsl_errorscrub_is_paused(scn
)) {
4126 if (dsl_scan_resilvering(scn
->scn_dp
)) {
4127 /* cancel the error scrub if resilver started */
4128 dsl_scan_cancel(scn
->scn_dp
);
4132 spa
->spa_scrub_active
= B_TRUE
;
4133 scn
->scn_sync_start_time
= gethrtime();
4136 * zfs_scan_suspend_progress can be set to disable scrub progress.
4137 * See more detailed comment in dsl_scan_sync().
4139 if (zfs_scan_suspend_progress
) {
4140 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4141 int mintime
= zfs_scrub_min_time_ms
;
4143 while (zfs_scan_suspend_progress
&&
4144 !txg_sync_waiting(scn
->scn_dp
) &&
4145 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
4146 NSEC2MSEC(scan_time_ns
) < mintime
) {
4148 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4154 zap_attribute_t
*za
;
4155 zbookmark_phys_t
*zb
;
4156 boolean_t limit_exceeded
= B_FALSE
;
4158 za
= kmem_zalloc(sizeof (zap_attribute_t
), KM_SLEEP
);
4159 zb
= kmem_zalloc(sizeof (zbookmark_phys_t
), KM_SLEEP
);
4161 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_HEAD_ERRLOG
)) {
4162 for (; zap_cursor_retrieve(&scn
->errorscrub_cursor
, za
) == 0;
4163 zap_cursor_advance(&scn
->errorscrub_cursor
)) {
4164 name_to_bookmark(za
->za_name
, zb
);
4166 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4167 NULL
, ZIO_FLAG_CANFAIL
);
4168 dsl_pool_config_enter(dp
, FTAG
);
4169 read_by_block_level(scn
, *zb
);
4170 dsl_pool_config_exit(dp
, FTAG
);
4172 (void) zio_wait(scn
->scn_zio_root
);
4173 scn
->scn_zio_root
= NULL
;
4175 scn
->errorscrub_phys
.dep_examined
+= 1;
4176 scn
->errorscrub_phys
.dep_to_examine
-= 1;
4178 if (i
== zfs_scrub_error_blocks_per_txg
||
4179 dsl_error_scrub_check_suspend(scn
, zb
)) {
4180 limit_exceeded
= B_TRUE
;
4185 if (!limit_exceeded
)
4186 dsl_errorscrub_done(scn
, B_TRUE
, tx
);
4188 dsl_errorscrub_sync_state(scn
, tx
);
4189 kmem_free(za
, sizeof (*za
));
4190 kmem_free(zb
, sizeof (*zb
));
4195 for (; zap_cursor_retrieve(&scn
->errorscrub_cursor
, za
) == 0;
4196 zap_cursor_advance(&scn
->errorscrub_cursor
)) {
4198 zap_cursor_t
*head_ds_cursor
;
4199 zap_attribute_t
*head_ds_attr
;
4200 zbookmark_err_phys_t head_ds_block
;
4202 head_ds_cursor
= kmem_zalloc(sizeof (zap_cursor_t
), KM_SLEEP
);
4203 head_ds_attr
= kmem_zalloc(sizeof (zap_attribute_t
), KM_SLEEP
);
4205 uint64_t head_ds_err_obj
= za
->za_first_integer
;
4207 name_to_object(za
->za_name
, &head_ds
);
4208 boolean_t config_held
= B_FALSE
;
4209 uint64_t top_affected_fs
;
4211 for (zap_cursor_init(head_ds_cursor
, spa
->spa_meta_objset
,
4212 head_ds_err_obj
); zap_cursor_retrieve(head_ds_cursor
,
4213 head_ds_attr
) == 0; zap_cursor_advance(head_ds_cursor
)) {
4215 name_to_errphys(head_ds_attr
->za_name
, &head_ds_block
);
4218 * In case we are called from spa_sync the pool
4219 * config is already held.
4221 if (!dsl_pool_config_held(dp
)) {
4222 dsl_pool_config_enter(dp
, FTAG
);
4223 config_held
= B_TRUE
;
4226 error
= find_top_affected_fs(spa
,
4227 head_ds
, &head_ds_block
, &top_affected_fs
);
4231 error
= scrub_filesystem(spa
, top_affected_fs
,
4232 &head_ds_block
, &i
);
4234 if (error
== SET_ERROR(EFAULT
)) {
4235 limit_exceeded
= B_TRUE
;
4240 zap_cursor_fini(head_ds_cursor
);
4241 kmem_free(head_ds_cursor
, sizeof (*head_ds_cursor
));
4242 kmem_free(head_ds_attr
, sizeof (*head_ds_attr
));
4245 dsl_pool_config_exit(dp
, FTAG
);
4248 kmem_free(za
, sizeof (*za
));
4249 kmem_free(zb
, sizeof (*zb
));
4250 if (!limit_exceeded
)
4251 dsl_errorscrub_done(scn
, B_TRUE
, tx
);
4253 dsl_errorscrub_sync_state(scn
, tx
);
4257 * This is the primary entry point for scans that is called from syncing
4258 * context. Scans must happen entirely during syncing context so that we
4259 * can guarantee that blocks we are currently scanning will not change out
4260 * from under us. While a scan is active, this function controls how quickly
4261 * transaction groups proceed, instead of the normal handling provided by
4262 * txg_sync_thread().
4265 dsl_scan_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
4268 dsl_scan_t
*scn
= dp
->dp_scan
;
4269 spa_t
*spa
= dp
->dp_spa
;
4270 state_sync_type_t sync_type
= SYNC_OPTIONAL
;
4272 if (spa
->spa_resilver_deferred
&&
4273 !spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
4274 spa_feature_incr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
4277 * Check for scn_restart_txg before checking spa_load_state, so
4278 * that we can restart an old-style scan while the pool is being
4279 * imported (see dsl_scan_init). We also restart scans if there
4280 * is a deferred resilver and the user has manually disabled
4281 * deferred resilvers via the tunable.
4283 if (dsl_scan_restarting(scn
, tx
) ||
4284 (spa
->spa_resilver_deferred
&& zfs_resilver_disable_defer
)) {
4285 pool_scan_func_t func
= POOL_SCAN_SCRUB
;
4286 dsl_scan_done(scn
, B_FALSE
, tx
);
4287 if (vdev_resilver_needed(spa
->spa_root_vdev
, NULL
, NULL
))
4288 func
= POOL_SCAN_RESILVER
;
4289 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4290 func
, dp
->dp_spa
->spa_name
, (longlong_t
)tx
->tx_txg
);
4291 dsl_scan_setup_sync(&func
, tx
);
4295 * Only process scans in sync pass 1.
4297 if (spa_sync_pass(spa
) > 1)
4301 * If the spa is shutting down, then stop scanning. This will
4302 * ensure that the scan does not dirty any new data during the
4305 if (spa_shutting_down(spa
))
4309 * If the scan is inactive due to a stalled async destroy, try again.
4311 if (!scn
->scn_async_stalled
&& !dsl_scan_active(scn
))
4314 /* reset scan statistics */
4315 scn
->scn_visited_this_txg
= 0;
4316 scn
->scn_dedup_frees_this_txg
= 0;
4317 scn
->scn_holes_this_txg
= 0;
4318 scn
->scn_lt_min_this_txg
= 0;
4319 scn
->scn_gt_max_this_txg
= 0;
4320 scn
->scn_ddt_contained_this_txg
= 0;
4321 scn
->scn_objsets_visited_this_txg
= 0;
4322 scn
->scn_avg_seg_size_this_txg
= 0;
4323 scn
->scn_segs_this_txg
= 0;
4324 scn
->scn_avg_zio_size_this_txg
= 0;
4325 scn
->scn_zios_this_txg
= 0;
4326 scn
->scn_suspending
= B_FALSE
;
4327 scn
->scn_sync_start_time
= gethrtime();
4328 spa
->spa_scrub_active
= B_TRUE
;
4331 * First process the async destroys. If we suspend, don't do
4332 * any scrubbing or resilvering. This ensures that there are no
4333 * async destroys while we are scanning, so the scan code doesn't
4334 * have to worry about traversing it. It is also faster to free the
4335 * blocks than to scrub them.
4337 err
= dsl_process_async_destroys(dp
, tx
);
4341 if (!dsl_scan_is_running(scn
) || dsl_scan_is_paused_scrub(scn
))
4345 * Wait a few txgs after importing to begin scanning so that
4346 * we can get the pool imported quickly.
4348 if (spa
->spa_syncing_txg
< spa
->spa_first_txg
+ SCAN_IMPORT_WAIT_TXGS
)
4352 * zfs_scan_suspend_progress can be set to disable scan progress.
4353 * We don't want to spin the txg_sync thread, so we add a delay
4354 * here to simulate the time spent doing a scan. This is mostly
4355 * useful for testing and debugging.
4357 if (zfs_scan_suspend_progress
) {
4358 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4359 uint_t mintime
= (scn
->scn_phys
.scn_func
==
4360 POOL_SCAN_RESILVER
) ? zfs_resilver_min_time_ms
:
4361 zfs_scrub_min_time_ms
;
4363 while (zfs_scan_suspend_progress
&&
4364 !txg_sync_waiting(scn
->scn_dp
) &&
4365 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
4366 NSEC2MSEC(scan_time_ns
) < mintime
) {
4368 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4374 * Disabled by default, set zfs_scan_report_txgs to report
4375 * average performance over the last zfs_scan_report_txgs TXGs.
4377 if (zfs_scan_report_txgs
!= 0 &&
4378 tx
->tx_txg
% zfs_scan_report_txgs
== 0) {
4379 scn
->scn_issued_before_pass
+= spa
->spa_scan_pass_issued
;
4380 spa_scan_stat_init(spa
);
4384 * It is possible to switch from unsorted to sorted at any time,
4385 * but afterwards the scan will remain sorted unless reloaded from
4386 * a checkpoint after a reboot.
4388 if (!zfs_scan_legacy
) {
4389 scn
->scn_is_sorted
= B_TRUE
;
4390 if (scn
->scn_last_checkpoint
== 0)
4391 scn
->scn_last_checkpoint
= ddi_get_lbolt();
4395 * For sorted scans, determine what kind of work we will be doing
4396 * this txg based on our memory limitations and whether or not we
4397 * need to perform a checkpoint.
4399 if (scn
->scn_is_sorted
) {
4401 * If we are over our checkpoint interval, set scn_clearing
4402 * so that we can begin checkpointing immediately. The
4403 * checkpoint allows us to save a consistent bookmark
4404 * representing how much data we have scrubbed so far.
4405 * Otherwise, use the memory limit to determine if we should
4406 * scan for metadata or start issue scrub IOs. We accumulate
4407 * metadata until we hit our hard memory limit at which point
4408 * we issue scrub IOs until we are at our soft memory limit.
4410 if (scn
->scn_checkpointing
||
4411 ddi_get_lbolt() - scn
->scn_last_checkpoint
>
4412 SEC_TO_TICK(zfs_scan_checkpoint_intval
)) {
4413 if (!scn
->scn_checkpointing
)
4414 zfs_dbgmsg("begin scan checkpoint for %s",
4417 scn
->scn_checkpointing
= B_TRUE
;
4418 scn
->scn_clearing
= B_TRUE
;
4420 boolean_t should_clear
= dsl_scan_should_clear(scn
);
4421 if (should_clear
&& !scn
->scn_clearing
) {
4422 zfs_dbgmsg("begin scan clearing for %s",
4424 scn
->scn_clearing
= B_TRUE
;
4425 } else if (!should_clear
&& scn
->scn_clearing
) {
4426 zfs_dbgmsg("finish scan clearing for %s",
4428 scn
->scn_clearing
= B_FALSE
;
4432 ASSERT0(scn
->scn_checkpointing
);
4433 ASSERT0(scn
->scn_clearing
);
4436 if (!scn
->scn_clearing
&& scn
->scn_done_txg
== 0) {
4437 /* Need to scan metadata for more blocks to scrub */
4438 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
4439 taskqid_t prefetch_tqid
;
4442 * Calculate the max number of in-flight bytes for pool-wide
4443 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4444 * Limits for the issuing phase are done per top-level vdev and
4445 * are handled separately.
4447 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
4448 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
4450 if (scnp
->scn_ddt_bookmark
.ddb_class
<=
4451 scnp
->scn_ddt_class_max
) {
4452 ASSERT(ZB_IS_ZERO(&scnp
->scn_bookmark
));
4453 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4454 "ddt bm=%llu/%llu/%llu/%llx",
4456 (longlong_t
)tx
->tx_txg
,
4457 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
4458 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
4459 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
4460 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
4462 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4463 "bm=%llu/%llu/%llu/%llu",
4465 (longlong_t
)tx
->tx_txg
,
4466 (longlong_t
)scnp
->scn_bookmark
.zb_objset
,
4467 (longlong_t
)scnp
->scn_bookmark
.zb_object
,
4468 (longlong_t
)scnp
->scn_bookmark
.zb_level
,
4469 (longlong_t
)scnp
->scn_bookmark
.zb_blkid
);
4472 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4473 NULL
, ZIO_FLAG_CANFAIL
);
4475 scn
->scn_prefetch_stop
= B_FALSE
;
4476 prefetch_tqid
= taskq_dispatch(dp
->dp_sync_taskq
,
4477 dsl_scan_prefetch_thread
, scn
, TQ_SLEEP
);
4478 ASSERT(prefetch_tqid
!= TASKQID_INVALID
);
4480 dsl_pool_config_enter(dp
, FTAG
);
4481 dsl_scan_visit(scn
, tx
);
4482 dsl_pool_config_exit(dp
, FTAG
);
4484 mutex_enter(&dp
->dp_spa
->spa_scrub_lock
);
4485 scn
->scn_prefetch_stop
= B_TRUE
;
4486 cv_broadcast(&spa
->spa_scrub_io_cv
);
4487 mutex_exit(&dp
->dp_spa
->spa_scrub_lock
);
4489 taskq_wait_id(dp
->dp_sync_taskq
, prefetch_tqid
);
4490 (void) zio_wait(scn
->scn_zio_root
);
4491 scn
->scn_zio_root
= NULL
;
4493 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4494 "(%llu os's, %llu holes, %llu < mintxg, "
4495 "%llu in ddt, %llu > maxtxg)",
4496 (longlong_t
)scn
->scn_visited_this_txg
,
4498 (longlong_t
)NSEC2MSEC(gethrtime() -
4499 scn
->scn_sync_start_time
),
4500 (longlong_t
)scn
->scn_objsets_visited_this_txg
,
4501 (longlong_t
)scn
->scn_holes_this_txg
,
4502 (longlong_t
)scn
->scn_lt_min_this_txg
,
4503 (longlong_t
)scn
->scn_ddt_contained_this_txg
,
4504 (longlong_t
)scn
->scn_gt_max_this_txg
);
4506 if (!scn
->scn_suspending
) {
4507 ASSERT0(avl_numnodes(&scn
->scn_queue
));
4508 scn
->scn_done_txg
= tx
->tx_txg
+ 1;
4509 if (scn
->scn_is_sorted
) {
4510 scn
->scn_checkpointing
= B_TRUE
;
4511 scn
->scn_clearing
= B_TRUE
;
4512 scn
->scn_issued_before_pass
+=
4513 spa
->spa_scan_pass_issued
;
4514 spa_scan_stat_init(spa
);
4516 zfs_dbgmsg("scan complete for %s txg %llu",
4518 (longlong_t
)tx
->tx_txg
);
4520 } else if (scn
->scn_is_sorted
&& scn
->scn_queues_pending
!= 0) {
4521 ASSERT(scn
->scn_clearing
);
4523 /* need to issue scrubbing IOs from per-vdev queues */
4524 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4525 NULL
, ZIO_FLAG_CANFAIL
);
4526 scan_io_queues_run(scn
);
4527 (void) zio_wait(scn
->scn_zio_root
);
4528 scn
->scn_zio_root
= NULL
;
4530 /* calculate and dprintf the current memory usage */
4531 (void) dsl_scan_should_clear(scn
);
4532 dsl_scan_update_stats(scn
);
4534 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4535 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4536 (longlong_t
)scn
->scn_zios_this_txg
,
4538 (longlong_t
)scn
->scn_segs_this_txg
,
4539 (longlong_t
)NSEC2MSEC(gethrtime() -
4540 scn
->scn_sync_start_time
),
4541 (longlong_t
)scn
->scn_avg_zio_size_this_txg
,
4542 (longlong_t
)scn
->scn_avg_seg_size_this_txg
);
4543 } else if (scn
->scn_done_txg
!= 0 && scn
->scn_done_txg
<= tx
->tx_txg
) {
4544 /* Finished with everything. Mark the scrub as complete */
4545 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4546 (longlong_t
)tx
->tx_txg
,
4548 ASSERT3U(scn
->scn_done_txg
, !=, 0);
4549 ASSERT0(spa
->spa_scrub_inflight
);
4550 ASSERT0(scn
->scn_queues_pending
);
4551 dsl_scan_done(scn
, B_TRUE
, tx
);
4552 sync_type
= SYNC_MANDATORY
;
4555 dsl_scan_sync_state(scn
, tx
, sync_type
);
4559 count_block_issued(spa_t
*spa
, const blkptr_t
*bp
, boolean_t all
)
4562 * Don't count embedded bp's, since we already did the work of
4563 * scanning these when we scanned the containing block.
4565 if (BP_IS_EMBEDDED(bp
))
4569 * Update the spa's stats on how many bytes we have issued.
4570 * Sequential scrubs create a zio for each DVA of the bp. Each
4571 * of these will include all DVAs for repair purposes, but the
4572 * zio code will only try the first one unless there is an issue.
4573 * Therefore, we should only count the first DVA for these IOs.
4575 atomic_add_64(&spa
->spa_scan_pass_issued
,
4576 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
4580 count_block_skipped(dsl_scan_t
*scn
, const blkptr_t
*bp
, boolean_t all
)
4582 if (BP_IS_EMBEDDED(bp
))
4584 atomic_add_64(&scn
->scn_phys
.scn_skipped
,
4585 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
4589 count_block(zfs_all_blkstats_t
*zab
, const blkptr_t
*bp
)
4592 * If we resume after a reboot, zab will be NULL; don't record
4593 * incomplete stats in that case.
4598 for (int i
= 0; i
< 4; i
++) {
4599 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : DN_MAX_LEVELS
;
4600 int t
= (i
& 1) ? BP_GET_TYPE(bp
) : DMU_OT_TOTAL
;
4602 if (t
& DMU_OT_NEWTYPE
)
4604 zfs_blkstat_t
*zb
= &zab
->zab_type
[l
][t
];
4608 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
4609 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
4610 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
4611 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
4613 switch (BP_GET_NDVAS(bp
)) {
4615 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4616 DVA_GET_VDEV(&bp
->blk_dva
[1]))
4617 zb
->zb_ditto_2_of_2_samevdev
++;
4620 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4621 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
4622 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4623 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
4624 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
4625 DVA_GET_VDEV(&bp
->blk_dva
[2]));
4627 zb
->zb_ditto_2_of_3_samevdev
++;
4628 else if (equal
== 3)
4629 zb
->zb_ditto_3_of_3_samevdev
++;
4636 scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
, scan_io_t
*sio
)
4639 dsl_scan_t
*scn
= queue
->q_scn
;
4641 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4643 if (unlikely(avl_is_empty(&queue
->q_sios_by_addr
)))
4644 atomic_add_64(&scn
->scn_queues_pending
, 1);
4645 if (avl_find(&queue
->q_sios_by_addr
, sio
, &idx
) != NULL
) {
4646 /* block is already scheduled for reading */
4650 avl_insert(&queue
->q_sios_by_addr
, sio
, idx
);
4651 queue
->q_sio_memused
+= SIO_GET_MUSED(sio
);
4652 range_tree_add(queue
->q_exts_by_addr
, SIO_GET_OFFSET(sio
),
4653 SIO_GET_ASIZE(sio
));
4657 * Given all the info we got from our metadata scanning process, we
4658 * construct a scan_io_t and insert it into the scan sorting queue. The
4659 * I/O must already be suitable for us to process. This is controlled
4660 * by dsl_scan_enqueue().
4663 scan_io_queue_insert(dsl_scan_io_queue_t
*queue
, const blkptr_t
*bp
, int dva_i
,
4664 int zio_flags
, const zbookmark_phys_t
*zb
)
4666 scan_io_t
*sio
= sio_alloc(BP_GET_NDVAS(bp
));
4668 ASSERT0(BP_IS_GANG(bp
));
4669 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4671 bp2sio(bp
, sio
, dva_i
);
4672 sio
->sio_flags
= zio_flags
;
4675 queue
->q_last_ext_addr
= -1;
4676 scan_io_queue_insert_impl(queue
, sio
);
4680 * Given a set of I/O parameters as discovered by the metadata traversal
4681 * process, attempts to place the I/O into the sorted queues (if allowed),
4682 * or immediately executes the I/O.
4685 dsl_scan_enqueue(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4686 const zbookmark_phys_t
*zb
)
4688 spa_t
*spa
= dp
->dp_spa
;
4690 ASSERT(!BP_IS_EMBEDDED(bp
));
4693 * Gang blocks are hard to issue sequentially, so we just issue them
4694 * here immediately instead of queuing them.
4696 if (!dp
->dp_scan
->scn_is_sorted
|| BP_IS_GANG(bp
)) {
4697 scan_exec_io(dp
, bp
, zio_flags
, zb
, NULL
);
4701 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
4705 dva
= bp
->blk_dva
[i
];
4706 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dva
));
4707 ASSERT(vdev
!= NULL
);
4709 mutex_enter(&vdev
->vdev_scan_io_queue_lock
);
4710 if (vdev
->vdev_scan_io_queue
== NULL
)
4711 vdev
->vdev_scan_io_queue
= scan_io_queue_create(vdev
);
4712 ASSERT(dp
->dp_scan
!= NULL
);
4713 scan_io_queue_insert(vdev
->vdev_scan_io_queue
, bp
,
4715 mutex_exit(&vdev
->vdev_scan_io_queue_lock
);
4720 dsl_scan_scrub_cb(dsl_pool_t
*dp
,
4721 const blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
4723 dsl_scan_t
*scn
= dp
->dp_scan
;
4724 spa_t
*spa
= dp
->dp_spa
;
4725 uint64_t phys_birth
= BP_PHYSICAL_BIRTH(bp
);
4726 size_t psize
= BP_GET_PSIZE(bp
);
4727 boolean_t needs_io
= B_FALSE
;
4728 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
;
4730 count_block(dp
->dp_blkstats
, bp
);
4731 if (phys_birth
<= scn
->scn_phys
.scn_min_txg
||
4732 phys_birth
>= scn
->scn_phys
.scn_max_txg
) {
4733 count_block_skipped(scn
, bp
, B_TRUE
);
4737 /* Embedded BP's have phys_birth==0, so we reject them above. */
4738 ASSERT(!BP_IS_EMBEDDED(bp
));
4740 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn
));
4741 if (scn
->scn_phys
.scn_func
== POOL_SCAN_SCRUB
) {
4742 zio_flags
|= ZIO_FLAG_SCRUB
;
4745 ASSERT3U(scn
->scn_phys
.scn_func
, ==, POOL_SCAN_RESILVER
);
4746 zio_flags
|= ZIO_FLAG_RESILVER
;
4750 /* If it's an intent log block, failure is expected. */
4751 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
4752 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
4754 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++) {
4755 const dva_t
*dva
= &bp
->blk_dva
[d
];
4758 * Keep track of how much data we've examined so that
4759 * zpool(8) status can make useful progress reports.
4761 uint64_t asize
= DVA_GET_ASIZE(dva
);
4762 scn
->scn_phys
.scn_examined
+= asize
;
4763 spa
->spa_scan_pass_exam
+= asize
;
4765 /* if it's a resilver, this may not be in the target range */
4767 needs_io
= dsl_scan_need_resilver(spa
, dva
, psize
,
4771 if (needs_io
&& !zfs_no_scrub_io
) {
4772 dsl_scan_enqueue(dp
, bp
, zio_flags
, zb
);
4774 count_block_skipped(scn
, bp
, B_TRUE
);
4777 /* do not relocate this block */
4782 dsl_scan_scrub_done(zio_t
*zio
)
4784 spa_t
*spa
= zio
->io_spa
;
4785 blkptr_t
*bp
= zio
->io_bp
;
4786 dsl_scan_io_queue_t
*queue
= zio
->io_private
;
4788 abd_free(zio
->io_abd
);
4790 if (queue
== NULL
) {
4791 mutex_enter(&spa
->spa_scrub_lock
);
4792 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
4793 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
4794 cv_broadcast(&spa
->spa_scrub_io_cv
);
4795 mutex_exit(&spa
->spa_scrub_lock
);
4797 mutex_enter(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4798 ASSERT3U(queue
->q_inflight_bytes
, >=, BP_GET_PSIZE(bp
));
4799 queue
->q_inflight_bytes
-= BP_GET_PSIZE(bp
);
4800 cv_broadcast(&queue
->q_zio_cv
);
4801 mutex_exit(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4804 if (zio
->io_error
&& (zio
->io_error
!= ECKSUM
||
4805 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
))) {
4806 if (dsl_errorscrubbing(spa
->spa_dsl_pool
) &&
4807 !dsl_errorscrub_is_paused(spa
->spa_dsl_pool
->dp_scan
)) {
4808 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
4809 ->errorscrub_phys
.dep_errors
);
4811 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
->scn_phys
4818 * Given a scanning zio's information, executes the zio. The zio need
4819 * not necessarily be only sortable, this function simply executes the
4820 * zio, no matter what it is. The optional queue argument allows the
4821 * caller to specify that they want per top level vdev IO rate limiting
4822 * instead of the legacy global limiting.
4825 scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4826 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
)
4828 spa_t
*spa
= dp
->dp_spa
;
4829 dsl_scan_t
*scn
= dp
->dp_scan
;
4830 size_t size
= BP_GET_PSIZE(bp
);
4831 abd_t
*data
= abd_alloc_for_io(size
, B_FALSE
);
4834 if (queue
== NULL
) {
4835 ASSERT3U(scn
->scn_maxinflight_bytes
, >, 0);
4836 mutex_enter(&spa
->spa_scrub_lock
);
4837 while (spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)
4838 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
4839 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(bp
);
4840 mutex_exit(&spa
->spa_scrub_lock
);
4841 pio
= scn
->scn_zio_root
;
4843 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
4845 ASSERT3U(queue
->q_maxinflight_bytes
, >, 0);
4846 mutex_enter(q_lock
);
4847 while (queue
->q_inflight_bytes
>= queue
->q_maxinflight_bytes
)
4848 cv_wait(&queue
->q_zio_cv
, q_lock
);
4849 queue
->q_inflight_bytes
+= BP_GET_PSIZE(bp
);
4854 ASSERT(pio
!= NULL
);
4855 count_block_issued(spa
, bp
, queue
== NULL
);
4856 zio_nowait(zio_read(pio
, spa
, bp
, data
, size
, dsl_scan_scrub_done
,
4857 queue
, ZIO_PRIORITY_SCRUB
, zio_flags
, zb
));
4861 * This is the primary extent sorting algorithm. We balance two parameters:
4862 * 1) how many bytes of I/O are in an extent
4863 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4864 * Since we allow extents to have gaps between their constituent I/Os, it's
4865 * possible to have a fairly large extent that contains the same amount of
4866 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4867 * The algorithm sorts based on a score calculated from the extent's size,
4868 * the relative fill volume (in %) and a "fill weight" parameter that controls
4869 * the split between whether we prefer larger extents or more well populated
4872 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4875 * 1) assume extsz = 64 MiB
4876 * 2) assume fill = 32 MiB (extent is half full)
4877 * 3) assume fill_weight = 3
4878 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4879 * SCORE = 32M + (50 * 3 * 32M) / 100
4880 * SCORE = 32M + (4800M / 100)
4883 * | +--- final total relative fill-based score
4884 * +--------- final total fill-based score
4887 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4888 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4889 * Note that as an optimization, we replace multiplication and division by
4890 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4892 * Since we do not care if one extent is only few percent better than another,
4893 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4894 * put into otherwise unused due to ashift high bits of offset. This allows
4895 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4896 * with single operation. Plus it makes scrubs more sequential and reduces
4897 * chances that minor extent change move it within the B-tree.
4899 __attribute__((always_inline
)) inline
4901 ext_size_compare(const void *x
, const void *y
)
4903 const uint64_t *a
= x
, *b
= y
;
4905 return (TREE_CMP(*a
, *b
));
4908 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf
, uint64_t,
4912 ext_size_create(range_tree_t
*rt
, void *arg
)
4915 zfs_btree_t
*size_tree
= arg
;
4917 zfs_btree_create(size_tree
, ext_size_compare
, ext_size_find_in_buf
,
4922 ext_size_destroy(range_tree_t
*rt
, void *arg
)
4925 zfs_btree_t
*size_tree
= arg
;
4926 ASSERT0(zfs_btree_numnodes(size_tree
));
4928 zfs_btree_destroy(size_tree
);
4932 ext_size_value(range_tree_t
*rt
, range_seg_gap_t
*rsg
)
4935 uint64_t size
= rsg
->rs_end
- rsg
->rs_start
;
4936 uint64_t score
= rsg
->rs_fill
+ ((((rsg
->rs_fill
<< 7) / size
) *
4937 fill_weight
* rsg
->rs_fill
) >> 7);
4938 ASSERT3U(rt
->rt_shift
, >=, 8);
4939 return (((uint64_t)(64 - highbit64(score
)) << 56) | rsg
->rs_start
);
4943 ext_size_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4945 zfs_btree_t
*size_tree
= arg
;
4946 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4947 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4948 zfs_btree_add(size_tree
, &v
);
4952 ext_size_remove(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4954 zfs_btree_t
*size_tree
= arg
;
4955 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4956 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4957 zfs_btree_remove(size_tree
, &v
);
4961 ext_size_vacate(range_tree_t
*rt
, void *arg
)
4963 zfs_btree_t
*size_tree
= arg
;
4964 zfs_btree_clear(size_tree
);
4965 zfs_btree_destroy(size_tree
);
4967 ext_size_create(rt
, arg
);
4970 static const range_tree_ops_t ext_size_ops
= {
4971 .rtop_create
= ext_size_create
,
4972 .rtop_destroy
= ext_size_destroy
,
4973 .rtop_add
= ext_size_add
,
4974 .rtop_remove
= ext_size_remove
,
4975 .rtop_vacate
= ext_size_vacate
4979 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4980 * based on LBA-order (from lowest to highest).
4983 sio_addr_compare(const void *x
, const void *y
)
4985 const scan_io_t
*a
= x
, *b
= y
;
4987 return (TREE_CMP(SIO_GET_OFFSET(a
), SIO_GET_OFFSET(b
)));
4990 /* IO queues are created on demand when they are needed. */
4991 static dsl_scan_io_queue_t
*
4992 scan_io_queue_create(vdev_t
*vd
)
4994 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
4995 dsl_scan_io_queue_t
*q
= kmem_zalloc(sizeof (*q
), KM_SLEEP
);
4999 q
->q_sio_memused
= 0;
5000 q
->q_last_ext_addr
= -1;
5001 cv_init(&q
->q_zio_cv
, NULL
, CV_DEFAULT
, NULL
);
5002 q
->q_exts_by_addr
= range_tree_create_gap(&ext_size_ops
, RANGE_SEG_GAP
,
5003 &q
->q_exts_by_size
, 0, vd
->vdev_ashift
, zfs_scan_max_ext_gap
);
5004 avl_create(&q
->q_sios_by_addr
, sio_addr_compare
,
5005 sizeof (scan_io_t
), offsetof(scan_io_t
, sio_nodes
.sio_addr_node
));
5011 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5012 * No further execution of I/O occurs, anything pending in the queue is
5013 * simply freed without being executed.
5016 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t
*queue
)
5018 dsl_scan_t
*scn
= queue
->q_scn
;
5020 void *cookie
= NULL
;
5022 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
5024 if (!avl_is_empty(&queue
->q_sios_by_addr
))
5025 atomic_add_64(&scn
->scn_queues_pending
, -1);
5026 while ((sio
= avl_destroy_nodes(&queue
->q_sios_by_addr
, &cookie
)) !=
5028 ASSERT(range_tree_contains(queue
->q_exts_by_addr
,
5029 SIO_GET_OFFSET(sio
), SIO_GET_ASIZE(sio
)));
5030 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
5034 ASSERT0(queue
->q_sio_memused
);
5035 range_tree_vacate(queue
->q_exts_by_addr
, NULL
, queue
);
5036 range_tree_destroy(queue
->q_exts_by_addr
);
5037 avl_destroy(&queue
->q_sios_by_addr
);
5038 cv_destroy(&queue
->q_zio_cv
);
5040 kmem_free(queue
, sizeof (*queue
));
5044 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5045 * called on behalf of vdev_top_transfer when creating or destroying
5046 * a mirror vdev due to zpool attach/detach.
5049 dsl_scan_io_queue_vdev_xfer(vdev_t
*svd
, vdev_t
*tvd
)
5051 mutex_enter(&svd
->vdev_scan_io_queue_lock
);
5052 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
5054 VERIFY3P(tvd
->vdev_scan_io_queue
, ==, NULL
);
5055 tvd
->vdev_scan_io_queue
= svd
->vdev_scan_io_queue
;
5056 svd
->vdev_scan_io_queue
= NULL
;
5057 if (tvd
->vdev_scan_io_queue
!= NULL
)
5058 tvd
->vdev_scan_io_queue
->q_vd
= tvd
;
5060 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
5061 mutex_exit(&svd
->vdev_scan_io_queue_lock
);
5065 scan_io_queues_destroy(dsl_scan_t
*scn
)
5067 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
5069 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
5070 vdev_t
*tvd
= rvd
->vdev_child
[i
];
5072 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
5073 if (tvd
->vdev_scan_io_queue
!= NULL
)
5074 dsl_scan_io_queue_destroy(tvd
->vdev_scan_io_queue
);
5075 tvd
->vdev_scan_io_queue
= NULL
;
5076 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
5081 dsl_scan_freed_dva(spa_t
*spa
, const blkptr_t
*bp
, int dva_i
)
5083 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
5084 dsl_scan_t
*scn
= dp
->dp_scan
;
5087 dsl_scan_io_queue_t
*queue
;
5088 scan_io_t
*srch_sio
, *sio
;
5090 uint64_t start
, size
;
5092 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&bp
->blk_dva
[dva_i
]));
5093 ASSERT(vdev
!= NULL
);
5094 q_lock
= &vdev
->vdev_scan_io_queue_lock
;
5095 queue
= vdev
->vdev_scan_io_queue
;
5097 mutex_enter(q_lock
);
5098 if (queue
== NULL
) {
5103 srch_sio
= sio_alloc(BP_GET_NDVAS(bp
));
5104 bp2sio(bp
, srch_sio
, dva_i
);
5105 start
= SIO_GET_OFFSET(srch_sio
);
5106 size
= SIO_GET_ASIZE(srch_sio
);
5109 * We can find the zio in two states:
5110 * 1) Cold, just sitting in the queue of zio's to be issued at
5111 * some point in the future. In this case, all we do is
5112 * remove the zio from the q_sios_by_addr tree, decrement
5113 * its data volume from the containing range_seg_t and
5114 * resort the q_exts_by_size tree to reflect that the
5115 * range_seg_t has lost some of its 'fill'. We don't shorten
5116 * the range_seg_t - this is usually rare enough not to be
5117 * worth the extra hassle of trying keep track of precise
5118 * extent boundaries.
5119 * 2) Hot, where the zio is currently in-flight in
5120 * dsl_scan_issue_ios. In this case, we can't simply
5121 * reach in and stop the in-flight zio's, so we instead
5122 * block the caller. Eventually, dsl_scan_issue_ios will
5123 * be done with issuing the zio's it gathered and will
5126 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
5132 /* Got it while it was cold in the queue */
5133 ASSERT3U(start
, ==, SIO_GET_OFFSET(sio
));
5134 ASSERT3U(size
, ==, SIO_GET_ASIZE(sio
));
5135 avl_remove(&queue
->q_sios_by_addr
, sio
);
5136 if (avl_is_empty(&queue
->q_sios_by_addr
))
5137 atomic_add_64(&scn
->scn_queues_pending
, -1);
5138 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
5140 ASSERT(range_tree_contains(queue
->q_exts_by_addr
, start
, size
));
5141 range_tree_remove_fill(queue
->q_exts_by_addr
, start
, size
);
5143 /* count the block as though we skipped it */
5144 sio2bp(sio
, &tmpbp
);
5145 count_block_skipped(scn
, &tmpbp
, B_FALSE
);
5153 * Callback invoked when a zio_free() zio is executing. This needs to be
5154 * intercepted to prevent the zio from deallocating a particular portion
5155 * of disk space and it then getting reallocated and written to, while we
5156 * still have it queued up for processing.
5159 dsl_scan_freed(spa_t
*spa
, const blkptr_t
*bp
)
5161 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
5162 dsl_scan_t
*scn
= dp
->dp_scan
;
5164 ASSERT(!BP_IS_EMBEDDED(bp
));
5165 ASSERT(scn
!= NULL
);
5166 if (!dsl_scan_is_running(scn
))
5169 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++)
5170 dsl_scan_freed_dva(spa
, bp
, i
);
5174 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5175 * not started, start it. Otherwise, only restart if max txg in DTL range is
5176 * greater than the max txg in the current scan. If the DTL max is less than
5177 * the scan max, then the vdev has not missed any new data since the resilver
5178 * started, so a restart is not needed.
5181 dsl_scan_assess_vdev(dsl_pool_t
*dp
, vdev_t
*vd
)
5185 if (!vdev_resilver_needed(vd
, &min
, &max
))
5188 if (!dsl_scan_resilvering(dp
)) {
5189 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
5193 if (max
<= dp
->dp_scan
->scn_phys
.scn_max_txg
)
5196 /* restart is needed, check if it can be deferred */
5197 if (spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
5198 vdev_defer_resilver(vd
);
5200 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
5203 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_vdev_limit
, U64
, ZMOD_RW
,
5204 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5206 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_min_time_ms
, UINT
, ZMOD_RW
,
5207 "Min millisecs to scrub per txg");
5209 ZFS_MODULE_PARAM(zfs
, zfs_
, obsolete_min_time_ms
, UINT
, ZMOD_RW
,
5210 "Min millisecs to obsolete per txg");
5212 ZFS_MODULE_PARAM(zfs
, zfs_
, free_min_time_ms
, UINT
, ZMOD_RW
,
5213 "Min millisecs to free per txg");
5215 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_min_time_ms
, UINT
, ZMOD_RW
,
5216 "Min millisecs to resilver per txg");
5218 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_suspend_progress
, INT
, ZMOD_RW
,
5219 "Set to prevent scans from progressing");
5221 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_io
, INT
, ZMOD_RW
,
5222 "Set to disable scrub I/O");
5224 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_prefetch
, INT
, ZMOD_RW
,
5225 "Set to disable scrub prefetching");
5227 ZFS_MODULE_PARAM(zfs
, zfs_
, async_block_max_blocks
, U64
, ZMOD_RW
,
5228 "Max number of blocks freed in one txg");
5230 ZFS_MODULE_PARAM(zfs
, zfs_
, max_async_dedup_frees
, U64
, ZMOD_RW
,
5231 "Max number of dedup blocks freed in one txg");
5233 ZFS_MODULE_PARAM(zfs
, zfs_
, free_bpobj_enabled
, INT
, ZMOD_RW
,
5234 "Enable processing of the free_bpobj");
5236 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_blkstats
, INT
, ZMOD_RW
,
5237 "Enable block statistics calculation during scrub");
5239 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_fact
, UINT
, ZMOD_RW
,
5240 "Fraction of RAM for scan hard limit");
5242 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_issue_strategy
, UINT
, ZMOD_RW
,
5243 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5245 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_legacy
, INT
, ZMOD_RW
,
5246 "Scrub using legacy non-sequential method");
5248 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_checkpoint_intval
, UINT
, ZMOD_RW
,
5249 "Scan progress on-disk checkpointing interval");
5251 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_max_ext_gap
, U64
, ZMOD_RW
,
5252 "Max gap in bytes between sequential scrub / resilver I/Os");
5254 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_soft_fact
, UINT
, ZMOD_RW
,
5255 "Fraction of hard limit used as soft limit");
5257 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_strict_mem_lim
, INT
, ZMOD_RW
,
5258 "Tunable to attempt to reduce lock contention");
5260 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_fill_weight
, UINT
, ZMOD_RW
,
5261 "Tunable to adjust bias towards more filled segments during scans");
5263 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_report_txgs
, UINT
, ZMOD_RW
,
5264 "Tunable to report resilver performance over the last N txgs");
5266 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_disable_defer
, INT
, ZMOD_RW
,
5267 "Process all resilvers immediately");
5269 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_error_blocks_per_txg
, UINT
, ZMOD_RW
,
5270 "Error blocks to be scrubbed in one txg");