ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / zfs / metaslab.c
blob599d7ffa0cf3392c635aff9363672c7fa2af6679
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
43 #define WITH_DF_BLOCK_ALLOCATOR
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
54 static uint64_t metaslab_aliquot = 1024 * 1024;
57 * For testing, make some blocks above a certain size be gang blocks.
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
64 uint_t metaslab_force_ganging_pct = 3;
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
70 * block size since it allows us to issue more I/O operations scattered
71 * around the disk. So a sane default for the space map block size
72 * is 8~16K.
74 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
81 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
86 * space map representation must be before we compact it on-disk.
87 * Values should be greater than or equal to 100.
89 uint_t zfs_condense_pct = 200;
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102 * blocks.
104 static const int zfs_metaslab_condense_block_threshold = 4;
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
109 * free space. Metaslab groups that have more free space than
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
119 static uint_t zfs_mg_noalloc_threshold = 0;
122 * Metaslab groups are considered eligible for allocations if their
123 * fragmentation metric (measured as a percentage) is less than or
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
141 * to the edge.
143 static uint_t zfs_mg_fragmentation_threshold = 95;
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
151 static uint_t zfs_metaslab_fragmentation_threshold = 70;
154 * When set will load all metaslabs when pool is first opened.
156 int metaslab_debug_load = B_FALSE;
159 * When set will prevent metaslabs from being unloaded.
161 static int metaslab_debug_unload = B_FALSE;
164 * Minimum size which forces the dynamic allocator to change
165 * it's allocation strategy. Once the space map cannot satisfy
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
177 uint_t metaslab_df_free_pct = 4;
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
197 * will fit into.
199 static const uint32_t metaslab_min_search_count = 100;
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
206 * size (or larger).
208 static int metaslab_df_use_largest_segment = B_FALSE;
211 * These tunables control how long a metaslab will remain loaded after the
212 * last allocation from it. A metaslab can't be unloaded until at least
213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
215 * unloaded sooner. These settings are intended to be generous -- to keep
216 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
218 static uint_t metaslab_unload_delay = 32;
219 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
222 * Max number of metaslabs per group to preload.
224 uint_t metaslab_preload_limit = 10;
227 * Enable/disable preloading of metaslab.
229 static int metaslab_preload_enabled = B_TRUE;
232 * Enable/disable fragmentation weighting on metaslabs.
234 static int metaslab_fragmentation_factor_enabled = B_TRUE;
237 * Enable/disable lba weighting (i.e. outer tracks are given preference).
239 static int metaslab_lba_weighting_enabled = B_TRUE;
242 * Enable/disable metaslab group biasing.
244 static int metaslab_bias_enabled = B_TRUE;
247 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
249 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
252 * Enable/disable segment-based metaslab selection.
254 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
257 * When using segment-based metaslab selection, we will continue
258 * allocating from the active metaslab until we have exhausted
259 * zfs_metaslab_switch_threshold of its buckets.
261 static int zfs_metaslab_switch_threshold = 2;
264 * Internal switch to enable/disable the metaslab allocation tracing
265 * facility.
267 static const boolean_t metaslab_trace_enabled = B_FALSE;
270 * Maximum entries that the metaslab allocation tracing facility will keep
271 * in a given list when running in non-debug mode. We limit the number
272 * of entries in non-debug mode to prevent us from using up too much memory.
273 * The limit should be sufficiently large that we don't expect any allocation
274 * to every exceed this value. In debug mode, the system will panic if this
275 * limit is ever reached allowing for further investigation.
277 static const uint64_t metaslab_trace_max_entries = 5000;
280 * Maximum number of metaslabs per group that can be disabled
281 * simultaneously.
283 static const int max_disabled_ms = 3;
286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
287 * To avoid 64-bit overflow, don't set above UINT32_MAX.
289 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
293 * a metaslab would take it over this percentage, the oldest selected metaslab
294 * is automatically unloaded.
296 static uint_t zfs_metaslab_mem_limit = 25;
299 * Force the per-metaslab range trees to use 64-bit integers to store
300 * segments. Used for debugging purposes.
302 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
305 * By default we only store segments over a certain size in the size-sorted
306 * metaslab trees (ms_allocatable_by_size and
307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
308 * improves load and unload times at the cost of causing us to use slightly
309 * larger segments than we would otherwise in some cases.
311 static const uint32_t metaslab_by_size_min_shift = 14;
314 * If not set, we will first try normal allocation. If that fails then
315 * we will do a gang allocation. If that fails then we will do a "try hard"
316 * gang allocation. If that fails then we will have a multi-layer gang
317 * block.
319 * If set, we will first try normal allocation. If that fails then
320 * we will do a "try hard" allocation. If that fails we will do a gang
321 * allocation. If that fails we will do a "try hard" gang allocation. If
322 * that fails then we will have a multi-layer gang block.
324 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
328 * metaslabs. This improves performance, especially when there are many
329 * metaslabs per vdev and the allocation can't actually be satisfied (so we
330 * would otherwise iterate all the metaslabs). If there is a metaslab with a
331 * worse weight but it can actually satisfy the allocation, we won't find it
332 * until trying hard. This may happen if the worse metaslab is not loaded
333 * (and the true weight is better than we have calculated), or due to weight
334 * bucketization. E.g. we are looking for a 60K segment, and the best
335 * metaslabs all have free segments in the 32-63K bucket, but the best
336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
338 * bucket, and therefore a lower weight).
340 static uint_t zfs_metaslab_find_max_tries = 100;
342 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
350 static unsigned int metaslab_idx_func(multilist_t *, void *);
351 static void metaslab_evict(metaslab_t *, uint64_t);
352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
353 kmem_cache_t *metaslab_alloc_trace_cache;
355 typedef struct metaslab_stats {
356 kstat_named_t metaslabstat_trace_over_limit;
357 kstat_named_t metaslabstat_reload_tree;
358 kstat_named_t metaslabstat_too_many_tries;
359 kstat_named_t metaslabstat_try_hard;
360 } metaslab_stats_t;
362 static metaslab_stats_t metaslab_stats = {
363 { "trace_over_limit", KSTAT_DATA_UINT64 },
364 { "reload_tree", KSTAT_DATA_UINT64 },
365 { "too_many_tries", KSTAT_DATA_UINT64 },
366 { "try_hard", KSTAT_DATA_UINT64 },
369 #define METASLABSTAT_BUMP(stat) \
370 atomic_inc_64(&metaslab_stats.stat.value.ui64);
373 static kstat_t *metaslab_ksp;
375 void
376 metaslab_stat_init(void)
378 ASSERT(metaslab_alloc_trace_cache == NULL);
379 metaslab_alloc_trace_cache = kmem_cache_create(
380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
381 0, NULL, NULL, NULL, NULL, NULL, 0);
382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
385 if (metaslab_ksp != NULL) {
386 metaslab_ksp->ks_data = &metaslab_stats;
387 kstat_install(metaslab_ksp);
391 void
392 metaslab_stat_fini(void)
394 if (metaslab_ksp != NULL) {
395 kstat_delete(metaslab_ksp);
396 metaslab_ksp = NULL;
399 kmem_cache_destroy(metaslab_alloc_trace_cache);
400 metaslab_alloc_trace_cache = NULL;
404 * ==========================================================================
405 * Metaslab classes
406 * ==========================================================================
408 metaslab_class_t *
409 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
411 metaslab_class_t *mc;
413 mc = kmem_zalloc(offsetof(metaslab_class_t,
414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
416 mc->mc_spa = spa;
417 mc->mc_ops = ops;
418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
419 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
421 for (int i = 0; i < spa->spa_alloc_count; i++) {
422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
423 mca->mca_rotor = NULL;
424 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
427 return (mc);
430 void
431 metaslab_class_destroy(metaslab_class_t *mc)
433 spa_t *spa = mc->mc_spa;
435 ASSERT(mc->mc_alloc == 0);
436 ASSERT(mc->mc_deferred == 0);
437 ASSERT(mc->mc_space == 0);
438 ASSERT(mc->mc_dspace == 0);
440 for (int i = 0; i < spa->spa_alloc_count; i++) {
441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
442 ASSERT(mca->mca_rotor == NULL);
443 zfs_refcount_destroy(&mca->mca_alloc_slots);
445 mutex_destroy(&mc->mc_lock);
446 multilist_destroy(&mc->mc_metaslab_txg_list);
447 kmem_free(mc, offsetof(metaslab_class_t,
448 mc_allocator[spa->spa_alloc_count]));
452 metaslab_class_validate(metaslab_class_t *mc)
454 metaslab_group_t *mg;
455 vdev_t *vd;
458 * Must hold one of the spa_config locks.
460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
464 return (0);
466 do {
467 vd = mg->mg_vd;
468 ASSERT(vd->vdev_mg != NULL);
469 ASSERT3P(vd->vdev_top, ==, vd);
470 ASSERT3P(mg->mg_class, ==, mc);
471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
474 return (0);
477 static void
478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
481 atomic_add_64(&mc->mc_alloc, alloc_delta);
482 atomic_add_64(&mc->mc_deferred, defer_delta);
483 atomic_add_64(&mc->mc_space, space_delta);
484 atomic_add_64(&mc->mc_dspace, dspace_delta);
487 uint64_t
488 metaslab_class_get_alloc(metaslab_class_t *mc)
490 return (mc->mc_alloc);
493 uint64_t
494 metaslab_class_get_deferred(metaslab_class_t *mc)
496 return (mc->mc_deferred);
499 uint64_t
500 metaslab_class_get_space(metaslab_class_t *mc)
502 return (mc->mc_space);
505 uint64_t
506 metaslab_class_get_dspace(metaslab_class_t *mc)
508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
511 void
512 metaslab_class_histogram_verify(metaslab_class_t *mc)
514 spa_t *spa = mc->mc_spa;
515 vdev_t *rvd = spa->spa_root_vdev;
516 uint64_t *mc_hist;
517 int i;
519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
520 return;
522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
523 KM_SLEEP);
525 mutex_enter(&mc->mc_lock);
526 for (int c = 0; c < rvd->vdev_children; c++) {
527 vdev_t *tvd = rvd->vdev_child[c];
528 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
531 * Skip any holes, uninitialized top-levels, or
532 * vdevs that are not in this metalab class.
534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
535 mg->mg_class != mc) {
536 continue;
539 IMPLY(mg == mg->mg_vd->vdev_log_mg,
540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
543 mc_hist[i] += mg->mg_histogram[i];
546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
550 mutex_exit(&mc->mc_lock);
551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
555 * Calculate the metaslab class's fragmentation metric. The metric
556 * is weighted based on the space contribution of each metaslab group.
557 * The return value will be a number between 0 and 100 (inclusive), or
558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
559 * zfs_frag_table for more information about the metric.
561 uint64_t
562 metaslab_class_fragmentation(metaslab_class_t *mc)
564 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
565 uint64_t fragmentation = 0;
567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
569 for (int c = 0; c < rvd->vdev_children; c++) {
570 vdev_t *tvd = rvd->vdev_child[c];
571 metaslab_group_t *mg = tvd->vdev_mg;
574 * Skip any holes, uninitialized top-levels,
575 * or vdevs that are not in this metalab class.
577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
578 mg->mg_class != mc) {
579 continue;
583 * If a metaslab group does not contain a fragmentation
584 * metric then just bail out.
586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
588 return (ZFS_FRAG_INVALID);
592 * Determine how much this metaslab_group is contributing
593 * to the overall pool fragmentation metric.
595 fragmentation += mg->mg_fragmentation *
596 metaslab_group_get_space(mg);
598 fragmentation /= metaslab_class_get_space(mc);
600 ASSERT3U(fragmentation, <=, 100);
601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
602 return (fragmentation);
606 * Calculate the amount of expandable space that is available in
607 * this metaslab class. If a device is expanded then its expandable
608 * space will be the amount of allocatable space that is currently not
609 * part of this metaslab class.
611 uint64_t
612 metaslab_class_expandable_space(metaslab_class_t *mc)
614 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
615 uint64_t space = 0;
617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
618 for (int c = 0; c < rvd->vdev_children; c++) {
619 vdev_t *tvd = rvd->vdev_child[c];
620 metaslab_group_t *mg = tvd->vdev_mg;
622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
623 mg->mg_class != mc) {
624 continue;
628 * Calculate if we have enough space to add additional
629 * metaslabs. We report the expandable space in terms
630 * of the metaslab size since that's the unit of expansion.
632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
633 1ULL << tvd->vdev_ms_shift);
635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
636 return (space);
639 void
640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
642 multilist_t *ml = &mc->mc_metaslab_txg_list;
643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
645 metaslab_t *msp = multilist_sublist_head(mls);
646 multilist_sublist_unlock(mls);
647 while (msp != NULL) {
648 mutex_enter(&msp->ms_lock);
651 * If the metaslab has been removed from the list
652 * (which could happen if we were at the memory limit
653 * and it was evicted during this loop), then we can't
654 * proceed and we should restart the sublist.
656 if (!multilist_link_active(&msp->ms_class_txg_node)) {
657 mutex_exit(&msp->ms_lock);
658 i--;
659 break;
661 mls = multilist_sublist_lock(ml, i);
662 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
663 multilist_sublist_unlock(mls);
664 if (txg >
665 msp->ms_selected_txg + metaslab_unload_delay &&
666 gethrtime() > msp->ms_selected_time +
667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
668 metaslab_evict(msp, txg);
669 } else {
671 * Once we've hit a metaslab selected too
672 * recently to evict, we're done evicting for
673 * now.
675 mutex_exit(&msp->ms_lock);
676 break;
678 mutex_exit(&msp->ms_lock);
679 msp = next_msp;
684 static int
685 metaslab_compare(const void *x1, const void *x2)
687 const metaslab_t *m1 = (const metaslab_t *)x1;
688 const metaslab_t *m2 = (const metaslab_t *)x2;
690 int sort1 = 0;
691 int sort2 = 0;
692 if (m1->ms_allocator != -1 && m1->ms_primary)
693 sort1 = 1;
694 else if (m1->ms_allocator != -1 && !m1->ms_primary)
695 sort1 = 2;
696 if (m2->ms_allocator != -1 && m2->ms_primary)
697 sort2 = 1;
698 else if (m2->ms_allocator != -1 && !m2->ms_primary)
699 sort2 = 2;
702 * Sort inactive metaslabs first, then primaries, then secondaries. When
703 * selecting a metaslab to allocate from, an allocator first tries its
704 * primary, then secondary active metaslab. If it doesn't have active
705 * metaslabs, or can't allocate from them, it searches for an inactive
706 * metaslab to activate. If it can't find a suitable one, it will steal
707 * a primary or secondary metaslab from another allocator.
709 if (sort1 < sort2)
710 return (-1);
711 if (sort1 > sort2)
712 return (1);
714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
715 if (likely(cmp))
716 return (cmp);
718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
720 return (TREE_CMP(m1->ms_start, m2->ms_start));
724 * ==========================================================================
725 * Metaslab groups
726 * ==========================================================================
729 * Update the allocatable flag and the metaslab group's capacity.
730 * The allocatable flag is set to true if the capacity is below
731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
733 * transitions from allocatable to non-allocatable or vice versa then the
734 * metaslab group's class is updated to reflect the transition.
736 static void
737 metaslab_group_alloc_update(metaslab_group_t *mg)
739 vdev_t *vd = mg->mg_vd;
740 metaslab_class_t *mc = mg->mg_class;
741 vdev_stat_t *vs = &vd->vdev_stat;
742 boolean_t was_allocatable;
743 boolean_t was_initialized;
745 ASSERT(vd == vd->vdev_top);
746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
747 SCL_ALLOC);
749 mutex_enter(&mg->mg_lock);
750 was_allocatable = mg->mg_allocatable;
751 was_initialized = mg->mg_initialized;
753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
754 (vs->vs_space + 1);
756 mutex_enter(&mc->mc_lock);
759 * If the metaslab group was just added then it won't
760 * have any space until we finish syncing out this txg.
761 * At that point we will consider it initialized and available
762 * for allocations. We also don't consider non-activated
763 * metaslab groups (e.g. vdevs that are in the middle of being removed)
764 * to be initialized, because they can't be used for allocation.
766 mg->mg_initialized = metaslab_group_initialized(mg);
767 if (!was_initialized && mg->mg_initialized) {
768 mc->mc_groups++;
769 } else if (was_initialized && !mg->mg_initialized) {
770 ASSERT3U(mc->mc_groups, >, 0);
771 mc->mc_groups--;
773 if (mg->mg_initialized)
774 mg->mg_no_free_space = B_FALSE;
777 * A metaslab group is considered allocatable if it has plenty
778 * of free space or is not heavily fragmented. We only take
779 * fragmentation into account if the metaslab group has a valid
780 * fragmentation metric (i.e. a value between 0 and 100).
782 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
783 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
784 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
788 * The mc_alloc_groups maintains a count of the number of
789 * groups in this metaslab class that are still above the
790 * zfs_mg_noalloc_threshold. This is used by the allocating
791 * threads to determine if they should avoid allocations to
792 * a given group. The allocator will avoid allocations to a group
793 * if that group has reached or is below the zfs_mg_noalloc_threshold
794 * and there are still other groups that are above the threshold.
795 * When a group transitions from allocatable to non-allocatable or
796 * vice versa we update the metaslab class to reflect that change.
797 * When the mc_alloc_groups value drops to 0 that means that all
798 * groups have reached the zfs_mg_noalloc_threshold making all groups
799 * eligible for allocations. This effectively means that all devices
800 * are balanced again.
802 if (was_allocatable && !mg->mg_allocatable)
803 mc->mc_alloc_groups--;
804 else if (!was_allocatable && mg->mg_allocatable)
805 mc->mc_alloc_groups++;
806 mutex_exit(&mc->mc_lock);
808 mutex_exit(&mg->mg_lock);
812 metaslab_sort_by_flushed(const void *va, const void *vb)
814 const metaslab_t *a = va;
815 const metaslab_t *b = vb;
817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
818 if (likely(cmp))
819 return (cmp);
821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
823 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
824 if (cmp)
825 return (cmp);
827 return (TREE_CMP(a->ms_id, b->ms_id));
830 metaslab_group_t *
831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
833 metaslab_group_t *mg;
835 mg = kmem_zalloc(offsetof(metaslab_group_t,
836 mg_allocator[allocators]), KM_SLEEP);
837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
840 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
842 mg->mg_vd = vd;
843 mg->mg_class = mc;
844 mg->mg_activation_count = 0;
845 mg->mg_initialized = B_FALSE;
846 mg->mg_no_free_space = B_TRUE;
847 mg->mg_allocators = allocators;
849 for (int i = 0; i < allocators; i++) {
850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
854 return (mg);
857 void
858 metaslab_group_destroy(metaslab_group_t *mg)
860 ASSERT(mg->mg_prev == NULL);
861 ASSERT(mg->mg_next == NULL);
863 * We may have gone below zero with the activation count
864 * either because we never activated in the first place or
865 * because we're done, and possibly removing the vdev.
867 ASSERT(mg->mg_activation_count <= 0);
869 avl_destroy(&mg->mg_metaslab_tree);
870 mutex_destroy(&mg->mg_lock);
871 mutex_destroy(&mg->mg_ms_disabled_lock);
872 cv_destroy(&mg->mg_ms_disabled_cv);
874 for (int i = 0; i < mg->mg_allocators; i++) {
875 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
876 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
878 kmem_free(mg, offsetof(metaslab_group_t,
879 mg_allocator[mg->mg_allocators]));
882 void
883 metaslab_group_activate(metaslab_group_t *mg)
885 metaslab_class_t *mc = mg->mg_class;
886 spa_t *spa = mc->mc_spa;
887 metaslab_group_t *mgprev, *mgnext;
889 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
891 ASSERT(mg->mg_prev == NULL);
892 ASSERT(mg->mg_next == NULL);
893 ASSERT(mg->mg_activation_count <= 0);
895 if (++mg->mg_activation_count <= 0)
896 return;
898 mg->mg_aliquot = metaslab_aliquot * MAX(1,
899 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
900 metaslab_group_alloc_update(mg);
902 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
903 mg->mg_prev = mg;
904 mg->mg_next = mg;
905 } else {
906 mgnext = mgprev->mg_next;
907 mg->mg_prev = mgprev;
908 mg->mg_next = mgnext;
909 mgprev->mg_next = mg;
910 mgnext->mg_prev = mg;
912 for (int i = 0; i < spa->spa_alloc_count; i++) {
913 mc->mc_allocator[i].mca_rotor = mg;
914 mg = mg->mg_next;
919 * Passivate a metaslab group and remove it from the allocation rotor.
920 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
921 * a metaslab group. This function will momentarily drop spa_config_locks
922 * that are lower than the SCL_ALLOC lock (see comment below).
924 void
925 metaslab_group_passivate(metaslab_group_t *mg)
927 metaslab_class_t *mc = mg->mg_class;
928 spa_t *spa = mc->mc_spa;
929 metaslab_group_t *mgprev, *mgnext;
930 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
932 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
933 (SCL_ALLOC | SCL_ZIO));
935 if (--mg->mg_activation_count != 0) {
936 for (int i = 0; i < spa->spa_alloc_count; i++)
937 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
938 ASSERT(mg->mg_prev == NULL);
939 ASSERT(mg->mg_next == NULL);
940 ASSERT(mg->mg_activation_count < 0);
941 return;
945 * The spa_config_lock is an array of rwlocks, ordered as
946 * follows (from highest to lowest):
947 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
948 * SCL_ZIO > SCL_FREE > SCL_VDEV
949 * (For more information about the spa_config_lock see spa_misc.c)
950 * The higher the lock, the broader its coverage. When we passivate
951 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
952 * config locks. However, the metaslab group's taskq might be trying
953 * to preload metaslabs so we must drop the SCL_ZIO lock and any
954 * lower locks to allow the I/O to complete. At a minimum,
955 * we continue to hold the SCL_ALLOC lock, which prevents any future
956 * allocations from taking place and any changes to the vdev tree.
958 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
959 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
960 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
961 metaslab_group_alloc_update(mg);
962 for (int i = 0; i < mg->mg_allocators; i++) {
963 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
964 metaslab_t *msp = mga->mga_primary;
965 if (msp != NULL) {
966 mutex_enter(&msp->ms_lock);
967 metaslab_passivate(msp,
968 metaslab_weight_from_range_tree(msp));
969 mutex_exit(&msp->ms_lock);
971 msp = mga->mga_secondary;
972 if (msp != NULL) {
973 mutex_enter(&msp->ms_lock);
974 metaslab_passivate(msp,
975 metaslab_weight_from_range_tree(msp));
976 mutex_exit(&msp->ms_lock);
980 mgprev = mg->mg_prev;
981 mgnext = mg->mg_next;
983 if (mg == mgnext) {
984 mgnext = NULL;
985 } else {
986 mgprev->mg_next = mgnext;
987 mgnext->mg_prev = mgprev;
989 for (int i = 0; i < spa->spa_alloc_count; i++) {
990 if (mc->mc_allocator[i].mca_rotor == mg)
991 mc->mc_allocator[i].mca_rotor = mgnext;
994 mg->mg_prev = NULL;
995 mg->mg_next = NULL;
998 boolean_t
999 metaslab_group_initialized(metaslab_group_t *mg)
1001 vdev_t *vd = mg->mg_vd;
1002 vdev_stat_t *vs = &vd->vdev_stat;
1004 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1007 uint64_t
1008 metaslab_group_get_space(metaslab_group_t *mg)
1011 * Note that the number of nodes in mg_metaslab_tree may be one less
1012 * than vdev_ms_count, due to the embedded log metaslab.
1014 mutex_enter(&mg->mg_lock);
1015 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1016 mutex_exit(&mg->mg_lock);
1017 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1020 void
1021 metaslab_group_histogram_verify(metaslab_group_t *mg)
1023 uint64_t *mg_hist;
1024 avl_tree_t *t = &mg->mg_metaslab_tree;
1025 uint64_t ashift = mg->mg_vd->vdev_ashift;
1027 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1028 return;
1030 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1031 KM_SLEEP);
1033 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1034 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1036 mutex_enter(&mg->mg_lock);
1037 for (metaslab_t *msp = avl_first(t);
1038 msp != NULL; msp = AVL_NEXT(t, msp)) {
1039 VERIFY3P(msp->ms_group, ==, mg);
1040 /* skip if not active */
1041 if (msp->ms_sm == NULL)
1042 continue;
1044 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1045 mg_hist[i + ashift] +=
1046 msp->ms_sm->sm_phys->smp_histogram[i];
1050 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1051 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1053 mutex_exit(&mg->mg_lock);
1055 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1058 static void
1059 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1061 metaslab_class_t *mc = mg->mg_class;
1062 uint64_t ashift = mg->mg_vd->vdev_ashift;
1064 ASSERT(MUTEX_HELD(&msp->ms_lock));
1065 if (msp->ms_sm == NULL)
1066 return;
1068 mutex_enter(&mg->mg_lock);
1069 mutex_enter(&mc->mc_lock);
1070 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1071 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1072 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1073 mg->mg_histogram[i + ashift] +=
1074 msp->ms_sm->sm_phys->smp_histogram[i];
1075 mc->mc_histogram[i + ashift] +=
1076 msp->ms_sm->sm_phys->smp_histogram[i];
1078 mutex_exit(&mc->mc_lock);
1079 mutex_exit(&mg->mg_lock);
1082 void
1083 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1085 metaslab_class_t *mc = mg->mg_class;
1086 uint64_t ashift = mg->mg_vd->vdev_ashift;
1088 ASSERT(MUTEX_HELD(&msp->ms_lock));
1089 if (msp->ms_sm == NULL)
1090 return;
1092 mutex_enter(&mg->mg_lock);
1093 mutex_enter(&mc->mc_lock);
1094 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1095 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1096 msp->ms_sm->sm_phys->smp_histogram[i]);
1097 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1098 msp->ms_sm->sm_phys->smp_histogram[i]);
1099 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1100 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1102 mg->mg_histogram[i + ashift] -=
1103 msp->ms_sm->sm_phys->smp_histogram[i];
1104 mc->mc_histogram[i + ashift] -=
1105 msp->ms_sm->sm_phys->smp_histogram[i];
1107 mutex_exit(&mc->mc_lock);
1108 mutex_exit(&mg->mg_lock);
1111 static void
1112 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1114 ASSERT(msp->ms_group == NULL);
1115 mutex_enter(&mg->mg_lock);
1116 msp->ms_group = mg;
1117 msp->ms_weight = 0;
1118 avl_add(&mg->mg_metaslab_tree, msp);
1119 mutex_exit(&mg->mg_lock);
1121 mutex_enter(&msp->ms_lock);
1122 metaslab_group_histogram_add(mg, msp);
1123 mutex_exit(&msp->ms_lock);
1126 static void
1127 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1129 mutex_enter(&msp->ms_lock);
1130 metaslab_group_histogram_remove(mg, msp);
1131 mutex_exit(&msp->ms_lock);
1133 mutex_enter(&mg->mg_lock);
1134 ASSERT(msp->ms_group == mg);
1135 avl_remove(&mg->mg_metaslab_tree, msp);
1137 metaslab_class_t *mc = msp->ms_group->mg_class;
1138 multilist_sublist_t *mls =
1139 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1140 if (multilist_link_active(&msp->ms_class_txg_node))
1141 multilist_sublist_remove(mls, msp);
1142 multilist_sublist_unlock(mls);
1144 msp->ms_group = NULL;
1145 mutex_exit(&mg->mg_lock);
1148 static void
1149 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1151 ASSERT(MUTEX_HELD(&msp->ms_lock));
1152 ASSERT(MUTEX_HELD(&mg->mg_lock));
1153 ASSERT(msp->ms_group == mg);
1155 avl_remove(&mg->mg_metaslab_tree, msp);
1156 msp->ms_weight = weight;
1157 avl_add(&mg->mg_metaslab_tree, msp);
1161 static void
1162 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1165 * Although in principle the weight can be any value, in
1166 * practice we do not use values in the range [1, 511].
1168 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1169 ASSERT(MUTEX_HELD(&msp->ms_lock));
1171 mutex_enter(&mg->mg_lock);
1172 metaslab_group_sort_impl(mg, msp, weight);
1173 mutex_exit(&mg->mg_lock);
1177 * Calculate the fragmentation for a given metaslab group. We can use
1178 * a simple average here since all metaslabs within the group must have
1179 * the same size. The return value will be a value between 0 and 100
1180 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1181 * group have a fragmentation metric.
1183 uint64_t
1184 metaslab_group_fragmentation(metaslab_group_t *mg)
1186 vdev_t *vd = mg->mg_vd;
1187 uint64_t fragmentation = 0;
1188 uint64_t valid_ms = 0;
1190 for (int m = 0; m < vd->vdev_ms_count; m++) {
1191 metaslab_t *msp = vd->vdev_ms[m];
1193 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1194 continue;
1195 if (msp->ms_group != mg)
1196 continue;
1198 valid_ms++;
1199 fragmentation += msp->ms_fragmentation;
1202 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1203 return (ZFS_FRAG_INVALID);
1205 fragmentation /= valid_ms;
1206 ASSERT3U(fragmentation, <=, 100);
1207 return (fragmentation);
1211 * Determine if a given metaslab group should skip allocations. A metaslab
1212 * group should avoid allocations if its free capacity is less than the
1213 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1214 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1215 * that can still handle allocations. If the allocation throttle is enabled
1216 * then we skip allocations to devices that have reached their maximum
1217 * allocation queue depth unless the selected metaslab group is the only
1218 * eligible group remaining.
1220 static boolean_t
1221 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1222 int flags, uint64_t psize, int allocator, int d)
1224 spa_t *spa = mg->mg_vd->vdev_spa;
1225 metaslab_class_t *mc = mg->mg_class;
1228 * We can only consider skipping this metaslab group if it's
1229 * in the normal metaslab class and there are other metaslab
1230 * groups to select from. Otherwise, we always consider it eligible
1231 * for allocations.
1233 if ((mc != spa_normal_class(spa) &&
1234 mc != spa_special_class(spa) &&
1235 mc != spa_dedup_class(spa)) ||
1236 mc->mc_groups <= 1)
1237 return (B_TRUE);
1240 * If the metaslab group's mg_allocatable flag is set (see comments
1241 * in metaslab_group_alloc_update() for more information) and
1242 * the allocation throttle is disabled then allow allocations to this
1243 * device. However, if the allocation throttle is enabled then
1244 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1245 * to determine if we should allow allocations to this metaslab group.
1246 * If all metaslab groups are no longer considered allocatable
1247 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1248 * gang block size then we allow allocations on this metaslab group
1249 * regardless of the mg_allocatable or throttle settings.
1251 if (mg->mg_allocatable) {
1252 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1253 int64_t qdepth;
1254 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1256 if (!mc->mc_alloc_throttle_enabled)
1257 return (B_TRUE);
1260 * If this metaslab group does not have any free space, then
1261 * there is no point in looking further.
1263 if (mg->mg_no_free_space)
1264 return (B_FALSE);
1267 * Some allocations (e.g., those coming from device removal
1268 * where the * allocations are not even counted in the
1269 * metaslab * allocation queues) are allowed to bypass
1270 * the throttle.
1272 if (flags & METASLAB_DONT_THROTTLE)
1273 return (B_TRUE);
1276 * Relax allocation throttling for ditto blocks. Due to
1277 * random imbalances in allocation it tends to push copies
1278 * to one vdev, that looks a bit better at the moment.
1280 qmax = qmax * (4 + d) / 4;
1282 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1285 * If this metaslab group is below its qmax or it's
1286 * the only allocatable metaslab group, then attempt
1287 * to allocate from it.
1289 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1290 return (B_TRUE);
1291 ASSERT3U(mc->mc_alloc_groups, >, 1);
1294 * Since this metaslab group is at or over its qmax, we
1295 * need to determine if there are metaslab groups after this
1296 * one that might be able to handle this allocation. This is
1297 * racy since we can't hold the locks for all metaslab
1298 * groups at the same time when we make this check.
1300 for (metaslab_group_t *mgp = mg->mg_next;
1301 mgp != rotor; mgp = mgp->mg_next) {
1302 metaslab_group_allocator_t *mgap =
1303 &mgp->mg_allocator[allocator];
1304 qmax = mgap->mga_cur_max_alloc_queue_depth;
1305 qmax = qmax * (4 + d) / 4;
1306 qdepth =
1307 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1310 * If there is another metaslab group that
1311 * might be able to handle the allocation, then
1312 * we return false so that we skip this group.
1314 if (qdepth < qmax && !mgp->mg_no_free_space)
1315 return (B_FALSE);
1319 * We didn't find another group to handle the allocation
1320 * so we can't skip this metaslab group even though
1321 * we are at or over our qmax.
1323 return (B_TRUE);
1325 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1326 return (B_TRUE);
1328 return (B_FALSE);
1332 * ==========================================================================
1333 * Range tree callbacks
1334 * ==========================================================================
1338 * Comparison function for the private size-ordered tree using 32-bit
1339 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1341 __attribute__((always_inline)) inline
1342 static int
1343 metaslab_rangesize32_compare(const void *x1, const void *x2)
1345 const range_seg32_t *r1 = x1;
1346 const range_seg32_t *r2 = x2;
1348 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1349 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1351 int cmp = TREE_CMP(rs_size1, rs_size2);
1353 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1357 * Comparison function for the private size-ordered tree using 64-bit
1358 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1360 __attribute__((always_inline)) inline
1361 static int
1362 metaslab_rangesize64_compare(const void *x1, const void *x2)
1364 const range_seg64_t *r1 = x1;
1365 const range_seg64_t *r2 = x2;
1367 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1368 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1370 int cmp = TREE_CMP(rs_size1, rs_size2);
1372 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1375 typedef struct metaslab_rt_arg {
1376 zfs_btree_t *mra_bt;
1377 uint32_t mra_floor_shift;
1378 } metaslab_rt_arg_t;
1380 struct mssa_arg {
1381 range_tree_t *rt;
1382 metaslab_rt_arg_t *mra;
1385 static void
1386 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1388 struct mssa_arg *mssap = arg;
1389 range_tree_t *rt = mssap->rt;
1390 metaslab_rt_arg_t *mrap = mssap->mra;
1391 range_seg_max_t seg = {0};
1392 rs_set_start(&seg, rt, start);
1393 rs_set_end(&seg, rt, start + size);
1394 metaslab_rt_add(rt, &seg, mrap);
1397 static void
1398 metaslab_size_tree_full_load(range_tree_t *rt)
1400 metaslab_rt_arg_t *mrap = rt->rt_arg;
1401 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1402 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1403 mrap->mra_floor_shift = 0;
1404 struct mssa_arg arg = {0};
1405 arg.rt = rt;
1406 arg.mra = mrap;
1407 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1411 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1412 range_seg32_t, metaslab_rangesize32_compare)
1414 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1415 range_seg64_t, metaslab_rangesize64_compare)
1418 * Create any block allocator specific components. The current allocators
1419 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1421 static void
1422 metaslab_rt_create(range_tree_t *rt, void *arg)
1424 metaslab_rt_arg_t *mrap = arg;
1425 zfs_btree_t *size_tree = mrap->mra_bt;
1427 size_t size;
1428 int (*compare) (const void *, const void *);
1429 bt_find_in_buf_f bt_find;
1430 switch (rt->rt_type) {
1431 case RANGE_SEG32:
1432 size = sizeof (range_seg32_t);
1433 compare = metaslab_rangesize32_compare;
1434 bt_find = metaslab_rt_find_rangesize32_in_buf;
1435 break;
1436 case RANGE_SEG64:
1437 size = sizeof (range_seg64_t);
1438 compare = metaslab_rangesize64_compare;
1439 bt_find = metaslab_rt_find_rangesize64_in_buf;
1440 break;
1441 default:
1442 panic("Invalid range seg type %d", rt->rt_type);
1444 zfs_btree_create(size_tree, compare, bt_find, size);
1445 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1448 static void
1449 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1451 (void) rt;
1452 metaslab_rt_arg_t *mrap = arg;
1453 zfs_btree_t *size_tree = mrap->mra_bt;
1455 zfs_btree_destroy(size_tree);
1456 kmem_free(mrap, sizeof (*mrap));
1459 static void
1460 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1462 metaslab_rt_arg_t *mrap = arg;
1463 zfs_btree_t *size_tree = mrap->mra_bt;
1465 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1466 (1ULL << mrap->mra_floor_shift))
1467 return;
1469 zfs_btree_add(size_tree, rs);
1472 static void
1473 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1475 metaslab_rt_arg_t *mrap = arg;
1476 zfs_btree_t *size_tree = mrap->mra_bt;
1478 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1479 mrap->mra_floor_shift))
1480 return;
1482 zfs_btree_remove(size_tree, rs);
1485 static void
1486 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1488 metaslab_rt_arg_t *mrap = arg;
1489 zfs_btree_t *size_tree = mrap->mra_bt;
1490 zfs_btree_clear(size_tree);
1491 zfs_btree_destroy(size_tree);
1493 metaslab_rt_create(rt, arg);
1496 static const range_tree_ops_t metaslab_rt_ops = {
1497 .rtop_create = metaslab_rt_create,
1498 .rtop_destroy = metaslab_rt_destroy,
1499 .rtop_add = metaslab_rt_add,
1500 .rtop_remove = metaslab_rt_remove,
1501 .rtop_vacate = metaslab_rt_vacate
1505 * ==========================================================================
1506 * Common allocator routines
1507 * ==========================================================================
1511 * Return the maximum contiguous segment within the metaslab.
1513 uint64_t
1514 metaslab_largest_allocatable(metaslab_t *msp)
1516 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1517 range_seg_t *rs;
1519 if (t == NULL)
1520 return (0);
1521 if (zfs_btree_numnodes(t) == 0)
1522 metaslab_size_tree_full_load(msp->ms_allocatable);
1524 rs = zfs_btree_last(t, NULL);
1525 if (rs == NULL)
1526 return (0);
1528 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1529 msp->ms_allocatable));
1533 * Return the maximum contiguous segment within the unflushed frees of this
1534 * metaslab.
1536 static uint64_t
1537 metaslab_largest_unflushed_free(metaslab_t *msp)
1539 ASSERT(MUTEX_HELD(&msp->ms_lock));
1541 if (msp->ms_unflushed_frees == NULL)
1542 return (0);
1544 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1545 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1546 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1547 NULL);
1548 if (rs == NULL)
1549 return (0);
1552 * When a range is freed from the metaslab, that range is added to
1553 * both the unflushed frees and the deferred frees. While the block
1554 * will eventually be usable, if the metaslab were loaded the range
1555 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1556 * txgs had passed. As a result, when attempting to estimate an upper
1557 * bound for the largest currently-usable free segment in the
1558 * metaslab, we need to not consider any ranges currently in the defer
1559 * trees. This algorithm approximates the largest available chunk in
1560 * the largest range in the unflushed_frees tree by taking the first
1561 * chunk. While this may be a poor estimate, it should only remain so
1562 * briefly and should eventually self-correct as frees are no longer
1563 * deferred. Similar logic applies to the ms_freed tree. See
1564 * metaslab_load() for more details.
1566 * There are two primary sources of inaccuracy in this estimate. Both
1567 * are tolerated for performance reasons. The first source is that we
1568 * only check the largest segment for overlaps. Smaller segments may
1569 * have more favorable overlaps with the other trees, resulting in
1570 * larger usable chunks. Second, we only look at the first chunk in
1571 * the largest segment; there may be other usable chunks in the
1572 * largest segment, but we ignore them.
1574 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1575 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1576 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1577 uint64_t start = 0;
1578 uint64_t size = 0;
1579 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1580 rsize, &start, &size);
1581 if (found) {
1582 if (rstart == start)
1583 return (0);
1584 rsize = start - rstart;
1588 uint64_t start = 0;
1589 uint64_t size = 0;
1590 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1591 rsize, &start, &size);
1592 if (found)
1593 rsize = start - rstart;
1595 return (rsize);
1598 static range_seg_t *
1599 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1600 uint64_t size, zfs_btree_index_t *where)
1602 range_seg_t *rs;
1603 range_seg_max_t rsearch;
1605 rs_set_start(&rsearch, rt, start);
1606 rs_set_end(&rsearch, rt, start + size);
1608 rs = zfs_btree_find(t, &rsearch, where);
1609 if (rs == NULL) {
1610 rs = zfs_btree_next(t, where, where);
1613 return (rs);
1616 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1617 defined(WITH_CF_BLOCK_ALLOCATOR)
1620 * This is a helper function that can be used by the allocator to find a
1621 * suitable block to allocate. This will search the specified B-tree looking
1622 * for a block that matches the specified criteria.
1624 static uint64_t
1625 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1626 uint64_t max_search)
1628 if (*cursor == 0)
1629 *cursor = rt->rt_start;
1630 zfs_btree_t *bt = &rt->rt_root;
1631 zfs_btree_index_t where;
1632 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1633 uint64_t first_found;
1634 int count_searched = 0;
1636 if (rs != NULL)
1637 first_found = rs_get_start(rs, rt);
1639 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1640 max_search || count_searched < metaslab_min_search_count)) {
1641 uint64_t offset = rs_get_start(rs, rt);
1642 if (offset + size <= rs_get_end(rs, rt)) {
1643 *cursor = offset + size;
1644 return (offset);
1646 rs = zfs_btree_next(bt, &where, &where);
1647 count_searched++;
1650 *cursor = 0;
1651 return (-1ULL);
1653 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1655 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1657 * ==========================================================================
1658 * Dynamic Fit (df) block allocator
1660 * Search for a free chunk of at least this size, starting from the last
1661 * offset (for this alignment of block) looking for up to
1662 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1663 * found within 16MB, then return a free chunk of exactly the requested size (or
1664 * larger).
1666 * If it seems like searching from the last offset will be unproductive, skip
1667 * that and just return a free chunk of exactly the requested size (or larger).
1668 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1669 * mechanism is probably not very useful and may be removed in the future.
1671 * The behavior when not searching can be changed to return the largest free
1672 * chunk, instead of a free chunk of exactly the requested size, by setting
1673 * metaslab_df_use_largest_segment.
1674 * ==========================================================================
1676 static uint64_t
1677 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1680 * Find the largest power of 2 block size that evenly divides the
1681 * requested size. This is used to try to allocate blocks with similar
1682 * alignment from the same area of the metaslab (i.e. same cursor
1683 * bucket) but it does not guarantee that other allocations sizes
1684 * may exist in the same region.
1686 uint64_t align = size & -size;
1687 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1688 range_tree_t *rt = msp->ms_allocatable;
1689 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1690 uint64_t offset;
1692 ASSERT(MUTEX_HELD(&msp->ms_lock));
1695 * If we're running low on space, find a segment based on size,
1696 * rather than iterating based on offset.
1698 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1699 free_pct < metaslab_df_free_pct) {
1700 offset = -1;
1701 } else {
1702 offset = metaslab_block_picker(rt,
1703 cursor, size, metaslab_df_max_search);
1706 if (offset == -1) {
1707 range_seg_t *rs;
1708 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1709 metaslab_size_tree_full_load(msp->ms_allocatable);
1711 if (metaslab_df_use_largest_segment) {
1712 /* use largest free segment */
1713 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1714 } else {
1715 zfs_btree_index_t where;
1716 /* use segment of this size, or next largest */
1717 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1718 rt, msp->ms_start, size, &where);
1720 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1721 rt)) {
1722 offset = rs_get_start(rs, rt);
1723 *cursor = offset + size;
1727 return (offset);
1730 const metaslab_ops_t zfs_metaslab_ops = {
1731 metaslab_df_alloc
1733 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1735 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1737 * ==========================================================================
1738 * Cursor fit block allocator -
1739 * Select the largest region in the metaslab, set the cursor to the beginning
1740 * of the range and the cursor_end to the end of the range. As allocations
1741 * are made advance the cursor. Continue allocating from the cursor until
1742 * the range is exhausted and then find a new range.
1743 * ==========================================================================
1745 static uint64_t
1746 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1748 range_tree_t *rt = msp->ms_allocatable;
1749 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1750 uint64_t *cursor = &msp->ms_lbas[0];
1751 uint64_t *cursor_end = &msp->ms_lbas[1];
1752 uint64_t offset = 0;
1754 ASSERT(MUTEX_HELD(&msp->ms_lock));
1756 ASSERT3U(*cursor_end, >=, *cursor);
1758 if ((*cursor + size) > *cursor_end) {
1759 range_seg_t *rs;
1761 if (zfs_btree_numnodes(t) == 0)
1762 metaslab_size_tree_full_load(msp->ms_allocatable);
1763 rs = zfs_btree_last(t, NULL);
1764 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1765 size)
1766 return (-1ULL);
1768 *cursor = rs_get_start(rs, rt);
1769 *cursor_end = rs_get_end(rs, rt);
1772 offset = *cursor;
1773 *cursor += size;
1775 return (offset);
1778 const metaslab_ops_t zfs_metaslab_ops = {
1779 metaslab_cf_alloc
1781 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1783 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1785 * ==========================================================================
1786 * New dynamic fit allocator -
1787 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1788 * contiguous blocks. If no region is found then just use the largest segment
1789 * that remains.
1790 * ==========================================================================
1794 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1795 * to request from the allocator.
1797 uint64_t metaslab_ndf_clump_shift = 4;
1799 static uint64_t
1800 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1802 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1803 range_tree_t *rt = msp->ms_allocatable;
1804 zfs_btree_index_t where;
1805 range_seg_t *rs;
1806 range_seg_max_t rsearch;
1807 uint64_t hbit = highbit64(size);
1808 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1809 uint64_t max_size = metaslab_largest_allocatable(msp);
1811 ASSERT(MUTEX_HELD(&msp->ms_lock));
1813 if (max_size < size)
1814 return (-1ULL);
1816 rs_set_start(&rsearch, rt, *cursor);
1817 rs_set_end(&rsearch, rt, *cursor + size);
1819 rs = zfs_btree_find(t, &rsearch, &where);
1820 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1821 t = &msp->ms_allocatable_by_size;
1823 rs_set_start(&rsearch, rt, 0);
1824 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1825 metaslab_ndf_clump_shift)));
1827 rs = zfs_btree_find(t, &rsearch, &where);
1828 if (rs == NULL)
1829 rs = zfs_btree_next(t, &where, &where);
1830 ASSERT(rs != NULL);
1833 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1834 *cursor = rs_get_start(rs, rt) + size;
1835 return (rs_get_start(rs, rt));
1837 return (-1ULL);
1840 const metaslab_ops_t zfs_metaslab_ops = {
1841 metaslab_ndf_alloc
1843 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1847 * ==========================================================================
1848 * Metaslabs
1849 * ==========================================================================
1853 * Wait for any in-progress metaslab loads to complete.
1855 static void
1856 metaslab_load_wait(metaslab_t *msp)
1858 ASSERT(MUTEX_HELD(&msp->ms_lock));
1860 while (msp->ms_loading) {
1861 ASSERT(!msp->ms_loaded);
1862 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1867 * Wait for any in-progress flushing to complete.
1869 static void
1870 metaslab_flush_wait(metaslab_t *msp)
1872 ASSERT(MUTEX_HELD(&msp->ms_lock));
1874 while (msp->ms_flushing)
1875 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1878 static unsigned int
1879 metaslab_idx_func(multilist_t *ml, void *arg)
1881 metaslab_t *msp = arg;
1884 * ms_id values are allocated sequentially, so full 64bit
1885 * division would be a waste of time, so limit it to 32 bits.
1887 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1890 uint64_t
1891 metaslab_allocated_space(metaslab_t *msp)
1893 return (msp->ms_allocated_space);
1897 * Verify that the space accounting on disk matches the in-core range_trees.
1899 static void
1900 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1902 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1903 uint64_t allocating = 0;
1904 uint64_t sm_free_space, msp_free_space;
1906 ASSERT(MUTEX_HELD(&msp->ms_lock));
1907 ASSERT(!msp->ms_condensing);
1909 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1910 return;
1913 * We can only verify the metaslab space when we're called
1914 * from syncing context with a loaded metaslab that has an
1915 * allocated space map. Calling this in non-syncing context
1916 * does not provide a consistent view of the metaslab since
1917 * we're performing allocations in the future.
1919 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1920 !msp->ms_loaded)
1921 return;
1924 * Even though the smp_alloc field can get negative,
1925 * when it comes to a metaslab's space map, that should
1926 * never be the case.
1928 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1930 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1931 range_tree_space(msp->ms_unflushed_frees));
1933 ASSERT3U(metaslab_allocated_space(msp), ==,
1934 space_map_allocated(msp->ms_sm) +
1935 range_tree_space(msp->ms_unflushed_allocs) -
1936 range_tree_space(msp->ms_unflushed_frees));
1938 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1941 * Account for future allocations since we would have
1942 * already deducted that space from the ms_allocatable.
1944 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1945 allocating +=
1946 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1948 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1949 msp->ms_allocating_total);
1951 ASSERT3U(msp->ms_deferspace, ==,
1952 range_tree_space(msp->ms_defer[0]) +
1953 range_tree_space(msp->ms_defer[1]));
1955 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1956 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1958 VERIFY3U(sm_free_space, ==, msp_free_space);
1961 static void
1962 metaslab_aux_histograms_clear(metaslab_t *msp)
1965 * Auxiliary histograms are only cleared when resetting them,
1966 * which can only happen while the metaslab is loaded.
1968 ASSERT(msp->ms_loaded);
1970 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1971 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1972 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1975 static void
1976 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1977 range_tree_t *rt)
1980 * This is modeled after space_map_histogram_add(), so refer to that
1981 * function for implementation details. We want this to work like
1982 * the space map histogram, and not the range tree histogram, as we
1983 * are essentially constructing a delta that will be later subtracted
1984 * from the space map histogram.
1986 int idx = 0;
1987 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1988 ASSERT3U(i, >=, idx + shift);
1989 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1991 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1992 ASSERT3U(idx + shift, ==, i);
1993 idx++;
1994 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2000 * Called at every sync pass that the metaslab gets synced.
2002 * The reason is that we want our auxiliary histograms to be updated
2003 * wherever the metaslab's space map histogram is updated. This way
2004 * we stay consistent on which parts of the metaslab space map's
2005 * histogram are currently not available for allocations (e.g because
2006 * they are in the defer, freed, and freeing trees).
2008 static void
2009 metaslab_aux_histograms_update(metaslab_t *msp)
2011 space_map_t *sm = msp->ms_sm;
2012 ASSERT(sm != NULL);
2015 * This is similar to the metaslab's space map histogram updates
2016 * that take place in metaslab_sync(). The only difference is that
2017 * we only care about segments that haven't made it into the
2018 * ms_allocatable tree yet.
2020 if (msp->ms_loaded) {
2021 metaslab_aux_histograms_clear(msp);
2023 metaslab_aux_histogram_add(msp->ms_synchist,
2024 sm->sm_shift, msp->ms_freed);
2026 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2027 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2028 sm->sm_shift, msp->ms_defer[t]);
2032 metaslab_aux_histogram_add(msp->ms_synchist,
2033 sm->sm_shift, msp->ms_freeing);
2037 * Called every time we are done syncing (writing to) the metaslab,
2038 * i.e. at the end of each sync pass.
2039 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2041 static void
2042 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2044 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2045 space_map_t *sm = msp->ms_sm;
2047 if (sm == NULL) {
2049 * We came here from metaslab_init() when creating/opening a
2050 * pool, looking at a metaslab that hasn't had any allocations
2051 * yet.
2053 return;
2057 * This is similar to the actions that we take for the ms_freed
2058 * and ms_defer trees in metaslab_sync_done().
2060 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2061 if (defer_allowed) {
2062 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2063 sizeof (msp->ms_synchist));
2064 } else {
2065 memset(msp->ms_deferhist[hist_index], 0,
2066 sizeof (msp->ms_deferhist[hist_index]));
2068 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2072 * Ensure that the metaslab's weight and fragmentation are consistent
2073 * with the contents of the histogram (either the range tree's histogram
2074 * or the space map's depending whether the metaslab is loaded).
2076 static void
2077 metaslab_verify_weight_and_frag(metaslab_t *msp)
2079 ASSERT(MUTEX_HELD(&msp->ms_lock));
2081 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2082 return;
2085 * We can end up here from vdev_remove_complete(), in which case we
2086 * cannot do these assertions because we hold spa config locks and
2087 * thus we are not allowed to read from the DMU.
2089 * We check if the metaslab group has been removed and if that's
2090 * the case we return immediately as that would mean that we are
2091 * here from the aforementioned code path.
2093 if (msp->ms_group == NULL)
2094 return;
2097 * Devices being removed always return a weight of 0 and leave
2098 * fragmentation and ms_max_size as is - there is nothing for
2099 * us to verify here.
2101 vdev_t *vd = msp->ms_group->mg_vd;
2102 if (vd->vdev_removing)
2103 return;
2106 * If the metaslab is dirty it probably means that we've done
2107 * some allocations or frees that have changed our histograms
2108 * and thus the weight.
2110 for (int t = 0; t < TXG_SIZE; t++) {
2111 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2112 return;
2116 * This verification checks that our in-memory state is consistent
2117 * with what's on disk. If the pool is read-only then there aren't
2118 * any changes and we just have the initially-loaded state.
2120 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2121 return;
2123 /* some extra verification for in-core tree if you can */
2124 if (msp->ms_loaded) {
2125 range_tree_stat_verify(msp->ms_allocatable);
2126 VERIFY(space_map_histogram_verify(msp->ms_sm,
2127 msp->ms_allocatable));
2130 uint64_t weight = msp->ms_weight;
2131 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2132 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2133 uint64_t frag = msp->ms_fragmentation;
2134 uint64_t max_segsize = msp->ms_max_size;
2136 msp->ms_weight = 0;
2137 msp->ms_fragmentation = 0;
2140 * This function is used for verification purposes and thus should
2141 * not introduce any side-effects/mutations on the system's state.
2143 * Regardless of whether metaslab_weight() thinks this metaslab
2144 * should be active or not, we want to ensure that the actual weight
2145 * (and therefore the value of ms_weight) would be the same if it
2146 * was to be recalculated at this point.
2148 * In addition we set the nodirty flag so metaslab_weight() does
2149 * not dirty the metaslab for future TXGs (e.g. when trying to
2150 * force condensing to upgrade the metaslab spacemaps).
2152 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2154 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2157 * If the weight type changed then there is no point in doing
2158 * verification. Revert fields to their original values.
2160 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2161 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2162 msp->ms_fragmentation = frag;
2163 msp->ms_weight = weight;
2164 return;
2167 VERIFY3U(msp->ms_fragmentation, ==, frag);
2168 VERIFY3U(msp->ms_weight, ==, weight);
2172 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2173 * this class that was used longest ago, and attempt to unload it. We don't
2174 * want to spend too much time in this loop to prevent performance
2175 * degradation, and we expect that most of the time this operation will
2176 * succeed. Between that and the normal unloading processing during txg sync,
2177 * we expect this to keep the metaslab memory usage under control.
2179 static void
2180 metaslab_potentially_evict(metaslab_class_t *mc)
2182 #ifdef _KERNEL
2183 uint64_t allmem = arc_all_memory();
2184 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2185 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2186 uint_t tries = 0;
2187 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2188 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2189 tries++) {
2190 unsigned int idx = multilist_get_random_index(
2191 &mc->mc_metaslab_txg_list);
2192 multilist_sublist_t *mls =
2193 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2194 metaslab_t *msp = multilist_sublist_head(mls);
2195 multilist_sublist_unlock(mls);
2196 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2197 inuse * size) {
2198 VERIFY3P(mls, ==, multilist_sublist_lock(
2199 &mc->mc_metaslab_txg_list, idx));
2200 ASSERT3U(idx, ==,
2201 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2203 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2204 multilist_sublist_unlock(mls);
2205 break;
2207 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2208 multilist_sublist_unlock(mls);
2210 * If the metaslab is currently loading there are two
2211 * cases. If it's the metaslab we're evicting, we
2212 * can't continue on or we'll panic when we attempt to
2213 * recursively lock the mutex. If it's another
2214 * metaslab that's loading, it can be safely skipped,
2215 * since we know it's very new and therefore not a
2216 * good eviction candidate. We check later once the
2217 * lock is held that the metaslab is fully loaded
2218 * before actually unloading it.
2220 if (msp->ms_loading) {
2221 msp = next_msp;
2222 inuse =
2223 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2224 continue;
2227 * We can't unload metaslabs with no spacemap because
2228 * they're not ready to be unloaded yet. We can't
2229 * unload metaslabs with outstanding allocations
2230 * because doing so could cause the metaslab's weight
2231 * to decrease while it's unloaded, which violates an
2232 * invariant that we use to prevent unnecessary
2233 * loading. We also don't unload metaslabs that are
2234 * currently active because they are high-weight
2235 * metaslabs that are likely to be used in the near
2236 * future.
2238 mutex_enter(&msp->ms_lock);
2239 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2240 msp->ms_allocating_total == 0) {
2241 metaslab_unload(msp);
2243 mutex_exit(&msp->ms_lock);
2244 msp = next_msp;
2245 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2248 #else
2249 (void) mc, (void) zfs_metaslab_mem_limit;
2250 #endif
2253 static int
2254 metaslab_load_impl(metaslab_t *msp)
2256 int error = 0;
2258 ASSERT(MUTEX_HELD(&msp->ms_lock));
2259 ASSERT(msp->ms_loading);
2260 ASSERT(!msp->ms_condensing);
2263 * We temporarily drop the lock to unblock other operations while we
2264 * are reading the space map. Therefore, metaslab_sync() and
2265 * metaslab_sync_done() can run at the same time as we do.
2267 * If we are using the log space maps, metaslab_sync() can't write to
2268 * the metaslab's space map while we are loading as we only write to
2269 * it when we are flushing the metaslab, and that can't happen while
2270 * we are loading it.
2272 * If we are not using log space maps though, metaslab_sync() can
2273 * append to the space map while we are loading. Therefore we load
2274 * only entries that existed when we started the load. Additionally,
2275 * metaslab_sync_done() has to wait for the load to complete because
2276 * there are potential races like metaslab_load() loading parts of the
2277 * space map that are currently being appended by metaslab_sync(). If
2278 * we didn't, the ms_allocatable would have entries that
2279 * metaslab_sync_done() would try to re-add later.
2281 * That's why before dropping the lock we remember the synced length
2282 * of the metaslab and read up to that point of the space map,
2283 * ignoring entries appended by metaslab_sync() that happen after we
2284 * drop the lock.
2286 uint64_t length = msp->ms_synced_length;
2287 mutex_exit(&msp->ms_lock);
2289 hrtime_t load_start = gethrtime();
2290 metaslab_rt_arg_t *mrap;
2291 if (msp->ms_allocatable->rt_arg == NULL) {
2292 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2293 } else {
2294 mrap = msp->ms_allocatable->rt_arg;
2295 msp->ms_allocatable->rt_ops = NULL;
2296 msp->ms_allocatable->rt_arg = NULL;
2298 mrap->mra_bt = &msp->ms_allocatable_by_size;
2299 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2301 if (msp->ms_sm != NULL) {
2302 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2303 SM_FREE, length);
2305 /* Now, populate the size-sorted tree. */
2306 metaslab_rt_create(msp->ms_allocatable, mrap);
2307 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2308 msp->ms_allocatable->rt_arg = mrap;
2310 struct mssa_arg arg = {0};
2311 arg.rt = msp->ms_allocatable;
2312 arg.mra = mrap;
2313 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2314 &arg);
2315 } else {
2317 * Add the size-sorted tree first, since we don't need to load
2318 * the metaslab from the spacemap.
2320 metaslab_rt_create(msp->ms_allocatable, mrap);
2321 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2322 msp->ms_allocatable->rt_arg = mrap;
2324 * The space map has not been allocated yet, so treat
2325 * all the space in the metaslab as free and add it to the
2326 * ms_allocatable tree.
2328 range_tree_add(msp->ms_allocatable,
2329 msp->ms_start, msp->ms_size);
2331 if (msp->ms_new) {
2333 * If the ms_sm doesn't exist, this means that this
2334 * metaslab hasn't gone through metaslab_sync() and
2335 * thus has never been dirtied. So we shouldn't
2336 * expect any unflushed allocs or frees from previous
2337 * TXGs.
2339 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2340 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2345 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2346 * changing the ms_sm (or log_sm) and the metaslab's range trees
2347 * while we are about to use them and populate the ms_allocatable.
2348 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2349 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2351 mutex_enter(&msp->ms_sync_lock);
2352 mutex_enter(&msp->ms_lock);
2354 ASSERT(!msp->ms_condensing);
2355 ASSERT(!msp->ms_flushing);
2357 if (error != 0) {
2358 mutex_exit(&msp->ms_sync_lock);
2359 return (error);
2362 ASSERT3P(msp->ms_group, !=, NULL);
2363 msp->ms_loaded = B_TRUE;
2366 * Apply all the unflushed changes to ms_allocatable right
2367 * away so any manipulations we do below have a clear view
2368 * of what is allocated and what is free.
2370 range_tree_walk(msp->ms_unflushed_allocs,
2371 range_tree_remove, msp->ms_allocatable);
2372 range_tree_walk(msp->ms_unflushed_frees,
2373 range_tree_add, msp->ms_allocatable);
2375 ASSERT3P(msp->ms_group, !=, NULL);
2376 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2377 if (spa_syncing_log_sm(spa) != NULL) {
2378 ASSERT(spa_feature_is_enabled(spa,
2379 SPA_FEATURE_LOG_SPACEMAP));
2382 * If we use a log space map we add all the segments
2383 * that are in ms_unflushed_frees so they are available
2384 * for allocation.
2386 * ms_allocatable needs to contain all free segments
2387 * that are ready for allocations (thus not segments
2388 * from ms_freeing, ms_freed, and the ms_defer trees).
2389 * But if we grab the lock in this code path at a sync
2390 * pass later that 1, then it also contains the
2391 * segments of ms_freed (they were added to it earlier
2392 * in this path through ms_unflushed_frees). So we
2393 * need to remove all the segments that exist in
2394 * ms_freed from ms_allocatable as they will be added
2395 * later in metaslab_sync_done().
2397 * When there's no log space map, the ms_allocatable
2398 * correctly doesn't contain any segments that exist
2399 * in ms_freed [see ms_synced_length].
2401 range_tree_walk(msp->ms_freed,
2402 range_tree_remove, msp->ms_allocatable);
2406 * If we are not using the log space map, ms_allocatable
2407 * contains the segments that exist in the ms_defer trees
2408 * [see ms_synced_length]. Thus we need to remove them
2409 * from ms_allocatable as they will be added again in
2410 * metaslab_sync_done().
2412 * If we are using the log space map, ms_allocatable still
2413 * contains the segments that exist in the ms_defer trees.
2414 * Not because it read them through the ms_sm though. But
2415 * because these segments are part of ms_unflushed_frees
2416 * whose segments we add to ms_allocatable earlier in this
2417 * code path.
2419 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2420 range_tree_walk(msp->ms_defer[t],
2421 range_tree_remove, msp->ms_allocatable);
2425 * Call metaslab_recalculate_weight_and_sort() now that the
2426 * metaslab is loaded so we get the metaslab's real weight.
2428 * Unless this metaslab was created with older software and
2429 * has not yet been converted to use segment-based weight, we
2430 * expect the new weight to be better or equal to the weight
2431 * that the metaslab had while it was not loaded. This is
2432 * because the old weight does not take into account the
2433 * consolidation of adjacent segments between TXGs. [see
2434 * comment for ms_synchist and ms_deferhist[] for more info]
2436 uint64_t weight = msp->ms_weight;
2437 uint64_t max_size = msp->ms_max_size;
2438 metaslab_recalculate_weight_and_sort(msp);
2439 if (!WEIGHT_IS_SPACEBASED(weight))
2440 ASSERT3U(weight, <=, msp->ms_weight);
2441 msp->ms_max_size = metaslab_largest_allocatable(msp);
2442 ASSERT3U(max_size, <=, msp->ms_max_size);
2443 hrtime_t load_end = gethrtime();
2444 msp->ms_load_time = load_end;
2445 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2446 "ms_id %llu, smp_length %llu, "
2447 "unflushed_allocs %llu, unflushed_frees %llu, "
2448 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2449 "loading_time %lld ms, ms_max_size %llu, "
2450 "max size error %lld, "
2451 "old_weight %llx, new_weight %llx",
2452 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2453 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2454 (u_longlong_t)msp->ms_id,
2455 (u_longlong_t)space_map_length(msp->ms_sm),
2456 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2457 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2458 (u_longlong_t)range_tree_space(msp->ms_freed),
2459 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2460 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2461 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2462 (longlong_t)((load_end - load_start) / 1000000),
2463 (u_longlong_t)msp->ms_max_size,
2464 (u_longlong_t)msp->ms_max_size - max_size,
2465 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2467 metaslab_verify_space(msp, spa_syncing_txg(spa));
2468 mutex_exit(&msp->ms_sync_lock);
2469 return (0);
2473 metaslab_load(metaslab_t *msp)
2475 ASSERT(MUTEX_HELD(&msp->ms_lock));
2478 * There may be another thread loading the same metaslab, if that's
2479 * the case just wait until the other thread is done and return.
2481 metaslab_load_wait(msp);
2482 if (msp->ms_loaded)
2483 return (0);
2484 VERIFY(!msp->ms_loading);
2485 ASSERT(!msp->ms_condensing);
2488 * We set the loading flag BEFORE potentially dropping the lock to
2489 * wait for an ongoing flush (see ms_flushing below). This way other
2490 * threads know that there is already a thread that is loading this
2491 * metaslab.
2493 msp->ms_loading = B_TRUE;
2496 * Wait for any in-progress flushing to finish as we drop the ms_lock
2497 * both here (during space_map_load()) and in metaslab_flush() (when
2498 * we flush our changes to the ms_sm).
2500 if (msp->ms_flushing)
2501 metaslab_flush_wait(msp);
2504 * In the possibility that we were waiting for the metaslab to be
2505 * flushed (where we temporarily dropped the ms_lock), ensure that
2506 * no one else loaded the metaslab somehow.
2508 ASSERT(!msp->ms_loaded);
2511 * If we're loading a metaslab in the normal class, consider evicting
2512 * another one to keep our memory usage under the limit defined by the
2513 * zfs_metaslab_mem_limit tunable.
2515 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2516 msp->ms_group->mg_class) {
2517 metaslab_potentially_evict(msp->ms_group->mg_class);
2520 int error = metaslab_load_impl(msp);
2522 ASSERT(MUTEX_HELD(&msp->ms_lock));
2523 msp->ms_loading = B_FALSE;
2524 cv_broadcast(&msp->ms_load_cv);
2526 return (error);
2529 void
2530 metaslab_unload(metaslab_t *msp)
2532 ASSERT(MUTEX_HELD(&msp->ms_lock));
2535 * This can happen if a metaslab is selected for eviction (in
2536 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2537 * metaslab_class_evict_old).
2539 if (!msp->ms_loaded)
2540 return;
2542 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2543 msp->ms_loaded = B_FALSE;
2544 msp->ms_unload_time = gethrtime();
2546 msp->ms_activation_weight = 0;
2547 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2549 if (msp->ms_group != NULL) {
2550 metaslab_class_t *mc = msp->ms_group->mg_class;
2551 multilist_sublist_t *mls =
2552 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2553 if (multilist_link_active(&msp->ms_class_txg_node))
2554 multilist_sublist_remove(mls, msp);
2555 multilist_sublist_unlock(mls);
2557 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2558 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2559 "ms_id %llu, weight %llx, "
2560 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2561 "loaded %llu ms ago, max_size %llu",
2562 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2563 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2564 (u_longlong_t)msp->ms_id,
2565 (u_longlong_t)msp->ms_weight,
2566 (u_longlong_t)msp->ms_selected_txg,
2567 (u_longlong_t)(msp->ms_unload_time -
2568 msp->ms_selected_time) / 1000 / 1000,
2569 (u_longlong_t)msp->ms_alloc_txg,
2570 (u_longlong_t)(msp->ms_unload_time -
2571 msp->ms_load_time) / 1000 / 1000,
2572 (u_longlong_t)msp->ms_max_size);
2576 * We explicitly recalculate the metaslab's weight based on its space
2577 * map (as it is now not loaded). We want unload metaslabs to always
2578 * have their weights calculated from the space map histograms, while
2579 * loaded ones have it calculated from their in-core range tree
2580 * [see metaslab_load()]. This way, the weight reflects the information
2581 * available in-core, whether it is loaded or not.
2583 * If ms_group == NULL means that we came here from metaslab_fini(),
2584 * at which point it doesn't make sense for us to do the recalculation
2585 * and the sorting.
2587 if (msp->ms_group != NULL)
2588 metaslab_recalculate_weight_and_sort(msp);
2592 * We want to optimize the memory use of the per-metaslab range
2593 * trees. To do this, we store the segments in the range trees in
2594 * units of sectors, zero-indexing from the start of the metaslab. If
2595 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2596 * the ranges using two uint32_ts, rather than two uint64_ts.
2598 range_seg_type_t
2599 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2600 uint64_t *start, uint64_t *shift)
2602 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2603 !zfs_metaslab_force_large_segs) {
2604 *shift = vdev->vdev_ashift;
2605 *start = msp->ms_start;
2606 return (RANGE_SEG32);
2607 } else {
2608 *shift = 0;
2609 *start = 0;
2610 return (RANGE_SEG64);
2614 void
2615 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2617 ASSERT(MUTEX_HELD(&msp->ms_lock));
2618 metaslab_class_t *mc = msp->ms_group->mg_class;
2619 multilist_sublist_t *mls =
2620 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2621 if (multilist_link_active(&msp->ms_class_txg_node))
2622 multilist_sublist_remove(mls, msp);
2623 msp->ms_selected_txg = txg;
2624 msp->ms_selected_time = gethrtime();
2625 multilist_sublist_insert_tail(mls, msp);
2626 multilist_sublist_unlock(mls);
2629 void
2630 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2631 int64_t defer_delta, int64_t space_delta)
2633 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2635 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2636 ASSERT(vd->vdev_ms_count != 0);
2638 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2639 vdev_deflated_space(vd, space_delta));
2643 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2644 uint64_t txg, metaslab_t **msp)
2646 vdev_t *vd = mg->mg_vd;
2647 spa_t *spa = vd->vdev_spa;
2648 objset_t *mos = spa->spa_meta_objset;
2649 metaslab_t *ms;
2650 int error;
2652 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2653 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2654 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2655 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2656 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2657 multilist_link_init(&ms->ms_class_txg_node);
2659 ms->ms_id = id;
2660 ms->ms_start = id << vd->vdev_ms_shift;
2661 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2662 ms->ms_allocator = -1;
2663 ms->ms_new = B_TRUE;
2665 vdev_ops_t *ops = vd->vdev_ops;
2666 if (ops->vdev_op_metaslab_init != NULL)
2667 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2670 * We only open space map objects that already exist. All others
2671 * will be opened when we finally allocate an object for it. For
2672 * readonly pools there is no need to open the space map object.
2674 * Note:
2675 * When called from vdev_expand(), we can't call into the DMU as
2676 * we are holding the spa_config_lock as a writer and we would
2677 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2678 * that case, the object parameter is zero though, so we won't
2679 * call into the DMU.
2681 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2682 !spa->spa_read_spacemaps)) {
2683 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2684 ms->ms_size, vd->vdev_ashift);
2686 if (error != 0) {
2687 kmem_free(ms, sizeof (metaslab_t));
2688 return (error);
2691 ASSERT(ms->ms_sm != NULL);
2692 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2695 uint64_t shift, start;
2696 range_seg_type_t type =
2697 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2699 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2700 for (int t = 0; t < TXG_SIZE; t++) {
2701 ms->ms_allocating[t] = range_tree_create(NULL, type,
2702 NULL, start, shift);
2704 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2705 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2706 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2707 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2708 start, shift);
2710 ms->ms_checkpointing =
2711 range_tree_create(NULL, type, NULL, start, shift);
2712 ms->ms_unflushed_allocs =
2713 range_tree_create(NULL, type, NULL, start, shift);
2715 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2716 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2717 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2718 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2719 type, mrap, start, shift);
2721 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2723 metaslab_group_add(mg, ms);
2724 metaslab_set_fragmentation(ms, B_FALSE);
2727 * If we're opening an existing pool (txg == 0) or creating
2728 * a new one (txg == TXG_INITIAL), all space is available now.
2729 * If we're adding space to an existing pool, the new space
2730 * does not become available until after this txg has synced.
2731 * The metaslab's weight will also be initialized when we sync
2732 * out this txg. This ensures that we don't attempt to allocate
2733 * from it before we have initialized it completely.
2735 if (txg <= TXG_INITIAL) {
2736 metaslab_sync_done(ms, 0);
2737 metaslab_space_update(vd, mg->mg_class,
2738 metaslab_allocated_space(ms), 0, 0);
2741 if (txg != 0) {
2742 vdev_dirty(vd, 0, NULL, txg);
2743 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2746 *msp = ms;
2748 return (0);
2751 static void
2752 metaslab_fini_flush_data(metaslab_t *msp)
2754 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2756 if (metaslab_unflushed_txg(msp) == 0) {
2757 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2758 ==, NULL);
2759 return;
2761 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2763 mutex_enter(&spa->spa_flushed_ms_lock);
2764 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2765 mutex_exit(&spa->spa_flushed_ms_lock);
2767 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2768 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2769 metaslab_unflushed_dirty(msp));
2772 uint64_t
2773 metaslab_unflushed_changes_memused(metaslab_t *ms)
2775 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2776 range_tree_numsegs(ms->ms_unflushed_frees)) *
2777 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2780 void
2781 metaslab_fini(metaslab_t *msp)
2783 metaslab_group_t *mg = msp->ms_group;
2784 vdev_t *vd = mg->mg_vd;
2785 spa_t *spa = vd->vdev_spa;
2787 metaslab_fini_flush_data(msp);
2789 metaslab_group_remove(mg, msp);
2791 mutex_enter(&msp->ms_lock);
2792 VERIFY(msp->ms_group == NULL);
2795 * If this metaslab hasn't been through metaslab_sync_done() yet its
2796 * space hasn't been accounted for in its vdev and doesn't need to be
2797 * subtracted.
2799 if (!msp->ms_new) {
2800 metaslab_space_update(vd, mg->mg_class,
2801 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2804 space_map_close(msp->ms_sm);
2805 msp->ms_sm = NULL;
2807 metaslab_unload(msp);
2809 range_tree_destroy(msp->ms_allocatable);
2810 range_tree_destroy(msp->ms_freeing);
2811 range_tree_destroy(msp->ms_freed);
2813 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2814 metaslab_unflushed_changes_memused(msp));
2815 spa->spa_unflushed_stats.sus_memused -=
2816 metaslab_unflushed_changes_memused(msp);
2817 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2818 range_tree_destroy(msp->ms_unflushed_allocs);
2819 range_tree_destroy(msp->ms_checkpointing);
2820 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2821 range_tree_destroy(msp->ms_unflushed_frees);
2823 for (int t = 0; t < TXG_SIZE; t++) {
2824 range_tree_destroy(msp->ms_allocating[t]);
2826 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2827 range_tree_destroy(msp->ms_defer[t]);
2829 ASSERT0(msp->ms_deferspace);
2831 for (int t = 0; t < TXG_SIZE; t++)
2832 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2834 range_tree_vacate(msp->ms_trim, NULL, NULL);
2835 range_tree_destroy(msp->ms_trim);
2837 mutex_exit(&msp->ms_lock);
2838 cv_destroy(&msp->ms_load_cv);
2839 cv_destroy(&msp->ms_flush_cv);
2840 mutex_destroy(&msp->ms_lock);
2841 mutex_destroy(&msp->ms_sync_lock);
2842 ASSERT3U(msp->ms_allocator, ==, -1);
2844 kmem_free(msp, sizeof (metaslab_t));
2847 #define FRAGMENTATION_TABLE_SIZE 17
2850 * This table defines a segment size based fragmentation metric that will
2851 * allow each metaslab to derive its own fragmentation value. This is done
2852 * by calculating the space in each bucket of the spacemap histogram and
2853 * multiplying that by the fragmentation metric in this table. Doing
2854 * this for all buckets and dividing it by the total amount of free
2855 * space in this metaslab (i.e. the total free space in all buckets) gives
2856 * us the fragmentation metric. This means that a high fragmentation metric
2857 * equates to most of the free space being comprised of small segments.
2858 * Conversely, if the metric is low, then most of the free space is in
2859 * large segments. A 10% change in fragmentation equates to approximately
2860 * double the number of segments.
2862 * This table defines 0% fragmented space using 16MB segments. Testing has
2863 * shown that segments that are greater than or equal to 16MB do not suffer
2864 * from drastic performance problems. Using this value, we derive the rest
2865 * of the table. Since the fragmentation value is never stored on disk, it
2866 * is possible to change these calculations in the future.
2868 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2869 100, /* 512B */
2870 100, /* 1K */
2871 98, /* 2K */
2872 95, /* 4K */
2873 90, /* 8K */
2874 80, /* 16K */
2875 70, /* 32K */
2876 60, /* 64K */
2877 50, /* 128K */
2878 40, /* 256K */
2879 30, /* 512K */
2880 20, /* 1M */
2881 15, /* 2M */
2882 10, /* 4M */
2883 5, /* 8M */
2884 0 /* 16M */
2888 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2889 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2890 * been upgraded and does not support this metric. Otherwise, the return
2891 * value should be in the range [0, 100].
2893 static void
2894 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2896 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2897 uint64_t fragmentation = 0;
2898 uint64_t total = 0;
2899 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2900 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2902 if (!feature_enabled) {
2903 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2904 return;
2908 * A null space map means that the entire metaslab is free
2909 * and thus is not fragmented.
2911 if (msp->ms_sm == NULL) {
2912 msp->ms_fragmentation = 0;
2913 return;
2917 * If this metaslab's space map has not been upgraded, flag it
2918 * so that we upgrade next time we encounter it.
2920 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2921 uint64_t txg = spa_syncing_txg(spa);
2922 vdev_t *vd = msp->ms_group->mg_vd;
2925 * If we've reached the final dirty txg, then we must
2926 * be shutting down the pool. We don't want to dirty
2927 * any data past this point so skip setting the condense
2928 * flag. We can retry this action the next time the pool
2929 * is imported. We also skip marking this metaslab for
2930 * condensing if the caller has explicitly set nodirty.
2932 if (!nodirty &&
2933 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2934 msp->ms_condense_wanted = B_TRUE;
2935 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2936 zfs_dbgmsg("txg %llu, requesting force condense: "
2937 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2938 (u_longlong_t)msp->ms_id,
2939 (u_longlong_t)vd->vdev_id);
2941 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2942 return;
2945 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2946 uint64_t space = 0;
2947 uint8_t shift = msp->ms_sm->sm_shift;
2949 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2950 FRAGMENTATION_TABLE_SIZE - 1);
2952 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2953 continue;
2955 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2956 total += space;
2958 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2959 fragmentation += space * zfs_frag_table[idx];
2962 if (total > 0)
2963 fragmentation /= total;
2964 ASSERT3U(fragmentation, <=, 100);
2966 msp->ms_fragmentation = fragmentation;
2970 * Compute a weight -- a selection preference value -- for the given metaslab.
2971 * This is based on the amount of free space, the level of fragmentation,
2972 * the LBA range, and whether the metaslab is loaded.
2974 static uint64_t
2975 metaslab_space_weight(metaslab_t *msp)
2977 metaslab_group_t *mg = msp->ms_group;
2978 vdev_t *vd = mg->mg_vd;
2979 uint64_t weight, space;
2981 ASSERT(MUTEX_HELD(&msp->ms_lock));
2984 * The baseline weight is the metaslab's free space.
2986 space = msp->ms_size - metaslab_allocated_space(msp);
2988 if (metaslab_fragmentation_factor_enabled &&
2989 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2991 * Use the fragmentation information to inversely scale
2992 * down the baseline weight. We need to ensure that we
2993 * don't exclude this metaslab completely when it's 100%
2994 * fragmented. To avoid this we reduce the fragmented value
2995 * by 1.
2997 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3000 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3001 * this metaslab again. The fragmentation metric may have
3002 * decreased the space to something smaller than
3003 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3004 * so that we can consume any remaining space.
3006 if (space > 0 && space < SPA_MINBLOCKSIZE)
3007 space = SPA_MINBLOCKSIZE;
3009 weight = space;
3012 * Modern disks have uniform bit density and constant angular velocity.
3013 * Therefore, the outer recording zones are faster (higher bandwidth)
3014 * than the inner zones by the ratio of outer to inner track diameter,
3015 * which is typically around 2:1. We account for this by assigning
3016 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3017 * In effect, this means that we'll select the metaslab with the most
3018 * free bandwidth rather than simply the one with the most free space.
3020 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3021 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3022 ASSERT(weight >= space && weight <= 2 * space);
3026 * If this metaslab is one we're actively using, adjust its
3027 * weight to make it preferable to any inactive metaslab so
3028 * we'll polish it off. If the fragmentation on this metaslab
3029 * has exceed our threshold, then don't mark it active.
3031 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3032 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3033 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3036 WEIGHT_SET_SPACEBASED(weight);
3037 return (weight);
3041 * Return the weight of the specified metaslab, according to the segment-based
3042 * weighting algorithm. The metaslab must be loaded. This function can
3043 * be called within a sync pass since it relies only on the metaslab's
3044 * range tree which is always accurate when the metaslab is loaded.
3046 static uint64_t
3047 metaslab_weight_from_range_tree(metaslab_t *msp)
3049 uint64_t weight = 0;
3050 uint32_t segments = 0;
3052 ASSERT(msp->ms_loaded);
3054 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3055 i--) {
3056 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3057 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3059 segments <<= 1;
3060 segments += msp->ms_allocatable->rt_histogram[i];
3063 * The range tree provides more precision than the space map
3064 * and must be downgraded so that all values fit within the
3065 * space map's histogram. This allows us to compare loaded
3066 * vs. unloaded metaslabs to determine which metaslab is
3067 * considered "best".
3069 if (i > max_idx)
3070 continue;
3072 if (segments != 0) {
3073 WEIGHT_SET_COUNT(weight, segments);
3074 WEIGHT_SET_INDEX(weight, i);
3075 WEIGHT_SET_ACTIVE(weight, 0);
3076 break;
3079 return (weight);
3083 * Calculate the weight based on the on-disk histogram. Should be applied
3084 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3085 * give results consistent with the on-disk state
3087 static uint64_t
3088 metaslab_weight_from_spacemap(metaslab_t *msp)
3090 space_map_t *sm = msp->ms_sm;
3091 ASSERT(!msp->ms_loaded);
3092 ASSERT(sm != NULL);
3093 ASSERT3U(space_map_object(sm), !=, 0);
3094 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3097 * Create a joint histogram from all the segments that have made
3098 * it to the metaslab's space map histogram, that are not yet
3099 * available for allocation because they are still in the freeing
3100 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3101 * these segments from the space map's histogram to get a more
3102 * accurate weight.
3104 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3105 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3106 deferspace_histogram[i] += msp->ms_synchist[i];
3107 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3108 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3109 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3113 uint64_t weight = 0;
3114 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3115 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3116 deferspace_histogram[i]);
3117 uint64_t count =
3118 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3119 if (count != 0) {
3120 WEIGHT_SET_COUNT(weight, count);
3121 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3122 WEIGHT_SET_ACTIVE(weight, 0);
3123 break;
3126 return (weight);
3130 * Compute a segment-based weight for the specified metaslab. The weight
3131 * is determined by highest bucket in the histogram. The information
3132 * for the highest bucket is encoded into the weight value.
3134 static uint64_t
3135 metaslab_segment_weight(metaslab_t *msp)
3137 metaslab_group_t *mg = msp->ms_group;
3138 uint64_t weight = 0;
3139 uint8_t shift = mg->mg_vd->vdev_ashift;
3141 ASSERT(MUTEX_HELD(&msp->ms_lock));
3144 * The metaslab is completely free.
3146 if (metaslab_allocated_space(msp) == 0) {
3147 int idx = highbit64(msp->ms_size) - 1;
3148 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3150 if (idx < max_idx) {
3151 WEIGHT_SET_COUNT(weight, 1ULL);
3152 WEIGHT_SET_INDEX(weight, idx);
3153 } else {
3154 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3155 WEIGHT_SET_INDEX(weight, max_idx);
3157 WEIGHT_SET_ACTIVE(weight, 0);
3158 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3159 return (weight);
3162 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3165 * If the metaslab is fully allocated then just make the weight 0.
3167 if (metaslab_allocated_space(msp) == msp->ms_size)
3168 return (0);
3170 * If the metaslab is already loaded, then use the range tree to
3171 * determine the weight. Otherwise, we rely on the space map information
3172 * to generate the weight.
3174 if (msp->ms_loaded) {
3175 weight = metaslab_weight_from_range_tree(msp);
3176 } else {
3177 weight = metaslab_weight_from_spacemap(msp);
3181 * If the metaslab was active the last time we calculated its weight
3182 * then keep it active. We want to consume the entire region that
3183 * is associated with this weight.
3185 if (msp->ms_activation_weight != 0 && weight != 0)
3186 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3187 return (weight);
3191 * Determine if we should attempt to allocate from this metaslab. If the
3192 * metaslab is loaded, then we can determine if the desired allocation
3193 * can be satisfied by looking at the size of the maximum free segment
3194 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3195 * weight. For segment-based weighting we can determine the maximum
3196 * allocation based on the index encoded in its value. For space-based
3197 * weights we rely on the entire weight (excluding the weight-type bit).
3199 static boolean_t
3200 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3203 * This case will usually but not always get caught by the checks below;
3204 * metaslabs can be loaded by various means, including the trim and
3205 * initialize code. Once that happens, without this check they are
3206 * allocatable even before they finish their first txg sync.
3208 if (unlikely(msp->ms_new))
3209 return (B_FALSE);
3212 * If the metaslab is loaded, ms_max_size is definitive and we can use
3213 * the fast check. If it's not, the ms_max_size is a lower bound (once
3214 * set), and we should use the fast check as long as we're not in
3215 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3216 * seconds since the metaslab was unloaded.
3218 if (msp->ms_loaded ||
3219 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3220 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3221 return (msp->ms_max_size >= asize);
3223 boolean_t should_allocate;
3224 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3226 * The metaslab segment weight indicates segments in the
3227 * range [2^i, 2^(i+1)), where i is the index in the weight.
3228 * Since the asize might be in the middle of the range, we
3229 * should attempt the allocation if asize < 2^(i+1).
3231 should_allocate = (asize <
3232 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3233 } else {
3234 should_allocate = (asize <=
3235 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3238 return (should_allocate);
3241 static uint64_t
3242 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3244 vdev_t *vd = msp->ms_group->mg_vd;
3245 spa_t *spa = vd->vdev_spa;
3246 uint64_t weight;
3248 ASSERT(MUTEX_HELD(&msp->ms_lock));
3250 metaslab_set_fragmentation(msp, nodirty);
3253 * Update the maximum size. If the metaslab is loaded, this will
3254 * ensure that we get an accurate maximum size if newly freed space
3255 * has been added back into the free tree. If the metaslab is
3256 * unloaded, we check if there's a larger free segment in the
3257 * unflushed frees. This is a lower bound on the largest allocatable
3258 * segment size. Coalescing of adjacent entries may reveal larger
3259 * allocatable segments, but we aren't aware of those until loading
3260 * the space map into a range tree.
3262 if (msp->ms_loaded) {
3263 msp->ms_max_size = metaslab_largest_allocatable(msp);
3264 } else {
3265 msp->ms_max_size = MAX(msp->ms_max_size,
3266 metaslab_largest_unflushed_free(msp));
3270 * Segment-based weighting requires space map histogram support.
3272 if (zfs_metaslab_segment_weight_enabled &&
3273 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3274 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3275 sizeof (space_map_phys_t))) {
3276 weight = metaslab_segment_weight(msp);
3277 } else {
3278 weight = metaslab_space_weight(msp);
3280 return (weight);
3283 void
3284 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3286 ASSERT(MUTEX_HELD(&msp->ms_lock));
3288 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3289 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3290 metaslab_group_sort(msp->ms_group, msp,
3291 metaslab_weight(msp, B_FALSE) | was_active);
3294 static int
3295 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3296 int allocator, uint64_t activation_weight)
3298 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3299 ASSERT(MUTEX_HELD(&msp->ms_lock));
3302 * If we're activating for the claim code, we don't want to actually
3303 * set the metaslab up for a specific allocator.
3305 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3306 ASSERT0(msp->ms_activation_weight);
3307 msp->ms_activation_weight = msp->ms_weight;
3308 metaslab_group_sort(mg, msp, msp->ms_weight |
3309 activation_weight);
3310 return (0);
3313 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3314 &mga->mga_primary : &mga->mga_secondary);
3316 mutex_enter(&mg->mg_lock);
3317 if (*mspp != NULL) {
3318 mutex_exit(&mg->mg_lock);
3319 return (EEXIST);
3322 *mspp = msp;
3323 ASSERT3S(msp->ms_allocator, ==, -1);
3324 msp->ms_allocator = allocator;
3325 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3327 ASSERT0(msp->ms_activation_weight);
3328 msp->ms_activation_weight = msp->ms_weight;
3329 metaslab_group_sort_impl(mg, msp,
3330 msp->ms_weight | activation_weight);
3331 mutex_exit(&mg->mg_lock);
3333 return (0);
3336 static int
3337 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3339 ASSERT(MUTEX_HELD(&msp->ms_lock));
3342 * The current metaslab is already activated for us so there
3343 * is nothing to do. Already activated though, doesn't mean
3344 * that this metaslab is activated for our allocator nor our
3345 * requested activation weight. The metaslab could have started
3346 * as an active one for our allocator but changed allocators
3347 * while we were waiting to grab its ms_lock or we stole it
3348 * [see find_valid_metaslab()]. This means that there is a
3349 * possibility of passivating a metaslab of another allocator
3350 * or from a different activation mask, from this thread.
3352 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3353 ASSERT(msp->ms_loaded);
3354 return (0);
3357 int error = metaslab_load(msp);
3358 if (error != 0) {
3359 metaslab_group_sort(msp->ms_group, msp, 0);
3360 return (error);
3364 * When entering metaslab_load() we may have dropped the
3365 * ms_lock because we were loading this metaslab, or we
3366 * were waiting for another thread to load it for us. In
3367 * that scenario, we recheck the weight of the metaslab
3368 * to see if it was activated by another thread.
3370 * If the metaslab was activated for another allocator or
3371 * it was activated with a different activation weight (e.g.
3372 * we wanted to make it a primary but it was activated as
3373 * secondary) we return error (EBUSY).
3375 * If the metaslab was activated for the same allocator
3376 * and requested activation mask, skip activating it.
3378 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3379 if (msp->ms_allocator != allocator)
3380 return (EBUSY);
3382 if ((msp->ms_weight & activation_weight) == 0)
3383 return (SET_ERROR(EBUSY));
3385 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3386 msp->ms_primary);
3387 return (0);
3391 * If the metaslab has literally 0 space, it will have weight 0. In
3392 * that case, don't bother activating it. This can happen if the
3393 * metaslab had space during find_valid_metaslab, but another thread
3394 * loaded it and used all that space while we were waiting to grab the
3395 * lock.
3397 if (msp->ms_weight == 0) {
3398 ASSERT0(range_tree_space(msp->ms_allocatable));
3399 return (SET_ERROR(ENOSPC));
3402 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3403 allocator, activation_weight)) != 0) {
3404 return (error);
3407 ASSERT(msp->ms_loaded);
3408 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3410 return (0);
3413 static void
3414 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3415 uint64_t weight)
3417 ASSERT(MUTEX_HELD(&msp->ms_lock));
3418 ASSERT(msp->ms_loaded);
3420 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3421 metaslab_group_sort(mg, msp, weight);
3422 return;
3425 mutex_enter(&mg->mg_lock);
3426 ASSERT3P(msp->ms_group, ==, mg);
3427 ASSERT3S(0, <=, msp->ms_allocator);
3428 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3430 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3431 if (msp->ms_primary) {
3432 ASSERT3P(mga->mga_primary, ==, msp);
3433 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3434 mga->mga_primary = NULL;
3435 } else {
3436 ASSERT3P(mga->mga_secondary, ==, msp);
3437 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3438 mga->mga_secondary = NULL;
3440 msp->ms_allocator = -1;
3441 metaslab_group_sort_impl(mg, msp, weight);
3442 mutex_exit(&mg->mg_lock);
3445 static void
3446 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3448 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3451 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3452 * this metaslab again. In that case, it had better be empty,
3453 * or we would be leaving space on the table.
3455 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3456 size >= SPA_MINBLOCKSIZE ||
3457 range_tree_space(msp->ms_allocatable) == 0);
3458 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3460 ASSERT(msp->ms_activation_weight != 0);
3461 msp->ms_activation_weight = 0;
3462 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3463 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3467 * Segment-based metaslabs are activated once and remain active until
3468 * we either fail an allocation attempt (similar to space-based metaslabs)
3469 * or have exhausted the free space in zfs_metaslab_switch_threshold
3470 * buckets since the metaslab was activated. This function checks to see
3471 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3472 * metaslab and passivates it proactively. This will allow us to select a
3473 * metaslab with a larger contiguous region, if any, remaining within this
3474 * metaslab group. If we're in sync pass > 1, then we continue using this
3475 * metaslab so that we don't dirty more block and cause more sync passes.
3477 static void
3478 metaslab_segment_may_passivate(metaslab_t *msp)
3480 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3482 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3483 return;
3486 * Since we are in the middle of a sync pass, the most accurate
3487 * information that is accessible to us is the in-core range tree
3488 * histogram; calculate the new weight based on that information.
3490 uint64_t weight = metaslab_weight_from_range_tree(msp);
3491 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3492 int current_idx = WEIGHT_GET_INDEX(weight);
3494 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3495 metaslab_passivate(msp, weight);
3498 static void
3499 metaslab_preload(void *arg)
3501 metaslab_t *msp = arg;
3502 metaslab_class_t *mc = msp->ms_group->mg_class;
3503 spa_t *spa = mc->mc_spa;
3504 fstrans_cookie_t cookie = spl_fstrans_mark();
3506 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3508 mutex_enter(&msp->ms_lock);
3509 (void) metaslab_load(msp);
3510 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3511 mutex_exit(&msp->ms_lock);
3512 spl_fstrans_unmark(cookie);
3515 static void
3516 metaslab_group_preload(metaslab_group_t *mg)
3518 spa_t *spa = mg->mg_vd->vdev_spa;
3519 metaslab_t *msp;
3520 avl_tree_t *t = &mg->mg_metaslab_tree;
3521 int m = 0;
3523 if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3524 return;
3526 mutex_enter(&mg->mg_lock);
3529 * Load the next potential metaslabs
3531 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3532 ASSERT3P(msp->ms_group, ==, mg);
3535 * We preload only the maximum number of metaslabs specified
3536 * by metaslab_preload_limit. If a metaslab is being forced
3537 * to condense then we preload it too. This will ensure
3538 * that force condensing happens in the next txg.
3540 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3541 continue;
3544 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3545 msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3546 != TASKQID_INVALID);
3548 mutex_exit(&mg->mg_lock);
3552 * Determine if the space map's on-disk footprint is past our tolerance for
3553 * inefficiency. We would like to use the following criteria to make our
3554 * decision:
3556 * 1. Do not condense if the size of the space map object would dramatically
3557 * increase as a result of writing out the free space range tree.
3559 * 2. Condense if the on on-disk space map representation is at least
3560 * zfs_condense_pct/100 times the size of the optimal representation
3561 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3563 * 3. Do not condense if the on-disk size of the space map does not actually
3564 * decrease.
3566 * Unfortunately, we cannot compute the on-disk size of the space map in this
3567 * context because we cannot accurately compute the effects of compression, etc.
3568 * Instead, we apply the heuristic described in the block comment for
3569 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3570 * is greater than a threshold number of blocks.
3572 static boolean_t
3573 metaslab_should_condense(metaslab_t *msp)
3575 space_map_t *sm = msp->ms_sm;
3576 vdev_t *vd = msp->ms_group->mg_vd;
3577 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3579 ASSERT(MUTEX_HELD(&msp->ms_lock));
3580 ASSERT(msp->ms_loaded);
3581 ASSERT(sm != NULL);
3582 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3585 * We always condense metaslabs that are empty and metaslabs for
3586 * which a condense request has been made.
3588 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3589 msp->ms_condense_wanted)
3590 return (B_TRUE);
3592 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3593 uint64_t object_size = space_map_length(sm);
3594 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3595 msp->ms_allocatable, SM_NO_VDEVID);
3597 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3598 object_size > zfs_metaslab_condense_block_threshold * record_size);
3602 * Condense the on-disk space map representation to its minimized form.
3603 * The minimized form consists of a small number of allocations followed
3604 * by the entries of the free range tree (ms_allocatable). The condensed
3605 * spacemap contains all the entries of previous TXGs (including those in
3606 * the pool-wide log spacemaps; thus this is effectively a superset of
3607 * metaslab_flush()), but this TXG's entries still need to be written.
3609 static void
3610 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3612 range_tree_t *condense_tree;
3613 space_map_t *sm = msp->ms_sm;
3614 uint64_t txg = dmu_tx_get_txg(tx);
3615 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3617 ASSERT(MUTEX_HELD(&msp->ms_lock));
3618 ASSERT(msp->ms_loaded);
3619 ASSERT(msp->ms_sm != NULL);
3622 * In order to condense the space map, we need to change it so it
3623 * only describes which segments are currently allocated and free.
3625 * All the current free space resides in the ms_allocatable, all
3626 * the ms_defer trees, and all the ms_allocating trees. We ignore
3627 * ms_freed because it is empty because we're in sync pass 1. We
3628 * ignore ms_freeing because these changes are not yet reflected
3629 * in the spacemap (they will be written later this txg).
3631 * So to truncate the space map to represent all the entries of
3632 * previous TXGs we do the following:
3634 * 1] We create a range tree (condense tree) that is 100% empty.
3635 * 2] We add to it all segments found in the ms_defer trees
3636 * as those segments are marked as free in the original space
3637 * map. We do the same with the ms_allocating trees for the same
3638 * reason. Adding these segments should be a relatively
3639 * inexpensive operation since we expect these trees to have a
3640 * small number of nodes.
3641 * 3] We vacate any unflushed allocs, since they are not frees we
3642 * need to add to the condense tree. Then we vacate any
3643 * unflushed frees as they should already be part of ms_allocatable.
3644 * 4] At this point, we would ideally like to add all segments
3645 * in the ms_allocatable tree from the condense tree. This way
3646 * we would write all the entries of the condense tree as the
3647 * condensed space map, which would only contain freed
3648 * segments with everything else assumed to be allocated.
3650 * Doing so can be prohibitively expensive as ms_allocatable can
3651 * be large, and therefore computationally expensive to add to
3652 * the condense_tree. Instead we first sync out an entry marking
3653 * everything as allocated, then the condense_tree and then the
3654 * ms_allocatable, in the condensed space map. While this is not
3655 * optimal, it is typically close to optimal and more importantly
3656 * much cheaper to compute.
3658 * 5] Finally, as both of the unflushed trees were written to our
3659 * new and condensed metaslab space map, we basically flushed
3660 * all the unflushed changes to disk, thus we call
3661 * metaslab_flush_update().
3663 ASSERT3U(spa_sync_pass(spa), ==, 1);
3664 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3666 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3667 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3668 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3669 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3670 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3671 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3672 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3674 msp->ms_condense_wanted = B_FALSE;
3676 range_seg_type_t type;
3677 uint64_t shift, start;
3678 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3679 &start, &shift);
3681 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3683 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3684 range_tree_walk(msp->ms_defer[t],
3685 range_tree_add, condense_tree);
3688 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3689 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3690 range_tree_add, condense_tree);
3693 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3694 metaslab_unflushed_changes_memused(msp));
3695 spa->spa_unflushed_stats.sus_memused -=
3696 metaslab_unflushed_changes_memused(msp);
3697 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3698 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3701 * We're about to drop the metaslab's lock thus allowing other
3702 * consumers to change it's content. Set the metaslab's ms_condensing
3703 * flag to ensure that allocations on this metaslab do not occur
3704 * while we're in the middle of committing it to disk. This is only
3705 * critical for ms_allocatable as all other range trees use per TXG
3706 * views of their content.
3708 msp->ms_condensing = B_TRUE;
3710 mutex_exit(&msp->ms_lock);
3711 uint64_t object = space_map_object(msp->ms_sm);
3712 space_map_truncate(sm,
3713 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3714 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3717 * space_map_truncate() may have reallocated the spacemap object.
3718 * If so, update the vdev_ms_array.
3720 if (space_map_object(msp->ms_sm) != object) {
3721 object = space_map_object(msp->ms_sm);
3722 dmu_write(spa->spa_meta_objset,
3723 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3724 msp->ms_id, sizeof (uint64_t), &object, tx);
3728 * Note:
3729 * When the log space map feature is enabled, each space map will
3730 * always have ALLOCS followed by FREES for each sync pass. This is
3731 * typically true even when the log space map feature is disabled,
3732 * except from the case where a metaslab goes through metaslab_sync()
3733 * and gets condensed. In that case the metaslab's space map will have
3734 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3735 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3736 * sync pass 1.
3738 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3739 shift);
3740 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3741 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3742 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3743 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3745 range_tree_vacate(condense_tree, NULL, NULL);
3746 range_tree_destroy(condense_tree);
3747 range_tree_vacate(tmp_tree, NULL, NULL);
3748 range_tree_destroy(tmp_tree);
3749 mutex_enter(&msp->ms_lock);
3751 msp->ms_condensing = B_FALSE;
3752 metaslab_flush_update(msp, tx);
3755 static void
3756 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3758 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3759 ASSERT(spa_syncing_log_sm(spa) != NULL);
3760 ASSERT(msp->ms_sm != NULL);
3761 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3762 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3764 mutex_enter(&spa->spa_flushed_ms_lock);
3765 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3766 metaslab_set_unflushed_dirty(msp, B_TRUE);
3767 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3768 mutex_exit(&spa->spa_flushed_ms_lock);
3770 spa_log_sm_increment_current_mscount(spa);
3771 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3774 void
3775 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3777 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3778 ASSERT(spa_syncing_log_sm(spa) != NULL);
3779 ASSERT(msp->ms_sm != NULL);
3780 ASSERT(metaslab_unflushed_txg(msp) != 0);
3781 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3782 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3783 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3785 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3787 /* update metaslab's position in our flushing tree */
3788 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3789 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3790 mutex_enter(&spa->spa_flushed_ms_lock);
3791 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3792 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3793 metaslab_set_unflushed_dirty(msp, dirty);
3794 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3795 mutex_exit(&spa->spa_flushed_ms_lock);
3797 /* update metaslab counts of spa_log_sm_t nodes */
3798 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3799 spa_log_sm_increment_current_mscount(spa);
3801 /* update log space map summary */
3802 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3803 ms_prev_flushed_dirty);
3804 spa_log_summary_add_flushed_metaslab(spa, dirty);
3806 /* cleanup obsolete logs if any */
3807 spa_cleanup_old_sm_logs(spa, tx);
3811 * Called when the metaslab has been flushed (its own spacemap now reflects
3812 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3813 * metadata and any pool-wide related log space map data (e.g. summary,
3814 * obsolete logs, etc..) to reflect that.
3816 static void
3817 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3819 metaslab_group_t *mg = msp->ms_group;
3820 spa_t *spa = mg->mg_vd->vdev_spa;
3822 ASSERT(MUTEX_HELD(&msp->ms_lock));
3824 ASSERT3U(spa_sync_pass(spa), ==, 1);
3827 * Just because a metaslab got flushed, that doesn't mean that
3828 * it will pass through metaslab_sync_done(). Thus, make sure to
3829 * update ms_synced_length here in case it doesn't.
3831 msp->ms_synced_length = space_map_length(msp->ms_sm);
3834 * We may end up here from metaslab_condense() without the
3835 * feature being active. In that case this is a no-op.
3837 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3838 metaslab_unflushed_txg(msp) == 0)
3839 return;
3841 metaslab_unflushed_bump(msp, tx, B_FALSE);
3844 boolean_t
3845 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3847 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3849 ASSERT(MUTEX_HELD(&msp->ms_lock));
3850 ASSERT3U(spa_sync_pass(spa), ==, 1);
3851 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3853 ASSERT(msp->ms_sm != NULL);
3854 ASSERT(metaslab_unflushed_txg(msp) != 0);
3855 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3858 * There is nothing wrong with flushing the same metaslab twice, as
3859 * this codepath should work on that case. However, the current
3860 * flushing scheme makes sure to avoid this situation as we would be
3861 * making all these calls without having anything meaningful to write
3862 * to disk. We assert this behavior here.
3864 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3867 * We can not flush while loading, because then we would
3868 * not load the ms_unflushed_{allocs,frees}.
3870 if (msp->ms_loading)
3871 return (B_FALSE);
3873 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3874 metaslab_verify_weight_and_frag(msp);
3877 * Metaslab condensing is effectively flushing. Therefore if the
3878 * metaslab can be condensed we can just condense it instead of
3879 * flushing it.
3881 * Note that metaslab_condense() does call metaslab_flush_update()
3882 * so we can just return immediately after condensing. We also
3883 * don't need to care about setting ms_flushing or broadcasting
3884 * ms_flush_cv, even if we temporarily drop the ms_lock in
3885 * metaslab_condense(), as the metaslab is already loaded.
3887 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3888 metaslab_group_t *mg = msp->ms_group;
3891 * For all histogram operations below refer to the
3892 * comments of metaslab_sync() where we follow a
3893 * similar procedure.
3895 metaslab_group_histogram_verify(mg);
3896 metaslab_class_histogram_verify(mg->mg_class);
3897 metaslab_group_histogram_remove(mg, msp);
3899 metaslab_condense(msp, tx);
3901 space_map_histogram_clear(msp->ms_sm);
3902 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3903 ASSERT(range_tree_is_empty(msp->ms_freed));
3904 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3905 space_map_histogram_add(msp->ms_sm,
3906 msp->ms_defer[t], tx);
3908 metaslab_aux_histograms_update(msp);
3910 metaslab_group_histogram_add(mg, msp);
3911 metaslab_group_histogram_verify(mg);
3912 metaslab_class_histogram_verify(mg->mg_class);
3914 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3917 * Since we recreated the histogram (and potentially
3918 * the ms_sm too while condensing) ensure that the
3919 * weight is updated too because we are not guaranteed
3920 * that this metaslab is dirty and will go through
3921 * metaslab_sync_done().
3923 metaslab_recalculate_weight_and_sort(msp);
3924 return (B_TRUE);
3927 msp->ms_flushing = B_TRUE;
3928 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3930 mutex_exit(&msp->ms_lock);
3931 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3932 SM_NO_VDEVID, tx);
3933 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3934 SM_NO_VDEVID, tx);
3935 mutex_enter(&msp->ms_lock);
3937 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3938 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3939 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3940 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3941 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3942 spa_name(spa),
3943 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3944 (u_longlong_t)msp->ms_id,
3945 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3946 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3947 (u_longlong_t)(sm_len_after - sm_len_before));
3950 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3951 metaslab_unflushed_changes_memused(msp));
3952 spa->spa_unflushed_stats.sus_memused -=
3953 metaslab_unflushed_changes_memused(msp);
3954 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3955 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3957 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3958 metaslab_verify_weight_and_frag(msp);
3960 metaslab_flush_update(msp, tx);
3962 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3963 metaslab_verify_weight_and_frag(msp);
3965 msp->ms_flushing = B_FALSE;
3966 cv_broadcast(&msp->ms_flush_cv);
3967 return (B_TRUE);
3971 * Write a metaslab to disk in the context of the specified transaction group.
3973 void
3974 metaslab_sync(metaslab_t *msp, uint64_t txg)
3976 metaslab_group_t *mg = msp->ms_group;
3977 vdev_t *vd = mg->mg_vd;
3978 spa_t *spa = vd->vdev_spa;
3979 objset_t *mos = spa_meta_objset(spa);
3980 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3981 dmu_tx_t *tx;
3983 ASSERT(!vd->vdev_ishole);
3986 * This metaslab has just been added so there's no work to do now.
3988 if (msp->ms_new) {
3989 ASSERT0(range_tree_space(alloctree));
3990 ASSERT0(range_tree_space(msp->ms_freeing));
3991 ASSERT0(range_tree_space(msp->ms_freed));
3992 ASSERT0(range_tree_space(msp->ms_checkpointing));
3993 ASSERT0(range_tree_space(msp->ms_trim));
3994 return;
3998 * Normally, we don't want to process a metaslab if there are no
3999 * allocations or frees to perform. However, if the metaslab is being
4000 * forced to condense, it's loaded and we're not beyond the final
4001 * dirty txg, we need to let it through. Not condensing beyond the
4002 * final dirty txg prevents an issue where metaslabs that need to be
4003 * condensed but were loaded for other reasons could cause a panic
4004 * here. By only checking the txg in that branch of the conditional,
4005 * we preserve the utility of the VERIFY statements in all other
4006 * cases.
4008 if (range_tree_is_empty(alloctree) &&
4009 range_tree_is_empty(msp->ms_freeing) &&
4010 range_tree_is_empty(msp->ms_checkpointing) &&
4011 !(msp->ms_loaded && msp->ms_condense_wanted &&
4012 txg <= spa_final_dirty_txg(spa)))
4013 return;
4016 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4019 * The only state that can actually be changing concurrently
4020 * with metaslab_sync() is the metaslab's ms_allocatable. No
4021 * other thread can be modifying this txg's alloc, freeing,
4022 * freed, or space_map_phys_t. We drop ms_lock whenever we
4023 * could call into the DMU, because the DMU can call down to
4024 * us (e.g. via zio_free()) at any time.
4026 * The spa_vdev_remove_thread() can be reading metaslab state
4027 * concurrently, and it is locked out by the ms_sync_lock.
4028 * Note that the ms_lock is insufficient for this, because it
4029 * is dropped by space_map_write().
4031 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4034 * Generate a log space map if one doesn't exist already.
4036 spa_generate_syncing_log_sm(spa, tx);
4038 if (msp->ms_sm == NULL) {
4039 uint64_t new_object = space_map_alloc(mos,
4040 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4041 zfs_metaslab_sm_blksz_with_log :
4042 zfs_metaslab_sm_blksz_no_log, tx);
4043 VERIFY3U(new_object, !=, 0);
4045 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4046 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4048 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4049 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4050 ASSERT(msp->ms_sm != NULL);
4052 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4053 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4054 ASSERT0(metaslab_allocated_space(msp));
4057 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4058 vd->vdev_checkpoint_sm == NULL) {
4059 ASSERT(spa_has_checkpoint(spa));
4061 uint64_t new_object = space_map_alloc(mos,
4062 zfs_vdev_standard_sm_blksz, tx);
4063 VERIFY3U(new_object, !=, 0);
4065 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4066 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4067 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4070 * We save the space map object as an entry in vdev_top_zap
4071 * so it can be retrieved when the pool is reopened after an
4072 * export or through zdb.
4074 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4075 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4076 sizeof (new_object), 1, &new_object, tx));
4079 mutex_enter(&msp->ms_sync_lock);
4080 mutex_enter(&msp->ms_lock);
4083 * Note: metaslab_condense() clears the space map's histogram.
4084 * Therefore we must verify and remove this histogram before
4085 * condensing.
4087 metaslab_group_histogram_verify(mg);
4088 metaslab_class_histogram_verify(mg->mg_class);
4089 metaslab_group_histogram_remove(mg, msp);
4091 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4092 metaslab_should_condense(msp))
4093 metaslab_condense(msp, tx);
4096 * We'll be going to disk to sync our space accounting, thus we
4097 * drop the ms_lock during that time so allocations coming from
4098 * open-context (ZIL) for future TXGs do not block.
4100 mutex_exit(&msp->ms_lock);
4101 space_map_t *log_sm = spa_syncing_log_sm(spa);
4102 if (log_sm != NULL) {
4103 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4104 if (metaslab_unflushed_txg(msp) == 0)
4105 metaslab_unflushed_add(msp, tx);
4106 else if (!metaslab_unflushed_dirty(msp))
4107 metaslab_unflushed_bump(msp, tx, B_TRUE);
4109 space_map_write(log_sm, alloctree, SM_ALLOC,
4110 vd->vdev_id, tx);
4111 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4112 vd->vdev_id, tx);
4113 mutex_enter(&msp->ms_lock);
4115 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4116 metaslab_unflushed_changes_memused(msp));
4117 spa->spa_unflushed_stats.sus_memused -=
4118 metaslab_unflushed_changes_memused(msp);
4119 range_tree_remove_xor_add(alloctree,
4120 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4121 range_tree_remove_xor_add(msp->ms_freeing,
4122 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4123 spa->spa_unflushed_stats.sus_memused +=
4124 metaslab_unflushed_changes_memused(msp);
4125 } else {
4126 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4128 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4129 SM_NO_VDEVID, tx);
4130 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4131 SM_NO_VDEVID, tx);
4132 mutex_enter(&msp->ms_lock);
4135 msp->ms_allocated_space += range_tree_space(alloctree);
4136 ASSERT3U(msp->ms_allocated_space, >=,
4137 range_tree_space(msp->ms_freeing));
4138 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4140 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4141 ASSERT(spa_has_checkpoint(spa));
4142 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4145 * Since we are doing writes to disk and the ms_checkpointing
4146 * tree won't be changing during that time, we drop the
4147 * ms_lock while writing to the checkpoint space map, for the
4148 * same reason mentioned above.
4150 mutex_exit(&msp->ms_lock);
4151 space_map_write(vd->vdev_checkpoint_sm,
4152 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4153 mutex_enter(&msp->ms_lock);
4155 spa->spa_checkpoint_info.sci_dspace +=
4156 range_tree_space(msp->ms_checkpointing);
4157 vd->vdev_stat.vs_checkpoint_space +=
4158 range_tree_space(msp->ms_checkpointing);
4159 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4160 -space_map_allocated(vd->vdev_checkpoint_sm));
4162 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4165 if (msp->ms_loaded) {
4167 * When the space map is loaded, we have an accurate
4168 * histogram in the range tree. This gives us an opportunity
4169 * to bring the space map's histogram up-to-date so we clear
4170 * it first before updating it.
4172 space_map_histogram_clear(msp->ms_sm);
4173 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4176 * Since we've cleared the histogram we need to add back
4177 * any free space that has already been processed, plus
4178 * any deferred space. This allows the on-disk histogram
4179 * to accurately reflect all free space even if some space
4180 * is not yet available for allocation (i.e. deferred).
4182 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4185 * Add back any deferred free space that has not been
4186 * added back into the in-core free tree yet. This will
4187 * ensure that we don't end up with a space map histogram
4188 * that is completely empty unless the metaslab is fully
4189 * allocated.
4191 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4192 space_map_histogram_add(msp->ms_sm,
4193 msp->ms_defer[t], tx);
4198 * Always add the free space from this sync pass to the space
4199 * map histogram. We want to make sure that the on-disk histogram
4200 * accounts for all free space. If the space map is not loaded,
4201 * then we will lose some accuracy but will correct it the next
4202 * time we load the space map.
4204 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4205 metaslab_aux_histograms_update(msp);
4207 metaslab_group_histogram_add(mg, msp);
4208 metaslab_group_histogram_verify(mg);
4209 metaslab_class_histogram_verify(mg->mg_class);
4212 * For sync pass 1, we avoid traversing this txg's free range tree
4213 * and instead will just swap the pointers for freeing and freed.
4214 * We can safely do this since the freed_tree is guaranteed to be
4215 * empty on the initial pass.
4217 * Keep in mind that even if we are currently using a log spacemap
4218 * we want current frees to end up in the ms_allocatable (but not
4219 * get appended to the ms_sm) so their ranges can be reused as usual.
4221 if (spa_sync_pass(spa) == 1) {
4222 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4223 ASSERT0(msp->ms_allocated_this_txg);
4224 } else {
4225 range_tree_vacate(msp->ms_freeing,
4226 range_tree_add, msp->ms_freed);
4228 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4229 range_tree_vacate(alloctree, NULL, NULL);
4231 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4232 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4233 & TXG_MASK]));
4234 ASSERT0(range_tree_space(msp->ms_freeing));
4235 ASSERT0(range_tree_space(msp->ms_checkpointing));
4237 mutex_exit(&msp->ms_lock);
4240 * Verify that the space map object ID has been recorded in the
4241 * vdev_ms_array.
4243 uint64_t object;
4244 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4245 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4246 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4248 mutex_exit(&msp->ms_sync_lock);
4249 dmu_tx_commit(tx);
4252 static void
4253 metaslab_evict(metaslab_t *msp, uint64_t txg)
4255 if (!msp->ms_loaded || msp->ms_disabled != 0)
4256 return;
4258 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4259 VERIFY0(range_tree_space(
4260 msp->ms_allocating[(txg + t) & TXG_MASK]));
4262 if (msp->ms_allocator != -1)
4263 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4265 if (!metaslab_debug_unload)
4266 metaslab_unload(msp);
4270 * Called after a transaction group has completely synced to mark
4271 * all of the metaslab's free space as usable.
4273 void
4274 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4276 metaslab_group_t *mg = msp->ms_group;
4277 vdev_t *vd = mg->mg_vd;
4278 spa_t *spa = vd->vdev_spa;
4279 range_tree_t **defer_tree;
4280 int64_t alloc_delta, defer_delta;
4281 boolean_t defer_allowed = B_TRUE;
4283 ASSERT(!vd->vdev_ishole);
4285 mutex_enter(&msp->ms_lock);
4287 if (msp->ms_new) {
4288 /* this is a new metaslab, add its capacity to the vdev */
4289 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4291 /* there should be no allocations nor frees at this point */
4292 VERIFY0(msp->ms_allocated_this_txg);
4293 VERIFY0(range_tree_space(msp->ms_freed));
4296 ASSERT0(range_tree_space(msp->ms_freeing));
4297 ASSERT0(range_tree_space(msp->ms_checkpointing));
4299 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4301 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4302 metaslab_class_get_alloc(spa_normal_class(spa));
4303 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4304 defer_allowed = B_FALSE;
4307 defer_delta = 0;
4308 alloc_delta = msp->ms_allocated_this_txg -
4309 range_tree_space(msp->ms_freed);
4311 if (defer_allowed) {
4312 defer_delta = range_tree_space(msp->ms_freed) -
4313 range_tree_space(*defer_tree);
4314 } else {
4315 defer_delta -= range_tree_space(*defer_tree);
4317 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4318 defer_delta, 0);
4320 if (spa_syncing_log_sm(spa) == NULL) {
4322 * If there's a metaslab_load() in progress and we don't have
4323 * a log space map, it means that we probably wrote to the
4324 * metaslab's space map. If this is the case, we need to
4325 * make sure that we wait for the load to complete so that we
4326 * have a consistent view at the in-core side of the metaslab.
4328 metaslab_load_wait(msp);
4329 } else {
4330 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4334 * When auto-trimming is enabled, free ranges which are added to
4335 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4336 * periodically consumed by the vdev_autotrim_thread() which issues
4337 * trims for all ranges and then vacates the tree. The ms_trim tree
4338 * can be discarded at any time with the sole consequence of recent
4339 * frees not being trimmed.
4341 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4342 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4343 if (!defer_allowed) {
4344 range_tree_walk(msp->ms_freed, range_tree_add,
4345 msp->ms_trim);
4347 } else {
4348 range_tree_vacate(msp->ms_trim, NULL, NULL);
4352 * Move the frees from the defer_tree back to the free
4353 * range tree (if it's loaded). Swap the freed_tree and
4354 * the defer_tree -- this is safe to do because we've
4355 * just emptied out the defer_tree.
4357 range_tree_vacate(*defer_tree,
4358 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4359 if (defer_allowed) {
4360 range_tree_swap(&msp->ms_freed, defer_tree);
4361 } else {
4362 range_tree_vacate(msp->ms_freed,
4363 msp->ms_loaded ? range_tree_add : NULL,
4364 msp->ms_allocatable);
4367 msp->ms_synced_length = space_map_length(msp->ms_sm);
4369 msp->ms_deferspace += defer_delta;
4370 ASSERT3S(msp->ms_deferspace, >=, 0);
4371 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4372 if (msp->ms_deferspace != 0) {
4374 * Keep syncing this metaslab until all deferred frees
4375 * are back in circulation.
4377 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4379 metaslab_aux_histograms_update_done(msp, defer_allowed);
4381 if (msp->ms_new) {
4382 msp->ms_new = B_FALSE;
4383 mutex_enter(&mg->mg_lock);
4384 mg->mg_ms_ready++;
4385 mutex_exit(&mg->mg_lock);
4389 * Re-sort metaslab within its group now that we've adjusted
4390 * its allocatable space.
4392 metaslab_recalculate_weight_and_sort(msp);
4394 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4395 ASSERT0(range_tree_space(msp->ms_freeing));
4396 ASSERT0(range_tree_space(msp->ms_freed));
4397 ASSERT0(range_tree_space(msp->ms_checkpointing));
4398 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4399 msp->ms_allocated_this_txg = 0;
4400 mutex_exit(&msp->ms_lock);
4403 void
4404 metaslab_sync_reassess(metaslab_group_t *mg)
4406 spa_t *spa = mg->mg_class->mc_spa;
4408 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4409 metaslab_group_alloc_update(mg);
4410 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4413 * Preload the next potential metaslabs but only on active
4414 * metaslab groups. We can get into a state where the metaslab
4415 * is no longer active since we dirty metaslabs as we remove a
4416 * a device, thus potentially making the metaslab group eligible
4417 * for preloading.
4419 if (mg->mg_activation_count > 0) {
4420 metaslab_group_preload(mg);
4422 spa_config_exit(spa, SCL_ALLOC, FTAG);
4426 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4427 * the same vdev as an existing DVA of this BP, then try to allocate it
4428 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4430 static boolean_t
4431 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4433 uint64_t dva_ms_id;
4435 if (DVA_GET_ASIZE(dva) == 0)
4436 return (B_TRUE);
4438 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4439 return (B_TRUE);
4441 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4443 return (msp->ms_id != dva_ms_id);
4447 * ==========================================================================
4448 * Metaslab allocation tracing facility
4449 * ==========================================================================
4453 * Add an allocation trace element to the allocation tracing list.
4455 static void
4456 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4457 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4458 int allocator)
4460 metaslab_alloc_trace_t *mat;
4462 if (!metaslab_trace_enabled)
4463 return;
4466 * When the tracing list reaches its maximum we remove
4467 * the second element in the list before adding a new one.
4468 * By removing the second element we preserve the original
4469 * entry as a clue to what allocations steps have already been
4470 * performed.
4472 if (zal->zal_size == metaslab_trace_max_entries) {
4473 metaslab_alloc_trace_t *mat_next;
4474 #ifdef ZFS_DEBUG
4475 panic("too many entries in allocation list");
4476 #endif
4477 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4478 zal->zal_size--;
4479 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4480 list_remove(&zal->zal_list, mat_next);
4481 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4484 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4485 list_link_init(&mat->mat_list_node);
4486 mat->mat_mg = mg;
4487 mat->mat_msp = msp;
4488 mat->mat_size = psize;
4489 mat->mat_dva_id = dva_id;
4490 mat->mat_offset = offset;
4491 mat->mat_weight = 0;
4492 mat->mat_allocator = allocator;
4494 if (msp != NULL)
4495 mat->mat_weight = msp->ms_weight;
4498 * The list is part of the zio so locking is not required. Only
4499 * a single thread will perform allocations for a given zio.
4501 list_insert_tail(&zal->zal_list, mat);
4502 zal->zal_size++;
4504 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4507 void
4508 metaslab_trace_init(zio_alloc_list_t *zal)
4510 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4511 offsetof(metaslab_alloc_trace_t, mat_list_node));
4512 zal->zal_size = 0;
4515 void
4516 metaslab_trace_fini(zio_alloc_list_t *zal)
4518 metaslab_alloc_trace_t *mat;
4520 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4521 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4522 list_destroy(&zal->zal_list);
4523 zal->zal_size = 0;
4527 * ==========================================================================
4528 * Metaslab block operations
4529 * ==========================================================================
4532 static void
4533 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4534 int flags, int allocator)
4536 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4537 (flags & METASLAB_DONT_THROTTLE))
4538 return;
4540 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4541 if (!mg->mg_class->mc_alloc_throttle_enabled)
4542 return;
4544 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4545 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4548 static void
4549 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4551 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4552 metaslab_class_allocator_t *mca =
4553 &mg->mg_class->mc_allocator[allocator];
4554 uint64_t max = mg->mg_max_alloc_queue_depth;
4555 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4556 while (cur < max) {
4557 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4558 cur, cur + 1) == cur) {
4559 atomic_inc_64(&mca->mca_alloc_max_slots);
4560 return;
4562 cur = mga->mga_cur_max_alloc_queue_depth;
4566 void
4567 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4568 int flags, int allocator, boolean_t io_complete)
4570 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4571 (flags & METASLAB_DONT_THROTTLE))
4572 return;
4574 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4575 if (!mg->mg_class->mc_alloc_throttle_enabled)
4576 return;
4578 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4579 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4580 if (io_complete)
4581 metaslab_group_increment_qdepth(mg, allocator);
4584 void
4585 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4586 int allocator)
4588 #ifdef ZFS_DEBUG
4589 const dva_t *dva = bp->blk_dva;
4590 int ndvas = BP_GET_NDVAS(bp);
4592 for (int d = 0; d < ndvas; d++) {
4593 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4594 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4595 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4596 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4598 #endif
4601 static uint64_t
4602 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4604 uint64_t start;
4605 range_tree_t *rt = msp->ms_allocatable;
4606 metaslab_class_t *mc = msp->ms_group->mg_class;
4608 ASSERT(MUTEX_HELD(&msp->ms_lock));
4609 VERIFY(!msp->ms_condensing);
4610 VERIFY0(msp->ms_disabled);
4612 start = mc->mc_ops->msop_alloc(msp, size);
4613 if (start != -1ULL) {
4614 metaslab_group_t *mg = msp->ms_group;
4615 vdev_t *vd = mg->mg_vd;
4617 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4618 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4619 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4620 range_tree_remove(rt, start, size);
4621 range_tree_clear(msp->ms_trim, start, size);
4623 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4624 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4626 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4627 msp->ms_allocating_total += size;
4629 /* Track the last successful allocation */
4630 msp->ms_alloc_txg = txg;
4631 metaslab_verify_space(msp, txg);
4635 * Now that we've attempted the allocation we need to update the
4636 * metaslab's maximum block size since it may have changed.
4638 msp->ms_max_size = metaslab_largest_allocatable(msp);
4639 return (start);
4643 * Find the metaslab with the highest weight that is less than what we've
4644 * already tried. In the common case, this means that we will examine each
4645 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4646 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4647 * activated by another thread, and we fail to allocate from the metaslab we
4648 * have selected, we may not try the newly-activated metaslab, and instead
4649 * activate another metaslab. This is not optimal, but generally does not cause
4650 * any problems (a possible exception being if every metaslab is completely full
4651 * except for the newly-activated metaslab which we fail to examine).
4653 static metaslab_t *
4654 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4655 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4656 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4657 boolean_t *was_active)
4659 avl_index_t idx;
4660 avl_tree_t *t = &mg->mg_metaslab_tree;
4661 metaslab_t *msp = avl_find(t, search, &idx);
4662 if (msp == NULL)
4663 msp = avl_nearest(t, idx, AVL_AFTER);
4665 uint_t tries = 0;
4666 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4667 int i;
4669 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4670 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4671 return (NULL);
4673 tries++;
4675 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4676 metaslab_trace_add(zal, mg, msp, asize, d,
4677 TRACE_TOO_SMALL, allocator);
4678 continue;
4682 * If the selected metaslab is condensing or disabled,
4683 * skip it.
4685 if (msp->ms_condensing || msp->ms_disabled > 0)
4686 continue;
4688 *was_active = msp->ms_allocator != -1;
4690 * If we're activating as primary, this is our first allocation
4691 * from this disk, so we don't need to check how close we are.
4692 * If the metaslab under consideration was already active,
4693 * we're getting desperate enough to steal another allocator's
4694 * metaslab, so we still don't care about distances.
4696 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4697 break;
4699 for (i = 0; i < d; i++) {
4700 if (want_unique &&
4701 !metaslab_is_unique(msp, &dva[i]))
4702 break; /* try another metaslab */
4704 if (i == d)
4705 break;
4708 if (msp != NULL) {
4709 search->ms_weight = msp->ms_weight;
4710 search->ms_start = msp->ms_start + 1;
4711 search->ms_allocator = msp->ms_allocator;
4712 search->ms_primary = msp->ms_primary;
4714 return (msp);
4717 static void
4718 metaslab_active_mask_verify(metaslab_t *msp)
4720 ASSERT(MUTEX_HELD(&msp->ms_lock));
4722 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4723 return;
4725 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4726 return;
4728 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4729 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4730 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4731 VERIFY3S(msp->ms_allocator, !=, -1);
4732 VERIFY(msp->ms_primary);
4733 return;
4736 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4737 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4738 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4739 VERIFY3S(msp->ms_allocator, !=, -1);
4740 VERIFY(!msp->ms_primary);
4741 return;
4744 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4745 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4746 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4747 VERIFY3S(msp->ms_allocator, ==, -1);
4748 return;
4752 static uint64_t
4753 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4754 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4755 int allocator, boolean_t try_hard)
4757 metaslab_t *msp = NULL;
4758 uint64_t offset = -1ULL;
4760 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4761 for (int i = 0; i < d; i++) {
4762 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4763 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4764 activation_weight = METASLAB_WEIGHT_SECONDARY;
4765 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4766 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4767 activation_weight = METASLAB_WEIGHT_CLAIM;
4768 break;
4773 * If we don't have enough metaslabs active to fill the entire array, we
4774 * just use the 0th slot.
4776 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4777 allocator = 0;
4778 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4780 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4782 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4783 search->ms_weight = UINT64_MAX;
4784 search->ms_start = 0;
4786 * At the end of the metaslab tree are the already-active metaslabs,
4787 * first the primaries, then the secondaries. When we resume searching
4788 * through the tree, we need to consider ms_allocator and ms_primary so
4789 * we start in the location right after where we left off, and don't
4790 * accidentally loop forever considering the same metaslabs.
4792 search->ms_allocator = -1;
4793 search->ms_primary = B_TRUE;
4794 for (;;) {
4795 boolean_t was_active = B_FALSE;
4797 mutex_enter(&mg->mg_lock);
4799 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4800 mga->mga_primary != NULL) {
4801 msp = mga->mga_primary;
4804 * Even though we don't hold the ms_lock for the
4805 * primary metaslab, those fields should not
4806 * change while we hold the mg_lock. Thus it is
4807 * safe to make assertions on them.
4809 ASSERT(msp->ms_primary);
4810 ASSERT3S(msp->ms_allocator, ==, allocator);
4811 ASSERT(msp->ms_loaded);
4813 was_active = B_TRUE;
4814 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4815 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4816 mga->mga_secondary != NULL) {
4817 msp = mga->mga_secondary;
4820 * See comment above about the similar assertions
4821 * for the primary metaslab.
4823 ASSERT(!msp->ms_primary);
4824 ASSERT3S(msp->ms_allocator, ==, allocator);
4825 ASSERT(msp->ms_loaded);
4827 was_active = B_TRUE;
4828 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4829 } else {
4830 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4831 want_unique, asize, allocator, try_hard, zal,
4832 search, &was_active);
4835 mutex_exit(&mg->mg_lock);
4836 if (msp == NULL) {
4837 kmem_free(search, sizeof (*search));
4838 return (-1ULL);
4840 mutex_enter(&msp->ms_lock);
4842 metaslab_active_mask_verify(msp);
4845 * This code is disabled out because of issues with
4846 * tracepoints in non-gpl kernel modules.
4848 #if 0
4849 DTRACE_PROBE3(ms__activation__attempt,
4850 metaslab_t *, msp, uint64_t, activation_weight,
4851 boolean_t, was_active);
4852 #endif
4855 * Ensure that the metaslab we have selected is still
4856 * capable of handling our request. It's possible that
4857 * another thread may have changed the weight while we
4858 * were blocked on the metaslab lock. We check the
4859 * active status first to see if we need to set_selected_txg
4860 * a new metaslab.
4862 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4863 ASSERT3S(msp->ms_allocator, ==, -1);
4864 mutex_exit(&msp->ms_lock);
4865 continue;
4869 * If the metaslab was activated for another allocator
4870 * while we were waiting in the ms_lock above, or it's
4871 * a primary and we're seeking a secondary (or vice versa),
4872 * we go back and select a new metaslab.
4874 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4875 (msp->ms_allocator != -1) &&
4876 (msp->ms_allocator != allocator || ((activation_weight ==
4877 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4878 ASSERT(msp->ms_loaded);
4879 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4880 msp->ms_allocator != -1);
4881 mutex_exit(&msp->ms_lock);
4882 continue;
4886 * This metaslab was used for claiming regions allocated
4887 * by the ZIL during pool import. Once these regions are
4888 * claimed we don't need to keep the CLAIM bit set
4889 * anymore. Passivate this metaslab to zero its activation
4890 * mask.
4892 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4893 activation_weight != METASLAB_WEIGHT_CLAIM) {
4894 ASSERT(msp->ms_loaded);
4895 ASSERT3S(msp->ms_allocator, ==, -1);
4896 metaslab_passivate(msp, msp->ms_weight &
4897 ~METASLAB_WEIGHT_CLAIM);
4898 mutex_exit(&msp->ms_lock);
4899 continue;
4902 metaslab_set_selected_txg(msp, txg);
4904 int activation_error =
4905 metaslab_activate(msp, allocator, activation_weight);
4906 metaslab_active_mask_verify(msp);
4909 * If the metaslab was activated by another thread for
4910 * another allocator or activation_weight (EBUSY), or it
4911 * failed because another metaslab was assigned as primary
4912 * for this allocator (EEXIST) we continue using this
4913 * metaslab for our allocation, rather than going on to a
4914 * worse metaslab (we waited for that metaslab to be loaded
4915 * after all).
4917 * If the activation failed due to an I/O error or ENOSPC we
4918 * skip to the next metaslab.
4920 boolean_t activated;
4921 if (activation_error == 0) {
4922 activated = B_TRUE;
4923 } else if (activation_error == EBUSY ||
4924 activation_error == EEXIST) {
4925 activated = B_FALSE;
4926 } else {
4927 mutex_exit(&msp->ms_lock);
4928 continue;
4930 ASSERT(msp->ms_loaded);
4933 * Now that we have the lock, recheck to see if we should
4934 * continue to use this metaslab for this allocation. The
4935 * the metaslab is now loaded so metaslab_should_allocate()
4936 * can accurately determine if the allocation attempt should
4937 * proceed.
4939 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4940 /* Passivate this metaslab and select a new one. */
4941 metaslab_trace_add(zal, mg, msp, asize, d,
4942 TRACE_TOO_SMALL, allocator);
4943 goto next;
4947 * If this metaslab is currently condensing then pick again
4948 * as we can't manipulate this metaslab until it's committed
4949 * to disk. If this metaslab is being initialized, we shouldn't
4950 * allocate from it since the allocated region might be
4951 * overwritten after allocation.
4953 if (msp->ms_condensing) {
4954 metaslab_trace_add(zal, mg, msp, asize, d,
4955 TRACE_CONDENSING, allocator);
4956 if (activated) {
4957 metaslab_passivate(msp, msp->ms_weight &
4958 ~METASLAB_ACTIVE_MASK);
4960 mutex_exit(&msp->ms_lock);
4961 continue;
4962 } else if (msp->ms_disabled > 0) {
4963 metaslab_trace_add(zal, mg, msp, asize, d,
4964 TRACE_DISABLED, allocator);
4965 if (activated) {
4966 metaslab_passivate(msp, msp->ms_weight &
4967 ~METASLAB_ACTIVE_MASK);
4969 mutex_exit(&msp->ms_lock);
4970 continue;
4973 offset = metaslab_block_alloc(msp, asize, txg);
4974 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4976 if (offset != -1ULL) {
4977 /* Proactively passivate the metaslab, if needed */
4978 if (activated)
4979 metaslab_segment_may_passivate(msp);
4980 break;
4982 next:
4983 ASSERT(msp->ms_loaded);
4986 * This code is disabled out because of issues with
4987 * tracepoints in non-gpl kernel modules.
4989 #if 0
4990 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4991 uint64_t, asize);
4992 #endif
4995 * We were unable to allocate from this metaslab so determine
4996 * a new weight for this metaslab. Now that we have loaded
4997 * the metaslab we can provide a better hint to the metaslab
4998 * selector.
5000 * For space-based metaslabs, we use the maximum block size.
5001 * This information is only available when the metaslab
5002 * is loaded and is more accurate than the generic free
5003 * space weight that was calculated by metaslab_weight().
5004 * This information allows us to quickly compare the maximum
5005 * available allocation in the metaslab to the allocation
5006 * size being requested.
5008 * For segment-based metaslabs, determine the new weight
5009 * based on the highest bucket in the range tree. We
5010 * explicitly use the loaded segment weight (i.e. the range
5011 * tree histogram) since it contains the space that is
5012 * currently available for allocation and is accurate
5013 * even within a sync pass.
5015 uint64_t weight;
5016 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5017 weight = metaslab_largest_allocatable(msp);
5018 WEIGHT_SET_SPACEBASED(weight);
5019 } else {
5020 weight = metaslab_weight_from_range_tree(msp);
5023 if (activated) {
5024 metaslab_passivate(msp, weight);
5025 } else {
5027 * For the case where we use the metaslab that is
5028 * active for another allocator we want to make
5029 * sure that we retain the activation mask.
5031 * Note that we could attempt to use something like
5032 * metaslab_recalculate_weight_and_sort() that
5033 * retains the activation mask here. That function
5034 * uses metaslab_weight() to set the weight though
5035 * which is not as accurate as the calculations
5036 * above.
5038 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5039 metaslab_group_sort(mg, msp, weight);
5041 metaslab_active_mask_verify(msp);
5044 * We have just failed an allocation attempt, check
5045 * that metaslab_should_allocate() agrees. Otherwise,
5046 * we may end up in an infinite loop retrying the same
5047 * metaslab.
5049 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5051 mutex_exit(&msp->ms_lock);
5053 mutex_exit(&msp->ms_lock);
5054 kmem_free(search, sizeof (*search));
5055 return (offset);
5058 static uint64_t
5059 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5060 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5061 int allocator, boolean_t try_hard)
5063 uint64_t offset;
5064 ASSERT(mg->mg_initialized);
5066 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5067 dva, d, allocator, try_hard);
5069 mutex_enter(&mg->mg_lock);
5070 if (offset == -1ULL) {
5071 mg->mg_failed_allocations++;
5072 metaslab_trace_add(zal, mg, NULL, asize, d,
5073 TRACE_GROUP_FAILURE, allocator);
5074 if (asize == SPA_GANGBLOCKSIZE) {
5076 * This metaslab group was unable to allocate
5077 * the minimum gang block size so it must be out of
5078 * space. We must notify the allocation throttle
5079 * to start skipping allocation attempts to this
5080 * metaslab group until more space becomes available.
5081 * Note: this failure cannot be caused by the
5082 * allocation throttle since the allocation throttle
5083 * is only responsible for skipping devices and
5084 * not failing block allocations.
5086 mg->mg_no_free_space = B_TRUE;
5089 mg->mg_allocations++;
5090 mutex_exit(&mg->mg_lock);
5091 return (offset);
5095 * Allocate a block for the specified i/o.
5098 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5099 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5100 zio_alloc_list_t *zal, int allocator)
5102 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5103 metaslab_group_t *mg, *rotor;
5104 vdev_t *vd;
5105 boolean_t try_hard = B_FALSE;
5107 ASSERT(!DVA_IS_VALID(&dva[d]));
5110 * For testing, make some blocks above a certain size be gang blocks.
5111 * This will result in more split blocks when using device removal,
5112 * and a large number of split blocks coupled with ztest-induced
5113 * damage can result in extremely long reconstruction times. This
5114 * will also test spilling from special to normal.
5116 if (psize >= metaslab_force_ganging &&
5117 metaslab_force_ganging_pct > 0 &&
5118 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5119 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5120 allocator);
5121 return (SET_ERROR(ENOSPC));
5125 * Start at the rotor and loop through all mgs until we find something.
5126 * Note that there's no locking on mca_rotor or mca_aliquot because
5127 * nothing actually breaks if we miss a few updates -- we just won't
5128 * allocate quite as evenly. It all balances out over time.
5130 * If we are doing ditto or log blocks, try to spread them across
5131 * consecutive vdevs. If we're forced to reuse a vdev before we've
5132 * allocated all of our ditto blocks, then try and spread them out on
5133 * that vdev as much as possible. If it turns out to not be possible,
5134 * gradually lower our standards until anything becomes acceptable.
5135 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5136 * gives us hope of containing our fault domains to something we're
5137 * able to reason about. Otherwise, any two top-level vdev failures
5138 * will guarantee the loss of data. With consecutive allocation,
5139 * only two adjacent top-level vdev failures will result in data loss.
5141 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5142 * ourselves on the same vdev as our gang block header. That
5143 * way, we can hope for locality in vdev_cache, plus it makes our
5144 * fault domains something tractable.
5146 if (hintdva) {
5147 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5150 * It's possible the vdev we're using as the hint no
5151 * longer exists or its mg has been closed (e.g. by
5152 * device removal). Consult the rotor when
5153 * all else fails.
5155 if (vd != NULL && vd->vdev_mg != NULL) {
5156 mg = vdev_get_mg(vd, mc);
5158 if (flags & METASLAB_HINTBP_AVOID)
5159 mg = mg->mg_next;
5160 } else {
5161 mg = mca->mca_rotor;
5163 } else if (d != 0) {
5164 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5165 mg = vd->vdev_mg->mg_next;
5166 } else {
5167 ASSERT(mca->mca_rotor != NULL);
5168 mg = mca->mca_rotor;
5172 * If the hint put us into the wrong metaslab class, or into a
5173 * metaslab group that has been passivated, just follow the rotor.
5175 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5176 mg = mca->mca_rotor;
5178 rotor = mg;
5179 top:
5180 do {
5181 boolean_t allocatable;
5183 ASSERT(mg->mg_activation_count == 1);
5184 vd = mg->mg_vd;
5187 * Don't allocate from faulted devices.
5189 if (try_hard) {
5190 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5191 allocatable = vdev_allocatable(vd);
5192 spa_config_exit(spa, SCL_ZIO, FTAG);
5193 } else {
5194 allocatable = vdev_allocatable(vd);
5198 * Determine if the selected metaslab group is eligible
5199 * for allocations. If we're ganging then don't allow
5200 * this metaslab group to skip allocations since that would
5201 * inadvertently return ENOSPC and suspend the pool
5202 * even though space is still available.
5204 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5205 allocatable = metaslab_group_allocatable(mg, rotor,
5206 flags, psize, allocator, d);
5209 if (!allocatable) {
5210 metaslab_trace_add(zal, mg, NULL, psize, d,
5211 TRACE_NOT_ALLOCATABLE, allocator);
5212 goto next;
5215 ASSERT(mg->mg_initialized);
5218 * Avoid writing single-copy data to an unhealthy,
5219 * non-redundant vdev, unless we've already tried all
5220 * other vdevs.
5222 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5223 d == 0 && !try_hard && vd->vdev_children == 0) {
5224 metaslab_trace_add(zal, mg, NULL, psize, d,
5225 TRACE_VDEV_ERROR, allocator);
5226 goto next;
5229 ASSERT(mg->mg_class == mc);
5231 uint64_t asize = vdev_psize_to_asize(vd, psize);
5232 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5235 * If we don't need to try hard, then require that the
5236 * block be on a different metaslab from any other DVAs
5237 * in this BP (unique=true). If we are trying hard, then
5238 * allow any metaslab to be used (unique=false).
5240 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5241 !try_hard, dva, d, allocator, try_hard);
5243 if (offset != -1ULL) {
5245 * If we've just selected this metaslab group,
5246 * figure out whether the corresponding vdev is
5247 * over- or under-used relative to the pool,
5248 * and set an allocation bias to even it out.
5250 * Bias is also used to compensate for unequally
5251 * sized vdevs so that space is allocated fairly.
5253 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5254 vdev_stat_t *vs = &vd->vdev_stat;
5255 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5256 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5257 int64_t ratio;
5260 * Calculate how much more or less we should
5261 * try to allocate from this device during
5262 * this iteration around the rotor.
5264 * This basically introduces a zero-centered
5265 * bias towards the devices with the most
5266 * free space, while compensating for vdev
5267 * size differences.
5269 * Examples:
5270 * vdev V1 = 16M/128M
5271 * vdev V2 = 16M/128M
5272 * ratio(V1) = 100% ratio(V2) = 100%
5274 * vdev V1 = 16M/128M
5275 * vdev V2 = 64M/128M
5276 * ratio(V1) = 127% ratio(V2) = 72%
5278 * vdev V1 = 16M/128M
5279 * vdev V2 = 64M/512M
5280 * ratio(V1) = 40% ratio(V2) = 160%
5282 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5283 (mc_free + 1);
5284 mg->mg_bias = ((ratio - 100) *
5285 (int64_t)mg->mg_aliquot) / 100;
5286 } else if (!metaslab_bias_enabled) {
5287 mg->mg_bias = 0;
5290 if ((flags & METASLAB_ZIL) ||
5291 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5292 mg->mg_aliquot + mg->mg_bias) {
5293 mca->mca_rotor = mg->mg_next;
5294 mca->mca_aliquot = 0;
5297 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5298 DVA_SET_OFFSET(&dva[d], offset);
5299 DVA_SET_GANG(&dva[d],
5300 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5301 DVA_SET_ASIZE(&dva[d], asize);
5303 return (0);
5305 next:
5306 mca->mca_rotor = mg->mg_next;
5307 mca->mca_aliquot = 0;
5308 } while ((mg = mg->mg_next) != rotor);
5311 * If we haven't tried hard, perhaps do so now.
5313 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5314 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5315 psize <= 1 << spa->spa_min_ashift)) {
5316 METASLABSTAT_BUMP(metaslabstat_try_hard);
5317 try_hard = B_TRUE;
5318 goto top;
5321 memset(&dva[d], 0, sizeof (dva_t));
5323 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5324 return (SET_ERROR(ENOSPC));
5327 void
5328 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5329 boolean_t checkpoint)
5331 metaslab_t *msp;
5332 spa_t *spa = vd->vdev_spa;
5334 ASSERT(vdev_is_concrete(vd));
5335 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5336 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5338 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5340 VERIFY(!msp->ms_condensing);
5341 VERIFY3U(offset, >=, msp->ms_start);
5342 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5343 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5344 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5346 metaslab_check_free_impl(vd, offset, asize);
5348 mutex_enter(&msp->ms_lock);
5349 if (range_tree_is_empty(msp->ms_freeing) &&
5350 range_tree_is_empty(msp->ms_checkpointing)) {
5351 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5354 if (checkpoint) {
5355 ASSERT(spa_has_checkpoint(spa));
5356 range_tree_add(msp->ms_checkpointing, offset, asize);
5357 } else {
5358 range_tree_add(msp->ms_freeing, offset, asize);
5360 mutex_exit(&msp->ms_lock);
5363 void
5364 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5365 uint64_t size, void *arg)
5367 (void) inner_offset;
5368 boolean_t *checkpoint = arg;
5370 ASSERT3P(checkpoint, !=, NULL);
5372 if (vd->vdev_ops->vdev_op_remap != NULL)
5373 vdev_indirect_mark_obsolete(vd, offset, size);
5374 else
5375 metaslab_free_impl(vd, offset, size, *checkpoint);
5378 static void
5379 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5380 boolean_t checkpoint)
5382 spa_t *spa = vd->vdev_spa;
5384 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5386 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5387 return;
5389 if (spa->spa_vdev_removal != NULL &&
5390 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5391 vdev_is_concrete(vd)) {
5393 * Note: we check if the vdev is concrete because when
5394 * we complete the removal, we first change the vdev to be
5395 * an indirect vdev (in open context), and then (in syncing
5396 * context) clear spa_vdev_removal.
5398 free_from_removing_vdev(vd, offset, size);
5399 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5400 vdev_indirect_mark_obsolete(vd, offset, size);
5401 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5402 metaslab_free_impl_cb, &checkpoint);
5403 } else {
5404 metaslab_free_concrete(vd, offset, size, checkpoint);
5408 typedef struct remap_blkptr_cb_arg {
5409 blkptr_t *rbca_bp;
5410 spa_remap_cb_t rbca_cb;
5411 vdev_t *rbca_remap_vd;
5412 uint64_t rbca_remap_offset;
5413 void *rbca_cb_arg;
5414 } remap_blkptr_cb_arg_t;
5416 static void
5417 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5418 uint64_t size, void *arg)
5420 remap_blkptr_cb_arg_t *rbca = arg;
5421 blkptr_t *bp = rbca->rbca_bp;
5423 /* We can not remap split blocks. */
5424 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5425 return;
5426 ASSERT0(inner_offset);
5428 if (rbca->rbca_cb != NULL) {
5430 * At this point we know that we are not handling split
5431 * blocks and we invoke the callback on the previous
5432 * vdev which must be indirect.
5434 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5436 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5437 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5439 /* set up remap_blkptr_cb_arg for the next call */
5440 rbca->rbca_remap_vd = vd;
5441 rbca->rbca_remap_offset = offset;
5445 * The phys birth time is that of dva[0]. This ensures that we know
5446 * when each dva was written, so that resilver can determine which
5447 * blocks need to be scrubbed (i.e. those written during the time
5448 * the vdev was offline). It also ensures that the key used in
5449 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5450 * we didn't change the phys_birth, a lookup in the ARC for a
5451 * remapped BP could find the data that was previously stored at
5452 * this vdev + offset.
5454 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5455 DVA_GET_VDEV(&bp->blk_dva[0]));
5456 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5457 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5458 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5460 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5461 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5465 * If the block pointer contains any indirect DVAs, modify them to refer to
5466 * concrete DVAs. Note that this will sometimes not be possible, leaving
5467 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5468 * segments in the mapping (i.e. it is a "split block").
5470 * If the BP was remapped, calls the callback on the original dva (note the
5471 * callback can be called multiple times if the original indirect DVA refers
5472 * to another indirect DVA, etc).
5474 * Returns TRUE if the BP was remapped.
5476 boolean_t
5477 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5479 remap_blkptr_cb_arg_t rbca;
5481 if (!zfs_remap_blkptr_enable)
5482 return (B_FALSE);
5484 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5485 return (B_FALSE);
5488 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5489 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5491 if (BP_GET_DEDUP(bp))
5492 return (B_FALSE);
5495 * Gang blocks can not be remapped, because
5496 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5497 * the BP used to read the gang block header (GBH) being the same
5498 * as the DVA[0] that we allocated for the GBH.
5500 if (BP_IS_GANG(bp))
5501 return (B_FALSE);
5504 * Embedded BP's have no DVA to remap.
5506 if (BP_GET_NDVAS(bp) < 1)
5507 return (B_FALSE);
5510 * Note: we only remap dva[0]. If we remapped other dvas, we
5511 * would no longer know what their phys birth txg is.
5513 dva_t *dva = &bp->blk_dva[0];
5515 uint64_t offset = DVA_GET_OFFSET(dva);
5516 uint64_t size = DVA_GET_ASIZE(dva);
5517 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5519 if (vd->vdev_ops->vdev_op_remap == NULL)
5520 return (B_FALSE);
5522 rbca.rbca_bp = bp;
5523 rbca.rbca_cb = callback;
5524 rbca.rbca_remap_vd = vd;
5525 rbca.rbca_remap_offset = offset;
5526 rbca.rbca_cb_arg = arg;
5529 * remap_blkptr_cb() will be called in order for each level of
5530 * indirection, until a concrete vdev is reached or a split block is
5531 * encountered. old_vd and old_offset are updated within the callback
5532 * as we go from the one indirect vdev to the next one (either concrete
5533 * or indirect again) in that order.
5535 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5537 /* Check if the DVA wasn't remapped because it is a split block */
5538 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5539 return (B_FALSE);
5541 return (B_TRUE);
5545 * Undo the allocation of a DVA which happened in the given transaction group.
5547 void
5548 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5550 metaslab_t *msp;
5551 vdev_t *vd;
5552 uint64_t vdev = DVA_GET_VDEV(dva);
5553 uint64_t offset = DVA_GET_OFFSET(dva);
5554 uint64_t size = DVA_GET_ASIZE(dva);
5556 ASSERT(DVA_IS_VALID(dva));
5557 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5559 if (txg > spa_freeze_txg(spa))
5560 return;
5562 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5563 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5564 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5565 (u_longlong_t)vdev, (u_longlong_t)offset,
5566 (u_longlong_t)size);
5567 return;
5570 ASSERT(!vd->vdev_removing);
5571 ASSERT(vdev_is_concrete(vd));
5572 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5573 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5575 if (DVA_GET_GANG(dva))
5576 size = vdev_gang_header_asize(vd);
5578 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5580 mutex_enter(&msp->ms_lock);
5581 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5582 offset, size);
5583 msp->ms_allocating_total -= size;
5585 VERIFY(!msp->ms_condensing);
5586 VERIFY3U(offset, >=, msp->ms_start);
5587 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5588 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5589 msp->ms_size);
5590 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5591 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5592 range_tree_add(msp->ms_allocatable, offset, size);
5593 mutex_exit(&msp->ms_lock);
5597 * Free the block represented by the given DVA.
5599 void
5600 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5602 uint64_t vdev = DVA_GET_VDEV(dva);
5603 uint64_t offset = DVA_GET_OFFSET(dva);
5604 uint64_t size = DVA_GET_ASIZE(dva);
5605 vdev_t *vd = vdev_lookup_top(spa, vdev);
5607 ASSERT(DVA_IS_VALID(dva));
5608 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5610 if (DVA_GET_GANG(dva)) {
5611 size = vdev_gang_header_asize(vd);
5614 metaslab_free_impl(vd, offset, size, checkpoint);
5618 * Reserve some allocation slots. The reservation system must be called
5619 * before we call into the allocator. If there aren't any available slots
5620 * then the I/O will be throttled until an I/O completes and its slots are
5621 * freed up. The function returns true if it was successful in placing
5622 * the reservation.
5624 boolean_t
5625 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5626 zio_t *zio, int flags)
5628 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5629 uint64_t max = mca->mca_alloc_max_slots;
5631 ASSERT(mc->mc_alloc_throttle_enabled);
5632 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5633 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5635 * The potential race between _count() and _add() is covered
5636 * by the allocator lock in most cases, or irrelevant due to
5637 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5638 * But even if we assume some other non-existing scenario, the
5639 * worst that can happen is few more I/Os get to allocation
5640 * earlier, that is not a problem.
5642 * We reserve the slots individually so that we can unreserve
5643 * them individually when an I/O completes.
5645 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5646 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5647 return (B_TRUE);
5649 return (B_FALSE);
5652 void
5653 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5654 int allocator, zio_t *zio)
5656 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5658 ASSERT(mc->mc_alloc_throttle_enabled);
5659 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5662 static int
5663 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5664 uint64_t txg)
5666 metaslab_t *msp;
5667 spa_t *spa = vd->vdev_spa;
5668 int error = 0;
5670 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5671 return (SET_ERROR(ENXIO));
5673 ASSERT3P(vd->vdev_ms, !=, NULL);
5674 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5676 mutex_enter(&msp->ms_lock);
5678 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5679 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5680 if (error == EBUSY) {
5681 ASSERT(msp->ms_loaded);
5682 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5683 error = 0;
5687 if (error == 0 &&
5688 !range_tree_contains(msp->ms_allocatable, offset, size))
5689 error = SET_ERROR(ENOENT);
5691 if (error || txg == 0) { /* txg == 0 indicates dry run */
5692 mutex_exit(&msp->ms_lock);
5693 return (error);
5696 VERIFY(!msp->ms_condensing);
5697 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5698 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5699 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5700 msp->ms_size);
5701 range_tree_remove(msp->ms_allocatable, offset, size);
5702 range_tree_clear(msp->ms_trim, offset, size);
5704 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5705 metaslab_class_t *mc = msp->ms_group->mg_class;
5706 multilist_sublist_t *mls =
5707 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5708 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5709 msp->ms_selected_txg = txg;
5710 multilist_sublist_insert_head(mls, msp);
5712 multilist_sublist_unlock(mls);
5714 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5715 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5716 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5717 offset, size);
5718 msp->ms_allocating_total += size;
5721 mutex_exit(&msp->ms_lock);
5723 return (0);
5726 typedef struct metaslab_claim_cb_arg_t {
5727 uint64_t mcca_txg;
5728 int mcca_error;
5729 } metaslab_claim_cb_arg_t;
5731 static void
5732 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5733 uint64_t size, void *arg)
5735 (void) inner_offset;
5736 metaslab_claim_cb_arg_t *mcca_arg = arg;
5738 if (mcca_arg->mcca_error == 0) {
5739 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5740 size, mcca_arg->mcca_txg);
5745 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5747 if (vd->vdev_ops->vdev_op_remap != NULL) {
5748 metaslab_claim_cb_arg_t arg;
5751 * Only zdb(8) can claim on indirect vdevs. This is used
5752 * to detect leaks of mapped space (that are not accounted
5753 * for in the obsolete counts, spacemap, or bpobj).
5755 ASSERT(!spa_writeable(vd->vdev_spa));
5756 arg.mcca_error = 0;
5757 arg.mcca_txg = txg;
5759 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5760 metaslab_claim_impl_cb, &arg);
5762 if (arg.mcca_error == 0) {
5763 arg.mcca_error = metaslab_claim_concrete(vd,
5764 offset, size, txg);
5766 return (arg.mcca_error);
5767 } else {
5768 return (metaslab_claim_concrete(vd, offset, size, txg));
5773 * Intent log support: upon opening the pool after a crash, notify the SPA
5774 * of blocks that the intent log has allocated for immediate write, but
5775 * which are still considered free by the SPA because the last transaction
5776 * group didn't commit yet.
5778 static int
5779 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5781 uint64_t vdev = DVA_GET_VDEV(dva);
5782 uint64_t offset = DVA_GET_OFFSET(dva);
5783 uint64_t size = DVA_GET_ASIZE(dva);
5784 vdev_t *vd;
5786 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5787 return (SET_ERROR(ENXIO));
5790 ASSERT(DVA_IS_VALID(dva));
5792 if (DVA_GET_GANG(dva))
5793 size = vdev_gang_header_asize(vd);
5795 return (metaslab_claim_impl(vd, offset, size, txg));
5799 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5800 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5801 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5803 dva_t *dva = bp->blk_dva;
5804 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5805 int error = 0;
5807 ASSERT(bp->blk_birth == 0);
5808 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5810 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5812 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5813 /* no vdevs in this class */
5814 spa_config_exit(spa, SCL_ALLOC, FTAG);
5815 return (SET_ERROR(ENOSPC));
5818 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5819 ASSERT(BP_GET_NDVAS(bp) == 0);
5820 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5821 ASSERT3P(zal, !=, NULL);
5823 for (int d = 0; d < ndvas; d++) {
5824 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5825 txg, flags, zal, allocator);
5826 if (error != 0) {
5827 for (d--; d >= 0; d--) {
5828 metaslab_unalloc_dva(spa, &dva[d], txg);
5829 metaslab_group_alloc_decrement(spa,
5830 DVA_GET_VDEV(&dva[d]), zio, flags,
5831 allocator, B_FALSE);
5832 memset(&dva[d], 0, sizeof (dva_t));
5834 spa_config_exit(spa, SCL_ALLOC, FTAG);
5835 return (error);
5836 } else {
5838 * Update the metaslab group's queue depth
5839 * based on the newly allocated dva.
5841 metaslab_group_alloc_increment(spa,
5842 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5845 ASSERT(error == 0);
5846 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5848 spa_config_exit(spa, SCL_ALLOC, FTAG);
5850 BP_SET_BIRTH(bp, txg, 0);
5852 return (0);
5855 void
5856 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5858 const dva_t *dva = bp->blk_dva;
5859 int ndvas = BP_GET_NDVAS(bp);
5861 ASSERT(!BP_IS_HOLE(bp));
5862 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5865 * If we have a checkpoint for the pool we need to make sure that
5866 * the blocks that we free that are part of the checkpoint won't be
5867 * reused until the checkpoint is discarded or we revert to it.
5869 * The checkpoint flag is passed down the metaslab_free code path
5870 * and is set whenever we want to add a block to the checkpoint's
5871 * accounting. That is, we "checkpoint" blocks that existed at the
5872 * time the checkpoint was created and are therefore referenced by
5873 * the checkpointed uberblock.
5875 * Note that, we don't checkpoint any blocks if the current
5876 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5877 * normally as they will be referenced by the checkpointed uberblock.
5879 boolean_t checkpoint = B_FALSE;
5880 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5881 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5883 * At this point, if the block is part of the checkpoint
5884 * there is no way it was created in the current txg.
5886 ASSERT(!now);
5887 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5888 checkpoint = B_TRUE;
5891 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5893 for (int d = 0; d < ndvas; d++) {
5894 if (now) {
5895 metaslab_unalloc_dva(spa, &dva[d], txg);
5896 } else {
5897 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5898 metaslab_free_dva(spa, &dva[d], checkpoint);
5902 spa_config_exit(spa, SCL_FREE, FTAG);
5906 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5908 const dva_t *dva = bp->blk_dva;
5909 int ndvas = BP_GET_NDVAS(bp);
5910 int error = 0;
5912 ASSERT(!BP_IS_HOLE(bp));
5914 if (txg != 0) {
5916 * First do a dry run to make sure all DVAs are claimable,
5917 * so we don't have to unwind from partial failures below.
5919 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5920 return (error);
5923 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5925 for (int d = 0; d < ndvas; d++) {
5926 error = metaslab_claim_dva(spa, &dva[d], txg);
5927 if (error != 0)
5928 break;
5931 spa_config_exit(spa, SCL_ALLOC, FTAG);
5933 ASSERT(error == 0 || txg == 0);
5935 return (error);
5938 static void
5939 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5940 uint64_t size, void *arg)
5942 (void) inner, (void) arg;
5944 if (vd->vdev_ops == &vdev_indirect_ops)
5945 return;
5947 metaslab_check_free_impl(vd, offset, size);
5950 static void
5951 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5953 metaslab_t *msp;
5954 spa_t *spa __maybe_unused = vd->vdev_spa;
5956 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5957 return;
5959 if (vd->vdev_ops->vdev_op_remap != NULL) {
5960 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5961 metaslab_check_free_impl_cb, NULL);
5962 return;
5965 ASSERT(vdev_is_concrete(vd));
5966 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5967 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5969 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5971 mutex_enter(&msp->ms_lock);
5972 if (msp->ms_loaded) {
5973 range_tree_verify_not_present(msp->ms_allocatable,
5974 offset, size);
5978 * Check all segments that currently exist in the freeing pipeline.
5980 * It would intuitively make sense to also check the current allocating
5981 * tree since metaslab_unalloc_dva() exists for extents that are
5982 * allocated and freed in the same sync pass within the same txg.
5983 * Unfortunately there are places (e.g. the ZIL) where we allocate a
5984 * segment but then we free part of it within the same txg
5985 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
5986 * current allocating tree.
5988 range_tree_verify_not_present(msp->ms_freeing, offset, size);
5989 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
5990 range_tree_verify_not_present(msp->ms_freed, offset, size);
5991 for (int j = 0; j < TXG_DEFER_SIZE; j++)
5992 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
5993 range_tree_verify_not_present(msp->ms_trim, offset, size);
5994 mutex_exit(&msp->ms_lock);
5997 void
5998 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6000 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6001 return;
6003 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6004 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6005 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6006 vdev_t *vd = vdev_lookup_top(spa, vdev);
6007 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6008 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6010 if (DVA_GET_GANG(&bp->blk_dva[i]))
6011 size = vdev_gang_header_asize(vd);
6013 ASSERT3P(vd, !=, NULL);
6015 metaslab_check_free_impl(vd, offset, size);
6017 spa_config_exit(spa, SCL_VDEV, FTAG);
6020 static void
6021 metaslab_group_disable_wait(metaslab_group_t *mg)
6023 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6024 while (mg->mg_disabled_updating) {
6025 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6029 static void
6030 metaslab_group_disabled_increment(metaslab_group_t *mg)
6032 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6033 ASSERT(mg->mg_disabled_updating);
6035 while (mg->mg_ms_disabled >= max_disabled_ms) {
6036 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6038 mg->mg_ms_disabled++;
6039 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6043 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6044 * We must also track how many metaslabs are currently disabled within a
6045 * metaslab group and limit them to prevent allocation failures from
6046 * occurring because all metaslabs are disabled.
6048 void
6049 metaslab_disable(metaslab_t *msp)
6051 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6052 metaslab_group_t *mg = msp->ms_group;
6054 mutex_enter(&mg->mg_ms_disabled_lock);
6057 * To keep an accurate count of how many threads have disabled
6058 * a specific metaslab group, we only allow one thread to mark
6059 * the metaslab group at a time. This ensures that the value of
6060 * ms_disabled will be accurate when we decide to mark a metaslab
6061 * group as disabled. To do this we force all other threads
6062 * to wait till the metaslab's mg_disabled_updating flag is no
6063 * longer set.
6065 metaslab_group_disable_wait(mg);
6066 mg->mg_disabled_updating = B_TRUE;
6067 if (msp->ms_disabled == 0) {
6068 metaslab_group_disabled_increment(mg);
6070 mutex_enter(&msp->ms_lock);
6071 msp->ms_disabled++;
6072 mutex_exit(&msp->ms_lock);
6074 mg->mg_disabled_updating = B_FALSE;
6075 cv_broadcast(&mg->mg_ms_disabled_cv);
6076 mutex_exit(&mg->mg_ms_disabled_lock);
6079 void
6080 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6082 metaslab_group_t *mg = msp->ms_group;
6083 spa_t *spa = mg->mg_vd->vdev_spa;
6086 * Wait for the outstanding IO to be synced to prevent newly
6087 * allocated blocks from being overwritten. This used by
6088 * initialize and TRIM which are modifying unallocated space.
6090 if (sync)
6091 txg_wait_synced(spa_get_dsl(spa), 0);
6093 mutex_enter(&mg->mg_ms_disabled_lock);
6094 mutex_enter(&msp->ms_lock);
6095 if (--msp->ms_disabled == 0) {
6096 mg->mg_ms_disabled--;
6097 cv_broadcast(&mg->mg_ms_disabled_cv);
6098 if (unload)
6099 metaslab_unload(msp);
6101 mutex_exit(&msp->ms_lock);
6102 mutex_exit(&mg->mg_ms_disabled_lock);
6105 void
6106 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6108 ms->ms_unflushed_dirty = dirty;
6111 static void
6112 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6114 vdev_t *vd = ms->ms_group->mg_vd;
6115 spa_t *spa = vd->vdev_spa;
6116 objset_t *mos = spa_meta_objset(spa);
6118 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6120 metaslab_unflushed_phys_t entry = {
6121 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6123 uint64_t entry_size = sizeof (entry);
6124 uint64_t entry_offset = ms->ms_id * entry_size;
6126 uint64_t object = 0;
6127 int err = zap_lookup(mos, vd->vdev_top_zap,
6128 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6129 &object);
6130 if (err == ENOENT) {
6131 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6132 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6133 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6134 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6135 &object, tx));
6136 } else {
6137 VERIFY0(err);
6140 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6141 &entry, tx);
6144 void
6145 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6147 ms->ms_unflushed_txg = txg;
6148 metaslab_update_ondisk_flush_data(ms, tx);
6151 boolean_t
6152 metaslab_unflushed_dirty(metaslab_t *ms)
6154 return (ms->ms_unflushed_dirty);
6157 uint64_t
6158 metaslab_unflushed_txg(metaslab_t *ms)
6160 return (ms->ms_unflushed_txg);
6163 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6164 "Allocation granularity (a.k.a. stripe size)");
6166 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6167 "Load all metaslabs when pool is first opened");
6169 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6170 "Prevent metaslabs from being unloaded");
6172 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6173 "Preload potential metaslabs during reassessment");
6175 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6176 "Max number of metaslabs per group to preload");
6178 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6179 "Delay in txgs after metaslab was last used before unloading");
6181 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6182 "Delay in milliseconds after metaslab was last used before unloading");
6184 /* BEGIN CSTYLED */
6185 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6186 "Percentage of metaslab group size that should be free to make it "
6187 "eligible for allocation");
6189 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6190 "Percentage of metaslab group size that should be considered eligible "
6191 "for allocations unless all metaslab groups within the metaslab class "
6192 "have also crossed this threshold");
6194 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6195 ZMOD_RW,
6196 "Use the fragmentation metric to prefer less fragmented metaslabs");
6197 /* END CSTYLED */
6199 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6200 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6202 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6203 "Prefer metaslabs with lower LBAs");
6205 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6206 "Enable metaslab group biasing");
6208 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6209 ZMOD_RW, "Enable segment-based metaslab selection");
6211 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6212 "Segment-based metaslab selection maximum buckets before switching");
6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6215 "Blocks larger than this size are sometimes forced to be gang blocks");
6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6218 "Percentage of large blocks that will be forced to be gang blocks");
6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6221 "Max distance (bytes) to search forward before using size tree");
6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6224 "When looking in size tree, use largest segment instead of exact fit");
6226 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6227 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6229 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6230 "Percentage of memory that can be used to store metaslab range trees");
6232 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6233 ZMOD_RW, "Try hard to allocate before ganging");
6235 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6236 "Normally only consider this many of the best metaslabs in each vdev");