ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / zfs / vdev_label.c
bloba2e5524a8391ec68910a7568bbb104eda8ed8b1f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
29 * Virtual Device Labels
30 * ---------------------
32 * The vdev label serves several distinct purposes:
34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
35 * identity within the pool.
37 * 2. Verify that all the devices given in a configuration are present
38 * within the pool.
40 * 3. Determine the uberblock for the pool.
42 * 4. In case of an import operation, determine the configuration of the
43 * toplevel vdev of which it is a part.
45 * 5. If an import operation cannot find all the devices in the pool,
46 * provide enough information to the administrator to determine which
47 * devices are missing.
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases. The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
55 * Label Organization
56 * ------------------
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point. To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced. Assuming we have
65 * labels and an uberblock with the following transaction groups:
67 * L1 UB L2
68 * +------+ +------+ +------+
69 * | | | | | |
70 * | t10 | | t10 | | t10 |
71 * | | | | | |
72 * +------+ +------+ +------+
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10). Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
78 * In order to identify which labels are valid, the labels are written in the
79 * following manner:
81 * 1. For each vdev, update 'L1' to the new label
82 * 2. Update the uberblock
83 * 3. For each vdev, update 'L2' to the new label
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group. If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid. If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
92 * Another added complexity is that not every label is updated when the config
93 * is synced. If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool. This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
96 * on another vdev.
99 * On-disk Format
100 * --------------
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure. The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information. It is
108 * described in more detail below.
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated. When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
116 * Configuration Information
117 * -------------------------
119 * The nvlist describing the pool and vdev contains the following elements:
121 * version ZFS on-disk version
122 * name Pool name
123 * state Pool state
124 * txg Transaction group in which this label was written
125 * pool_guid Unique identifier for this pool
126 * vdev_tree An nvlist describing vdev tree.
127 * features_for_read
128 * An nvlist of the features necessary for reading the MOS.
130 * Each leaf device label also contains the following:
132 * top_guid Unique ID for top-level vdev in which this is contained
133 * guid Unique ID for the leaf vdev
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_draid.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
153 #include <sys/byteorder.h>
154 #include <sys/zfs_bootenv.h>
157 * Basic routines to read and write from a vdev label.
158 * Used throughout the rest of this file.
160 uint64_t
161 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
163 ASSERT(offset < sizeof (vdev_label_t));
164 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
166 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
171 * Returns back the vdev label associated with the passed in offset.
174 vdev_label_number(uint64_t psize, uint64_t offset)
176 int l;
178 if (offset >= psize - VDEV_LABEL_END_SIZE) {
179 offset -= psize - VDEV_LABEL_END_SIZE;
180 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
182 l = offset / sizeof (vdev_label_t);
183 return (l < VDEV_LABELS ? l : -1);
186 static void
187 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
188 uint64_t size, zio_done_func_t *done, void *private, int flags)
190 ASSERT(
191 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
192 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
193 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
195 zio_nowait(zio_read_phys(zio, vd,
196 vdev_label_offset(vd->vdev_psize, l, offset),
197 size, buf, ZIO_CHECKSUM_LABEL, done, private,
198 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
201 void
202 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
203 uint64_t size, zio_done_func_t *done, void *private, int flags)
205 ASSERT(
206 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
207 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
208 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
210 zio_nowait(zio_write_phys(zio, vd,
211 vdev_label_offset(vd->vdev_psize, l, offset),
212 size, buf, ZIO_CHECKSUM_LABEL, done, private,
213 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
217 * Generate the nvlist representing this vdev's stats
219 void
220 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
222 nvlist_t *nvx;
223 vdev_stat_t *vs;
224 vdev_stat_ex_t *vsx;
226 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
227 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
229 vdev_get_stats_ex(vd, vs, vsx);
230 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
231 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
234 * Add extended stats into a special extended stats nvlist. This keeps
235 * all the extended stats nicely grouped together. The extended stats
236 * nvlist is then added to the main nvlist.
238 nvx = fnvlist_alloc();
240 /* ZIOs in flight to disk */
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
256 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
257 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
259 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE,
260 vsx->vsx_active_queue[ZIO_PRIORITY_REBUILD]);
262 /* ZIOs pending */
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
270 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
273 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
275 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
276 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
278 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
279 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
281 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE,
282 vsx->vsx_pend_queue[ZIO_PRIORITY_REBUILD]);
284 /* Histograms */
285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
286 vsx->vsx_total_histo[ZIO_TYPE_READ],
287 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
290 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
291 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
294 vsx->vsx_disk_histo[ZIO_TYPE_READ],
295 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
298 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
299 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
302 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
306 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
309 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
310 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
311 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
313 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
314 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
315 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
317 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
318 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
319 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
322 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
323 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO,
326 vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD],
327 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_REBUILD]));
329 /* Request sizes */
330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
331 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
332 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
335 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
336 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
339 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
340 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
343 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
344 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
347 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
348 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
350 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
351 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
352 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
354 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO,
355 vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD],
356 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_REBUILD]));
358 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
359 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
360 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
362 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
363 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
364 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
366 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
367 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
368 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
370 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
371 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
372 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
374 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
375 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
376 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
378 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
379 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
380 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
382 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO,
383 vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD],
384 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_REBUILD]));
386 /* IO delays */
387 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
389 /* Add extended stats nvlist to main nvlist */
390 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
392 fnvlist_free(nvx);
393 kmem_free(vs, sizeof (*vs));
394 kmem_free(vsx, sizeof (*vsx));
397 static void
398 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
400 spa_t *spa = vd->vdev_spa;
402 if (vd != spa->spa_root_vdev)
403 return;
405 /* provide either current or previous scan information */
406 pool_scan_stat_t ps;
407 if (spa_scan_get_stats(spa, &ps) == 0) {
408 fnvlist_add_uint64_array(nvl,
409 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
410 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
413 pool_removal_stat_t prs;
414 if (spa_removal_get_stats(spa, &prs) == 0) {
415 fnvlist_add_uint64_array(nvl,
416 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
417 sizeof (prs) / sizeof (uint64_t));
420 pool_checkpoint_stat_t pcs;
421 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
422 fnvlist_add_uint64_array(nvl,
423 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
424 sizeof (pcs) / sizeof (uint64_t));
428 static void
429 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
431 if (vd == vd->vdev_top) {
432 vdev_rebuild_stat_t vrs;
433 if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
434 fnvlist_add_uint64_array(nvl,
435 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
436 sizeof (vrs) / sizeof (uint64_t));
442 * Generate the nvlist representing this vdev's config.
444 nvlist_t *
445 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
446 vdev_config_flag_t flags)
448 nvlist_t *nv = NULL;
449 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
451 nv = fnvlist_alloc();
453 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
454 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
455 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
456 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
458 if (vd->vdev_path != NULL)
459 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
461 if (vd->vdev_devid != NULL)
462 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
464 if (vd->vdev_physpath != NULL)
465 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
466 vd->vdev_physpath);
468 if (vd->vdev_enc_sysfs_path != NULL)
469 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
470 vd->vdev_enc_sysfs_path);
472 if (vd->vdev_fru != NULL)
473 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
475 if (vd->vdev_ops->vdev_op_config_generate != NULL)
476 vd->vdev_ops->vdev_op_config_generate(vd, nv);
478 if (vd->vdev_wholedisk != -1ULL) {
479 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
480 vd->vdev_wholedisk);
483 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
486 if (vd->vdev_isspare)
487 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
489 if (flags & VDEV_CONFIG_L2CACHE)
490 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
492 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
493 vd == vd->vdev_top) {
494 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
495 vd->vdev_ms_array);
496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
497 vd->vdev_ms_shift);
498 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
499 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
500 vd->vdev_asize);
501 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
502 if (vd->vdev_noalloc) {
503 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NONALLOCATING,
504 vd->vdev_noalloc);
508 * Slog devices are removed synchronously so don't
509 * persist the vdev_removing flag to the label.
511 if (vd->vdev_removing && !vd->vdev_islog) {
512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
513 vd->vdev_removing);
516 /* zpool command expects alloc class data */
517 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
518 const char *bias = NULL;
520 switch (vd->vdev_alloc_bias) {
521 case VDEV_BIAS_LOG:
522 bias = VDEV_ALLOC_BIAS_LOG;
523 break;
524 case VDEV_BIAS_SPECIAL:
525 bias = VDEV_ALLOC_BIAS_SPECIAL;
526 break;
527 case VDEV_BIAS_DEDUP:
528 bias = VDEV_ALLOC_BIAS_DEDUP;
529 break;
530 default:
531 ASSERT3U(vd->vdev_alloc_bias, ==,
532 VDEV_BIAS_NONE);
534 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
535 bias);
539 if (vd->vdev_dtl_sm != NULL) {
540 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
541 space_map_object(vd->vdev_dtl_sm));
544 if (vic->vic_mapping_object != 0) {
545 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
546 vic->vic_mapping_object);
549 if (vic->vic_births_object != 0) {
550 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
551 vic->vic_births_object);
554 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
555 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
556 vic->vic_prev_indirect_vdev);
559 if (vd->vdev_crtxg)
560 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
562 if (vd->vdev_expansion_time)
563 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
564 vd->vdev_expansion_time);
566 if (flags & VDEV_CONFIG_MOS) {
567 if (vd->vdev_leaf_zap != 0) {
568 ASSERT(vd->vdev_ops->vdev_op_leaf);
569 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
570 vd->vdev_leaf_zap);
573 if (vd->vdev_top_zap != 0) {
574 ASSERT(vd == vd->vdev_top);
575 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
576 vd->vdev_top_zap);
579 if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap != 0 &&
580 spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) {
581 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP,
582 vd->vdev_root_zap);
585 if (vd->vdev_resilver_deferred) {
586 ASSERT(vd->vdev_ops->vdev_op_leaf);
587 ASSERT(spa->spa_resilver_deferred);
588 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
592 if (getstats) {
593 vdev_config_generate_stats(vd, nv);
595 root_vdev_actions_getprogress(vd, nv);
596 top_vdev_actions_getprogress(vd, nv);
599 * Note: this can be called from open context
600 * (spa_get_stats()), so we need the rwlock to prevent
601 * the mapping from being changed by condensing.
603 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
604 if (vd->vdev_indirect_mapping != NULL) {
605 ASSERT(vd->vdev_indirect_births != NULL);
606 vdev_indirect_mapping_t *vim =
607 vd->vdev_indirect_mapping;
608 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
609 vdev_indirect_mapping_size(vim));
611 rw_exit(&vd->vdev_indirect_rwlock);
612 if (vd->vdev_mg != NULL &&
613 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
615 * Compute approximately how much memory would be used
616 * for the indirect mapping if this device were to
617 * be removed.
619 * Note: If the frag metric is invalid, then not
620 * enough metaslabs have been converted to have
621 * histograms.
623 uint64_t seg_count = 0;
624 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
627 * There are the same number of allocated segments
628 * as free segments, so we will have at least one
629 * entry per free segment. However, small free
630 * segments (smaller than vdev_removal_max_span)
631 * will be combined with adjacent allocated segments
632 * as a single mapping.
634 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
635 if (i + 1 < highbit64(vdev_removal_max_span)
636 - 1) {
637 to_alloc +=
638 vd->vdev_mg->mg_histogram[i] <<
639 (i + 1);
640 } else {
641 seg_count +=
642 vd->vdev_mg->mg_histogram[i];
647 * The maximum length of a mapping is
648 * zfs_remove_max_segment, so we need at least one entry
649 * per zfs_remove_max_segment of allocated data.
651 seg_count += to_alloc / spa_remove_max_segment(spa);
653 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
654 seg_count *
655 sizeof (vdev_indirect_mapping_entry_phys_t));
659 if (!vd->vdev_ops->vdev_op_leaf) {
660 nvlist_t **child;
661 uint64_t c;
663 ASSERT(!vd->vdev_ishole);
665 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
666 KM_SLEEP);
668 for (c = 0; c < vd->vdev_children; c++) {
669 child[c] = vdev_config_generate(spa, vd->vdev_child[c],
670 getstats, flags);
673 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
674 (const nvlist_t * const *)child, vd->vdev_children);
676 for (c = 0; c < vd->vdev_children; c++)
677 nvlist_free(child[c]);
679 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
681 } else {
682 const char *aux = NULL;
684 if (vd->vdev_offline && !vd->vdev_tmpoffline)
685 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
686 if (vd->vdev_resilver_txg != 0)
687 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
688 vd->vdev_resilver_txg);
689 if (vd->vdev_rebuild_txg != 0)
690 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
691 vd->vdev_rebuild_txg);
692 if (vd->vdev_faulted)
693 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
694 if (vd->vdev_degraded)
695 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
696 if (vd->vdev_removed)
697 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
698 if (vd->vdev_unspare)
699 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
700 if (vd->vdev_ishole)
701 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
703 /* Set the reason why we're FAULTED/DEGRADED. */
704 switch (vd->vdev_stat.vs_aux) {
705 case VDEV_AUX_ERR_EXCEEDED:
706 aux = "err_exceeded";
707 break;
709 case VDEV_AUX_EXTERNAL:
710 aux = "external";
711 break;
714 if (aux != NULL && !vd->vdev_tmpoffline) {
715 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
716 } else {
718 * We're healthy - clear any previous AUX_STATE values.
720 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
721 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
724 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
725 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
726 vd->vdev_orig_guid);
730 return (nv);
734 * Generate a view of the top-level vdevs. If we currently have holes
735 * in the namespace, then generate an array which contains a list of holey
736 * vdevs. Additionally, add the number of top-level children that currently
737 * exist.
739 void
740 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
742 vdev_t *rvd = spa->spa_root_vdev;
743 uint64_t *array;
744 uint_t c, idx;
746 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
748 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
749 vdev_t *tvd = rvd->vdev_child[c];
751 if (tvd->vdev_ishole) {
752 array[idx++] = c;
756 if (idx) {
757 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
758 array, idx) == 0);
761 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
762 rvd->vdev_children) == 0);
764 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
768 * Returns the configuration from the label of the given vdev. For vdevs
769 * which don't have a txg value stored on their label (i.e. spares/cache)
770 * or have not been completely initialized (txg = 0) just return
771 * the configuration from the first valid label we find. Otherwise,
772 * find the most up-to-date label that does not exceed the specified
773 * 'txg' value.
775 nvlist_t *
776 vdev_label_read_config(vdev_t *vd, uint64_t txg)
778 spa_t *spa = vd->vdev_spa;
779 nvlist_t *config = NULL;
780 vdev_phys_t *vp[VDEV_LABELS];
781 abd_t *vp_abd[VDEV_LABELS];
782 zio_t *zio[VDEV_LABELS];
783 uint64_t best_txg = 0;
784 uint64_t label_txg = 0;
785 int error = 0;
786 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
787 ZIO_FLAG_SPECULATIVE;
789 ASSERT(vd->vdev_validate_thread == curthread ||
790 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
792 if (!vdev_readable(vd))
793 return (NULL);
796 * The label for a dRAID distributed spare is not stored on disk.
797 * Instead it is generated when needed which allows us to bypass
798 * the pipeline when reading the config from the label.
800 if (vd->vdev_ops == &vdev_draid_spare_ops)
801 return (vdev_draid_read_config_spare(vd));
803 for (int l = 0; l < VDEV_LABELS; l++) {
804 vp_abd[l] = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
805 vp[l] = abd_to_buf(vp_abd[l]);
808 retry:
809 for (int l = 0; l < VDEV_LABELS; l++) {
810 zio[l] = zio_root(spa, NULL, NULL, flags);
812 vdev_label_read(zio[l], vd, l, vp_abd[l],
813 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
814 NULL, NULL, flags);
816 for (int l = 0; l < VDEV_LABELS; l++) {
817 nvlist_t *label = NULL;
819 if (zio_wait(zio[l]) == 0 &&
820 nvlist_unpack(vp[l]->vp_nvlist, sizeof (vp[l]->vp_nvlist),
821 &label, 0) == 0) {
823 * Auxiliary vdevs won't have txg values in their
824 * labels and newly added vdevs may not have been
825 * completely initialized so just return the
826 * configuration from the first valid label we
827 * encounter.
829 error = nvlist_lookup_uint64(label,
830 ZPOOL_CONFIG_POOL_TXG, &label_txg);
831 if ((error || label_txg == 0) && !config) {
832 config = label;
833 for (l++; l < VDEV_LABELS; l++)
834 zio_wait(zio[l]);
835 break;
836 } else if (label_txg <= txg && label_txg > best_txg) {
837 best_txg = label_txg;
838 nvlist_free(config);
839 config = fnvlist_dup(label);
843 if (label != NULL) {
844 nvlist_free(label);
845 label = NULL;
849 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
850 flags |= ZIO_FLAG_TRYHARD;
851 goto retry;
855 * We found a valid label but it didn't pass txg restrictions.
857 if (config == NULL && label_txg != 0) {
858 vdev_dbgmsg(vd, "label discarded as txg is too large "
859 "(%llu > %llu)", (u_longlong_t)label_txg,
860 (u_longlong_t)txg);
863 for (int l = 0; l < VDEV_LABELS; l++) {
864 abd_free(vp_abd[l]);
867 return (config);
871 * Determine if a device is in use. The 'spare_guid' parameter will be filled
872 * in with the device guid if this spare is active elsewhere on the system.
874 static boolean_t
875 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
876 uint64_t *spare_guid, uint64_t *l2cache_guid)
878 spa_t *spa = vd->vdev_spa;
879 uint64_t state, pool_guid, device_guid, txg, spare_pool;
880 uint64_t vdtxg = 0;
881 nvlist_t *label;
883 if (spare_guid)
884 *spare_guid = 0ULL;
885 if (l2cache_guid)
886 *l2cache_guid = 0ULL;
889 * Read the label, if any, and perform some basic sanity checks.
891 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
892 return (B_FALSE);
894 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
895 &vdtxg);
897 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
898 &state) != 0 ||
899 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
900 &device_guid) != 0) {
901 nvlist_free(label);
902 return (B_FALSE);
905 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
906 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
907 &pool_guid) != 0 ||
908 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
909 &txg) != 0)) {
910 nvlist_free(label);
911 return (B_FALSE);
914 nvlist_free(label);
917 * Check to see if this device indeed belongs to the pool it claims to
918 * be a part of. The only way this is allowed is if the device is a hot
919 * spare (which we check for later on).
921 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
922 !spa_guid_exists(pool_guid, device_guid) &&
923 !spa_spare_exists(device_guid, NULL, NULL) &&
924 !spa_l2cache_exists(device_guid, NULL))
925 return (B_FALSE);
928 * If the transaction group is zero, then this an initialized (but
929 * unused) label. This is only an error if the create transaction
930 * on-disk is the same as the one we're using now, in which case the
931 * user has attempted to add the same vdev multiple times in the same
932 * transaction.
934 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
935 txg == 0 && vdtxg == crtxg)
936 return (B_TRUE);
939 * Check to see if this is a spare device. We do an explicit check for
940 * spa_has_spare() here because it may be on our pending list of spares
941 * to add.
943 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
944 spa_has_spare(spa, device_guid)) {
945 if (spare_guid)
946 *spare_guid = device_guid;
948 switch (reason) {
949 case VDEV_LABEL_CREATE:
950 return (B_TRUE);
952 case VDEV_LABEL_REPLACE:
953 return (!spa_has_spare(spa, device_guid) ||
954 spare_pool != 0ULL);
956 case VDEV_LABEL_SPARE:
957 return (spa_has_spare(spa, device_guid));
958 default:
959 break;
964 * Check to see if this is an l2cache device.
966 if (spa_l2cache_exists(device_guid, NULL) ||
967 spa_has_l2cache(spa, device_guid)) {
968 if (l2cache_guid)
969 *l2cache_guid = device_guid;
971 switch (reason) {
972 case VDEV_LABEL_CREATE:
973 return (B_TRUE);
975 case VDEV_LABEL_REPLACE:
976 return (!spa_has_l2cache(spa, device_guid));
978 case VDEV_LABEL_L2CACHE:
979 return (spa_has_l2cache(spa, device_guid));
980 default:
981 break;
986 * We can't rely on a pool's state if it's been imported
987 * read-only. Instead we look to see if the pools is marked
988 * read-only in the namespace and set the state to active.
990 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
991 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
992 spa_mode(spa) == SPA_MODE_READ)
993 state = POOL_STATE_ACTIVE;
996 * If the device is marked ACTIVE, then this device is in use by another
997 * pool on the system.
999 return (state == POOL_STATE_ACTIVE);
1003 * Initialize a vdev label. We check to make sure each leaf device is not in
1004 * use, and writable. We put down an initial label which we will later
1005 * overwrite with a complete label. Note that it's important to do this
1006 * sequentially, not in parallel, so that we catch cases of multiple use of the
1007 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
1008 * itself.
1011 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
1013 spa_t *spa = vd->vdev_spa;
1014 nvlist_t *label;
1015 vdev_phys_t *vp;
1016 abd_t *vp_abd;
1017 abd_t *bootenv;
1018 uberblock_t *ub;
1019 abd_t *ub_abd;
1020 zio_t *zio;
1021 char *buf;
1022 size_t buflen;
1023 int error;
1024 uint64_t spare_guid = 0, l2cache_guid = 0;
1025 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1027 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1029 for (int c = 0; c < vd->vdev_children; c++)
1030 if ((error = vdev_label_init(vd->vdev_child[c],
1031 crtxg, reason)) != 0)
1032 return (error);
1034 /* Track the creation time for this vdev */
1035 vd->vdev_crtxg = crtxg;
1037 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
1038 return (0);
1041 * Dead vdevs cannot be initialized.
1043 if (vdev_is_dead(vd))
1044 return (SET_ERROR(EIO));
1047 * Determine if the vdev is in use.
1049 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1050 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1051 return (SET_ERROR(EBUSY));
1054 * If this is a request to add or replace a spare or l2cache device
1055 * that is in use elsewhere on the system, then we must update the
1056 * guid (which was initialized to a random value) to reflect the
1057 * actual GUID (which is shared between multiple pools).
1059 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1060 spare_guid != 0ULL) {
1061 uint64_t guid_delta = spare_guid - vd->vdev_guid;
1063 vd->vdev_guid += guid_delta;
1065 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1066 pvd->vdev_guid_sum += guid_delta;
1069 * If this is a replacement, then we want to fallthrough to the
1070 * rest of the code. If we're adding a spare, then it's already
1071 * labeled appropriately and we can just return.
1073 if (reason == VDEV_LABEL_SPARE)
1074 return (0);
1075 ASSERT(reason == VDEV_LABEL_REPLACE ||
1076 reason == VDEV_LABEL_SPLIT);
1079 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1080 l2cache_guid != 0ULL) {
1081 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1083 vd->vdev_guid += guid_delta;
1085 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1086 pvd->vdev_guid_sum += guid_delta;
1089 * If this is a replacement, then we want to fallthrough to the
1090 * rest of the code. If we're adding an l2cache, then it's
1091 * already labeled appropriately and we can just return.
1093 if (reason == VDEV_LABEL_L2CACHE)
1094 return (0);
1095 ASSERT(reason == VDEV_LABEL_REPLACE);
1099 * Initialize its label.
1101 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1102 abd_zero(vp_abd, sizeof (vdev_phys_t));
1103 vp = abd_to_buf(vp_abd);
1106 * Generate a label describing the pool and our top-level vdev.
1107 * We mark it as being from txg 0 to indicate that it's not
1108 * really part of an active pool just yet. The labels will
1109 * be written again with a meaningful txg by spa_sync().
1111 if (reason == VDEV_LABEL_SPARE ||
1112 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1114 * For inactive hot spares, we generate a special label that
1115 * identifies as a mutually shared hot spare. We write the
1116 * label if we are adding a hot spare, or if we are removing an
1117 * active hot spare (in which case we want to revert the
1118 * labels).
1120 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1122 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1123 spa_version(spa)) == 0);
1124 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1125 POOL_STATE_SPARE) == 0);
1126 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1127 vd->vdev_guid) == 0);
1128 } else if (reason == VDEV_LABEL_L2CACHE ||
1129 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1131 * For level 2 ARC devices, add a special label.
1133 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1135 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1136 spa_version(spa)) == 0);
1137 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1138 POOL_STATE_L2CACHE) == 0);
1139 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1140 vd->vdev_guid) == 0);
1143 * This is merely to facilitate reporting the ashift of the
1144 * cache device through zdb. The actual retrieval of the
1145 * ashift (in vdev_alloc()) uses the nvlist
1146 * spa->spa_l2cache->sav_config (populated in
1147 * spa_ld_open_aux_vdevs()).
1149 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_ASHIFT,
1150 vd->vdev_ashift) == 0);
1151 } else {
1152 uint64_t txg = 0ULL;
1154 if (reason == VDEV_LABEL_SPLIT)
1155 txg = spa->spa_uberblock.ub_txg;
1156 label = spa_config_generate(spa, vd, txg, B_FALSE);
1159 * Add our creation time. This allows us to detect multiple
1160 * vdev uses as described above, and automatically expires if we
1161 * fail.
1163 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1164 crtxg) == 0);
1167 buf = vp->vp_nvlist;
1168 buflen = sizeof (vp->vp_nvlist);
1170 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1171 if (error != 0) {
1172 nvlist_free(label);
1173 abd_free(vp_abd);
1174 /* EFAULT means nvlist_pack ran out of room */
1175 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1179 * Initialize uberblock template.
1181 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1182 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1183 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1184 ub = abd_to_buf(ub_abd);
1185 ub->ub_txg = 0;
1187 /* Initialize the 2nd padding area. */
1188 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1189 abd_zero(bootenv, VDEV_PAD_SIZE);
1192 * Write everything in parallel.
1194 retry:
1195 zio = zio_root(spa, NULL, NULL, flags);
1197 for (int l = 0; l < VDEV_LABELS; l++) {
1199 vdev_label_write(zio, vd, l, vp_abd,
1200 offsetof(vdev_label_t, vl_vdev_phys),
1201 sizeof (vdev_phys_t), NULL, NULL, flags);
1204 * Skip the 1st padding area.
1205 * Zero out the 2nd padding area where it might have
1206 * left over data from previous filesystem format.
1208 vdev_label_write(zio, vd, l, bootenv,
1209 offsetof(vdev_label_t, vl_be),
1210 VDEV_PAD_SIZE, NULL, NULL, flags);
1212 vdev_label_write(zio, vd, l, ub_abd,
1213 offsetof(vdev_label_t, vl_uberblock),
1214 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1217 error = zio_wait(zio);
1219 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1220 flags |= ZIO_FLAG_TRYHARD;
1221 goto retry;
1224 nvlist_free(label);
1225 abd_free(bootenv);
1226 abd_free(ub_abd);
1227 abd_free(vp_abd);
1230 * If this vdev hasn't been previously identified as a spare, then we
1231 * mark it as such only if a) we are labeling it as a spare, or b) it
1232 * exists as a spare elsewhere in the system. Do the same for
1233 * level 2 ARC devices.
1235 if (error == 0 && !vd->vdev_isspare &&
1236 (reason == VDEV_LABEL_SPARE ||
1237 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1238 spa_spare_add(vd);
1240 if (error == 0 && !vd->vdev_isl2cache &&
1241 (reason == VDEV_LABEL_L2CACHE ||
1242 spa_l2cache_exists(vd->vdev_guid, NULL)))
1243 spa_l2cache_add(vd);
1245 return (error);
1249 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1250 * callback to finish, store our abd in the callback pointer. Otherwise, we
1251 * just free our abd and return.
1253 static void
1254 vdev_label_read_bootenv_done(zio_t *zio)
1256 zio_t *rio = zio->io_private;
1257 abd_t **cbp = rio->io_private;
1259 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1261 if (zio->io_error == 0) {
1262 mutex_enter(&rio->io_lock);
1263 if (*cbp == NULL) {
1264 /* Will free this buffer in vdev_label_read_bootenv. */
1265 *cbp = zio->io_abd;
1266 } else {
1267 abd_free(zio->io_abd);
1269 mutex_exit(&rio->io_lock);
1270 } else {
1271 abd_free(zio->io_abd);
1275 static void
1276 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1278 for (int c = 0; c < vd->vdev_children; c++)
1279 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1282 * We just use the first label that has a correct checksum; the
1283 * bootloader should have rewritten them all to be the same on boot,
1284 * and any changes we made since boot have been the same across all
1285 * labels.
1287 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1288 for (int l = 0; l < VDEV_LABELS; l++) {
1289 vdev_label_read(zio, vd, l,
1290 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1291 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1292 vdev_label_read_bootenv_done, zio, flags);
1298 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *bootenv)
1300 nvlist_t *config;
1301 spa_t *spa = rvd->vdev_spa;
1302 abd_t *abd = NULL;
1303 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1304 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1306 ASSERT(bootenv);
1307 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309 zio_t *zio = zio_root(spa, NULL, &abd, flags);
1310 vdev_label_read_bootenv_impl(zio, rvd, flags);
1311 int err = zio_wait(zio);
1313 if (abd != NULL) {
1314 char *buf;
1315 vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1317 vbe->vbe_version = ntohll(vbe->vbe_version);
1318 switch (vbe->vbe_version) {
1319 case VB_RAW:
1321 * if we have textual data in vbe_bootenv, create nvlist
1322 * with key "envmap".
1324 fnvlist_add_uint64(bootenv, BOOTENV_VERSION, VB_RAW);
1325 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1326 fnvlist_add_string(bootenv, GRUB_ENVMAP,
1327 vbe->vbe_bootenv);
1328 break;
1330 case VB_NVLIST:
1331 err = nvlist_unpack(vbe->vbe_bootenv,
1332 sizeof (vbe->vbe_bootenv), &config, 0);
1333 if (err == 0) {
1334 fnvlist_merge(bootenv, config);
1335 nvlist_free(config);
1336 break;
1338 zfs_fallthrough;
1339 default:
1340 /* Check for FreeBSD zfs bootonce command string */
1341 buf = abd_to_buf(abd);
1342 if (*buf == '\0') {
1343 fnvlist_add_uint64(bootenv, BOOTENV_VERSION,
1344 VB_NVLIST);
1345 break;
1347 fnvlist_add_string(bootenv, FREEBSD_BOOTONCE, buf);
1351 * abd was allocated in vdev_label_read_bootenv_impl()
1353 abd_free(abd);
1355 * If we managed to read any successfully,
1356 * return success.
1358 return (0);
1360 return (err);
1364 vdev_label_write_bootenv(vdev_t *vd, nvlist_t *env)
1366 zio_t *zio;
1367 spa_t *spa = vd->vdev_spa;
1368 vdev_boot_envblock_t *bootenv;
1369 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1370 int error;
1371 size_t nvsize;
1372 char *nvbuf;
1373 const char *tmp;
1375 error = nvlist_size(env, &nvsize, NV_ENCODE_XDR);
1376 if (error != 0)
1377 return (SET_ERROR(error));
1379 if (nvsize >= sizeof (bootenv->vbe_bootenv)) {
1380 return (SET_ERROR(E2BIG));
1383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1385 error = ENXIO;
1386 for (int c = 0; c < vd->vdev_children; c++) {
1387 int child_err;
1389 child_err = vdev_label_write_bootenv(vd->vdev_child[c], env);
1391 * As long as any of the disks managed to write all of their
1392 * labels successfully, return success.
1394 if (child_err == 0)
1395 error = child_err;
1398 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1399 !vdev_writeable(vd)) {
1400 return (error);
1402 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1403 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1404 abd_zero(abd, VDEV_PAD_SIZE);
1406 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1407 nvbuf = bootenv->vbe_bootenv;
1408 nvsize = sizeof (bootenv->vbe_bootenv);
1410 bootenv->vbe_version = fnvlist_lookup_uint64(env, BOOTENV_VERSION);
1411 switch (bootenv->vbe_version) {
1412 case VB_RAW:
1413 if (nvlist_lookup_string(env, GRUB_ENVMAP, &tmp) == 0) {
1414 (void) strlcpy(bootenv->vbe_bootenv, tmp, nvsize);
1416 error = 0;
1417 break;
1419 case VB_NVLIST:
1420 error = nvlist_pack(env, &nvbuf, &nvsize, NV_ENCODE_XDR,
1421 KM_SLEEP);
1422 break;
1424 default:
1425 error = EINVAL;
1426 break;
1429 if (error == 0) {
1430 bootenv->vbe_version = htonll(bootenv->vbe_version);
1431 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1432 } else {
1433 abd_free(abd);
1434 return (SET_ERROR(error));
1437 retry:
1438 zio = zio_root(spa, NULL, NULL, flags);
1439 for (int l = 0; l < VDEV_LABELS; l++) {
1440 vdev_label_write(zio, vd, l, abd,
1441 offsetof(vdev_label_t, vl_be),
1442 VDEV_PAD_SIZE, NULL, NULL, flags);
1445 error = zio_wait(zio);
1446 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1447 flags |= ZIO_FLAG_TRYHARD;
1448 goto retry;
1451 abd_free(abd);
1452 return (error);
1456 * ==========================================================================
1457 * uberblock load/sync
1458 * ==========================================================================
1462 * Consider the following situation: txg is safely synced to disk. We've
1463 * written the first uberblock for txg + 1, and then we lose power. When we
1464 * come back up, we fail to see the uberblock for txg + 1 because, say,
1465 * it was on a mirrored device and the replica to which we wrote txg + 1
1466 * is now offline. If we then make some changes and sync txg + 1, and then
1467 * the missing replica comes back, then for a few seconds we'll have two
1468 * conflicting uberblocks on disk with the same txg. The solution is simple:
1469 * among uberblocks with equal txg, choose the one with the latest timestamp.
1471 static int
1472 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1474 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1476 if (likely(cmp))
1477 return (cmp);
1479 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1480 if (likely(cmp))
1481 return (cmp);
1484 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1485 * ZFS, e.g. OpenZFS >= 0.7.
1487 * If one ub has MMP and the other does not, they were written by
1488 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as
1489 * a 0 value.
1491 * Since timestamp and txg are the same if we get this far, either is
1492 * acceptable for importing the pool.
1494 unsigned int seq1 = 0;
1495 unsigned int seq2 = 0;
1497 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1498 seq1 = MMP_SEQ(ub1);
1500 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1501 seq2 = MMP_SEQ(ub2);
1503 return (TREE_CMP(seq1, seq2));
1506 struct ubl_cbdata {
1507 uberblock_t *ubl_ubbest; /* Best uberblock */
1508 vdev_t *ubl_vd; /* vdev associated with the above */
1511 static void
1512 vdev_uberblock_load_done(zio_t *zio)
1514 vdev_t *vd = zio->io_vd;
1515 spa_t *spa = zio->io_spa;
1516 zio_t *rio = zio->io_private;
1517 uberblock_t *ub = abd_to_buf(zio->io_abd);
1518 struct ubl_cbdata *cbp = rio->io_private;
1520 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1522 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1523 mutex_enter(&rio->io_lock);
1524 if (ub->ub_txg <= spa->spa_load_max_txg &&
1525 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1527 * Keep track of the vdev in which this uberblock
1528 * was found. We will use this information later
1529 * to obtain the config nvlist associated with
1530 * this uberblock.
1532 *cbp->ubl_ubbest = *ub;
1533 cbp->ubl_vd = vd;
1535 mutex_exit(&rio->io_lock);
1538 abd_free(zio->io_abd);
1541 static void
1542 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1543 struct ubl_cbdata *cbp)
1545 for (int c = 0; c < vd->vdev_children; c++)
1546 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1548 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd) &&
1549 vd->vdev_ops != &vdev_draid_spare_ops) {
1550 for (int l = 0; l < VDEV_LABELS; l++) {
1551 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1552 vdev_label_read(zio, vd, l,
1553 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1554 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1555 VDEV_UBERBLOCK_SIZE(vd),
1556 vdev_uberblock_load_done, zio, flags);
1563 * Reads the 'best' uberblock from disk along with its associated
1564 * configuration. First, we read the uberblock array of each label of each
1565 * vdev, keeping track of the uberblock with the highest txg in each array.
1566 * Then, we read the configuration from the same vdev as the best uberblock.
1568 void
1569 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1571 zio_t *zio;
1572 spa_t *spa = rvd->vdev_spa;
1573 struct ubl_cbdata cb;
1574 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1575 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1577 ASSERT(ub);
1578 ASSERT(config);
1580 memset(ub, 0, sizeof (uberblock_t));
1581 *config = NULL;
1583 cb.ubl_ubbest = ub;
1584 cb.ubl_vd = NULL;
1586 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1587 zio = zio_root(spa, NULL, &cb, flags);
1588 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1589 (void) zio_wait(zio);
1592 * It's possible that the best uberblock was discovered on a label
1593 * that has a configuration which was written in a future txg.
1594 * Search all labels on this vdev to find the configuration that
1595 * matches the txg for our uberblock.
1597 if (cb.ubl_vd != NULL) {
1598 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1599 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1601 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1602 if (*config == NULL && spa->spa_extreme_rewind) {
1603 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1604 "Trying again without txg restrictions.");
1605 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1607 if (*config == NULL) {
1608 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1611 spa_config_exit(spa, SCL_ALL, FTAG);
1615 * For use when a leaf vdev is expanded.
1616 * The location of labels 2 and 3 changed, and at the new location the
1617 * uberblock rings are either empty or contain garbage. The sync will write
1618 * new configs there because the vdev is dirty, but expansion also needs the
1619 * uberblock rings copied. Read them from label 0 which did not move.
1621 * Since the point is to populate labels {2,3} with valid uberblocks,
1622 * we zero uberblocks we fail to read or which are not valid.
1625 static void
1626 vdev_copy_uberblocks(vdev_t *vd)
1628 abd_t *ub_abd;
1629 zio_t *write_zio;
1630 int locks = (SCL_L2ARC | SCL_ZIO);
1631 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1632 ZIO_FLAG_SPECULATIVE;
1634 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1635 SCL_STATE);
1636 ASSERT(vd->vdev_ops->vdev_op_leaf);
1639 * No uberblocks are stored on distributed spares, they may be
1640 * safely skipped when expanding a leaf vdev.
1642 if (vd->vdev_ops == &vdev_draid_spare_ops)
1643 return;
1645 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1647 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1649 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1650 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1651 const int src_label = 0;
1652 zio_t *zio;
1654 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1655 vdev_label_read(zio, vd, src_label, ub_abd,
1656 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1657 NULL, NULL, flags);
1659 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1660 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1662 for (int l = 2; l < VDEV_LABELS; l++)
1663 vdev_label_write(write_zio, vd, l, ub_abd,
1664 VDEV_UBERBLOCK_OFFSET(vd, n),
1665 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1666 flags | ZIO_FLAG_DONT_PROPAGATE);
1668 (void) zio_wait(write_zio);
1670 spa_config_exit(vd->vdev_spa, locks, FTAG);
1672 abd_free(ub_abd);
1676 * On success, increment root zio's count of good writes.
1677 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1679 static void
1680 vdev_uberblock_sync_done(zio_t *zio)
1682 uint64_t *good_writes = zio->io_private;
1684 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1685 atomic_inc_64(good_writes);
1689 * Write the uberblock to all labels of all leaves of the specified vdev.
1691 static void
1692 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1693 uberblock_t *ub, vdev_t *vd, int flags)
1695 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1696 vdev_uberblock_sync(zio, good_writes,
1697 ub, vd->vdev_child[c], flags);
1700 if (!vd->vdev_ops->vdev_op_leaf)
1701 return;
1703 if (!vdev_writeable(vd))
1704 return;
1707 * There's no need to write uberblocks to a distributed spare, they
1708 * are already stored on all the leaves of the parent dRAID. For
1709 * this same reason vdev_uberblock_load_impl() skips distributed
1710 * spares when reading uberblocks.
1712 if (vd->vdev_ops == &vdev_draid_spare_ops)
1713 return;
1715 /* If the vdev was expanded, need to copy uberblock rings. */
1716 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1717 vd->vdev_copy_uberblocks == B_TRUE) {
1718 vdev_copy_uberblocks(vd);
1719 vd->vdev_copy_uberblocks = B_FALSE;
1722 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1723 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1725 /* Copy the uberblock_t into the ABD */
1726 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1727 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1728 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1730 for (int l = 0; l < VDEV_LABELS; l++)
1731 vdev_label_write(zio, vd, l, ub_abd,
1732 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1733 vdev_uberblock_sync_done, good_writes,
1734 flags | ZIO_FLAG_DONT_PROPAGATE);
1736 abd_free(ub_abd);
1739 /* Sync the uberblocks to all vdevs in svd[] */
1740 static int
1741 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1743 spa_t *spa = svd[0]->vdev_spa;
1744 zio_t *zio;
1745 uint64_t good_writes = 0;
1747 zio = zio_root(spa, NULL, NULL, flags);
1749 for (int v = 0; v < svdcount; v++)
1750 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1752 (void) zio_wait(zio);
1755 * Flush the uberblocks to disk. This ensures that the odd labels
1756 * are no longer needed (because the new uberblocks and the even
1757 * labels are safely on disk), so it is safe to overwrite them.
1759 zio = zio_root(spa, NULL, NULL, flags);
1761 for (int v = 0; v < svdcount; v++) {
1762 if (vdev_writeable(svd[v])) {
1763 zio_flush(zio, svd[v]);
1767 (void) zio_wait(zio);
1769 return (good_writes >= 1 ? 0 : EIO);
1773 * On success, increment the count of good writes for our top-level vdev.
1775 static void
1776 vdev_label_sync_done(zio_t *zio)
1778 uint64_t *good_writes = zio->io_private;
1780 if (zio->io_error == 0)
1781 atomic_inc_64(good_writes);
1785 * If there weren't enough good writes, indicate failure to the parent.
1787 static void
1788 vdev_label_sync_top_done(zio_t *zio)
1790 uint64_t *good_writes = zio->io_private;
1792 if (*good_writes == 0)
1793 zio->io_error = SET_ERROR(EIO);
1795 kmem_free(good_writes, sizeof (uint64_t));
1799 * We ignore errors for log and cache devices, simply free the private data.
1801 static void
1802 vdev_label_sync_ignore_done(zio_t *zio)
1804 kmem_free(zio->io_private, sizeof (uint64_t));
1808 * Write all even or odd labels to all leaves of the specified vdev.
1810 static void
1811 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1812 vdev_t *vd, int l, uint64_t txg, int flags)
1814 nvlist_t *label;
1815 vdev_phys_t *vp;
1816 abd_t *vp_abd;
1817 char *buf;
1818 size_t buflen;
1820 for (int c = 0; c < vd->vdev_children; c++) {
1821 vdev_label_sync(zio, good_writes,
1822 vd->vdev_child[c], l, txg, flags);
1825 if (!vd->vdev_ops->vdev_op_leaf)
1826 return;
1828 if (!vdev_writeable(vd))
1829 return;
1832 * The top-level config never needs to be written to a distributed
1833 * spare. When read vdev_dspare_label_read_config() will generate
1834 * the config for the vdev_label_read_config().
1836 if (vd->vdev_ops == &vdev_draid_spare_ops)
1837 return;
1840 * Generate a label describing the top-level config to which we belong.
1842 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1844 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1845 abd_zero(vp_abd, sizeof (vdev_phys_t));
1846 vp = abd_to_buf(vp_abd);
1848 buf = vp->vp_nvlist;
1849 buflen = sizeof (vp->vp_nvlist);
1851 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1852 for (; l < VDEV_LABELS; l += 2) {
1853 vdev_label_write(zio, vd, l, vp_abd,
1854 offsetof(vdev_label_t, vl_vdev_phys),
1855 sizeof (vdev_phys_t),
1856 vdev_label_sync_done, good_writes,
1857 flags | ZIO_FLAG_DONT_PROPAGATE);
1861 abd_free(vp_abd);
1862 nvlist_free(label);
1865 static int
1866 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1868 list_t *dl = &spa->spa_config_dirty_list;
1869 vdev_t *vd;
1870 zio_t *zio;
1871 int error;
1874 * Write the new labels to disk.
1876 zio = zio_root(spa, NULL, NULL, flags);
1878 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1879 uint64_t *good_writes;
1881 ASSERT(!vd->vdev_ishole);
1883 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1884 zio_t *vio = zio_null(zio, spa, NULL,
1885 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1886 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1887 good_writes, flags);
1888 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1889 zio_nowait(vio);
1892 error = zio_wait(zio);
1895 * Flush the new labels to disk.
1897 zio = zio_root(spa, NULL, NULL, flags);
1899 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1900 zio_flush(zio, vd);
1902 (void) zio_wait(zio);
1904 return (error);
1908 * Sync the uberblock and any changes to the vdev configuration.
1910 * The order of operations is carefully crafted to ensure that
1911 * if the system panics or loses power at any time, the state on disk
1912 * is still transactionally consistent. The in-line comments below
1913 * describe the failure semantics at each stage.
1915 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1916 * at any time, you can just call it again, and it will resume its work.
1919 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1921 spa_t *spa = svd[0]->vdev_spa;
1922 uberblock_t *ub = &spa->spa_uberblock;
1923 int error = 0;
1924 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1926 ASSERT(svdcount != 0);
1927 retry:
1929 * Normally, we don't want to try too hard to write every label and
1930 * uberblock. If there is a flaky disk, we don't want the rest of the
1931 * sync process to block while we retry. But if we can't write a
1932 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1933 * bailing out and declaring the pool faulted.
1935 if (error != 0) {
1936 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1937 return (error);
1938 flags |= ZIO_FLAG_TRYHARD;
1941 ASSERT(ub->ub_txg <= txg);
1944 * If this isn't a resync due to I/O errors,
1945 * and nothing changed in this transaction group,
1946 * and the vdev configuration hasn't changed,
1947 * then there's nothing to do.
1949 if (ub->ub_txg < txg) {
1950 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1951 txg, spa->spa_mmp.mmp_delay);
1953 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1954 return (0);
1957 if (txg > spa_freeze_txg(spa))
1958 return (0);
1960 ASSERT(txg <= spa->spa_final_txg);
1963 * Flush the write cache of every disk that's been written to
1964 * in this transaction group. This ensures that all blocks
1965 * written in this txg will be committed to stable storage
1966 * before any uberblock that references them.
1968 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1970 for (vdev_t *vd =
1971 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1972 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1973 zio_flush(zio, vd);
1975 (void) zio_wait(zio);
1978 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1979 * system dies in the middle of this process, that's OK: all of the
1980 * even labels that made it to disk will be newer than any uberblock,
1981 * and will therefore be considered invalid. The odd labels (L1, L3),
1982 * which have not yet been touched, will still be valid. We flush
1983 * the new labels to disk to ensure that all even-label updates
1984 * are committed to stable storage before the uberblock update.
1986 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1987 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1988 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1989 "for pool '%s' when syncing out the even labels "
1990 "of dirty vdevs", error, spa_name(spa));
1992 goto retry;
1996 * Sync the uberblocks to all vdevs in svd[].
1997 * If the system dies in the middle of this step, there are two cases
1998 * to consider, and the on-disk state is consistent either way:
2000 * (1) If none of the new uberblocks made it to disk, then the
2001 * previous uberblock will be the newest, and the odd labels
2002 * (which had not yet been touched) will be valid with respect
2003 * to that uberblock.
2005 * (2) If one or more new uberblocks made it to disk, then they
2006 * will be the newest, and the even labels (which had all
2007 * been successfully committed) will be valid with respect
2008 * to the new uberblocks.
2010 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
2011 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2012 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
2013 "%d for pool '%s'", error, spa_name(spa));
2015 goto retry;
2018 if (spa_multihost(spa))
2019 mmp_update_uberblock(spa, ub);
2022 * Sync out odd labels for every dirty vdev. If the system dies
2023 * in the middle of this process, the even labels and the new
2024 * uberblocks will suffice to open the pool. The next time
2025 * the pool is opened, the first thing we'll do -- before any
2026 * user data is modified -- is mark every vdev dirty so that
2027 * all labels will be brought up to date. We flush the new labels
2028 * to disk to ensure that all odd-label updates are committed to
2029 * stable storage before the next transaction group begins.
2031 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
2032 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
2033 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2034 "for pool '%s' when syncing out the odd labels of "
2035 "dirty vdevs", error, spa_name(spa));
2037 goto retry;
2040 return (0);