4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
29 * Virtual Device Labels
30 * ---------------------
32 * The vdev label serves several distinct purposes:
34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
35 * identity within the pool.
37 * 2. Verify that all the devices given in a configuration are present
40 * 3. Determine the uberblock for the pool.
42 * 4. In case of an import operation, determine the configuration of the
43 * toplevel vdev of which it is a part.
45 * 5. If an import operation cannot find all the devices in the pool,
46 * provide enough information to the administrator to determine which
47 * devices are missing.
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases. The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point. To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced. Assuming we have
65 * labels and an uberblock with the following transaction groups:
68 * +------+ +------+ +------+
70 * | t10 | | t10 | | t10 |
72 * +------+ +------+ +------+
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10). Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
78 * In order to identify which labels are valid, the labels are written in the
81 * 1. For each vdev, update 'L1' to the new label
82 * 2. Update the uberblock
83 * 3. For each vdev, update 'L2' to the new label
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group. If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid. If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
92 * Another added complexity is that not every label is updated when the config
93 * is synced. If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool. This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure. The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information. It is
108 * described in more detail below.
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated. When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
116 * Configuration Information
117 * -------------------------
119 * The nvlist describing the pool and vdev contains the following elements:
121 * version ZFS on-disk version
124 * txg Transaction group in which this label was written
125 * pool_guid Unique identifier for this pool
126 * vdev_tree An nvlist describing vdev tree.
128 * An nvlist of the features necessary for reading the MOS.
130 * Each leaf device label also contains the following:
132 * top_guid Unique ID for top-level vdev in which this is contained
133 * guid Unique ID for the leaf vdev
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
138 #include <sys/zfs_context.h>
140 #include <sys/spa_impl.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_draid.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
150 #include <sys/dsl_scan.h>
152 #include <sys/fs/zfs.h>
153 #include <sys/byteorder.h>
154 #include <sys/zfs_bootenv.h>
157 * Basic routines to read and write from a vdev label.
158 * Used throughout the rest of this file.
161 vdev_label_offset(uint64_t psize
, int l
, uint64_t offset
)
163 ASSERT(offset
< sizeof (vdev_label_t
));
164 ASSERT(P2PHASE_TYPED(psize
, sizeof (vdev_label_t
), uint64_t) == 0);
166 return (offset
+ l
* sizeof (vdev_label_t
) + (l
< VDEV_LABELS
/ 2 ?
167 0 : psize
- VDEV_LABELS
* sizeof (vdev_label_t
)));
171 * Returns back the vdev label associated with the passed in offset.
174 vdev_label_number(uint64_t psize
, uint64_t offset
)
178 if (offset
>= psize
- VDEV_LABEL_END_SIZE
) {
179 offset
-= psize
- VDEV_LABEL_END_SIZE
;
180 offset
+= (VDEV_LABELS
/ 2) * sizeof (vdev_label_t
);
182 l
= offset
/ sizeof (vdev_label_t
);
183 return (l
< VDEV_LABELS
? l
: -1);
187 vdev_label_read(zio_t
*zio
, vdev_t
*vd
, int l
, abd_t
*buf
, uint64_t offset
,
188 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
191 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_READER
) == SCL_STATE
||
192 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_WRITER
) == SCL_STATE
);
193 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
195 zio_nowait(zio_read_phys(zio
, vd
,
196 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
197 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
198 ZIO_PRIORITY_SYNC_READ
, flags
, B_TRUE
));
202 vdev_label_write(zio_t
*zio
, vdev_t
*vd
, int l
, abd_t
*buf
, uint64_t offset
,
203 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
206 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_READER
) == SCL_STATE
||
207 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_WRITER
) == SCL_STATE
);
208 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
210 zio_nowait(zio_write_phys(zio
, vd
,
211 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
212 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
213 ZIO_PRIORITY_SYNC_WRITE
, flags
, B_TRUE
));
217 * Generate the nvlist representing this vdev's stats
220 vdev_config_generate_stats(vdev_t
*vd
, nvlist_t
*nv
)
226 vs
= kmem_alloc(sizeof (*vs
), KM_SLEEP
);
227 vsx
= kmem_alloc(sizeof (*vsx
), KM_SLEEP
);
229 vdev_get_stats_ex(vd
, vs
, vsx
);
230 fnvlist_add_uint64_array(nv
, ZPOOL_CONFIG_VDEV_STATS
,
231 (uint64_t *)vs
, sizeof (*vs
) / sizeof (uint64_t));
234 * Add extended stats into a special extended stats nvlist. This keeps
235 * all the extended stats nicely grouped together. The extended stats
236 * nvlist is then added to the main nvlist.
238 nvx
= fnvlist_alloc();
240 /* ZIOs in flight to disk */
241 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE
,
242 vsx
->vsx_active_queue
[ZIO_PRIORITY_SYNC_READ
]);
244 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE
,
245 vsx
->vsx_active_queue
[ZIO_PRIORITY_SYNC_WRITE
]);
247 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE
,
248 vsx
->vsx_active_queue
[ZIO_PRIORITY_ASYNC_READ
]);
250 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE
,
251 vsx
->vsx_active_queue
[ZIO_PRIORITY_ASYNC_WRITE
]);
253 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE
,
254 vsx
->vsx_active_queue
[ZIO_PRIORITY_SCRUB
]);
256 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE
,
257 vsx
->vsx_active_queue
[ZIO_PRIORITY_TRIM
]);
259 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE
,
260 vsx
->vsx_active_queue
[ZIO_PRIORITY_REBUILD
]);
263 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE
,
264 vsx
->vsx_pend_queue
[ZIO_PRIORITY_SYNC_READ
]);
266 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE
,
267 vsx
->vsx_pend_queue
[ZIO_PRIORITY_SYNC_WRITE
]);
269 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE
,
270 vsx
->vsx_pend_queue
[ZIO_PRIORITY_ASYNC_READ
]);
272 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE
,
273 vsx
->vsx_pend_queue
[ZIO_PRIORITY_ASYNC_WRITE
]);
275 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE
,
276 vsx
->vsx_pend_queue
[ZIO_PRIORITY_SCRUB
]);
278 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE
,
279 vsx
->vsx_pend_queue
[ZIO_PRIORITY_TRIM
]);
281 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE
,
282 vsx
->vsx_pend_queue
[ZIO_PRIORITY_REBUILD
]);
285 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO
,
286 vsx
->vsx_total_histo
[ZIO_TYPE_READ
],
287 ARRAY_SIZE(vsx
->vsx_total_histo
[ZIO_TYPE_READ
]));
289 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO
,
290 vsx
->vsx_total_histo
[ZIO_TYPE_WRITE
],
291 ARRAY_SIZE(vsx
->vsx_total_histo
[ZIO_TYPE_WRITE
]));
293 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO
,
294 vsx
->vsx_disk_histo
[ZIO_TYPE_READ
],
295 ARRAY_SIZE(vsx
->vsx_disk_histo
[ZIO_TYPE_READ
]));
297 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO
,
298 vsx
->vsx_disk_histo
[ZIO_TYPE_WRITE
],
299 ARRAY_SIZE(vsx
->vsx_disk_histo
[ZIO_TYPE_WRITE
]));
301 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO
,
302 vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_READ
],
303 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_READ
]));
305 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO
,
306 vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_WRITE
],
307 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_WRITE
]));
309 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO
,
310 vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_READ
],
311 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_READ
]));
313 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO
,
314 vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_WRITE
],
315 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_WRITE
]));
317 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO
,
318 vsx
->vsx_queue_histo
[ZIO_PRIORITY_SCRUB
],
319 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_SCRUB
]));
321 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO
,
322 vsx
->vsx_queue_histo
[ZIO_PRIORITY_TRIM
],
323 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_TRIM
]));
325 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO
,
326 vsx
->vsx_queue_histo
[ZIO_PRIORITY_REBUILD
],
327 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_REBUILD
]));
330 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO
,
331 vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_READ
],
332 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_READ
]));
334 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO
,
335 vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_WRITE
],
336 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_WRITE
]));
338 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO
,
339 vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_READ
],
340 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_READ
]));
342 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO
,
343 vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_WRITE
],
344 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_WRITE
]));
346 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO
,
347 vsx
->vsx_ind_histo
[ZIO_PRIORITY_SCRUB
],
348 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_SCRUB
]));
350 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO
,
351 vsx
->vsx_ind_histo
[ZIO_PRIORITY_TRIM
],
352 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_TRIM
]));
354 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO
,
355 vsx
->vsx_ind_histo
[ZIO_PRIORITY_REBUILD
],
356 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_REBUILD
]));
358 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO
,
359 vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_READ
],
360 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_READ
]));
362 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO
,
363 vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_WRITE
],
364 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_WRITE
]));
366 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO
,
367 vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_READ
],
368 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_READ
]));
370 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO
,
371 vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_WRITE
],
372 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_WRITE
]));
374 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO
,
375 vsx
->vsx_agg_histo
[ZIO_PRIORITY_SCRUB
],
376 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_SCRUB
]));
378 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO
,
379 vsx
->vsx_agg_histo
[ZIO_PRIORITY_TRIM
],
380 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_TRIM
]));
382 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO
,
383 vsx
->vsx_agg_histo
[ZIO_PRIORITY_REBUILD
],
384 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_REBUILD
]));
387 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SLOW_IOS
, vs
->vs_slow_ios
);
389 /* Add extended stats nvlist to main nvlist */
390 fnvlist_add_nvlist(nv
, ZPOOL_CONFIG_VDEV_STATS_EX
, nvx
);
393 kmem_free(vs
, sizeof (*vs
));
394 kmem_free(vsx
, sizeof (*vsx
));
398 root_vdev_actions_getprogress(vdev_t
*vd
, nvlist_t
*nvl
)
400 spa_t
*spa
= vd
->vdev_spa
;
402 if (vd
!= spa
->spa_root_vdev
)
405 /* provide either current or previous scan information */
407 if (spa_scan_get_stats(spa
, &ps
) == 0) {
408 fnvlist_add_uint64_array(nvl
,
409 ZPOOL_CONFIG_SCAN_STATS
, (uint64_t *)&ps
,
410 sizeof (pool_scan_stat_t
) / sizeof (uint64_t));
413 pool_removal_stat_t prs
;
414 if (spa_removal_get_stats(spa
, &prs
) == 0) {
415 fnvlist_add_uint64_array(nvl
,
416 ZPOOL_CONFIG_REMOVAL_STATS
, (uint64_t *)&prs
,
417 sizeof (prs
) / sizeof (uint64_t));
420 pool_checkpoint_stat_t pcs
;
421 if (spa_checkpoint_get_stats(spa
, &pcs
) == 0) {
422 fnvlist_add_uint64_array(nvl
,
423 ZPOOL_CONFIG_CHECKPOINT_STATS
, (uint64_t *)&pcs
,
424 sizeof (pcs
) / sizeof (uint64_t));
429 top_vdev_actions_getprogress(vdev_t
*vd
, nvlist_t
*nvl
)
431 if (vd
== vd
->vdev_top
) {
432 vdev_rebuild_stat_t vrs
;
433 if (vdev_rebuild_get_stats(vd
, &vrs
) == 0) {
434 fnvlist_add_uint64_array(nvl
,
435 ZPOOL_CONFIG_REBUILD_STATS
, (uint64_t *)&vrs
,
436 sizeof (vrs
) / sizeof (uint64_t));
442 * Generate the nvlist representing this vdev's config.
445 vdev_config_generate(spa_t
*spa
, vdev_t
*vd
, boolean_t getstats
,
446 vdev_config_flag_t flags
)
449 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
451 nv
= fnvlist_alloc();
453 fnvlist_add_string(nv
, ZPOOL_CONFIG_TYPE
, vd
->vdev_ops
->vdev_op_type
);
454 if (!(flags
& (VDEV_CONFIG_SPARE
| VDEV_CONFIG_L2CACHE
)))
455 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ID
, vd
->vdev_id
);
456 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_GUID
, vd
->vdev_guid
);
458 if (vd
->vdev_path
!= NULL
)
459 fnvlist_add_string(nv
, ZPOOL_CONFIG_PATH
, vd
->vdev_path
);
461 if (vd
->vdev_devid
!= NULL
)
462 fnvlist_add_string(nv
, ZPOOL_CONFIG_DEVID
, vd
->vdev_devid
);
464 if (vd
->vdev_physpath
!= NULL
)
465 fnvlist_add_string(nv
, ZPOOL_CONFIG_PHYS_PATH
,
468 if (vd
->vdev_enc_sysfs_path
!= NULL
)
469 fnvlist_add_string(nv
, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH
,
470 vd
->vdev_enc_sysfs_path
);
472 if (vd
->vdev_fru
!= NULL
)
473 fnvlist_add_string(nv
, ZPOOL_CONFIG_FRU
, vd
->vdev_fru
);
475 if (vd
->vdev_ops
->vdev_op_config_generate
!= NULL
)
476 vd
->vdev_ops
->vdev_op_config_generate(vd
, nv
);
478 if (vd
->vdev_wholedisk
!= -1ULL) {
479 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_WHOLE_DISK
,
483 if (vd
->vdev_not_present
&& !(flags
& VDEV_CONFIG_MISSING
))
484 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NOT_PRESENT
, 1);
486 if (vd
->vdev_isspare
)
487 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
, 1);
489 if (flags
& VDEV_CONFIG_L2CACHE
)
490 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ASHIFT
, vd
->vdev_ashift
);
492 if (!(flags
& (VDEV_CONFIG_SPARE
| VDEV_CONFIG_L2CACHE
)) &&
493 vd
== vd
->vdev_top
) {
494 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_ARRAY
,
496 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_SHIFT
,
498 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ASHIFT
, vd
->vdev_ashift
);
499 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ASIZE
,
501 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_LOG
, vd
->vdev_islog
);
502 if (vd
->vdev_noalloc
) {
503 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NONALLOCATING
,
508 * Slog devices are removed synchronously so don't
509 * persist the vdev_removing flag to the label.
511 if (vd
->vdev_removing
&& !vd
->vdev_islog
) {
512 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVING
,
516 /* zpool command expects alloc class data */
517 if (getstats
&& vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
) {
518 const char *bias
= NULL
;
520 switch (vd
->vdev_alloc_bias
) {
522 bias
= VDEV_ALLOC_BIAS_LOG
;
524 case VDEV_BIAS_SPECIAL
:
525 bias
= VDEV_ALLOC_BIAS_SPECIAL
;
527 case VDEV_BIAS_DEDUP
:
528 bias
= VDEV_ALLOC_BIAS_DEDUP
;
531 ASSERT3U(vd
->vdev_alloc_bias
, ==,
534 fnvlist_add_string(nv
, ZPOOL_CONFIG_ALLOCATION_BIAS
,
539 if (vd
->vdev_dtl_sm
!= NULL
) {
540 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DTL
,
541 space_map_object(vd
->vdev_dtl_sm
));
544 if (vic
->vic_mapping_object
!= 0) {
545 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_OBJECT
,
546 vic
->vic_mapping_object
);
549 if (vic
->vic_births_object
!= 0) {
550 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_BIRTHS
,
551 vic
->vic_births_object
);
554 if (vic
->vic_prev_indirect_vdev
!= UINT64_MAX
) {
555 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_PREV_INDIRECT_VDEV
,
556 vic
->vic_prev_indirect_vdev
);
560 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_CREATE_TXG
, vd
->vdev_crtxg
);
562 if (vd
->vdev_expansion_time
)
563 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_EXPANSION_TIME
,
564 vd
->vdev_expansion_time
);
566 if (flags
& VDEV_CONFIG_MOS
) {
567 if (vd
->vdev_leaf_zap
!= 0) {
568 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
569 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VDEV_LEAF_ZAP
,
573 if (vd
->vdev_top_zap
!= 0) {
574 ASSERT(vd
== vd
->vdev_top
);
575 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VDEV_TOP_ZAP
,
579 if (vd
->vdev_ops
== &vdev_root_ops
&& vd
->vdev_root_zap
!= 0 &&
580 spa_feature_is_active(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
)) {
581 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VDEV_ROOT_ZAP
,
585 if (vd
->vdev_resilver_deferred
) {
586 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
587 ASSERT(spa
->spa_resilver_deferred
);
588 fnvlist_add_boolean(nv
, ZPOOL_CONFIG_RESILVER_DEFER
);
593 vdev_config_generate_stats(vd
, nv
);
595 root_vdev_actions_getprogress(vd
, nv
);
596 top_vdev_actions_getprogress(vd
, nv
);
599 * Note: this can be called from open context
600 * (spa_get_stats()), so we need the rwlock to prevent
601 * the mapping from being changed by condensing.
603 rw_enter(&vd
->vdev_indirect_rwlock
, RW_READER
);
604 if (vd
->vdev_indirect_mapping
!= NULL
) {
605 ASSERT(vd
->vdev_indirect_births
!= NULL
);
606 vdev_indirect_mapping_t
*vim
=
607 vd
->vdev_indirect_mapping
;
608 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_SIZE
,
609 vdev_indirect_mapping_size(vim
));
611 rw_exit(&vd
->vdev_indirect_rwlock
);
612 if (vd
->vdev_mg
!= NULL
&&
613 vd
->vdev_mg
->mg_fragmentation
!= ZFS_FRAG_INVALID
) {
615 * Compute approximately how much memory would be used
616 * for the indirect mapping if this device were to
619 * Note: If the frag metric is invalid, then not
620 * enough metaslabs have been converted to have
623 uint64_t seg_count
= 0;
624 uint64_t to_alloc
= vd
->vdev_stat
.vs_alloc
;
627 * There are the same number of allocated segments
628 * as free segments, so we will have at least one
629 * entry per free segment. However, small free
630 * segments (smaller than vdev_removal_max_span)
631 * will be combined with adjacent allocated segments
632 * as a single mapping.
634 for (int i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
635 if (i
+ 1 < highbit64(vdev_removal_max_span
)
638 vd
->vdev_mg
->mg_histogram
[i
] <<
642 vd
->vdev_mg
->mg_histogram
[i
];
647 * The maximum length of a mapping is
648 * zfs_remove_max_segment, so we need at least one entry
649 * per zfs_remove_max_segment of allocated data.
651 seg_count
+= to_alloc
/ spa_remove_max_segment(spa
);
653 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_SIZE
,
655 sizeof (vdev_indirect_mapping_entry_phys_t
));
659 if (!vd
->vdev_ops
->vdev_op_leaf
) {
663 ASSERT(!vd
->vdev_ishole
);
665 child
= kmem_alloc(vd
->vdev_children
* sizeof (nvlist_t
*),
668 for (c
= 0; c
< vd
->vdev_children
; c
++) {
669 child
[c
] = vdev_config_generate(spa
, vd
->vdev_child
[c
],
673 fnvlist_add_nvlist_array(nv
, ZPOOL_CONFIG_CHILDREN
,
674 (const nvlist_t
* const *)child
, vd
->vdev_children
);
676 for (c
= 0; c
< vd
->vdev_children
; c
++)
677 nvlist_free(child
[c
]);
679 kmem_free(child
, vd
->vdev_children
* sizeof (nvlist_t
*));
682 const char *aux
= NULL
;
684 if (vd
->vdev_offline
&& !vd
->vdev_tmpoffline
)
685 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_OFFLINE
, B_TRUE
);
686 if (vd
->vdev_resilver_txg
!= 0)
687 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_RESILVER_TXG
,
688 vd
->vdev_resilver_txg
);
689 if (vd
->vdev_rebuild_txg
!= 0)
690 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_REBUILD_TXG
,
691 vd
->vdev_rebuild_txg
);
692 if (vd
->vdev_faulted
)
693 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_FAULTED
, B_TRUE
);
694 if (vd
->vdev_degraded
)
695 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DEGRADED
, B_TRUE
);
696 if (vd
->vdev_removed
)
697 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVED
, B_TRUE
);
698 if (vd
->vdev_unspare
)
699 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_UNSPARE
, B_TRUE
);
701 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_HOLE
, B_TRUE
);
703 /* Set the reason why we're FAULTED/DEGRADED. */
704 switch (vd
->vdev_stat
.vs_aux
) {
705 case VDEV_AUX_ERR_EXCEEDED
:
706 aux
= "err_exceeded";
709 case VDEV_AUX_EXTERNAL
:
714 if (aux
!= NULL
&& !vd
->vdev_tmpoffline
) {
715 fnvlist_add_string(nv
, ZPOOL_CONFIG_AUX_STATE
, aux
);
718 * We're healthy - clear any previous AUX_STATE values.
720 if (nvlist_exists(nv
, ZPOOL_CONFIG_AUX_STATE
))
721 nvlist_remove_all(nv
, ZPOOL_CONFIG_AUX_STATE
);
724 if (vd
->vdev_splitting
&& vd
->vdev_orig_guid
!= 0LL) {
725 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ORIG_GUID
,
734 * Generate a view of the top-level vdevs. If we currently have holes
735 * in the namespace, then generate an array which contains a list of holey
736 * vdevs. Additionally, add the number of top-level children that currently
740 vdev_top_config_generate(spa_t
*spa
, nvlist_t
*config
)
742 vdev_t
*rvd
= spa
->spa_root_vdev
;
746 array
= kmem_alloc(rvd
->vdev_children
* sizeof (uint64_t), KM_SLEEP
);
748 for (c
= 0, idx
= 0; c
< rvd
->vdev_children
; c
++) {
749 vdev_t
*tvd
= rvd
->vdev_child
[c
];
751 if (tvd
->vdev_ishole
) {
757 VERIFY(nvlist_add_uint64_array(config
, ZPOOL_CONFIG_HOLE_ARRAY
,
761 VERIFY(nvlist_add_uint64(config
, ZPOOL_CONFIG_VDEV_CHILDREN
,
762 rvd
->vdev_children
) == 0);
764 kmem_free(array
, rvd
->vdev_children
* sizeof (uint64_t));
768 * Returns the configuration from the label of the given vdev. For vdevs
769 * which don't have a txg value stored on their label (i.e. spares/cache)
770 * or have not been completely initialized (txg = 0) just return
771 * the configuration from the first valid label we find. Otherwise,
772 * find the most up-to-date label that does not exceed the specified
776 vdev_label_read_config(vdev_t
*vd
, uint64_t txg
)
778 spa_t
*spa
= vd
->vdev_spa
;
779 nvlist_t
*config
= NULL
;
780 vdev_phys_t
*vp
[VDEV_LABELS
];
781 abd_t
*vp_abd
[VDEV_LABELS
];
782 zio_t
*zio
[VDEV_LABELS
];
783 uint64_t best_txg
= 0;
784 uint64_t label_txg
= 0;
786 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
787 ZIO_FLAG_SPECULATIVE
;
789 ASSERT(vd
->vdev_validate_thread
== curthread
||
790 spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
792 if (!vdev_readable(vd
))
796 * The label for a dRAID distributed spare is not stored on disk.
797 * Instead it is generated when needed which allows us to bypass
798 * the pipeline when reading the config from the label.
800 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
801 return (vdev_draid_read_config_spare(vd
));
803 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
804 vp_abd
[l
] = abd_alloc_linear(sizeof (vdev_phys_t
), B_TRUE
);
805 vp
[l
] = abd_to_buf(vp_abd
[l
]);
809 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
810 zio
[l
] = zio_root(spa
, NULL
, NULL
, flags
);
812 vdev_label_read(zio
[l
], vd
, l
, vp_abd
[l
],
813 offsetof(vdev_label_t
, vl_vdev_phys
), sizeof (vdev_phys_t
),
816 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
817 nvlist_t
*label
= NULL
;
819 if (zio_wait(zio
[l
]) == 0 &&
820 nvlist_unpack(vp
[l
]->vp_nvlist
, sizeof (vp
[l
]->vp_nvlist
),
823 * Auxiliary vdevs won't have txg values in their
824 * labels and newly added vdevs may not have been
825 * completely initialized so just return the
826 * configuration from the first valid label we
829 error
= nvlist_lookup_uint64(label
,
830 ZPOOL_CONFIG_POOL_TXG
, &label_txg
);
831 if ((error
|| label_txg
== 0) && !config
) {
833 for (l
++; l
< VDEV_LABELS
; l
++)
836 } else if (label_txg
<= txg
&& label_txg
> best_txg
) {
837 best_txg
= label_txg
;
839 config
= fnvlist_dup(label
);
849 if (config
== NULL
&& !(flags
& ZIO_FLAG_TRYHARD
)) {
850 flags
|= ZIO_FLAG_TRYHARD
;
855 * We found a valid label but it didn't pass txg restrictions.
857 if (config
== NULL
&& label_txg
!= 0) {
858 vdev_dbgmsg(vd
, "label discarded as txg is too large "
859 "(%llu > %llu)", (u_longlong_t
)label_txg
,
863 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
871 * Determine if a device is in use. The 'spare_guid' parameter will be filled
872 * in with the device guid if this spare is active elsewhere on the system.
875 vdev_inuse(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
,
876 uint64_t *spare_guid
, uint64_t *l2cache_guid
)
878 spa_t
*spa
= vd
->vdev_spa
;
879 uint64_t state
, pool_guid
, device_guid
, txg
, spare_pool
;
886 *l2cache_guid
= 0ULL;
889 * Read the label, if any, and perform some basic sanity checks.
891 if ((label
= vdev_label_read_config(vd
, -1ULL)) == NULL
)
894 (void) nvlist_lookup_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
897 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
899 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
,
900 &device_guid
) != 0) {
905 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
906 (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_GUID
,
908 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_TXG
,
917 * Check to see if this device indeed belongs to the pool it claims to
918 * be a part of. The only way this is allowed is if the device is a hot
919 * spare (which we check for later on).
921 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
922 !spa_guid_exists(pool_guid
, device_guid
) &&
923 !spa_spare_exists(device_guid
, NULL
, NULL
) &&
924 !spa_l2cache_exists(device_guid
, NULL
))
928 * If the transaction group is zero, then this an initialized (but
929 * unused) label. This is only an error if the create transaction
930 * on-disk is the same as the one we're using now, in which case the
931 * user has attempted to add the same vdev multiple times in the same
934 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
935 txg
== 0 && vdtxg
== crtxg
)
939 * Check to see if this is a spare device. We do an explicit check for
940 * spa_has_spare() here because it may be on our pending list of spares
943 if (spa_spare_exists(device_guid
, &spare_pool
, NULL
) ||
944 spa_has_spare(spa
, device_guid
)) {
946 *spare_guid
= device_guid
;
949 case VDEV_LABEL_CREATE
:
952 case VDEV_LABEL_REPLACE
:
953 return (!spa_has_spare(spa
, device_guid
) ||
956 case VDEV_LABEL_SPARE
:
957 return (spa_has_spare(spa
, device_guid
));
964 * Check to see if this is an l2cache device.
966 if (spa_l2cache_exists(device_guid
, NULL
) ||
967 spa_has_l2cache(spa
, device_guid
)) {
969 *l2cache_guid
= device_guid
;
972 case VDEV_LABEL_CREATE
:
975 case VDEV_LABEL_REPLACE
:
976 return (!spa_has_l2cache(spa
, device_guid
));
978 case VDEV_LABEL_L2CACHE
:
979 return (spa_has_l2cache(spa
, device_guid
));
986 * We can't rely on a pool's state if it's been imported
987 * read-only. Instead we look to see if the pools is marked
988 * read-only in the namespace and set the state to active.
990 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
991 (spa
= spa_by_guid(pool_guid
, device_guid
)) != NULL
&&
992 spa_mode(spa
) == SPA_MODE_READ
)
993 state
= POOL_STATE_ACTIVE
;
996 * If the device is marked ACTIVE, then this device is in use by another
997 * pool on the system.
999 return (state
== POOL_STATE_ACTIVE
);
1003 * Initialize a vdev label. We check to make sure each leaf device is not in
1004 * use, and writable. We put down an initial label which we will later
1005 * overwrite with a complete label. Note that it's important to do this
1006 * sequentially, not in parallel, so that we catch cases of multiple use of the
1007 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
1011 vdev_label_init(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
)
1013 spa_t
*spa
= vd
->vdev_spa
;
1024 uint64_t spare_guid
= 0, l2cache_guid
= 0;
1025 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1027 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1029 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1030 if ((error
= vdev_label_init(vd
->vdev_child
[c
],
1031 crtxg
, reason
)) != 0)
1034 /* Track the creation time for this vdev */
1035 vd
->vdev_crtxg
= crtxg
;
1037 if (!vd
->vdev_ops
->vdev_op_leaf
|| !spa_writeable(spa
))
1041 * Dead vdevs cannot be initialized.
1043 if (vdev_is_dead(vd
))
1044 return (SET_ERROR(EIO
));
1047 * Determine if the vdev is in use.
1049 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPLIT
&&
1050 vdev_inuse(vd
, crtxg
, reason
, &spare_guid
, &l2cache_guid
))
1051 return (SET_ERROR(EBUSY
));
1054 * If this is a request to add or replace a spare or l2cache device
1055 * that is in use elsewhere on the system, then we must update the
1056 * guid (which was initialized to a random value) to reflect the
1057 * actual GUID (which is shared between multiple pools).
1059 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_L2CACHE
&&
1060 spare_guid
!= 0ULL) {
1061 uint64_t guid_delta
= spare_guid
- vd
->vdev_guid
;
1063 vd
->vdev_guid
+= guid_delta
;
1065 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
1066 pvd
->vdev_guid_sum
+= guid_delta
;
1069 * If this is a replacement, then we want to fallthrough to the
1070 * rest of the code. If we're adding a spare, then it's already
1071 * labeled appropriately and we can just return.
1073 if (reason
== VDEV_LABEL_SPARE
)
1075 ASSERT(reason
== VDEV_LABEL_REPLACE
||
1076 reason
== VDEV_LABEL_SPLIT
);
1079 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPARE
&&
1080 l2cache_guid
!= 0ULL) {
1081 uint64_t guid_delta
= l2cache_guid
- vd
->vdev_guid
;
1083 vd
->vdev_guid
+= guid_delta
;
1085 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
1086 pvd
->vdev_guid_sum
+= guid_delta
;
1089 * If this is a replacement, then we want to fallthrough to the
1090 * rest of the code. If we're adding an l2cache, then it's
1091 * already labeled appropriately and we can just return.
1093 if (reason
== VDEV_LABEL_L2CACHE
)
1095 ASSERT(reason
== VDEV_LABEL_REPLACE
);
1099 * Initialize its label.
1101 vp_abd
= abd_alloc_linear(sizeof (vdev_phys_t
), B_TRUE
);
1102 abd_zero(vp_abd
, sizeof (vdev_phys_t
));
1103 vp
= abd_to_buf(vp_abd
);
1106 * Generate a label describing the pool and our top-level vdev.
1107 * We mark it as being from txg 0 to indicate that it's not
1108 * really part of an active pool just yet. The labels will
1109 * be written again with a meaningful txg by spa_sync().
1111 if (reason
== VDEV_LABEL_SPARE
||
1112 (reason
== VDEV_LABEL_REMOVE
&& vd
->vdev_isspare
)) {
1114 * For inactive hot spares, we generate a special label that
1115 * identifies as a mutually shared hot spare. We write the
1116 * label if we are adding a hot spare, or if we are removing an
1117 * active hot spare (in which case we want to revert the
1120 VERIFY(nvlist_alloc(&label
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
1122 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
1123 spa_version(spa
)) == 0);
1124 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
1125 POOL_STATE_SPARE
) == 0);
1126 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
,
1127 vd
->vdev_guid
) == 0);
1128 } else if (reason
== VDEV_LABEL_L2CACHE
||
1129 (reason
== VDEV_LABEL_REMOVE
&& vd
->vdev_isl2cache
)) {
1131 * For level 2 ARC devices, add a special label.
1133 VERIFY(nvlist_alloc(&label
, NV_UNIQUE_NAME
, KM_SLEEP
) == 0);
1135 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
1136 spa_version(spa
)) == 0);
1137 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
1138 POOL_STATE_L2CACHE
) == 0);
1139 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
,
1140 vd
->vdev_guid
) == 0);
1143 * This is merely to facilitate reporting the ashift of the
1144 * cache device through zdb. The actual retrieval of the
1145 * ashift (in vdev_alloc()) uses the nvlist
1146 * spa->spa_l2cache->sav_config (populated in
1147 * spa_ld_open_aux_vdevs()).
1149 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_ASHIFT
,
1150 vd
->vdev_ashift
) == 0);
1152 uint64_t txg
= 0ULL;
1154 if (reason
== VDEV_LABEL_SPLIT
)
1155 txg
= spa
->spa_uberblock
.ub_txg
;
1156 label
= spa_config_generate(spa
, vd
, txg
, B_FALSE
);
1159 * Add our creation time. This allows us to detect multiple
1160 * vdev uses as described above, and automatically expires if we
1163 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
1167 buf
= vp
->vp_nvlist
;
1168 buflen
= sizeof (vp
->vp_nvlist
);
1170 error
= nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
);
1174 /* EFAULT means nvlist_pack ran out of room */
1175 return (SET_ERROR(error
== EFAULT
? ENAMETOOLONG
: EINVAL
));
1179 * Initialize uberblock template.
1181 ub_abd
= abd_alloc_linear(VDEV_UBERBLOCK_RING
, B_TRUE
);
1182 abd_zero(ub_abd
, VDEV_UBERBLOCK_RING
);
1183 abd_copy_from_buf(ub_abd
, &spa
->spa_uberblock
, sizeof (uberblock_t
));
1184 ub
= abd_to_buf(ub_abd
);
1187 /* Initialize the 2nd padding area. */
1188 bootenv
= abd_alloc_for_io(VDEV_PAD_SIZE
, B_TRUE
);
1189 abd_zero(bootenv
, VDEV_PAD_SIZE
);
1192 * Write everything in parallel.
1195 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1197 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1199 vdev_label_write(zio
, vd
, l
, vp_abd
,
1200 offsetof(vdev_label_t
, vl_vdev_phys
),
1201 sizeof (vdev_phys_t
), NULL
, NULL
, flags
);
1204 * Skip the 1st padding area.
1205 * Zero out the 2nd padding area where it might have
1206 * left over data from previous filesystem format.
1208 vdev_label_write(zio
, vd
, l
, bootenv
,
1209 offsetof(vdev_label_t
, vl_be
),
1210 VDEV_PAD_SIZE
, NULL
, NULL
, flags
);
1212 vdev_label_write(zio
, vd
, l
, ub_abd
,
1213 offsetof(vdev_label_t
, vl_uberblock
),
1214 VDEV_UBERBLOCK_RING
, NULL
, NULL
, flags
);
1217 error
= zio_wait(zio
);
1219 if (error
!= 0 && !(flags
& ZIO_FLAG_TRYHARD
)) {
1220 flags
|= ZIO_FLAG_TRYHARD
;
1230 * If this vdev hasn't been previously identified as a spare, then we
1231 * mark it as such only if a) we are labeling it as a spare, or b) it
1232 * exists as a spare elsewhere in the system. Do the same for
1233 * level 2 ARC devices.
1235 if (error
== 0 && !vd
->vdev_isspare
&&
1236 (reason
== VDEV_LABEL_SPARE
||
1237 spa_spare_exists(vd
->vdev_guid
, NULL
, NULL
)))
1240 if (error
== 0 && !vd
->vdev_isl2cache
&&
1241 (reason
== VDEV_LABEL_L2CACHE
||
1242 spa_l2cache_exists(vd
->vdev_guid
, NULL
)))
1243 spa_l2cache_add(vd
);
1249 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1250 * callback to finish, store our abd in the callback pointer. Otherwise, we
1251 * just free our abd and return.
1254 vdev_label_read_bootenv_done(zio_t
*zio
)
1256 zio_t
*rio
= zio
->io_private
;
1257 abd_t
**cbp
= rio
->io_private
;
1259 ASSERT3U(zio
->io_size
, ==, VDEV_PAD_SIZE
);
1261 if (zio
->io_error
== 0) {
1262 mutex_enter(&rio
->io_lock
);
1264 /* Will free this buffer in vdev_label_read_bootenv. */
1267 abd_free(zio
->io_abd
);
1269 mutex_exit(&rio
->io_lock
);
1271 abd_free(zio
->io_abd
);
1276 vdev_label_read_bootenv_impl(zio_t
*zio
, vdev_t
*vd
, int flags
)
1278 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1279 vdev_label_read_bootenv_impl(zio
, vd
->vdev_child
[c
], flags
);
1282 * We just use the first label that has a correct checksum; the
1283 * bootloader should have rewritten them all to be the same on boot,
1284 * and any changes we made since boot have been the same across all
1287 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_readable(vd
)) {
1288 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1289 vdev_label_read(zio
, vd
, l
,
1290 abd_alloc_linear(VDEV_PAD_SIZE
, B_FALSE
),
1291 offsetof(vdev_label_t
, vl_be
), VDEV_PAD_SIZE
,
1292 vdev_label_read_bootenv_done
, zio
, flags
);
1298 vdev_label_read_bootenv(vdev_t
*rvd
, nvlist_t
*bootenv
)
1301 spa_t
*spa
= rvd
->vdev_spa
;
1303 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
1304 ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_TRYHARD
;
1307 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1309 zio_t
*zio
= zio_root(spa
, NULL
, &abd
, flags
);
1310 vdev_label_read_bootenv_impl(zio
, rvd
, flags
);
1311 int err
= zio_wait(zio
);
1315 vdev_boot_envblock_t
*vbe
= abd_to_buf(abd
);
1317 vbe
->vbe_version
= ntohll(vbe
->vbe_version
);
1318 switch (vbe
->vbe_version
) {
1321 * if we have textual data in vbe_bootenv, create nvlist
1322 * with key "envmap".
1324 fnvlist_add_uint64(bootenv
, BOOTENV_VERSION
, VB_RAW
);
1325 vbe
->vbe_bootenv
[sizeof (vbe
->vbe_bootenv
) - 1] = '\0';
1326 fnvlist_add_string(bootenv
, GRUB_ENVMAP
,
1331 err
= nvlist_unpack(vbe
->vbe_bootenv
,
1332 sizeof (vbe
->vbe_bootenv
), &config
, 0);
1334 fnvlist_merge(bootenv
, config
);
1335 nvlist_free(config
);
1340 /* Check for FreeBSD zfs bootonce command string */
1341 buf
= abd_to_buf(abd
);
1343 fnvlist_add_uint64(bootenv
, BOOTENV_VERSION
,
1347 fnvlist_add_string(bootenv
, FREEBSD_BOOTONCE
, buf
);
1351 * abd was allocated in vdev_label_read_bootenv_impl()
1355 * If we managed to read any successfully,
1364 vdev_label_write_bootenv(vdev_t
*vd
, nvlist_t
*env
)
1367 spa_t
*spa
= vd
->vdev_spa
;
1368 vdev_boot_envblock_t
*bootenv
;
1369 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1375 error
= nvlist_size(env
, &nvsize
, NV_ENCODE_XDR
);
1377 return (SET_ERROR(error
));
1379 if (nvsize
>= sizeof (bootenv
->vbe_bootenv
)) {
1380 return (SET_ERROR(E2BIG
));
1383 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1386 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1389 child_err
= vdev_label_write_bootenv(vd
->vdev_child
[c
], env
);
1391 * As long as any of the disks managed to write all of their
1392 * labels successfully, return success.
1398 if (!vd
->vdev_ops
->vdev_op_leaf
|| vdev_is_dead(vd
) ||
1399 !vdev_writeable(vd
)) {
1402 ASSERT3U(sizeof (*bootenv
), ==, VDEV_PAD_SIZE
);
1403 abd_t
*abd
= abd_alloc_for_io(VDEV_PAD_SIZE
, B_TRUE
);
1404 abd_zero(abd
, VDEV_PAD_SIZE
);
1406 bootenv
= abd_borrow_buf_copy(abd
, VDEV_PAD_SIZE
);
1407 nvbuf
= bootenv
->vbe_bootenv
;
1408 nvsize
= sizeof (bootenv
->vbe_bootenv
);
1410 bootenv
->vbe_version
= fnvlist_lookup_uint64(env
, BOOTENV_VERSION
);
1411 switch (bootenv
->vbe_version
) {
1413 if (nvlist_lookup_string(env
, GRUB_ENVMAP
, &tmp
) == 0) {
1414 (void) strlcpy(bootenv
->vbe_bootenv
, tmp
, nvsize
);
1420 error
= nvlist_pack(env
, &nvbuf
, &nvsize
, NV_ENCODE_XDR
,
1430 bootenv
->vbe_version
= htonll(bootenv
->vbe_version
);
1431 abd_return_buf_copy(abd
, bootenv
, VDEV_PAD_SIZE
);
1434 return (SET_ERROR(error
));
1438 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1439 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1440 vdev_label_write(zio
, vd
, l
, abd
,
1441 offsetof(vdev_label_t
, vl_be
),
1442 VDEV_PAD_SIZE
, NULL
, NULL
, flags
);
1445 error
= zio_wait(zio
);
1446 if (error
!= 0 && !(flags
& ZIO_FLAG_TRYHARD
)) {
1447 flags
|= ZIO_FLAG_TRYHARD
;
1456 * ==========================================================================
1457 * uberblock load/sync
1458 * ==========================================================================
1462 * Consider the following situation: txg is safely synced to disk. We've
1463 * written the first uberblock for txg + 1, and then we lose power. When we
1464 * come back up, we fail to see the uberblock for txg + 1 because, say,
1465 * it was on a mirrored device and the replica to which we wrote txg + 1
1466 * is now offline. If we then make some changes and sync txg + 1, and then
1467 * the missing replica comes back, then for a few seconds we'll have two
1468 * conflicting uberblocks on disk with the same txg. The solution is simple:
1469 * among uberblocks with equal txg, choose the one with the latest timestamp.
1472 vdev_uberblock_compare(const uberblock_t
*ub1
, const uberblock_t
*ub2
)
1474 int cmp
= TREE_CMP(ub1
->ub_txg
, ub2
->ub_txg
);
1479 cmp
= TREE_CMP(ub1
->ub_timestamp
, ub2
->ub_timestamp
);
1484 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1485 * ZFS, e.g. OpenZFS >= 0.7.
1487 * If one ub has MMP and the other does not, they were written by
1488 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as
1491 * Since timestamp and txg are the same if we get this far, either is
1492 * acceptable for importing the pool.
1494 unsigned int seq1
= 0;
1495 unsigned int seq2
= 0;
1497 if (MMP_VALID(ub1
) && MMP_SEQ_VALID(ub1
))
1498 seq1
= MMP_SEQ(ub1
);
1500 if (MMP_VALID(ub2
) && MMP_SEQ_VALID(ub2
))
1501 seq2
= MMP_SEQ(ub2
);
1503 return (TREE_CMP(seq1
, seq2
));
1507 uberblock_t
*ubl_ubbest
; /* Best uberblock */
1508 vdev_t
*ubl_vd
; /* vdev associated with the above */
1512 vdev_uberblock_load_done(zio_t
*zio
)
1514 vdev_t
*vd
= zio
->io_vd
;
1515 spa_t
*spa
= zio
->io_spa
;
1516 zio_t
*rio
= zio
->io_private
;
1517 uberblock_t
*ub
= abd_to_buf(zio
->io_abd
);
1518 struct ubl_cbdata
*cbp
= rio
->io_private
;
1520 ASSERT3U(zio
->io_size
, ==, VDEV_UBERBLOCK_SIZE(vd
));
1522 if (zio
->io_error
== 0 && uberblock_verify(ub
) == 0) {
1523 mutex_enter(&rio
->io_lock
);
1524 if (ub
->ub_txg
<= spa
->spa_load_max_txg
&&
1525 vdev_uberblock_compare(ub
, cbp
->ubl_ubbest
) > 0) {
1527 * Keep track of the vdev in which this uberblock
1528 * was found. We will use this information later
1529 * to obtain the config nvlist associated with
1532 *cbp
->ubl_ubbest
= *ub
;
1535 mutex_exit(&rio
->io_lock
);
1538 abd_free(zio
->io_abd
);
1542 vdev_uberblock_load_impl(zio_t
*zio
, vdev_t
*vd
, int flags
,
1543 struct ubl_cbdata
*cbp
)
1545 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1546 vdev_uberblock_load_impl(zio
, vd
->vdev_child
[c
], flags
, cbp
);
1548 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_readable(vd
) &&
1549 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
1550 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1551 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
1552 vdev_label_read(zio
, vd
, l
,
1553 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd
),
1554 B_TRUE
), VDEV_UBERBLOCK_OFFSET(vd
, n
),
1555 VDEV_UBERBLOCK_SIZE(vd
),
1556 vdev_uberblock_load_done
, zio
, flags
);
1563 * Reads the 'best' uberblock from disk along with its associated
1564 * configuration. First, we read the uberblock array of each label of each
1565 * vdev, keeping track of the uberblock with the highest txg in each array.
1566 * Then, we read the configuration from the same vdev as the best uberblock.
1569 vdev_uberblock_load(vdev_t
*rvd
, uberblock_t
*ub
, nvlist_t
**config
)
1572 spa_t
*spa
= rvd
->vdev_spa
;
1573 struct ubl_cbdata cb
;
1574 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
1575 ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_TRYHARD
;
1580 memset(ub
, 0, sizeof (uberblock_t
));
1586 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1587 zio
= zio_root(spa
, NULL
, &cb
, flags
);
1588 vdev_uberblock_load_impl(zio
, rvd
, flags
, &cb
);
1589 (void) zio_wait(zio
);
1592 * It's possible that the best uberblock was discovered on a label
1593 * that has a configuration which was written in a future txg.
1594 * Search all labels on this vdev to find the configuration that
1595 * matches the txg for our uberblock.
1597 if (cb
.ubl_vd
!= NULL
) {
1598 vdev_dbgmsg(cb
.ubl_vd
, "best uberblock found for spa %s. "
1599 "txg %llu", spa
->spa_name
, (u_longlong_t
)ub
->ub_txg
);
1601 *config
= vdev_label_read_config(cb
.ubl_vd
, ub
->ub_txg
);
1602 if (*config
== NULL
&& spa
->spa_extreme_rewind
) {
1603 vdev_dbgmsg(cb
.ubl_vd
, "failed to read label config. "
1604 "Trying again without txg restrictions.");
1605 *config
= vdev_label_read_config(cb
.ubl_vd
, UINT64_MAX
);
1607 if (*config
== NULL
) {
1608 vdev_dbgmsg(cb
.ubl_vd
, "failed to read label config");
1611 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1615 * For use when a leaf vdev is expanded.
1616 * The location of labels 2 and 3 changed, and at the new location the
1617 * uberblock rings are either empty or contain garbage. The sync will write
1618 * new configs there because the vdev is dirty, but expansion also needs the
1619 * uberblock rings copied. Read them from label 0 which did not move.
1621 * Since the point is to populate labels {2,3} with valid uberblocks,
1622 * we zero uberblocks we fail to read or which are not valid.
1626 vdev_copy_uberblocks(vdev_t
*vd
)
1630 int locks
= (SCL_L2ARC
| SCL_ZIO
);
1631 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
1632 ZIO_FLAG_SPECULATIVE
;
1634 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_STATE
, RW_READER
) ==
1636 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1639 * No uberblocks are stored on distributed spares, they may be
1640 * safely skipped when expanding a leaf vdev.
1642 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1645 spa_config_enter(vd
->vdev_spa
, locks
, FTAG
, RW_READER
);
1647 ub_abd
= abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd
), B_TRUE
);
1649 write_zio
= zio_root(vd
->vdev_spa
, NULL
, NULL
, flags
);
1650 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
1651 const int src_label
= 0;
1654 zio
= zio_root(vd
->vdev_spa
, NULL
, NULL
, flags
);
1655 vdev_label_read(zio
, vd
, src_label
, ub_abd
,
1656 VDEV_UBERBLOCK_OFFSET(vd
, n
), VDEV_UBERBLOCK_SIZE(vd
),
1659 if (zio_wait(zio
) || uberblock_verify(abd_to_buf(ub_abd
)))
1660 abd_zero(ub_abd
, VDEV_UBERBLOCK_SIZE(vd
));
1662 for (int l
= 2; l
< VDEV_LABELS
; l
++)
1663 vdev_label_write(write_zio
, vd
, l
, ub_abd
,
1664 VDEV_UBERBLOCK_OFFSET(vd
, n
),
1665 VDEV_UBERBLOCK_SIZE(vd
), NULL
, NULL
,
1666 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1668 (void) zio_wait(write_zio
);
1670 spa_config_exit(vd
->vdev_spa
, locks
, FTAG
);
1676 * On success, increment root zio's count of good writes.
1677 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1680 vdev_uberblock_sync_done(zio_t
*zio
)
1682 uint64_t *good_writes
= zio
->io_private
;
1684 if (zio
->io_error
== 0 && zio
->io_vd
->vdev_top
->vdev_ms_array
!= 0)
1685 atomic_inc_64(good_writes
);
1689 * Write the uberblock to all labels of all leaves of the specified vdev.
1692 vdev_uberblock_sync(zio_t
*zio
, uint64_t *good_writes
,
1693 uberblock_t
*ub
, vdev_t
*vd
, int flags
)
1695 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++) {
1696 vdev_uberblock_sync(zio
, good_writes
,
1697 ub
, vd
->vdev_child
[c
], flags
);
1700 if (!vd
->vdev_ops
->vdev_op_leaf
)
1703 if (!vdev_writeable(vd
))
1707 * There's no need to write uberblocks to a distributed spare, they
1708 * are already stored on all the leaves of the parent dRAID. For
1709 * this same reason vdev_uberblock_load_impl() skips distributed
1710 * spares when reading uberblocks.
1712 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1715 /* If the vdev was expanded, need to copy uberblock rings. */
1716 if (vd
->vdev_state
== VDEV_STATE_HEALTHY
&&
1717 vd
->vdev_copy_uberblocks
== B_TRUE
) {
1718 vdev_copy_uberblocks(vd
);
1719 vd
->vdev_copy_uberblocks
= B_FALSE
;
1722 int m
= spa_multihost(vd
->vdev_spa
) ? MMP_BLOCKS_PER_LABEL
: 0;
1723 int n
= ub
->ub_txg
% (VDEV_UBERBLOCK_COUNT(vd
) - m
);
1725 /* Copy the uberblock_t into the ABD */
1726 abd_t
*ub_abd
= abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd
), B_TRUE
);
1727 abd_zero(ub_abd
, VDEV_UBERBLOCK_SIZE(vd
));
1728 abd_copy_from_buf(ub_abd
, ub
, sizeof (uberblock_t
));
1730 for (int l
= 0; l
< VDEV_LABELS
; l
++)
1731 vdev_label_write(zio
, vd
, l
, ub_abd
,
1732 VDEV_UBERBLOCK_OFFSET(vd
, n
), VDEV_UBERBLOCK_SIZE(vd
),
1733 vdev_uberblock_sync_done
, good_writes
,
1734 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1739 /* Sync the uberblocks to all vdevs in svd[] */
1741 vdev_uberblock_sync_list(vdev_t
**svd
, int svdcount
, uberblock_t
*ub
, int flags
)
1743 spa_t
*spa
= svd
[0]->vdev_spa
;
1745 uint64_t good_writes
= 0;
1747 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1749 for (int v
= 0; v
< svdcount
; v
++)
1750 vdev_uberblock_sync(zio
, &good_writes
, ub
, svd
[v
], flags
);
1752 (void) zio_wait(zio
);
1755 * Flush the uberblocks to disk. This ensures that the odd labels
1756 * are no longer needed (because the new uberblocks and the even
1757 * labels are safely on disk), so it is safe to overwrite them.
1759 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1761 for (int v
= 0; v
< svdcount
; v
++) {
1762 if (vdev_writeable(svd
[v
])) {
1763 zio_flush(zio
, svd
[v
]);
1767 (void) zio_wait(zio
);
1769 return (good_writes
>= 1 ? 0 : EIO
);
1773 * On success, increment the count of good writes for our top-level vdev.
1776 vdev_label_sync_done(zio_t
*zio
)
1778 uint64_t *good_writes
= zio
->io_private
;
1780 if (zio
->io_error
== 0)
1781 atomic_inc_64(good_writes
);
1785 * If there weren't enough good writes, indicate failure to the parent.
1788 vdev_label_sync_top_done(zio_t
*zio
)
1790 uint64_t *good_writes
= zio
->io_private
;
1792 if (*good_writes
== 0)
1793 zio
->io_error
= SET_ERROR(EIO
);
1795 kmem_free(good_writes
, sizeof (uint64_t));
1799 * We ignore errors for log and cache devices, simply free the private data.
1802 vdev_label_sync_ignore_done(zio_t
*zio
)
1804 kmem_free(zio
->io_private
, sizeof (uint64_t));
1808 * Write all even or odd labels to all leaves of the specified vdev.
1811 vdev_label_sync(zio_t
*zio
, uint64_t *good_writes
,
1812 vdev_t
*vd
, int l
, uint64_t txg
, int flags
)
1820 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1821 vdev_label_sync(zio
, good_writes
,
1822 vd
->vdev_child
[c
], l
, txg
, flags
);
1825 if (!vd
->vdev_ops
->vdev_op_leaf
)
1828 if (!vdev_writeable(vd
))
1832 * The top-level config never needs to be written to a distributed
1833 * spare. When read vdev_dspare_label_read_config() will generate
1834 * the config for the vdev_label_read_config().
1836 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1840 * Generate a label describing the top-level config to which we belong.
1842 label
= spa_config_generate(vd
->vdev_spa
, vd
, txg
, B_FALSE
);
1844 vp_abd
= abd_alloc_linear(sizeof (vdev_phys_t
), B_TRUE
);
1845 abd_zero(vp_abd
, sizeof (vdev_phys_t
));
1846 vp
= abd_to_buf(vp_abd
);
1848 buf
= vp
->vp_nvlist
;
1849 buflen
= sizeof (vp
->vp_nvlist
);
1851 if (!nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
)) {
1852 for (; l
< VDEV_LABELS
; l
+= 2) {
1853 vdev_label_write(zio
, vd
, l
, vp_abd
,
1854 offsetof(vdev_label_t
, vl_vdev_phys
),
1855 sizeof (vdev_phys_t
),
1856 vdev_label_sync_done
, good_writes
,
1857 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1866 vdev_label_sync_list(spa_t
*spa
, int l
, uint64_t txg
, int flags
)
1868 list_t
*dl
= &spa
->spa_config_dirty_list
;
1874 * Write the new labels to disk.
1876 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1878 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
)) {
1879 uint64_t *good_writes
;
1881 ASSERT(!vd
->vdev_ishole
);
1883 good_writes
= kmem_zalloc(sizeof (uint64_t), KM_SLEEP
);
1884 zio_t
*vio
= zio_null(zio
, spa
, NULL
,
1885 (vd
->vdev_islog
|| vd
->vdev_aux
!= NULL
) ?
1886 vdev_label_sync_ignore_done
: vdev_label_sync_top_done
,
1887 good_writes
, flags
);
1888 vdev_label_sync(vio
, good_writes
, vd
, l
, txg
, flags
);
1892 error
= zio_wait(zio
);
1895 * Flush the new labels to disk.
1897 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1899 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
))
1902 (void) zio_wait(zio
);
1908 * Sync the uberblock and any changes to the vdev configuration.
1910 * The order of operations is carefully crafted to ensure that
1911 * if the system panics or loses power at any time, the state on disk
1912 * is still transactionally consistent. The in-line comments below
1913 * describe the failure semantics at each stage.
1915 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1916 * at any time, you can just call it again, and it will resume its work.
1919 vdev_config_sync(vdev_t
**svd
, int svdcount
, uint64_t txg
)
1921 spa_t
*spa
= svd
[0]->vdev_spa
;
1922 uberblock_t
*ub
= &spa
->spa_uberblock
;
1924 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1926 ASSERT(svdcount
!= 0);
1929 * Normally, we don't want to try too hard to write every label and
1930 * uberblock. If there is a flaky disk, we don't want the rest of the
1931 * sync process to block while we retry. But if we can't write a
1932 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1933 * bailing out and declaring the pool faulted.
1936 if ((flags
& ZIO_FLAG_TRYHARD
) != 0)
1938 flags
|= ZIO_FLAG_TRYHARD
;
1941 ASSERT(ub
->ub_txg
<= txg
);
1944 * If this isn't a resync due to I/O errors,
1945 * and nothing changed in this transaction group,
1946 * and the vdev configuration hasn't changed,
1947 * then there's nothing to do.
1949 if (ub
->ub_txg
< txg
) {
1950 boolean_t changed
= uberblock_update(ub
, spa
->spa_root_vdev
,
1951 txg
, spa
->spa_mmp
.mmp_delay
);
1953 if (!changed
&& list_is_empty(&spa
->spa_config_dirty_list
))
1957 if (txg
> spa_freeze_txg(spa
))
1960 ASSERT(txg
<= spa
->spa_final_txg
);
1963 * Flush the write cache of every disk that's been written to
1964 * in this transaction group. This ensures that all blocks
1965 * written in this txg will be committed to stable storage
1966 * before any uberblock that references them.
1968 zio_t
*zio
= zio_root(spa
, NULL
, NULL
, flags
);
1971 txg_list_head(&spa
->spa_vdev_txg_list
, TXG_CLEAN(txg
)); vd
!= NULL
;
1972 vd
= txg_list_next(&spa
->spa_vdev_txg_list
, vd
, TXG_CLEAN(txg
)))
1975 (void) zio_wait(zio
);
1978 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1979 * system dies in the middle of this process, that's OK: all of the
1980 * even labels that made it to disk will be newer than any uberblock,
1981 * and will therefore be considered invalid. The odd labels (L1, L3),
1982 * which have not yet been touched, will still be valid. We flush
1983 * the new labels to disk to ensure that all even-label updates
1984 * are committed to stable storage before the uberblock update.
1986 if ((error
= vdev_label_sync_list(spa
, 0, txg
, flags
)) != 0) {
1987 if ((flags
& ZIO_FLAG_TRYHARD
) != 0) {
1988 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1989 "for pool '%s' when syncing out the even labels "
1990 "of dirty vdevs", error
, spa_name(spa
));
1996 * Sync the uberblocks to all vdevs in svd[].
1997 * If the system dies in the middle of this step, there are two cases
1998 * to consider, and the on-disk state is consistent either way:
2000 * (1) If none of the new uberblocks made it to disk, then the
2001 * previous uberblock will be the newest, and the odd labels
2002 * (which had not yet been touched) will be valid with respect
2003 * to that uberblock.
2005 * (2) If one or more new uberblocks made it to disk, then they
2006 * will be the newest, and the even labels (which had all
2007 * been successfully committed) will be valid with respect
2008 * to the new uberblocks.
2010 if ((error
= vdev_uberblock_sync_list(svd
, svdcount
, ub
, flags
)) != 0) {
2011 if ((flags
& ZIO_FLAG_TRYHARD
) != 0) {
2012 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
2013 "%d for pool '%s'", error
, spa_name(spa
));
2018 if (spa_multihost(spa
))
2019 mmp_update_uberblock(spa
, ub
);
2022 * Sync out odd labels for every dirty vdev. If the system dies
2023 * in the middle of this process, the even labels and the new
2024 * uberblocks will suffice to open the pool. The next time
2025 * the pool is opened, the first thing we'll do -- before any
2026 * user data is modified -- is mark every vdev dirty so that
2027 * all labels will be brought up to date. We flush the new labels
2028 * to disk to ensure that all odd-label updates are committed to
2029 * stable storage before the next transaction group begins.
2031 if ((error
= vdev_label_sync_list(spa
, 1, txg
, flags
)) != 0) {
2032 if ((flags
& ZIO_FLAG_TRYHARD
) != 0) {
2033 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2034 "for pool '%s' when syncing out the odd labels of "
2035 "dirty vdevs", error
, spa_name(spa
));