ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / zfs / dsl_scan.c
blob34012db82deee2d86f5edab4bfbaf1becf846015
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #include <sys/dbuf.h>
58 #ifdef _KERNEL
59 #include <sys/zfs_vfsops.h>
60 #endif
63 * Grand theory statement on scan queue sorting
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
74 * Queue management:
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
96 * Implementation Notes
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
104 * algorithm.
106 * Backwards compatibility
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
118 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
119 const zbookmark_phys_t *);
121 static scan_cb_t dsl_scan_scrub_cb;
123 static int scan_ds_queue_compare(const void *a, const void *b);
124 static int scan_prefetch_queue_compare(const void *a, const void *b);
125 static void scan_ds_queue_clear(dsl_scan_t *scn);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
127 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
128 uint64_t *txg);
129 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
130 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
131 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
132 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
136 static int zfs_scan_blkstats = 0;
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
145 static uint_t zfs_scan_report_txgs = 0;
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
151 * block.
153 static int zfs_scan_strict_mem_lim = B_FALSE;
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
163 static uint64_t zfs_scan_vdev_limit = 16 << 20;
165 static uint_t zfs_scan_issue_strategy = 0;
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy = B_FALSE;
169 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
176 static uint_t zfs_scan_fill_weight = 3;
177 static uint64_t fill_weight;
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact = 20;
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact = 20;
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms = 1000;
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms = 500;
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms = 1000;
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms = 3000;
202 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
203 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
206 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees = 100000;
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer = B_FALSE;
216 * We wait a few txgs after importing a pool to begin scanning so that
217 * the import / mounting code isn't held up by scrub / resilver IO.
218 * Unfortunately, it is a bit difficult to determine exactly how long
219 * this will take since userspace will trigger fs mounts asynchronously
220 * and the kernel will create zvol minors asynchronously. As a result,
221 * the value provided here is a bit arbitrary, but represents a
222 * reasonable estimate of how many txgs it will take to finish fully
223 * importing a pool
225 #define SCAN_IMPORT_WAIT_TXGS 5
227 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
228 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
229 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
232 * Enable/disable the processing of the free_bpobj object.
234 static int zfs_free_bpobj_enabled = 1;
236 /* Error blocks to be scrubbed in one txg. */
237 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
239 /* the order has to match pool_scan_type */
240 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
241 NULL,
242 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
243 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
246 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
247 typedef struct {
248 uint64_t sds_dsobj;
249 uint64_t sds_txg;
250 avl_node_t sds_node;
251 } scan_ds_t;
254 * This controls what conditions are placed on dsl_scan_sync_state():
255 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
256 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
257 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
258 * write out the scn_phys_cached version.
259 * See dsl_scan_sync_state for details.
261 typedef enum {
262 SYNC_OPTIONAL,
263 SYNC_MANDATORY,
264 SYNC_CACHED
265 } state_sync_type_t;
268 * This struct represents the minimum information needed to reconstruct a
269 * zio for sequential scanning. This is useful because many of these will
270 * accumulate in the sequential IO queues before being issued, so saving
271 * memory matters here.
273 typedef struct scan_io {
274 /* fields from blkptr_t */
275 uint64_t sio_blk_prop;
276 uint64_t sio_phys_birth;
277 uint64_t sio_birth;
278 zio_cksum_t sio_cksum;
279 uint32_t sio_nr_dvas;
281 /* fields from zio_t */
282 uint32_t sio_flags;
283 zbookmark_phys_t sio_zb;
285 /* members for queue sorting */
286 union {
287 avl_node_t sio_addr_node; /* link into issuing queue */
288 list_node_t sio_list_node; /* link for issuing to disk */
289 } sio_nodes;
292 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
293 * depending on how many were in the original bp. Only the
294 * first DVA is really used for sorting and issuing purposes.
295 * The other DVAs (if provided) simply exist so that the zio
296 * layer can find additional copies to repair from in the
297 * event of an error. This array must go at the end of the
298 * struct to allow this for the variable number of elements.
300 dva_t sio_dva[];
301 } scan_io_t;
303 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
304 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
305 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
306 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
307 #define SIO_GET_END_OFFSET(sio) \
308 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
309 #define SIO_GET_MUSED(sio) \
310 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
312 struct dsl_scan_io_queue {
313 dsl_scan_t *q_scn; /* associated dsl_scan_t */
314 vdev_t *q_vd; /* top-level vdev that this queue represents */
315 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
317 /* trees used for sorting I/Os and extents of I/Os */
318 range_tree_t *q_exts_by_addr;
319 zfs_btree_t q_exts_by_size;
320 avl_tree_t q_sios_by_addr;
321 uint64_t q_sio_memused;
322 uint64_t q_last_ext_addr;
324 /* members for zio rate limiting */
325 uint64_t q_maxinflight_bytes;
326 uint64_t q_inflight_bytes;
327 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
329 /* per txg statistics */
330 uint64_t q_total_seg_size_this_txg;
331 uint64_t q_segs_this_txg;
332 uint64_t q_total_zio_size_this_txg;
333 uint64_t q_zios_this_txg;
336 /* private data for dsl_scan_prefetch_cb() */
337 typedef struct scan_prefetch_ctx {
338 zfs_refcount_t spc_refcnt; /* refcount for memory management */
339 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
340 boolean_t spc_root; /* is this prefetch for an objset? */
341 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
342 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
343 } scan_prefetch_ctx_t;
345 /* private data for dsl_scan_prefetch() */
346 typedef struct scan_prefetch_issue_ctx {
347 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
348 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
349 blkptr_t spic_bp; /* bp to prefetch */
350 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
351 } scan_prefetch_issue_ctx_t;
353 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
354 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
355 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
356 scan_io_t *sio);
358 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
359 static void scan_io_queues_destroy(dsl_scan_t *scn);
361 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
363 /* sio->sio_nr_dvas must be set so we know which cache to free from */
364 static void
365 sio_free(scan_io_t *sio)
367 ASSERT3U(sio->sio_nr_dvas, >, 0);
368 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
370 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
373 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
374 static scan_io_t *
375 sio_alloc(unsigned short nr_dvas)
377 ASSERT3U(nr_dvas, >, 0);
378 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
380 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
383 void
384 scan_init(void)
387 * This is used in ext_size_compare() to weight segments
388 * based on how sparse they are. This cannot be changed
389 * mid-scan and the tree comparison functions don't currently
390 * have a mechanism for passing additional context to the
391 * compare functions. Thus we store this value globally and
392 * we only allow it to be set at module initialization time
394 fill_weight = zfs_scan_fill_weight;
396 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
397 char name[36];
399 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
400 sio_cache[i] = kmem_cache_create(name,
401 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
402 0, NULL, NULL, NULL, NULL, NULL, 0);
406 void
407 scan_fini(void)
409 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
410 kmem_cache_destroy(sio_cache[i]);
414 static inline boolean_t
415 dsl_scan_is_running(const dsl_scan_t *scn)
417 return (scn->scn_phys.scn_state == DSS_SCANNING);
420 boolean_t
421 dsl_scan_resilvering(dsl_pool_t *dp)
423 return (dsl_scan_is_running(dp->dp_scan) &&
424 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
427 static inline void
428 sio2bp(const scan_io_t *sio, blkptr_t *bp)
430 memset(bp, 0, sizeof (*bp));
431 bp->blk_prop = sio->sio_blk_prop;
432 bp->blk_phys_birth = sio->sio_phys_birth;
433 bp->blk_birth = sio->sio_birth;
434 bp->blk_fill = 1; /* we always only work with data pointers */
435 bp->blk_cksum = sio->sio_cksum;
437 ASSERT3U(sio->sio_nr_dvas, >, 0);
438 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
440 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
443 static inline void
444 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
446 sio->sio_blk_prop = bp->blk_prop;
447 sio->sio_phys_birth = bp->blk_phys_birth;
448 sio->sio_birth = bp->blk_birth;
449 sio->sio_cksum = bp->blk_cksum;
450 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
453 * Copy the DVAs to the sio. We need all copies of the block so
454 * that the self healing code can use the alternate copies if the
455 * first is corrupted. We want the DVA at index dva_i to be first
456 * in the sio since this is the primary one that we want to issue.
458 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
459 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
464 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
466 int err;
467 dsl_scan_t *scn;
468 spa_t *spa = dp->dp_spa;
469 uint64_t f;
471 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
472 scn->scn_dp = dp;
475 * It's possible that we're resuming a scan after a reboot so
476 * make sure that the scan_async_destroying flag is initialized
477 * appropriately.
479 ASSERT(!scn->scn_async_destroying);
480 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
481 SPA_FEATURE_ASYNC_DESTROY);
484 * Calculate the max number of in-flight bytes for pool-wide
485 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
486 * Limits for the issuing phase are done per top-level vdev and
487 * are handled separately.
489 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
490 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
492 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
493 offsetof(scan_ds_t, sds_node));
494 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
495 sizeof (scan_prefetch_issue_ctx_t),
496 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
498 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
499 "scrub_func", sizeof (uint64_t), 1, &f);
500 if (err == 0) {
502 * There was an old-style scrub in progress. Restart a
503 * new-style scrub from the beginning.
505 scn->scn_restart_txg = txg;
506 zfs_dbgmsg("old-style scrub was in progress for %s; "
507 "restarting new-style scrub in txg %llu",
508 spa->spa_name,
509 (longlong_t)scn->scn_restart_txg);
512 * Load the queue obj from the old location so that it
513 * can be freed by dsl_scan_done().
515 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
516 "scrub_queue", sizeof (uint64_t), 1,
517 &scn->scn_phys.scn_queue_obj);
518 } else {
519 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
520 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
521 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
523 if (err != 0 && err != ENOENT)
524 return (err);
526 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
528 &scn->scn_phys);
531 * Detect if the pool contains the signature of #2094. If it
532 * does properly update the scn->scn_phys structure and notify
533 * the administrator by setting an errata for the pool.
535 if (err == EOVERFLOW) {
536 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
537 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
538 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
539 (23 * sizeof (uint64_t)));
541 err = zap_lookup(dp->dp_meta_objset,
542 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
543 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
544 if (err == 0) {
545 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
547 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
548 scn->scn_async_destroying) {
549 spa->spa_errata =
550 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
551 return (EOVERFLOW);
554 memcpy(&scn->scn_phys, zaptmp,
555 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
556 scn->scn_phys.scn_flags = overflow;
558 /* Required scrub already in progress. */
559 if (scn->scn_phys.scn_state == DSS_FINISHED ||
560 scn->scn_phys.scn_state == DSS_CANCELED)
561 spa->spa_errata =
562 ZPOOL_ERRATA_ZOL_2094_SCRUB;
566 if (err == ENOENT)
567 return (0);
568 else if (err)
569 return (err);
572 * We might be restarting after a reboot, so jump the issued
573 * counter to how far we've scanned. We know we're consistent
574 * up to here.
576 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
577 scn->scn_phys.scn_skipped;
579 if (dsl_scan_is_running(scn) &&
580 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
582 * A new-type scrub was in progress on an old
583 * pool, and the pool was accessed by old
584 * software. Restart from the beginning, since
585 * the old software may have changed the pool in
586 * the meantime.
588 scn->scn_restart_txg = txg;
589 zfs_dbgmsg("new-style scrub for %s was modified "
590 "by old software; restarting in txg %llu",
591 spa->spa_name,
592 (longlong_t)scn->scn_restart_txg);
593 } else if (dsl_scan_resilvering(dp)) {
595 * If a resilver is in progress and there are already
596 * errors, restart it instead of finishing this scan and
597 * then restarting it. If there haven't been any errors
598 * then remember that the incore DTL is valid.
600 if (scn->scn_phys.scn_errors > 0) {
601 scn->scn_restart_txg = txg;
602 zfs_dbgmsg("resilver can't excise DTL_MISSING "
603 "when finished; restarting on %s in txg "
604 "%llu",
605 spa->spa_name,
606 (u_longlong_t)scn->scn_restart_txg);
607 } else {
608 /* it's safe to excise DTL when finished */
609 spa->spa_scrub_started = B_TRUE;
614 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
616 /* reload the queue into the in-core state */
617 if (scn->scn_phys.scn_queue_obj != 0) {
618 zap_cursor_t zc;
619 zap_attribute_t za;
621 for (zap_cursor_init(&zc, dp->dp_meta_objset,
622 scn->scn_phys.scn_queue_obj);
623 zap_cursor_retrieve(&zc, &za) == 0;
624 (void) zap_cursor_advance(&zc)) {
625 scan_ds_queue_insert(scn,
626 zfs_strtonum(za.za_name, NULL),
627 za.za_first_integer);
629 zap_cursor_fini(&zc);
632 spa_scan_stat_init(spa);
633 vdev_scan_stat_init(spa->spa_root_vdev);
635 return (0);
638 void
639 dsl_scan_fini(dsl_pool_t *dp)
641 if (dp->dp_scan != NULL) {
642 dsl_scan_t *scn = dp->dp_scan;
644 if (scn->scn_taskq != NULL)
645 taskq_destroy(scn->scn_taskq);
647 scan_ds_queue_clear(scn);
648 avl_destroy(&scn->scn_queue);
649 scan_ds_prefetch_queue_clear(scn);
650 avl_destroy(&scn->scn_prefetch_queue);
652 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
653 dp->dp_scan = NULL;
657 static boolean_t
658 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
660 return (scn->scn_restart_txg != 0 &&
661 scn->scn_restart_txg <= tx->tx_txg);
664 boolean_t
665 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
667 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
668 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
671 boolean_t
672 dsl_scan_scrubbing(const dsl_pool_t *dp)
674 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
676 return (scn_phys->scn_state == DSS_SCANNING &&
677 scn_phys->scn_func == POOL_SCAN_SCRUB);
680 boolean_t
681 dsl_errorscrubbing(const dsl_pool_t *dp)
683 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
685 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
686 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
689 boolean_t
690 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
692 return (dsl_errorscrubbing(scn->scn_dp) &&
693 scn->errorscrub_phys.dep_paused_flags);
696 boolean_t
697 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
699 return (dsl_scan_scrubbing(scn->scn_dp) &&
700 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
703 static void
704 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
706 scn->errorscrub_phys.dep_cursor =
707 zap_cursor_serialize(&scn->errorscrub_cursor);
709 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
710 DMU_POOL_DIRECTORY_OBJECT,
711 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
712 &scn->errorscrub_phys, tx));
715 static void
716 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
718 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
719 pool_scan_func_t *funcp = arg;
720 dsl_pool_t *dp = scn->scn_dp;
721 spa_t *spa = dp->dp_spa;
723 ASSERT(!dsl_scan_is_running(scn));
724 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
725 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
727 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
728 scn->errorscrub_phys.dep_func = *funcp;
729 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
730 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
731 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
732 scn->errorscrub_phys.dep_examined = 0;
733 scn->errorscrub_phys.dep_errors = 0;
734 scn->errorscrub_phys.dep_cursor = 0;
735 zap_cursor_init_serialized(&scn->errorscrub_cursor,
736 spa->spa_meta_objset, spa->spa_errlog_last,
737 scn->errorscrub_phys.dep_cursor);
739 vdev_config_dirty(spa->spa_root_vdev);
740 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
742 dsl_errorscrub_sync_state(scn, tx);
744 spa_history_log_internal(spa, "error scrub setup", tx,
745 "func=%u mintxg=%u maxtxg=%llu",
746 *funcp, 0, (u_longlong_t)tx->tx_txg);
749 static int
750 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
752 (void) arg;
753 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
755 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
756 return (SET_ERROR(EBUSY));
759 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
760 return (ECANCELED);
762 return (0);
766 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
767 * Because we can be running in the block sorting algorithm, we do not always
768 * want to write out the record, only when it is "safe" to do so. This safety
769 * condition is achieved by making sure that the sorting queues are empty
770 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
771 * is inconsistent with how much actual scanning progress has been made. The
772 * kind of sync to be performed is specified by the sync_type argument. If the
773 * sync is optional, we only sync if the queues are empty. If the sync is
774 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
775 * third possible state is a "cached" sync. This is done in response to:
776 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
777 * destroyed, so we wouldn't be able to restart scanning from it.
778 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
779 * superseded by a newer snapshot.
780 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
781 * swapped with its clone.
782 * In all cases, a cached sync simply rewrites the last record we've written,
783 * just slightly modified. For the modifications that are performed to the
784 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
785 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
787 static void
788 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
790 int i;
791 spa_t *spa = scn->scn_dp->dp_spa;
793 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
794 if (scn->scn_queues_pending == 0) {
795 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
796 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
797 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
799 if (q == NULL)
800 continue;
802 mutex_enter(&vd->vdev_scan_io_queue_lock);
803 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
804 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
805 NULL);
806 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
807 mutex_exit(&vd->vdev_scan_io_queue_lock);
810 if (scn->scn_phys.scn_queue_obj != 0)
811 scan_ds_queue_sync(scn, tx);
812 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
813 DMU_POOL_DIRECTORY_OBJECT,
814 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
815 &scn->scn_phys, tx));
816 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
817 sizeof (scn->scn_phys));
819 if (scn->scn_checkpointing)
820 zfs_dbgmsg("finish scan checkpoint for %s",
821 spa->spa_name);
823 scn->scn_checkpointing = B_FALSE;
824 scn->scn_last_checkpoint = ddi_get_lbolt();
825 } else if (sync_type == SYNC_CACHED) {
826 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
827 DMU_POOL_DIRECTORY_OBJECT,
828 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
829 &scn->scn_phys_cached, tx));
834 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
836 (void) arg;
837 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
838 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
840 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
841 dsl_errorscrubbing(scn->scn_dp))
842 return (SET_ERROR(EBUSY));
844 return (0);
847 void
848 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
850 (void) arg;
851 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
852 pool_scan_func_t *funcp = arg;
853 dmu_object_type_t ot = 0;
854 dsl_pool_t *dp = scn->scn_dp;
855 spa_t *spa = dp->dp_spa;
857 ASSERT(!dsl_scan_is_running(scn));
858 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
859 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
862 * If we are starting a fresh scrub, we erase the error scrub
863 * information from disk.
865 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
866 dsl_errorscrub_sync_state(scn, tx);
868 scn->scn_phys.scn_func = *funcp;
869 scn->scn_phys.scn_state = DSS_SCANNING;
870 scn->scn_phys.scn_min_txg = 0;
871 scn->scn_phys.scn_max_txg = tx->tx_txg;
872 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
873 scn->scn_phys.scn_start_time = gethrestime_sec();
874 scn->scn_phys.scn_errors = 0;
875 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
876 scn->scn_issued_before_pass = 0;
877 scn->scn_restart_txg = 0;
878 scn->scn_done_txg = 0;
879 scn->scn_last_checkpoint = 0;
880 scn->scn_checkpointing = B_FALSE;
881 spa_scan_stat_init(spa);
882 vdev_scan_stat_init(spa->spa_root_vdev);
884 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
885 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
887 /* rewrite all disk labels */
888 vdev_config_dirty(spa->spa_root_vdev);
890 if (vdev_resilver_needed(spa->spa_root_vdev,
891 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
892 nvlist_t *aux = fnvlist_alloc();
893 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
894 "healing");
895 spa_event_notify(spa, NULL, aux,
896 ESC_ZFS_RESILVER_START);
897 nvlist_free(aux);
898 } else {
899 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
902 spa->spa_scrub_started = B_TRUE;
904 * If this is an incremental scrub, limit the DDT scrub phase
905 * to just the auto-ditto class (for correctness); the rest
906 * of the scrub should go faster using top-down pruning.
908 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
909 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
912 * When starting a resilver clear any existing rebuild state.
913 * This is required to prevent stale rebuild status from
914 * being reported when a rebuild is run, then a resilver and
915 * finally a scrub. In which case only the scrub status
916 * should be reported by 'zpool status'.
918 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
919 vdev_t *rvd = spa->spa_root_vdev;
920 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
921 vdev_t *vd = rvd->vdev_child[i];
922 vdev_rebuild_clear_sync(
923 (void *)(uintptr_t)vd->vdev_id, tx);
928 /* back to the generic stuff */
930 if (zfs_scan_blkstats) {
931 if (dp->dp_blkstats == NULL) {
932 dp->dp_blkstats =
933 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
935 memset(&dp->dp_blkstats->zab_type, 0,
936 sizeof (dp->dp_blkstats->zab_type));
937 } else {
938 if (dp->dp_blkstats) {
939 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
940 dp->dp_blkstats = NULL;
944 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
945 ot = DMU_OT_ZAP_OTHER;
947 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
948 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
950 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
952 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
954 spa_history_log_internal(spa, "scan setup", tx,
955 "func=%u mintxg=%llu maxtxg=%llu",
956 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
957 (u_longlong_t)scn->scn_phys.scn_max_txg);
961 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
962 * error scrub or resilver. Can also be called to resume a paused scrub or
963 * error scrub.
966 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
968 spa_t *spa = dp->dp_spa;
969 dsl_scan_t *scn = dp->dp_scan;
972 * Purge all vdev caches and probe all devices. We do this here
973 * rather than in sync context because this requires a writer lock
974 * on the spa_config lock, which we can't do from sync context. The
975 * spa_scrub_reopen flag indicates that vdev_open() should not
976 * attempt to start another scrub.
978 spa_vdev_state_enter(spa, SCL_NONE);
979 spa->spa_scrub_reopen = B_TRUE;
980 vdev_reopen(spa->spa_root_vdev);
981 spa->spa_scrub_reopen = B_FALSE;
982 (void) spa_vdev_state_exit(spa, NULL, 0);
984 if (func == POOL_SCAN_RESILVER) {
985 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
986 return (0);
989 if (func == POOL_SCAN_ERRORSCRUB) {
990 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
992 * got error scrub start cmd, resume paused error scrub.
994 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
995 POOL_SCRUB_NORMAL);
996 if (err == 0) {
997 spa_event_notify(spa, NULL, NULL,
998 ESC_ZFS_ERRORSCRUB_RESUME);
999 return (ECANCELED);
1001 return (SET_ERROR(err));
1004 return (dsl_sync_task(spa_name(dp->dp_spa),
1005 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1006 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1009 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1010 /* got scrub start cmd, resume paused scrub */
1011 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1012 POOL_SCRUB_NORMAL);
1013 if (err == 0) {
1014 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1015 return (SET_ERROR(ECANCELED));
1017 return (SET_ERROR(err));
1020 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1021 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
1024 static void
1025 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1027 dsl_pool_t *dp = scn->scn_dp;
1028 spa_t *spa = dp->dp_spa;
1030 if (complete) {
1031 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1032 spa_history_log_internal(spa, "error scrub done", tx,
1033 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1034 } else {
1035 spa_history_log_internal(spa, "error scrub canceled", tx,
1036 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1039 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1040 spa->spa_scrub_active = B_FALSE;
1041 spa_errlog_rotate(spa);
1042 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1043 zap_cursor_fini(&scn->errorscrub_cursor);
1045 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1046 spa->spa_errata = 0;
1048 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1051 static void
1052 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1054 static const char *old_names[] = {
1055 "scrub_bookmark",
1056 "scrub_ddt_bookmark",
1057 "scrub_ddt_class_max",
1058 "scrub_queue",
1059 "scrub_min_txg",
1060 "scrub_max_txg",
1061 "scrub_func",
1062 "scrub_errors",
1063 NULL
1066 dsl_pool_t *dp = scn->scn_dp;
1067 spa_t *spa = dp->dp_spa;
1068 int i;
1070 /* Remove any remnants of an old-style scrub. */
1071 for (i = 0; old_names[i]; i++) {
1072 (void) zap_remove(dp->dp_meta_objset,
1073 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1076 if (scn->scn_phys.scn_queue_obj != 0) {
1077 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1078 scn->scn_phys.scn_queue_obj, tx));
1079 scn->scn_phys.scn_queue_obj = 0;
1081 scan_ds_queue_clear(scn);
1082 scan_ds_prefetch_queue_clear(scn);
1084 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1087 * If we were "restarted" from a stopped state, don't bother
1088 * with anything else.
1090 if (!dsl_scan_is_running(scn)) {
1091 ASSERT(!scn->scn_is_sorted);
1092 return;
1095 if (scn->scn_is_sorted) {
1096 scan_io_queues_destroy(scn);
1097 scn->scn_is_sorted = B_FALSE;
1099 if (scn->scn_taskq != NULL) {
1100 taskq_destroy(scn->scn_taskq);
1101 scn->scn_taskq = NULL;
1105 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
1107 spa_notify_waiters(spa);
1109 if (dsl_scan_restarting(scn, tx))
1110 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1111 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1112 else if (!complete)
1113 spa_history_log_internal(spa, "scan cancelled", tx,
1114 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1115 else
1116 spa_history_log_internal(spa, "scan done", tx,
1117 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1119 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1120 spa->spa_scrub_active = B_FALSE;
1123 * If the scrub/resilver completed, update all DTLs to
1124 * reflect this. Whether it succeeded or not, vacate
1125 * all temporary scrub DTLs.
1127 * As the scrub does not currently support traversing
1128 * data that have been freed but are part of a checkpoint,
1129 * we don't mark the scrub as done in the DTLs as faults
1130 * may still exist in those vdevs.
1132 if (complete &&
1133 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1134 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1135 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1137 if (scn->scn_phys.scn_min_txg) {
1138 nvlist_t *aux = fnvlist_alloc();
1139 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1140 "healing");
1141 spa_event_notify(spa, NULL, aux,
1142 ESC_ZFS_RESILVER_FINISH);
1143 nvlist_free(aux);
1144 } else {
1145 spa_event_notify(spa, NULL, NULL,
1146 ESC_ZFS_SCRUB_FINISH);
1148 } else {
1149 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1150 0, B_TRUE, B_FALSE);
1152 spa_errlog_rotate(spa);
1155 * Don't clear flag until after vdev_dtl_reassess to ensure that
1156 * DTL_MISSING will get updated when possible.
1158 spa->spa_scrub_started = B_FALSE;
1161 * We may have finished replacing a device.
1162 * Let the async thread assess this and handle the detach.
1164 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1167 * Clear any resilver_deferred flags in the config.
1168 * If there are drives that need resilvering, kick
1169 * off an asynchronous request to start resilver.
1170 * vdev_clear_resilver_deferred() may update the config
1171 * before the resilver can restart. In the event of
1172 * a crash during this period, the spa loading code
1173 * will find the drives that need to be resilvered
1174 * and start the resilver then.
1176 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1177 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1178 spa_history_log_internal(spa,
1179 "starting deferred resilver", tx, "errors=%llu",
1180 (u_longlong_t)spa_approx_errlog_size(spa));
1181 spa_async_request(spa, SPA_ASYNC_RESILVER);
1184 /* Clear recent error events (i.e. duplicate events tracking) */
1185 if (complete)
1186 zfs_ereport_clear(spa, NULL);
1189 scn->scn_phys.scn_end_time = gethrestime_sec();
1191 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1192 spa->spa_errata = 0;
1194 ASSERT(!dsl_scan_is_running(scn));
1197 static int
1198 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1200 pool_scrub_cmd_t *cmd = arg;
1201 dsl_pool_t *dp = dmu_tx_pool(tx);
1202 dsl_scan_t *scn = dp->dp_scan;
1204 if (*cmd == POOL_SCRUB_PAUSE) {
1206 * can't pause a error scrub when there is no in-progress
1207 * error scrub.
1209 if (!dsl_errorscrubbing(dp))
1210 return (SET_ERROR(ENOENT));
1212 /* can't pause a paused error scrub */
1213 if (dsl_errorscrub_is_paused(scn))
1214 return (SET_ERROR(EBUSY));
1215 } else if (*cmd != POOL_SCRUB_NORMAL) {
1216 return (SET_ERROR(ENOTSUP));
1219 return (0);
1222 static void
1223 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1225 pool_scrub_cmd_t *cmd = arg;
1226 dsl_pool_t *dp = dmu_tx_pool(tx);
1227 spa_t *spa = dp->dp_spa;
1228 dsl_scan_t *scn = dp->dp_scan;
1230 if (*cmd == POOL_SCRUB_PAUSE) {
1231 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1232 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1233 dsl_errorscrub_sync_state(scn, tx);
1234 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1235 } else {
1236 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1237 if (dsl_errorscrub_is_paused(scn)) {
1239 * We need to keep track of how much time we spend
1240 * paused per pass so that we can adjust the error scrub
1241 * rate shown in the output of 'zpool status'.
1243 spa->spa_scan_pass_errorscrub_spent_paused +=
1244 gethrestime_sec() -
1245 spa->spa_scan_pass_errorscrub_pause;
1247 spa->spa_scan_pass_errorscrub_pause = 0;
1248 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1250 zap_cursor_init_serialized(
1251 &scn->errorscrub_cursor,
1252 spa->spa_meta_objset, spa->spa_errlog_last,
1253 scn->errorscrub_phys.dep_cursor);
1255 dsl_errorscrub_sync_state(scn, tx);
1260 static int
1261 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1263 (void) arg;
1264 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1265 /* can't cancel a error scrub when there is no one in-progress */
1266 if (!dsl_errorscrubbing(scn->scn_dp))
1267 return (SET_ERROR(ENOENT));
1268 return (0);
1271 static void
1272 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1274 (void) arg;
1275 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1277 dsl_errorscrub_done(scn, B_FALSE, tx);
1278 dsl_errorscrub_sync_state(scn, tx);
1279 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1280 ESC_ZFS_ERRORSCRUB_ABORT);
1283 static int
1284 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1286 (void) arg;
1287 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1289 if (!dsl_scan_is_running(scn))
1290 return (SET_ERROR(ENOENT));
1291 return (0);
1294 static void
1295 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1297 (void) arg;
1298 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1300 dsl_scan_done(scn, B_FALSE, tx);
1301 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1302 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1306 dsl_scan_cancel(dsl_pool_t *dp)
1308 if (dsl_errorscrubbing(dp)) {
1309 return (dsl_sync_task(spa_name(dp->dp_spa),
1310 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1311 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1313 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1314 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1317 static int
1318 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1320 pool_scrub_cmd_t *cmd = arg;
1321 dsl_pool_t *dp = dmu_tx_pool(tx);
1322 dsl_scan_t *scn = dp->dp_scan;
1324 if (*cmd == POOL_SCRUB_PAUSE) {
1325 /* can't pause a scrub when there is no in-progress scrub */
1326 if (!dsl_scan_scrubbing(dp))
1327 return (SET_ERROR(ENOENT));
1329 /* can't pause a paused scrub */
1330 if (dsl_scan_is_paused_scrub(scn))
1331 return (SET_ERROR(EBUSY));
1332 } else if (*cmd != POOL_SCRUB_NORMAL) {
1333 return (SET_ERROR(ENOTSUP));
1336 return (0);
1339 static void
1340 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1342 pool_scrub_cmd_t *cmd = arg;
1343 dsl_pool_t *dp = dmu_tx_pool(tx);
1344 spa_t *spa = dp->dp_spa;
1345 dsl_scan_t *scn = dp->dp_scan;
1347 if (*cmd == POOL_SCRUB_PAUSE) {
1348 /* can't pause a scrub when there is no in-progress scrub */
1349 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1350 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1351 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1352 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1353 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1354 spa_notify_waiters(spa);
1355 } else {
1356 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1357 if (dsl_scan_is_paused_scrub(scn)) {
1359 * We need to keep track of how much time we spend
1360 * paused per pass so that we can adjust the scrub rate
1361 * shown in the output of 'zpool status'
1363 spa->spa_scan_pass_scrub_spent_paused +=
1364 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1365 spa->spa_scan_pass_scrub_pause = 0;
1366 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1367 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1368 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1374 * Set scrub pause/resume state if it makes sense to do so
1377 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1379 if (dsl_errorscrubbing(dp)) {
1380 return (dsl_sync_task(spa_name(dp->dp_spa),
1381 dsl_errorscrub_pause_resume_check,
1382 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1383 ZFS_SPACE_CHECK_RESERVED));
1385 return (dsl_sync_task(spa_name(dp->dp_spa),
1386 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1387 ZFS_SPACE_CHECK_RESERVED));
1391 /* start a new scan, or restart an existing one. */
1392 void
1393 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1395 if (txg == 0) {
1396 dmu_tx_t *tx;
1397 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1398 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1400 txg = dmu_tx_get_txg(tx);
1401 dp->dp_scan->scn_restart_txg = txg;
1402 dmu_tx_commit(tx);
1403 } else {
1404 dp->dp_scan->scn_restart_txg = txg;
1406 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1407 dp->dp_spa->spa_name, (longlong_t)txg);
1410 void
1411 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1413 zio_free(dp->dp_spa, txg, bp);
1416 void
1417 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1419 ASSERT(dsl_pool_sync_context(dp));
1420 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1423 static int
1424 scan_ds_queue_compare(const void *a, const void *b)
1426 const scan_ds_t *sds_a = a, *sds_b = b;
1428 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1429 return (-1);
1430 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1431 return (0);
1432 return (1);
1435 static void
1436 scan_ds_queue_clear(dsl_scan_t *scn)
1438 void *cookie = NULL;
1439 scan_ds_t *sds;
1440 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1441 kmem_free(sds, sizeof (*sds));
1445 static boolean_t
1446 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1448 scan_ds_t srch, *sds;
1450 srch.sds_dsobj = dsobj;
1451 sds = avl_find(&scn->scn_queue, &srch, NULL);
1452 if (sds != NULL && txg != NULL)
1453 *txg = sds->sds_txg;
1454 return (sds != NULL);
1457 static void
1458 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1460 scan_ds_t *sds;
1461 avl_index_t where;
1463 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1464 sds->sds_dsobj = dsobj;
1465 sds->sds_txg = txg;
1467 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1468 avl_insert(&scn->scn_queue, sds, where);
1471 static void
1472 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1474 scan_ds_t srch, *sds;
1476 srch.sds_dsobj = dsobj;
1478 sds = avl_find(&scn->scn_queue, &srch, NULL);
1479 VERIFY(sds != NULL);
1480 avl_remove(&scn->scn_queue, sds);
1481 kmem_free(sds, sizeof (*sds));
1484 static void
1485 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1487 dsl_pool_t *dp = scn->scn_dp;
1488 spa_t *spa = dp->dp_spa;
1489 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1490 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1492 ASSERT0(scn->scn_queues_pending);
1493 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1495 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1496 scn->scn_phys.scn_queue_obj, tx));
1497 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1498 DMU_OT_NONE, 0, tx);
1499 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1500 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1501 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1502 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1503 sds->sds_txg, tx));
1508 * Computes the memory limit state that we're currently in. A sorted scan
1509 * needs quite a bit of memory to hold the sorting queue, so we need to
1510 * reasonably constrain the size so it doesn't impact overall system
1511 * performance. We compute two limits:
1512 * 1) Hard memory limit: if the amount of memory used by the sorting
1513 * queues on a pool gets above this value, we stop the metadata
1514 * scanning portion and start issuing the queued up and sorted
1515 * I/Os to reduce memory usage.
1516 * This limit is calculated as a fraction of physmem (by default 5%).
1517 * We constrain the lower bound of the hard limit to an absolute
1518 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1519 * the upper bound to 5% of the total pool size - no chance we'll
1520 * ever need that much memory, but just to keep the value in check.
1521 * 2) Soft memory limit: once we hit the hard memory limit, we start
1522 * issuing I/O to reduce queue memory usage, but we don't want to
1523 * completely empty out the queues, since we might be able to find I/Os
1524 * that will fill in the gaps of our non-sequential IOs at some point
1525 * in the future. So we stop the issuing of I/Os once the amount of
1526 * memory used drops below the soft limit (at which point we stop issuing
1527 * I/O and start scanning metadata again).
1529 * This limit is calculated by subtracting a fraction of the hard
1530 * limit from the hard limit. By default this fraction is 5%, so
1531 * the soft limit is 95% of the hard limit. We cap the size of the
1532 * difference between the hard and soft limits at an absolute
1533 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1534 * sufficient to not cause too frequent switching between the
1535 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1536 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1537 * that should take at least a decent fraction of a second).
1539 static boolean_t
1540 dsl_scan_should_clear(dsl_scan_t *scn)
1542 spa_t *spa = scn->scn_dp->dp_spa;
1543 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1544 uint64_t alloc, mlim_hard, mlim_soft, mused;
1546 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1547 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1548 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1550 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1551 zfs_scan_mem_lim_min);
1552 mlim_hard = MIN(mlim_hard, alloc / 20);
1553 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1554 zfs_scan_mem_lim_soft_max);
1555 mused = 0;
1556 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1557 vdev_t *tvd = rvd->vdev_child[i];
1558 dsl_scan_io_queue_t *queue;
1560 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1561 queue = tvd->vdev_scan_io_queue;
1562 if (queue != NULL) {
1564 * # of extents in exts_by_addr = # in exts_by_size.
1565 * B-tree efficiency is ~75%, but can be as low as 50%.
1567 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1568 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1569 3 / 2) + queue->q_sio_memused;
1571 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1574 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1576 if (mused == 0)
1577 ASSERT0(scn->scn_queues_pending);
1580 * If we are above our hard limit, we need to clear out memory.
1581 * If we are below our soft limit, we need to accumulate sequential IOs.
1582 * Otherwise, we should keep doing whatever we are currently doing.
1584 if (mused >= mlim_hard)
1585 return (B_TRUE);
1586 else if (mused < mlim_soft)
1587 return (B_FALSE);
1588 else
1589 return (scn->scn_clearing);
1592 static boolean_t
1593 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1595 /* we never skip user/group accounting objects */
1596 if (zb && (int64_t)zb->zb_object < 0)
1597 return (B_FALSE);
1599 if (scn->scn_suspending)
1600 return (B_TRUE); /* we're already suspending */
1602 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1603 return (B_FALSE); /* we're resuming */
1605 /* We only know how to resume from level-0 and objset blocks. */
1606 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1607 return (B_FALSE);
1610 * We suspend if:
1611 * - we have scanned for at least the minimum time (default 1 sec
1612 * for scrub, 3 sec for resilver), and either we have sufficient
1613 * dirty data that we are starting to write more quickly
1614 * (default 30%), someone is explicitly waiting for this txg
1615 * to complete, or we have used up all of the time in the txg
1616 * timeout (default 5 sec).
1617 * or
1618 * - the spa is shutting down because this pool is being exported
1619 * or the machine is rebooting.
1620 * or
1621 * - the scan queue has reached its memory use limit
1623 uint64_t curr_time_ns = gethrtime();
1624 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1625 uint64_t sync_time_ns = curr_time_ns -
1626 scn->scn_dp->dp_spa->spa_sync_starttime;
1627 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1628 zfs_vdev_async_write_active_min_dirty_percent / 100;
1629 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1630 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1632 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1633 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1634 txg_sync_waiting(scn->scn_dp) ||
1635 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1636 spa_shutting_down(scn->scn_dp->dp_spa) ||
1637 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1638 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1639 dprintf("suspending at first available bookmark "
1640 "%llx/%llx/%llx/%llx\n",
1641 (longlong_t)zb->zb_objset,
1642 (longlong_t)zb->zb_object,
1643 (longlong_t)zb->zb_level,
1644 (longlong_t)zb->zb_blkid);
1645 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1646 zb->zb_objset, 0, 0, 0);
1647 } else if (zb != NULL) {
1648 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1649 (longlong_t)zb->zb_objset,
1650 (longlong_t)zb->zb_object,
1651 (longlong_t)zb->zb_level,
1652 (longlong_t)zb->zb_blkid);
1653 scn->scn_phys.scn_bookmark = *zb;
1654 } else {
1655 #ifdef ZFS_DEBUG
1656 dsl_scan_phys_t *scnp = &scn->scn_phys;
1657 dprintf("suspending at at DDT bookmark "
1658 "%llx/%llx/%llx/%llx\n",
1659 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1660 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1661 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1662 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1663 #endif
1665 scn->scn_suspending = B_TRUE;
1666 return (B_TRUE);
1668 return (B_FALSE);
1671 static boolean_t
1672 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1675 * We suspend if:
1676 * - we have scrubbed for at least the minimum time (default 1 sec
1677 * for error scrub), someone is explicitly waiting for this txg
1678 * to complete, or we have used up all of the time in the txg
1679 * timeout (default 5 sec).
1680 * or
1681 * - the spa is shutting down because this pool is being exported
1682 * or the machine is rebooting.
1684 uint64_t curr_time_ns = gethrtime();
1685 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1686 uint64_t sync_time_ns = curr_time_ns -
1687 scn->scn_dp->dp_spa->spa_sync_starttime;
1688 int mintime = zfs_scrub_min_time_ms;
1690 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1691 (txg_sync_waiting(scn->scn_dp) ||
1692 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1693 spa_shutting_down(scn->scn_dp->dp_spa)) {
1694 if (zb) {
1695 dprintf("error scrub suspending at bookmark "
1696 "%llx/%llx/%llx/%llx\n",
1697 (longlong_t)zb->zb_objset,
1698 (longlong_t)zb->zb_object,
1699 (longlong_t)zb->zb_level,
1700 (longlong_t)zb->zb_blkid);
1702 return (B_TRUE);
1704 return (B_FALSE);
1707 typedef struct zil_scan_arg {
1708 dsl_pool_t *zsa_dp;
1709 zil_header_t *zsa_zh;
1710 } zil_scan_arg_t;
1712 static int
1713 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1714 uint64_t claim_txg)
1716 (void) zilog;
1717 zil_scan_arg_t *zsa = arg;
1718 dsl_pool_t *dp = zsa->zsa_dp;
1719 dsl_scan_t *scn = dp->dp_scan;
1720 zil_header_t *zh = zsa->zsa_zh;
1721 zbookmark_phys_t zb;
1723 ASSERT(!BP_IS_REDACTED(bp));
1724 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1725 return (0);
1728 * One block ("stubby") can be allocated a long time ago; we
1729 * want to visit that one because it has been allocated
1730 * (on-disk) even if it hasn't been claimed (even though for
1731 * scrub there's nothing to do to it).
1733 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1734 return (0);
1736 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1737 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1739 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1740 return (0);
1743 static int
1744 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1745 uint64_t claim_txg)
1747 (void) zilog;
1748 if (lrc->lrc_txtype == TX_WRITE) {
1749 zil_scan_arg_t *zsa = arg;
1750 dsl_pool_t *dp = zsa->zsa_dp;
1751 dsl_scan_t *scn = dp->dp_scan;
1752 zil_header_t *zh = zsa->zsa_zh;
1753 const lr_write_t *lr = (const lr_write_t *)lrc;
1754 const blkptr_t *bp = &lr->lr_blkptr;
1755 zbookmark_phys_t zb;
1757 ASSERT(!BP_IS_REDACTED(bp));
1758 if (BP_IS_HOLE(bp) ||
1759 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1760 return (0);
1763 * birth can be < claim_txg if this record's txg is
1764 * already txg sync'ed (but this log block contains
1765 * other records that are not synced)
1767 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1768 return (0);
1770 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1771 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1772 lr->lr_foid, ZB_ZIL_LEVEL,
1773 lr->lr_offset / BP_GET_LSIZE(bp));
1775 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1777 return (0);
1780 static void
1781 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1783 uint64_t claim_txg = zh->zh_claim_txg;
1784 zil_scan_arg_t zsa = { dp, zh };
1785 zilog_t *zilog;
1787 ASSERT(spa_writeable(dp->dp_spa));
1790 * We only want to visit blocks that have been claimed but not yet
1791 * replayed (or, in read-only mode, blocks that *would* be claimed).
1793 if (claim_txg == 0)
1794 return;
1796 zilog = zil_alloc(dp->dp_meta_objset, zh);
1798 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1799 claim_txg, B_FALSE);
1801 zil_free(zilog);
1805 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1806 * here is to sort the AVL tree by the order each block will be needed.
1808 static int
1809 scan_prefetch_queue_compare(const void *a, const void *b)
1811 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1812 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1813 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1815 return (zbookmark_compare(spc_a->spc_datablkszsec,
1816 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1817 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1820 static void
1821 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1823 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1824 zfs_refcount_destroy(&spc->spc_refcnt);
1825 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1829 static scan_prefetch_ctx_t *
1830 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1832 scan_prefetch_ctx_t *spc;
1834 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1835 zfs_refcount_create(&spc->spc_refcnt);
1836 zfs_refcount_add(&spc->spc_refcnt, tag);
1837 spc->spc_scn = scn;
1838 if (dnp != NULL) {
1839 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1840 spc->spc_indblkshift = dnp->dn_indblkshift;
1841 spc->spc_root = B_FALSE;
1842 } else {
1843 spc->spc_datablkszsec = 0;
1844 spc->spc_indblkshift = 0;
1845 spc->spc_root = B_TRUE;
1848 return (spc);
1851 static void
1852 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1854 zfs_refcount_add(&spc->spc_refcnt, tag);
1857 static void
1858 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1860 spa_t *spa = scn->scn_dp->dp_spa;
1861 void *cookie = NULL;
1862 scan_prefetch_issue_ctx_t *spic = NULL;
1864 mutex_enter(&spa->spa_scrub_lock);
1865 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1866 &cookie)) != NULL) {
1867 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1868 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1870 mutex_exit(&spa->spa_scrub_lock);
1873 static boolean_t
1874 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1875 const zbookmark_phys_t *zb)
1877 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1878 dnode_phys_t tmp_dnp;
1879 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1881 if (zb->zb_objset != last_zb->zb_objset)
1882 return (B_TRUE);
1883 if ((int64_t)zb->zb_object < 0)
1884 return (B_FALSE);
1886 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1887 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1889 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1890 return (B_TRUE);
1892 return (B_FALSE);
1895 static void
1896 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1898 avl_index_t idx;
1899 dsl_scan_t *scn = spc->spc_scn;
1900 spa_t *spa = scn->scn_dp->dp_spa;
1901 scan_prefetch_issue_ctx_t *spic;
1903 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1904 return;
1906 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1907 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1908 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1909 return;
1911 if (dsl_scan_check_prefetch_resume(spc, zb))
1912 return;
1914 scan_prefetch_ctx_add_ref(spc, scn);
1915 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1916 spic->spic_spc = spc;
1917 spic->spic_bp = *bp;
1918 spic->spic_zb = *zb;
1921 * Add the IO to the queue of blocks to prefetch. This allows us to
1922 * prioritize blocks that we will need first for the main traversal
1923 * thread.
1925 mutex_enter(&spa->spa_scrub_lock);
1926 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1927 /* this block is already queued for prefetch */
1928 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1929 scan_prefetch_ctx_rele(spc, scn);
1930 mutex_exit(&spa->spa_scrub_lock);
1931 return;
1934 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1935 cv_broadcast(&spa->spa_scrub_io_cv);
1936 mutex_exit(&spa->spa_scrub_lock);
1939 static void
1940 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1941 uint64_t objset, uint64_t object)
1943 int i;
1944 zbookmark_phys_t zb;
1945 scan_prefetch_ctx_t *spc;
1947 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1948 return;
1950 SET_BOOKMARK(&zb, objset, object, 0, 0);
1952 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1954 for (i = 0; i < dnp->dn_nblkptr; i++) {
1955 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1956 zb.zb_blkid = i;
1957 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1960 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1961 zb.zb_level = 0;
1962 zb.zb_blkid = DMU_SPILL_BLKID;
1963 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1966 scan_prefetch_ctx_rele(spc, FTAG);
1969 static void
1970 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1971 arc_buf_t *buf, void *private)
1973 (void) zio;
1974 scan_prefetch_ctx_t *spc = private;
1975 dsl_scan_t *scn = spc->spc_scn;
1976 spa_t *spa = scn->scn_dp->dp_spa;
1978 /* broadcast that the IO has completed for rate limiting purposes */
1979 mutex_enter(&spa->spa_scrub_lock);
1980 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1981 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1982 cv_broadcast(&spa->spa_scrub_io_cv);
1983 mutex_exit(&spa->spa_scrub_lock);
1985 /* if there was an error or we are done prefetching, just cleanup */
1986 if (buf == NULL || scn->scn_prefetch_stop)
1987 goto out;
1989 if (BP_GET_LEVEL(bp) > 0) {
1990 int i;
1991 blkptr_t *cbp;
1992 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1993 zbookmark_phys_t czb;
1995 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1996 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1997 zb->zb_level - 1, zb->zb_blkid * epb + i);
1998 dsl_scan_prefetch(spc, cbp, &czb);
2000 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2001 dnode_phys_t *cdnp;
2002 int i;
2003 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2005 for (i = 0, cdnp = buf->b_data; i < epb;
2006 i += cdnp->dn_extra_slots + 1,
2007 cdnp += cdnp->dn_extra_slots + 1) {
2008 dsl_scan_prefetch_dnode(scn, cdnp,
2009 zb->zb_objset, zb->zb_blkid * epb + i);
2011 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2012 objset_phys_t *osp = buf->b_data;
2014 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2015 zb->zb_objset, DMU_META_DNODE_OBJECT);
2017 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2018 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2019 dsl_scan_prefetch_dnode(scn,
2020 &osp->os_projectused_dnode, zb->zb_objset,
2021 DMU_PROJECTUSED_OBJECT);
2023 dsl_scan_prefetch_dnode(scn,
2024 &osp->os_groupused_dnode, zb->zb_objset,
2025 DMU_GROUPUSED_OBJECT);
2026 dsl_scan_prefetch_dnode(scn,
2027 &osp->os_userused_dnode, zb->zb_objset,
2028 DMU_USERUSED_OBJECT);
2032 out:
2033 if (buf != NULL)
2034 arc_buf_destroy(buf, private);
2035 scan_prefetch_ctx_rele(spc, scn);
2038 static void
2039 dsl_scan_prefetch_thread(void *arg)
2041 dsl_scan_t *scn = arg;
2042 spa_t *spa = scn->scn_dp->dp_spa;
2043 scan_prefetch_issue_ctx_t *spic;
2045 /* loop until we are told to stop */
2046 while (!scn->scn_prefetch_stop) {
2047 arc_flags_t flags = ARC_FLAG_NOWAIT |
2048 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2049 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2051 mutex_enter(&spa->spa_scrub_lock);
2054 * Wait until we have an IO to issue and are not above our
2055 * maximum in flight limit.
2057 while (!scn->scn_prefetch_stop &&
2058 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2059 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2060 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2063 /* recheck if we should stop since we waited for the cv */
2064 if (scn->scn_prefetch_stop) {
2065 mutex_exit(&spa->spa_scrub_lock);
2066 break;
2069 /* remove the prefetch IO from the tree */
2070 spic = avl_first(&scn->scn_prefetch_queue);
2071 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2072 avl_remove(&scn->scn_prefetch_queue, spic);
2074 mutex_exit(&spa->spa_scrub_lock);
2076 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2077 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2078 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2079 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2080 zio_flags |= ZIO_FLAG_RAW;
2083 /* We don't need data L1 buffer since we do not prefetch L0. */
2084 blkptr_t *bp = &spic->spic_bp;
2085 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2086 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2087 flags |= ARC_FLAG_NO_BUF;
2089 /* issue the prefetch asynchronously */
2090 (void) arc_read(scn->scn_zio_root, spa, bp,
2091 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2092 zio_flags, &flags, &spic->spic_zb);
2094 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2097 ASSERT(scn->scn_prefetch_stop);
2099 /* free any prefetches we didn't get to complete */
2100 mutex_enter(&spa->spa_scrub_lock);
2101 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2102 avl_remove(&scn->scn_prefetch_queue, spic);
2103 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2104 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2106 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2107 mutex_exit(&spa->spa_scrub_lock);
2110 static boolean_t
2111 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2112 const zbookmark_phys_t *zb)
2115 * We never skip over user/group accounting objects (obj<0)
2117 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2118 (int64_t)zb->zb_object >= 0) {
2120 * If we already visited this bp & everything below (in
2121 * a prior txg sync), don't bother doing it again.
2123 if (zbookmark_subtree_completed(dnp, zb,
2124 &scn->scn_phys.scn_bookmark))
2125 return (B_TRUE);
2128 * If we found the block we're trying to resume from, or
2129 * we went past it, zero it out to indicate that it's OK
2130 * to start checking for suspending again.
2132 if (zbookmark_subtree_tbd(dnp, zb,
2133 &scn->scn_phys.scn_bookmark)) {
2134 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2135 (longlong_t)zb->zb_objset,
2136 (longlong_t)zb->zb_object,
2137 (longlong_t)zb->zb_level,
2138 (longlong_t)zb->zb_blkid);
2139 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2142 return (B_FALSE);
2145 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
2146 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2147 dmu_objset_type_t ostype, dmu_tx_t *tx);
2148 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2149 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2150 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2153 * Return nonzero on i/o error.
2154 * Return new buf to write out in *bufp.
2156 inline __attribute__((always_inline)) static int
2157 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2158 dnode_phys_t *dnp, const blkptr_t *bp,
2159 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2161 dsl_pool_t *dp = scn->scn_dp;
2162 spa_t *spa = dp->dp_spa;
2163 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2164 int err;
2166 ASSERT(!BP_IS_REDACTED(bp));
2169 * There is an unlikely case of encountering dnodes with contradicting
2170 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2171 * or modified before commit 4254acb was merged. As it is not possible
2172 * to know which of the two is correct, report an error.
2174 if (dnp != NULL &&
2175 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2176 scn->scn_phys.scn_errors++;
2177 spa_log_error(spa, zb, &bp->blk_birth);
2178 return (SET_ERROR(EINVAL));
2181 if (BP_GET_LEVEL(bp) > 0) {
2182 arc_flags_t flags = ARC_FLAG_WAIT;
2183 int i;
2184 blkptr_t *cbp;
2185 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2186 arc_buf_t *buf;
2188 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2189 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2190 if (err) {
2191 scn->scn_phys.scn_errors++;
2192 return (err);
2194 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2195 zbookmark_phys_t czb;
2197 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2198 zb->zb_level - 1,
2199 zb->zb_blkid * epb + i);
2200 dsl_scan_visitbp(cbp, &czb, dnp,
2201 ds, scn, ostype, tx);
2203 arc_buf_destroy(buf, &buf);
2204 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2205 arc_flags_t flags = ARC_FLAG_WAIT;
2206 dnode_phys_t *cdnp;
2207 int i;
2208 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2209 arc_buf_t *buf;
2211 if (BP_IS_PROTECTED(bp)) {
2212 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2213 zio_flags |= ZIO_FLAG_RAW;
2216 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2217 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2218 if (err) {
2219 scn->scn_phys.scn_errors++;
2220 return (err);
2222 for (i = 0, cdnp = buf->b_data; i < epb;
2223 i += cdnp->dn_extra_slots + 1,
2224 cdnp += cdnp->dn_extra_slots + 1) {
2225 dsl_scan_visitdnode(scn, ds, ostype,
2226 cdnp, zb->zb_blkid * epb + i, tx);
2229 arc_buf_destroy(buf, &buf);
2230 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2231 arc_flags_t flags = ARC_FLAG_WAIT;
2232 objset_phys_t *osp;
2233 arc_buf_t *buf;
2235 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2236 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2237 if (err) {
2238 scn->scn_phys.scn_errors++;
2239 return (err);
2242 osp = buf->b_data;
2244 dsl_scan_visitdnode(scn, ds, osp->os_type,
2245 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2247 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2249 * We also always visit user/group/project accounting
2250 * objects, and never skip them, even if we are
2251 * suspending. This is necessary so that the
2252 * space deltas from this txg get integrated.
2254 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2255 dsl_scan_visitdnode(scn, ds, osp->os_type,
2256 &osp->os_projectused_dnode,
2257 DMU_PROJECTUSED_OBJECT, tx);
2258 dsl_scan_visitdnode(scn, ds, osp->os_type,
2259 &osp->os_groupused_dnode,
2260 DMU_GROUPUSED_OBJECT, tx);
2261 dsl_scan_visitdnode(scn, ds, osp->os_type,
2262 &osp->os_userused_dnode,
2263 DMU_USERUSED_OBJECT, tx);
2265 arc_buf_destroy(buf, &buf);
2266 } else if (!zfs_blkptr_verify(spa, bp,
2267 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2269 * Sanity check the block pointer contents, this is handled
2270 * by arc_read() for the cases above.
2272 scn->scn_phys.scn_errors++;
2273 spa_log_error(spa, zb, &bp->blk_birth);
2274 return (SET_ERROR(EINVAL));
2277 return (0);
2280 inline __attribute__((always_inline)) static void
2281 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2282 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2283 uint64_t object, dmu_tx_t *tx)
2285 int j;
2287 for (j = 0; j < dnp->dn_nblkptr; j++) {
2288 zbookmark_phys_t czb;
2290 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2291 dnp->dn_nlevels - 1, j);
2292 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2293 &czb, dnp, ds, scn, ostype, tx);
2296 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2297 zbookmark_phys_t czb;
2298 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2299 0, DMU_SPILL_BLKID);
2300 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2301 &czb, dnp, ds, scn, ostype, tx);
2306 * The arguments are in this order because mdb can only print the
2307 * first 5; we want them to be useful.
2309 static void
2310 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
2311 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2312 dmu_objset_type_t ostype, dmu_tx_t *tx)
2314 dsl_pool_t *dp = scn->scn_dp;
2315 blkptr_t *bp_toread = NULL;
2317 if (dsl_scan_check_suspend(scn, zb))
2318 return;
2320 if (dsl_scan_check_resume(scn, dnp, zb))
2321 return;
2323 scn->scn_visited_this_txg++;
2325 if (BP_IS_HOLE(bp)) {
2326 scn->scn_holes_this_txg++;
2327 return;
2330 if (BP_IS_REDACTED(bp)) {
2331 ASSERT(dsl_dataset_feature_is_active(ds,
2332 SPA_FEATURE_REDACTED_DATASETS));
2333 return;
2337 * Check if this block contradicts any filesystem flags.
2339 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2340 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2341 ASSERT(dsl_dataset_feature_is_active(ds, f));
2343 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2344 if (f != SPA_FEATURE_NONE)
2345 ASSERT(dsl_dataset_feature_is_active(ds, f));
2347 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2348 if (f != SPA_FEATURE_NONE)
2349 ASSERT(dsl_dataset_feature_is_active(ds, f));
2351 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
2352 scn->scn_lt_min_this_txg++;
2353 return;
2356 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
2357 *bp_toread = *bp;
2359 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
2360 goto out;
2363 * If dsl_scan_ddt() has already visited this block, it will have
2364 * already done any translations or scrubbing, so don't call the
2365 * callback again.
2367 if (ddt_class_contains(dp->dp_spa,
2368 scn->scn_phys.scn_ddt_class_max, bp)) {
2369 scn->scn_ddt_contained_this_txg++;
2370 goto out;
2374 * If this block is from the future (after cur_max_txg), then we
2375 * are doing this on behalf of a deleted snapshot, and we will
2376 * revisit the future block on the next pass of this dataset.
2377 * Don't scan it now unless we need to because something
2378 * under it was modified.
2380 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2381 scn->scn_gt_max_this_txg++;
2382 goto out;
2385 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2387 out:
2388 kmem_free(bp_toread, sizeof (blkptr_t));
2391 static void
2392 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2393 dmu_tx_t *tx)
2395 zbookmark_phys_t zb;
2396 scan_prefetch_ctx_t *spc;
2398 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2399 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2401 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2402 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2403 zb.zb_objset, 0, 0, 0);
2404 } else {
2405 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2408 scn->scn_objsets_visited_this_txg++;
2410 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2411 dsl_scan_prefetch(spc, bp, &zb);
2412 scan_prefetch_ctx_rele(spc, FTAG);
2414 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2416 dprintf_ds(ds, "finished scan%s", "");
2419 static void
2420 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2422 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2423 if (ds->ds_is_snapshot) {
2425 * Note:
2426 * - scn_cur_{min,max}_txg stays the same.
2427 * - Setting the flag is not really necessary if
2428 * scn_cur_max_txg == scn_max_txg, because there
2429 * is nothing after this snapshot that we care
2430 * about. However, we set it anyway and then
2431 * ignore it when we retraverse it in
2432 * dsl_scan_visitds().
2434 scn_phys->scn_bookmark.zb_objset =
2435 dsl_dataset_phys(ds)->ds_next_snap_obj;
2436 zfs_dbgmsg("destroying ds %llu on %s; currently "
2437 "traversing; reset zb_objset to %llu",
2438 (u_longlong_t)ds->ds_object,
2439 ds->ds_dir->dd_pool->dp_spa->spa_name,
2440 (u_longlong_t)dsl_dataset_phys(ds)->
2441 ds_next_snap_obj);
2442 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2443 } else {
2444 SET_BOOKMARK(&scn_phys->scn_bookmark,
2445 ZB_DESTROYED_OBJSET, 0, 0, 0);
2446 zfs_dbgmsg("destroying ds %llu on %s; currently "
2447 "traversing; reset bookmark to -1,0,0,0",
2448 (u_longlong_t)ds->ds_object,
2449 ds->ds_dir->dd_pool->dp_spa->spa_name);
2455 * Invoked when a dataset is destroyed. We need to make sure that:
2457 * 1) If it is the dataset that was currently being scanned, we write
2458 * a new dsl_scan_phys_t and marking the objset reference in it
2459 * as destroyed.
2460 * 2) Remove it from the work queue, if it was present.
2462 * If the dataset was actually a snapshot, instead of marking the dataset
2463 * as destroyed, we instead substitute the next snapshot in line.
2465 void
2466 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2468 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2469 dsl_scan_t *scn = dp->dp_scan;
2470 uint64_t mintxg;
2472 if (!dsl_scan_is_running(scn))
2473 return;
2475 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2476 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2478 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2479 scan_ds_queue_remove(scn, ds->ds_object);
2480 if (ds->ds_is_snapshot)
2481 scan_ds_queue_insert(scn,
2482 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2485 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2486 ds->ds_object, &mintxg) == 0) {
2487 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2488 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2489 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2490 if (ds->ds_is_snapshot) {
2492 * We keep the same mintxg; it could be >
2493 * ds_creation_txg if the previous snapshot was
2494 * deleted too.
2496 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2497 scn->scn_phys.scn_queue_obj,
2498 dsl_dataset_phys(ds)->ds_next_snap_obj,
2499 mintxg, tx) == 0);
2500 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2501 "replacing with %llu",
2502 (u_longlong_t)ds->ds_object,
2503 dp->dp_spa->spa_name,
2504 (u_longlong_t)dsl_dataset_phys(ds)->
2505 ds_next_snap_obj);
2506 } else {
2507 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2508 "removing",
2509 (u_longlong_t)ds->ds_object,
2510 dp->dp_spa->spa_name);
2515 * dsl_scan_sync() should be called after this, and should sync
2516 * out our changed state, but just to be safe, do it here.
2518 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2521 static void
2522 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2524 if (scn_bookmark->zb_objset == ds->ds_object) {
2525 scn_bookmark->zb_objset =
2526 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2527 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2528 "reset zb_objset to %llu",
2529 (u_longlong_t)ds->ds_object,
2530 ds->ds_dir->dd_pool->dp_spa->spa_name,
2531 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2536 * Called when a dataset is snapshotted. If we were currently traversing
2537 * this snapshot, we reset our bookmark to point at the newly created
2538 * snapshot. We also modify our work queue to remove the old snapshot and
2539 * replace with the new one.
2541 void
2542 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2544 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2545 dsl_scan_t *scn = dp->dp_scan;
2546 uint64_t mintxg;
2548 if (!dsl_scan_is_running(scn))
2549 return;
2551 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2553 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2554 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2556 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2557 scan_ds_queue_remove(scn, ds->ds_object);
2558 scan_ds_queue_insert(scn,
2559 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2562 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2563 ds->ds_object, &mintxg) == 0) {
2564 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2565 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2566 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2567 scn->scn_phys.scn_queue_obj,
2568 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2569 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2570 "replacing with %llu",
2571 (u_longlong_t)ds->ds_object,
2572 dp->dp_spa->spa_name,
2573 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2576 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2579 static void
2580 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2581 zbookmark_phys_t *scn_bookmark)
2583 if (scn_bookmark->zb_objset == ds1->ds_object) {
2584 scn_bookmark->zb_objset = ds2->ds_object;
2585 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2586 "reset zb_objset to %llu",
2587 (u_longlong_t)ds1->ds_object,
2588 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2589 (u_longlong_t)ds2->ds_object);
2590 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2591 scn_bookmark->zb_objset = ds1->ds_object;
2592 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2593 "reset zb_objset to %llu",
2594 (u_longlong_t)ds2->ds_object,
2595 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2596 (u_longlong_t)ds1->ds_object);
2601 * Called when an origin dataset and its clone are swapped. If we were
2602 * currently traversing the dataset, we need to switch to traversing the
2603 * newly promoted clone.
2605 void
2606 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2608 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2609 dsl_scan_t *scn = dp->dp_scan;
2610 uint64_t mintxg1, mintxg2;
2611 boolean_t ds1_queued, ds2_queued;
2613 if (!dsl_scan_is_running(scn))
2614 return;
2616 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2617 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2620 * Handle the in-memory scan queue.
2622 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2623 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2625 /* Sanity checking. */
2626 if (ds1_queued) {
2627 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2628 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2630 if (ds2_queued) {
2631 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2632 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2635 if (ds1_queued && ds2_queued) {
2637 * If both are queued, we don't need to do anything.
2638 * The swapping code below would not handle this case correctly,
2639 * since we can't insert ds2 if it is already there. That's
2640 * because scan_ds_queue_insert() prohibits a duplicate insert
2641 * and panics.
2643 } else if (ds1_queued) {
2644 scan_ds_queue_remove(scn, ds1->ds_object);
2645 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2646 } else if (ds2_queued) {
2647 scan_ds_queue_remove(scn, ds2->ds_object);
2648 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2652 * Handle the on-disk scan queue.
2653 * The on-disk state is an out-of-date version of the in-memory state,
2654 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2655 * be different. Therefore we need to apply the swap logic to the
2656 * on-disk state independently of the in-memory state.
2658 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2659 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2660 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2661 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2663 /* Sanity checking. */
2664 if (ds1_queued) {
2665 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2666 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2668 if (ds2_queued) {
2669 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2670 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2673 if (ds1_queued && ds2_queued) {
2675 * If both are queued, we don't need to do anything.
2676 * Alternatively, we could check for EEXIST from
2677 * zap_add_int_key() and back out to the original state, but
2678 * that would be more work than checking for this case upfront.
2680 } else if (ds1_queued) {
2681 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2682 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2683 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2684 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2685 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2686 "replacing with %llu",
2687 (u_longlong_t)ds1->ds_object,
2688 dp->dp_spa->spa_name,
2689 (u_longlong_t)ds2->ds_object);
2690 } else if (ds2_queued) {
2691 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2692 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2693 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2694 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2695 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2696 "replacing with %llu",
2697 (u_longlong_t)ds2->ds_object,
2698 dp->dp_spa->spa_name,
2699 (u_longlong_t)ds1->ds_object);
2702 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2705 static int
2706 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2708 uint64_t originobj = *(uint64_t *)arg;
2709 dsl_dataset_t *ds;
2710 int err;
2711 dsl_scan_t *scn = dp->dp_scan;
2713 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2714 return (0);
2716 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2717 if (err)
2718 return (err);
2720 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2721 dsl_dataset_t *prev;
2722 err = dsl_dataset_hold_obj(dp,
2723 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2725 dsl_dataset_rele(ds, FTAG);
2726 if (err)
2727 return (err);
2728 ds = prev;
2730 scan_ds_queue_insert(scn, ds->ds_object,
2731 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2732 dsl_dataset_rele(ds, FTAG);
2733 return (0);
2736 static void
2737 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2739 dsl_pool_t *dp = scn->scn_dp;
2740 dsl_dataset_t *ds;
2742 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2744 if (scn->scn_phys.scn_cur_min_txg >=
2745 scn->scn_phys.scn_max_txg) {
2747 * This can happen if this snapshot was created after the
2748 * scan started, and we already completed a previous snapshot
2749 * that was created after the scan started. This snapshot
2750 * only references blocks with:
2752 * birth < our ds_creation_txg
2753 * cur_min_txg is no less than ds_creation_txg.
2754 * We have already visited these blocks.
2755 * or
2756 * birth > scn_max_txg
2757 * The scan requested not to visit these blocks.
2759 * Subsequent snapshots (and clones) can reference our
2760 * blocks, or blocks with even higher birth times.
2761 * Therefore we do not need to visit them either,
2762 * so we do not add them to the work queue.
2764 * Note that checking for cur_min_txg >= cur_max_txg
2765 * is not sufficient, because in that case we may need to
2766 * visit subsequent snapshots. This happens when min_txg > 0,
2767 * which raises cur_min_txg. In this case we will visit
2768 * this dataset but skip all of its blocks, because the
2769 * rootbp's birth time is < cur_min_txg. Then we will
2770 * add the next snapshots/clones to the work queue.
2772 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2773 dsl_dataset_name(ds, dsname);
2774 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2775 "cur_min_txg (%llu) >= max_txg (%llu)",
2776 (longlong_t)dsobj, dsname,
2777 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2778 (longlong_t)scn->scn_phys.scn_max_txg);
2779 kmem_free(dsname, MAXNAMELEN);
2781 goto out;
2785 * Only the ZIL in the head (non-snapshot) is valid. Even though
2786 * snapshots can have ZIL block pointers (which may be the same
2787 * BP as in the head), they must be ignored. In addition, $ORIGIN
2788 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2789 * need to look for a ZIL in it either. So we traverse the ZIL here,
2790 * rather than in scan_recurse(), because the regular snapshot
2791 * block-sharing rules don't apply to it.
2793 if (!dsl_dataset_is_snapshot(ds) &&
2794 (dp->dp_origin_snap == NULL ||
2795 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2796 objset_t *os;
2797 if (dmu_objset_from_ds(ds, &os) != 0) {
2798 goto out;
2800 dsl_scan_zil(dp, &os->os_zil_header);
2804 * Iterate over the bps in this ds.
2806 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2807 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2808 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2809 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2811 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2812 dsl_dataset_name(ds, dsname);
2813 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2814 "suspending=%u",
2815 (longlong_t)dsobj, dsname,
2816 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2817 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2818 (int)scn->scn_suspending);
2819 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2821 if (scn->scn_suspending)
2822 goto out;
2825 * We've finished this pass over this dataset.
2829 * If we did not completely visit this dataset, do another pass.
2831 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2832 zfs_dbgmsg("incomplete pass on %s; visiting again",
2833 dp->dp_spa->spa_name);
2834 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2835 scan_ds_queue_insert(scn, ds->ds_object,
2836 scn->scn_phys.scn_cur_max_txg);
2837 goto out;
2841 * Add descendant datasets to work queue.
2843 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2844 scan_ds_queue_insert(scn,
2845 dsl_dataset_phys(ds)->ds_next_snap_obj,
2846 dsl_dataset_phys(ds)->ds_creation_txg);
2848 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2849 boolean_t usenext = B_FALSE;
2850 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2851 uint64_t count;
2853 * A bug in a previous version of the code could
2854 * cause upgrade_clones_cb() to not set
2855 * ds_next_snap_obj when it should, leading to a
2856 * missing entry. Therefore we can only use the
2857 * next_clones_obj when its count is correct.
2859 int err = zap_count(dp->dp_meta_objset,
2860 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2861 if (err == 0 &&
2862 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2863 usenext = B_TRUE;
2866 if (usenext) {
2867 zap_cursor_t zc;
2868 zap_attribute_t za;
2869 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2870 dsl_dataset_phys(ds)->ds_next_clones_obj);
2871 zap_cursor_retrieve(&zc, &za) == 0;
2872 (void) zap_cursor_advance(&zc)) {
2873 scan_ds_queue_insert(scn,
2874 zfs_strtonum(za.za_name, NULL),
2875 dsl_dataset_phys(ds)->ds_creation_txg);
2877 zap_cursor_fini(&zc);
2878 } else {
2879 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2880 enqueue_clones_cb, &ds->ds_object,
2881 DS_FIND_CHILDREN));
2885 out:
2886 dsl_dataset_rele(ds, FTAG);
2889 static int
2890 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2892 (void) arg;
2893 dsl_dataset_t *ds;
2894 int err;
2895 dsl_scan_t *scn = dp->dp_scan;
2897 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2898 if (err)
2899 return (err);
2901 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2902 dsl_dataset_t *prev;
2903 err = dsl_dataset_hold_obj(dp,
2904 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2905 if (err) {
2906 dsl_dataset_rele(ds, FTAG);
2907 return (err);
2911 * If this is a clone, we don't need to worry about it for now.
2913 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2914 dsl_dataset_rele(ds, FTAG);
2915 dsl_dataset_rele(prev, FTAG);
2916 return (0);
2918 dsl_dataset_rele(ds, FTAG);
2919 ds = prev;
2922 scan_ds_queue_insert(scn, ds->ds_object,
2923 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2924 dsl_dataset_rele(ds, FTAG);
2925 return (0);
2928 void
2929 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2930 ddt_entry_t *dde, dmu_tx_t *tx)
2932 (void) tx;
2933 const ddt_key_t *ddk = &dde->dde_key;
2934 ddt_phys_t *ddp = dde->dde_phys;
2935 blkptr_t bp;
2936 zbookmark_phys_t zb = { 0 };
2938 if (!dsl_scan_is_running(scn))
2939 return;
2942 * This function is special because it is the only thing
2943 * that can add scan_io_t's to the vdev scan queues from
2944 * outside dsl_scan_sync(). For the most part this is ok
2945 * as long as it is called from within syncing context.
2946 * However, dsl_scan_sync() expects that no new sio's will
2947 * be added between when all the work for a scan is done
2948 * and the next txg when the scan is actually marked as
2949 * completed. This check ensures we do not issue new sio's
2950 * during this period.
2952 if (scn->scn_done_txg != 0)
2953 return;
2955 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2956 if (ddp->ddp_phys_birth == 0 ||
2957 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2958 continue;
2959 ddt_bp_create(checksum, ddk, ddp, &bp);
2961 scn->scn_visited_this_txg++;
2962 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2967 * Scrub/dedup interaction.
2969 * If there are N references to a deduped block, we don't want to scrub it
2970 * N times -- ideally, we should scrub it exactly once.
2972 * We leverage the fact that the dde's replication class (enum ddt_class)
2973 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2974 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2976 * To prevent excess scrubbing, the scrub begins by walking the DDT
2977 * to find all blocks with refcnt > 1, and scrubs each of these once.
2978 * Since there are two replication classes which contain blocks with
2979 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2980 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2982 * There would be nothing more to say if a block's refcnt couldn't change
2983 * during a scrub, but of course it can so we must account for changes
2984 * in a block's replication class.
2986 * Here's an example of what can occur:
2988 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2989 * when visited during the top-down scrub phase, it will be scrubbed twice.
2990 * This negates our scrub optimization, but is otherwise harmless.
2992 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2993 * on each visit during the top-down scrub phase, it will never be scrubbed.
2994 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2995 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2996 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2997 * while a scrub is in progress, it scrubs the block right then.
2999 static void
3000 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3002 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3003 ddt_entry_t dde = {{{{0}}}};
3004 int error;
3005 uint64_t n = 0;
3007 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
3008 ddt_t *ddt;
3010 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3011 break;
3012 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3013 (longlong_t)ddb->ddb_class,
3014 (longlong_t)ddb->ddb_type,
3015 (longlong_t)ddb->ddb_checksum,
3016 (longlong_t)ddb->ddb_cursor);
3018 /* There should be no pending changes to the dedup table */
3019 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3020 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3022 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
3023 n++;
3025 if (dsl_scan_check_suspend(scn, NULL))
3026 break;
3029 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
3030 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
3031 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
3033 ASSERT(error == 0 || error == ENOENT);
3034 ASSERT(error != ENOENT ||
3035 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3038 static uint64_t
3039 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3041 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3042 if (ds->ds_is_snapshot)
3043 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3044 return (smt);
3047 static void
3048 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3050 scan_ds_t *sds;
3051 dsl_pool_t *dp = scn->scn_dp;
3053 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3054 scn->scn_phys.scn_ddt_class_max) {
3055 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3056 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3057 dsl_scan_ddt(scn, tx);
3058 if (scn->scn_suspending)
3059 return;
3062 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3063 /* First do the MOS & ORIGIN */
3065 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3066 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3067 dsl_scan_visit_rootbp(scn, NULL,
3068 &dp->dp_meta_rootbp, tx);
3069 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
3070 if (scn->scn_suspending)
3071 return;
3073 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3074 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3075 enqueue_cb, NULL, DS_FIND_CHILDREN));
3076 } else {
3077 dsl_scan_visitds(scn,
3078 dp->dp_origin_snap->ds_object, tx);
3080 ASSERT(!scn->scn_suspending);
3081 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3082 ZB_DESTROYED_OBJSET) {
3083 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3085 * If we were suspended, continue from here. Note if the
3086 * ds we were suspended on was deleted, the zb_objset may
3087 * be -1, so we will skip this and find a new objset
3088 * below.
3090 dsl_scan_visitds(scn, dsobj, tx);
3091 if (scn->scn_suspending)
3092 return;
3096 * In case we suspended right at the end of the ds, zero the
3097 * bookmark so we don't think that we're still trying to resume.
3099 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3102 * Keep pulling things out of the dataset avl queue. Updates to the
3103 * persistent zap-object-as-queue happen only at checkpoints.
3105 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3106 dsl_dataset_t *ds;
3107 uint64_t dsobj = sds->sds_dsobj;
3108 uint64_t txg = sds->sds_txg;
3110 /* dequeue and free the ds from the queue */
3111 scan_ds_queue_remove(scn, dsobj);
3112 sds = NULL;
3114 /* set up min / max txg */
3115 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3116 if (txg != 0) {
3117 scn->scn_phys.scn_cur_min_txg =
3118 MAX(scn->scn_phys.scn_min_txg, txg);
3119 } else {
3120 scn->scn_phys.scn_cur_min_txg =
3121 MAX(scn->scn_phys.scn_min_txg,
3122 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3124 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3125 dsl_dataset_rele(ds, FTAG);
3127 dsl_scan_visitds(scn, dsobj, tx);
3128 if (scn->scn_suspending)
3129 return;
3132 /* No more objsets to fetch, we're done */
3133 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3134 ASSERT0(scn->scn_suspending);
3137 static uint64_t
3138 dsl_scan_count_data_disks(spa_t *spa)
3140 vdev_t *rvd = spa->spa_root_vdev;
3141 uint64_t i, leaves = 0;
3143 for (i = 0; i < rvd->vdev_children; i++) {
3144 vdev_t *vd = rvd->vdev_child[i];
3145 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3146 continue;
3147 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3149 return (leaves);
3152 static void
3153 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3155 int i;
3156 uint64_t cur_size = 0;
3158 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3159 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3162 q->q_total_zio_size_this_txg += cur_size;
3163 q->q_zios_this_txg++;
3166 static void
3167 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3168 uint64_t end)
3170 q->q_total_seg_size_this_txg += end - start;
3171 q->q_segs_this_txg++;
3174 static boolean_t
3175 scan_io_queue_check_suspend(dsl_scan_t *scn)
3177 /* See comment in dsl_scan_check_suspend() */
3178 uint64_t curr_time_ns = gethrtime();
3179 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3180 uint64_t sync_time_ns = curr_time_ns -
3181 scn->scn_dp->dp_spa->spa_sync_starttime;
3182 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3183 zfs_vdev_async_write_active_min_dirty_percent / 100;
3184 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3185 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3187 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3188 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3189 txg_sync_waiting(scn->scn_dp) ||
3190 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3191 spa_shutting_down(scn->scn_dp->dp_spa));
3195 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3196 * disk. This consumes the io_list and frees the scan_io_t's. This is
3197 * called when emptying queues, either when we're up against the memory
3198 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3199 * processing the list before we finished. Any sios that were not issued
3200 * will remain in the io_list.
3202 static boolean_t
3203 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3205 dsl_scan_t *scn = queue->q_scn;
3206 scan_io_t *sio;
3207 boolean_t suspended = B_FALSE;
3209 while ((sio = list_head(io_list)) != NULL) {
3210 blkptr_t bp;
3212 if (scan_io_queue_check_suspend(scn)) {
3213 suspended = B_TRUE;
3214 break;
3217 sio2bp(sio, &bp);
3218 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3219 &sio->sio_zb, queue);
3220 (void) list_remove_head(io_list);
3221 scan_io_queues_update_zio_stats(queue, &bp);
3222 sio_free(sio);
3224 return (suspended);
3228 * This function removes sios from an IO queue which reside within a given
3229 * range_seg_t and inserts them (in offset order) into a list. Note that
3230 * we only ever return a maximum of 32 sios at once. If there are more sios
3231 * to process within this segment that did not make it onto the list we
3232 * return B_TRUE and otherwise B_FALSE.
3234 static boolean_t
3235 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
3237 scan_io_t *srch_sio, *sio, *next_sio;
3238 avl_index_t idx;
3239 uint_t num_sios = 0;
3240 int64_t bytes_issued = 0;
3242 ASSERT(rs != NULL);
3243 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3245 srch_sio = sio_alloc(1);
3246 srch_sio->sio_nr_dvas = 1;
3247 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
3250 * The exact start of the extent might not contain any matching zios,
3251 * so if that's the case, examine the next one in the tree.
3253 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3254 sio_free(srch_sio);
3256 if (sio == NULL)
3257 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3259 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3260 queue->q_exts_by_addr) && num_sios <= 32) {
3261 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
3262 queue->q_exts_by_addr));
3263 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
3264 queue->q_exts_by_addr));
3266 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3267 avl_remove(&queue->q_sios_by_addr, sio);
3268 if (avl_is_empty(&queue->q_sios_by_addr))
3269 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3270 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3272 bytes_issued += SIO_GET_ASIZE(sio);
3273 num_sios++;
3274 list_insert_tail(list, sio);
3275 sio = next_sio;
3279 * We limit the number of sios we process at once to 32 to avoid
3280 * biting off more than we can chew. If we didn't take everything
3281 * in the segment we update it to reflect the work we were able to
3282 * complete. Otherwise, we remove it from the range tree entirely.
3284 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
3285 queue->q_exts_by_addr)) {
3286 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3287 -bytes_issued);
3288 range_tree_resize_segment(queue->q_exts_by_addr, rs,
3289 SIO_GET_OFFSET(sio), rs_get_end(rs,
3290 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3291 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3292 return (B_TRUE);
3293 } else {
3294 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3295 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3296 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3297 queue->q_last_ext_addr = -1;
3298 return (B_FALSE);
3303 * This is called from the queue emptying thread and selects the next
3304 * extent from which we are to issue I/Os. The behavior of this function
3305 * depends on the state of the scan, the current memory consumption and
3306 * whether or not we are performing a scan shutdown.
3307 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3308 * needs to perform a checkpoint
3309 * 2) We select the largest available extent if we are up against the
3310 * memory limit.
3311 * 3) Otherwise we don't select any extents.
3313 static range_seg_t *
3314 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3316 dsl_scan_t *scn = queue->q_scn;
3317 range_tree_t *rt = queue->q_exts_by_addr;
3319 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3320 ASSERT(scn->scn_is_sorted);
3322 if (!scn->scn_checkpointing && !scn->scn_clearing)
3323 return (NULL);
3326 * During normal clearing, we want to issue our largest segments
3327 * first, keeping IO as sequential as possible, and leaving the
3328 * smaller extents for later with the hope that they might eventually
3329 * grow to larger sequential segments. However, when the scan is
3330 * checkpointing, no new extents will be added to the sorting queue,
3331 * so the way we are sorted now is as good as it will ever get.
3332 * In this case, we instead switch to issuing extents in LBA order.
3334 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3335 zfs_scan_issue_strategy == 1)
3336 return (range_tree_first(rt));
3339 * Try to continue previous extent if it is not completed yet. After
3340 * shrink in scan_io_queue_gather() it may no longer be the best, but
3341 * otherwise we leave shorter remnant every txg.
3343 uint64_t start;
3344 uint64_t size = 1ULL << rt->rt_shift;
3345 range_seg_t *addr_rs;
3346 if (queue->q_last_ext_addr != -1) {
3347 start = queue->q_last_ext_addr;
3348 addr_rs = range_tree_find(rt, start, size);
3349 if (addr_rs != NULL)
3350 return (addr_rs);
3354 * Nothing to continue, so find new best extent.
3356 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3357 if (v == NULL)
3358 return (NULL);
3359 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3362 * We need to get the original entry in the by_addr tree so we can
3363 * modify it.
3365 addr_rs = range_tree_find(rt, start, size);
3366 ASSERT3P(addr_rs, !=, NULL);
3367 ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3368 ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3369 return (addr_rs);
3372 static void
3373 scan_io_queues_run_one(void *arg)
3375 dsl_scan_io_queue_t *queue = arg;
3376 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3377 boolean_t suspended = B_FALSE;
3378 range_seg_t *rs;
3379 scan_io_t *sio;
3380 zio_t *zio;
3381 list_t sio_list;
3383 ASSERT(queue->q_scn->scn_is_sorted);
3385 list_create(&sio_list, sizeof (scan_io_t),
3386 offsetof(scan_io_t, sio_nodes.sio_list_node));
3387 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3388 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3389 mutex_enter(q_lock);
3390 queue->q_zio = zio;
3392 /* Calculate maximum in-flight bytes for this vdev. */
3393 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3394 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3396 /* reset per-queue scan statistics for this txg */
3397 queue->q_total_seg_size_this_txg = 0;
3398 queue->q_segs_this_txg = 0;
3399 queue->q_total_zio_size_this_txg = 0;
3400 queue->q_zios_this_txg = 0;
3402 /* loop until we run out of time or sios */
3403 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3404 uint64_t seg_start = 0, seg_end = 0;
3405 boolean_t more_left;
3407 ASSERT(list_is_empty(&sio_list));
3409 /* loop while we still have sios left to process in this rs */
3410 do {
3411 scan_io_t *first_sio, *last_sio;
3414 * We have selected which extent needs to be
3415 * processed next. Gather up the corresponding sios.
3417 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3418 ASSERT(!list_is_empty(&sio_list));
3419 first_sio = list_head(&sio_list);
3420 last_sio = list_tail(&sio_list);
3422 seg_end = SIO_GET_END_OFFSET(last_sio);
3423 if (seg_start == 0)
3424 seg_start = SIO_GET_OFFSET(first_sio);
3427 * Issuing sios can take a long time so drop the
3428 * queue lock. The sio queue won't be updated by
3429 * other threads since we're in syncing context so
3430 * we can be sure that our trees will remain exactly
3431 * as we left them.
3433 mutex_exit(q_lock);
3434 suspended = scan_io_queue_issue(queue, &sio_list);
3435 mutex_enter(q_lock);
3437 if (suspended)
3438 break;
3439 } while (more_left);
3441 /* update statistics for debugging purposes */
3442 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3444 if (suspended)
3445 break;
3449 * If we were suspended in the middle of processing,
3450 * requeue any unfinished sios and exit.
3452 while ((sio = list_remove_head(&sio_list)) != NULL)
3453 scan_io_queue_insert_impl(queue, sio);
3455 queue->q_zio = NULL;
3456 mutex_exit(q_lock);
3457 zio_nowait(zio);
3458 list_destroy(&sio_list);
3462 * Performs an emptying run on all scan queues in the pool. This just
3463 * punches out one thread per top-level vdev, each of which processes
3464 * only that vdev's scan queue. We can parallelize the I/O here because
3465 * we know that each queue's I/Os only affect its own top-level vdev.
3467 * This function waits for the queue runs to complete, and must be
3468 * called from dsl_scan_sync (or in general, syncing context).
3470 static void
3471 scan_io_queues_run(dsl_scan_t *scn)
3473 spa_t *spa = scn->scn_dp->dp_spa;
3475 ASSERT(scn->scn_is_sorted);
3476 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3478 if (scn->scn_queues_pending == 0)
3479 return;
3481 if (scn->scn_taskq == NULL) {
3482 int nthreads = spa->spa_root_vdev->vdev_children;
3485 * We need to make this taskq *always* execute as many
3486 * threads in parallel as we have top-level vdevs and no
3487 * less, otherwise strange serialization of the calls to
3488 * scan_io_queues_run_one can occur during spa_sync runs
3489 * and that significantly impacts performance.
3491 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3492 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3495 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3496 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3498 mutex_enter(&vd->vdev_scan_io_queue_lock);
3499 if (vd->vdev_scan_io_queue != NULL) {
3500 VERIFY(taskq_dispatch(scn->scn_taskq,
3501 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3502 TQ_SLEEP) != TASKQID_INVALID);
3504 mutex_exit(&vd->vdev_scan_io_queue_lock);
3508 * Wait for the queues to finish issuing their IOs for this run
3509 * before we return. There may still be IOs in flight at this
3510 * point.
3512 taskq_wait(scn->scn_taskq);
3515 static boolean_t
3516 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3518 uint64_t elapsed_nanosecs;
3520 if (zfs_recover)
3521 return (B_FALSE);
3523 if (zfs_async_block_max_blocks != 0 &&
3524 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3525 return (B_TRUE);
3528 if (zfs_max_async_dedup_frees != 0 &&
3529 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3530 return (B_TRUE);
3533 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3534 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3535 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3536 txg_sync_waiting(scn->scn_dp)) ||
3537 spa_shutting_down(scn->scn_dp->dp_spa));
3540 static int
3541 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3543 dsl_scan_t *scn = arg;
3545 if (!scn->scn_is_bptree ||
3546 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3547 if (dsl_scan_async_block_should_pause(scn))
3548 return (SET_ERROR(ERESTART));
3551 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3552 dmu_tx_get_txg(tx), bp, 0));
3553 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3554 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3555 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3556 scn->scn_visited_this_txg++;
3557 if (BP_GET_DEDUP(bp))
3558 scn->scn_dedup_frees_this_txg++;
3559 return (0);
3562 static void
3563 dsl_scan_update_stats(dsl_scan_t *scn)
3565 spa_t *spa = scn->scn_dp->dp_spa;
3566 uint64_t i;
3567 uint64_t seg_size_total = 0, zio_size_total = 0;
3568 uint64_t seg_count_total = 0, zio_count_total = 0;
3570 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3571 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3572 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3574 if (queue == NULL)
3575 continue;
3577 seg_size_total += queue->q_total_seg_size_this_txg;
3578 zio_size_total += queue->q_total_zio_size_this_txg;
3579 seg_count_total += queue->q_segs_this_txg;
3580 zio_count_total += queue->q_zios_this_txg;
3583 if (seg_count_total == 0 || zio_count_total == 0) {
3584 scn->scn_avg_seg_size_this_txg = 0;
3585 scn->scn_avg_zio_size_this_txg = 0;
3586 scn->scn_segs_this_txg = 0;
3587 scn->scn_zios_this_txg = 0;
3588 return;
3591 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3592 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3593 scn->scn_segs_this_txg = seg_count_total;
3594 scn->scn_zios_this_txg = zio_count_total;
3597 static int
3598 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3599 dmu_tx_t *tx)
3601 ASSERT(!bp_freed);
3602 return (dsl_scan_free_block_cb(arg, bp, tx));
3605 static int
3606 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3607 dmu_tx_t *tx)
3609 ASSERT(!bp_freed);
3610 dsl_scan_t *scn = arg;
3611 const dva_t *dva = &bp->blk_dva[0];
3613 if (dsl_scan_async_block_should_pause(scn))
3614 return (SET_ERROR(ERESTART));
3616 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3617 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3618 DVA_GET_ASIZE(dva), tx);
3619 scn->scn_visited_this_txg++;
3620 return (0);
3623 boolean_t
3624 dsl_scan_active(dsl_scan_t *scn)
3626 spa_t *spa = scn->scn_dp->dp_spa;
3627 uint64_t used = 0, comp, uncomp;
3628 boolean_t clones_left;
3630 if (spa->spa_load_state != SPA_LOAD_NONE)
3631 return (B_FALSE);
3632 if (spa_shutting_down(spa))
3633 return (B_FALSE);
3634 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3635 (scn->scn_async_destroying && !scn->scn_async_stalled))
3636 return (B_TRUE);
3638 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3639 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3640 &used, &comp, &uncomp);
3642 clones_left = spa_livelist_delete_check(spa);
3643 return ((used != 0) || (clones_left));
3646 boolean_t
3647 dsl_errorscrub_active(dsl_scan_t *scn)
3649 spa_t *spa = scn->scn_dp->dp_spa;
3650 if (spa->spa_load_state != SPA_LOAD_NONE)
3651 return (B_FALSE);
3652 if (spa_shutting_down(spa))
3653 return (B_FALSE);
3654 if (dsl_errorscrubbing(scn->scn_dp))
3655 return (B_TRUE);
3656 return (B_FALSE);
3659 static boolean_t
3660 dsl_scan_check_deferred(vdev_t *vd)
3662 boolean_t need_resilver = B_FALSE;
3664 for (int c = 0; c < vd->vdev_children; c++) {
3665 need_resilver |=
3666 dsl_scan_check_deferred(vd->vdev_child[c]);
3669 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3670 !vd->vdev_ops->vdev_op_leaf)
3671 return (need_resilver);
3673 if (!vd->vdev_resilver_deferred)
3674 need_resilver = B_TRUE;
3676 return (need_resilver);
3679 static boolean_t
3680 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3681 uint64_t phys_birth)
3683 vdev_t *vd;
3685 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3687 if (vd->vdev_ops == &vdev_indirect_ops) {
3689 * The indirect vdev can point to multiple
3690 * vdevs. For simplicity, always create
3691 * the resilver zio_t. zio_vdev_io_start()
3692 * will bypass the child resilver i/o's if
3693 * they are on vdevs that don't have DTL's.
3695 return (B_TRUE);
3698 if (DVA_GET_GANG(dva)) {
3700 * Gang members may be spread across multiple
3701 * vdevs, so the best estimate we have is the
3702 * scrub range, which has already been checked.
3703 * XXX -- it would be better to change our
3704 * allocation policy to ensure that all
3705 * gang members reside on the same vdev.
3707 return (B_TRUE);
3711 * Check if the top-level vdev must resilver this offset.
3712 * When the offset does not intersect with a dirty leaf DTL
3713 * then it may be possible to skip the resilver IO. The psize
3714 * is provided instead of asize to simplify the check for RAIDZ.
3716 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3717 return (B_FALSE);
3720 * Check that this top-level vdev has a device under it which
3721 * is resilvering and is not deferred.
3723 if (!dsl_scan_check_deferred(vd))
3724 return (B_FALSE);
3726 return (B_TRUE);
3729 static int
3730 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3732 dsl_scan_t *scn = dp->dp_scan;
3733 spa_t *spa = dp->dp_spa;
3734 int err = 0;
3736 if (spa_suspend_async_destroy(spa))
3737 return (0);
3739 if (zfs_free_bpobj_enabled &&
3740 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3741 scn->scn_is_bptree = B_FALSE;
3742 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3743 scn->scn_zio_root = zio_root(spa, NULL,
3744 NULL, ZIO_FLAG_MUSTSUCCEED);
3745 err = bpobj_iterate(&dp->dp_free_bpobj,
3746 bpobj_dsl_scan_free_block_cb, scn, tx);
3747 VERIFY0(zio_wait(scn->scn_zio_root));
3748 scn->scn_zio_root = NULL;
3750 if (err != 0 && err != ERESTART)
3751 zfs_panic_recover("error %u from bpobj_iterate()", err);
3754 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3755 ASSERT(scn->scn_async_destroying);
3756 scn->scn_is_bptree = B_TRUE;
3757 scn->scn_zio_root = zio_root(spa, NULL,
3758 NULL, ZIO_FLAG_MUSTSUCCEED);
3759 err = bptree_iterate(dp->dp_meta_objset,
3760 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3761 VERIFY0(zio_wait(scn->scn_zio_root));
3762 scn->scn_zio_root = NULL;
3764 if (err == EIO || err == ECKSUM) {
3765 err = 0;
3766 } else if (err != 0 && err != ERESTART) {
3767 zfs_panic_recover("error %u from "
3768 "traverse_dataset_destroyed()", err);
3771 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3772 /* finished; deactivate async destroy feature */
3773 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3774 ASSERT(!spa_feature_is_active(spa,
3775 SPA_FEATURE_ASYNC_DESTROY));
3776 VERIFY0(zap_remove(dp->dp_meta_objset,
3777 DMU_POOL_DIRECTORY_OBJECT,
3778 DMU_POOL_BPTREE_OBJ, tx));
3779 VERIFY0(bptree_free(dp->dp_meta_objset,
3780 dp->dp_bptree_obj, tx));
3781 dp->dp_bptree_obj = 0;
3782 scn->scn_async_destroying = B_FALSE;
3783 scn->scn_async_stalled = B_FALSE;
3784 } else {
3786 * If we didn't make progress, mark the async
3787 * destroy as stalled, so that we will not initiate
3788 * a spa_sync() on its behalf. Note that we only
3789 * check this if we are not finished, because if the
3790 * bptree had no blocks for us to visit, we can
3791 * finish without "making progress".
3793 scn->scn_async_stalled =
3794 (scn->scn_visited_this_txg == 0);
3797 if (scn->scn_visited_this_txg) {
3798 zfs_dbgmsg("freed %llu blocks in %llums from "
3799 "free_bpobj/bptree on %s in txg %llu; err=%u",
3800 (longlong_t)scn->scn_visited_this_txg,
3801 (longlong_t)
3802 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3803 spa->spa_name, (longlong_t)tx->tx_txg, err);
3804 scn->scn_visited_this_txg = 0;
3805 scn->scn_dedup_frees_this_txg = 0;
3808 * Write out changes to the DDT and the BRT that may be required
3809 * as a result of the blocks freed. This ensures that the DDT
3810 * and the BRT are clean when a scrub/resilver runs.
3812 ddt_sync(spa, tx->tx_txg);
3813 brt_sync(spa, tx->tx_txg);
3815 if (err != 0)
3816 return (err);
3817 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3818 zfs_free_leak_on_eio &&
3819 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3820 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3821 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3823 * We have finished background destroying, but there is still
3824 * some space left in the dp_free_dir. Transfer this leaked
3825 * space to the dp_leak_dir.
3827 if (dp->dp_leak_dir == NULL) {
3828 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3829 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3830 LEAK_DIR_NAME, tx);
3831 VERIFY0(dsl_pool_open_special_dir(dp,
3832 LEAK_DIR_NAME, &dp->dp_leak_dir));
3833 rrw_exit(&dp->dp_config_rwlock, FTAG);
3835 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3836 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3837 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3838 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3839 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3840 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3841 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3842 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3845 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3846 !spa_livelist_delete_check(spa)) {
3847 /* finished; verify that space accounting went to zero */
3848 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3849 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3850 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3853 spa_notify_waiters(spa);
3855 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3856 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3857 DMU_POOL_OBSOLETE_BPOBJ));
3858 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3859 ASSERT(spa_feature_is_active(dp->dp_spa,
3860 SPA_FEATURE_OBSOLETE_COUNTS));
3862 scn->scn_is_bptree = B_FALSE;
3863 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3864 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3865 dsl_scan_obsolete_block_cb, scn, tx);
3866 if (err != 0 && err != ERESTART)
3867 zfs_panic_recover("error %u from bpobj_iterate()", err);
3869 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3870 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3872 return (0);
3875 static void
3876 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3878 zb->zb_objset = zfs_strtonum(buf, &buf);
3879 ASSERT(*buf == ':');
3880 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3881 ASSERT(*buf == ':');
3882 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3883 ASSERT(*buf == ':');
3884 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3885 ASSERT(*buf == '\0');
3888 static void
3889 name_to_object(char *buf, uint64_t *obj)
3891 *obj = zfs_strtonum(buf, &buf);
3892 ASSERT(*buf == '\0');
3895 static void
3896 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3898 dsl_pool_t *dp = scn->scn_dp;
3899 dsl_dataset_t *ds;
3900 objset_t *os;
3901 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3902 return;
3904 if (dmu_objset_from_ds(ds, &os) != 0) {
3905 dsl_dataset_rele(ds, FTAG);
3906 return;
3910 * If the key is not loaded dbuf_dnode_findbp() will error out with
3911 * EACCES. However in that case dnode_hold() will eventually call
3912 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3913 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3914 * Avoid this by checking here if the keys are loaded, if not return.
3915 * If the keys are not loaded the head_errlog feature is meaningless
3916 * as we cannot figure out the birth txg of the block pointer.
3918 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3919 ZFS_KEYSTATUS_UNAVAILABLE) {
3920 dsl_dataset_rele(ds, FTAG);
3921 return;
3924 dnode_t *dn;
3925 blkptr_t bp;
3927 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3928 dsl_dataset_rele(ds, FTAG);
3929 return;
3932 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3933 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
3934 NULL);
3936 if (error) {
3937 rw_exit(&dn->dn_struct_rwlock);
3938 dnode_rele(dn, FTAG);
3939 dsl_dataset_rele(ds, FTAG);
3940 return;
3943 if (!error && BP_IS_HOLE(&bp)) {
3944 rw_exit(&dn->dn_struct_rwlock);
3945 dnode_rele(dn, FTAG);
3946 dsl_dataset_rele(ds, FTAG);
3947 return;
3950 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
3951 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
3953 /* If it's an intent log block, failure is expected. */
3954 if (zb.zb_level == ZB_ZIL_LEVEL)
3955 zio_flags |= ZIO_FLAG_SPECULATIVE;
3957 ASSERT(!BP_IS_EMBEDDED(&bp));
3958 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
3959 rw_exit(&dn->dn_struct_rwlock);
3960 dnode_rele(dn, FTAG);
3961 dsl_dataset_rele(ds, FTAG);
3965 * We keep track of the scrubbed error blocks in "count". This will be used
3966 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
3967 * function is modelled after check_filesystem().
3969 static int
3970 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
3971 int *count)
3973 dsl_dataset_t *ds;
3974 dsl_pool_t *dp = spa->spa_dsl_pool;
3975 dsl_scan_t *scn = dp->dp_scan;
3977 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
3978 if (error != 0)
3979 return (error);
3981 uint64_t latest_txg;
3982 uint64_t txg_to_consider = spa->spa_syncing_txg;
3983 boolean_t check_snapshot = B_TRUE;
3985 error = find_birth_txg(ds, zep, &latest_txg);
3988 * If find_birth_txg() errors out, then err on the side of caution and
3989 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
3990 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
3991 * scrub all objects.
3993 if (error == 0 && zep->zb_birth == latest_txg) {
3994 /* Block neither free nor re written. */
3995 zbookmark_phys_t zb;
3996 zep_to_zb(fs, zep, &zb);
3997 scn->scn_zio_root = zio_root(spa, NULL, NULL,
3998 ZIO_FLAG_CANFAIL);
3999 /* We have already acquired the config lock for spa */
4000 read_by_block_level(scn, zb);
4002 (void) zio_wait(scn->scn_zio_root);
4003 scn->scn_zio_root = NULL;
4005 scn->errorscrub_phys.dep_examined++;
4006 scn->errorscrub_phys.dep_to_examine--;
4007 (*count)++;
4008 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4009 dsl_error_scrub_check_suspend(scn, &zb)) {
4010 dsl_dataset_rele(ds, FTAG);
4011 return (SET_ERROR(EFAULT));
4014 check_snapshot = B_FALSE;
4015 } else if (error == 0) {
4016 txg_to_consider = latest_txg;
4020 * Retrieve the number of snapshots if the dataset is not a snapshot.
4022 uint64_t snap_count = 0;
4023 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4025 error = zap_count(spa->spa_meta_objset,
4026 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4028 if (error != 0) {
4029 dsl_dataset_rele(ds, FTAG);
4030 return (error);
4034 if (snap_count == 0) {
4035 /* Filesystem without snapshots. */
4036 dsl_dataset_rele(ds, FTAG);
4037 return (0);
4040 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4041 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4043 dsl_dataset_rele(ds, FTAG);
4045 /* Check only snapshots created from this file system. */
4046 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4047 snap_obj_txg <= txg_to_consider) {
4049 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4050 if (error != 0)
4051 return (error);
4053 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4054 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4055 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4056 dsl_dataset_rele(ds, FTAG);
4057 continue;
4060 boolean_t affected = B_TRUE;
4061 if (check_snapshot) {
4062 uint64_t blk_txg;
4063 error = find_birth_txg(ds, zep, &blk_txg);
4066 * Scrub the snapshot also when zb_birth == 0 or when
4067 * find_birth_txg() returns an error.
4069 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4070 (error != 0) || (zep->zb_birth == 0);
4073 /* Scrub snapshots. */
4074 if (affected) {
4075 zbookmark_phys_t zb;
4076 zep_to_zb(snap_obj, zep, &zb);
4077 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4078 ZIO_FLAG_CANFAIL);
4079 /* We have already acquired the config lock for spa */
4080 read_by_block_level(scn, zb);
4082 (void) zio_wait(scn->scn_zio_root);
4083 scn->scn_zio_root = NULL;
4085 scn->errorscrub_phys.dep_examined++;
4086 scn->errorscrub_phys.dep_to_examine--;
4087 (*count)++;
4088 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4089 dsl_error_scrub_check_suspend(scn, &zb)) {
4090 dsl_dataset_rele(ds, FTAG);
4091 return (EFAULT);
4094 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4095 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4096 dsl_dataset_rele(ds, FTAG);
4098 return (0);
4101 void
4102 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4104 spa_t *spa = dp->dp_spa;
4105 dsl_scan_t *scn = dp->dp_scan;
4108 * Only process scans in sync pass 1.
4111 if (spa_sync_pass(spa) > 1)
4112 return;
4115 * If the spa is shutting down, then stop scanning. This will
4116 * ensure that the scan does not dirty any new data during the
4117 * shutdown phase.
4119 if (spa_shutting_down(spa))
4120 return;
4122 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4123 return;
4126 if (dsl_scan_resilvering(scn->scn_dp)) {
4127 /* cancel the error scrub if resilver started */
4128 dsl_scan_cancel(scn->scn_dp);
4129 return;
4132 spa->spa_scrub_active = B_TRUE;
4133 scn->scn_sync_start_time = gethrtime();
4136 * zfs_scan_suspend_progress can be set to disable scrub progress.
4137 * See more detailed comment in dsl_scan_sync().
4139 if (zfs_scan_suspend_progress) {
4140 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4141 int mintime = zfs_scrub_min_time_ms;
4143 while (zfs_scan_suspend_progress &&
4144 !txg_sync_waiting(scn->scn_dp) &&
4145 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4146 NSEC2MSEC(scan_time_ns) < mintime) {
4147 delay(hz);
4148 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4150 return;
4153 int i = 0;
4154 zap_attribute_t *za;
4155 zbookmark_phys_t *zb;
4156 boolean_t limit_exceeded = B_FALSE;
4158 za = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4159 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4161 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4162 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4163 zap_cursor_advance(&scn->errorscrub_cursor)) {
4164 name_to_bookmark(za->za_name, zb);
4166 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4167 NULL, ZIO_FLAG_CANFAIL);
4168 dsl_pool_config_enter(dp, FTAG);
4169 read_by_block_level(scn, *zb);
4170 dsl_pool_config_exit(dp, FTAG);
4172 (void) zio_wait(scn->scn_zio_root);
4173 scn->scn_zio_root = NULL;
4175 scn->errorscrub_phys.dep_examined += 1;
4176 scn->errorscrub_phys.dep_to_examine -= 1;
4177 i++;
4178 if (i == zfs_scrub_error_blocks_per_txg ||
4179 dsl_error_scrub_check_suspend(scn, zb)) {
4180 limit_exceeded = B_TRUE;
4181 break;
4185 if (!limit_exceeded)
4186 dsl_errorscrub_done(scn, B_TRUE, tx);
4188 dsl_errorscrub_sync_state(scn, tx);
4189 kmem_free(za, sizeof (*za));
4190 kmem_free(zb, sizeof (*zb));
4191 return;
4194 int error = 0;
4195 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4196 zap_cursor_advance(&scn->errorscrub_cursor)) {
4198 zap_cursor_t *head_ds_cursor;
4199 zap_attribute_t *head_ds_attr;
4200 zbookmark_err_phys_t head_ds_block;
4202 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4203 head_ds_attr = kmem_zalloc(sizeof (zap_attribute_t), KM_SLEEP);
4205 uint64_t head_ds_err_obj = za->za_first_integer;
4206 uint64_t head_ds;
4207 name_to_object(za->za_name, &head_ds);
4208 boolean_t config_held = B_FALSE;
4209 uint64_t top_affected_fs;
4211 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4212 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4213 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4215 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4218 * In case we are called from spa_sync the pool
4219 * config is already held.
4221 if (!dsl_pool_config_held(dp)) {
4222 dsl_pool_config_enter(dp, FTAG);
4223 config_held = B_TRUE;
4226 error = find_top_affected_fs(spa,
4227 head_ds, &head_ds_block, &top_affected_fs);
4228 if (error)
4229 break;
4231 error = scrub_filesystem(spa, top_affected_fs,
4232 &head_ds_block, &i);
4234 if (error == SET_ERROR(EFAULT)) {
4235 limit_exceeded = B_TRUE;
4236 break;
4240 zap_cursor_fini(head_ds_cursor);
4241 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4242 kmem_free(head_ds_attr, sizeof (*head_ds_attr));
4244 if (config_held)
4245 dsl_pool_config_exit(dp, FTAG);
4248 kmem_free(za, sizeof (*za));
4249 kmem_free(zb, sizeof (*zb));
4250 if (!limit_exceeded)
4251 dsl_errorscrub_done(scn, B_TRUE, tx);
4253 dsl_errorscrub_sync_state(scn, tx);
4257 * This is the primary entry point for scans that is called from syncing
4258 * context. Scans must happen entirely during syncing context so that we
4259 * can guarantee that blocks we are currently scanning will not change out
4260 * from under us. While a scan is active, this function controls how quickly
4261 * transaction groups proceed, instead of the normal handling provided by
4262 * txg_sync_thread().
4264 void
4265 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4267 int err = 0;
4268 dsl_scan_t *scn = dp->dp_scan;
4269 spa_t *spa = dp->dp_spa;
4270 state_sync_type_t sync_type = SYNC_OPTIONAL;
4272 if (spa->spa_resilver_deferred &&
4273 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4274 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4277 * Check for scn_restart_txg before checking spa_load_state, so
4278 * that we can restart an old-style scan while the pool is being
4279 * imported (see dsl_scan_init). We also restart scans if there
4280 * is a deferred resilver and the user has manually disabled
4281 * deferred resilvers via the tunable.
4283 if (dsl_scan_restarting(scn, tx) ||
4284 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
4285 pool_scan_func_t func = POOL_SCAN_SCRUB;
4286 dsl_scan_done(scn, B_FALSE, tx);
4287 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4288 func = POOL_SCAN_RESILVER;
4289 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
4290 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
4291 dsl_scan_setup_sync(&func, tx);
4295 * Only process scans in sync pass 1.
4297 if (spa_sync_pass(spa) > 1)
4298 return;
4301 * If the spa is shutting down, then stop scanning. This will
4302 * ensure that the scan does not dirty any new data during the
4303 * shutdown phase.
4305 if (spa_shutting_down(spa))
4306 return;
4309 * If the scan is inactive due to a stalled async destroy, try again.
4311 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4312 return;
4314 /* reset scan statistics */
4315 scn->scn_visited_this_txg = 0;
4316 scn->scn_dedup_frees_this_txg = 0;
4317 scn->scn_holes_this_txg = 0;
4318 scn->scn_lt_min_this_txg = 0;
4319 scn->scn_gt_max_this_txg = 0;
4320 scn->scn_ddt_contained_this_txg = 0;
4321 scn->scn_objsets_visited_this_txg = 0;
4322 scn->scn_avg_seg_size_this_txg = 0;
4323 scn->scn_segs_this_txg = 0;
4324 scn->scn_avg_zio_size_this_txg = 0;
4325 scn->scn_zios_this_txg = 0;
4326 scn->scn_suspending = B_FALSE;
4327 scn->scn_sync_start_time = gethrtime();
4328 spa->spa_scrub_active = B_TRUE;
4331 * First process the async destroys. If we suspend, don't do
4332 * any scrubbing or resilvering. This ensures that there are no
4333 * async destroys while we are scanning, so the scan code doesn't
4334 * have to worry about traversing it. It is also faster to free the
4335 * blocks than to scrub them.
4337 err = dsl_process_async_destroys(dp, tx);
4338 if (err != 0)
4339 return;
4341 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4342 return;
4345 * Wait a few txgs after importing to begin scanning so that
4346 * we can get the pool imported quickly.
4348 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4349 return;
4352 * zfs_scan_suspend_progress can be set to disable scan progress.
4353 * We don't want to spin the txg_sync thread, so we add a delay
4354 * here to simulate the time spent doing a scan. This is mostly
4355 * useful for testing and debugging.
4357 if (zfs_scan_suspend_progress) {
4358 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4359 uint_t mintime = (scn->scn_phys.scn_func ==
4360 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4361 zfs_scrub_min_time_ms;
4363 while (zfs_scan_suspend_progress &&
4364 !txg_sync_waiting(scn->scn_dp) &&
4365 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4366 NSEC2MSEC(scan_time_ns) < mintime) {
4367 delay(hz);
4368 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4370 return;
4374 * Disabled by default, set zfs_scan_report_txgs to report
4375 * average performance over the last zfs_scan_report_txgs TXGs.
4377 if (zfs_scan_report_txgs != 0 &&
4378 tx->tx_txg % zfs_scan_report_txgs == 0) {
4379 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4380 spa_scan_stat_init(spa);
4384 * It is possible to switch from unsorted to sorted at any time,
4385 * but afterwards the scan will remain sorted unless reloaded from
4386 * a checkpoint after a reboot.
4388 if (!zfs_scan_legacy) {
4389 scn->scn_is_sorted = B_TRUE;
4390 if (scn->scn_last_checkpoint == 0)
4391 scn->scn_last_checkpoint = ddi_get_lbolt();
4395 * For sorted scans, determine what kind of work we will be doing
4396 * this txg based on our memory limitations and whether or not we
4397 * need to perform a checkpoint.
4399 if (scn->scn_is_sorted) {
4401 * If we are over our checkpoint interval, set scn_clearing
4402 * so that we can begin checkpointing immediately. The
4403 * checkpoint allows us to save a consistent bookmark
4404 * representing how much data we have scrubbed so far.
4405 * Otherwise, use the memory limit to determine if we should
4406 * scan for metadata or start issue scrub IOs. We accumulate
4407 * metadata until we hit our hard memory limit at which point
4408 * we issue scrub IOs until we are at our soft memory limit.
4410 if (scn->scn_checkpointing ||
4411 ddi_get_lbolt() - scn->scn_last_checkpoint >
4412 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4413 if (!scn->scn_checkpointing)
4414 zfs_dbgmsg("begin scan checkpoint for %s",
4415 spa->spa_name);
4417 scn->scn_checkpointing = B_TRUE;
4418 scn->scn_clearing = B_TRUE;
4419 } else {
4420 boolean_t should_clear = dsl_scan_should_clear(scn);
4421 if (should_clear && !scn->scn_clearing) {
4422 zfs_dbgmsg("begin scan clearing for %s",
4423 spa->spa_name);
4424 scn->scn_clearing = B_TRUE;
4425 } else if (!should_clear && scn->scn_clearing) {
4426 zfs_dbgmsg("finish scan clearing for %s",
4427 spa->spa_name);
4428 scn->scn_clearing = B_FALSE;
4431 } else {
4432 ASSERT0(scn->scn_checkpointing);
4433 ASSERT0(scn->scn_clearing);
4436 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4437 /* Need to scan metadata for more blocks to scrub */
4438 dsl_scan_phys_t *scnp = &scn->scn_phys;
4439 taskqid_t prefetch_tqid;
4442 * Calculate the max number of in-flight bytes for pool-wide
4443 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4444 * Limits for the issuing phase are done per top-level vdev and
4445 * are handled separately.
4447 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4448 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4450 if (scnp->scn_ddt_bookmark.ddb_class <=
4451 scnp->scn_ddt_class_max) {
4452 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4453 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4454 "ddt bm=%llu/%llu/%llu/%llx",
4455 spa->spa_name,
4456 (longlong_t)tx->tx_txg,
4457 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4458 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4459 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4460 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4461 } else {
4462 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4463 "bm=%llu/%llu/%llu/%llu",
4464 spa->spa_name,
4465 (longlong_t)tx->tx_txg,
4466 (longlong_t)scnp->scn_bookmark.zb_objset,
4467 (longlong_t)scnp->scn_bookmark.zb_object,
4468 (longlong_t)scnp->scn_bookmark.zb_level,
4469 (longlong_t)scnp->scn_bookmark.zb_blkid);
4472 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4473 NULL, ZIO_FLAG_CANFAIL);
4475 scn->scn_prefetch_stop = B_FALSE;
4476 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4477 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4478 ASSERT(prefetch_tqid != TASKQID_INVALID);
4480 dsl_pool_config_enter(dp, FTAG);
4481 dsl_scan_visit(scn, tx);
4482 dsl_pool_config_exit(dp, FTAG);
4484 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4485 scn->scn_prefetch_stop = B_TRUE;
4486 cv_broadcast(&spa->spa_scrub_io_cv);
4487 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4489 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4490 (void) zio_wait(scn->scn_zio_root);
4491 scn->scn_zio_root = NULL;
4493 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4494 "(%llu os's, %llu holes, %llu < mintxg, "
4495 "%llu in ddt, %llu > maxtxg)",
4496 (longlong_t)scn->scn_visited_this_txg,
4497 spa->spa_name,
4498 (longlong_t)NSEC2MSEC(gethrtime() -
4499 scn->scn_sync_start_time),
4500 (longlong_t)scn->scn_objsets_visited_this_txg,
4501 (longlong_t)scn->scn_holes_this_txg,
4502 (longlong_t)scn->scn_lt_min_this_txg,
4503 (longlong_t)scn->scn_ddt_contained_this_txg,
4504 (longlong_t)scn->scn_gt_max_this_txg);
4506 if (!scn->scn_suspending) {
4507 ASSERT0(avl_numnodes(&scn->scn_queue));
4508 scn->scn_done_txg = tx->tx_txg + 1;
4509 if (scn->scn_is_sorted) {
4510 scn->scn_checkpointing = B_TRUE;
4511 scn->scn_clearing = B_TRUE;
4512 scn->scn_issued_before_pass +=
4513 spa->spa_scan_pass_issued;
4514 spa_scan_stat_init(spa);
4516 zfs_dbgmsg("scan complete for %s txg %llu",
4517 spa->spa_name,
4518 (longlong_t)tx->tx_txg);
4520 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4521 ASSERT(scn->scn_clearing);
4523 /* need to issue scrubbing IOs from per-vdev queues */
4524 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4525 NULL, ZIO_FLAG_CANFAIL);
4526 scan_io_queues_run(scn);
4527 (void) zio_wait(scn->scn_zio_root);
4528 scn->scn_zio_root = NULL;
4530 /* calculate and dprintf the current memory usage */
4531 (void) dsl_scan_should_clear(scn);
4532 dsl_scan_update_stats(scn);
4534 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4535 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4536 (longlong_t)scn->scn_zios_this_txg,
4537 spa->spa_name,
4538 (longlong_t)scn->scn_segs_this_txg,
4539 (longlong_t)NSEC2MSEC(gethrtime() -
4540 scn->scn_sync_start_time),
4541 (longlong_t)scn->scn_avg_zio_size_this_txg,
4542 (longlong_t)scn->scn_avg_seg_size_this_txg);
4543 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4544 /* Finished with everything. Mark the scrub as complete */
4545 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4546 (longlong_t)tx->tx_txg,
4547 spa->spa_name);
4548 ASSERT3U(scn->scn_done_txg, !=, 0);
4549 ASSERT0(spa->spa_scrub_inflight);
4550 ASSERT0(scn->scn_queues_pending);
4551 dsl_scan_done(scn, B_TRUE, tx);
4552 sync_type = SYNC_MANDATORY;
4555 dsl_scan_sync_state(scn, tx, sync_type);
4558 static void
4559 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4562 * Don't count embedded bp's, since we already did the work of
4563 * scanning these when we scanned the containing block.
4565 if (BP_IS_EMBEDDED(bp))
4566 return;
4569 * Update the spa's stats on how many bytes we have issued.
4570 * Sequential scrubs create a zio for each DVA of the bp. Each
4571 * of these will include all DVAs for repair purposes, but the
4572 * zio code will only try the first one unless there is an issue.
4573 * Therefore, we should only count the first DVA for these IOs.
4575 atomic_add_64(&spa->spa_scan_pass_issued,
4576 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4579 static void
4580 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4582 if (BP_IS_EMBEDDED(bp))
4583 return;
4584 atomic_add_64(&scn->scn_phys.scn_skipped,
4585 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4588 static void
4589 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4592 * If we resume after a reboot, zab will be NULL; don't record
4593 * incomplete stats in that case.
4595 if (zab == NULL)
4596 return;
4598 for (int i = 0; i < 4; i++) {
4599 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4600 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4602 if (t & DMU_OT_NEWTYPE)
4603 t = DMU_OT_OTHER;
4604 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4605 int equal;
4607 zb->zb_count++;
4608 zb->zb_asize += BP_GET_ASIZE(bp);
4609 zb->zb_lsize += BP_GET_LSIZE(bp);
4610 zb->zb_psize += BP_GET_PSIZE(bp);
4611 zb->zb_gangs += BP_COUNT_GANG(bp);
4613 switch (BP_GET_NDVAS(bp)) {
4614 case 2:
4615 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4616 DVA_GET_VDEV(&bp->blk_dva[1]))
4617 zb->zb_ditto_2_of_2_samevdev++;
4618 break;
4619 case 3:
4620 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4621 DVA_GET_VDEV(&bp->blk_dva[1])) +
4622 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4623 DVA_GET_VDEV(&bp->blk_dva[2])) +
4624 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4625 DVA_GET_VDEV(&bp->blk_dva[2]));
4626 if (equal == 1)
4627 zb->zb_ditto_2_of_3_samevdev++;
4628 else if (equal == 3)
4629 zb->zb_ditto_3_of_3_samevdev++;
4630 break;
4635 static void
4636 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4638 avl_index_t idx;
4639 dsl_scan_t *scn = queue->q_scn;
4641 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4643 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4644 atomic_add_64(&scn->scn_queues_pending, 1);
4645 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4646 /* block is already scheduled for reading */
4647 sio_free(sio);
4648 return;
4650 avl_insert(&queue->q_sios_by_addr, sio, idx);
4651 queue->q_sio_memused += SIO_GET_MUSED(sio);
4652 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4653 SIO_GET_ASIZE(sio));
4657 * Given all the info we got from our metadata scanning process, we
4658 * construct a scan_io_t and insert it into the scan sorting queue. The
4659 * I/O must already be suitable for us to process. This is controlled
4660 * by dsl_scan_enqueue().
4662 static void
4663 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4664 int zio_flags, const zbookmark_phys_t *zb)
4666 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4668 ASSERT0(BP_IS_GANG(bp));
4669 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4671 bp2sio(bp, sio, dva_i);
4672 sio->sio_flags = zio_flags;
4673 sio->sio_zb = *zb;
4675 queue->q_last_ext_addr = -1;
4676 scan_io_queue_insert_impl(queue, sio);
4680 * Given a set of I/O parameters as discovered by the metadata traversal
4681 * process, attempts to place the I/O into the sorted queues (if allowed),
4682 * or immediately executes the I/O.
4684 static void
4685 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4686 const zbookmark_phys_t *zb)
4688 spa_t *spa = dp->dp_spa;
4690 ASSERT(!BP_IS_EMBEDDED(bp));
4693 * Gang blocks are hard to issue sequentially, so we just issue them
4694 * here immediately instead of queuing them.
4696 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4697 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4698 return;
4701 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4702 dva_t dva;
4703 vdev_t *vdev;
4705 dva = bp->blk_dva[i];
4706 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4707 ASSERT(vdev != NULL);
4709 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4710 if (vdev->vdev_scan_io_queue == NULL)
4711 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4712 ASSERT(dp->dp_scan != NULL);
4713 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4714 i, zio_flags, zb);
4715 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4719 static int
4720 dsl_scan_scrub_cb(dsl_pool_t *dp,
4721 const blkptr_t *bp, const zbookmark_phys_t *zb)
4723 dsl_scan_t *scn = dp->dp_scan;
4724 spa_t *spa = dp->dp_spa;
4725 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
4726 size_t psize = BP_GET_PSIZE(bp);
4727 boolean_t needs_io = B_FALSE;
4728 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4730 count_block(dp->dp_blkstats, bp);
4731 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4732 phys_birth >= scn->scn_phys.scn_max_txg) {
4733 count_block_skipped(scn, bp, B_TRUE);
4734 return (0);
4737 /* Embedded BP's have phys_birth==0, so we reject them above. */
4738 ASSERT(!BP_IS_EMBEDDED(bp));
4740 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4741 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4742 zio_flags |= ZIO_FLAG_SCRUB;
4743 needs_io = B_TRUE;
4744 } else {
4745 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4746 zio_flags |= ZIO_FLAG_RESILVER;
4747 needs_io = B_FALSE;
4750 /* If it's an intent log block, failure is expected. */
4751 if (zb->zb_level == ZB_ZIL_LEVEL)
4752 zio_flags |= ZIO_FLAG_SPECULATIVE;
4754 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4755 const dva_t *dva = &bp->blk_dva[d];
4758 * Keep track of how much data we've examined so that
4759 * zpool(8) status can make useful progress reports.
4761 uint64_t asize = DVA_GET_ASIZE(dva);
4762 scn->scn_phys.scn_examined += asize;
4763 spa->spa_scan_pass_exam += asize;
4765 /* if it's a resilver, this may not be in the target range */
4766 if (!needs_io)
4767 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4768 phys_birth);
4771 if (needs_io && !zfs_no_scrub_io) {
4772 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4773 } else {
4774 count_block_skipped(scn, bp, B_TRUE);
4777 /* do not relocate this block */
4778 return (0);
4781 static void
4782 dsl_scan_scrub_done(zio_t *zio)
4784 spa_t *spa = zio->io_spa;
4785 blkptr_t *bp = zio->io_bp;
4786 dsl_scan_io_queue_t *queue = zio->io_private;
4788 abd_free(zio->io_abd);
4790 if (queue == NULL) {
4791 mutex_enter(&spa->spa_scrub_lock);
4792 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4793 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4794 cv_broadcast(&spa->spa_scrub_io_cv);
4795 mutex_exit(&spa->spa_scrub_lock);
4796 } else {
4797 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4798 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4799 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4800 cv_broadcast(&queue->q_zio_cv);
4801 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4804 if (zio->io_error && (zio->io_error != ECKSUM ||
4805 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4806 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4807 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4808 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4809 ->errorscrub_phys.dep_errors);
4810 } else {
4811 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4812 .scn_errors);
4818 * Given a scanning zio's information, executes the zio. The zio need
4819 * not necessarily be only sortable, this function simply executes the
4820 * zio, no matter what it is. The optional queue argument allows the
4821 * caller to specify that they want per top level vdev IO rate limiting
4822 * instead of the legacy global limiting.
4824 static void
4825 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4826 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4828 spa_t *spa = dp->dp_spa;
4829 dsl_scan_t *scn = dp->dp_scan;
4830 size_t size = BP_GET_PSIZE(bp);
4831 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4832 zio_t *pio;
4834 if (queue == NULL) {
4835 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4836 mutex_enter(&spa->spa_scrub_lock);
4837 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4838 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4839 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4840 mutex_exit(&spa->spa_scrub_lock);
4841 pio = scn->scn_zio_root;
4842 } else {
4843 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4845 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4846 mutex_enter(q_lock);
4847 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4848 cv_wait(&queue->q_zio_cv, q_lock);
4849 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4850 pio = queue->q_zio;
4851 mutex_exit(q_lock);
4854 ASSERT(pio != NULL);
4855 count_block_issued(spa, bp, queue == NULL);
4856 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4857 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4861 * This is the primary extent sorting algorithm. We balance two parameters:
4862 * 1) how many bytes of I/O are in an extent
4863 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4864 * Since we allow extents to have gaps between their constituent I/Os, it's
4865 * possible to have a fairly large extent that contains the same amount of
4866 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4867 * The algorithm sorts based on a score calculated from the extent's size,
4868 * the relative fill volume (in %) and a "fill weight" parameter that controls
4869 * the split between whether we prefer larger extents or more well populated
4870 * extents:
4872 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4874 * Example:
4875 * 1) assume extsz = 64 MiB
4876 * 2) assume fill = 32 MiB (extent is half full)
4877 * 3) assume fill_weight = 3
4878 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4879 * SCORE = 32M + (50 * 3 * 32M) / 100
4880 * SCORE = 32M + (4800M / 100)
4881 * SCORE = 32M + 48M
4882 * ^ ^
4883 * | +--- final total relative fill-based score
4884 * +--------- final total fill-based score
4885 * SCORE = 80M
4887 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4888 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4889 * Note that as an optimization, we replace multiplication and division by
4890 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4892 * Since we do not care if one extent is only few percent better than another,
4893 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4894 * put into otherwise unused due to ashift high bits of offset. This allows
4895 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4896 * with single operation. Plus it makes scrubs more sequential and reduces
4897 * chances that minor extent change move it within the B-tree.
4899 __attribute__((always_inline)) inline
4900 static int
4901 ext_size_compare(const void *x, const void *y)
4903 const uint64_t *a = x, *b = y;
4905 return (TREE_CMP(*a, *b));
4908 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4909 ext_size_compare)
4911 static void
4912 ext_size_create(range_tree_t *rt, void *arg)
4914 (void) rt;
4915 zfs_btree_t *size_tree = arg;
4917 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
4918 sizeof (uint64_t));
4921 static void
4922 ext_size_destroy(range_tree_t *rt, void *arg)
4924 (void) rt;
4925 zfs_btree_t *size_tree = arg;
4926 ASSERT0(zfs_btree_numnodes(size_tree));
4928 zfs_btree_destroy(size_tree);
4931 static uint64_t
4932 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4934 (void) rt;
4935 uint64_t size = rsg->rs_end - rsg->rs_start;
4936 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4937 fill_weight * rsg->rs_fill) >> 7);
4938 ASSERT3U(rt->rt_shift, >=, 8);
4939 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4942 static void
4943 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4945 zfs_btree_t *size_tree = arg;
4946 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4947 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4948 zfs_btree_add(size_tree, &v);
4951 static void
4952 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4954 zfs_btree_t *size_tree = arg;
4955 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4956 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4957 zfs_btree_remove(size_tree, &v);
4960 static void
4961 ext_size_vacate(range_tree_t *rt, void *arg)
4963 zfs_btree_t *size_tree = arg;
4964 zfs_btree_clear(size_tree);
4965 zfs_btree_destroy(size_tree);
4967 ext_size_create(rt, arg);
4970 static const range_tree_ops_t ext_size_ops = {
4971 .rtop_create = ext_size_create,
4972 .rtop_destroy = ext_size_destroy,
4973 .rtop_add = ext_size_add,
4974 .rtop_remove = ext_size_remove,
4975 .rtop_vacate = ext_size_vacate
4979 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4980 * based on LBA-order (from lowest to highest).
4982 static int
4983 sio_addr_compare(const void *x, const void *y)
4985 const scan_io_t *a = x, *b = y;
4987 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4990 /* IO queues are created on demand when they are needed. */
4991 static dsl_scan_io_queue_t *
4992 scan_io_queue_create(vdev_t *vd)
4994 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4995 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4997 q->q_scn = scn;
4998 q->q_vd = vd;
4999 q->q_sio_memused = 0;
5000 q->q_last_ext_addr = -1;
5001 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5002 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
5003 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
5004 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5005 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5007 return (q);
5011 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5012 * No further execution of I/O occurs, anything pending in the queue is
5013 * simply freed without being executed.
5015 void
5016 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5018 dsl_scan_t *scn = queue->q_scn;
5019 scan_io_t *sio;
5020 void *cookie = NULL;
5022 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5024 if (!avl_is_empty(&queue->q_sios_by_addr))
5025 atomic_add_64(&scn->scn_queues_pending, -1);
5026 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5027 NULL) {
5028 ASSERT(range_tree_contains(queue->q_exts_by_addr,
5029 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5030 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5031 sio_free(sio);
5034 ASSERT0(queue->q_sio_memused);
5035 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5036 range_tree_destroy(queue->q_exts_by_addr);
5037 avl_destroy(&queue->q_sios_by_addr);
5038 cv_destroy(&queue->q_zio_cv);
5040 kmem_free(queue, sizeof (*queue));
5044 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5045 * called on behalf of vdev_top_transfer when creating or destroying
5046 * a mirror vdev due to zpool attach/detach.
5048 void
5049 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5051 mutex_enter(&svd->vdev_scan_io_queue_lock);
5052 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5054 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
5055 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5056 svd->vdev_scan_io_queue = NULL;
5057 if (tvd->vdev_scan_io_queue != NULL)
5058 tvd->vdev_scan_io_queue->q_vd = tvd;
5060 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5061 mutex_exit(&svd->vdev_scan_io_queue_lock);
5064 static void
5065 scan_io_queues_destroy(dsl_scan_t *scn)
5067 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5069 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5070 vdev_t *tvd = rvd->vdev_child[i];
5072 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5073 if (tvd->vdev_scan_io_queue != NULL)
5074 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5075 tvd->vdev_scan_io_queue = NULL;
5076 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5080 static void
5081 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5083 dsl_pool_t *dp = spa->spa_dsl_pool;
5084 dsl_scan_t *scn = dp->dp_scan;
5085 vdev_t *vdev;
5086 kmutex_t *q_lock;
5087 dsl_scan_io_queue_t *queue;
5088 scan_io_t *srch_sio, *sio;
5089 avl_index_t idx;
5090 uint64_t start, size;
5092 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5093 ASSERT(vdev != NULL);
5094 q_lock = &vdev->vdev_scan_io_queue_lock;
5095 queue = vdev->vdev_scan_io_queue;
5097 mutex_enter(q_lock);
5098 if (queue == NULL) {
5099 mutex_exit(q_lock);
5100 return;
5103 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5104 bp2sio(bp, srch_sio, dva_i);
5105 start = SIO_GET_OFFSET(srch_sio);
5106 size = SIO_GET_ASIZE(srch_sio);
5109 * We can find the zio in two states:
5110 * 1) Cold, just sitting in the queue of zio's to be issued at
5111 * some point in the future. In this case, all we do is
5112 * remove the zio from the q_sios_by_addr tree, decrement
5113 * its data volume from the containing range_seg_t and
5114 * resort the q_exts_by_size tree to reflect that the
5115 * range_seg_t has lost some of its 'fill'. We don't shorten
5116 * the range_seg_t - this is usually rare enough not to be
5117 * worth the extra hassle of trying keep track of precise
5118 * extent boundaries.
5119 * 2) Hot, where the zio is currently in-flight in
5120 * dsl_scan_issue_ios. In this case, we can't simply
5121 * reach in and stop the in-flight zio's, so we instead
5122 * block the caller. Eventually, dsl_scan_issue_ios will
5123 * be done with issuing the zio's it gathered and will
5124 * signal us.
5126 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5127 sio_free(srch_sio);
5129 if (sio != NULL) {
5130 blkptr_t tmpbp;
5132 /* Got it while it was cold in the queue */
5133 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5134 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5135 avl_remove(&queue->q_sios_by_addr, sio);
5136 if (avl_is_empty(&queue->q_sios_by_addr))
5137 atomic_add_64(&scn->scn_queues_pending, -1);
5138 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5140 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
5141 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5143 /* count the block as though we skipped it */
5144 sio2bp(sio, &tmpbp);
5145 count_block_skipped(scn, &tmpbp, B_FALSE);
5147 sio_free(sio);
5149 mutex_exit(q_lock);
5153 * Callback invoked when a zio_free() zio is executing. This needs to be
5154 * intercepted to prevent the zio from deallocating a particular portion
5155 * of disk space and it then getting reallocated and written to, while we
5156 * still have it queued up for processing.
5158 void
5159 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5161 dsl_pool_t *dp = spa->spa_dsl_pool;
5162 dsl_scan_t *scn = dp->dp_scan;
5164 ASSERT(!BP_IS_EMBEDDED(bp));
5165 ASSERT(scn != NULL);
5166 if (!dsl_scan_is_running(scn))
5167 return;
5169 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5170 dsl_scan_freed_dva(spa, bp, i);
5174 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5175 * not started, start it. Otherwise, only restart if max txg in DTL range is
5176 * greater than the max txg in the current scan. If the DTL max is less than
5177 * the scan max, then the vdev has not missed any new data since the resilver
5178 * started, so a restart is not needed.
5180 void
5181 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5183 uint64_t min, max;
5185 if (!vdev_resilver_needed(vd, &min, &max))
5186 return;
5188 if (!dsl_scan_resilvering(dp)) {
5189 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5190 return;
5193 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5194 return;
5196 /* restart is needed, check if it can be deferred */
5197 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5198 vdev_defer_resilver(vd);
5199 else
5200 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5203 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5204 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5206 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5207 "Min millisecs to scrub per txg");
5209 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5210 "Min millisecs to obsolete per txg");
5212 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5213 "Min millisecs to free per txg");
5215 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5216 "Min millisecs to resilver per txg");
5218 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5219 "Set to prevent scans from progressing");
5221 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5222 "Set to disable scrub I/O");
5224 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5225 "Set to disable scrub prefetching");
5227 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5228 "Max number of blocks freed in one txg");
5230 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5231 "Max number of dedup blocks freed in one txg");
5233 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5234 "Enable processing of the free_bpobj");
5236 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5237 "Enable block statistics calculation during scrub");
5239 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5240 "Fraction of RAM for scan hard limit");
5242 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5243 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5245 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5246 "Scrub using legacy non-sequential method");
5248 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5249 "Scan progress on-disk checkpointing interval");
5251 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5252 "Max gap in bytes between sequential scrub / resilver I/Os");
5254 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5255 "Fraction of hard limit used as soft limit");
5257 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5258 "Tunable to attempt to reduce lock contention");
5260 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5261 "Tunable to adjust bias towards more filled segments during scans");
5263 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5264 "Tunable to report resilver performance over the last N txgs");
5266 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5267 "Process all resilvers immediately");
5269 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5270 "Error blocks to be scrubbed in one txg");
5271 /* END CSTYLED */