4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
29 #include <sys/zfs_context.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
41 #include <sys/btree.h>
43 #define WITH_DF_BLOCK_ALLOCATOR
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
54 static uint64_t metaslab_aliquot
= 1024 * 1024;
57 * For testing, make some blocks above a certain size be gang blocks.
59 uint64_t metaslab_force_ganging
= SPA_MAXBLOCKSIZE
+ 1;
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
64 uint_t metaslab_force_ganging_pct
= 3;
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
70 * block size since it allows us to issue more I/O operations scattered
71 * around the disk. So a sane default for the space map block size
74 int zfs_metaslab_sm_blksz_no_log
= (1 << 14);
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
81 int zfs_metaslab_sm_blksz_with_log
= (1 << 17);
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
86 * space map representation must be before we compact it on-disk.
87 * Values should be greater than or equal to 100.
89 uint_t zfs_condense_pct
= 200;
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
104 static const int zfs_metaslab_condense_block_threshold
= 4;
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
109 * free space. Metaslab groups that have more free space than
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
119 static uint_t zfs_mg_noalloc_threshold
= 0;
122 * Metaslab groups are considered eligible for allocations if their
123 * fragmentation metric (measured as a percentage) is less than or
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
143 static uint_t zfs_mg_fragmentation_threshold
= 95;
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
151 static uint_t zfs_metaslab_fragmentation_threshold
= 70;
154 * When set will load all metaslabs when pool is first opened.
156 int metaslab_debug_load
= B_FALSE
;
159 * When set will prevent metaslabs from being unloaded.
161 static int metaslab_debug_unload
= B_FALSE
;
164 * Minimum size which forces the dynamic allocator to change
165 * it's allocation strategy. Once the space map cannot satisfy
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
169 uint64_t metaslab_df_alloc_threshold
= SPA_OLD_MAXBLOCKSIZE
;
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
177 uint_t metaslab_df_free_pct
= 4;
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
192 static uint_t metaslab_df_max_search
= 16 * 1024 * 1024;
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
199 static const uint32_t metaslab_min_search_count
= 100;
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
208 static int metaslab_df_use_largest_segment
= B_FALSE
;
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
218 static uint_t metaslab_unload_delay
= 32;
219 static uint_t metaslab_unload_delay_ms
= 10 * 60 * 1000; /* ten minutes */
222 * Max number of metaslabs per group to preload.
224 uint_t metaslab_preload_limit
= 10;
227 * Enable/disable preloading of metaslab.
229 static int metaslab_preload_enabled
= B_TRUE
;
232 * Enable/disable fragmentation weighting on metaslabs.
234 static int metaslab_fragmentation_factor_enabled
= B_TRUE
;
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
239 static int metaslab_lba_weighting_enabled
= B_TRUE
;
242 * Enable/disable metaslab group biasing.
244 static int metaslab_bias_enabled
= B_TRUE
;
247 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
249 static const boolean_t zfs_remap_blkptr_enable
= B_TRUE
;
252 * Enable/disable segment-based metaslab selection.
254 static int zfs_metaslab_segment_weight_enabled
= B_TRUE
;
257 * When using segment-based metaslab selection, we will continue
258 * allocating from the active metaslab until we have exhausted
259 * zfs_metaslab_switch_threshold of its buckets.
261 static int zfs_metaslab_switch_threshold
= 2;
264 * Internal switch to enable/disable the metaslab allocation tracing
267 static const boolean_t metaslab_trace_enabled
= B_FALSE
;
270 * Maximum entries that the metaslab allocation tracing facility will keep
271 * in a given list when running in non-debug mode. We limit the number
272 * of entries in non-debug mode to prevent us from using up too much memory.
273 * The limit should be sufficiently large that we don't expect any allocation
274 * to every exceed this value. In debug mode, the system will panic if this
275 * limit is ever reached allowing for further investigation.
277 static const uint64_t metaslab_trace_max_entries
= 5000;
280 * Maximum number of metaslabs per group that can be disabled
283 static const int max_disabled_ms
= 3;
286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287 * To avoid 64-bit overflow, don't set above UINT32_MAX.
289 static uint64_t zfs_metaslab_max_size_cache_sec
= 1 * 60 * 60; /* 1 hour */
292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293 * a metaslab would take it over this percentage, the oldest selected metaslab
294 * is automatically unloaded.
296 static uint_t zfs_metaslab_mem_limit
= 25;
299 * Force the per-metaslab range trees to use 64-bit integers to store
300 * segments. Used for debugging purposes.
302 static const boolean_t zfs_metaslab_force_large_segs
= B_FALSE
;
305 * By default we only store segments over a certain size in the size-sorted
306 * metaslab trees (ms_allocatable_by_size and
307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308 * improves load and unload times at the cost of causing us to use slightly
309 * larger segments than we would otherwise in some cases.
311 static const uint32_t metaslab_by_size_min_shift
= 14;
314 * If not set, we will first try normal allocation. If that fails then
315 * we will do a gang allocation. If that fails then we will do a "try hard"
316 * gang allocation. If that fails then we will have a multi-layer gang
319 * If set, we will first try normal allocation. If that fails then
320 * we will do a "try hard" allocation. If that fails we will do a gang
321 * allocation. If that fails we will do a "try hard" gang allocation. If
322 * that fails then we will have a multi-layer gang block.
324 static int zfs_metaslab_try_hard_before_gang
= B_FALSE
;
327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328 * metaslabs. This improves performance, especially when there are many
329 * metaslabs per vdev and the allocation can't actually be satisfied (so we
330 * would otherwise iterate all the metaslabs). If there is a metaslab with a
331 * worse weight but it can actually satisfy the allocation, we won't find it
332 * until trying hard. This may happen if the worse metaslab is not loaded
333 * (and the true weight is better than we have calculated), or due to weight
334 * bucketization. E.g. we are looking for a 60K segment, and the best
335 * metaslabs all have free segments in the 32-63K bucket, but the best
336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338 * bucket, and therefore a lower weight).
340 static uint_t zfs_metaslab_find_max_tries
= 100;
342 static uint64_t metaslab_weight(metaslab_t
*, boolean_t
);
343 static void metaslab_set_fragmentation(metaslab_t
*, boolean_t
);
344 static void metaslab_free_impl(vdev_t
*, uint64_t, uint64_t, boolean_t
);
345 static void metaslab_check_free_impl(vdev_t
*, uint64_t, uint64_t);
347 static void metaslab_passivate(metaslab_t
*msp
, uint64_t weight
);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t
*msp
);
349 static void metaslab_flush_update(metaslab_t
*, dmu_tx_t
*);
350 static unsigned int metaslab_idx_func(multilist_t
*, void *);
351 static void metaslab_evict(metaslab_t
*, uint64_t);
352 static void metaslab_rt_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
);
353 kmem_cache_t
*metaslab_alloc_trace_cache
;
355 typedef struct metaslab_stats
{
356 kstat_named_t metaslabstat_trace_over_limit
;
357 kstat_named_t metaslabstat_reload_tree
;
358 kstat_named_t metaslabstat_too_many_tries
;
359 kstat_named_t metaslabstat_try_hard
;
362 static metaslab_stats_t metaslab_stats
= {
363 { "trace_over_limit", KSTAT_DATA_UINT64
},
364 { "reload_tree", KSTAT_DATA_UINT64
},
365 { "too_many_tries", KSTAT_DATA_UINT64
},
366 { "try_hard", KSTAT_DATA_UINT64
},
369 #define METASLABSTAT_BUMP(stat) \
370 atomic_inc_64(&metaslab_stats.stat.value.ui64);
373 static kstat_t
*metaslab_ksp
;
376 metaslab_stat_init(void)
378 ASSERT(metaslab_alloc_trace_cache
== NULL
);
379 metaslab_alloc_trace_cache
= kmem_cache_create(
380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t
),
381 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
382 metaslab_ksp
= kstat_create("zfs", 0, "metaslab_stats",
383 "misc", KSTAT_TYPE_NAMED
, sizeof (metaslab_stats
) /
384 sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
385 if (metaslab_ksp
!= NULL
) {
386 metaslab_ksp
->ks_data
= &metaslab_stats
;
387 kstat_install(metaslab_ksp
);
392 metaslab_stat_fini(void)
394 if (metaslab_ksp
!= NULL
) {
395 kstat_delete(metaslab_ksp
);
399 kmem_cache_destroy(metaslab_alloc_trace_cache
);
400 metaslab_alloc_trace_cache
= NULL
;
404 * ==========================================================================
406 * ==========================================================================
409 metaslab_class_create(spa_t
*spa
, const metaslab_ops_t
*ops
)
411 metaslab_class_t
*mc
;
413 mc
= kmem_zalloc(offsetof(metaslab_class_t
,
414 mc_allocator
[spa
->spa_alloc_count
]), KM_SLEEP
);
418 mutex_init(&mc
->mc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
419 multilist_create(&mc
->mc_metaslab_txg_list
, sizeof (metaslab_t
),
420 offsetof(metaslab_t
, ms_class_txg_node
), metaslab_idx_func
);
421 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
422 metaslab_class_allocator_t
*mca
= &mc
->mc_allocator
[i
];
423 mca
->mca_rotor
= NULL
;
424 zfs_refcount_create_tracked(&mca
->mca_alloc_slots
);
431 metaslab_class_destroy(metaslab_class_t
*mc
)
433 spa_t
*spa
= mc
->mc_spa
;
435 ASSERT(mc
->mc_alloc
== 0);
436 ASSERT(mc
->mc_deferred
== 0);
437 ASSERT(mc
->mc_space
== 0);
438 ASSERT(mc
->mc_dspace
== 0);
440 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
441 metaslab_class_allocator_t
*mca
= &mc
->mc_allocator
[i
];
442 ASSERT(mca
->mca_rotor
== NULL
);
443 zfs_refcount_destroy(&mca
->mca_alloc_slots
);
445 mutex_destroy(&mc
->mc_lock
);
446 multilist_destroy(&mc
->mc_metaslab_txg_list
);
447 kmem_free(mc
, offsetof(metaslab_class_t
,
448 mc_allocator
[spa
->spa_alloc_count
]));
452 metaslab_class_validate(metaslab_class_t
*mc
)
454 metaslab_group_t
*mg
;
458 * Must hold one of the spa_config locks.
460 ASSERT(spa_config_held(mc
->mc_spa
, SCL_ALL
, RW_READER
) ||
461 spa_config_held(mc
->mc_spa
, SCL_ALL
, RW_WRITER
));
463 if ((mg
= mc
->mc_allocator
[0].mca_rotor
) == NULL
)
468 ASSERT(vd
->vdev_mg
!= NULL
);
469 ASSERT3P(vd
->vdev_top
, ==, vd
);
470 ASSERT3P(mg
->mg_class
, ==, mc
);
471 ASSERT3P(vd
->vdev_ops
, !=, &vdev_hole_ops
);
472 } while ((mg
= mg
->mg_next
) != mc
->mc_allocator
[0].mca_rotor
);
478 metaslab_class_space_update(metaslab_class_t
*mc
, int64_t alloc_delta
,
479 int64_t defer_delta
, int64_t space_delta
, int64_t dspace_delta
)
481 atomic_add_64(&mc
->mc_alloc
, alloc_delta
);
482 atomic_add_64(&mc
->mc_deferred
, defer_delta
);
483 atomic_add_64(&mc
->mc_space
, space_delta
);
484 atomic_add_64(&mc
->mc_dspace
, dspace_delta
);
488 metaslab_class_get_alloc(metaslab_class_t
*mc
)
490 return (mc
->mc_alloc
);
494 metaslab_class_get_deferred(metaslab_class_t
*mc
)
496 return (mc
->mc_deferred
);
500 metaslab_class_get_space(metaslab_class_t
*mc
)
502 return (mc
->mc_space
);
506 metaslab_class_get_dspace(metaslab_class_t
*mc
)
508 return (spa_deflate(mc
->mc_spa
) ? mc
->mc_dspace
: mc
->mc_space
);
512 metaslab_class_histogram_verify(metaslab_class_t
*mc
)
514 spa_t
*spa
= mc
->mc_spa
;
515 vdev_t
*rvd
= spa
->spa_root_vdev
;
519 if ((zfs_flags
& ZFS_DEBUG_HISTOGRAM_VERIFY
) == 0)
522 mc_hist
= kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE
,
525 mutex_enter(&mc
->mc_lock
);
526 for (int c
= 0; c
< rvd
->vdev_children
; c
++) {
527 vdev_t
*tvd
= rvd
->vdev_child
[c
];
528 metaslab_group_t
*mg
= vdev_get_mg(tvd
, mc
);
531 * Skip any holes, uninitialized top-levels, or
532 * vdevs that are not in this metalab class.
534 if (!vdev_is_concrete(tvd
) || tvd
->vdev_ms_shift
== 0 ||
535 mg
->mg_class
!= mc
) {
539 IMPLY(mg
== mg
->mg_vd
->vdev_log_mg
,
540 mc
== spa_embedded_log_class(mg
->mg_vd
->vdev_spa
));
542 for (i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++)
543 mc_hist
[i
] += mg
->mg_histogram
[i
];
546 for (i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
547 VERIFY3U(mc_hist
[i
], ==, mc
->mc_histogram
[i
]);
550 mutex_exit(&mc
->mc_lock
);
551 kmem_free(mc_hist
, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE
);
555 * Calculate the metaslab class's fragmentation metric. The metric
556 * is weighted based on the space contribution of each metaslab group.
557 * The return value will be a number between 0 and 100 (inclusive), or
558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559 * zfs_frag_table for more information about the metric.
562 metaslab_class_fragmentation(metaslab_class_t
*mc
)
564 vdev_t
*rvd
= mc
->mc_spa
->spa_root_vdev
;
565 uint64_t fragmentation
= 0;
567 spa_config_enter(mc
->mc_spa
, SCL_VDEV
, FTAG
, RW_READER
);
569 for (int c
= 0; c
< rvd
->vdev_children
; c
++) {
570 vdev_t
*tvd
= rvd
->vdev_child
[c
];
571 metaslab_group_t
*mg
= tvd
->vdev_mg
;
574 * Skip any holes, uninitialized top-levels,
575 * or vdevs that are not in this metalab class.
577 if (!vdev_is_concrete(tvd
) || tvd
->vdev_ms_shift
== 0 ||
578 mg
->mg_class
!= mc
) {
583 * If a metaslab group does not contain a fragmentation
584 * metric then just bail out.
586 if (mg
->mg_fragmentation
== ZFS_FRAG_INVALID
) {
587 spa_config_exit(mc
->mc_spa
, SCL_VDEV
, FTAG
);
588 return (ZFS_FRAG_INVALID
);
592 * Determine how much this metaslab_group is contributing
593 * to the overall pool fragmentation metric.
595 fragmentation
+= mg
->mg_fragmentation
*
596 metaslab_group_get_space(mg
);
598 fragmentation
/= metaslab_class_get_space(mc
);
600 ASSERT3U(fragmentation
, <=, 100);
601 spa_config_exit(mc
->mc_spa
, SCL_VDEV
, FTAG
);
602 return (fragmentation
);
606 * Calculate the amount of expandable space that is available in
607 * this metaslab class. If a device is expanded then its expandable
608 * space will be the amount of allocatable space that is currently not
609 * part of this metaslab class.
612 metaslab_class_expandable_space(metaslab_class_t
*mc
)
614 vdev_t
*rvd
= mc
->mc_spa
->spa_root_vdev
;
617 spa_config_enter(mc
->mc_spa
, SCL_VDEV
, FTAG
, RW_READER
);
618 for (int c
= 0; c
< rvd
->vdev_children
; c
++) {
619 vdev_t
*tvd
= rvd
->vdev_child
[c
];
620 metaslab_group_t
*mg
= tvd
->vdev_mg
;
622 if (!vdev_is_concrete(tvd
) || tvd
->vdev_ms_shift
== 0 ||
623 mg
->mg_class
!= mc
) {
628 * Calculate if we have enough space to add additional
629 * metaslabs. We report the expandable space in terms
630 * of the metaslab size since that's the unit of expansion.
632 space
+= P2ALIGN(tvd
->vdev_max_asize
- tvd
->vdev_asize
,
633 1ULL << tvd
->vdev_ms_shift
);
635 spa_config_exit(mc
->mc_spa
, SCL_VDEV
, FTAG
);
640 metaslab_class_evict_old(metaslab_class_t
*mc
, uint64_t txg
)
642 multilist_t
*ml
= &mc
->mc_metaslab_txg_list
;
643 for (int i
= 0; i
< multilist_get_num_sublists(ml
); i
++) {
644 multilist_sublist_t
*mls
= multilist_sublist_lock(ml
, i
);
645 metaslab_t
*msp
= multilist_sublist_head(mls
);
646 multilist_sublist_unlock(mls
);
647 while (msp
!= NULL
) {
648 mutex_enter(&msp
->ms_lock
);
651 * If the metaslab has been removed from the list
652 * (which could happen if we were at the memory limit
653 * and it was evicted during this loop), then we can't
654 * proceed and we should restart the sublist.
656 if (!multilist_link_active(&msp
->ms_class_txg_node
)) {
657 mutex_exit(&msp
->ms_lock
);
661 mls
= multilist_sublist_lock(ml
, i
);
662 metaslab_t
*next_msp
= multilist_sublist_next(mls
, msp
);
663 multilist_sublist_unlock(mls
);
665 msp
->ms_selected_txg
+ metaslab_unload_delay
&&
666 gethrtime() > msp
->ms_selected_time
+
667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms
)) {
668 metaslab_evict(msp
, txg
);
671 * Once we've hit a metaslab selected too
672 * recently to evict, we're done evicting for
675 mutex_exit(&msp
->ms_lock
);
678 mutex_exit(&msp
->ms_lock
);
685 metaslab_compare(const void *x1
, const void *x2
)
687 const metaslab_t
*m1
= (const metaslab_t
*)x1
;
688 const metaslab_t
*m2
= (const metaslab_t
*)x2
;
692 if (m1
->ms_allocator
!= -1 && m1
->ms_primary
)
694 else if (m1
->ms_allocator
!= -1 && !m1
->ms_primary
)
696 if (m2
->ms_allocator
!= -1 && m2
->ms_primary
)
698 else if (m2
->ms_allocator
!= -1 && !m2
->ms_primary
)
702 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 * selecting a metaslab to allocate from, an allocator first tries its
704 * primary, then secondary active metaslab. If it doesn't have active
705 * metaslabs, or can't allocate from them, it searches for an inactive
706 * metaslab to activate. If it can't find a suitable one, it will steal
707 * a primary or secondary metaslab from another allocator.
714 int cmp
= TREE_CMP(m2
->ms_weight
, m1
->ms_weight
);
718 IMPLY(TREE_CMP(m1
->ms_start
, m2
->ms_start
) == 0, m1
== m2
);
720 return (TREE_CMP(m1
->ms_start
, m2
->ms_start
));
724 * ==========================================================================
726 * ==========================================================================
729 * Update the allocatable flag and the metaslab group's capacity.
730 * The allocatable flag is set to true if the capacity is below
731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733 * transitions from allocatable to non-allocatable or vice versa then the
734 * metaslab group's class is updated to reflect the transition.
737 metaslab_group_alloc_update(metaslab_group_t
*mg
)
739 vdev_t
*vd
= mg
->mg_vd
;
740 metaslab_class_t
*mc
= mg
->mg_class
;
741 vdev_stat_t
*vs
= &vd
->vdev_stat
;
742 boolean_t was_allocatable
;
743 boolean_t was_initialized
;
745 ASSERT(vd
== vd
->vdev_top
);
746 ASSERT3U(spa_config_held(mc
->mc_spa
, SCL_ALLOC
, RW_READER
), ==,
749 mutex_enter(&mg
->mg_lock
);
750 was_allocatable
= mg
->mg_allocatable
;
751 was_initialized
= mg
->mg_initialized
;
753 mg
->mg_free_capacity
= ((vs
->vs_space
- vs
->vs_alloc
) * 100) /
756 mutex_enter(&mc
->mc_lock
);
759 * If the metaslab group was just added then it won't
760 * have any space until we finish syncing out this txg.
761 * At that point we will consider it initialized and available
762 * for allocations. We also don't consider non-activated
763 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 * to be initialized, because they can't be used for allocation.
766 mg
->mg_initialized
= metaslab_group_initialized(mg
);
767 if (!was_initialized
&& mg
->mg_initialized
) {
769 } else if (was_initialized
&& !mg
->mg_initialized
) {
770 ASSERT3U(mc
->mc_groups
, >, 0);
773 if (mg
->mg_initialized
)
774 mg
->mg_no_free_space
= B_FALSE
;
777 * A metaslab group is considered allocatable if it has plenty
778 * of free space or is not heavily fragmented. We only take
779 * fragmentation into account if the metaslab group has a valid
780 * fragmentation metric (i.e. a value between 0 and 100).
782 mg
->mg_allocatable
= (mg
->mg_activation_count
> 0 &&
783 mg
->mg_free_capacity
> zfs_mg_noalloc_threshold
&&
784 (mg
->mg_fragmentation
== ZFS_FRAG_INVALID
||
785 mg
->mg_fragmentation
<= zfs_mg_fragmentation_threshold
));
788 * The mc_alloc_groups maintains a count of the number of
789 * groups in this metaslab class that are still above the
790 * zfs_mg_noalloc_threshold. This is used by the allocating
791 * threads to determine if they should avoid allocations to
792 * a given group. The allocator will avoid allocations to a group
793 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 * and there are still other groups that are above the threshold.
795 * When a group transitions from allocatable to non-allocatable or
796 * vice versa we update the metaslab class to reflect that change.
797 * When the mc_alloc_groups value drops to 0 that means that all
798 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 * eligible for allocations. This effectively means that all devices
800 * are balanced again.
802 if (was_allocatable
&& !mg
->mg_allocatable
)
803 mc
->mc_alloc_groups
--;
804 else if (!was_allocatable
&& mg
->mg_allocatable
)
805 mc
->mc_alloc_groups
++;
806 mutex_exit(&mc
->mc_lock
);
808 mutex_exit(&mg
->mg_lock
);
812 metaslab_sort_by_flushed(const void *va
, const void *vb
)
814 const metaslab_t
*a
= va
;
815 const metaslab_t
*b
= vb
;
817 int cmp
= TREE_CMP(a
->ms_unflushed_txg
, b
->ms_unflushed_txg
);
821 uint64_t a_vdev_id
= a
->ms_group
->mg_vd
->vdev_id
;
822 uint64_t b_vdev_id
= b
->ms_group
->mg_vd
->vdev_id
;
823 cmp
= TREE_CMP(a_vdev_id
, b_vdev_id
);
827 return (TREE_CMP(a
->ms_id
, b
->ms_id
));
831 metaslab_group_create(metaslab_class_t
*mc
, vdev_t
*vd
, int allocators
)
833 metaslab_group_t
*mg
;
835 mg
= kmem_zalloc(offsetof(metaslab_group_t
,
836 mg_allocator
[allocators
]), KM_SLEEP
);
837 mutex_init(&mg
->mg_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
838 mutex_init(&mg
->mg_ms_disabled_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
839 cv_init(&mg
->mg_ms_disabled_cv
, NULL
, CV_DEFAULT
, NULL
);
840 avl_create(&mg
->mg_metaslab_tree
, metaslab_compare
,
841 sizeof (metaslab_t
), offsetof(metaslab_t
, ms_group_node
));
844 mg
->mg_activation_count
= 0;
845 mg
->mg_initialized
= B_FALSE
;
846 mg
->mg_no_free_space
= B_TRUE
;
847 mg
->mg_allocators
= allocators
;
849 for (int i
= 0; i
< allocators
; i
++) {
850 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[i
];
851 zfs_refcount_create_tracked(&mga
->mga_alloc_queue_depth
);
858 metaslab_group_destroy(metaslab_group_t
*mg
)
860 ASSERT(mg
->mg_prev
== NULL
);
861 ASSERT(mg
->mg_next
== NULL
);
863 * We may have gone below zero with the activation count
864 * either because we never activated in the first place or
865 * because we're done, and possibly removing the vdev.
867 ASSERT(mg
->mg_activation_count
<= 0);
869 avl_destroy(&mg
->mg_metaslab_tree
);
870 mutex_destroy(&mg
->mg_lock
);
871 mutex_destroy(&mg
->mg_ms_disabled_lock
);
872 cv_destroy(&mg
->mg_ms_disabled_cv
);
874 for (int i
= 0; i
< mg
->mg_allocators
; i
++) {
875 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[i
];
876 zfs_refcount_destroy(&mga
->mga_alloc_queue_depth
);
878 kmem_free(mg
, offsetof(metaslab_group_t
,
879 mg_allocator
[mg
->mg_allocators
]));
883 metaslab_group_activate(metaslab_group_t
*mg
)
885 metaslab_class_t
*mc
= mg
->mg_class
;
886 spa_t
*spa
= mc
->mc_spa
;
887 metaslab_group_t
*mgprev
, *mgnext
;
889 ASSERT3U(spa_config_held(spa
, SCL_ALLOC
, RW_WRITER
), !=, 0);
891 ASSERT(mg
->mg_prev
== NULL
);
892 ASSERT(mg
->mg_next
== NULL
);
893 ASSERT(mg
->mg_activation_count
<= 0);
895 if (++mg
->mg_activation_count
<= 0)
898 mg
->mg_aliquot
= metaslab_aliquot
* MAX(1,
899 vdev_get_ndisks(mg
->mg_vd
) - vdev_get_nparity(mg
->mg_vd
));
900 metaslab_group_alloc_update(mg
);
902 if ((mgprev
= mc
->mc_allocator
[0].mca_rotor
) == NULL
) {
906 mgnext
= mgprev
->mg_next
;
907 mg
->mg_prev
= mgprev
;
908 mg
->mg_next
= mgnext
;
909 mgprev
->mg_next
= mg
;
910 mgnext
->mg_prev
= mg
;
912 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
913 mc
->mc_allocator
[i
].mca_rotor
= mg
;
919 * Passivate a metaslab group and remove it from the allocation rotor.
920 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
921 * a metaslab group. This function will momentarily drop spa_config_locks
922 * that are lower than the SCL_ALLOC lock (see comment below).
925 metaslab_group_passivate(metaslab_group_t
*mg
)
927 metaslab_class_t
*mc
= mg
->mg_class
;
928 spa_t
*spa
= mc
->mc_spa
;
929 metaslab_group_t
*mgprev
, *mgnext
;
930 int locks
= spa_config_held(spa
, SCL_ALL
, RW_WRITER
);
932 ASSERT3U(spa_config_held(spa
, SCL_ALLOC
| SCL_ZIO
, RW_WRITER
), ==,
933 (SCL_ALLOC
| SCL_ZIO
));
935 if (--mg
->mg_activation_count
!= 0) {
936 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++)
937 ASSERT(mc
->mc_allocator
[i
].mca_rotor
!= mg
);
938 ASSERT(mg
->mg_prev
== NULL
);
939 ASSERT(mg
->mg_next
== NULL
);
940 ASSERT(mg
->mg_activation_count
< 0);
945 * The spa_config_lock is an array of rwlocks, ordered as
946 * follows (from highest to lowest):
947 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
948 * SCL_ZIO > SCL_FREE > SCL_VDEV
949 * (For more information about the spa_config_lock see spa_misc.c)
950 * The higher the lock, the broader its coverage. When we passivate
951 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
952 * config locks. However, the metaslab group's taskq might be trying
953 * to preload metaslabs so we must drop the SCL_ZIO lock and any
954 * lower locks to allow the I/O to complete. At a minimum,
955 * we continue to hold the SCL_ALLOC lock, which prevents any future
956 * allocations from taking place and any changes to the vdev tree.
958 spa_config_exit(spa
, locks
& ~(SCL_ZIO
- 1), spa
);
959 taskq_wait_outstanding(spa
->spa_metaslab_taskq
, 0);
960 spa_config_enter(spa
, locks
& ~(SCL_ZIO
- 1), spa
, RW_WRITER
);
961 metaslab_group_alloc_update(mg
);
962 for (int i
= 0; i
< mg
->mg_allocators
; i
++) {
963 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[i
];
964 metaslab_t
*msp
= mga
->mga_primary
;
966 mutex_enter(&msp
->ms_lock
);
967 metaslab_passivate(msp
,
968 metaslab_weight_from_range_tree(msp
));
969 mutex_exit(&msp
->ms_lock
);
971 msp
= mga
->mga_secondary
;
973 mutex_enter(&msp
->ms_lock
);
974 metaslab_passivate(msp
,
975 metaslab_weight_from_range_tree(msp
));
976 mutex_exit(&msp
->ms_lock
);
980 mgprev
= mg
->mg_prev
;
981 mgnext
= mg
->mg_next
;
986 mgprev
->mg_next
= mgnext
;
987 mgnext
->mg_prev
= mgprev
;
989 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
990 if (mc
->mc_allocator
[i
].mca_rotor
== mg
)
991 mc
->mc_allocator
[i
].mca_rotor
= mgnext
;
999 metaslab_group_initialized(metaslab_group_t
*mg
)
1001 vdev_t
*vd
= mg
->mg_vd
;
1002 vdev_stat_t
*vs
= &vd
->vdev_stat
;
1004 return (vs
->vs_space
!= 0 && mg
->mg_activation_count
> 0);
1008 metaslab_group_get_space(metaslab_group_t
*mg
)
1011 * Note that the number of nodes in mg_metaslab_tree may be one less
1012 * than vdev_ms_count, due to the embedded log metaslab.
1014 mutex_enter(&mg
->mg_lock
);
1015 uint64_t ms_count
= avl_numnodes(&mg
->mg_metaslab_tree
);
1016 mutex_exit(&mg
->mg_lock
);
1017 return ((1ULL << mg
->mg_vd
->vdev_ms_shift
) * ms_count
);
1021 metaslab_group_histogram_verify(metaslab_group_t
*mg
)
1024 avl_tree_t
*t
= &mg
->mg_metaslab_tree
;
1025 uint64_t ashift
= mg
->mg_vd
->vdev_ashift
;
1027 if ((zfs_flags
& ZFS_DEBUG_HISTOGRAM_VERIFY
) == 0)
1030 mg_hist
= kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE
,
1033 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE
, >=,
1034 SPACE_MAP_HISTOGRAM_SIZE
+ ashift
);
1036 mutex_enter(&mg
->mg_lock
);
1037 for (metaslab_t
*msp
= avl_first(t
);
1038 msp
!= NULL
; msp
= AVL_NEXT(t
, msp
)) {
1039 VERIFY3P(msp
->ms_group
, ==, mg
);
1040 /* skip if not active */
1041 if (msp
->ms_sm
== NULL
)
1044 for (int i
= 0; i
< SPACE_MAP_HISTOGRAM_SIZE
; i
++) {
1045 mg_hist
[i
+ ashift
] +=
1046 msp
->ms_sm
->sm_phys
->smp_histogram
[i
];
1050 for (int i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++)
1051 VERIFY3U(mg_hist
[i
], ==, mg
->mg_histogram
[i
]);
1053 mutex_exit(&mg
->mg_lock
);
1055 kmem_free(mg_hist
, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE
);
1059 metaslab_group_histogram_add(metaslab_group_t
*mg
, metaslab_t
*msp
)
1061 metaslab_class_t
*mc
= mg
->mg_class
;
1062 uint64_t ashift
= mg
->mg_vd
->vdev_ashift
;
1064 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1065 if (msp
->ms_sm
== NULL
)
1068 mutex_enter(&mg
->mg_lock
);
1069 mutex_enter(&mc
->mc_lock
);
1070 for (int i
= 0; i
< SPACE_MAP_HISTOGRAM_SIZE
; i
++) {
1071 IMPLY(mg
== mg
->mg_vd
->vdev_log_mg
,
1072 mc
== spa_embedded_log_class(mg
->mg_vd
->vdev_spa
));
1073 mg
->mg_histogram
[i
+ ashift
] +=
1074 msp
->ms_sm
->sm_phys
->smp_histogram
[i
];
1075 mc
->mc_histogram
[i
+ ashift
] +=
1076 msp
->ms_sm
->sm_phys
->smp_histogram
[i
];
1078 mutex_exit(&mc
->mc_lock
);
1079 mutex_exit(&mg
->mg_lock
);
1083 metaslab_group_histogram_remove(metaslab_group_t
*mg
, metaslab_t
*msp
)
1085 metaslab_class_t
*mc
= mg
->mg_class
;
1086 uint64_t ashift
= mg
->mg_vd
->vdev_ashift
;
1088 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1089 if (msp
->ms_sm
== NULL
)
1092 mutex_enter(&mg
->mg_lock
);
1093 mutex_enter(&mc
->mc_lock
);
1094 for (int i
= 0; i
< SPACE_MAP_HISTOGRAM_SIZE
; i
++) {
1095 ASSERT3U(mg
->mg_histogram
[i
+ ashift
], >=,
1096 msp
->ms_sm
->sm_phys
->smp_histogram
[i
]);
1097 ASSERT3U(mc
->mc_histogram
[i
+ ashift
], >=,
1098 msp
->ms_sm
->sm_phys
->smp_histogram
[i
]);
1099 IMPLY(mg
== mg
->mg_vd
->vdev_log_mg
,
1100 mc
== spa_embedded_log_class(mg
->mg_vd
->vdev_spa
));
1102 mg
->mg_histogram
[i
+ ashift
] -=
1103 msp
->ms_sm
->sm_phys
->smp_histogram
[i
];
1104 mc
->mc_histogram
[i
+ ashift
] -=
1105 msp
->ms_sm
->sm_phys
->smp_histogram
[i
];
1107 mutex_exit(&mc
->mc_lock
);
1108 mutex_exit(&mg
->mg_lock
);
1112 metaslab_group_add(metaslab_group_t
*mg
, metaslab_t
*msp
)
1114 ASSERT(msp
->ms_group
== NULL
);
1115 mutex_enter(&mg
->mg_lock
);
1118 avl_add(&mg
->mg_metaslab_tree
, msp
);
1119 mutex_exit(&mg
->mg_lock
);
1121 mutex_enter(&msp
->ms_lock
);
1122 metaslab_group_histogram_add(mg
, msp
);
1123 mutex_exit(&msp
->ms_lock
);
1127 metaslab_group_remove(metaslab_group_t
*mg
, metaslab_t
*msp
)
1129 mutex_enter(&msp
->ms_lock
);
1130 metaslab_group_histogram_remove(mg
, msp
);
1131 mutex_exit(&msp
->ms_lock
);
1133 mutex_enter(&mg
->mg_lock
);
1134 ASSERT(msp
->ms_group
== mg
);
1135 avl_remove(&mg
->mg_metaslab_tree
, msp
);
1137 metaslab_class_t
*mc
= msp
->ms_group
->mg_class
;
1138 multilist_sublist_t
*mls
=
1139 multilist_sublist_lock_obj(&mc
->mc_metaslab_txg_list
, msp
);
1140 if (multilist_link_active(&msp
->ms_class_txg_node
))
1141 multilist_sublist_remove(mls
, msp
);
1142 multilist_sublist_unlock(mls
);
1144 msp
->ms_group
= NULL
;
1145 mutex_exit(&mg
->mg_lock
);
1149 metaslab_group_sort_impl(metaslab_group_t
*mg
, metaslab_t
*msp
, uint64_t weight
)
1151 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1152 ASSERT(MUTEX_HELD(&mg
->mg_lock
));
1153 ASSERT(msp
->ms_group
== mg
);
1155 avl_remove(&mg
->mg_metaslab_tree
, msp
);
1156 msp
->ms_weight
= weight
;
1157 avl_add(&mg
->mg_metaslab_tree
, msp
);
1162 metaslab_group_sort(metaslab_group_t
*mg
, metaslab_t
*msp
, uint64_t weight
)
1165 * Although in principle the weight can be any value, in
1166 * practice we do not use values in the range [1, 511].
1168 ASSERT(weight
>= SPA_MINBLOCKSIZE
|| weight
== 0);
1169 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1171 mutex_enter(&mg
->mg_lock
);
1172 metaslab_group_sort_impl(mg
, msp
, weight
);
1173 mutex_exit(&mg
->mg_lock
);
1177 * Calculate the fragmentation for a given metaslab group. We can use
1178 * a simple average here since all metaslabs within the group must have
1179 * the same size. The return value will be a value between 0 and 100
1180 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1181 * group have a fragmentation metric.
1184 metaslab_group_fragmentation(metaslab_group_t
*mg
)
1186 vdev_t
*vd
= mg
->mg_vd
;
1187 uint64_t fragmentation
= 0;
1188 uint64_t valid_ms
= 0;
1190 for (int m
= 0; m
< vd
->vdev_ms_count
; m
++) {
1191 metaslab_t
*msp
= vd
->vdev_ms
[m
];
1193 if (msp
->ms_fragmentation
== ZFS_FRAG_INVALID
)
1195 if (msp
->ms_group
!= mg
)
1199 fragmentation
+= msp
->ms_fragmentation
;
1202 if (valid_ms
<= mg
->mg_vd
->vdev_ms_count
/ 2)
1203 return (ZFS_FRAG_INVALID
);
1205 fragmentation
/= valid_ms
;
1206 ASSERT3U(fragmentation
, <=, 100);
1207 return (fragmentation
);
1211 * Determine if a given metaslab group should skip allocations. A metaslab
1212 * group should avoid allocations if its free capacity is less than the
1213 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1214 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1215 * that can still handle allocations. If the allocation throttle is enabled
1216 * then we skip allocations to devices that have reached their maximum
1217 * allocation queue depth unless the selected metaslab group is the only
1218 * eligible group remaining.
1221 metaslab_group_allocatable(metaslab_group_t
*mg
, metaslab_group_t
*rotor
,
1222 int flags
, uint64_t psize
, int allocator
, int d
)
1224 spa_t
*spa
= mg
->mg_vd
->vdev_spa
;
1225 metaslab_class_t
*mc
= mg
->mg_class
;
1228 * We can only consider skipping this metaslab group if it's
1229 * in the normal metaslab class and there are other metaslab
1230 * groups to select from. Otherwise, we always consider it eligible
1233 if ((mc
!= spa_normal_class(spa
) &&
1234 mc
!= spa_special_class(spa
) &&
1235 mc
!= spa_dedup_class(spa
)) ||
1240 * If the metaslab group's mg_allocatable flag is set (see comments
1241 * in metaslab_group_alloc_update() for more information) and
1242 * the allocation throttle is disabled then allow allocations to this
1243 * device. However, if the allocation throttle is enabled then
1244 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1245 * to determine if we should allow allocations to this metaslab group.
1246 * If all metaslab groups are no longer considered allocatable
1247 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1248 * gang block size then we allow allocations on this metaslab group
1249 * regardless of the mg_allocatable or throttle settings.
1251 if (mg
->mg_allocatable
) {
1252 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
1254 uint64_t qmax
= mga
->mga_cur_max_alloc_queue_depth
;
1256 if (!mc
->mc_alloc_throttle_enabled
)
1260 * If this metaslab group does not have any free space, then
1261 * there is no point in looking further.
1263 if (mg
->mg_no_free_space
)
1267 * Some allocations (e.g., those coming from device removal
1268 * where the * allocations are not even counted in the
1269 * metaslab * allocation queues) are allowed to bypass
1272 if (flags
& METASLAB_DONT_THROTTLE
)
1276 * Relax allocation throttling for ditto blocks. Due to
1277 * random imbalances in allocation it tends to push copies
1278 * to one vdev, that looks a bit better at the moment.
1280 qmax
= qmax
* (4 + d
) / 4;
1282 qdepth
= zfs_refcount_count(&mga
->mga_alloc_queue_depth
);
1285 * If this metaslab group is below its qmax or it's
1286 * the only allocatable metaslab group, then attempt
1287 * to allocate from it.
1289 if (qdepth
< qmax
|| mc
->mc_alloc_groups
== 1)
1291 ASSERT3U(mc
->mc_alloc_groups
, >, 1);
1294 * Since this metaslab group is at or over its qmax, we
1295 * need to determine if there are metaslab groups after this
1296 * one that might be able to handle this allocation. This is
1297 * racy since we can't hold the locks for all metaslab
1298 * groups at the same time when we make this check.
1300 for (metaslab_group_t
*mgp
= mg
->mg_next
;
1301 mgp
!= rotor
; mgp
= mgp
->mg_next
) {
1302 metaslab_group_allocator_t
*mgap
=
1303 &mgp
->mg_allocator
[allocator
];
1304 qmax
= mgap
->mga_cur_max_alloc_queue_depth
;
1305 qmax
= qmax
* (4 + d
) / 4;
1307 zfs_refcount_count(&mgap
->mga_alloc_queue_depth
);
1310 * If there is another metaslab group that
1311 * might be able to handle the allocation, then
1312 * we return false so that we skip this group.
1314 if (qdepth
< qmax
&& !mgp
->mg_no_free_space
)
1319 * We didn't find another group to handle the allocation
1320 * so we can't skip this metaslab group even though
1321 * we are at or over our qmax.
1325 } else if (mc
->mc_alloc_groups
== 0 || psize
== SPA_MINBLOCKSIZE
) {
1332 * ==========================================================================
1333 * Range tree callbacks
1334 * ==========================================================================
1338 * Comparison function for the private size-ordered tree using 32-bit
1339 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1341 __attribute__((always_inline
)) inline
1343 metaslab_rangesize32_compare(const void *x1
, const void *x2
)
1345 const range_seg32_t
*r1
= x1
;
1346 const range_seg32_t
*r2
= x2
;
1348 uint64_t rs_size1
= r1
->rs_end
- r1
->rs_start
;
1349 uint64_t rs_size2
= r2
->rs_end
- r2
->rs_start
;
1351 int cmp
= TREE_CMP(rs_size1
, rs_size2
);
1353 return (cmp
+ !cmp
* TREE_CMP(r1
->rs_start
, r2
->rs_start
));
1357 * Comparison function for the private size-ordered tree using 64-bit
1358 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1360 __attribute__((always_inline
)) inline
1362 metaslab_rangesize64_compare(const void *x1
, const void *x2
)
1364 const range_seg64_t
*r1
= x1
;
1365 const range_seg64_t
*r2
= x2
;
1367 uint64_t rs_size1
= r1
->rs_end
- r1
->rs_start
;
1368 uint64_t rs_size2
= r2
->rs_end
- r2
->rs_start
;
1370 int cmp
= TREE_CMP(rs_size1
, rs_size2
);
1372 return (cmp
+ !cmp
* TREE_CMP(r1
->rs_start
, r2
->rs_start
));
1375 typedef struct metaslab_rt_arg
{
1376 zfs_btree_t
*mra_bt
;
1377 uint32_t mra_floor_shift
;
1378 } metaslab_rt_arg_t
;
1382 metaslab_rt_arg_t
*mra
;
1386 metaslab_size_sorted_add(void *arg
, uint64_t start
, uint64_t size
)
1388 struct mssa_arg
*mssap
= arg
;
1389 range_tree_t
*rt
= mssap
->rt
;
1390 metaslab_rt_arg_t
*mrap
= mssap
->mra
;
1391 range_seg_max_t seg
= {0};
1392 rs_set_start(&seg
, rt
, start
);
1393 rs_set_end(&seg
, rt
, start
+ size
);
1394 metaslab_rt_add(rt
, &seg
, mrap
);
1398 metaslab_size_tree_full_load(range_tree_t
*rt
)
1400 metaslab_rt_arg_t
*mrap
= rt
->rt_arg
;
1401 METASLABSTAT_BUMP(metaslabstat_reload_tree
);
1402 ASSERT0(zfs_btree_numnodes(mrap
->mra_bt
));
1403 mrap
->mra_floor_shift
= 0;
1404 struct mssa_arg arg
= {0};
1407 range_tree_walk(rt
, metaslab_size_sorted_add
, &arg
);
1411 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf
,
1412 range_seg32_t
, metaslab_rangesize32_compare
)
1414 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf
,
1415 range_seg64_t
, metaslab_rangesize64_compare
)
1418 * Create any block allocator specific components. The current allocators
1419 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1422 metaslab_rt_create(range_tree_t
*rt
, void *arg
)
1424 metaslab_rt_arg_t
*mrap
= arg
;
1425 zfs_btree_t
*size_tree
= mrap
->mra_bt
;
1428 int (*compare
) (const void *, const void *);
1429 bt_find_in_buf_f bt_find
;
1430 switch (rt
->rt_type
) {
1432 size
= sizeof (range_seg32_t
);
1433 compare
= metaslab_rangesize32_compare
;
1434 bt_find
= metaslab_rt_find_rangesize32_in_buf
;
1437 size
= sizeof (range_seg64_t
);
1438 compare
= metaslab_rangesize64_compare
;
1439 bt_find
= metaslab_rt_find_rangesize64_in_buf
;
1442 panic("Invalid range seg type %d", rt
->rt_type
);
1444 zfs_btree_create(size_tree
, compare
, bt_find
, size
);
1445 mrap
->mra_floor_shift
= metaslab_by_size_min_shift
;
1449 metaslab_rt_destroy(range_tree_t
*rt
, void *arg
)
1452 metaslab_rt_arg_t
*mrap
= arg
;
1453 zfs_btree_t
*size_tree
= mrap
->mra_bt
;
1455 zfs_btree_destroy(size_tree
);
1456 kmem_free(mrap
, sizeof (*mrap
));
1460 metaslab_rt_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
1462 metaslab_rt_arg_t
*mrap
= arg
;
1463 zfs_btree_t
*size_tree
= mrap
->mra_bt
;
1465 if (rs_get_end(rs
, rt
) - rs_get_start(rs
, rt
) <
1466 (1ULL << mrap
->mra_floor_shift
))
1469 zfs_btree_add(size_tree
, rs
);
1473 metaslab_rt_remove(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
1475 metaslab_rt_arg_t
*mrap
= arg
;
1476 zfs_btree_t
*size_tree
= mrap
->mra_bt
;
1478 if (rs_get_end(rs
, rt
) - rs_get_start(rs
, rt
) < (1ULL <<
1479 mrap
->mra_floor_shift
))
1482 zfs_btree_remove(size_tree
, rs
);
1486 metaslab_rt_vacate(range_tree_t
*rt
, void *arg
)
1488 metaslab_rt_arg_t
*mrap
= arg
;
1489 zfs_btree_t
*size_tree
= mrap
->mra_bt
;
1490 zfs_btree_clear(size_tree
);
1491 zfs_btree_destroy(size_tree
);
1493 metaslab_rt_create(rt
, arg
);
1496 static const range_tree_ops_t metaslab_rt_ops
= {
1497 .rtop_create
= metaslab_rt_create
,
1498 .rtop_destroy
= metaslab_rt_destroy
,
1499 .rtop_add
= metaslab_rt_add
,
1500 .rtop_remove
= metaslab_rt_remove
,
1501 .rtop_vacate
= metaslab_rt_vacate
1505 * ==========================================================================
1506 * Common allocator routines
1507 * ==========================================================================
1511 * Return the maximum contiguous segment within the metaslab.
1514 metaslab_largest_allocatable(metaslab_t
*msp
)
1516 zfs_btree_t
*t
= &msp
->ms_allocatable_by_size
;
1521 if (zfs_btree_numnodes(t
) == 0)
1522 metaslab_size_tree_full_load(msp
->ms_allocatable
);
1524 rs
= zfs_btree_last(t
, NULL
);
1528 return (rs_get_end(rs
, msp
->ms_allocatable
) - rs_get_start(rs
,
1529 msp
->ms_allocatable
));
1533 * Return the maximum contiguous segment within the unflushed frees of this
1537 metaslab_largest_unflushed_free(metaslab_t
*msp
)
1539 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1541 if (msp
->ms_unflushed_frees
== NULL
)
1544 if (zfs_btree_numnodes(&msp
->ms_unflushed_frees_by_size
) == 0)
1545 metaslab_size_tree_full_load(msp
->ms_unflushed_frees
);
1546 range_seg_t
*rs
= zfs_btree_last(&msp
->ms_unflushed_frees_by_size
,
1552 * When a range is freed from the metaslab, that range is added to
1553 * both the unflushed frees and the deferred frees. While the block
1554 * will eventually be usable, if the metaslab were loaded the range
1555 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1556 * txgs had passed. As a result, when attempting to estimate an upper
1557 * bound for the largest currently-usable free segment in the
1558 * metaslab, we need to not consider any ranges currently in the defer
1559 * trees. This algorithm approximates the largest available chunk in
1560 * the largest range in the unflushed_frees tree by taking the first
1561 * chunk. While this may be a poor estimate, it should only remain so
1562 * briefly and should eventually self-correct as frees are no longer
1563 * deferred. Similar logic applies to the ms_freed tree. See
1564 * metaslab_load() for more details.
1566 * There are two primary sources of inaccuracy in this estimate. Both
1567 * are tolerated for performance reasons. The first source is that we
1568 * only check the largest segment for overlaps. Smaller segments may
1569 * have more favorable overlaps with the other trees, resulting in
1570 * larger usable chunks. Second, we only look at the first chunk in
1571 * the largest segment; there may be other usable chunks in the
1572 * largest segment, but we ignore them.
1574 uint64_t rstart
= rs_get_start(rs
, msp
->ms_unflushed_frees
);
1575 uint64_t rsize
= rs_get_end(rs
, msp
->ms_unflushed_frees
) - rstart
;
1576 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
1579 boolean_t found
= range_tree_find_in(msp
->ms_defer
[t
], rstart
,
1580 rsize
, &start
, &size
);
1582 if (rstart
== start
)
1584 rsize
= start
- rstart
;
1590 boolean_t found
= range_tree_find_in(msp
->ms_freed
, rstart
,
1591 rsize
, &start
, &size
);
1593 rsize
= start
- rstart
;
1598 static range_seg_t
*
1599 metaslab_block_find(zfs_btree_t
*t
, range_tree_t
*rt
, uint64_t start
,
1600 uint64_t size
, zfs_btree_index_t
*where
)
1603 range_seg_max_t rsearch
;
1605 rs_set_start(&rsearch
, rt
, start
);
1606 rs_set_end(&rsearch
, rt
, start
+ size
);
1608 rs
= zfs_btree_find(t
, &rsearch
, where
);
1610 rs
= zfs_btree_next(t
, where
, where
);
1616 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1617 defined(WITH_CF_BLOCK_ALLOCATOR)
1620 * This is a helper function that can be used by the allocator to find a
1621 * suitable block to allocate. This will search the specified B-tree looking
1622 * for a block that matches the specified criteria.
1625 metaslab_block_picker(range_tree_t
*rt
, uint64_t *cursor
, uint64_t size
,
1626 uint64_t max_search
)
1629 *cursor
= rt
->rt_start
;
1630 zfs_btree_t
*bt
= &rt
->rt_root
;
1631 zfs_btree_index_t where
;
1632 range_seg_t
*rs
= metaslab_block_find(bt
, rt
, *cursor
, size
, &where
);
1633 uint64_t first_found
;
1634 int count_searched
= 0;
1637 first_found
= rs_get_start(rs
, rt
);
1639 while (rs
!= NULL
&& (rs_get_start(rs
, rt
) - first_found
<=
1640 max_search
|| count_searched
< metaslab_min_search_count
)) {
1641 uint64_t offset
= rs_get_start(rs
, rt
);
1642 if (offset
+ size
<= rs_get_end(rs
, rt
)) {
1643 *cursor
= offset
+ size
;
1646 rs
= zfs_btree_next(bt
, &where
, &where
);
1653 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1655 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1657 * ==========================================================================
1658 * Dynamic Fit (df) block allocator
1660 * Search for a free chunk of at least this size, starting from the last
1661 * offset (for this alignment of block) looking for up to
1662 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1663 * found within 16MB, then return a free chunk of exactly the requested size (or
1666 * If it seems like searching from the last offset will be unproductive, skip
1667 * that and just return a free chunk of exactly the requested size (or larger).
1668 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1669 * mechanism is probably not very useful and may be removed in the future.
1671 * The behavior when not searching can be changed to return the largest free
1672 * chunk, instead of a free chunk of exactly the requested size, by setting
1673 * metaslab_df_use_largest_segment.
1674 * ==========================================================================
1677 metaslab_df_alloc(metaslab_t
*msp
, uint64_t size
)
1680 * Find the largest power of 2 block size that evenly divides the
1681 * requested size. This is used to try to allocate blocks with similar
1682 * alignment from the same area of the metaslab (i.e. same cursor
1683 * bucket) but it does not guarantee that other allocations sizes
1684 * may exist in the same region.
1686 uint64_t align
= size
& -size
;
1687 uint64_t *cursor
= &msp
->ms_lbas
[highbit64(align
) - 1];
1688 range_tree_t
*rt
= msp
->ms_allocatable
;
1689 uint_t free_pct
= range_tree_space(rt
) * 100 / msp
->ms_size
;
1692 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1695 * If we're running low on space, find a segment based on size,
1696 * rather than iterating based on offset.
1698 if (metaslab_largest_allocatable(msp
) < metaslab_df_alloc_threshold
||
1699 free_pct
< metaslab_df_free_pct
) {
1702 offset
= metaslab_block_picker(rt
,
1703 cursor
, size
, metaslab_df_max_search
);
1708 if (zfs_btree_numnodes(&msp
->ms_allocatable_by_size
) == 0)
1709 metaslab_size_tree_full_load(msp
->ms_allocatable
);
1711 if (metaslab_df_use_largest_segment
) {
1712 /* use largest free segment */
1713 rs
= zfs_btree_last(&msp
->ms_allocatable_by_size
, NULL
);
1715 zfs_btree_index_t where
;
1716 /* use segment of this size, or next largest */
1717 rs
= metaslab_block_find(&msp
->ms_allocatable_by_size
,
1718 rt
, msp
->ms_start
, size
, &where
);
1720 if (rs
!= NULL
&& rs_get_start(rs
, rt
) + size
<= rs_get_end(rs
,
1722 offset
= rs_get_start(rs
, rt
);
1723 *cursor
= offset
+ size
;
1730 const metaslab_ops_t zfs_metaslab_ops
= {
1733 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1735 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1737 * ==========================================================================
1738 * Cursor fit block allocator -
1739 * Select the largest region in the metaslab, set the cursor to the beginning
1740 * of the range and the cursor_end to the end of the range. As allocations
1741 * are made advance the cursor. Continue allocating from the cursor until
1742 * the range is exhausted and then find a new range.
1743 * ==========================================================================
1746 metaslab_cf_alloc(metaslab_t
*msp
, uint64_t size
)
1748 range_tree_t
*rt
= msp
->ms_allocatable
;
1749 zfs_btree_t
*t
= &msp
->ms_allocatable_by_size
;
1750 uint64_t *cursor
= &msp
->ms_lbas
[0];
1751 uint64_t *cursor_end
= &msp
->ms_lbas
[1];
1752 uint64_t offset
= 0;
1754 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1756 ASSERT3U(*cursor_end
, >=, *cursor
);
1758 if ((*cursor
+ size
) > *cursor_end
) {
1761 if (zfs_btree_numnodes(t
) == 0)
1762 metaslab_size_tree_full_load(msp
->ms_allocatable
);
1763 rs
= zfs_btree_last(t
, NULL
);
1764 if (rs
== NULL
|| (rs_get_end(rs
, rt
) - rs_get_start(rs
, rt
)) <
1768 *cursor
= rs_get_start(rs
, rt
);
1769 *cursor_end
= rs_get_end(rs
, rt
);
1778 const metaslab_ops_t zfs_metaslab_ops
= {
1781 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1783 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1785 * ==========================================================================
1786 * New dynamic fit allocator -
1787 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1788 * contiguous blocks. If no region is found then just use the largest segment
1790 * ==========================================================================
1794 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1795 * to request from the allocator.
1797 uint64_t metaslab_ndf_clump_shift
= 4;
1800 metaslab_ndf_alloc(metaslab_t
*msp
, uint64_t size
)
1802 zfs_btree_t
*t
= &msp
->ms_allocatable
->rt_root
;
1803 range_tree_t
*rt
= msp
->ms_allocatable
;
1804 zfs_btree_index_t where
;
1806 range_seg_max_t rsearch
;
1807 uint64_t hbit
= highbit64(size
);
1808 uint64_t *cursor
= &msp
->ms_lbas
[hbit
- 1];
1809 uint64_t max_size
= metaslab_largest_allocatable(msp
);
1811 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1813 if (max_size
< size
)
1816 rs_set_start(&rsearch
, rt
, *cursor
);
1817 rs_set_end(&rsearch
, rt
, *cursor
+ size
);
1819 rs
= zfs_btree_find(t
, &rsearch
, &where
);
1820 if (rs
== NULL
|| (rs_get_end(rs
, rt
) - rs_get_start(rs
, rt
)) < size
) {
1821 t
= &msp
->ms_allocatable_by_size
;
1823 rs_set_start(&rsearch
, rt
, 0);
1824 rs_set_end(&rsearch
, rt
, MIN(max_size
, 1ULL << (hbit
+
1825 metaslab_ndf_clump_shift
)));
1827 rs
= zfs_btree_find(t
, &rsearch
, &where
);
1829 rs
= zfs_btree_next(t
, &where
, &where
);
1833 if ((rs_get_end(rs
, rt
) - rs_get_start(rs
, rt
)) >= size
) {
1834 *cursor
= rs_get_start(rs
, rt
) + size
;
1835 return (rs_get_start(rs
, rt
));
1840 const metaslab_ops_t zfs_metaslab_ops
= {
1843 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1847 * ==========================================================================
1849 * ==========================================================================
1853 * Wait for any in-progress metaslab loads to complete.
1856 metaslab_load_wait(metaslab_t
*msp
)
1858 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1860 while (msp
->ms_loading
) {
1861 ASSERT(!msp
->ms_loaded
);
1862 cv_wait(&msp
->ms_load_cv
, &msp
->ms_lock
);
1867 * Wait for any in-progress flushing to complete.
1870 metaslab_flush_wait(metaslab_t
*msp
)
1872 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1874 while (msp
->ms_flushing
)
1875 cv_wait(&msp
->ms_flush_cv
, &msp
->ms_lock
);
1879 metaslab_idx_func(multilist_t
*ml
, void *arg
)
1881 metaslab_t
*msp
= arg
;
1884 * ms_id values are allocated sequentially, so full 64bit
1885 * division would be a waste of time, so limit it to 32 bits.
1887 return ((unsigned int)msp
->ms_id
% multilist_get_num_sublists(ml
));
1891 metaslab_allocated_space(metaslab_t
*msp
)
1893 return (msp
->ms_allocated_space
);
1897 * Verify that the space accounting on disk matches the in-core range_trees.
1900 metaslab_verify_space(metaslab_t
*msp
, uint64_t txg
)
1902 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
1903 uint64_t allocating
= 0;
1904 uint64_t sm_free_space
, msp_free_space
;
1906 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
1907 ASSERT(!msp
->ms_condensing
);
1909 if ((zfs_flags
& ZFS_DEBUG_METASLAB_VERIFY
) == 0)
1913 * We can only verify the metaslab space when we're called
1914 * from syncing context with a loaded metaslab that has an
1915 * allocated space map. Calling this in non-syncing context
1916 * does not provide a consistent view of the metaslab since
1917 * we're performing allocations in the future.
1919 if (txg
!= spa_syncing_txg(spa
) || msp
->ms_sm
== NULL
||
1924 * Even though the smp_alloc field can get negative,
1925 * when it comes to a metaslab's space map, that should
1926 * never be the case.
1928 ASSERT3S(space_map_allocated(msp
->ms_sm
), >=, 0);
1930 ASSERT3U(space_map_allocated(msp
->ms_sm
), >=,
1931 range_tree_space(msp
->ms_unflushed_frees
));
1933 ASSERT3U(metaslab_allocated_space(msp
), ==,
1934 space_map_allocated(msp
->ms_sm
) +
1935 range_tree_space(msp
->ms_unflushed_allocs
) -
1936 range_tree_space(msp
->ms_unflushed_frees
));
1938 sm_free_space
= msp
->ms_size
- metaslab_allocated_space(msp
);
1941 * Account for future allocations since we would have
1942 * already deducted that space from the ms_allocatable.
1944 for (int t
= 0; t
< TXG_CONCURRENT_STATES
; t
++) {
1946 range_tree_space(msp
->ms_allocating
[(txg
+ t
) & TXG_MASK
]);
1948 ASSERT3U(allocating
+ msp
->ms_allocated_this_txg
, ==,
1949 msp
->ms_allocating_total
);
1951 ASSERT3U(msp
->ms_deferspace
, ==,
1952 range_tree_space(msp
->ms_defer
[0]) +
1953 range_tree_space(msp
->ms_defer
[1]));
1955 msp_free_space
= range_tree_space(msp
->ms_allocatable
) + allocating
+
1956 msp
->ms_deferspace
+ range_tree_space(msp
->ms_freed
);
1958 VERIFY3U(sm_free_space
, ==, msp_free_space
);
1962 metaslab_aux_histograms_clear(metaslab_t
*msp
)
1965 * Auxiliary histograms are only cleared when resetting them,
1966 * which can only happen while the metaslab is loaded.
1968 ASSERT(msp
->ms_loaded
);
1970 memset(msp
->ms_synchist
, 0, sizeof (msp
->ms_synchist
));
1971 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++)
1972 memset(msp
->ms_deferhist
[t
], 0, sizeof (msp
->ms_deferhist
[t
]));
1976 metaslab_aux_histogram_add(uint64_t *histogram
, uint64_t shift
,
1980 * This is modeled after space_map_histogram_add(), so refer to that
1981 * function for implementation details. We want this to work like
1982 * the space map histogram, and not the range tree histogram, as we
1983 * are essentially constructing a delta that will be later subtracted
1984 * from the space map histogram.
1987 for (int i
= shift
; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
1988 ASSERT3U(i
, >=, idx
+ shift
);
1989 histogram
[idx
] += rt
->rt_histogram
[i
] << (i
- idx
- shift
);
1991 if (idx
< SPACE_MAP_HISTOGRAM_SIZE
- 1) {
1992 ASSERT3U(idx
+ shift
, ==, i
);
1994 ASSERT3U(idx
, <, SPACE_MAP_HISTOGRAM_SIZE
);
2000 * Called at every sync pass that the metaslab gets synced.
2002 * The reason is that we want our auxiliary histograms to be updated
2003 * wherever the metaslab's space map histogram is updated. This way
2004 * we stay consistent on which parts of the metaslab space map's
2005 * histogram are currently not available for allocations (e.g because
2006 * they are in the defer, freed, and freeing trees).
2009 metaslab_aux_histograms_update(metaslab_t
*msp
)
2011 space_map_t
*sm
= msp
->ms_sm
;
2015 * This is similar to the metaslab's space map histogram updates
2016 * that take place in metaslab_sync(). The only difference is that
2017 * we only care about segments that haven't made it into the
2018 * ms_allocatable tree yet.
2020 if (msp
->ms_loaded
) {
2021 metaslab_aux_histograms_clear(msp
);
2023 metaslab_aux_histogram_add(msp
->ms_synchist
,
2024 sm
->sm_shift
, msp
->ms_freed
);
2026 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
2027 metaslab_aux_histogram_add(msp
->ms_deferhist
[t
],
2028 sm
->sm_shift
, msp
->ms_defer
[t
]);
2032 metaslab_aux_histogram_add(msp
->ms_synchist
,
2033 sm
->sm_shift
, msp
->ms_freeing
);
2037 * Called every time we are done syncing (writing to) the metaslab,
2038 * i.e. at the end of each sync pass.
2039 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2042 metaslab_aux_histograms_update_done(metaslab_t
*msp
, boolean_t defer_allowed
)
2044 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
2045 space_map_t
*sm
= msp
->ms_sm
;
2049 * We came here from metaslab_init() when creating/opening a
2050 * pool, looking at a metaslab that hasn't had any allocations
2057 * This is similar to the actions that we take for the ms_freed
2058 * and ms_defer trees in metaslab_sync_done().
2060 uint64_t hist_index
= spa_syncing_txg(spa
) % TXG_DEFER_SIZE
;
2061 if (defer_allowed
) {
2062 memcpy(msp
->ms_deferhist
[hist_index
], msp
->ms_synchist
,
2063 sizeof (msp
->ms_synchist
));
2065 memset(msp
->ms_deferhist
[hist_index
], 0,
2066 sizeof (msp
->ms_deferhist
[hist_index
]));
2068 memset(msp
->ms_synchist
, 0, sizeof (msp
->ms_synchist
));
2072 * Ensure that the metaslab's weight and fragmentation are consistent
2073 * with the contents of the histogram (either the range tree's histogram
2074 * or the space map's depending whether the metaslab is loaded).
2077 metaslab_verify_weight_and_frag(metaslab_t
*msp
)
2079 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2081 if ((zfs_flags
& ZFS_DEBUG_METASLAB_VERIFY
) == 0)
2085 * We can end up here from vdev_remove_complete(), in which case we
2086 * cannot do these assertions because we hold spa config locks and
2087 * thus we are not allowed to read from the DMU.
2089 * We check if the metaslab group has been removed and if that's
2090 * the case we return immediately as that would mean that we are
2091 * here from the aforementioned code path.
2093 if (msp
->ms_group
== NULL
)
2097 * Devices being removed always return a weight of 0 and leave
2098 * fragmentation and ms_max_size as is - there is nothing for
2099 * us to verify here.
2101 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
2102 if (vd
->vdev_removing
)
2106 * If the metaslab is dirty it probably means that we've done
2107 * some allocations or frees that have changed our histograms
2108 * and thus the weight.
2110 for (int t
= 0; t
< TXG_SIZE
; t
++) {
2111 if (txg_list_member(&vd
->vdev_ms_list
, msp
, t
))
2116 * This verification checks that our in-memory state is consistent
2117 * with what's on disk. If the pool is read-only then there aren't
2118 * any changes and we just have the initially-loaded state.
2120 if (!spa_writeable(msp
->ms_group
->mg_vd
->vdev_spa
))
2123 /* some extra verification for in-core tree if you can */
2124 if (msp
->ms_loaded
) {
2125 range_tree_stat_verify(msp
->ms_allocatable
);
2126 VERIFY(space_map_histogram_verify(msp
->ms_sm
,
2127 msp
->ms_allocatable
));
2130 uint64_t weight
= msp
->ms_weight
;
2131 uint64_t was_active
= msp
->ms_weight
& METASLAB_ACTIVE_MASK
;
2132 boolean_t space_based
= WEIGHT_IS_SPACEBASED(msp
->ms_weight
);
2133 uint64_t frag
= msp
->ms_fragmentation
;
2134 uint64_t max_segsize
= msp
->ms_max_size
;
2137 msp
->ms_fragmentation
= 0;
2140 * This function is used for verification purposes and thus should
2141 * not introduce any side-effects/mutations on the system's state.
2143 * Regardless of whether metaslab_weight() thinks this metaslab
2144 * should be active or not, we want to ensure that the actual weight
2145 * (and therefore the value of ms_weight) would be the same if it
2146 * was to be recalculated at this point.
2148 * In addition we set the nodirty flag so metaslab_weight() does
2149 * not dirty the metaslab for future TXGs (e.g. when trying to
2150 * force condensing to upgrade the metaslab spacemaps).
2152 msp
->ms_weight
= metaslab_weight(msp
, B_TRUE
) | was_active
;
2154 VERIFY3U(max_segsize
, ==, msp
->ms_max_size
);
2157 * If the weight type changed then there is no point in doing
2158 * verification. Revert fields to their original values.
2160 if ((space_based
&& !WEIGHT_IS_SPACEBASED(msp
->ms_weight
)) ||
2161 (!space_based
&& WEIGHT_IS_SPACEBASED(msp
->ms_weight
))) {
2162 msp
->ms_fragmentation
= frag
;
2163 msp
->ms_weight
= weight
;
2167 VERIFY3U(msp
->ms_fragmentation
, ==, frag
);
2168 VERIFY3U(msp
->ms_weight
, ==, weight
);
2172 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2173 * this class that was used longest ago, and attempt to unload it. We don't
2174 * want to spend too much time in this loop to prevent performance
2175 * degradation, and we expect that most of the time this operation will
2176 * succeed. Between that and the normal unloading processing during txg sync,
2177 * we expect this to keep the metaslab memory usage under control.
2180 metaslab_potentially_evict(metaslab_class_t
*mc
)
2183 uint64_t allmem
= arc_all_memory();
2184 uint64_t inuse
= spl_kmem_cache_inuse(zfs_btree_leaf_cache
);
2185 uint64_t size
= spl_kmem_cache_entry_size(zfs_btree_leaf_cache
);
2187 for (; allmem
* zfs_metaslab_mem_limit
/ 100 < inuse
* size
&&
2188 tries
< multilist_get_num_sublists(&mc
->mc_metaslab_txg_list
) * 2;
2190 unsigned int idx
= multilist_get_random_index(
2191 &mc
->mc_metaslab_txg_list
);
2192 multilist_sublist_t
*mls
=
2193 multilist_sublist_lock(&mc
->mc_metaslab_txg_list
, idx
);
2194 metaslab_t
*msp
= multilist_sublist_head(mls
);
2195 multilist_sublist_unlock(mls
);
2196 while (msp
!= NULL
&& allmem
* zfs_metaslab_mem_limit
/ 100 <
2198 VERIFY3P(mls
, ==, multilist_sublist_lock(
2199 &mc
->mc_metaslab_txg_list
, idx
));
2201 metaslab_idx_func(&mc
->mc_metaslab_txg_list
, msp
));
2203 if (!multilist_link_active(&msp
->ms_class_txg_node
)) {
2204 multilist_sublist_unlock(mls
);
2207 metaslab_t
*next_msp
= multilist_sublist_next(mls
, msp
);
2208 multilist_sublist_unlock(mls
);
2210 * If the metaslab is currently loading there are two
2211 * cases. If it's the metaslab we're evicting, we
2212 * can't continue on or we'll panic when we attempt to
2213 * recursively lock the mutex. If it's another
2214 * metaslab that's loading, it can be safely skipped,
2215 * since we know it's very new and therefore not a
2216 * good eviction candidate. We check later once the
2217 * lock is held that the metaslab is fully loaded
2218 * before actually unloading it.
2220 if (msp
->ms_loading
) {
2223 spl_kmem_cache_inuse(zfs_btree_leaf_cache
);
2227 * We can't unload metaslabs with no spacemap because
2228 * they're not ready to be unloaded yet. We can't
2229 * unload metaslabs with outstanding allocations
2230 * because doing so could cause the metaslab's weight
2231 * to decrease while it's unloaded, which violates an
2232 * invariant that we use to prevent unnecessary
2233 * loading. We also don't unload metaslabs that are
2234 * currently active because they are high-weight
2235 * metaslabs that are likely to be used in the near
2238 mutex_enter(&msp
->ms_lock
);
2239 if (msp
->ms_allocator
== -1 && msp
->ms_sm
!= NULL
&&
2240 msp
->ms_allocating_total
== 0) {
2241 metaslab_unload(msp
);
2243 mutex_exit(&msp
->ms_lock
);
2245 inuse
= spl_kmem_cache_inuse(zfs_btree_leaf_cache
);
2249 (void) mc
, (void) zfs_metaslab_mem_limit
;
2254 metaslab_load_impl(metaslab_t
*msp
)
2258 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2259 ASSERT(msp
->ms_loading
);
2260 ASSERT(!msp
->ms_condensing
);
2263 * We temporarily drop the lock to unblock other operations while we
2264 * are reading the space map. Therefore, metaslab_sync() and
2265 * metaslab_sync_done() can run at the same time as we do.
2267 * If we are using the log space maps, metaslab_sync() can't write to
2268 * the metaslab's space map while we are loading as we only write to
2269 * it when we are flushing the metaslab, and that can't happen while
2270 * we are loading it.
2272 * If we are not using log space maps though, metaslab_sync() can
2273 * append to the space map while we are loading. Therefore we load
2274 * only entries that existed when we started the load. Additionally,
2275 * metaslab_sync_done() has to wait for the load to complete because
2276 * there are potential races like metaslab_load() loading parts of the
2277 * space map that are currently being appended by metaslab_sync(). If
2278 * we didn't, the ms_allocatable would have entries that
2279 * metaslab_sync_done() would try to re-add later.
2281 * That's why before dropping the lock we remember the synced length
2282 * of the metaslab and read up to that point of the space map,
2283 * ignoring entries appended by metaslab_sync() that happen after we
2286 uint64_t length
= msp
->ms_synced_length
;
2287 mutex_exit(&msp
->ms_lock
);
2289 hrtime_t load_start
= gethrtime();
2290 metaslab_rt_arg_t
*mrap
;
2291 if (msp
->ms_allocatable
->rt_arg
== NULL
) {
2292 mrap
= kmem_zalloc(sizeof (*mrap
), KM_SLEEP
);
2294 mrap
= msp
->ms_allocatable
->rt_arg
;
2295 msp
->ms_allocatable
->rt_ops
= NULL
;
2296 msp
->ms_allocatable
->rt_arg
= NULL
;
2298 mrap
->mra_bt
= &msp
->ms_allocatable_by_size
;
2299 mrap
->mra_floor_shift
= metaslab_by_size_min_shift
;
2301 if (msp
->ms_sm
!= NULL
) {
2302 error
= space_map_load_length(msp
->ms_sm
, msp
->ms_allocatable
,
2305 /* Now, populate the size-sorted tree. */
2306 metaslab_rt_create(msp
->ms_allocatable
, mrap
);
2307 msp
->ms_allocatable
->rt_ops
= &metaslab_rt_ops
;
2308 msp
->ms_allocatable
->rt_arg
= mrap
;
2310 struct mssa_arg arg
= {0};
2311 arg
.rt
= msp
->ms_allocatable
;
2313 range_tree_walk(msp
->ms_allocatable
, metaslab_size_sorted_add
,
2317 * Add the size-sorted tree first, since we don't need to load
2318 * the metaslab from the spacemap.
2320 metaslab_rt_create(msp
->ms_allocatable
, mrap
);
2321 msp
->ms_allocatable
->rt_ops
= &metaslab_rt_ops
;
2322 msp
->ms_allocatable
->rt_arg
= mrap
;
2324 * The space map has not been allocated yet, so treat
2325 * all the space in the metaslab as free and add it to the
2326 * ms_allocatable tree.
2328 range_tree_add(msp
->ms_allocatable
,
2329 msp
->ms_start
, msp
->ms_size
);
2333 * If the ms_sm doesn't exist, this means that this
2334 * metaslab hasn't gone through metaslab_sync() and
2335 * thus has never been dirtied. So we shouldn't
2336 * expect any unflushed allocs or frees from previous
2339 ASSERT(range_tree_is_empty(msp
->ms_unflushed_allocs
));
2340 ASSERT(range_tree_is_empty(msp
->ms_unflushed_frees
));
2345 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2346 * changing the ms_sm (or log_sm) and the metaslab's range trees
2347 * while we are about to use them and populate the ms_allocatable.
2348 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2349 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2351 mutex_enter(&msp
->ms_sync_lock
);
2352 mutex_enter(&msp
->ms_lock
);
2354 ASSERT(!msp
->ms_condensing
);
2355 ASSERT(!msp
->ms_flushing
);
2358 mutex_exit(&msp
->ms_sync_lock
);
2362 ASSERT3P(msp
->ms_group
, !=, NULL
);
2363 msp
->ms_loaded
= B_TRUE
;
2366 * Apply all the unflushed changes to ms_allocatable right
2367 * away so any manipulations we do below have a clear view
2368 * of what is allocated and what is free.
2370 range_tree_walk(msp
->ms_unflushed_allocs
,
2371 range_tree_remove
, msp
->ms_allocatable
);
2372 range_tree_walk(msp
->ms_unflushed_frees
,
2373 range_tree_add
, msp
->ms_allocatable
);
2375 ASSERT3P(msp
->ms_group
, !=, NULL
);
2376 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
2377 if (spa_syncing_log_sm(spa
) != NULL
) {
2378 ASSERT(spa_feature_is_enabled(spa
,
2379 SPA_FEATURE_LOG_SPACEMAP
));
2382 * If we use a log space map we add all the segments
2383 * that are in ms_unflushed_frees so they are available
2386 * ms_allocatable needs to contain all free segments
2387 * that are ready for allocations (thus not segments
2388 * from ms_freeing, ms_freed, and the ms_defer trees).
2389 * But if we grab the lock in this code path at a sync
2390 * pass later that 1, then it also contains the
2391 * segments of ms_freed (they were added to it earlier
2392 * in this path through ms_unflushed_frees). So we
2393 * need to remove all the segments that exist in
2394 * ms_freed from ms_allocatable as they will be added
2395 * later in metaslab_sync_done().
2397 * When there's no log space map, the ms_allocatable
2398 * correctly doesn't contain any segments that exist
2399 * in ms_freed [see ms_synced_length].
2401 range_tree_walk(msp
->ms_freed
,
2402 range_tree_remove
, msp
->ms_allocatable
);
2406 * If we are not using the log space map, ms_allocatable
2407 * contains the segments that exist in the ms_defer trees
2408 * [see ms_synced_length]. Thus we need to remove them
2409 * from ms_allocatable as they will be added again in
2410 * metaslab_sync_done().
2412 * If we are using the log space map, ms_allocatable still
2413 * contains the segments that exist in the ms_defer trees.
2414 * Not because it read them through the ms_sm though. But
2415 * because these segments are part of ms_unflushed_frees
2416 * whose segments we add to ms_allocatable earlier in this
2419 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
2420 range_tree_walk(msp
->ms_defer
[t
],
2421 range_tree_remove
, msp
->ms_allocatable
);
2425 * Call metaslab_recalculate_weight_and_sort() now that the
2426 * metaslab is loaded so we get the metaslab's real weight.
2428 * Unless this metaslab was created with older software and
2429 * has not yet been converted to use segment-based weight, we
2430 * expect the new weight to be better or equal to the weight
2431 * that the metaslab had while it was not loaded. This is
2432 * because the old weight does not take into account the
2433 * consolidation of adjacent segments between TXGs. [see
2434 * comment for ms_synchist and ms_deferhist[] for more info]
2436 uint64_t weight
= msp
->ms_weight
;
2437 uint64_t max_size
= msp
->ms_max_size
;
2438 metaslab_recalculate_weight_and_sort(msp
);
2439 if (!WEIGHT_IS_SPACEBASED(weight
))
2440 ASSERT3U(weight
, <=, msp
->ms_weight
);
2441 msp
->ms_max_size
= metaslab_largest_allocatable(msp
);
2442 ASSERT3U(max_size
, <=, msp
->ms_max_size
);
2443 hrtime_t load_end
= gethrtime();
2444 msp
->ms_load_time
= load_end
;
2445 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2446 "ms_id %llu, smp_length %llu, "
2447 "unflushed_allocs %llu, unflushed_frees %llu, "
2448 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2449 "loading_time %lld ms, ms_max_size %llu, "
2450 "max size error %lld, "
2451 "old_weight %llx, new_weight %llx",
2452 (u_longlong_t
)spa_syncing_txg(spa
), spa_name(spa
),
2453 (u_longlong_t
)msp
->ms_group
->mg_vd
->vdev_id
,
2454 (u_longlong_t
)msp
->ms_id
,
2455 (u_longlong_t
)space_map_length(msp
->ms_sm
),
2456 (u_longlong_t
)range_tree_space(msp
->ms_unflushed_allocs
),
2457 (u_longlong_t
)range_tree_space(msp
->ms_unflushed_frees
),
2458 (u_longlong_t
)range_tree_space(msp
->ms_freed
),
2459 (u_longlong_t
)range_tree_space(msp
->ms_defer
[0]),
2460 (u_longlong_t
)range_tree_space(msp
->ms_defer
[1]),
2461 (longlong_t
)((load_start
- msp
->ms_unload_time
) / 1000000),
2462 (longlong_t
)((load_end
- load_start
) / 1000000),
2463 (u_longlong_t
)msp
->ms_max_size
,
2464 (u_longlong_t
)msp
->ms_max_size
- max_size
,
2465 (u_longlong_t
)weight
, (u_longlong_t
)msp
->ms_weight
);
2467 metaslab_verify_space(msp
, spa_syncing_txg(spa
));
2468 mutex_exit(&msp
->ms_sync_lock
);
2473 metaslab_load(metaslab_t
*msp
)
2475 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2478 * There may be another thread loading the same metaslab, if that's
2479 * the case just wait until the other thread is done and return.
2481 metaslab_load_wait(msp
);
2484 VERIFY(!msp
->ms_loading
);
2485 ASSERT(!msp
->ms_condensing
);
2488 * We set the loading flag BEFORE potentially dropping the lock to
2489 * wait for an ongoing flush (see ms_flushing below). This way other
2490 * threads know that there is already a thread that is loading this
2493 msp
->ms_loading
= B_TRUE
;
2496 * Wait for any in-progress flushing to finish as we drop the ms_lock
2497 * both here (during space_map_load()) and in metaslab_flush() (when
2498 * we flush our changes to the ms_sm).
2500 if (msp
->ms_flushing
)
2501 metaslab_flush_wait(msp
);
2504 * In the possibility that we were waiting for the metaslab to be
2505 * flushed (where we temporarily dropped the ms_lock), ensure that
2506 * no one else loaded the metaslab somehow.
2508 ASSERT(!msp
->ms_loaded
);
2511 * If we're loading a metaslab in the normal class, consider evicting
2512 * another one to keep our memory usage under the limit defined by the
2513 * zfs_metaslab_mem_limit tunable.
2515 if (spa_normal_class(msp
->ms_group
->mg_class
->mc_spa
) ==
2516 msp
->ms_group
->mg_class
) {
2517 metaslab_potentially_evict(msp
->ms_group
->mg_class
);
2520 int error
= metaslab_load_impl(msp
);
2522 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2523 msp
->ms_loading
= B_FALSE
;
2524 cv_broadcast(&msp
->ms_load_cv
);
2530 metaslab_unload(metaslab_t
*msp
)
2532 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2535 * This can happen if a metaslab is selected for eviction (in
2536 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2537 * metaslab_class_evict_old).
2539 if (!msp
->ms_loaded
)
2542 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
2543 msp
->ms_loaded
= B_FALSE
;
2544 msp
->ms_unload_time
= gethrtime();
2546 msp
->ms_activation_weight
= 0;
2547 msp
->ms_weight
&= ~METASLAB_ACTIVE_MASK
;
2549 if (msp
->ms_group
!= NULL
) {
2550 metaslab_class_t
*mc
= msp
->ms_group
->mg_class
;
2551 multilist_sublist_t
*mls
=
2552 multilist_sublist_lock_obj(&mc
->mc_metaslab_txg_list
, msp
);
2553 if (multilist_link_active(&msp
->ms_class_txg_node
))
2554 multilist_sublist_remove(mls
, msp
);
2555 multilist_sublist_unlock(mls
);
2557 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
2558 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2559 "ms_id %llu, weight %llx, "
2560 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2561 "loaded %llu ms ago, max_size %llu",
2562 (u_longlong_t
)spa_syncing_txg(spa
), spa_name(spa
),
2563 (u_longlong_t
)msp
->ms_group
->mg_vd
->vdev_id
,
2564 (u_longlong_t
)msp
->ms_id
,
2565 (u_longlong_t
)msp
->ms_weight
,
2566 (u_longlong_t
)msp
->ms_selected_txg
,
2567 (u_longlong_t
)(msp
->ms_unload_time
-
2568 msp
->ms_selected_time
) / 1000 / 1000,
2569 (u_longlong_t
)msp
->ms_alloc_txg
,
2570 (u_longlong_t
)(msp
->ms_unload_time
-
2571 msp
->ms_load_time
) / 1000 / 1000,
2572 (u_longlong_t
)msp
->ms_max_size
);
2576 * We explicitly recalculate the metaslab's weight based on its space
2577 * map (as it is now not loaded). We want unload metaslabs to always
2578 * have their weights calculated from the space map histograms, while
2579 * loaded ones have it calculated from their in-core range tree
2580 * [see metaslab_load()]. This way, the weight reflects the information
2581 * available in-core, whether it is loaded or not.
2583 * If ms_group == NULL means that we came here from metaslab_fini(),
2584 * at which point it doesn't make sense for us to do the recalculation
2587 if (msp
->ms_group
!= NULL
)
2588 metaslab_recalculate_weight_and_sort(msp
);
2592 * We want to optimize the memory use of the per-metaslab range
2593 * trees. To do this, we store the segments in the range trees in
2594 * units of sectors, zero-indexing from the start of the metaslab. If
2595 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2596 * the ranges using two uint32_ts, rather than two uint64_ts.
2599 metaslab_calculate_range_tree_type(vdev_t
*vdev
, metaslab_t
*msp
,
2600 uint64_t *start
, uint64_t *shift
)
2602 if (vdev
->vdev_ms_shift
- vdev
->vdev_ashift
< 32 &&
2603 !zfs_metaslab_force_large_segs
) {
2604 *shift
= vdev
->vdev_ashift
;
2605 *start
= msp
->ms_start
;
2606 return (RANGE_SEG32
);
2610 return (RANGE_SEG64
);
2615 metaslab_set_selected_txg(metaslab_t
*msp
, uint64_t txg
)
2617 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2618 metaslab_class_t
*mc
= msp
->ms_group
->mg_class
;
2619 multilist_sublist_t
*mls
=
2620 multilist_sublist_lock_obj(&mc
->mc_metaslab_txg_list
, msp
);
2621 if (multilist_link_active(&msp
->ms_class_txg_node
))
2622 multilist_sublist_remove(mls
, msp
);
2623 msp
->ms_selected_txg
= txg
;
2624 msp
->ms_selected_time
= gethrtime();
2625 multilist_sublist_insert_tail(mls
, msp
);
2626 multilist_sublist_unlock(mls
);
2630 metaslab_space_update(vdev_t
*vd
, metaslab_class_t
*mc
, int64_t alloc_delta
,
2631 int64_t defer_delta
, int64_t space_delta
)
2633 vdev_space_update(vd
, alloc_delta
, defer_delta
, space_delta
);
2635 ASSERT3P(vd
->vdev_spa
->spa_root_vdev
, ==, vd
->vdev_parent
);
2636 ASSERT(vd
->vdev_ms_count
!= 0);
2638 metaslab_class_space_update(mc
, alloc_delta
, defer_delta
, space_delta
,
2639 vdev_deflated_space(vd
, space_delta
));
2643 metaslab_init(metaslab_group_t
*mg
, uint64_t id
, uint64_t object
,
2644 uint64_t txg
, metaslab_t
**msp
)
2646 vdev_t
*vd
= mg
->mg_vd
;
2647 spa_t
*spa
= vd
->vdev_spa
;
2648 objset_t
*mos
= spa
->spa_meta_objset
;
2652 ms
= kmem_zalloc(sizeof (metaslab_t
), KM_SLEEP
);
2653 mutex_init(&ms
->ms_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
2654 mutex_init(&ms
->ms_sync_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
2655 cv_init(&ms
->ms_load_cv
, NULL
, CV_DEFAULT
, NULL
);
2656 cv_init(&ms
->ms_flush_cv
, NULL
, CV_DEFAULT
, NULL
);
2657 multilist_link_init(&ms
->ms_class_txg_node
);
2660 ms
->ms_start
= id
<< vd
->vdev_ms_shift
;
2661 ms
->ms_size
= 1ULL << vd
->vdev_ms_shift
;
2662 ms
->ms_allocator
= -1;
2663 ms
->ms_new
= B_TRUE
;
2665 vdev_ops_t
*ops
= vd
->vdev_ops
;
2666 if (ops
->vdev_op_metaslab_init
!= NULL
)
2667 ops
->vdev_op_metaslab_init(vd
, &ms
->ms_start
, &ms
->ms_size
);
2670 * We only open space map objects that already exist. All others
2671 * will be opened when we finally allocate an object for it. For
2672 * readonly pools there is no need to open the space map object.
2675 * When called from vdev_expand(), we can't call into the DMU as
2676 * we are holding the spa_config_lock as a writer and we would
2677 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2678 * that case, the object parameter is zero though, so we won't
2679 * call into the DMU.
2681 if (object
!= 0 && !(spa
->spa_mode
== SPA_MODE_READ
&&
2682 !spa
->spa_read_spacemaps
)) {
2683 error
= space_map_open(&ms
->ms_sm
, mos
, object
, ms
->ms_start
,
2684 ms
->ms_size
, vd
->vdev_ashift
);
2687 kmem_free(ms
, sizeof (metaslab_t
));
2691 ASSERT(ms
->ms_sm
!= NULL
);
2692 ms
->ms_allocated_space
= space_map_allocated(ms
->ms_sm
);
2695 uint64_t shift
, start
;
2696 range_seg_type_t type
=
2697 metaslab_calculate_range_tree_type(vd
, ms
, &start
, &shift
);
2699 ms
->ms_allocatable
= range_tree_create(NULL
, type
, NULL
, start
, shift
);
2700 for (int t
= 0; t
< TXG_SIZE
; t
++) {
2701 ms
->ms_allocating
[t
] = range_tree_create(NULL
, type
,
2702 NULL
, start
, shift
);
2704 ms
->ms_freeing
= range_tree_create(NULL
, type
, NULL
, start
, shift
);
2705 ms
->ms_freed
= range_tree_create(NULL
, type
, NULL
, start
, shift
);
2706 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
2707 ms
->ms_defer
[t
] = range_tree_create(NULL
, type
, NULL
,
2710 ms
->ms_checkpointing
=
2711 range_tree_create(NULL
, type
, NULL
, start
, shift
);
2712 ms
->ms_unflushed_allocs
=
2713 range_tree_create(NULL
, type
, NULL
, start
, shift
);
2715 metaslab_rt_arg_t
*mrap
= kmem_zalloc(sizeof (*mrap
), KM_SLEEP
);
2716 mrap
->mra_bt
= &ms
->ms_unflushed_frees_by_size
;
2717 mrap
->mra_floor_shift
= metaslab_by_size_min_shift
;
2718 ms
->ms_unflushed_frees
= range_tree_create(&metaslab_rt_ops
,
2719 type
, mrap
, start
, shift
);
2721 ms
->ms_trim
= range_tree_create(NULL
, type
, NULL
, start
, shift
);
2723 metaslab_group_add(mg
, ms
);
2724 metaslab_set_fragmentation(ms
, B_FALSE
);
2727 * If we're opening an existing pool (txg == 0) or creating
2728 * a new one (txg == TXG_INITIAL), all space is available now.
2729 * If we're adding space to an existing pool, the new space
2730 * does not become available until after this txg has synced.
2731 * The metaslab's weight will also be initialized when we sync
2732 * out this txg. This ensures that we don't attempt to allocate
2733 * from it before we have initialized it completely.
2735 if (txg
<= TXG_INITIAL
) {
2736 metaslab_sync_done(ms
, 0);
2737 metaslab_space_update(vd
, mg
->mg_class
,
2738 metaslab_allocated_space(ms
), 0, 0);
2742 vdev_dirty(vd
, 0, NULL
, txg
);
2743 vdev_dirty(vd
, VDD_METASLAB
, ms
, txg
);
2752 metaslab_fini_flush_data(metaslab_t
*msp
)
2754 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
2756 if (metaslab_unflushed_txg(msp
) == 0) {
2757 ASSERT3P(avl_find(&spa
->spa_metaslabs_by_flushed
, msp
, NULL
),
2761 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
));
2763 mutex_enter(&spa
->spa_flushed_ms_lock
);
2764 avl_remove(&spa
->spa_metaslabs_by_flushed
, msp
);
2765 mutex_exit(&spa
->spa_flushed_ms_lock
);
2767 spa_log_sm_decrement_mscount(spa
, metaslab_unflushed_txg(msp
));
2768 spa_log_summary_decrement_mscount(spa
, metaslab_unflushed_txg(msp
),
2769 metaslab_unflushed_dirty(msp
));
2773 metaslab_unflushed_changes_memused(metaslab_t
*ms
)
2775 return ((range_tree_numsegs(ms
->ms_unflushed_allocs
) +
2776 range_tree_numsegs(ms
->ms_unflushed_frees
)) *
2777 ms
->ms_unflushed_allocs
->rt_root
.bt_elem_size
);
2781 metaslab_fini(metaslab_t
*msp
)
2783 metaslab_group_t
*mg
= msp
->ms_group
;
2784 vdev_t
*vd
= mg
->mg_vd
;
2785 spa_t
*spa
= vd
->vdev_spa
;
2787 metaslab_fini_flush_data(msp
);
2789 metaslab_group_remove(mg
, msp
);
2791 mutex_enter(&msp
->ms_lock
);
2792 VERIFY(msp
->ms_group
== NULL
);
2795 * If this metaslab hasn't been through metaslab_sync_done() yet its
2796 * space hasn't been accounted for in its vdev and doesn't need to be
2800 metaslab_space_update(vd
, mg
->mg_class
,
2801 -metaslab_allocated_space(msp
), 0, -msp
->ms_size
);
2804 space_map_close(msp
->ms_sm
);
2807 metaslab_unload(msp
);
2809 range_tree_destroy(msp
->ms_allocatable
);
2810 range_tree_destroy(msp
->ms_freeing
);
2811 range_tree_destroy(msp
->ms_freed
);
2813 ASSERT3U(spa
->spa_unflushed_stats
.sus_memused
, >=,
2814 metaslab_unflushed_changes_memused(msp
));
2815 spa
->spa_unflushed_stats
.sus_memused
-=
2816 metaslab_unflushed_changes_memused(msp
);
2817 range_tree_vacate(msp
->ms_unflushed_allocs
, NULL
, NULL
);
2818 range_tree_destroy(msp
->ms_unflushed_allocs
);
2819 range_tree_destroy(msp
->ms_checkpointing
);
2820 range_tree_vacate(msp
->ms_unflushed_frees
, NULL
, NULL
);
2821 range_tree_destroy(msp
->ms_unflushed_frees
);
2823 for (int t
= 0; t
< TXG_SIZE
; t
++) {
2824 range_tree_destroy(msp
->ms_allocating
[t
]);
2826 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
2827 range_tree_destroy(msp
->ms_defer
[t
]);
2829 ASSERT0(msp
->ms_deferspace
);
2831 for (int t
= 0; t
< TXG_SIZE
; t
++)
2832 ASSERT(!txg_list_member(&vd
->vdev_ms_list
, msp
, t
));
2834 range_tree_vacate(msp
->ms_trim
, NULL
, NULL
);
2835 range_tree_destroy(msp
->ms_trim
);
2837 mutex_exit(&msp
->ms_lock
);
2838 cv_destroy(&msp
->ms_load_cv
);
2839 cv_destroy(&msp
->ms_flush_cv
);
2840 mutex_destroy(&msp
->ms_lock
);
2841 mutex_destroy(&msp
->ms_sync_lock
);
2842 ASSERT3U(msp
->ms_allocator
, ==, -1);
2844 kmem_free(msp
, sizeof (metaslab_t
));
2847 #define FRAGMENTATION_TABLE_SIZE 17
2850 * This table defines a segment size based fragmentation metric that will
2851 * allow each metaslab to derive its own fragmentation value. This is done
2852 * by calculating the space in each bucket of the spacemap histogram and
2853 * multiplying that by the fragmentation metric in this table. Doing
2854 * this for all buckets and dividing it by the total amount of free
2855 * space in this metaslab (i.e. the total free space in all buckets) gives
2856 * us the fragmentation metric. This means that a high fragmentation metric
2857 * equates to most of the free space being comprised of small segments.
2858 * Conversely, if the metric is low, then most of the free space is in
2859 * large segments. A 10% change in fragmentation equates to approximately
2860 * double the number of segments.
2862 * This table defines 0% fragmented space using 16MB segments. Testing has
2863 * shown that segments that are greater than or equal to 16MB do not suffer
2864 * from drastic performance problems. Using this value, we derive the rest
2865 * of the table. Since the fragmentation value is never stored on disk, it
2866 * is possible to change these calculations in the future.
2868 static const int zfs_frag_table
[FRAGMENTATION_TABLE_SIZE
] = {
2888 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2889 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2890 * been upgraded and does not support this metric. Otherwise, the return
2891 * value should be in the range [0, 100].
2894 metaslab_set_fragmentation(metaslab_t
*msp
, boolean_t nodirty
)
2896 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
2897 uint64_t fragmentation
= 0;
2899 boolean_t feature_enabled
= spa_feature_is_enabled(spa
,
2900 SPA_FEATURE_SPACEMAP_HISTOGRAM
);
2902 if (!feature_enabled
) {
2903 msp
->ms_fragmentation
= ZFS_FRAG_INVALID
;
2908 * A null space map means that the entire metaslab is free
2909 * and thus is not fragmented.
2911 if (msp
->ms_sm
== NULL
) {
2912 msp
->ms_fragmentation
= 0;
2917 * If this metaslab's space map has not been upgraded, flag it
2918 * so that we upgrade next time we encounter it.
2920 if (msp
->ms_sm
->sm_dbuf
->db_size
!= sizeof (space_map_phys_t
)) {
2921 uint64_t txg
= spa_syncing_txg(spa
);
2922 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
2925 * If we've reached the final dirty txg, then we must
2926 * be shutting down the pool. We don't want to dirty
2927 * any data past this point so skip setting the condense
2928 * flag. We can retry this action the next time the pool
2929 * is imported. We also skip marking this metaslab for
2930 * condensing if the caller has explicitly set nodirty.
2933 spa_writeable(spa
) && txg
< spa_final_dirty_txg(spa
)) {
2934 msp
->ms_condense_wanted
= B_TRUE
;
2935 vdev_dirty(vd
, VDD_METASLAB
, msp
, txg
+ 1);
2936 zfs_dbgmsg("txg %llu, requesting force condense: "
2937 "ms_id %llu, vdev_id %llu", (u_longlong_t
)txg
,
2938 (u_longlong_t
)msp
->ms_id
,
2939 (u_longlong_t
)vd
->vdev_id
);
2941 msp
->ms_fragmentation
= ZFS_FRAG_INVALID
;
2945 for (int i
= 0; i
< SPACE_MAP_HISTOGRAM_SIZE
; i
++) {
2947 uint8_t shift
= msp
->ms_sm
->sm_shift
;
2949 int idx
= MIN(shift
- SPA_MINBLOCKSHIFT
+ i
,
2950 FRAGMENTATION_TABLE_SIZE
- 1);
2952 if (msp
->ms_sm
->sm_phys
->smp_histogram
[i
] == 0)
2955 space
= msp
->ms_sm
->sm_phys
->smp_histogram
[i
] << (i
+ shift
);
2958 ASSERT3U(idx
, <, FRAGMENTATION_TABLE_SIZE
);
2959 fragmentation
+= space
* zfs_frag_table
[idx
];
2963 fragmentation
/= total
;
2964 ASSERT3U(fragmentation
, <=, 100);
2966 msp
->ms_fragmentation
= fragmentation
;
2970 * Compute a weight -- a selection preference value -- for the given metaslab.
2971 * This is based on the amount of free space, the level of fragmentation,
2972 * the LBA range, and whether the metaslab is loaded.
2975 metaslab_space_weight(metaslab_t
*msp
)
2977 metaslab_group_t
*mg
= msp
->ms_group
;
2978 vdev_t
*vd
= mg
->mg_vd
;
2979 uint64_t weight
, space
;
2981 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
2984 * The baseline weight is the metaslab's free space.
2986 space
= msp
->ms_size
- metaslab_allocated_space(msp
);
2988 if (metaslab_fragmentation_factor_enabled
&&
2989 msp
->ms_fragmentation
!= ZFS_FRAG_INVALID
) {
2991 * Use the fragmentation information to inversely scale
2992 * down the baseline weight. We need to ensure that we
2993 * don't exclude this metaslab completely when it's 100%
2994 * fragmented. To avoid this we reduce the fragmented value
2997 space
= (space
* (100 - (msp
->ms_fragmentation
- 1))) / 100;
3000 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3001 * this metaslab again. The fragmentation metric may have
3002 * decreased the space to something smaller than
3003 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3004 * so that we can consume any remaining space.
3006 if (space
> 0 && space
< SPA_MINBLOCKSIZE
)
3007 space
= SPA_MINBLOCKSIZE
;
3012 * Modern disks have uniform bit density and constant angular velocity.
3013 * Therefore, the outer recording zones are faster (higher bandwidth)
3014 * than the inner zones by the ratio of outer to inner track diameter,
3015 * which is typically around 2:1. We account for this by assigning
3016 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3017 * In effect, this means that we'll select the metaslab with the most
3018 * free bandwidth rather than simply the one with the most free space.
3020 if (!vd
->vdev_nonrot
&& metaslab_lba_weighting_enabled
) {
3021 weight
= 2 * weight
- (msp
->ms_id
* weight
) / vd
->vdev_ms_count
;
3022 ASSERT(weight
>= space
&& weight
<= 2 * space
);
3026 * If this metaslab is one we're actively using, adjust its
3027 * weight to make it preferable to any inactive metaslab so
3028 * we'll polish it off. If the fragmentation on this metaslab
3029 * has exceed our threshold, then don't mark it active.
3031 if (msp
->ms_loaded
&& msp
->ms_fragmentation
!= ZFS_FRAG_INVALID
&&
3032 msp
->ms_fragmentation
<= zfs_metaslab_fragmentation_threshold
) {
3033 weight
|= (msp
->ms_weight
& METASLAB_ACTIVE_MASK
);
3036 WEIGHT_SET_SPACEBASED(weight
);
3041 * Return the weight of the specified metaslab, according to the segment-based
3042 * weighting algorithm. The metaslab must be loaded. This function can
3043 * be called within a sync pass since it relies only on the metaslab's
3044 * range tree which is always accurate when the metaslab is loaded.
3047 metaslab_weight_from_range_tree(metaslab_t
*msp
)
3049 uint64_t weight
= 0;
3050 uint32_t segments
= 0;
3052 ASSERT(msp
->ms_loaded
);
3054 for (int i
= RANGE_TREE_HISTOGRAM_SIZE
- 1; i
>= SPA_MINBLOCKSHIFT
;
3056 uint8_t shift
= msp
->ms_group
->mg_vd
->vdev_ashift
;
3057 int max_idx
= SPACE_MAP_HISTOGRAM_SIZE
+ shift
- 1;
3060 segments
+= msp
->ms_allocatable
->rt_histogram
[i
];
3063 * The range tree provides more precision than the space map
3064 * and must be downgraded so that all values fit within the
3065 * space map's histogram. This allows us to compare loaded
3066 * vs. unloaded metaslabs to determine which metaslab is
3067 * considered "best".
3072 if (segments
!= 0) {
3073 WEIGHT_SET_COUNT(weight
, segments
);
3074 WEIGHT_SET_INDEX(weight
, i
);
3075 WEIGHT_SET_ACTIVE(weight
, 0);
3083 * Calculate the weight based on the on-disk histogram. Should be applied
3084 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3085 * give results consistent with the on-disk state
3088 metaslab_weight_from_spacemap(metaslab_t
*msp
)
3090 space_map_t
*sm
= msp
->ms_sm
;
3091 ASSERT(!msp
->ms_loaded
);
3093 ASSERT3U(space_map_object(sm
), !=, 0);
3094 ASSERT3U(sm
->sm_dbuf
->db_size
, ==, sizeof (space_map_phys_t
));
3097 * Create a joint histogram from all the segments that have made
3098 * it to the metaslab's space map histogram, that are not yet
3099 * available for allocation because they are still in the freeing
3100 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3101 * these segments from the space map's histogram to get a more
3104 uint64_t deferspace_histogram
[SPACE_MAP_HISTOGRAM_SIZE
] = {0};
3105 for (int i
= 0; i
< SPACE_MAP_HISTOGRAM_SIZE
; i
++)
3106 deferspace_histogram
[i
] += msp
->ms_synchist
[i
];
3107 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
3108 for (int i
= 0; i
< SPACE_MAP_HISTOGRAM_SIZE
; i
++) {
3109 deferspace_histogram
[i
] += msp
->ms_deferhist
[t
][i
];
3113 uint64_t weight
= 0;
3114 for (int i
= SPACE_MAP_HISTOGRAM_SIZE
- 1; i
>= 0; i
--) {
3115 ASSERT3U(sm
->sm_phys
->smp_histogram
[i
], >=,
3116 deferspace_histogram
[i
]);
3118 sm
->sm_phys
->smp_histogram
[i
] - deferspace_histogram
[i
];
3120 WEIGHT_SET_COUNT(weight
, count
);
3121 WEIGHT_SET_INDEX(weight
, i
+ sm
->sm_shift
);
3122 WEIGHT_SET_ACTIVE(weight
, 0);
3130 * Compute a segment-based weight for the specified metaslab. The weight
3131 * is determined by highest bucket in the histogram. The information
3132 * for the highest bucket is encoded into the weight value.
3135 metaslab_segment_weight(metaslab_t
*msp
)
3137 metaslab_group_t
*mg
= msp
->ms_group
;
3138 uint64_t weight
= 0;
3139 uint8_t shift
= mg
->mg_vd
->vdev_ashift
;
3141 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3144 * The metaslab is completely free.
3146 if (metaslab_allocated_space(msp
) == 0) {
3147 int idx
= highbit64(msp
->ms_size
) - 1;
3148 int max_idx
= SPACE_MAP_HISTOGRAM_SIZE
+ shift
- 1;
3150 if (idx
< max_idx
) {
3151 WEIGHT_SET_COUNT(weight
, 1ULL);
3152 WEIGHT_SET_INDEX(weight
, idx
);
3154 WEIGHT_SET_COUNT(weight
, 1ULL << (idx
- max_idx
));
3155 WEIGHT_SET_INDEX(weight
, max_idx
);
3157 WEIGHT_SET_ACTIVE(weight
, 0);
3158 ASSERT(!WEIGHT_IS_SPACEBASED(weight
));
3162 ASSERT3U(msp
->ms_sm
->sm_dbuf
->db_size
, ==, sizeof (space_map_phys_t
));
3165 * If the metaslab is fully allocated then just make the weight 0.
3167 if (metaslab_allocated_space(msp
) == msp
->ms_size
)
3170 * If the metaslab is already loaded, then use the range tree to
3171 * determine the weight. Otherwise, we rely on the space map information
3172 * to generate the weight.
3174 if (msp
->ms_loaded
) {
3175 weight
= metaslab_weight_from_range_tree(msp
);
3177 weight
= metaslab_weight_from_spacemap(msp
);
3181 * If the metaslab was active the last time we calculated its weight
3182 * then keep it active. We want to consume the entire region that
3183 * is associated with this weight.
3185 if (msp
->ms_activation_weight
!= 0 && weight
!= 0)
3186 WEIGHT_SET_ACTIVE(weight
, WEIGHT_GET_ACTIVE(msp
->ms_weight
));
3191 * Determine if we should attempt to allocate from this metaslab. If the
3192 * metaslab is loaded, then we can determine if the desired allocation
3193 * can be satisfied by looking at the size of the maximum free segment
3194 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3195 * weight. For segment-based weighting we can determine the maximum
3196 * allocation based on the index encoded in its value. For space-based
3197 * weights we rely on the entire weight (excluding the weight-type bit).
3200 metaslab_should_allocate(metaslab_t
*msp
, uint64_t asize
, boolean_t try_hard
)
3203 * This case will usually but not always get caught by the checks below;
3204 * metaslabs can be loaded by various means, including the trim and
3205 * initialize code. Once that happens, without this check they are
3206 * allocatable even before they finish their first txg sync.
3208 if (unlikely(msp
->ms_new
))
3212 * If the metaslab is loaded, ms_max_size is definitive and we can use
3213 * the fast check. If it's not, the ms_max_size is a lower bound (once
3214 * set), and we should use the fast check as long as we're not in
3215 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3216 * seconds since the metaslab was unloaded.
3218 if (msp
->ms_loaded
||
3219 (msp
->ms_max_size
!= 0 && !try_hard
&& gethrtime() <
3220 msp
->ms_unload_time
+ SEC2NSEC(zfs_metaslab_max_size_cache_sec
)))
3221 return (msp
->ms_max_size
>= asize
);
3223 boolean_t should_allocate
;
3224 if (!WEIGHT_IS_SPACEBASED(msp
->ms_weight
)) {
3226 * The metaslab segment weight indicates segments in the
3227 * range [2^i, 2^(i+1)), where i is the index in the weight.
3228 * Since the asize might be in the middle of the range, we
3229 * should attempt the allocation if asize < 2^(i+1).
3231 should_allocate
= (asize
<
3232 1ULL << (WEIGHT_GET_INDEX(msp
->ms_weight
) + 1));
3234 should_allocate
= (asize
<=
3235 (msp
->ms_weight
& ~METASLAB_WEIGHT_TYPE
));
3238 return (should_allocate
);
3242 metaslab_weight(metaslab_t
*msp
, boolean_t nodirty
)
3244 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
3245 spa_t
*spa
= vd
->vdev_spa
;
3248 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3250 metaslab_set_fragmentation(msp
, nodirty
);
3253 * Update the maximum size. If the metaslab is loaded, this will
3254 * ensure that we get an accurate maximum size if newly freed space
3255 * has been added back into the free tree. If the metaslab is
3256 * unloaded, we check if there's a larger free segment in the
3257 * unflushed frees. This is a lower bound on the largest allocatable
3258 * segment size. Coalescing of adjacent entries may reveal larger
3259 * allocatable segments, but we aren't aware of those until loading
3260 * the space map into a range tree.
3262 if (msp
->ms_loaded
) {
3263 msp
->ms_max_size
= metaslab_largest_allocatable(msp
);
3265 msp
->ms_max_size
= MAX(msp
->ms_max_size
,
3266 metaslab_largest_unflushed_free(msp
));
3270 * Segment-based weighting requires space map histogram support.
3272 if (zfs_metaslab_segment_weight_enabled
&&
3273 spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
) &&
3274 (msp
->ms_sm
== NULL
|| msp
->ms_sm
->sm_dbuf
->db_size
==
3275 sizeof (space_map_phys_t
))) {
3276 weight
= metaslab_segment_weight(msp
);
3278 weight
= metaslab_space_weight(msp
);
3284 metaslab_recalculate_weight_and_sort(metaslab_t
*msp
)
3286 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3288 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3289 uint64_t was_active
= msp
->ms_weight
& METASLAB_ACTIVE_MASK
;
3290 metaslab_group_sort(msp
->ms_group
, msp
,
3291 metaslab_weight(msp
, B_FALSE
) | was_active
);
3295 metaslab_activate_allocator(metaslab_group_t
*mg
, metaslab_t
*msp
,
3296 int allocator
, uint64_t activation_weight
)
3298 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
3299 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3302 * If we're activating for the claim code, we don't want to actually
3303 * set the metaslab up for a specific allocator.
3305 if (activation_weight
== METASLAB_WEIGHT_CLAIM
) {
3306 ASSERT0(msp
->ms_activation_weight
);
3307 msp
->ms_activation_weight
= msp
->ms_weight
;
3308 metaslab_group_sort(mg
, msp
, msp
->ms_weight
|
3313 metaslab_t
**mspp
= (activation_weight
== METASLAB_WEIGHT_PRIMARY
?
3314 &mga
->mga_primary
: &mga
->mga_secondary
);
3316 mutex_enter(&mg
->mg_lock
);
3317 if (*mspp
!= NULL
) {
3318 mutex_exit(&mg
->mg_lock
);
3323 ASSERT3S(msp
->ms_allocator
, ==, -1);
3324 msp
->ms_allocator
= allocator
;
3325 msp
->ms_primary
= (activation_weight
== METASLAB_WEIGHT_PRIMARY
);
3327 ASSERT0(msp
->ms_activation_weight
);
3328 msp
->ms_activation_weight
= msp
->ms_weight
;
3329 metaslab_group_sort_impl(mg
, msp
,
3330 msp
->ms_weight
| activation_weight
);
3331 mutex_exit(&mg
->mg_lock
);
3337 metaslab_activate(metaslab_t
*msp
, int allocator
, uint64_t activation_weight
)
3339 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3342 * The current metaslab is already activated for us so there
3343 * is nothing to do. Already activated though, doesn't mean
3344 * that this metaslab is activated for our allocator nor our
3345 * requested activation weight. The metaslab could have started
3346 * as an active one for our allocator but changed allocators
3347 * while we were waiting to grab its ms_lock or we stole it
3348 * [see find_valid_metaslab()]. This means that there is a
3349 * possibility of passivating a metaslab of another allocator
3350 * or from a different activation mask, from this thread.
3352 if ((msp
->ms_weight
& METASLAB_ACTIVE_MASK
) != 0) {
3353 ASSERT(msp
->ms_loaded
);
3357 int error
= metaslab_load(msp
);
3359 metaslab_group_sort(msp
->ms_group
, msp
, 0);
3364 * When entering metaslab_load() we may have dropped the
3365 * ms_lock because we were loading this metaslab, or we
3366 * were waiting for another thread to load it for us. In
3367 * that scenario, we recheck the weight of the metaslab
3368 * to see if it was activated by another thread.
3370 * If the metaslab was activated for another allocator or
3371 * it was activated with a different activation weight (e.g.
3372 * we wanted to make it a primary but it was activated as
3373 * secondary) we return error (EBUSY).
3375 * If the metaslab was activated for the same allocator
3376 * and requested activation mask, skip activating it.
3378 if ((msp
->ms_weight
& METASLAB_ACTIVE_MASK
) != 0) {
3379 if (msp
->ms_allocator
!= allocator
)
3382 if ((msp
->ms_weight
& activation_weight
) == 0)
3383 return (SET_ERROR(EBUSY
));
3385 EQUIV((activation_weight
== METASLAB_WEIGHT_PRIMARY
),
3391 * If the metaslab has literally 0 space, it will have weight 0. In
3392 * that case, don't bother activating it. This can happen if the
3393 * metaslab had space during find_valid_metaslab, but another thread
3394 * loaded it and used all that space while we were waiting to grab the
3397 if (msp
->ms_weight
== 0) {
3398 ASSERT0(range_tree_space(msp
->ms_allocatable
));
3399 return (SET_ERROR(ENOSPC
));
3402 if ((error
= metaslab_activate_allocator(msp
->ms_group
, msp
,
3403 allocator
, activation_weight
)) != 0) {
3407 ASSERT(msp
->ms_loaded
);
3408 ASSERT(msp
->ms_weight
& METASLAB_ACTIVE_MASK
);
3414 metaslab_passivate_allocator(metaslab_group_t
*mg
, metaslab_t
*msp
,
3417 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3418 ASSERT(msp
->ms_loaded
);
3420 if (msp
->ms_weight
& METASLAB_WEIGHT_CLAIM
) {
3421 metaslab_group_sort(mg
, msp
, weight
);
3425 mutex_enter(&mg
->mg_lock
);
3426 ASSERT3P(msp
->ms_group
, ==, mg
);
3427 ASSERT3S(0, <=, msp
->ms_allocator
);
3428 ASSERT3U(msp
->ms_allocator
, <, mg
->mg_allocators
);
3430 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[msp
->ms_allocator
];
3431 if (msp
->ms_primary
) {
3432 ASSERT3P(mga
->mga_primary
, ==, msp
);
3433 ASSERT(msp
->ms_weight
& METASLAB_WEIGHT_PRIMARY
);
3434 mga
->mga_primary
= NULL
;
3436 ASSERT3P(mga
->mga_secondary
, ==, msp
);
3437 ASSERT(msp
->ms_weight
& METASLAB_WEIGHT_SECONDARY
);
3438 mga
->mga_secondary
= NULL
;
3440 msp
->ms_allocator
= -1;
3441 metaslab_group_sort_impl(mg
, msp
, weight
);
3442 mutex_exit(&mg
->mg_lock
);
3446 metaslab_passivate(metaslab_t
*msp
, uint64_t weight
)
3448 uint64_t size __maybe_unused
= weight
& ~METASLAB_WEIGHT_TYPE
;
3451 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3452 * this metaslab again. In that case, it had better be empty,
3453 * or we would be leaving space on the table.
3455 ASSERT(!WEIGHT_IS_SPACEBASED(msp
->ms_weight
) ||
3456 size
>= SPA_MINBLOCKSIZE
||
3457 range_tree_space(msp
->ms_allocatable
) == 0);
3458 ASSERT0(weight
& METASLAB_ACTIVE_MASK
);
3460 ASSERT(msp
->ms_activation_weight
!= 0);
3461 msp
->ms_activation_weight
= 0;
3462 metaslab_passivate_allocator(msp
->ms_group
, msp
, weight
);
3463 ASSERT0(msp
->ms_weight
& METASLAB_ACTIVE_MASK
);
3467 * Segment-based metaslabs are activated once and remain active until
3468 * we either fail an allocation attempt (similar to space-based metaslabs)
3469 * or have exhausted the free space in zfs_metaslab_switch_threshold
3470 * buckets since the metaslab was activated. This function checks to see
3471 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3472 * metaslab and passivates it proactively. This will allow us to select a
3473 * metaslab with a larger contiguous region, if any, remaining within this
3474 * metaslab group. If we're in sync pass > 1, then we continue using this
3475 * metaslab so that we don't dirty more block and cause more sync passes.
3478 metaslab_segment_may_passivate(metaslab_t
*msp
)
3480 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
3482 if (WEIGHT_IS_SPACEBASED(msp
->ms_weight
) || spa_sync_pass(spa
) > 1)
3486 * Since we are in the middle of a sync pass, the most accurate
3487 * information that is accessible to us is the in-core range tree
3488 * histogram; calculate the new weight based on that information.
3490 uint64_t weight
= metaslab_weight_from_range_tree(msp
);
3491 int activation_idx
= WEIGHT_GET_INDEX(msp
->ms_activation_weight
);
3492 int current_idx
= WEIGHT_GET_INDEX(weight
);
3494 if (current_idx
<= activation_idx
- zfs_metaslab_switch_threshold
)
3495 metaslab_passivate(msp
, weight
);
3499 metaslab_preload(void *arg
)
3501 metaslab_t
*msp
= arg
;
3502 metaslab_class_t
*mc
= msp
->ms_group
->mg_class
;
3503 spa_t
*spa
= mc
->mc_spa
;
3504 fstrans_cookie_t cookie
= spl_fstrans_mark();
3506 ASSERT(!MUTEX_HELD(&msp
->ms_group
->mg_lock
));
3508 mutex_enter(&msp
->ms_lock
);
3509 (void) metaslab_load(msp
);
3510 metaslab_set_selected_txg(msp
, spa_syncing_txg(spa
));
3511 mutex_exit(&msp
->ms_lock
);
3512 spl_fstrans_unmark(cookie
);
3516 metaslab_group_preload(metaslab_group_t
*mg
)
3518 spa_t
*spa
= mg
->mg_vd
->vdev_spa
;
3520 avl_tree_t
*t
= &mg
->mg_metaslab_tree
;
3523 if (spa_shutting_down(spa
) || !metaslab_preload_enabled
)
3526 mutex_enter(&mg
->mg_lock
);
3529 * Load the next potential metaslabs
3531 for (msp
= avl_first(t
); msp
!= NULL
; msp
= AVL_NEXT(t
, msp
)) {
3532 ASSERT3P(msp
->ms_group
, ==, mg
);
3535 * We preload only the maximum number of metaslabs specified
3536 * by metaslab_preload_limit. If a metaslab is being forced
3537 * to condense then we preload it too. This will ensure
3538 * that force condensing happens in the next txg.
3540 if (++m
> metaslab_preload_limit
&& !msp
->ms_condense_wanted
) {
3544 VERIFY(taskq_dispatch(spa
->spa_metaslab_taskq
, metaslab_preload
,
3545 msp
, TQ_SLEEP
| (m
<= mg
->mg_allocators
? TQ_FRONT
: 0))
3546 != TASKQID_INVALID
);
3548 mutex_exit(&mg
->mg_lock
);
3552 * Determine if the space map's on-disk footprint is past our tolerance for
3553 * inefficiency. We would like to use the following criteria to make our
3556 * 1. Do not condense if the size of the space map object would dramatically
3557 * increase as a result of writing out the free space range tree.
3559 * 2. Condense if the on on-disk space map representation is at least
3560 * zfs_condense_pct/100 times the size of the optimal representation
3561 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3563 * 3. Do not condense if the on-disk size of the space map does not actually
3566 * Unfortunately, we cannot compute the on-disk size of the space map in this
3567 * context because we cannot accurately compute the effects of compression, etc.
3568 * Instead, we apply the heuristic described in the block comment for
3569 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3570 * is greater than a threshold number of blocks.
3573 metaslab_should_condense(metaslab_t
*msp
)
3575 space_map_t
*sm
= msp
->ms_sm
;
3576 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
3577 uint64_t vdev_blocksize
= 1ULL << vd
->vdev_ashift
;
3579 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3580 ASSERT(msp
->ms_loaded
);
3582 ASSERT3U(spa_sync_pass(vd
->vdev_spa
), ==, 1);
3585 * We always condense metaslabs that are empty and metaslabs for
3586 * which a condense request has been made.
3588 if (range_tree_numsegs(msp
->ms_allocatable
) == 0 ||
3589 msp
->ms_condense_wanted
)
3592 uint64_t record_size
= MAX(sm
->sm_blksz
, vdev_blocksize
);
3593 uint64_t object_size
= space_map_length(sm
);
3594 uint64_t optimal_size
= space_map_estimate_optimal_size(sm
,
3595 msp
->ms_allocatable
, SM_NO_VDEVID
);
3597 return (object_size
>= (optimal_size
* zfs_condense_pct
/ 100) &&
3598 object_size
> zfs_metaslab_condense_block_threshold
* record_size
);
3602 * Condense the on-disk space map representation to its minimized form.
3603 * The minimized form consists of a small number of allocations followed
3604 * by the entries of the free range tree (ms_allocatable). The condensed
3605 * spacemap contains all the entries of previous TXGs (including those in
3606 * the pool-wide log spacemaps; thus this is effectively a superset of
3607 * metaslab_flush()), but this TXG's entries still need to be written.
3610 metaslab_condense(metaslab_t
*msp
, dmu_tx_t
*tx
)
3612 range_tree_t
*condense_tree
;
3613 space_map_t
*sm
= msp
->ms_sm
;
3614 uint64_t txg
= dmu_tx_get_txg(tx
);
3615 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
3617 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3618 ASSERT(msp
->ms_loaded
);
3619 ASSERT(msp
->ms_sm
!= NULL
);
3622 * In order to condense the space map, we need to change it so it
3623 * only describes which segments are currently allocated and free.
3625 * All the current free space resides in the ms_allocatable, all
3626 * the ms_defer trees, and all the ms_allocating trees. We ignore
3627 * ms_freed because it is empty because we're in sync pass 1. We
3628 * ignore ms_freeing because these changes are not yet reflected
3629 * in the spacemap (they will be written later this txg).
3631 * So to truncate the space map to represent all the entries of
3632 * previous TXGs we do the following:
3634 * 1] We create a range tree (condense tree) that is 100% empty.
3635 * 2] We add to it all segments found in the ms_defer trees
3636 * as those segments are marked as free in the original space
3637 * map. We do the same with the ms_allocating trees for the same
3638 * reason. Adding these segments should be a relatively
3639 * inexpensive operation since we expect these trees to have a
3640 * small number of nodes.
3641 * 3] We vacate any unflushed allocs, since they are not frees we
3642 * need to add to the condense tree. Then we vacate any
3643 * unflushed frees as they should already be part of ms_allocatable.
3644 * 4] At this point, we would ideally like to add all segments
3645 * in the ms_allocatable tree from the condense tree. This way
3646 * we would write all the entries of the condense tree as the
3647 * condensed space map, which would only contain freed
3648 * segments with everything else assumed to be allocated.
3650 * Doing so can be prohibitively expensive as ms_allocatable can
3651 * be large, and therefore computationally expensive to add to
3652 * the condense_tree. Instead we first sync out an entry marking
3653 * everything as allocated, then the condense_tree and then the
3654 * ms_allocatable, in the condensed space map. While this is not
3655 * optimal, it is typically close to optimal and more importantly
3656 * much cheaper to compute.
3658 * 5] Finally, as both of the unflushed trees were written to our
3659 * new and condensed metaslab space map, we basically flushed
3660 * all the unflushed changes to disk, thus we call
3661 * metaslab_flush_update().
3663 ASSERT3U(spa_sync_pass(spa
), ==, 1);
3664 ASSERT(range_tree_is_empty(msp
->ms_freed
)); /* since it is pass 1 */
3666 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3667 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3668 (u_longlong_t
)txg
, (u_longlong_t
)msp
->ms_id
, msp
,
3669 (u_longlong_t
)msp
->ms_group
->mg_vd
->vdev_id
,
3670 spa
->spa_name
, (u_longlong_t
)space_map_length(msp
->ms_sm
),
3671 (u_longlong_t
)range_tree_numsegs(msp
->ms_allocatable
),
3672 msp
->ms_condense_wanted
? "TRUE" : "FALSE");
3674 msp
->ms_condense_wanted
= B_FALSE
;
3676 range_seg_type_t type
;
3677 uint64_t shift
, start
;
3678 type
= metaslab_calculate_range_tree_type(msp
->ms_group
->mg_vd
, msp
,
3681 condense_tree
= range_tree_create(NULL
, type
, NULL
, start
, shift
);
3683 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
3684 range_tree_walk(msp
->ms_defer
[t
],
3685 range_tree_add
, condense_tree
);
3688 for (int t
= 0; t
< TXG_CONCURRENT_STATES
; t
++) {
3689 range_tree_walk(msp
->ms_allocating
[(txg
+ t
) & TXG_MASK
],
3690 range_tree_add
, condense_tree
);
3693 ASSERT3U(spa
->spa_unflushed_stats
.sus_memused
, >=,
3694 metaslab_unflushed_changes_memused(msp
));
3695 spa
->spa_unflushed_stats
.sus_memused
-=
3696 metaslab_unflushed_changes_memused(msp
);
3697 range_tree_vacate(msp
->ms_unflushed_allocs
, NULL
, NULL
);
3698 range_tree_vacate(msp
->ms_unflushed_frees
, NULL
, NULL
);
3701 * We're about to drop the metaslab's lock thus allowing other
3702 * consumers to change it's content. Set the metaslab's ms_condensing
3703 * flag to ensure that allocations on this metaslab do not occur
3704 * while we're in the middle of committing it to disk. This is only
3705 * critical for ms_allocatable as all other range trees use per TXG
3706 * views of their content.
3708 msp
->ms_condensing
= B_TRUE
;
3710 mutex_exit(&msp
->ms_lock
);
3711 uint64_t object
= space_map_object(msp
->ms_sm
);
3712 space_map_truncate(sm
,
3713 spa_feature_is_enabled(spa
, SPA_FEATURE_LOG_SPACEMAP
) ?
3714 zfs_metaslab_sm_blksz_with_log
: zfs_metaslab_sm_blksz_no_log
, tx
);
3717 * space_map_truncate() may have reallocated the spacemap object.
3718 * If so, update the vdev_ms_array.
3720 if (space_map_object(msp
->ms_sm
) != object
) {
3721 object
= space_map_object(msp
->ms_sm
);
3722 dmu_write(spa
->spa_meta_objset
,
3723 msp
->ms_group
->mg_vd
->vdev_ms_array
, sizeof (uint64_t) *
3724 msp
->ms_id
, sizeof (uint64_t), &object
, tx
);
3729 * When the log space map feature is enabled, each space map will
3730 * always have ALLOCS followed by FREES for each sync pass. This is
3731 * typically true even when the log space map feature is disabled,
3732 * except from the case where a metaslab goes through metaslab_sync()
3733 * and gets condensed. In that case the metaslab's space map will have
3734 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3735 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3738 range_tree_t
*tmp_tree
= range_tree_create(NULL
, type
, NULL
, start
,
3740 range_tree_add(tmp_tree
, msp
->ms_start
, msp
->ms_size
);
3741 space_map_write(sm
, tmp_tree
, SM_ALLOC
, SM_NO_VDEVID
, tx
);
3742 space_map_write(sm
, msp
->ms_allocatable
, SM_FREE
, SM_NO_VDEVID
, tx
);
3743 space_map_write(sm
, condense_tree
, SM_FREE
, SM_NO_VDEVID
, tx
);
3745 range_tree_vacate(condense_tree
, NULL
, NULL
);
3746 range_tree_destroy(condense_tree
);
3747 range_tree_vacate(tmp_tree
, NULL
, NULL
);
3748 range_tree_destroy(tmp_tree
);
3749 mutex_enter(&msp
->ms_lock
);
3751 msp
->ms_condensing
= B_FALSE
;
3752 metaslab_flush_update(msp
, tx
);
3756 metaslab_unflushed_add(metaslab_t
*msp
, dmu_tx_t
*tx
)
3758 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
3759 ASSERT(spa_syncing_log_sm(spa
) != NULL
);
3760 ASSERT(msp
->ms_sm
!= NULL
);
3761 ASSERT(range_tree_is_empty(msp
->ms_unflushed_allocs
));
3762 ASSERT(range_tree_is_empty(msp
->ms_unflushed_frees
));
3764 mutex_enter(&spa
->spa_flushed_ms_lock
);
3765 metaslab_set_unflushed_txg(msp
, spa_syncing_txg(spa
), tx
);
3766 metaslab_set_unflushed_dirty(msp
, B_TRUE
);
3767 avl_add(&spa
->spa_metaslabs_by_flushed
, msp
);
3768 mutex_exit(&spa
->spa_flushed_ms_lock
);
3770 spa_log_sm_increment_current_mscount(spa
);
3771 spa_log_summary_add_flushed_metaslab(spa
, B_TRUE
);
3775 metaslab_unflushed_bump(metaslab_t
*msp
, dmu_tx_t
*tx
, boolean_t dirty
)
3777 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
3778 ASSERT(spa_syncing_log_sm(spa
) != NULL
);
3779 ASSERT(msp
->ms_sm
!= NULL
);
3780 ASSERT(metaslab_unflushed_txg(msp
) != 0);
3781 ASSERT3P(avl_find(&spa
->spa_metaslabs_by_flushed
, msp
, NULL
), ==, msp
);
3782 ASSERT(range_tree_is_empty(msp
->ms_unflushed_allocs
));
3783 ASSERT(range_tree_is_empty(msp
->ms_unflushed_frees
));
3785 VERIFY3U(tx
->tx_txg
, <=, spa_final_dirty_txg(spa
));
3787 /* update metaslab's position in our flushing tree */
3788 uint64_t ms_prev_flushed_txg
= metaslab_unflushed_txg(msp
);
3789 boolean_t ms_prev_flushed_dirty
= metaslab_unflushed_dirty(msp
);
3790 mutex_enter(&spa
->spa_flushed_ms_lock
);
3791 avl_remove(&spa
->spa_metaslabs_by_flushed
, msp
);
3792 metaslab_set_unflushed_txg(msp
, spa_syncing_txg(spa
), tx
);
3793 metaslab_set_unflushed_dirty(msp
, dirty
);
3794 avl_add(&spa
->spa_metaslabs_by_flushed
, msp
);
3795 mutex_exit(&spa
->spa_flushed_ms_lock
);
3797 /* update metaslab counts of spa_log_sm_t nodes */
3798 spa_log_sm_decrement_mscount(spa
, ms_prev_flushed_txg
);
3799 spa_log_sm_increment_current_mscount(spa
);
3801 /* update log space map summary */
3802 spa_log_summary_decrement_mscount(spa
, ms_prev_flushed_txg
,
3803 ms_prev_flushed_dirty
);
3804 spa_log_summary_add_flushed_metaslab(spa
, dirty
);
3806 /* cleanup obsolete logs if any */
3807 spa_cleanup_old_sm_logs(spa
, tx
);
3811 * Called when the metaslab has been flushed (its own spacemap now reflects
3812 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3813 * metadata and any pool-wide related log space map data (e.g. summary,
3814 * obsolete logs, etc..) to reflect that.
3817 metaslab_flush_update(metaslab_t
*msp
, dmu_tx_t
*tx
)
3819 metaslab_group_t
*mg
= msp
->ms_group
;
3820 spa_t
*spa
= mg
->mg_vd
->vdev_spa
;
3822 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3824 ASSERT3U(spa_sync_pass(spa
), ==, 1);
3827 * Just because a metaslab got flushed, that doesn't mean that
3828 * it will pass through metaslab_sync_done(). Thus, make sure to
3829 * update ms_synced_length here in case it doesn't.
3831 msp
->ms_synced_length
= space_map_length(msp
->ms_sm
);
3834 * We may end up here from metaslab_condense() without the
3835 * feature being active. In that case this is a no-op.
3837 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
) ||
3838 metaslab_unflushed_txg(msp
) == 0)
3841 metaslab_unflushed_bump(msp
, tx
, B_FALSE
);
3845 metaslab_flush(metaslab_t
*msp
, dmu_tx_t
*tx
)
3847 spa_t
*spa
= msp
->ms_group
->mg_vd
->vdev_spa
;
3849 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
3850 ASSERT3U(spa_sync_pass(spa
), ==, 1);
3851 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
));
3853 ASSERT(msp
->ms_sm
!= NULL
);
3854 ASSERT(metaslab_unflushed_txg(msp
) != 0);
3855 ASSERT(avl_find(&spa
->spa_metaslabs_by_flushed
, msp
, NULL
) != NULL
);
3858 * There is nothing wrong with flushing the same metaslab twice, as
3859 * this codepath should work on that case. However, the current
3860 * flushing scheme makes sure to avoid this situation as we would be
3861 * making all these calls without having anything meaningful to write
3862 * to disk. We assert this behavior here.
3864 ASSERT3U(metaslab_unflushed_txg(msp
), <, dmu_tx_get_txg(tx
));
3867 * We can not flush while loading, because then we would
3868 * not load the ms_unflushed_{allocs,frees}.
3870 if (msp
->ms_loading
)
3873 metaslab_verify_space(msp
, dmu_tx_get_txg(tx
));
3874 metaslab_verify_weight_and_frag(msp
);
3877 * Metaslab condensing is effectively flushing. Therefore if the
3878 * metaslab can be condensed we can just condense it instead of
3881 * Note that metaslab_condense() does call metaslab_flush_update()
3882 * so we can just return immediately after condensing. We also
3883 * don't need to care about setting ms_flushing or broadcasting
3884 * ms_flush_cv, even if we temporarily drop the ms_lock in
3885 * metaslab_condense(), as the metaslab is already loaded.
3887 if (msp
->ms_loaded
&& metaslab_should_condense(msp
)) {
3888 metaslab_group_t
*mg
= msp
->ms_group
;
3891 * For all histogram operations below refer to the
3892 * comments of metaslab_sync() where we follow a
3893 * similar procedure.
3895 metaslab_group_histogram_verify(mg
);
3896 metaslab_class_histogram_verify(mg
->mg_class
);
3897 metaslab_group_histogram_remove(mg
, msp
);
3899 metaslab_condense(msp
, tx
);
3901 space_map_histogram_clear(msp
->ms_sm
);
3902 space_map_histogram_add(msp
->ms_sm
, msp
->ms_allocatable
, tx
);
3903 ASSERT(range_tree_is_empty(msp
->ms_freed
));
3904 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
3905 space_map_histogram_add(msp
->ms_sm
,
3906 msp
->ms_defer
[t
], tx
);
3908 metaslab_aux_histograms_update(msp
);
3910 metaslab_group_histogram_add(mg
, msp
);
3911 metaslab_group_histogram_verify(mg
);
3912 metaslab_class_histogram_verify(mg
->mg_class
);
3914 metaslab_verify_space(msp
, dmu_tx_get_txg(tx
));
3917 * Since we recreated the histogram (and potentially
3918 * the ms_sm too while condensing) ensure that the
3919 * weight is updated too because we are not guaranteed
3920 * that this metaslab is dirty and will go through
3921 * metaslab_sync_done().
3923 metaslab_recalculate_weight_and_sort(msp
);
3927 msp
->ms_flushing
= B_TRUE
;
3928 uint64_t sm_len_before
= space_map_length(msp
->ms_sm
);
3930 mutex_exit(&msp
->ms_lock
);
3931 space_map_write(msp
->ms_sm
, msp
->ms_unflushed_allocs
, SM_ALLOC
,
3933 space_map_write(msp
->ms_sm
, msp
->ms_unflushed_frees
, SM_FREE
,
3935 mutex_enter(&msp
->ms_lock
);
3937 uint64_t sm_len_after
= space_map_length(msp
->ms_sm
);
3938 if (zfs_flags
& ZFS_DEBUG_LOG_SPACEMAP
) {
3939 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3940 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3941 "appended %llu bytes", (u_longlong_t
)dmu_tx_get_txg(tx
),
3943 (u_longlong_t
)msp
->ms_group
->mg_vd
->vdev_id
,
3944 (u_longlong_t
)msp
->ms_id
,
3945 (u_longlong_t
)range_tree_space(msp
->ms_unflushed_allocs
),
3946 (u_longlong_t
)range_tree_space(msp
->ms_unflushed_frees
),
3947 (u_longlong_t
)(sm_len_after
- sm_len_before
));
3950 ASSERT3U(spa
->spa_unflushed_stats
.sus_memused
, >=,
3951 metaslab_unflushed_changes_memused(msp
));
3952 spa
->spa_unflushed_stats
.sus_memused
-=
3953 metaslab_unflushed_changes_memused(msp
);
3954 range_tree_vacate(msp
->ms_unflushed_allocs
, NULL
, NULL
);
3955 range_tree_vacate(msp
->ms_unflushed_frees
, NULL
, NULL
);
3957 metaslab_verify_space(msp
, dmu_tx_get_txg(tx
));
3958 metaslab_verify_weight_and_frag(msp
);
3960 metaslab_flush_update(msp
, tx
);
3962 metaslab_verify_space(msp
, dmu_tx_get_txg(tx
));
3963 metaslab_verify_weight_and_frag(msp
);
3965 msp
->ms_flushing
= B_FALSE
;
3966 cv_broadcast(&msp
->ms_flush_cv
);
3971 * Write a metaslab to disk in the context of the specified transaction group.
3974 metaslab_sync(metaslab_t
*msp
, uint64_t txg
)
3976 metaslab_group_t
*mg
= msp
->ms_group
;
3977 vdev_t
*vd
= mg
->mg_vd
;
3978 spa_t
*spa
= vd
->vdev_spa
;
3979 objset_t
*mos
= spa_meta_objset(spa
);
3980 range_tree_t
*alloctree
= msp
->ms_allocating
[txg
& TXG_MASK
];
3983 ASSERT(!vd
->vdev_ishole
);
3986 * This metaslab has just been added so there's no work to do now.
3989 ASSERT0(range_tree_space(alloctree
));
3990 ASSERT0(range_tree_space(msp
->ms_freeing
));
3991 ASSERT0(range_tree_space(msp
->ms_freed
));
3992 ASSERT0(range_tree_space(msp
->ms_checkpointing
));
3993 ASSERT0(range_tree_space(msp
->ms_trim
));
3998 * Normally, we don't want to process a metaslab if there are no
3999 * allocations or frees to perform. However, if the metaslab is being
4000 * forced to condense, it's loaded and we're not beyond the final
4001 * dirty txg, we need to let it through. Not condensing beyond the
4002 * final dirty txg prevents an issue where metaslabs that need to be
4003 * condensed but were loaded for other reasons could cause a panic
4004 * here. By only checking the txg in that branch of the conditional,
4005 * we preserve the utility of the VERIFY statements in all other
4008 if (range_tree_is_empty(alloctree
) &&
4009 range_tree_is_empty(msp
->ms_freeing
) &&
4010 range_tree_is_empty(msp
->ms_checkpointing
) &&
4011 !(msp
->ms_loaded
&& msp
->ms_condense_wanted
&&
4012 txg
<= spa_final_dirty_txg(spa
)))
4016 VERIFY3U(txg
, <=, spa_final_dirty_txg(spa
));
4019 * The only state that can actually be changing concurrently
4020 * with metaslab_sync() is the metaslab's ms_allocatable. No
4021 * other thread can be modifying this txg's alloc, freeing,
4022 * freed, or space_map_phys_t. We drop ms_lock whenever we
4023 * could call into the DMU, because the DMU can call down to
4024 * us (e.g. via zio_free()) at any time.
4026 * The spa_vdev_remove_thread() can be reading metaslab state
4027 * concurrently, and it is locked out by the ms_sync_lock.
4028 * Note that the ms_lock is insufficient for this, because it
4029 * is dropped by space_map_write().
4031 tx
= dmu_tx_create_assigned(spa_get_dsl(spa
), txg
);
4034 * Generate a log space map if one doesn't exist already.
4036 spa_generate_syncing_log_sm(spa
, tx
);
4038 if (msp
->ms_sm
== NULL
) {
4039 uint64_t new_object
= space_map_alloc(mos
,
4040 spa_feature_is_enabled(spa
, SPA_FEATURE_LOG_SPACEMAP
) ?
4041 zfs_metaslab_sm_blksz_with_log
:
4042 zfs_metaslab_sm_blksz_no_log
, tx
);
4043 VERIFY3U(new_object
, !=, 0);
4045 dmu_write(mos
, vd
->vdev_ms_array
, sizeof (uint64_t) *
4046 msp
->ms_id
, sizeof (uint64_t), &new_object
, tx
);
4048 VERIFY0(space_map_open(&msp
->ms_sm
, mos
, new_object
,
4049 msp
->ms_start
, msp
->ms_size
, vd
->vdev_ashift
));
4050 ASSERT(msp
->ms_sm
!= NULL
);
4052 ASSERT(range_tree_is_empty(msp
->ms_unflushed_allocs
));
4053 ASSERT(range_tree_is_empty(msp
->ms_unflushed_frees
));
4054 ASSERT0(metaslab_allocated_space(msp
));
4057 if (!range_tree_is_empty(msp
->ms_checkpointing
) &&
4058 vd
->vdev_checkpoint_sm
== NULL
) {
4059 ASSERT(spa_has_checkpoint(spa
));
4061 uint64_t new_object
= space_map_alloc(mos
,
4062 zfs_vdev_standard_sm_blksz
, tx
);
4063 VERIFY3U(new_object
, !=, 0);
4065 VERIFY0(space_map_open(&vd
->vdev_checkpoint_sm
,
4066 mos
, new_object
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
4067 ASSERT3P(vd
->vdev_checkpoint_sm
, !=, NULL
);
4070 * We save the space map object as an entry in vdev_top_zap
4071 * so it can be retrieved when the pool is reopened after an
4072 * export or through zdb.
4074 VERIFY0(zap_add(vd
->vdev_spa
->spa_meta_objset
,
4075 vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
4076 sizeof (new_object
), 1, &new_object
, tx
));
4079 mutex_enter(&msp
->ms_sync_lock
);
4080 mutex_enter(&msp
->ms_lock
);
4083 * Note: metaslab_condense() clears the space map's histogram.
4084 * Therefore we must verify and remove this histogram before
4087 metaslab_group_histogram_verify(mg
);
4088 metaslab_class_histogram_verify(mg
->mg_class
);
4089 metaslab_group_histogram_remove(mg
, msp
);
4091 if (spa
->spa_sync_pass
== 1 && msp
->ms_loaded
&&
4092 metaslab_should_condense(msp
))
4093 metaslab_condense(msp
, tx
);
4096 * We'll be going to disk to sync our space accounting, thus we
4097 * drop the ms_lock during that time so allocations coming from
4098 * open-context (ZIL) for future TXGs do not block.
4100 mutex_exit(&msp
->ms_lock
);
4101 space_map_t
*log_sm
= spa_syncing_log_sm(spa
);
4102 if (log_sm
!= NULL
) {
4103 ASSERT(spa_feature_is_enabled(spa
, SPA_FEATURE_LOG_SPACEMAP
));
4104 if (metaslab_unflushed_txg(msp
) == 0)
4105 metaslab_unflushed_add(msp
, tx
);
4106 else if (!metaslab_unflushed_dirty(msp
))
4107 metaslab_unflushed_bump(msp
, tx
, B_TRUE
);
4109 space_map_write(log_sm
, alloctree
, SM_ALLOC
,
4111 space_map_write(log_sm
, msp
->ms_freeing
, SM_FREE
,
4113 mutex_enter(&msp
->ms_lock
);
4115 ASSERT3U(spa
->spa_unflushed_stats
.sus_memused
, >=,
4116 metaslab_unflushed_changes_memused(msp
));
4117 spa
->spa_unflushed_stats
.sus_memused
-=
4118 metaslab_unflushed_changes_memused(msp
);
4119 range_tree_remove_xor_add(alloctree
,
4120 msp
->ms_unflushed_frees
, msp
->ms_unflushed_allocs
);
4121 range_tree_remove_xor_add(msp
->ms_freeing
,
4122 msp
->ms_unflushed_allocs
, msp
->ms_unflushed_frees
);
4123 spa
->spa_unflushed_stats
.sus_memused
+=
4124 metaslab_unflushed_changes_memused(msp
);
4126 ASSERT(!spa_feature_is_enabled(spa
, SPA_FEATURE_LOG_SPACEMAP
));
4128 space_map_write(msp
->ms_sm
, alloctree
, SM_ALLOC
,
4130 space_map_write(msp
->ms_sm
, msp
->ms_freeing
, SM_FREE
,
4132 mutex_enter(&msp
->ms_lock
);
4135 msp
->ms_allocated_space
+= range_tree_space(alloctree
);
4136 ASSERT3U(msp
->ms_allocated_space
, >=,
4137 range_tree_space(msp
->ms_freeing
));
4138 msp
->ms_allocated_space
-= range_tree_space(msp
->ms_freeing
);
4140 if (!range_tree_is_empty(msp
->ms_checkpointing
)) {
4141 ASSERT(spa_has_checkpoint(spa
));
4142 ASSERT3P(vd
->vdev_checkpoint_sm
, !=, NULL
);
4145 * Since we are doing writes to disk and the ms_checkpointing
4146 * tree won't be changing during that time, we drop the
4147 * ms_lock while writing to the checkpoint space map, for the
4148 * same reason mentioned above.
4150 mutex_exit(&msp
->ms_lock
);
4151 space_map_write(vd
->vdev_checkpoint_sm
,
4152 msp
->ms_checkpointing
, SM_FREE
, SM_NO_VDEVID
, tx
);
4153 mutex_enter(&msp
->ms_lock
);
4155 spa
->spa_checkpoint_info
.sci_dspace
+=
4156 range_tree_space(msp
->ms_checkpointing
);
4157 vd
->vdev_stat
.vs_checkpoint_space
+=
4158 range_tree_space(msp
->ms_checkpointing
);
4159 ASSERT3U(vd
->vdev_stat
.vs_checkpoint_space
, ==,
4160 -space_map_allocated(vd
->vdev_checkpoint_sm
));
4162 range_tree_vacate(msp
->ms_checkpointing
, NULL
, NULL
);
4165 if (msp
->ms_loaded
) {
4167 * When the space map is loaded, we have an accurate
4168 * histogram in the range tree. This gives us an opportunity
4169 * to bring the space map's histogram up-to-date so we clear
4170 * it first before updating it.
4172 space_map_histogram_clear(msp
->ms_sm
);
4173 space_map_histogram_add(msp
->ms_sm
, msp
->ms_allocatable
, tx
);
4176 * Since we've cleared the histogram we need to add back
4177 * any free space that has already been processed, plus
4178 * any deferred space. This allows the on-disk histogram
4179 * to accurately reflect all free space even if some space
4180 * is not yet available for allocation (i.e. deferred).
4182 space_map_histogram_add(msp
->ms_sm
, msp
->ms_freed
, tx
);
4185 * Add back any deferred free space that has not been
4186 * added back into the in-core free tree yet. This will
4187 * ensure that we don't end up with a space map histogram
4188 * that is completely empty unless the metaslab is fully
4191 for (int t
= 0; t
< TXG_DEFER_SIZE
; t
++) {
4192 space_map_histogram_add(msp
->ms_sm
,
4193 msp
->ms_defer
[t
], tx
);
4198 * Always add the free space from this sync pass to the space
4199 * map histogram. We want to make sure that the on-disk histogram
4200 * accounts for all free space. If the space map is not loaded,
4201 * then we will lose some accuracy but will correct it the next
4202 * time we load the space map.
4204 space_map_histogram_add(msp
->ms_sm
, msp
->ms_freeing
, tx
);
4205 metaslab_aux_histograms_update(msp
);
4207 metaslab_group_histogram_add(mg
, msp
);
4208 metaslab_group_histogram_verify(mg
);
4209 metaslab_class_histogram_verify(mg
->mg_class
);
4212 * For sync pass 1, we avoid traversing this txg's free range tree
4213 * and instead will just swap the pointers for freeing and freed.
4214 * We can safely do this since the freed_tree is guaranteed to be
4215 * empty on the initial pass.
4217 * Keep in mind that even if we are currently using a log spacemap
4218 * we want current frees to end up in the ms_allocatable (but not
4219 * get appended to the ms_sm) so their ranges can be reused as usual.
4221 if (spa_sync_pass(spa
) == 1) {
4222 range_tree_swap(&msp
->ms_freeing
, &msp
->ms_freed
);
4223 ASSERT0(msp
->ms_allocated_this_txg
);
4225 range_tree_vacate(msp
->ms_freeing
,
4226 range_tree_add
, msp
->ms_freed
);
4228 msp
->ms_allocated_this_txg
+= range_tree_space(alloctree
);
4229 range_tree_vacate(alloctree
, NULL
, NULL
);
4231 ASSERT0(range_tree_space(msp
->ms_allocating
[txg
& TXG_MASK
]));
4232 ASSERT0(range_tree_space(msp
->ms_allocating
[TXG_CLEAN(txg
)
4234 ASSERT0(range_tree_space(msp
->ms_freeing
));
4235 ASSERT0(range_tree_space(msp
->ms_checkpointing
));
4237 mutex_exit(&msp
->ms_lock
);
4240 * Verify that the space map object ID has been recorded in the
4244 VERIFY0(dmu_read(mos
, vd
->vdev_ms_array
,
4245 msp
->ms_id
* sizeof (uint64_t), sizeof (uint64_t), &object
, 0));
4246 VERIFY3U(object
, ==, space_map_object(msp
->ms_sm
));
4248 mutex_exit(&msp
->ms_sync_lock
);
4253 metaslab_evict(metaslab_t
*msp
, uint64_t txg
)
4255 if (!msp
->ms_loaded
|| msp
->ms_disabled
!= 0)
4258 for (int t
= 1; t
< TXG_CONCURRENT_STATES
; t
++) {
4259 VERIFY0(range_tree_space(
4260 msp
->ms_allocating
[(txg
+ t
) & TXG_MASK
]));
4262 if (msp
->ms_allocator
!= -1)
4263 metaslab_passivate(msp
, msp
->ms_weight
& ~METASLAB_ACTIVE_MASK
);
4265 if (!metaslab_debug_unload
)
4266 metaslab_unload(msp
);
4270 * Called after a transaction group has completely synced to mark
4271 * all of the metaslab's free space as usable.
4274 metaslab_sync_done(metaslab_t
*msp
, uint64_t txg
)
4276 metaslab_group_t
*mg
= msp
->ms_group
;
4277 vdev_t
*vd
= mg
->mg_vd
;
4278 spa_t
*spa
= vd
->vdev_spa
;
4279 range_tree_t
**defer_tree
;
4280 int64_t alloc_delta
, defer_delta
;
4281 boolean_t defer_allowed
= B_TRUE
;
4283 ASSERT(!vd
->vdev_ishole
);
4285 mutex_enter(&msp
->ms_lock
);
4288 /* this is a new metaslab, add its capacity to the vdev */
4289 metaslab_space_update(vd
, mg
->mg_class
, 0, 0, msp
->ms_size
);
4291 /* there should be no allocations nor frees at this point */
4292 VERIFY0(msp
->ms_allocated_this_txg
);
4293 VERIFY0(range_tree_space(msp
->ms_freed
));
4296 ASSERT0(range_tree_space(msp
->ms_freeing
));
4297 ASSERT0(range_tree_space(msp
->ms_checkpointing
));
4299 defer_tree
= &msp
->ms_defer
[txg
% TXG_DEFER_SIZE
];
4301 uint64_t free_space
= metaslab_class_get_space(spa_normal_class(spa
)) -
4302 metaslab_class_get_alloc(spa_normal_class(spa
));
4303 if (free_space
<= spa_get_slop_space(spa
) || vd
->vdev_removing
) {
4304 defer_allowed
= B_FALSE
;
4308 alloc_delta
= msp
->ms_allocated_this_txg
-
4309 range_tree_space(msp
->ms_freed
);
4311 if (defer_allowed
) {
4312 defer_delta
= range_tree_space(msp
->ms_freed
) -
4313 range_tree_space(*defer_tree
);
4315 defer_delta
-= range_tree_space(*defer_tree
);
4317 metaslab_space_update(vd
, mg
->mg_class
, alloc_delta
+ defer_delta
,
4320 if (spa_syncing_log_sm(spa
) == NULL
) {
4322 * If there's a metaslab_load() in progress and we don't have
4323 * a log space map, it means that we probably wrote to the
4324 * metaslab's space map. If this is the case, we need to
4325 * make sure that we wait for the load to complete so that we
4326 * have a consistent view at the in-core side of the metaslab.
4328 metaslab_load_wait(msp
);
4330 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
));
4334 * When auto-trimming is enabled, free ranges which are added to
4335 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4336 * periodically consumed by the vdev_autotrim_thread() which issues
4337 * trims for all ranges and then vacates the tree. The ms_trim tree
4338 * can be discarded at any time with the sole consequence of recent
4339 * frees not being trimmed.
4341 if (spa_get_autotrim(spa
) == SPA_AUTOTRIM_ON
) {
4342 range_tree_walk(*defer_tree
, range_tree_add
, msp
->ms_trim
);
4343 if (!defer_allowed
) {
4344 range_tree_walk(msp
->ms_freed
, range_tree_add
,
4348 range_tree_vacate(msp
->ms_trim
, NULL
, NULL
);
4352 * Move the frees from the defer_tree back to the free
4353 * range tree (if it's loaded). Swap the freed_tree and
4354 * the defer_tree -- this is safe to do because we've
4355 * just emptied out the defer_tree.
4357 range_tree_vacate(*defer_tree
,
4358 msp
->ms_loaded
? range_tree_add
: NULL
, msp
->ms_allocatable
);
4359 if (defer_allowed
) {
4360 range_tree_swap(&msp
->ms_freed
, defer_tree
);
4362 range_tree_vacate(msp
->ms_freed
,
4363 msp
->ms_loaded
? range_tree_add
: NULL
,
4364 msp
->ms_allocatable
);
4367 msp
->ms_synced_length
= space_map_length(msp
->ms_sm
);
4369 msp
->ms_deferspace
+= defer_delta
;
4370 ASSERT3S(msp
->ms_deferspace
, >=, 0);
4371 ASSERT3S(msp
->ms_deferspace
, <=, msp
->ms_size
);
4372 if (msp
->ms_deferspace
!= 0) {
4374 * Keep syncing this metaslab until all deferred frees
4375 * are back in circulation.
4377 vdev_dirty(vd
, VDD_METASLAB
, msp
, txg
+ 1);
4379 metaslab_aux_histograms_update_done(msp
, defer_allowed
);
4382 msp
->ms_new
= B_FALSE
;
4383 mutex_enter(&mg
->mg_lock
);
4385 mutex_exit(&mg
->mg_lock
);
4389 * Re-sort metaslab within its group now that we've adjusted
4390 * its allocatable space.
4392 metaslab_recalculate_weight_and_sort(msp
);
4394 ASSERT0(range_tree_space(msp
->ms_allocating
[txg
& TXG_MASK
]));
4395 ASSERT0(range_tree_space(msp
->ms_freeing
));
4396 ASSERT0(range_tree_space(msp
->ms_freed
));
4397 ASSERT0(range_tree_space(msp
->ms_checkpointing
));
4398 msp
->ms_allocating_total
-= msp
->ms_allocated_this_txg
;
4399 msp
->ms_allocated_this_txg
= 0;
4400 mutex_exit(&msp
->ms_lock
);
4404 metaslab_sync_reassess(metaslab_group_t
*mg
)
4406 spa_t
*spa
= mg
->mg_class
->mc_spa
;
4408 spa_config_enter(spa
, SCL_ALLOC
, FTAG
, RW_READER
);
4409 metaslab_group_alloc_update(mg
);
4410 mg
->mg_fragmentation
= metaslab_group_fragmentation(mg
);
4413 * Preload the next potential metaslabs but only on active
4414 * metaslab groups. We can get into a state where the metaslab
4415 * is no longer active since we dirty metaslabs as we remove a
4416 * a device, thus potentially making the metaslab group eligible
4419 if (mg
->mg_activation_count
> 0) {
4420 metaslab_group_preload(mg
);
4422 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
4426 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4427 * the same vdev as an existing DVA of this BP, then try to allocate it
4428 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4431 metaslab_is_unique(metaslab_t
*msp
, dva_t
*dva
)
4435 if (DVA_GET_ASIZE(dva
) == 0)
4438 if (msp
->ms_group
->mg_vd
->vdev_id
!= DVA_GET_VDEV(dva
))
4441 dva_ms_id
= DVA_GET_OFFSET(dva
) >> msp
->ms_group
->mg_vd
->vdev_ms_shift
;
4443 return (msp
->ms_id
!= dva_ms_id
);
4447 * ==========================================================================
4448 * Metaslab allocation tracing facility
4449 * ==========================================================================
4453 * Add an allocation trace element to the allocation tracing list.
4456 metaslab_trace_add(zio_alloc_list_t
*zal
, metaslab_group_t
*mg
,
4457 metaslab_t
*msp
, uint64_t psize
, uint32_t dva_id
, uint64_t offset
,
4460 metaslab_alloc_trace_t
*mat
;
4462 if (!metaslab_trace_enabled
)
4466 * When the tracing list reaches its maximum we remove
4467 * the second element in the list before adding a new one.
4468 * By removing the second element we preserve the original
4469 * entry as a clue to what allocations steps have already been
4472 if (zal
->zal_size
== metaslab_trace_max_entries
) {
4473 metaslab_alloc_trace_t
*mat_next
;
4475 panic("too many entries in allocation list");
4477 METASLABSTAT_BUMP(metaslabstat_trace_over_limit
);
4479 mat_next
= list_next(&zal
->zal_list
, list_head(&zal
->zal_list
));
4480 list_remove(&zal
->zal_list
, mat_next
);
4481 kmem_cache_free(metaslab_alloc_trace_cache
, mat_next
);
4484 mat
= kmem_cache_alloc(metaslab_alloc_trace_cache
, KM_SLEEP
);
4485 list_link_init(&mat
->mat_list_node
);
4488 mat
->mat_size
= psize
;
4489 mat
->mat_dva_id
= dva_id
;
4490 mat
->mat_offset
= offset
;
4491 mat
->mat_weight
= 0;
4492 mat
->mat_allocator
= allocator
;
4495 mat
->mat_weight
= msp
->ms_weight
;
4498 * The list is part of the zio so locking is not required. Only
4499 * a single thread will perform allocations for a given zio.
4501 list_insert_tail(&zal
->zal_list
, mat
);
4504 ASSERT3U(zal
->zal_size
, <=, metaslab_trace_max_entries
);
4508 metaslab_trace_init(zio_alloc_list_t
*zal
)
4510 list_create(&zal
->zal_list
, sizeof (metaslab_alloc_trace_t
),
4511 offsetof(metaslab_alloc_trace_t
, mat_list_node
));
4516 metaslab_trace_fini(zio_alloc_list_t
*zal
)
4518 metaslab_alloc_trace_t
*mat
;
4520 while ((mat
= list_remove_head(&zal
->zal_list
)) != NULL
)
4521 kmem_cache_free(metaslab_alloc_trace_cache
, mat
);
4522 list_destroy(&zal
->zal_list
);
4527 * ==========================================================================
4528 * Metaslab block operations
4529 * ==========================================================================
4533 metaslab_group_alloc_increment(spa_t
*spa
, uint64_t vdev
, const void *tag
,
4534 int flags
, int allocator
)
4536 if (!(flags
& METASLAB_ASYNC_ALLOC
) ||
4537 (flags
& METASLAB_DONT_THROTTLE
))
4540 metaslab_group_t
*mg
= vdev_lookup_top(spa
, vdev
)->vdev_mg
;
4541 if (!mg
->mg_class
->mc_alloc_throttle_enabled
)
4544 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
4545 (void) zfs_refcount_add(&mga
->mga_alloc_queue_depth
, tag
);
4549 metaslab_group_increment_qdepth(metaslab_group_t
*mg
, int allocator
)
4551 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
4552 metaslab_class_allocator_t
*mca
=
4553 &mg
->mg_class
->mc_allocator
[allocator
];
4554 uint64_t max
= mg
->mg_max_alloc_queue_depth
;
4555 uint64_t cur
= mga
->mga_cur_max_alloc_queue_depth
;
4557 if (atomic_cas_64(&mga
->mga_cur_max_alloc_queue_depth
,
4558 cur
, cur
+ 1) == cur
) {
4559 atomic_inc_64(&mca
->mca_alloc_max_slots
);
4562 cur
= mga
->mga_cur_max_alloc_queue_depth
;
4567 metaslab_group_alloc_decrement(spa_t
*spa
, uint64_t vdev
, const void *tag
,
4568 int flags
, int allocator
, boolean_t io_complete
)
4570 if (!(flags
& METASLAB_ASYNC_ALLOC
) ||
4571 (flags
& METASLAB_DONT_THROTTLE
))
4574 metaslab_group_t
*mg
= vdev_lookup_top(spa
, vdev
)->vdev_mg
;
4575 if (!mg
->mg_class
->mc_alloc_throttle_enabled
)
4578 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
4579 (void) zfs_refcount_remove(&mga
->mga_alloc_queue_depth
, tag
);
4581 metaslab_group_increment_qdepth(mg
, allocator
);
4585 metaslab_group_alloc_verify(spa_t
*spa
, const blkptr_t
*bp
, const void *tag
,
4589 const dva_t
*dva
= bp
->blk_dva
;
4590 int ndvas
= BP_GET_NDVAS(bp
);
4592 for (int d
= 0; d
< ndvas
; d
++) {
4593 uint64_t vdev
= DVA_GET_VDEV(&dva
[d
]);
4594 metaslab_group_t
*mg
= vdev_lookup_top(spa
, vdev
)->vdev_mg
;
4595 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
4596 VERIFY(zfs_refcount_not_held(&mga
->mga_alloc_queue_depth
, tag
));
4602 metaslab_block_alloc(metaslab_t
*msp
, uint64_t size
, uint64_t txg
)
4605 range_tree_t
*rt
= msp
->ms_allocatable
;
4606 metaslab_class_t
*mc
= msp
->ms_group
->mg_class
;
4608 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
4609 VERIFY(!msp
->ms_condensing
);
4610 VERIFY0(msp
->ms_disabled
);
4612 start
= mc
->mc_ops
->msop_alloc(msp
, size
);
4613 if (start
!= -1ULL) {
4614 metaslab_group_t
*mg
= msp
->ms_group
;
4615 vdev_t
*vd
= mg
->mg_vd
;
4617 VERIFY0(P2PHASE(start
, 1ULL << vd
->vdev_ashift
));
4618 VERIFY0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
4619 VERIFY3U(range_tree_space(rt
) - size
, <=, msp
->ms_size
);
4620 range_tree_remove(rt
, start
, size
);
4621 range_tree_clear(msp
->ms_trim
, start
, size
);
4623 if (range_tree_is_empty(msp
->ms_allocating
[txg
& TXG_MASK
]))
4624 vdev_dirty(mg
->mg_vd
, VDD_METASLAB
, msp
, txg
);
4626 range_tree_add(msp
->ms_allocating
[txg
& TXG_MASK
], start
, size
);
4627 msp
->ms_allocating_total
+= size
;
4629 /* Track the last successful allocation */
4630 msp
->ms_alloc_txg
= txg
;
4631 metaslab_verify_space(msp
, txg
);
4635 * Now that we've attempted the allocation we need to update the
4636 * metaslab's maximum block size since it may have changed.
4638 msp
->ms_max_size
= metaslab_largest_allocatable(msp
);
4643 * Find the metaslab with the highest weight that is less than what we've
4644 * already tried. In the common case, this means that we will examine each
4645 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4646 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4647 * activated by another thread, and we fail to allocate from the metaslab we
4648 * have selected, we may not try the newly-activated metaslab, and instead
4649 * activate another metaslab. This is not optimal, but generally does not cause
4650 * any problems (a possible exception being if every metaslab is completely full
4651 * except for the newly-activated metaslab which we fail to examine).
4654 find_valid_metaslab(metaslab_group_t
*mg
, uint64_t activation_weight
,
4655 dva_t
*dva
, int d
, boolean_t want_unique
, uint64_t asize
, int allocator
,
4656 boolean_t try_hard
, zio_alloc_list_t
*zal
, metaslab_t
*search
,
4657 boolean_t
*was_active
)
4660 avl_tree_t
*t
= &mg
->mg_metaslab_tree
;
4661 metaslab_t
*msp
= avl_find(t
, search
, &idx
);
4663 msp
= avl_nearest(t
, idx
, AVL_AFTER
);
4666 for (; msp
!= NULL
; msp
= AVL_NEXT(t
, msp
)) {
4669 if (!try_hard
&& tries
> zfs_metaslab_find_max_tries
) {
4670 METASLABSTAT_BUMP(metaslabstat_too_many_tries
);
4675 if (!metaslab_should_allocate(msp
, asize
, try_hard
)) {
4676 metaslab_trace_add(zal
, mg
, msp
, asize
, d
,
4677 TRACE_TOO_SMALL
, allocator
);
4682 * If the selected metaslab is condensing or disabled,
4685 if (msp
->ms_condensing
|| msp
->ms_disabled
> 0)
4688 *was_active
= msp
->ms_allocator
!= -1;
4690 * If we're activating as primary, this is our first allocation
4691 * from this disk, so we don't need to check how close we are.
4692 * If the metaslab under consideration was already active,
4693 * we're getting desperate enough to steal another allocator's
4694 * metaslab, so we still don't care about distances.
4696 if (activation_weight
== METASLAB_WEIGHT_PRIMARY
|| *was_active
)
4699 for (i
= 0; i
< d
; i
++) {
4701 !metaslab_is_unique(msp
, &dva
[i
]))
4702 break; /* try another metaslab */
4709 search
->ms_weight
= msp
->ms_weight
;
4710 search
->ms_start
= msp
->ms_start
+ 1;
4711 search
->ms_allocator
= msp
->ms_allocator
;
4712 search
->ms_primary
= msp
->ms_primary
;
4718 metaslab_active_mask_verify(metaslab_t
*msp
)
4720 ASSERT(MUTEX_HELD(&msp
->ms_lock
));
4722 if ((zfs_flags
& ZFS_DEBUG_METASLAB_VERIFY
) == 0)
4725 if ((msp
->ms_weight
& METASLAB_ACTIVE_MASK
) == 0)
4728 if (msp
->ms_weight
& METASLAB_WEIGHT_PRIMARY
) {
4729 VERIFY0(msp
->ms_weight
& METASLAB_WEIGHT_SECONDARY
);
4730 VERIFY0(msp
->ms_weight
& METASLAB_WEIGHT_CLAIM
);
4731 VERIFY3S(msp
->ms_allocator
, !=, -1);
4732 VERIFY(msp
->ms_primary
);
4736 if (msp
->ms_weight
& METASLAB_WEIGHT_SECONDARY
) {
4737 VERIFY0(msp
->ms_weight
& METASLAB_WEIGHT_PRIMARY
);
4738 VERIFY0(msp
->ms_weight
& METASLAB_WEIGHT_CLAIM
);
4739 VERIFY3S(msp
->ms_allocator
, !=, -1);
4740 VERIFY(!msp
->ms_primary
);
4744 if (msp
->ms_weight
& METASLAB_WEIGHT_CLAIM
) {
4745 VERIFY0(msp
->ms_weight
& METASLAB_WEIGHT_PRIMARY
);
4746 VERIFY0(msp
->ms_weight
& METASLAB_WEIGHT_SECONDARY
);
4747 VERIFY3S(msp
->ms_allocator
, ==, -1);
4753 metaslab_group_alloc_normal(metaslab_group_t
*mg
, zio_alloc_list_t
*zal
,
4754 uint64_t asize
, uint64_t txg
, boolean_t want_unique
, dva_t
*dva
, int d
,
4755 int allocator
, boolean_t try_hard
)
4757 metaslab_t
*msp
= NULL
;
4758 uint64_t offset
= -1ULL;
4760 uint64_t activation_weight
= METASLAB_WEIGHT_PRIMARY
;
4761 for (int i
= 0; i
< d
; i
++) {
4762 if (activation_weight
== METASLAB_WEIGHT_PRIMARY
&&
4763 DVA_GET_VDEV(&dva
[i
]) == mg
->mg_vd
->vdev_id
) {
4764 activation_weight
= METASLAB_WEIGHT_SECONDARY
;
4765 } else if (activation_weight
== METASLAB_WEIGHT_SECONDARY
&&
4766 DVA_GET_VDEV(&dva
[i
]) == mg
->mg_vd
->vdev_id
) {
4767 activation_weight
= METASLAB_WEIGHT_CLAIM
;
4773 * If we don't have enough metaslabs active to fill the entire array, we
4774 * just use the 0th slot.
4776 if (mg
->mg_ms_ready
< mg
->mg_allocators
* 3)
4778 metaslab_group_allocator_t
*mga
= &mg
->mg_allocator
[allocator
];
4780 ASSERT3U(mg
->mg_vd
->vdev_ms_count
, >=, 2);
4782 metaslab_t
*search
= kmem_alloc(sizeof (*search
), KM_SLEEP
);
4783 search
->ms_weight
= UINT64_MAX
;
4784 search
->ms_start
= 0;
4786 * At the end of the metaslab tree are the already-active metaslabs,
4787 * first the primaries, then the secondaries. When we resume searching
4788 * through the tree, we need to consider ms_allocator and ms_primary so
4789 * we start in the location right after where we left off, and don't
4790 * accidentally loop forever considering the same metaslabs.
4792 search
->ms_allocator
= -1;
4793 search
->ms_primary
= B_TRUE
;
4795 boolean_t was_active
= B_FALSE
;
4797 mutex_enter(&mg
->mg_lock
);
4799 if (activation_weight
== METASLAB_WEIGHT_PRIMARY
&&
4800 mga
->mga_primary
!= NULL
) {
4801 msp
= mga
->mga_primary
;
4804 * Even though we don't hold the ms_lock for the
4805 * primary metaslab, those fields should not
4806 * change while we hold the mg_lock. Thus it is
4807 * safe to make assertions on them.
4809 ASSERT(msp
->ms_primary
);
4810 ASSERT3S(msp
->ms_allocator
, ==, allocator
);
4811 ASSERT(msp
->ms_loaded
);
4813 was_active
= B_TRUE
;
4814 ASSERT(msp
->ms_weight
& METASLAB_ACTIVE_MASK
);
4815 } else if (activation_weight
== METASLAB_WEIGHT_SECONDARY
&&
4816 mga
->mga_secondary
!= NULL
) {
4817 msp
= mga
->mga_secondary
;
4820 * See comment above about the similar assertions
4821 * for the primary metaslab.
4823 ASSERT(!msp
->ms_primary
);
4824 ASSERT3S(msp
->ms_allocator
, ==, allocator
);
4825 ASSERT(msp
->ms_loaded
);
4827 was_active
= B_TRUE
;
4828 ASSERT(msp
->ms_weight
& METASLAB_ACTIVE_MASK
);
4830 msp
= find_valid_metaslab(mg
, activation_weight
, dva
, d
,
4831 want_unique
, asize
, allocator
, try_hard
, zal
,
4832 search
, &was_active
);
4835 mutex_exit(&mg
->mg_lock
);
4837 kmem_free(search
, sizeof (*search
));
4840 mutex_enter(&msp
->ms_lock
);
4842 metaslab_active_mask_verify(msp
);
4845 * This code is disabled out because of issues with
4846 * tracepoints in non-gpl kernel modules.
4849 DTRACE_PROBE3(ms__activation__attempt
,
4850 metaslab_t
*, msp
, uint64_t, activation_weight
,
4851 boolean_t
, was_active
);
4855 * Ensure that the metaslab we have selected is still
4856 * capable of handling our request. It's possible that
4857 * another thread may have changed the weight while we
4858 * were blocked on the metaslab lock. We check the
4859 * active status first to see if we need to set_selected_txg
4862 if (was_active
&& !(msp
->ms_weight
& METASLAB_ACTIVE_MASK
)) {
4863 ASSERT3S(msp
->ms_allocator
, ==, -1);
4864 mutex_exit(&msp
->ms_lock
);
4869 * If the metaslab was activated for another allocator
4870 * while we were waiting in the ms_lock above, or it's
4871 * a primary and we're seeking a secondary (or vice versa),
4872 * we go back and select a new metaslab.
4874 if (!was_active
&& (msp
->ms_weight
& METASLAB_ACTIVE_MASK
) &&
4875 (msp
->ms_allocator
!= -1) &&
4876 (msp
->ms_allocator
!= allocator
|| ((activation_weight
==
4877 METASLAB_WEIGHT_PRIMARY
) != msp
->ms_primary
))) {
4878 ASSERT(msp
->ms_loaded
);
4879 ASSERT((msp
->ms_weight
& METASLAB_WEIGHT_CLAIM
) ||
4880 msp
->ms_allocator
!= -1);
4881 mutex_exit(&msp
->ms_lock
);
4886 * This metaslab was used for claiming regions allocated
4887 * by the ZIL during pool import. Once these regions are
4888 * claimed we don't need to keep the CLAIM bit set
4889 * anymore. Passivate this metaslab to zero its activation
4892 if (msp
->ms_weight
& METASLAB_WEIGHT_CLAIM
&&
4893 activation_weight
!= METASLAB_WEIGHT_CLAIM
) {
4894 ASSERT(msp
->ms_loaded
);
4895 ASSERT3S(msp
->ms_allocator
, ==, -1);
4896 metaslab_passivate(msp
, msp
->ms_weight
&
4897 ~METASLAB_WEIGHT_CLAIM
);
4898 mutex_exit(&msp
->ms_lock
);
4902 metaslab_set_selected_txg(msp
, txg
);
4904 int activation_error
=
4905 metaslab_activate(msp
, allocator
, activation_weight
);
4906 metaslab_active_mask_verify(msp
);
4909 * If the metaslab was activated by another thread for
4910 * another allocator or activation_weight (EBUSY), or it
4911 * failed because another metaslab was assigned as primary
4912 * for this allocator (EEXIST) we continue using this
4913 * metaslab for our allocation, rather than going on to a
4914 * worse metaslab (we waited for that metaslab to be loaded
4917 * If the activation failed due to an I/O error or ENOSPC we
4918 * skip to the next metaslab.
4920 boolean_t activated
;
4921 if (activation_error
== 0) {
4923 } else if (activation_error
== EBUSY
||
4924 activation_error
== EEXIST
) {
4925 activated
= B_FALSE
;
4927 mutex_exit(&msp
->ms_lock
);
4930 ASSERT(msp
->ms_loaded
);
4933 * Now that we have the lock, recheck to see if we should
4934 * continue to use this metaslab for this allocation. The
4935 * the metaslab is now loaded so metaslab_should_allocate()
4936 * can accurately determine if the allocation attempt should
4939 if (!metaslab_should_allocate(msp
, asize
, try_hard
)) {
4940 /* Passivate this metaslab and select a new one. */
4941 metaslab_trace_add(zal
, mg
, msp
, asize
, d
,
4942 TRACE_TOO_SMALL
, allocator
);
4947 * If this metaslab is currently condensing then pick again
4948 * as we can't manipulate this metaslab until it's committed
4949 * to disk. If this metaslab is being initialized, we shouldn't
4950 * allocate from it since the allocated region might be
4951 * overwritten after allocation.
4953 if (msp
->ms_condensing
) {
4954 metaslab_trace_add(zal
, mg
, msp
, asize
, d
,
4955 TRACE_CONDENSING
, allocator
);
4957 metaslab_passivate(msp
, msp
->ms_weight
&
4958 ~METASLAB_ACTIVE_MASK
);
4960 mutex_exit(&msp
->ms_lock
);
4962 } else if (msp
->ms_disabled
> 0) {
4963 metaslab_trace_add(zal
, mg
, msp
, asize
, d
,
4964 TRACE_DISABLED
, allocator
);
4966 metaslab_passivate(msp
, msp
->ms_weight
&
4967 ~METASLAB_ACTIVE_MASK
);
4969 mutex_exit(&msp
->ms_lock
);
4973 offset
= metaslab_block_alloc(msp
, asize
, txg
);
4974 metaslab_trace_add(zal
, mg
, msp
, asize
, d
, offset
, allocator
);
4976 if (offset
!= -1ULL) {
4977 /* Proactively passivate the metaslab, if needed */
4979 metaslab_segment_may_passivate(msp
);
4983 ASSERT(msp
->ms_loaded
);
4986 * This code is disabled out because of issues with
4987 * tracepoints in non-gpl kernel modules.
4990 DTRACE_PROBE2(ms__alloc__failure
, metaslab_t
*, msp
,
4995 * We were unable to allocate from this metaslab so determine
4996 * a new weight for this metaslab. Now that we have loaded
4997 * the metaslab we can provide a better hint to the metaslab
5000 * For space-based metaslabs, we use the maximum block size.
5001 * This information is only available when the metaslab
5002 * is loaded and is more accurate than the generic free
5003 * space weight that was calculated by metaslab_weight().
5004 * This information allows us to quickly compare the maximum
5005 * available allocation in the metaslab to the allocation
5006 * size being requested.
5008 * For segment-based metaslabs, determine the new weight
5009 * based on the highest bucket in the range tree. We
5010 * explicitly use the loaded segment weight (i.e. the range
5011 * tree histogram) since it contains the space that is
5012 * currently available for allocation and is accurate
5013 * even within a sync pass.
5016 if (WEIGHT_IS_SPACEBASED(msp
->ms_weight
)) {
5017 weight
= metaslab_largest_allocatable(msp
);
5018 WEIGHT_SET_SPACEBASED(weight
);
5020 weight
= metaslab_weight_from_range_tree(msp
);
5024 metaslab_passivate(msp
, weight
);
5027 * For the case where we use the metaslab that is
5028 * active for another allocator we want to make
5029 * sure that we retain the activation mask.
5031 * Note that we could attempt to use something like
5032 * metaslab_recalculate_weight_and_sort() that
5033 * retains the activation mask here. That function
5034 * uses metaslab_weight() to set the weight though
5035 * which is not as accurate as the calculations
5038 weight
|= msp
->ms_weight
& METASLAB_ACTIVE_MASK
;
5039 metaslab_group_sort(mg
, msp
, weight
);
5041 metaslab_active_mask_verify(msp
);
5044 * We have just failed an allocation attempt, check
5045 * that metaslab_should_allocate() agrees. Otherwise,
5046 * we may end up in an infinite loop retrying the same
5049 ASSERT(!metaslab_should_allocate(msp
, asize
, try_hard
));
5051 mutex_exit(&msp
->ms_lock
);
5053 mutex_exit(&msp
->ms_lock
);
5054 kmem_free(search
, sizeof (*search
));
5059 metaslab_group_alloc(metaslab_group_t
*mg
, zio_alloc_list_t
*zal
,
5060 uint64_t asize
, uint64_t txg
, boolean_t want_unique
, dva_t
*dva
, int d
,
5061 int allocator
, boolean_t try_hard
)
5064 ASSERT(mg
->mg_initialized
);
5066 offset
= metaslab_group_alloc_normal(mg
, zal
, asize
, txg
, want_unique
,
5067 dva
, d
, allocator
, try_hard
);
5069 mutex_enter(&mg
->mg_lock
);
5070 if (offset
== -1ULL) {
5071 mg
->mg_failed_allocations
++;
5072 metaslab_trace_add(zal
, mg
, NULL
, asize
, d
,
5073 TRACE_GROUP_FAILURE
, allocator
);
5074 if (asize
== SPA_GANGBLOCKSIZE
) {
5076 * This metaslab group was unable to allocate
5077 * the minimum gang block size so it must be out of
5078 * space. We must notify the allocation throttle
5079 * to start skipping allocation attempts to this
5080 * metaslab group until more space becomes available.
5081 * Note: this failure cannot be caused by the
5082 * allocation throttle since the allocation throttle
5083 * is only responsible for skipping devices and
5084 * not failing block allocations.
5086 mg
->mg_no_free_space
= B_TRUE
;
5089 mg
->mg_allocations
++;
5090 mutex_exit(&mg
->mg_lock
);
5095 * Allocate a block for the specified i/o.
5098 metaslab_alloc_dva(spa_t
*spa
, metaslab_class_t
*mc
, uint64_t psize
,
5099 dva_t
*dva
, int d
, dva_t
*hintdva
, uint64_t txg
, int flags
,
5100 zio_alloc_list_t
*zal
, int allocator
)
5102 metaslab_class_allocator_t
*mca
= &mc
->mc_allocator
[allocator
];
5103 metaslab_group_t
*mg
, *rotor
;
5105 boolean_t try_hard
= B_FALSE
;
5107 ASSERT(!DVA_IS_VALID(&dva
[d
]));
5110 * For testing, make some blocks above a certain size be gang blocks.
5111 * This will result in more split blocks when using device removal,
5112 * and a large number of split blocks coupled with ztest-induced
5113 * damage can result in extremely long reconstruction times. This
5114 * will also test spilling from special to normal.
5116 if (psize
>= metaslab_force_ganging
&&
5117 metaslab_force_ganging_pct
> 0 &&
5118 (random_in_range(100) < MIN(metaslab_force_ganging_pct
, 100))) {
5119 metaslab_trace_add(zal
, NULL
, NULL
, psize
, d
, TRACE_FORCE_GANG
,
5121 return (SET_ERROR(ENOSPC
));
5125 * Start at the rotor and loop through all mgs until we find something.
5126 * Note that there's no locking on mca_rotor or mca_aliquot because
5127 * nothing actually breaks if we miss a few updates -- we just won't
5128 * allocate quite as evenly. It all balances out over time.
5130 * If we are doing ditto or log blocks, try to spread them across
5131 * consecutive vdevs. If we're forced to reuse a vdev before we've
5132 * allocated all of our ditto blocks, then try and spread them out on
5133 * that vdev as much as possible. If it turns out to not be possible,
5134 * gradually lower our standards until anything becomes acceptable.
5135 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5136 * gives us hope of containing our fault domains to something we're
5137 * able to reason about. Otherwise, any two top-level vdev failures
5138 * will guarantee the loss of data. With consecutive allocation,
5139 * only two adjacent top-level vdev failures will result in data loss.
5141 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5142 * ourselves on the same vdev as our gang block header. That
5143 * way, we can hope for locality in vdev_cache, plus it makes our
5144 * fault domains something tractable.
5147 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(&hintdva
[d
]));
5150 * It's possible the vdev we're using as the hint no
5151 * longer exists or its mg has been closed (e.g. by
5152 * device removal). Consult the rotor when
5155 if (vd
!= NULL
&& vd
->vdev_mg
!= NULL
) {
5156 mg
= vdev_get_mg(vd
, mc
);
5158 if (flags
& METASLAB_HINTBP_AVOID
)
5161 mg
= mca
->mca_rotor
;
5163 } else if (d
!= 0) {
5164 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dva
[d
- 1]));
5165 mg
= vd
->vdev_mg
->mg_next
;
5167 ASSERT(mca
->mca_rotor
!= NULL
);
5168 mg
= mca
->mca_rotor
;
5172 * If the hint put us into the wrong metaslab class, or into a
5173 * metaslab group that has been passivated, just follow the rotor.
5175 if (mg
->mg_class
!= mc
|| mg
->mg_activation_count
<= 0)
5176 mg
= mca
->mca_rotor
;
5181 boolean_t allocatable
;
5183 ASSERT(mg
->mg_activation_count
== 1);
5187 * Don't allocate from faulted devices.
5190 spa_config_enter(spa
, SCL_ZIO
, FTAG
, RW_READER
);
5191 allocatable
= vdev_allocatable(vd
);
5192 spa_config_exit(spa
, SCL_ZIO
, FTAG
);
5194 allocatable
= vdev_allocatable(vd
);
5198 * Determine if the selected metaslab group is eligible
5199 * for allocations. If we're ganging then don't allow
5200 * this metaslab group to skip allocations since that would
5201 * inadvertently return ENOSPC and suspend the pool
5202 * even though space is still available.
5204 if (allocatable
&& !GANG_ALLOCATION(flags
) && !try_hard
) {
5205 allocatable
= metaslab_group_allocatable(mg
, rotor
,
5206 flags
, psize
, allocator
, d
);
5210 metaslab_trace_add(zal
, mg
, NULL
, psize
, d
,
5211 TRACE_NOT_ALLOCATABLE
, allocator
);
5215 ASSERT(mg
->mg_initialized
);
5218 * Avoid writing single-copy data to an unhealthy,
5219 * non-redundant vdev, unless we've already tried all
5222 if (vd
->vdev_state
< VDEV_STATE_HEALTHY
&&
5223 d
== 0 && !try_hard
&& vd
->vdev_children
== 0) {
5224 metaslab_trace_add(zal
, mg
, NULL
, psize
, d
,
5225 TRACE_VDEV_ERROR
, allocator
);
5229 ASSERT(mg
->mg_class
== mc
);
5231 uint64_t asize
= vdev_psize_to_asize(vd
, psize
);
5232 ASSERT(P2PHASE(asize
, 1ULL << vd
->vdev_ashift
) == 0);
5235 * If we don't need to try hard, then require that the
5236 * block be on a different metaslab from any other DVAs
5237 * in this BP (unique=true). If we are trying hard, then
5238 * allow any metaslab to be used (unique=false).
5240 uint64_t offset
= metaslab_group_alloc(mg
, zal
, asize
, txg
,
5241 !try_hard
, dva
, d
, allocator
, try_hard
);
5243 if (offset
!= -1ULL) {
5245 * If we've just selected this metaslab group,
5246 * figure out whether the corresponding vdev is
5247 * over- or under-used relative to the pool,
5248 * and set an allocation bias to even it out.
5250 * Bias is also used to compensate for unequally
5251 * sized vdevs so that space is allocated fairly.
5253 if (mca
->mca_aliquot
== 0 && metaslab_bias_enabled
) {
5254 vdev_stat_t
*vs
= &vd
->vdev_stat
;
5255 int64_t vs_free
= vs
->vs_space
- vs
->vs_alloc
;
5256 int64_t mc_free
= mc
->mc_space
- mc
->mc_alloc
;
5260 * Calculate how much more or less we should
5261 * try to allocate from this device during
5262 * this iteration around the rotor.
5264 * This basically introduces a zero-centered
5265 * bias towards the devices with the most
5266 * free space, while compensating for vdev
5270 * vdev V1 = 16M/128M
5271 * vdev V2 = 16M/128M
5272 * ratio(V1) = 100% ratio(V2) = 100%
5274 * vdev V1 = 16M/128M
5275 * vdev V2 = 64M/128M
5276 * ratio(V1) = 127% ratio(V2) = 72%
5278 * vdev V1 = 16M/128M
5279 * vdev V2 = 64M/512M
5280 * ratio(V1) = 40% ratio(V2) = 160%
5282 ratio
= (vs_free
* mc
->mc_alloc_groups
* 100) /
5284 mg
->mg_bias
= ((ratio
- 100) *
5285 (int64_t)mg
->mg_aliquot
) / 100;
5286 } else if (!metaslab_bias_enabled
) {
5290 if ((flags
& METASLAB_ZIL
) ||
5291 atomic_add_64_nv(&mca
->mca_aliquot
, asize
) >=
5292 mg
->mg_aliquot
+ mg
->mg_bias
) {
5293 mca
->mca_rotor
= mg
->mg_next
;
5294 mca
->mca_aliquot
= 0;
5297 DVA_SET_VDEV(&dva
[d
], vd
->vdev_id
);
5298 DVA_SET_OFFSET(&dva
[d
], offset
);
5299 DVA_SET_GANG(&dva
[d
],
5300 ((flags
& METASLAB_GANG_HEADER
) ? 1 : 0));
5301 DVA_SET_ASIZE(&dva
[d
], asize
);
5306 mca
->mca_rotor
= mg
->mg_next
;
5307 mca
->mca_aliquot
= 0;
5308 } while ((mg
= mg
->mg_next
) != rotor
);
5311 * If we haven't tried hard, perhaps do so now.
5313 if (!try_hard
&& (zfs_metaslab_try_hard_before_gang
||
5314 GANG_ALLOCATION(flags
) || (flags
& METASLAB_ZIL
) != 0 ||
5315 psize
<= 1 << spa
->spa_min_ashift
)) {
5316 METASLABSTAT_BUMP(metaslabstat_try_hard
);
5321 memset(&dva
[d
], 0, sizeof (dva_t
));
5323 metaslab_trace_add(zal
, rotor
, NULL
, psize
, d
, TRACE_ENOSPC
, allocator
);
5324 return (SET_ERROR(ENOSPC
));
5328 metaslab_free_concrete(vdev_t
*vd
, uint64_t offset
, uint64_t asize
,
5329 boolean_t checkpoint
)
5332 spa_t
*spa
= vd
->vdev_spa
;
5334 ASSERT(vdev_is_concrete(vd
));
5335 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
5336 ASSERT3U(offset
>> vd
->vdev_ms_shift
, <, vd
->vdev_ms_count
);
5338 msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
5340 VERIFY(!msp
->ms_condensing
);
5341 VERIFY3U(offset
, >=, msp
->ms_start
);
5342 VERIFY3U(offset
+ asize
, <=, msp
->ms_start
+ msp
->ms_size
);
5343 VERIFY0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
5344 VERIFY0(P2PHASE(asize
, 1ULL << vd
->vdev_ashift
));
5346 metaslab_check_free_impl(vd
, offset
, asize
);
5348 mutex_enter(&msp
->ms_lock
);
5349 if (range_tree_is_empty(msp
->ms_freeing
) &&
5350 range_tree_is_empty(msp
->ms_checkpointing
)) {
5351 vdev_dirty(vd
, VDD_METASLAB
, msp
, spa_syncing_txg(spa
));
5355 ASSERT(spa_has_checkpoint(spa
));
5356 range_tree_add(msp
->ms_checkpointing
, offset
, asize
);
5358 range_tree_add(msp
->ms_freeing
, offset
, asize
);
5360 mutex_exit(&msp
->ms_lock
);
5364 metaslab_free_impl_cb(uint64_t inner_offset
, vdev_t
*vd
, uint64_t offset
,
5365 uint64_t size
, void *arg
)
5367 (void) inner_offset
;
5368 boolean_t
*checkpoint
= arg
;
5370 ASSERT3P(checkpoint
, !=, NULL
);
5372 if (vd
->vdev_ops
->vdev_op_remap
!= NULL
)
5373 vdev_indirect_mark_obsolete(vd
, offset
, size
);
5375 metaslab_free_impl(vd
, offset
, size
, *checkpoint
);
5379 metaslab_free_impl(vdev_t
*vd
, uint64_t offset
, uint64_t size
,
5380 boolean_t checkpoint
)
5382 spa_t
*spa
= vd
->vdev_spa
;
5384 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
5386 if (spa_syncing_txg(spa
) > spa_freeze_txg(spa
))
5389 if (spa
->spa_vdev_removal
!= NULL
&&
5390 spa
->spa_vdev_removal
->svr_vdev_id
== vd
->vdev_id
&&
5391 vdev_is_concrete(vd
)) {
5393 * Note: we check if the vdev is concrete because when
5394 * we complete the removal, we first change the vdev to be
5395 * an indirect vdev (in open context), and then (in syncing
5396 * context) clear spa_vdev_removal.
5398 free_from_removing_vdev(vd
, offset
, size
);
5399 } else if (vd
->vdev_ops
->vdev_op_remap
!= NULL
) {
5400 vdev_indirect_mark_obsolete(vd
, offset
, size
);
5401 vd
->vdev_ops
->vdev_op_remap(vd
, offset
, size
,
5402 metaslab_free_impl_cb
, &checkpoint
);
5404 metaslab_free_concrete(vd
, offset
, size
, checkpoint
);
5408 typedef struct remap_blkptr_cb_arg
{
5410 spa_remap_cb_t rbca_cb
;
5411 vdev_t
*rbca_remap_vd
;
5412 uint64_t rbca_remap_offset
;
5414 } remap_blkptr_cb_arg_t
;
5417 remap_blkptr_cb(uint64_t inner_offset
, vdev_t
*vd
, uint64_t offset
,
5418 uint64_t size
, void *arg
)
5420 remap_blkptr_cb_arg_t
*rbca
= arg
;
5421 blkptr_t
*bp
= rbca
->rbca_bp
;
5423 /* We can not remap split blocks. */
5424 if (size
!= DVA_GET_ASIZE(&bp
->blk_dva
[0]))
5426 ASSERT0(inner_offset
);
5428 if (rbca
->rbca_cb
!= NULL
) {
5430 * At this point we know that we are not handling split
5431 * blocks and we invoke the callback on the previous
5432 * vdev which must be indirect.
5434 ASSERT3P(rbca
->rbca_remap_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
5436 rbca
->rbca_cb(rbca
->rbca_remap_vd
->vdev_id
,
5437 rbca
->rbca_remap_offset
, size
, rbca
->rbca_cb_arg
);
5439 /* set up remap_blkptr_cb_arg for the next call */
5440 rbca
->rbca_remap_vd
= vd
;
5441 rbca
->rbca_remap_offset
= offset
;
5445 * The phys birth time is that of dva[0]. This ensures that we know
5446 * when each dva was written, so that resilver can determine which
5447 * blocks need to be scrubbed (i.e. those written during the time
5448 * the vdev was offline). It also ensures that the key used in
5449 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5450 * we didn't change the phys_birth, a lookup in the ARC for a
5451 * remapped BP could find the data that was previously stored at
5452 * this vdev + offset.
5454 vdev_t
*oldvd
= vdev_lookup_top(vd
->vdev_spa
,
5455 DVA_GET_VDEV(&bp
->blk_dva
[0]));
5456 vdev_indirect_births_t
*vib
= oldvd
->vdev_indirect_births
;
5457 bp
->blk_phys_birth
= vdev_indirect_births_physbirth(vib
,
5458 DVA_GET_OFFSET(&bp
->blk_dva
[0]), DVA_GET_ASIZE(&bp
->blk_dva
[0]));
5460 DVA_SET_VDEV(&bp
->blk_dva
[0], vd
->vdev_id
);
5461 DVA_SET_OFFSET(&bp
->blk_dva
[0], offset
);
5465 * If the block pointer contains any indirect DVAs, modify them to refer to
5466 * concrete DVAs. Note that this will sometimes not be possible, leaving
5467 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5468 * segments in the mapping (i.e. it is a "split block").
5470 * If the BP was remapped, calls the callback on the original dva (note the
5471 * callback can be called multiple times if the original indirect DVA refers
5472 * to another indirect DVA, etc).
5474 * Returns TRUE if the BP was remapped.
5477 spa_remap_blkptr(spa_t
*spa
, blkptr_t
*bp
, spa_remap_cb_t callback
, void *arg
)
5479 remap_blkptr_cb_arg_t rbca
;
5481 if (!zfs_remap_blkptr_enable
)
5484 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_OBSOLETE_COUNTS
))
5488 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5489 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5491 if (BP_GET_DEDUP(bp
))
5495 * Gang blocks can not be remapped, because
5496 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5497 * the BP used to read the gang block header (GBH) being the same
5498 * as the DVA[0] that we allocated for the GBH.
5504 * Embedded BP's have no DVA to remap.
5506 if (BP_GET_NDVAS(bp
) < 1)
5510 * Note: we only remap dva[0]. If we remapped other dvas, we
5511 * would no longer know what their phys birth txg is.
5513 dva_t
*dva
= &bp
->blk_dva
[0];
5515 uint64_t offset
= DVA_GET_OFFSET(dva
);
5516 uint64_t size
= DVA_GET_ASIZE(dva
);
5517 vdev_t
*vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
5519 if (vd
->vdev_ops
->vdev_op_remap
== NULL
)
5523 rbca
.rbca_cb
= callback
;
5524 rbca
.rbca_remap_vd
= vd
;
5525 rbca
.rbca_remap_offset
= offset
;
5526 rbca
.rbca_cb_arg
= arg
;
5529 * remap_blkptr_cb() will be called in order for each level of
5530 * indirection, until a concrete vdev is reached or a split block is
5531 * encountered. old_vd and old_offset are updated within the callback
5532 * as we go from the one indirect vdev to the next one (either concrete
5533 * or indirect again) in that order.
5535 vd
->vdev_ops
->vdev_op_remap(vd
, offset
, size
, remap_blkptr_cb
, &rbca
);
5537 /* Check if the DVA wasn't remapped because it is a split block */
5538 if (DVA_GET_VDEV(&rbca
.rbca_bp
->blk_dva
[0]) == vd
->vdev_id
)
5545 * Undo the allocation of a DVA which happened in the given transaction group.
5548 metaslab_unalloc_dva(spa_t
*spa
, const dva_t
*dva
, uint64_t txg
)
5552 uint64_t vdev
= DVA_GET_VDEV(dva
);
5553 uint64_t offset
= DVA_GET_OFFSET(dva
);
5554 uint64_t size
= DVA_GET_ASIZE(dva
);
5556 ASSERT(DVA_IS_VALID(dva
));
5557 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
5559 if (txg
> spa_freeze_txg(spa
))
5562 if ((vd
= vdev_lookup_top(spa
, vdev
)) == NULL
|| !DVA_IS_VALID(dva
) ||
5563 (offset
>> vd
->vdev_ms_shift
) >= vd
->vdev_ms_count
) {
5564 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5565 (u_longlong_t
)vdev
, (u_longlong_t
)offset
,
5566 (u_longlong_t
)size
);
5570 ASSERT(!vd
->vdev_removing
);
5571 ASSERT(vdev_is_concrete(vd
));
5572 ASSERT0(vd
->vdev_indirect_config
.vic_mapping_object
);
5573 ASSERT3P(vd
->vdev_indirect_mapping
, ==, NULL
);
5575 if (DVA_GET_GANG(dva
))
5576 size
= vdev_gang_header_asize(vd
);
5578 msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
5580 mutex_enter(&msp
->ms_lock
);
5581 range_tree_remove(msp
->ms_allocating
[txg
& TXG_MASK
],
5583 msp
->ms_allocating_total
-= size
;
5585 VERIFY(!msp
->ms_condensing
);
5586 VERIFY3U(offset
, >=, msp
->ms_start
);
5587 VERIFY3U(offset
+ size
, <=, msp
->ms_start
+ msp
->ms_size
);
5588 VERIFY3U(range_tree_space(msp
->ms_allocatable
) + size
, <=,
5590 VERIFY0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
5591 VERIFY0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
5592 range_tree_add(msp
->ms_allocatable
, offset
, size
);
5593 mutex_exit(&msp
->ms_lock
);
5597 * Free the block represented by the given DVA.
5600 metaslab_free_dva(spa_t
*spa
, const dva_t
*dva
, boolean_t checkpoint
)
5602 uint64_t vdev
= DVA_GET_VDEV(dva
);
5603 uint64_t offset
= DVA_GET_OFFSET(dva
);
5604 uint64_t size
= DVA_GET_ASIZE(dva
);
5605 vdev_t
*vd
= vdev_lookup_top(spa
, vdev
);
5607 ASSERT(DVA_IS_VALID(dva
));
5608 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
5610 if (DVA_GET_GANG(dva
)) {
5611 size
= vdev_gang_header_asize(vd
);
5614 metaslab_free_impl(vd
, offset
, size
, checkpoint
);
5618 * Reserve some allocation slots. The reservation system must be called
5619 * before we call into the allocator. If there aren't any available slots
5620 * then the I/O will be throttled until an I/O completes and its slots are
5621 * freed up. The function returns true if it was successful in placing
5625 metaslab_class_throttle_reserve(metaslab_class_t
*mc
, int slots
, int allocator
,
5626 zio_t
*zio
, int flags
)
5628 metaslab_class_allocator_t
*mca
= &mc
->mc_allocator
[allocator
];
5629 uint64_t max
= mca
->mca_alloc_max_slots
;
5631 ASSERT(mc
->mc_alloc_throttle_enabled
);
5632 if (GANG_ALLOCATION(flags
) || (flags
& METASLAB_MUST_RESERVE
) ||
5633 zfs_refcount_count(&mca
->mca_alloc_slots
) + slots
<= max
) {
5635 * The potential race between _count() and _add() is covered
5636 * by the allocator lock in most cases, or irrelevant due to
5637 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5638 * But even if we assume some other non-existing scenario, the
5639 * worst that can happen is few more I/Os get to allocation
5640 * earlier, that is not a problem.
5642 * We reserve the slots individually so that we can unreserve
5643 * them individually when an I/O completes.
5645 zfs_refcount_add_few(&mca
->mca_alloc_slots
, slots
, zio
);
5646 zio
->io_flags
|= ZIO_FLAG_IO_ALLOCATING
;
5653 metaslab_class_throttle_unreserve(metaslab_class_t
*mc
, int slots
,
5654 int allocator
, zio_t
*zio
)
5656 metaslab_class_allocator_t
*mca
= &mc
->mc_allocator
[allocator
];
5658 ASSERT(mc
->mc_alloc_throttle_enabled
);
5659 zfs_refcount_remove_few(&mca
->mca_alloc_slots
, slots
, zio
);
5663 metaslab_claim_concrete(vdev_t
*vd
, uint64_t offset
, uint64_t size
,
5667 spa_t
*spa
= vd
->vdev_spa
;
5670 if (offset
>> vd
->vdev_ms_shift
>= vd
->vdev_ms_count
)
5671 return (SET_ERROR(ENXIO
));
5673 ASSERT3P(vd
->vdev_ms
, !=, NULL
);
5674 msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
5676 mutex_enter(&msp
->ms_lock
);
5678 if ((txg
!= 0 && spa_writeable(spa
)) || !msp
->ms_loaded
) {
5679 error
= metaslab_activate(msp
, 0, METASLAB_WEIGHT_CLAIM
);
5680 if (error
== EBUSY
) {
5681 ASSERT(msp
->ms_loaded
);
5682 ASSERT(msp
->ms_weight
& METASLAB_ACTIVE_MASK
);
5688 !range_tree_contains(msp
->ms_allocatable
, offset
, size
))
5689 error
= SET_ERROR(ENOENT
);
5691 if (error
|| txg
== 0) { /* txg == 0 indicates dry run */
5692 mutex_exit(&msp
->ms_lock
);
5696 VERIFY(!msp
->ms_condensing
);
5697 VERIFY0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
5698 VERIFY0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
5699 VERIFY3U(range_tree_space(msp
->ms_allocatable
) - size
, <=,
5701 range_tree_remove(msp
->ms_allocatable
, offset
, size
);
5702 range_tree_clear(msp
->ms_trim
, offset
, size
);
5704 if (spa_writeable(spa
)) { /* don't dirty if we're zdb(8) */
5705 metaslab_class_t
*mc
= msp
->ms_group
->mg_class
;
5706 multilist_sublist_t
*mls
=
5707 multilist_sublist_lock_obj(&mc
->mc_metaslab_txg_list
, msp
);
5708 if (!multilist_link_active(&msp
->ms_class_txg_node
)) {
5709 msp
->ms_selected_txg
= txg
;
5710 multilist_sublist_insert_head(mls
, msp
);
5712 multilist_sublist_unlock(mls
);
5714 if (range_tree_is_empty(msp
->ms_allocating
[txg
& TXG_MASK
]))
5715 vdev_dirty(vd
, VDD_METASLAB
, msp
, txg
);
5716 range_tree_add(msp
->ms_allocating
[txg
& TXG_MASK
],
5718 msp
->ms_allocating_total
+= size
;
5721 mutex_exit(&msp
->ms_lock
);
5726 typedef struct metaslab_claim_cb_arg_t
{
5729 } metaslab_claim_cb_arg_t
;
5732 metaslab_claim_impl_cb(uint64_t inner_offset
, vdev_t
*vd
, uint64_t offset
,
5733 uint64_t size
, void *arg
)
5735 (void) inner_offset
;
5736 metaslab_claim_cb_arg_t
*mcca_arg
= arg
;
5738 if (mcca_arg
->mcca_error
== 0) {
5739 mcca_arg
->mcca_error
= metaslab_claim_concrete(vd
, offset
,
5740 size
, mcca_arg
->mcca_txg
);
5745 metaslab_claim_impl(vdev_t
*vd
, uint64_t offset
, uint64_t size
, uint64_t txg
)
5747 if (vd
->vdev_ops
->vdev_op_remap
!= NULL
) {
5748 metaslab_claim_cb_arg_t arg
;
5751 * Only zdb(8) can claim on indirect vdevs. This is used
5752 * to detect leaks of mapped space (that are not accounted
5753 * for in the obsolete counts, spacemap, or bpobj).
5755 ASSERT(!spa_writeable(vd
->vdev_spa
));
5759 vd
->vdev_ops
->vdev_op_remap(vd
, offset
, size
,
5760 metaslab_claim_impl_cb
, &arg
);
5762 if (arg
.mcca_error
== 0) {
5763 arg
.mcca_error
= metaslab_claim_concrete(vd
,
5766 return (arg
.mcca_error
);
5768 return (metaslab_claim_concrete(vd
, offset
, size
, txg
));
5773 * Intent log support: upon opening the pool after a crash, notify the SPA
5774 * of blocks that the intent log has allocated for immediate write, but
5775 * which are still considered free by the SPA because the last transaction
5776 * group didn't commit yet.
5779 metaslab_claim_dva(spa_t
*spa
, const dva_t
*dva
, uint64_t txg
)
5781 uint64_t vdev
= DVA_GET_VDEV(dva
);
5782 uint64_t offset
= DVA_GET_OFFSET(dva
);
5783 uint64_t size
= DVA_GET_ASIZE(dva
);
5786 if ((vd
= vdev_lookup_top(spa
, vdev
)) == NULL
) {
5787 return (SET_ERROR(ENXIO
));
5790 ASSERT(DVA_IS_VALID(dva
));
5792 if (DVA_GET_GANG(dva
))
5793 size
= vdev_gang_header_asize(vd
);
5795 return (metaslab_claim_impl(vd
, offset
, size
, txg
));
5799 metaslab_alloc(spa_t
*spa
, metaslab_class_t
*mc
, uint64_t psize
, blkptr_t
*bp
,
5800 int ndvas
, uint64_t txg
, blkptr_t
*hintbp
, int flags
,
5801 zio_alloc_list_t
*zal
, zio_t
*zio
, int allocator
)
5803 dva_t
*dva
= bp
->blk_dva
;
5804 dva_t
*hintdva
= (hintbp
!= NULL
) ? hintbp
->blk_dva
: NULL
;
5807 ASSERT(bp
->blk_birth
== 0);
5808 ASSERT(BP_PHYSICAL_BIRTH(bp
) == 0);
5810 spa_config_enter(spa
, SCL_ALLOC
, FTAG
, RW_READER
);
5812 if (mc
->mc_allocator
[allocator
].mca_rotor
== NULL
) {
5813 /* no vdevs in this class */
5814 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
5815 return (SET_ERROR(ENOSPC
));
5818 ASSERT(ndvas
> 0 && ndvas
<= spa_max_replication(spa
));
5819 ASSERT(BP_GET_NDVAS(bp
) == 0);
5820 ASSERT(hintbp
== NULL
|| ndvas
<= BP_GET_NDVAS(hintbp
));
5821 ASSERT3P(zal
, !=, NULL
);
5823 for (int d
= 0; d
< ndvas
; d
++) {
5824 error
= metaslab_alloc_dva(spa
, mc
, psize
, dva
, d
, hintdva
,
5825 txg
, flags
, zal
, allocator
);
5827 for (d
--; d
>= 0; d
--) {
5828 metaslab_unalloc_dva(spa
, &dva
[d
], txg
);
5829 metaslab_group_alloc_decrement(spa
,
5830 DVA_GET_VDEV(&dva
[d
]), zio
, flags
,
5831 allocator
, B_FALSE
);
5832 memset(&dva
[d
], 0, sizeof (dva_t
));
5834 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
5838 * Update the metaslab group's queue depth
5839 * based on the newly allocated dva.
5841 metaslab_group_alloc_increment(spa
,
5842 DVA_GET_VDEV(&dva
[d
]), zio
, flags
, allocator
);
5846 ASSERT(BP_GET_NDVAS(bp
) == ndvas
);
5848 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
5850 BP_SET_BIRTH(bp
, txg
, 0);
5856 metaslab_free(spa_t
*spa
, const blkptr_t
*bp
, uint64_t txg
, boolean_t now
)
5858 const dva_t
*dva
= bp
->blk_dva
;
5859 int ndvas
= BP_GET_NDVAS(bp
);
5861 ASSERT(!BP_IS_HOLE(bp
));
5862 ASSERT(!now
|| bp
->blk_birth
>= spa_syncing_txg(spa
));
5865 * If we have a checkpoint for the pool we need to make sure that
5866 * the blocks that we free that are part of the checkpoint won't be
5867 * reused until the checkpoint is discarded or we revert to it.
5869 * The checkpoint flag is passed down the metaslab_free code path
5870 * and is set whenever we want to add a block to the checkpoint's
5871 * accounting. That is, we "checkpoint" blocks that existed at the
5872 * time the checkpoint was created and are therefore referenced by
5873 * the checkpointed uberblock.
5875 * Note that, we don't checkpoint any blocks if the current
5876 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5877 * normally as they will be referenced by the checkpointed uberblock.
5879 boolean_t checkpoint
= B_FALSE
;
5880 if (bp
->blk_birth
<= spa
->spa_checkpoint_txg
&&
5881 spa_syncing_txg(spa
) > spa
->spa_checkpoint_txg
) {
5883 * At this point, if the block is part of the checkpoint
5884 * there is no way it was created in the current txg.
5887 ASSERT3U(spa_syncing_txg(spa
), ==, txg
);
5888 checkpoint
= B_TRUE
;
5891 spa_config_enter(spa
, SCL_FREE
, FTAG
, RW_READER
);
5893 for (int d
= 0; d
< ndvas
; d
++) {
5895 metaslab_unalloc_dva(spa
, &dva
[d
], txg
);
5897 ASSERT3U(txg
, ==, spa_syncing_txg(spa
));
5898 metaslab_free_dva(spa
, &dva
[d
], checkpoint
);
5902 spa_config_exit(spa
, SCL_FREE
, FTAG
);
5906 metaslab_claim(spa_t
*spa
, const blkptr_t
*bp
, uint64_t txg
)
5908 const dva_t
*dva
= bp
->blk_dva
;
5909 int ndvas
= BP_GET_NDVAS(bp
);
5912 ASSERT(!BP_IS_HOLE(bp
));
5916 * First do a dry run to make sure all DVAs are claimable,
5917 * so we don't have to unwind from partial failures below.
5919 if ((error
= metaslab_claim(spa
, bp
, 0)) != 0)
5923 spa_config_enter(spa
, SCL_ALLOC
, FTAG
, RW_READER
);
5925 for (int d
= 0; d
< ndvas
; d
++) {
5926 error
= metaslab_claim_dva(spa
, &dva
[d
], txg
);
5931 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
5933 ASSERT(error
== 0 || txg
== 0);
5939 metaslab_check_free_impl_cb(uint64_t inner
, vdev_t
*vd
, uint64_t offset
,
5940 uint64_t size
, void *arg
)
5942 (void) inner
, (void) arg
;
5944 if (vd
->vdev_ops
== &vdev_indirect_ops
)
5947 metaslab_check_free_impl(vd
, offset
, size
);
5951 metaslab_check_free_impl(vdev_t
*vd
, uint64_t offset
, uint64_t size
)
5954 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
5956 if ((zfs_flags
& ZFS_DEBUG_ZIO_FREE
) == 0)
5959 if (vd
->vdev_ops
->vdev_op_remap
!= NULL
) {
5960 vd
->vdev_ops
->vdev_op_remap(vd
, offset
, size
,
5961 metaslab_check_free_impl_cb
, NULL
);
5965 ASSERT(vdev_is_concrete(vd
));
5966 ASSERT3U(offset
>> vd
->vdev_ms_shift
, <, vd
->vdev_ms_count
);
5967 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
5969 msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
5971 mutex_enter(&msp
->ms_lock
);
5972 if (msp
->ms_loaded
) {
5973 range_tree_verify_not_present(msp
->ms_allocatable
,
5978 * Check all segments that currently exist in the freeing pipeline.
5980 * It would intuitively make sense to also check the current allocating
5981 * tree since metaslab_unalloc_dva() exists for extents that are
5982 * allocated and freed in the same sync pass within the same txg.
5983 * Unfortunately there are places (e.g. the ZIL) where we allocate a
5984 * segment but then we free part of it within the same txg
5985 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
5986 * current allocating tree.
5988 range_tree_verify_not_present(msp
->ms_freeing
, offset
, size
);
5989 range_tree_verify_not_present(msp
->ms_checkpointing
, offset
, size
);
5990 range_tree_verify_not_present(msp
->ms_freed
, offset
, size
);
5991 for (int j
= 0; j
< TXG_DEFER_SIZE
; j
++)
5992 range_tree_verify_not_present(msp
->ms_defer
[j
], offset
, size
);
5993 range_tree_verify_not_present(msp
->ms_trim
, offset
, size
);
5994 mutex_exit(&msp
->ms_lock
);
5998 metaslab_check_free(spa_t
*spa
, const blkptr_t
*bp
)
6000 if ((zfs_flags
& ZFS_DEBUG_ZIO_FREE
) == 0)
6003 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6004 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
6005 uint64_t vdev
= DVA_GET_VDEV(&bp
->blk_dva
[i
]);
6006 vdev_t
*vd
= vdev_lookup_top(spa
, vdev
);
6007 uint64_t offset
= DVA_GET_OFFSET(&bp
->blk_dva
[i
]);
6008 uint64_t size
= DVA_GET_ASIZE(&bp
->blk_dva
[i
]);
6010 if (DVA_GET_GANG(&bp
->blk_dva
[i
]))
6011 size
= vdev_gang_header_asize(vd
);
6013 ASSERT3P(vd
, !=, NULL
);
6015 metaslab_check_free_impl(vd
, offset
, size
);
6017 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6021 metaslab_group_disable_wait(metaslab_group_t
*mg
)
6023 ASSERT(MUTEX_HELD(&mg
->mg_ms_disabled_lock
));
6024 while (mg
->mg_disabled_updating
) {
6025 cv_wait(&mg
->mg_ms_disabled_cv
, &mg
->mg_ms_disabled_lock
);
6030 metaslab_group_disabled_increment(metaslab_group_t
*mg
)
6032 ASSERT(MUTEX_HELD(&mg
->mg_ms_disabled_lock
));
6033 ASSERT(mg
->mg_disabled_updating
);
6035 while (mg
->mg_ms_disabled
>= max_disabled_ms
) {
6036 cv_wait(&mg
->mg_ms_disabled_cv
, &mg
->mg_ms_disabled_lock
);
6038 mg
->mg_ms_disabled
++;
6039 ASSERT3U(mg
->mg_ms_disabled
, <=, max_disabled_ms
);
6043 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6044 * We must also track how many metaslabs are currently disabled within a
6045 * metaslab group and limit them to prevent allocation failures from
6046 * occurring because all metaslabs are disabled.
6049 metaslab_disable(metaslab_t
*msp
)
6051 ASSERT(!MUTEX_HELD(&msp
->ms_lock
));
6052 metaslab_group_t
*mg
= msp
->ms_group
;
6054 mutex_enter(&mg
->mg_ms_disabled_lock
);
6057 * To keep an accurate count of how many threads have disabled
6058 * a specific metaslab group, we only allow one thread to mark
6059 * the metaslab group at a time. This ensures that the value of
6060 * ms_disabled will be accurate when we decide to mark a metaslab
6061 * group as disabled. To do this we force all other threads
6062 * to wait till the metaslab's mg_disabled_updating flag is no
6065 metaslab_group_disable_wait(mg
);
6066 mg
->mg_disabled_updating
= B_TRUE
;
6067 if (msp
->ms_disabled
== 0) {
6068 metaslab_group_disabled_increment(mg
);
6070 mutex_enter(&msp
->ms_lock
);
6072 mutex_exit(&msp
->ms_lock
);
6074 mg
->mg_disabled_updating
= B_FALSE
;
6075 cv_broadcast(&mg
->mg_ms_disabled_cv
);
6076 mutex_exit(&mg
->mg_ms_disabled_lock
);
6080 metaslab_enable(metaslab_t
*msp
, boolean_t sync
, boolean_t unload
)
6082 metaslab_group_t
*mg
= msp
->ms_group
;
6083 spa_t
*spa
= mg
->mg_vd
->vdev_spa
;
6086 * Wait for the outstanding IO to be synced to prevent newly
6087 * allocated blocks from being overwritten. This used by
6088 * initialize and TRIM which are modifying unallocated space.
6091 txg_wait_synced(spa_get_dsl(spa
), 0);
6093 mutex_enter(&mg
->mg_ms_disabled_lock
);
6094 mutex_enter(&msp
->ms_lock
);
6095 if (--msp
->ms_disabled
== 0) {
6096 mg
->mg_ms_disabled
--;
6097 cv_broadcast(&mg
->mg_ms_disabled_cv
);
6099 metaslab_unload(msp
);
6101 mutex_exit(&msp
->ms_lock
);
6102 mutex_exit(&mg
->mg_ms_disabled_lock
);
6106 metaslab_set_unflushed_dirty(metaslab_t
*ms
, boolean_t dirty
)
6108 ms
->ms_unflushed_dirty
= dirty
;
6112 metaslab_update_ondisk_flush_data(metaslab_t
*ms
, dmu_tx_t
*tx
)
6114 vdev_t
*vd
= ms
->ms_group
->mg_vd
;
6115 spa_t
*spa
= vd
->vdev_spa
;
6116 objset_t
*mos
= spa_meta_objset(spa
);
6118 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
));
6120 metaslab_unflushed_phys_t entry
= {
6121 .msp_unflushed_txg
= metaslab_unflushed_txg(ms
),
6123 uint64_t entry_size
= sizeof (entry
);
6124 uint64_t entry_offset
= ms
->ms_id
* entry_size
;
6126 uint64_t object
= 0;
6127 int err
= zap_lookup(mos
, vd
->vdev_top_zap
,
6128 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
, sizeof (uint64_t), 1,
6130 if (err
== ENOENT
) {
6131 object
= dmu_object_alloc(mos
, DMU_OTN_UINT64_METADATA
,
6132 SPA_OLD_MAXBLOCKSIZE
, DMU_OT_NONE
, 0, tx
);
6133 VERIFY0(zap_add(mos
, vd
->vdev_top_zap
,
6134 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
, sizeof (uint64_t), 1,
6140 dmu_write(spa_meta_objset(spa
), object
, entry_offset
, entry_size
,
6145 metaslab_set_unflushed_txg(metaslab_t
*ms
, uint64_t txg
, dmu_tx_t
*tx
)
6147 ms
->ms_unflushed_txg
= txg
;
6148 metaslab_update_ondisk_flush_data(ms
, tx
);
6152 metaslab_unflushed_dirty(metaslab_t
*ms
)
6154 return (ms
->ms_unflushed_dirty
);
6158 metaslab_unflushed_txg(metaslab_t
*ms
)
6160 return (ms
->ms_unflushed_txg
);
6163 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, aliquot
, U64
, ZMOD_RW
,
6164 "Allocation granularity (a.k.a. stripe size)");
6166 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, debug_load
, INT
, ZMOD_RW
,
6167 "Load all metaslabs when pool is first opened");
6169 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, debug_unload
, INT
, ZMOD_RW
,
6170 "Prevent metaslabs from being unloaded");
6172 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, preload_enabled
, INT
, ZMOD_RW
,
6173 "Preload potential metaslabs during reassessment");
6175 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, preload_limit
, UINT
, ZMOD_RW
,
6176 "Max number of metaslabs per group to preload");
6178 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, unload_delay
, UINT
, ZMOD_RW
,
6179 "Delay in txgs after metaslab was last used before unloading");
6181 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, unload_delay_ms
, UINT
, ZMOD_RW
,
6182 "Delay in milliseconds after metaslab was last used before unloading");
6185 ZFS_MODULE_PARAM(zfs_mg
, zfs_mg_
, noalloc_threshold
, UINT
, ZMOD_RW
,
6186 "Percentage of metaslab group size that should be free to make it "
6187 "eligible for allocation");
6189 ZFS_MODULE_PARAM(zfs_mg
, zfs_mg_
, fragmentation_threshold
, UINT
, ZMOD_RW
,
6190 "Percentage of metaslab group size that should be considered eligible "
6191 "for allocations unless all metaslab groups within the metaslab class "
6192 "have also crossed this threshold");
6194 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, fragmentation_factor_enabled
, INT
,
6196 "Use the fragmentation metric to prefer less fragmented metaslabs");
6199 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, fragmentation_threshold
, UINT
,
6200 ZMOD_RW
, "Fragmentation for metaslab to allow allocation");
6202 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, lba_weighting_enabled
, INT
, ZMOD_RW
,
6203 "Prefer metaslabs with lower LBAs");
6205 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, bias_enabled
, INT
, ZMOD_RW
,
6206 "Enable metaslab group biasing");
6208 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, segment_weight_enabled
, INT
,
6209 ZMOD_RW
, "Enable segment-based metaslab selection");
6211 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, switch_threshold
, INT
, ZMOD_RW
,
6212 "Segment-based metaslab selection maximum buckets before switching");
6214 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, force_ganging
, U64
, ZMOD_RW
,
6215 "Blocks larger than this size are sometimes forced to be gang blocks");
6217 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, force_ganging_pct
, UINT
, ZMOD_RW
,
6218 "Percentage of large blocks that will be forced to be gang blocks");
6220 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, df_max_search
, UINT
, ZMOD_RW
,
6221 "Max distance (bytes) to search forward before using size tree");
6223 ZFS_MODULE_PARAM(zfs_metaslab
, metaslab_
, df_use_largest_segment
, INT
, ZMOD_RW
,
6224 "When looking in size tree, use largest segment instead of exact fit");
6226 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, max_size_cache_sec
, U64
,
6227 ZMOD_RW
, "How long to trust the cached max chunk size of a metaslab");
6229 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, mem_limit
, UINT
, ZMOD_RW
,
6230 "Percentage of memory that can be used to store metaslab range trees");
6232 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, try_hard_before_gang
, INT
,
6233 ZMOD_RW
, "Try hard to allocate before ganging");
6235 ZFS_MODULE_PARAM(zfs_metaslab
, zfs_metaslab_
, find_max_tries
, UINT
, ZMOD_RW
,
6236 "Normally only consider this many of the best metaslabs in each vdev");