4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
28 #include <sys/zfs_context.h>
30 #include <sys/vdev_impl.h>
32 #include <sys/zio_checksum.h>
34 #include <sys/fs/zfs.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/vdev_raidz.h>
37 #include <sys/vdev_raidz_impl.h>
38 #include <sys/vdev_draid.h>
41 #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */
45 * Virtual device vector for RAID-Z.
47 * This vdev supports single, double, and triple parity. For single parity,
48 * we use a simple XOR of all the data columns. For double or triple parity,
49 * we use a special case of Reed-Solomon coding. This extends the
50 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
51 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
52 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
53 * former is also based. The latter is designed to provide higher performance
56 * Note that the Plank paper claimed to support arbitrary N+M, but was then
57 * amended six years later identifying a critical flaw that invalidates its
58 * claims. Nevertheless, the technique can be adapted to work for up to
59 * triple parity. For additional parity, the amendment "Note: Correction to
60 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
61 * is viable, but the additional complexity means that write performance will
64 * All of the methods above operate on a Galois field, defined over the
65 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
66 * can be expressed with a single byte. Briefly, the operations on the
67 * field are defined as follows:
69 * o addition (+) is represented by a bitwise XOR
70 * o subtraction (-) is therefore identical to addition: A + B = A - B
71 * o multiplication of A by 2 is defined by the following bitwise expression:
76 * (A * 2)_4 = A_3 + A_7
77 * (A * 2)_3 = A_2 + A_7
78 * (A * 2)_2 = A_1 + A_7
82 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
83 * As an aside, this multiplication is derived from the error correcting
84 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
86 * Observe that any number in the field (except for 0) can be expressed as a
87 * power of 2 -- a generator for the field. We store a table of the powers of
88 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
89 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
90 * than field addition). The inverse of a field element A (A^-1) is therefore
91 * A ^ (255 - 1) = A^254.
93 * The up-to-three parity columns, P, Q, R over several data columns,
94 * D_0, ... D_n-1, can be expressed by field operations:
96 * P = D_0 + D_1 + ... + D_n-2 + D_n-1
97 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
98 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
99 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
100 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
102 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
103 * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
104 * independent coefficients. (There are no additional coefficients that have
105 * this property which is why the uncorrected Plank method breaks down.)
107 * See the reconstruction code below for how P, Q and R can used individually
108 * or in concert to recover missing data columns.
111 #define VDEV_RAIDZ_P 0
112 #define VDEV_RAIDZ_Q 1
113 #define VDEV_RAIDZ_R 2
115 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
116 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
119 * We provide a mechanism to perform the field multiplication operation on a
120 * 64-bit value all at once rather than a byte at a time. This works by
121 * creating a mask from the top bit in each byte and using that to
122 * conditionally apply the XOR of 0x1d.
124 #define VDEV_RAIDZ_64MUL_2(x, mask) \
126 (mask) = (x) & 0x8080808080808080ULL; \
127 (mask) = ((mask) << 1) - ((mask) >> 7); \
128 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
129 ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
132 #define VDEV_RAIDZ_64MUL_4(x, mask) \
134 VDEV_RAIDZ_64MUL_2((x), mask); \
135 VDEV_RAIDZ_64MUL_2((x), mask); \
139 vdev_raidz_row_free(raidz_row_t
*rr
)
141 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
142 raidz_col_t
*rc
= &rr
->rr_col
[c
];
144 if (rc
->rc_size
!= 0)
145 abd_free(rc
->rc_abd
);
146 if (rc
->rc_orig_data
!= NULL
)
147 abd_free(rc
->rc_orig_data
);
150 if (rr
->rr_abd_empty
!= NULL
)
151 abd_free(rr
->rr_abd_empty
);
153 kmem_free(rr
, offsetof(raidz_row_t
, rr_col
[rr
->rr_scols
]));
157 vdev_raidz_map_free(raidz_map_t
*rm
)
159 for (int i
= 0; i
< rm
->rm_nrows
; i
++)
160 vdev_raidz_row_free(rm
->rm_row
[i
]);
162 kmem_free(rm
, offsetof(raidz_map_t
, rm_row
[rm
->rm_nrows
]));
166 vdev_raidz_map_free_vsd(zio_t
*zio
)
168 raidz_map_t
*rm
= zio
->io_vsd
;
170 vdev_raidz_map_free(rm
);
173 const zio_vsd_ops_t vdev_raidz_vsd_ops
= {
174 .vsd_free
= vdev_raidz_map_free_vsd
,
178 vdev_raidz_map_alloc_write(zio_t
*zio
, raidz_map_t
*rm
, uint64_t ashift
)
183 raidz_row_t
*rr
= rm
->rm_row
[0];
185 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
186 ASSERT3U(rm
->rm_nrows
, ==, 1);
189 * Pad any parity columns with additional space to account for skip
192 if (rm
->rm_skipstart
< rr
->rr_firstdatacol
) {
193 ASSERT0(rm
->rm_skipstart
);
194 nwrapped
= rm
->rm_nskip
;
195 } else if (rr
->rr_scols
< (rm
->rm_skipstart
+ rm
->rm_nskip
)) {
197 (rm
->rm_skipstart
+ rm
->rm_nskip
) % rr
->rr_scols
;
201 * Optional single skip sectors (rc_size == 0) will be handled in
202 * vdev_raidz_io_start_write().
204 int skipped
= rr
->rr_scols
- rr
->rr_cols
;
206 /* Allocate buffers for the parity columns */
207 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
208 raidz_col_t
*rc
= &rr
->rr_col
[c
];
211 * Parity columns will pad out a linear ABD to account for
212 * the skip sector. A linear ABD is used here because
213 * parity calculations use the ABD buffer directly to calculate
214 * parity. This avoids doing a memcpy back to the ABD after the
215 * parity has been calculated. By issuing the parity column
216 * with the skip sector we can reduce contention on the child
217 * VDEV queue locks (vq_lock).
220 rc
->rc_abd
= abd_alloc_linear(
221 rc
->rc_size
+ (1ULL << ashift
), B_FALSE
);
222 abd_zero_off(rc
->rc_abd
, rc
->rc_size
, 1ULL << ashift
);
225 rc
->rc_abd
= abd_alloc_linear(rc
->rc_size
, B_FALSE
);
229 for (off
= 0; c
< rr
->rr_cols
; c
++) {
230 raidz_col_t
*rc
= &rr
->rr_col
[c
];
231 abd_t
*abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
232 zio
->io_abd
, off
, rc
->rc_size
);
235 * Generate I/O for skip sectors to improve aggregation
236 * continuity. We will use gang ABD's to reduce contention
237 * on the child VDEV queue locks (vq_lock) by issuing
238 * a single I/O that contains the data and skip sector.
240 * It is important to make sure that rc_size is not updated
241 * even though we are adding a skip sector to the ABD. When
242 * calculating the parity in vdev_raidz_generate_parity_row()
243 * the rc_size is used to iterate through the ABD's. We can
244 * not have zero'd out skip sectors used for calculating
245 * parity for raidz, because those same sectors are not used
246 * during reconstruction.
248 if (c
>= rm
->rm_skipstart
&& skipped
< rm
->rm_nskip
) {
249 rc
->rc_abd
= abd_alloc_gang();
250 abd_gang_add(rc
->rc_abd
, abd
, B_TRUE
);
251 abd_gang_add(rc
->rc_abd
,
252 abd_get_zeros(1ULL << ashift
), B_TRUE
);
260 ASSERT3U(off
, ==, zio
->io_size
);
261 ASSERT3S(skipped
, ==, rm
->rm_nskip
);
265 vdev_raidz_map_alloc_read(zio_t
*zio
, raidz_map_t
*rm
)
268 raidz_row_t
*rr
= rm
->rm_row
[0];
270 ASSERT3U(rm
->rm_nrows
, ==, 1);
272 /* Allocate buffers for the parity columns */
273 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++)
274 rr
->rr_col
[c
].rc_abd
=
275 abd_alloc_linear(rr
->rr_col
[c
].rc_size
, B_FALSE
);
277 for (uint64_t off
= 0; c
< rr
->rr_cols
; c
++) {
278 raidz_col_t
*rc
= &rr
->rr_col
[c
];
279 rc
->rc_abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
280 zio
->io_abd
, off
, rc
->rc_size
);
286 * Divides the IO evenly across all child vdevs; usually, dcols is
287 * the number of children in the target vdev.
289 * Avoid inlining the function to keep vdev_raidz_io_start(), which
290 * is this functions only caller, as small as possible on the stack.
292 noinline raidz_map_t
*
293 vdev_raidz_map_alloc(zio_t
*zio
, uint64_t ashift
, uint64_t dcols
,
297 /* The starting RAIDZ (parent) vdev sector of the block. */
298 uint64_t b
= zio
->io_offset
>> ashift
;
299 /* The zio's size in units of the vdev's minimum sector size. */
300 uint64_t s
= zio
->io_size
>> ashift
;
301 /* The first column for this stripe. */
302 uint64_t f
= b
% dcols
;
303 /* The starting byte offset on each child vdev. */
304 uint64_t o
= (b
/ dcols
) << ashift
;
305 uint64_t q
, r
, c
, bc
, col
, acols
, scols
, coff
, devidx
, asize
, tot
;
308 kmem_zalloc(offsetof(raidz_map_t
, rm_row
[1]), KM_SLEEP
);
312 * "Quotient": The number of data sectors for this stripe on all but
313 * the "big column" child vdevs that also contain "remainder" data.
315 q
= s
/ (dcols
- nparity
);
318 * "Remainder": The number of partial stripe data sectors in this I/O.
319 * This will add a sector to some, but not all, child vdevs.
321 r
= s
- q
* (dcols
- nparity
);
323 /* The number of "big columns" - those which contain remainder data. */
324 bc
= (r
== 0 ? 0 : r
+ nparity
);
327 * The total number of data and parity sectors associated with
330 tot
= s
+ nparity
* (q
+ (r
== 0 ? 0 : 1));
333 * acols: The columns that will be accessed.
334 * scols: The columns that will be accessed or skipped.
337 /* Our I/O request doesn't span all child vdevs. */
339 scols
= MIN(dcols
, roundup(bc
, nparity
+ 1));
345 ASSERT3U(acols
, <=, scols
);
347 rr
= kmem_alloc(offsetof(raidz_row_t
, rr_col
[scols
]), KM_SLEEP
);
351 rr
->rr_scols
= scols
;
353 rr
->rr_missingdata
= 0;
354 rr
->rr_missingparity
= 0;
355 rr
->rr_firstdatacol
= nparity
;
356 rr
->rr_abd_empty
= NULL
;
359 rr
->rr_offset
= zio
->io_offset
;
360 rr
->rr_size
= zio
->io_size
;
365 for (c
= 0; c
< scols
; c
++) {
366 raidz_col_t
*rc
= &rr
->rr_col
[c
];
371 coff
+= 1ULL << ashift
;
374 rc
->rc_offset
= coff
;
376 rc
->rc_orig_data
= NULL
;
380 rc
->rc_force_repair
= 0;
381 rc
->rc_allow_repair
= 1;
382 rc
->rc_need_orig_restore
= B_FALSE
;
387 rc
->rc_size
= (q
+ 1) << ashift
;
389 rc
->rc_size
= q
<< ashift
;
391 asize
+= rc
->rc_size
;
394 ASSERT3U(asize
, ==, tot
<< ashift
);
395 rm
->rm_nskip
= roundup(tot
, nparity
+ 1) - tot
;
396 rm
->rm_skipstart
= bc
;
399 * If all data stored spans all columns, there's a danger that parity
400 * will always be on the same device and, since parity isn't read
401 * during normal operation, that device's I/O bandwidth won't be
402 * used effectively. We therefore switch the parity every 1MB.
404 * ... at least that was, ostensibly, the theory. As a practical
405 * matter unless we juggle the parity between all devices evenly, we
406 * won't see any benefit. Further, occasional writes that aren't a
407 * multiple of the LCM of the number of children and the minimum
408 * stripe width are sufficient to avoid pessimal behavior.
409 * Unfortunately, this decision created an implicit on-disk format
410 * requirement that we need to support for all eternity, but only
411 * for single-parity RAID-Z.
413 * If we intend to skip a sector in the zeroth column for padding
414 * we must make sure to note this swap. We will never intend to
415 * skip the first column since at least one data and one parity
416 * column must appear in each row.
418 ASSERT(rr
->rr_cols
>= 2);
419 ASSERT(rr
->rr_col
[0].rc_size
== rr
->rr_col
[1].rc_size
);
421 if (rr
->rr_firstdatacol
== 1 && (zio
->io_offset
& (1ULL << 20))) {
422 devidx
= rr
->rr_col
[0].rc_devidx
;
423 o
= rr
->rr_col
[0].rc_offset
;
424 rr
->rr_col
[0].rc_devidx
= rr
->rr_col
[1].rc_devidx
;
425 rr
->rr_col
[0].rc_offset
= rr
->rr_col
[1].rc_offset
;
426 rr
->rr_col
[1].rc_devidx
= devidx
;
427 rr
->rr_col
[1].rc_offset
= o
;
429 if (rm
->rm_skipstart
== 0)
430 rm
->rm_skipstart
= 1;
433 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
434 vdev_raidz_map_alloc_write(zio
, rm
, ashift
);
436 vdev_raidz_map_alloc_read(zio
, rm
);
439 /* init RAIDZ parity ops */
440 rm
->rm_ops
= vdev_raidz_math_get_ops();
452 vdev_raidz_p_func(void *buf
, size_t size
, void *private)
454 struct pqr_struct
*pqr
= private;
455 const uint64_t *src
= buf
;
456 int i
, cnt
= size
/ sizeof (src
[0]);
458 ASSERT(pqr
->p
&& !pqr
->q
&& !pqr
->r
);
460 for (i
= 0; i
< cnt
; i
++, src
++, pqr
->p
++)
467 vdev_raidz_pq_func(void *buf
, size_t size
, void *private)
469 struct pqr_struct
*pqr
= private;
470 const uint64_t *src
= buf
;
472 int i
, cnt
= size
/ sizeof (src
[0]);
474 ASSERT(pqr
->p
&& pqr
->q
&& !pqr
->r
);
476 for (i
= 0; i
< cnt
; i
++, src
++, pqr
->p
++, pqr
->q
++) {
478 VDEV_RAIDZ_64MUL_2(*pqr
->q
, mask
);
486 vdev_raidz_pqr_func(void *buf
, size_t size
, void *private)
488 struct pqr_struct
*pqr
= private;
489 const uint64_t *src
= buf
;
491 int i
, cnt
= size
/ sizeof (src
[0]);
493 ASSERT(pqr
->p
&& pqr
->q
&& pqr
->r
);
495 for (i
= 0; i
< cnt
; i
++, src
++, pqr
->p
++, pqr
->q
++, pqr
->r
++) {
497 VDEV_RAIDZ_64MUL_2(*pqr
->q
, mask
);
499 VDEV_RAIDZ_64MUL_4(*pqr
->r
, mask
);
507 vdev_raidz_generate_parity_p(raidz_row_t
*rr
)
509 uint64_t *p
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
511 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
512 abd_t
*src
= rr
->rr_col
[c
].rc_abd
;
514 if (c
== rr
->rr_firstdatacol
) {
515 abd_copy_to_buf(p
, src
, rr
->rr_col
[c
].rc_size
);
517 struct pqr_struct pqr
= { p
, NULL
, NULL
};
518 (void) abd_iterate_func(src
, 0, rr
->rr_col
[c
].rc_size
,
519 vdev_raidz_p_func
, &pqr
);
525 vdev_raidz_generate_parity_pq(raidz_row_t
*rr
)
527 uint64_t *p
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
528 uint64_t *q
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
529 uint64_t pcnt
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
/ sizeof (p
[0]);
530 ASSERT(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
==
531 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
);
533 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
534 abd_t
*src
= rr
->rr_col
[c
].rc_abd
;
536 uint64_t ccnt
= rr
->rr_col
[c
].rc_size
/ sizeof (p
[0]);
538 if (c
== rr
->rr_firstdatacol
) {
539 ASSERT(ccnt
== pcnt
|| ccnt
== 0);
540 abd_copy_to_buf(p
, src
, rr
->rr_col
[c
].rc_size
);
541 (void) memcpy(q
, p
, rr
->rr_col
[c
].rc_size
);
543 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
548 struct pqr_struct pqr
= { p
, q
, NULL
};
550 ASSERT(ccnt
<= pcnt
);
551 (void) abd_iterate_func(src
, 0, rr
->rr_col
[c
].rc_size
,
552 vdev_raidz_pq_func
, &pqr
);
555 * Treat short columns as though they are full of 0s.
556 * Note that there's therefore nothing needed for P.
559 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
560 VDEV_RAIDZ_64MUL_2(q
[i
], mask
);
567 vdev_raidz_generate_parity_pqr(raidz_row_t
*rr
)
569 uint64_t *p
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
570 uint64_t *q
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
571 uint64_t *r
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_R
].rc_abd
);
572 uint64_t pcnt
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
/ sizeof (p
[0]);
573 ASSERT(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
==
574 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
);
575 ASSERT(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
==
576 rr
->rr_col
[VDEV_RAIDZ_R
].rc_size
);
578 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
579 abd_t
*src
= rr
->rr_col
[c
].rc_abd
;
581 uint64_t ccnt
= rr
->rr_col
[c
].rc_size
/ sizeof (p
[0]);
583 if (c
== rr
->rr_firstdatacol
) {
584 ASSERT(ccnt
== pcnt
|| ccnt
== 0);
585 abd_copy_to_buf(p
, src
, rr
->rr_col
[c
].rc_size
);
586 (void) memcpy(q
, p
, rr
->rr_col
[c
].rc_size
);
587 (void) memcpy(r
, p
, rr
->rr_col
[c
].rc_size
);
589 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
595 struct pqr_struct pqr
= { p
, q
, r
};
597 ASSERT(ccnt
<= pcnt
);
598 (void) abd_iterate_func(src
, 0, rr
->rr_col
[c
].rc_size
,
599 vdev_raidz_pqr_func
, &pqr
);
602 * Treat short columns as though they are full of 0s.
603 * Note that there's therefore nothing needed for P.
606 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
607 VDEV_RAIDZ_64MUL_2(q
[i
], mask
);
608 VDEV_RAIDZ_64MUL_4(r
[i
], mask
);
615 * Generate RAID parity in the first virtual columns according to the number of
616 * parity columns available.
619 vdev_raidz_generate_parity_row(raidz_map_t
*rm
, raidz_row_t
*rr
)
621 ASSERT3U(rr
->rr_cols
, !=, 0);
623 /* Generate using the new math implementation */
624 if (vdev_raidz_math_generate(rm
, rr
) != RAIDZ_ORIGINAL_IMPL
)
627 switch (rr
->rr_firstdatacol
) {
629 vdev_raidz_generate_parity_p(rr
);
632 vdev_raidz_generate_parity_pq(rr
);
635 vdev_raidz_generate_parity_pqr(rr
);
638 cmn_err(CE_PANIC
, "invalid RAID-Z configuration");
643 vdev_raidz_generate_parity(raidz_map_t
*rm
)
645 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
646 raidz_row_t
*rr
= rm
->rm_row
[i
];
647 vdev_raidz_generate_parity_row(rm
, rr
);
652 vdev_raidz_reconst_p_func(void *dbuf
, void *sbuf
, size_t size
, void *private)
655 uint64_t *dst
= dbuf
;
656 uint64_t *src
= sbuf
;
657 int cnt
= size
/ sizeof (src
[0]);
659 for (int i
= 0; i
< cnt
; i
++) {
667 vdev_raidz_reconst_q_pre_func(void *dbuf
, void *sbuf
, size_t size
,
671 uint64_t *dst
= dbuf
;
672 uint64_t *src
= sbuf
;
674 int cnt
= size
/ sizeof (dst
[0]);
676 for (int i
= 0; i
< cnt
; i
++, dst
++, src
++) {
677 VDEV_RAIDZ_64MUL_2(*dst
, mask
);
685 vdev_raidz_reconst_q_pre_tail_func(void *buf
, size_t size
, void *private)
690 int cnt
= size
/ sizeof (dst
[0]);
692 for (int i
= 0; i
< cnt
; i
++, dst
++) {
693 /* same operation as vdev_raidz_reconst_q_pre_func() on dst */
694 VDEV_RAIDZ_64MUL_2(*dst
, mask
);
700 struct reconst_q_struct
{
706 vdev_raidz_reconst_q_post_func(void *buf
, size_t size
, void *private)
708 struct reconst_q_struct
*rq
= private;
710 int cnt
= size
/ sizeof (dst
[0]);
712 for (int i
= 0; i
< cnt
; i
++, dst
++, rq
->q
++) {
717 for (j
= 0, b
= (uint8_t *)dst
; j
< 8; j
++, b
++) {
718 *b
= vdev_raidz_exp2(*b
, rq
->exp
);
725 struct reconst_pq_struct
{
735 vdev_raidz_reconst_pq_func(void *xbuf
, void *ybuf
, size_t size
, void *private)
737 struct reconst_pq_struct
*rpq
= private;
741 for (int i
= 0; i
< size
;
742 i
++, rpq
->p
++, rpq
->q
++, rpq
->pxy
++, rpq
->qxy
++, xd
++, yd
++) {
743 *xd
= vdev_raidz_exp2(*rpq
->p
^ *rpq
->pxy
, rpq
->aexp
) ^
744 vdev_raidz_exp2(*rpq
->q
^ *rpq
->qxy
, rpq
->bexp
);
745 *yd
= *rpq
->p
^ *rpq
->pxy
^ *xd
;
752 vdev_raidz_reconst_pq_tail_func(void *xbuf
, size_t size
, void *private)
754 struct reconst_pq_struct
*rpq
= private;
757 for (int i
= 0; i
< size
;
758 i
++, rpq
->p
++, rpq
->q
++, rpq
->pxy
++, rpq
->qxy
++, xd
++) {
759 /* same operation as vdev_raidz_reconst_pq_func() on xd */
760 *xd
= vdev_raidz_exp2(*rpq
->p
^ *rpq
->pxy
, rpq
->aexp
) ^
761 vdev_raidz_exp2(*rpq
->q
^ *rpq
->qxy
, rpq
->bexp
);
768 vdev_raidz_reconstruct_p(raidz_row_t
*rr
, int *tgts
, int ntgts
)
773 ASSERT3U(ntgts
, ==, 1);
774 ASSERT3U(x
, >=, rr
->rr_firstdatacol
);
775 ASSERT3U(x
, <, rr
->rr_cols
);
777 ASSERT3U(rr
->rr_col
[x
].rc_size
, <=, rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
);
779 src
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
;
780 dst
= rr
->rr_col
[x
].rc_abd
;
782 abd_copy_from_buf(dst
, abd_to_buf(src
), rr
->rr_col
[x
].rc_size
);
784 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
785 uint64_t size
= MIN(rr
->rr_col
[x
].rc_size
,
786 rr
->rr_col
[c
].rc_size
);
788 src
= rr
->rr_col
[c
].rc_abd
;
793 (void) abd_iterate_func2(dst
, src
, 0, 0, size
,
794 vdev_raidz_reconst_p_func
, NULL
);
799 vdev_raidz_reconstruct_q(raidz_row_t
*rr
, int *tgts
, int ntgts
)
807 ASSERT(rr
->rr_col
[x
].rc_size
<= rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
);
809 for (c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
810 uint64_t size
= (c
== x
) ? 0 : MIN(rr
->rr_col
[x
].rc_size
,
811 rr
->rr_col
[c
].rc_size
);
813 src
= rr
->rr_col
[c
].rc_abd
;
814 dst
= rr
->rr_col
[x
].rc_abd
;
816 if (c
== rr
->rr_firstdatacol
) {
817 abd_copy(dst
, src
, size
);
818 if (rr
->rr_col
[x
].rc_size
> size
) {
819 abd_zero_off(dst
, size
,
820 rr
->rr_col
[x
].rc_size
- size
);
823 ASSERT3U(size
, <=, rr
->rr_col
[x
].rc_size
);
824 (void) abd_iterate_func2(dst
, src
, 0, 0, size
,
825 vdev_raidz_reconst_q_pre_func
, NULL
);
826 (void) abd_iterate_func(dst
,
827 size
, rr
->rr_col
[x
].rc_size
- size
,
828 vdev_raidz_reconst_q_pre_tail_func
, NULL
);
832 src
= rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
;
833 dst
= rr
->rr_col
[x
].rc_abd
;
834 exp
= 255 - (rr
->rr_cols
- 1 - x
);
836 struct reconst_q_struct rq
= { abd_to_buf(src
), exp
};
837 (void) abd_iterate_func(dst
, 0, rr
->rr_col
[x
].rc_size
,
838 vdev_raidz_reconst_q_post_func
, &rq
);
842 vdev_raidz_reconstruct_pq(raidz_row_t
*rr
, int *tgts
, int ntgts
)
844 uint8_t *p
, *q
, *pxy
, *qxy
, tmp
, a
, b
, aexp
, bexp
;
845 abd_t
*pdata
, *qdata
;
846 uint64_t xsize
, ysize
;
853 ASSERT(x
>= rr
->rr_firstdatacol
);
854 ASSERT(y
< rr
->rr_cols
);
856 ASSERT(rr
->rr_col
[x
].rc_size
>= rr
->rr_col
[y
].rc_size
);
859 * Move the parity data aside -- we're going to compute parity as
860 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
861 * reuse the parity generation mechanism without trashing the actual
862 * parity so we make those columns appear to be full of zeros by
863 * setting their lengths to zero.
865 pdata
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
;
866 qdata
= rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
;
867 xsize
= rr
->rr_col
[x
].rc_size
;
868 ysize
= rr
->rr_col
[y
].rc_size
;
870 rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
=
871 abd_alloc_linear(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
, B_TRUE
);
872 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
=
873 abd_alloc_linear(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
, B_TRUE
);
874 rr
->rr_col
[x
].rc_size
= 0;
875 rr
->rr_col
[y
].rc_size
= 0;
877 vdev_raidz_generate_parity_pq(rr
);
879 rr
->rr_col
[x
].rc_size
= xsize
;
880 rr
->rr_col
[y
].rc_size
= ysize
;
882 p
= abd_to_buf(pdata
);
883 q
= abd_to_buf(qdata
);
884 pxy
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
885 qxy
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
886 xd
= rr
->rr_col
[x
].rc_abd
;
887 yd
= rr
->rr_col
[y
].rc_abd
;
891 * Pxy = P + D_x + D_y
892 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
894 * We can then solve for D_x:
895 * D_x = A * (P + Pxy) + B * (Q + Qxy)
897 * A = 2^(x - y) * (2^(x - y) + 1)^-1
898 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
900 * With D_x in hand, we can easily solve for D_y:
901 * D_y = P + Pxy + D_x
904 a
= vdev_raidz_pow2
[255 + x
- y
];
905 b
= vdev_raidz_pow2
[255 - (rr
->rr_cols
- 1 - x
)];
906 tmp
= 255 - vdev_raidz_log2
[a
^ 1];
908 aexp
= vdev_raidz_log2
[vdev_raidz_exp2(a
, tmp
)];
909 bexp
= vdev_raidz_log2
[vdev_raidz_exp2(b
, tmp
)];
911 ASSERT3U(xsize
, >=, ysize
);
912 struct reconst_pq_struct rpq
= { p
, q
, pxy
, qxy
, aexp
, bexp
};
914 (void) abd_iterate_func2(xd
, yd
, 0, 0, ysize
,
915 vdev_raidz_reconst_pq_func
, &rpq
);
916 (void) abd_iterate_func(xd
, ysize
, xsize
- ysize
,
917 vdev_raidz_reconst_pq_tail_func
, &rpq
);
919 abd_free(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
920 abd_free(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
923 * Restore the saved parity data.
925 rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
= pdata
;
926 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
= qdata
;
930 * In the general case of reconstruction, we must solve the system of linear
931 * equations defined by the coefficients used to generate parity as well as
932 * the contents of the data and parity disks. This can be expressed with
933 * vectors for the original data (D) and the actual data (d) and parity (p)
934 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
938 * | V | | D_0 | | p_m-1 |
939 * | | x | : | = | d_0 |
940 * | I | | D_n-1 | | : |
941 * | | ~~ ~~ | d_n-1 |
944 * I is simply a square identity matrix of size n, and V is a vandermonde
945 * matrix defined by the coefficients we chose for the various parity columns
946 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
947 * computation as well as linear separability.
950 * | 1 .. 1 1 1 | | p_0 |
951 * | 2^n-1 .. 4 2 1 | __ __ | : |
952 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
953 * | 1 .. 0 0 0 | | D_1 | | d_0 |
954 * | 0 .. 0 0 0 | x | D_2 | = | d_1 |
955 * | : : : : | | : | | d_2 |
956 * | 0 .. 1 0 0 | | D_n-1 | | : |
957 * | 0 .. 0 1 0 | ~~ ~~ | : |
958 * | 0 .. 0 0 1 | | d_n-1 |
961 * Note that I, V, d, and p are known. To compute D, we must invert the
962 * matrix and use the known data and parity values to reconstruct the unknown
963 * data values. We begin by removing the rows in V|I and d|p that correspond
964 * to failed or missing columns; we then make V|I square (n x n) and d|p
965 * sized n by removing rows corresponding to unused parity from the bottom up
966 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
967 * using Gauss-Jordan elimination. In the example below we use m=3 parity
968 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
970 * | 1 1 1 1 1 1 1 1 |
971 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
972 * | 19 205 116 29 64 16 4 1 | / /
973 * | 1 0 0 0 0 0 0 0 | / /
974 * | 0 1 0 0 0 0 0 0 | <--' /
975 * (V|I) = | 0 0 1 0 0 0 0 0 | <---'
976 * | 0 0 0 1 0 0 0 0 |
977 * | 0 0 0 0 1 0 0 0 |
978 * | 0 0 0 0 0 1 0 0 |
979 * | 0 0 0 0 0 0 1 0 |
980 * | 0 0 0 0 0 0 0 1 |
983 * | 1 1 1 1 1 1 1 1 |
984 * | 128 64 32 16 8 4 2 1 |
985 * | 19 205 116 29 64 16 4 1 |
986 * | 1 0 0 0 0 0 0 0 |
987 * | 0 1 0 0 0 0 0 0 |
988 * (V|I)' = | 0 0 1 0 0 0 0 0 |
989 * | 0 0 0 1 0 0 0 0 |
990 * | 0 0 0 0 1 0 0 0 |
991 * | 0 0 0 0 0 1 0 0 |
992 * | 0 0 0 0 0 0 1 0 |
993 * | 0 0 0 0 0 0 0 1 |
996 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
997 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
998 * matrix is not singular.
1000 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1001 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1002 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1003 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1004 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1005 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1006 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1007 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1010 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1011 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1012 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1013 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1014 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1015 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1016 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1017 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1020 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1021 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1022 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
1023 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1024 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1025 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1026 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1027 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1030 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1031 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1032 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
1033 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1034 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1035 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1036 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1037 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1040 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1041 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1042 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1043 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1044 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1045 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1046 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1047 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1050 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1051 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
1052 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1053 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1054 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1055 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1056 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1057 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1060 * | 0 0 1 0 0 0 0 0 |
1061 * | 167 100 5 41 159 169 217 208 |
1062 * | 166 100 4 40 158 168 216 209 |
1063 * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
1064 * | 0 0 0 0 1 0 0 0 |
1065 * | 0 0 0 0 0 1 0 0 |
1066 * | 0 0 0 0 0 0 1 0 |
1067 * | 0 0 0 0 0 0 0 1 |
1070 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1071 * of the missing data.
1073 * As is apparent from the example above, the only non-trivial rows in the
1074 * inverse matrix correspond to the data disks that we're trying to
1075 * reconstruct. Indeed, those are the only rows we need as the others would
1076 * only be useful for reconstructing data known or assumed to be valid. For
1077 * that reason, we only build the coefficients in the rows that correspond to
1082 vdev_raidz_matrix_init(raidz_row_t
*rr
, int n
, int nmap
, int *map
,
1088 ASSERT(n
== rr
->rr_cols
- rr
->rr_firstdatacol
);
1091 * Fill in the missing rows of interest.
1093 for (i
= 0; i
< nmap
; i
++) {
1094 ASSERT3S(0, <=, map
[i
]);
1095 ASSERT3S(map
[i
], <=, 2);
1102 for (j
= 0; j
< n
; j
++) {
1106 rows
[i
][j
] = vdev_raidz_pow2
[pow
];
1112 vdev_raidz_matrix_invert(raidz_row_t
*rr
, int n
, int nmissing
, int *missing
,
1113 uint8_t **rows
, uint8_t **invrows
, const uint8_t *used
)
1119 * Assert that the first nmissing entries from the array of used
1120 * columns correspond to parity columns and that subsequent entries
1121 * correspond to data columns.
1123 for (i
= 0; i
< nmissing
; i
++) {
1124 ASSERT3S(used
[i
], <, rr
->rr_firstdatacol
);
1126 for (; i
< n
; i
++) {
1127 ASSERT3S(used
[i
], >=, rr
->rr_firstdatacol
);
1131 * First initialize the storage where we'll compute the inverse rows.
1133 for (i
= 0; i
< nmissing
; i
++) {
1134 for (j
= 0; j
< n
; j
++) {
1135 invrows
[i
][j
] = (i
== j
) ? 1 : 0;
1140 * Subtract all trivial rows from the rows of consequence.
1142 for (i
= 0; i
< nmissing
; i
++) {
1143 for (j
= nmissing
; j
< n
; j
++) {
1144 ASSERT3U(used
[j
], >=, rr
->rr_firstdatacol
);
1145 jj
= used
[j
] - rr
->rr_firstdatacol
;
1147 invrows
[i
][j
] = rows
[i
][jj
];
1153 * For each of the rows of interest, we must normalize it and subtract
1154 * a multiple of it from the other rows.
1156 for (i
= 0; i
< nmissing
; i
++) {
1157 for (j
= 0; j
< missing
[i
]; j
++) {
1158 ASSERT0(rows
[i
][j
]);
1160 ASSERT3U(rows
[i
][missing
[i
]], !=, 0);
1163 * Compute the inverse of the first element and multiply each
1164 * element in the row by that value.
1166 log
= 255 - vdev_raidz_log2
[rows
[i
][missing
[i
]]];
1168 for (j
= 0; j
< n
; j
++) {
1169 rows
[i
][j
] = vdev_raidz_exp2(rows
[i
][j
], log
);
1170 invrows
[i
][j
] = vdev_raidz_exp2(invrows
[i
][j
], log
);
1173 for (ii
= 0; ii
< nmissing
; ii
++) {
1177 ASSERT3U(rows
[ii
][missing
[i
]], !=, 0);
1179 log
= vdev_raidz_log2
[rows
[ii
][missing
[i
]]];
1181 for (j
= 0; j
< n
; j
++) {
1183 vdev_raidz_exp2(rows
[i
][j
], log
);
1185 vdev_raidz_exp2(invrows
[i
][j
], log
);
1191 * Verify that the data that is left in the rows are properly part of
1192 * an identity matrix.
1194 for (i
= 0; i
< nmissing
; i
++) {
1195 for (j
= 0; j
< n
; j
++) {
1196 if (j
== missing
[i
]) {
1197 ASSERT3U(rows
[i
][j
], ==, 1);
1199 ASSERT0(rows
[i
][j
]);
1206 vdev_raidz_matrix_reconstruct(raidz_row_t
*rr
, int n
, int nmissing
,
1207 int *missing
, uint8_t **invrows
, const uint8_t *used
)
1212 uint8_t *dst
[VDEV_RAIDZ_MAXPARITY
] = { NULL
};
1213 uint64_t dcount
[VDEV_RAIDZ_MAXPARITY
] = { 0 };
1217 uint8_t *invlog
[VDEV_RAIDZ_MAXPARITY
];
1221 psize
= sizeof (invlog
[0][0]) * n
* nmissing
;
1222 p
= kmem_alloc(psize
, KM_SLEEP
);
1224 for (pp
= p
, i
= 0; i
< nmissing
; i
++) {
1229 for (i
= 0; i
< nmissing
; i
++) {
1230 for (j
= 0; j
< n
; j
++) {
1231 ASSERT3U(invrows
[i
][j
], !=, 0);
1232 invlog
[i
][j
] = vdev_raidz_log2
[invrows
[i
][j
]];
1236 for (i
= 0; i
< n
; i
++) {
1238 ASSERT3U(c
, <, rr
->rr_cols
);
1240 ccount
= rr
->rr_col
[c
].rc_size
;
1241 ASSERT(ccount
>= rr
->rr_col
[missing
[0]].rc_size
|| i
> 0);
1244 src
= abd_to_buf(rr
->rr_col
[c
].rc_abd
);
1245 for (j
= 0; j
< nmissing
; j
++) {
1246 cc
= missing
[j
] + rr
->rr_firstdatacol
;
1247 ASSERT3U(cc
, >=, rr
->rr_firstdatacol
);
1248 ASSERT3U(cc
, <, rr
->rr_cols
);
1249 ASSERT3U(cc
, !=, c
);
1251 dcount
[j
] = rr
->rr_col
[cc
].rc_size
;
1253 dst
[j
] = abd_to_buf(rr
->rr_col
[cc
].rc_abd
);
1256 for (x
= 0; x
< ccount
; x
++, src
++) {
1258 log
= vdev_raidz_log2
[*src
];
1260 for (cc
= 0; cc
< nmissing
; cc
++) {
1261 if (x
>= dcount
[cc
])
1267 if ((ll
= log
+ invlog
[cc
][i
]) >= 255)
1269 val
= vdev_raidz_pow2
[ll
];
1280 kmem_free(p
, psize
);
1284 vdev_raidz_reconstruct_general(raidz_row_t
*rr
, int *tgts
, int ntgts
)
1288 int missing_rows
[VDEV_RAIDZ_MAXPARITY
];
1289 int parity_map
[VDEV_RAIDZ_MAXPARITY
];
1292 uint8_t *rows
[VDEV_RAIDZ_MAXPARITY
];
1293 uint8_t *invrows
[VDEV_RAIDZ_MAXPARITY
];
1296 abd_t
**bufs
= NULL
;
1299 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1300 * temporary linear ABDs if any non-linear ABDs are found.
1302 for (i
= rr
->rr_firstdatacol
; i
< rr
->rr_cols
; i
++) {
1303 if (!abd_is_linear(rr
->rr_col
[i
].rc_abd
)) {
1304 bufs
= kmem_alloc(rr
->rr_cols
* sizeof (abd_t
*),
1307 for (c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1308 raidz_col_t
*col
= &rr
->rr_col
[c
];
1310 bufs
[c
] = col
->rc_abd
;
1311 if (bufs
[c
] != NULL
) {
1312 col
->rc_abd
= abd_alloc_linear(
1313 col
->rc_size
, B_TRUE
);
1314 abd_copy(col
->rc_abd
, bufs
[c
],
1323 n
= rr
->rr_cols
- rr
->rr_firstdatacol
;
1326 * Figure out which data columns are missing.
1329 for (t
= 0; t
< ntgts
; t
++) {
1330 if (tgts
[t
] >= rr
->rr_firstdatacol
) {
1331 missing_rows
[nmissing_rows
++] =
1332 tgts
[t
] - rr
->rr_firstdatacol
;
1337 * Figure out which parity columns to use to help generate the missing
1340 for (tt
= 0, c
= 0, i
= 0; i
< nmissing_rows
; c
++) {
1342 ASSERT(c
< rr
->rr_firstdatacol
);
1345 * Skip any targeted parity columns.
1347 if (c
== tgts
[tt
]) {
1356 psize
= (sizeof (rows
[0][0]) + sizeof (invrows
[0][0])) *
1357 nmissing_rows
* n
+ sizeof (used
[0]) * n
;
1358 p
= kmem_alloc(psize
, KM_SLEEP
);
1360 for (pp
= p
, i
= 0; i
< nmissing_rows
; i
++) {
1368 for (i
= 0; i
< nmissing_rows
; i
++) {
1369 used
[i
] = parity_map
[i
];
1372 for (tt
= 0, c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1373 if (tt
< nmissing_rows
&&
1374 c
== missing_rows
[tt
] + rr
->rr_firstdatacol
) {
1385 * Initialize the interesting rows of the matrix.
1387 vdev_raidz_matrix_init(rr
, n
, nmissing_rows
, parity_map
, rows
);
1390 * Invert the matrix.
1392 vdev_raidz_matrix_invert(rr
, n
, nmissing_rows
, missing_rows
, rows
,
1396 * Reconstruct the missing data using the generated matrix.
1398 vdev_raidz_matrix_reconstruct(rr
, n
, nmissing_rows
, missing_rows
,
1401 kmem_free(p
, psize
);
1404 * copy back from temporary linear abds and free them
1407 for (c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1408 raidz_col_t
*col
= &rr
->rr_col
[c
];
1410 if (bufs
[c
] != NULL
) {
1411 abd_copy(bufs
[c
], col
->rc_abd
, col
->rc_size
);
1412 abd_free(col
->rc_abd
);
1414 col
->rc_abd
= bufs
[c
];
1416 kmem_free(bufs
, rr
->rr_cols
* sizeof (abd_t
*));
1421 vdev_raidz_reconstruct_row(raidz_map_t
*rm
, raidz_row_t
*rr
,
1422 const int *t
, int nt
)
1424 int tgts
[VDEV_RAIDZ_MAXPARITY
], *dt
;
1427 int nbadparity
, nbaddata
;
1428 int parity_valid
[VDEV_RAIDZ_MAXPARITY
];
1430 nbadparity
= rr
->rr_firstdatacol
;
1431 nbaddata
= rr
->rr_cols
- nbadparity
;
1433 for (i
= 0, c
= 0; c
< rr
->rr_cols
; c
++) {
1434 if (c
< rr
->rr_firstdatacol
)
1435 parity_valid
[c
] = B_FALSE
;
1437 if (i
< nt
&& c
== t
[i
]) {
1440 } else if (rr
->rr_col
[c
].rc_error
!= 0) {
1442 } else if (c
>= rr
->rr_firstdatacol
) {
1445 parity_valid
[c
] = B_TRUE
;
1450 ASSERT(ntgts
>= nt
);
1451 ASSERT(nbaddata
>= 0);
1452 ASSERT(nbaddata
+ nbadparity
== ntgts
);
1454 dt
= &tgts
[nbadparity
];
1456 /* Reconstruct using the new math implementation */
1457 ret
= vdev_raidz_math_reconstruct(rm
, rr
, parity_valid
, dt
, nbaddata
);
1458 if (ret
!= RAIDZ_ORIGINAL_IMPL
)
1462 * See if we can use any of our optimized reconstruction routines.
1466 if (parity_valid
[VDEV_RAIDZ_P
]) {
1467 vdev_raidz_reconstruct_p(rr
, dt
, 1);
1471 ASSERT(rr
->rr_firstdatacol
> 1);
1473 if (parity_valid
[VDEV_RAIDZ_Q
]) {
1474 vdev_raidz_reconstruct_q(rr
, dt
, 1);
1478 ASSERT(rr
->rr_firstdatacol
> 2);
1482 ASSERT(rr
->rr_firstdatacol
> 1);
1484 if (parity_valid
[VDEV_RAIDZ_P
] &&
1485 parity_valid
[VDEV_RAIDZ_Q
]) {
1486 vdev_raidz_reconstruct_pq(rr
, dt
, 2);
1490 ASSERT(rr
->rr_firstdatacol
> 2);
1495 vdev_raidz_reconstruct_general(rr
, tgts
, ntgts
);
1499 vdev_raidz_open(vdev_t
*vd
, uint64_t *asize
, uint64_t *max_asize
,
1500 uint64_t *logical_ashift
, uint64_t *physical_ashift
)
1502 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
1503 uint64_t nparity
= vdrz
->vd_nparity
;
1508 ASSERT(nparity
> 0);
1510 if (nparity
> VDEV_RAIDZ_MAXPARITY
||
1511 vd
->vdev_children
< nparity
+ 1) {
1512 vd
->vdev_stat
.vs_aux
= VDEV_AUX_BAD_LABEL
;
1513 return (SET_ERROR(EINVAL
));
1516 vdev_open_children(vd
);
1518 for (c
= 0; c
< vd
->vdev_children
; c
++) {
1519 vdev_t
*cvd
= vd
->vdev_child
[c
];
1521 if (cvd
->vdev_open_error
!= 0) {
1522 lasterror
= cvd
->vdev_open_error
;
1527 *asize
= MIN(*asize
- 1, cvd
->vdev_asize
- 1) + 1;
1528 *max_asize
= MIN(*max_asize
- 1, cvd
->vdev_max_asize
- 1) + 1;
1529 *logical_ashift
= MAX(*logical_ashift
, cvd
->vdev_ashift
);
1531 for (c
= 0; c
< vd
->vdev_children
; c
++) {
1532 vdev_t
*cvd
= vd
->vdev_child
[c
];
1534 if (cvd
->vdev_open_error
!= 0)
1536 *physical_ashift
= vdev_best_ashift(*logical_ashift
,
1537 *physical_ashift
, cvd
->vdev_physical_ashift
);
1540 *asize
*= vd
->vdev_children
;
1541 *max_asize
*= vd
->vdev_children
;
1543 if (numerrors
> nparity
) {
1544 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NO_REPLICAS
;
1552 vdev_raidz_close(vdev_t
*vd
)
1554 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1555 if (vd
->vdev_child
[c
] != NULL
)
1556 vdev_close(vd
->vdev_child
[c
]);
1561 vdev_raidz_asize(vdev_t
*vd
, uint64_t psize
)
1563 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
1565 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
1566 uint64_t cols
= vdrz
->vd_logical_width
;
1567 uint64_t nparity
= vdrz
->vd_nparity
;
1569 asize
= ((psize
- 1) >> ashift
) + 1;
1570 asize
+= nparity
* ((asize
+ cols
- nparity
- 1) / (cols
- nparity
));
1571 asize
= roundup(asize
, nparity
+ 1) << ashift
;
1577 * The allocatable space for a raidz vdev is N * sizeof(smallest child)
1578 * so each child must provide at least 1/Nth of its asize.
1581 vdev_raidz_min_asize(vdev_t
*vd
)
1583 return ((vd
->vdev_min_asize
+ vd
->vdev_children
- 1) /
1588 vdev_raidz_child_done(zio_t
*zio
)
1590 raidz_col_t
*rc
= zio
->io_private
;
1592 ASSERT3P(rc
->rc_abd
, !=, NULL
);
1593 rc
->rc_error
= zio
->io_error
;
1599 vdev_raidz_io_verify(vdev_t
*vd
, raidz_row_t
*rr
, int col
)
1602 vdev_t
*tvd
= vd
->vdev_top
;
1604 range_seg64_t logical_rs
, physical_rs
, remain_rs
;
1605 logical_rs
.rs_start
= rr
->rr_offset
;
1606 logical_rs
.rs_end
= logical_rs
.rs_start
+
1607 vdev_raidz_asize(vd
, rr
->rr_size
);
1609 raidz_col_t
*rc
= &rr
->rr_col
[col
];
1610 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1612 vdev_xlate(cvd
, &logical_rs
, &physical_rs
, &remain_rs
);
1613 ASSERT(vdev_xlate_is_empty(&remain_rs
));
1614 ASSERT3U(rc
->rc_offset
, ==, physical_rs
.rs_start
);
1615 ASSERT3U(rc
->rc_offset
, <, physical_rs
.rs_end
);
1617 * It would be nice to assert that rs_end is equal
1618 * to rc_offset + rc_size but there might be an
1619 * optional I/O at the end that is not accounted in
1622 if (physical_rs
.rs_end
> rc
->rc_offset
+ rc
->rc_size
) {
1623 ASSERT3U(physical_rs
.rs_end
, ==, rc
->rc_offset
+
1624 rc
->rc_size
+ (1 << tvd
->vdev_ashift
));
1626 ASSERT3U(physical_rs
.rs_end
, ==, rc
->rc_offset
+ rc
->rc_size
);
1632 vdev_raidz_io_start_write(zio_t
*zio
, raidz_row_t
*rr
, uint64_t ashift
)
1634 vdev_t
*vd
= zio
->io_vd
;
1635 raidz_map_t
*rm
= zio
->io_vsd
;
1637 vdev_raidz_generate_parity_row(rm
, rr
);
1639 for (int c
= 0; c
< rr
->rr_scols
; c
++) {
1640 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1641 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1643 /* Verify physical to logical translation */
1644 vdev_raidz_io_verify(vd
, rr
, c
);
1646 if (rc
->rc_size
> 0) {
1647 ASSERT3P(rc
->rc_abd
, !=, NULL
);
1648 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
1649 rc
->rc_offset
, rc
->rc_abd
,
1650 abd_get_size(rc
->rc_abd
), zio
->io_type
,
1651 zio
->io_priority
, 0, vdev_raidz_child_done
, rc
));
1654 * Generate optional write for skip sector to improve
1655 * aggregation contiguity.
1657 ASSERT3P(rc
->rc_abd
, ==, NULL
);
1658 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
1659 rc
->rc_offset
, NULL
, 1ULL << ashift
,
1660 zio
->io_type
, zio
->io_priority
,
1661 ZIO_FLAG_NODATA
| ZIO_FLAG_OPTIONAL
, NULL
,
1668 vdev_raidz_io_start_read(zio_t
*zio
, raidz_row_t
*rr
)
1670 vdev_t
*vd
= zio
->io_vd
;
1673 * Iterate over the columns in reverse order so that we hit the parity
1674 * last -- any errors along the way will force us to read the parity.
1676 for (int c
= rr
->rr_cols
- 1; c
>= 0; c
--) {
1677 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1678 if (rc
->rc_size
== 0)
1680 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1681 if (!vdev_readable(cvd
)) {
1682 if (c
>= rr
->rr_firstdatacol
)
1683 rr
->rr_missingdata
++;
1685 rr
->rr_missingparity
++;
1686 rc
->rc_error
= SET_ERROR(ENXIO
);
1687 rc
->rc_tried
= 1; /* don't even try */
1691 if (vdev_dtl_contains(cvd
, DTL_MISSING
, zio
->io_txg
, 1)) {
1692 if (c
>= rr
->rr_firstdatacol
)
1693 rr
->rr_missingdata
++;
1695 rr
->rr_missingparity
++;
1696 rc
->rc_error
= SET_ERROR(ESTALE
);
1700 if (c
>= rr
->rr_firstdatacol
|| rr
->rr_missingdata
> 0 ||
1701 (zio
->io_flags
& (ZIO_FLAG_SCRUB
| ZIO_FLAG_RESILVER
))) {
1702 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
1703 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
1704 zio
->io_type
, zio
->io_priority
, 0,
1705 vdev_raidz_child_done
, rc
));
1711 * Start an IO operation on a RAIDZ VDev
1714 * - For write operations:
1715 * 1. Generate the parity data
1716 * 2. Create child zio write operations to each column's vdev, for both
1718 * 3. If the column skips any sectors for padding, create optional dummy
1719 * write zio children for those areas to improve aggregation continuity.
1720 * - For read operations:
1721 * 1. Create child zio read operations to each data column's vdev to read
1722 * the range of data required for zio.
1723 * 2. If this is a scrub or resilver operation, or if any of the data
1724 * vdevs have had errors, then create zio read operations to the parity
1725 * columns' VDevs as well.
1728 vdev_raidz_io_start(zio_t
*zio
)
1730 vdev_t
*vd
= zio
->io_vd
;
1731 vdev_t
*tvd
= vd
->vdev_top
;
1732 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
1734 raidz_map_t
*rm
= vdev_raidz_map_alloc(zio
, tvd
->vdev_ashift
,
1735 vdrz
->vd_logical_width
, vdrz
->vd_nparity
);
1737 zio
->io_vsd_ops
= &vdev_raidz_vsd_ops
;
1740 * Until raidz expansion is implemented all maps for a raidz vdev
1741 * contain a single row.
1743 ASSERT3U(rm
->rm_nrows
, ==, 1);
1744 raidz_row_t
*rr
= rm
->rm_row
[0];
1746 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
1747 vdev_raidz_io_start_write(zio
, rr
, tvd
->vdev_ashift
);
1749 ASSERT(zio
->io_type
== ZIO_TYPE_READ
);
1750 vdev_raidz_io_start_read(zio
, rr
);
1757 * Report a checksum error for a child of a RAID-Z device.
1760 vdev_raidz_checksum_error(zio_t
*zio
, raidz_col_t
*rc
, abd_t
*bad_data
)
1762 vdev_t
*vd
= zio
->io_vd
->vdev_child
[rc
->rc_devidx
];
1764 if (!(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) &&
1765 zio
->io_priority
!= ZIO_PRIORITY_REBUILD
) {
1766 zio_bad_cksum_t zbc
;
1767 raidz_map_t
*rm
= zio
->io_vsd
;
1769 zbc
.zbc_has_cksum
= 0;
1770 zbc
.zbc_injected
= rm
->rm_ecksuminjected
;
1772 mutex_enter(&vd
->vdev_stat_lock
);
1773 vd
->vdev_stat
.vs_checksum_errors
++;
1774 mutex_exit(&vd
->vdev_stat_lock
);
1775 (void) zfs_ereport_post_checksum(zio
->io_spa
, vd
,
1776 &zio
->io_bookmark
, zio
, rc
->rc_offset
, rc
->rc_size
,
1777 rc
->rc_abd
, bad_data
, &zbc
);
1782 * We keep track of whether or not there were any injected errors, so that
1783 * any ereports we generate can note it.
1786 raidz_checksum_verify(zio_t
*zio
)
1788 zio_bad_cksum_t zbc
= {0};
1789 raidz_map_t
*rm
= zio
->io_vsd
;
1791 int ret
= zio_checksum_error(zio
, &zbc
);
1792 if (ret
!= 0 && zbc
.zbc_injected
!= 0)
1793 rm
->rm_ecksuminjected
= 1;
1799 * Generate the parity from the data columns. If we tried and were able to
1800 * read the parity without error, verify that the generated parity matches the
1801 * data we read. If it doesn't, we fire off a checksum error. Return the
1802 * number of such failures.
1805 raidz_parity_verify(zio_t
*zio
, raidz_row_t
*rr
)
1807 abd_t
*orig
[VDEV_RAIDZ_MAXPARITY
];
1809 raidz_map_t
*rm
= zio
->io_vsd
;
1812 blkptr_t
*bp
= zio
->io_bp
;
1813 enum zio_checksum checksum
= (bp
== NULL
? zio
->io_prop
.zp_checksum
:
1814 (BP_IS_GANG(bp
) ? ZIO_CHECKSUM_GANG_HEADER
: BP_GET_CHECKSUM(bp
)));
1816 if (checksum
== ZIO_CHECKSUM_NOPARITY
)
1819 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
1820 rc
= &rr
->rr_col
[c
];
1821 if (!rc
->rc_tried
|| rc
->rc_error
!= 0)
1824 orig
[c
] = rc
->rc_abd
;
1825 ASSERT3U(abd_get_size(rc
->rc_abd
), ==, rc
->rc_size
);
1826 rc
->rc_abd
= abd_alloc_linear(rc
->rc_size
, B_FALSE
);
1830 * Verify any empty sectors are zero filled to ensure the parity
1831 * is calculated correctly even if these non-data sectors are damaged.
1833 if (rr
->rr_nempty
&& rr
->rr_abd_empty
!= NULL
)
1834 ret
+= vdev_draid_map_verify_empty(zio
, rr
);
1837 * Regenerates parity even for !tried||rc_error!=0 columns. This
1838 * isn't harmful but it does have the side effect of fixing stuff
1839 * we didn't realize was necessary (i.e. even if we return 0).
1841 vdev_raidz_generate_parity_row(rm
, rr
);
1843 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
1844 rc
= &rr
->rr_col
[c
];
1846 if (!rc
->rc_tried
|| rc
->rc_error
!= 0)
1849 if (abd_cmp(orig
[c
], rc
->rc_abd
) != 0) {
1850 vdev_raidz_checksum_error(zio
, rc
, orig
[c
]);
1851 rc
->rc_error
= SET_ERROR(ECKSUM
);
1861 vdev_raidz_worst_error(raidz_row_t
*rr
)
1865 for (int c
= 0; c
< rr
->rr_cols
; c
++)
1866 error
= zio_worst_error(error
, rr
->rr_col
[c
].rc_error
);
1872 vdev_raidz_io_done_verified(zio_t
*zio
, raidz_row_t
*rr
)
1874 int unexpected_errors
= 0;
1875 int parity_errors
= 0;
1876 int parity_untried
= 0;
1877 int data_errors
= 0;
1879 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
1881 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
1882 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1885 if (c
< rr
->rr_firstdatacol
)
1890 if (!rc
->rc_skipped
)
1891 unexpected_errors
++;
1892 } else if (c
< rr
->rr_firstdatacol
&& !rc
->rc_tried
) {
1896 if (rc
->rc_force_repair
)
1897 unexpected_errors
++;
1901 * If we read more parity disks than were used for
1902 * reconstruction, confirm that the other parity disks produced
1905 * Note that we also regenerate parity when resilvering so we
1906 * can write it out to failed devices later.
1908 if (parity_errors
+ parity_untried
<
1909 rr
->rr_firstdatacol
- data_errors
||
1910 (zio
->io_flags
& ZIO_FLAG_RESILVER
)) {
1911 int n
= raidz_parity_verify(zio
, rr
);
1912 unexpected_errors
+= n
;
1915 if (zio
->io_error
== 0 && spa_writeable(zio
->io_spa
) &&
1916 (unexpected_errors
> 0 || (zio
->io_flags
& ZIO_FLAG_RESILVER
))) {
1918 * Use the good data we have in hand to repair damaged children.
1920 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
1921 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1922 vdev_t
*vd
= zio
->io_vd
;
1923 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
1925 if (!rc
->rc_allow_repair
) {
1927 } else if (!rc
->rc_force_repair
&&
1928 (rc
->rc_error
== 0 || rc
->rc_size
== 0)) {
1932 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
1933 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
1935 zio
->io_priority
== ZIO_PRIORITY_REBUILD
?
1936 ZIO_PRIORITY_REBUILD
: ZIO_PRIORITY_ASYNC_WRITE
,
1937 ZIO_FLAG_IO_REPAIR
| (unexpected_errors
?
1938 ZIO_FLAG_SELF_HEAL
: 0), NULL
, NULL
));
1944 raidz_restore_orig_data(raidz_map_t
*rm
)
1946 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
1947 raidz_row_t
*rr
= rm
->rm_row
[i
];
1948 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
1949 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1950 if (rc
->rc_need_orig_restore
) {
1951 abd_copy(rc
->rc_abd
,
1952 rc
->rc_orig_data
, rc
->rc_size
);
1953 rc
->rc_need_orig_restore
= B_FALSE
;
1960 * returns EINVAL if reconstruction of the block will not be possible
1961 * returns ECKSUM if this specific reconstruction failed
1962 * returns 0 on successful reconstruction
1965 raidz_reconstruct(zio_t
*zio
, int *ltgts
, int ntgts
, int nparity
)
1967 raidz_map_t
*rm
= zio
->io_vsd
;
1969 /* Reconstruct each row */
1970 for (int r
= 0; r
< rm
->rm_nrows
; r
++) {
1971 raidz_row_t
*rr
= rm
->rm_row
[r
];
1972 int my_tgts
[VDEV_RAIDZ_MAXPARITY
]; /* value is child id */
1977 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
1978 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1979 ASSERT0(rc
->rc_need_orig_restore
);
1980 if (rc
->rc_error
!= 0) {
1986 if (rc
->rc_size
== 0)
1988 for (int lt
= 0; lt
< ntgts
; lt
++) {
1989 if (rc
->rc_devidx
== ltgts
[lt
]) {
1990 if (rc
->rc_orig_data
== NULL
) {
1993 rc
->rc_size
, B_TRUE
);
1994 abd_copy(rc
->rc_orig_data
,
1995 rc
->rc_abd
, rc
->rc_size
);
1997 rc
->rc_need_orig_restore
= B_TRUE
;
2007 if (dead
> nparity
) {
2008 /* reconstruction not possible */
2009 raidz_restore_orig_data(rm
);
2013 vdev_raidz_reconstruct_row(rm
, rr
, my_tgts
, t
);
2016 /* Check for success */
2017 if (raidz_checksum_verify(zio
) == 0) {
2019 /* Reconstruction succeeded - report errors */
2020 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2021 raidz_row_t
*rr
= rm
->rm_row
[i
];
2023 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2024 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2025 if (rc
->rc_need_orig_restore
) {
2027 * Note: if this is a parity column,
2028 * we don't really know if it's wrong.
2030 * vdev_raidz_io_done_verified() check
2031 * it, and if we set rc_error, it will
2032 * think that it is a "known" error
2033 * that doesn't need to be checked
2036 if (rc
->rc_error
== 0 &&
2037 c
>= rr
->rr_firstdatacol
) {
2038 vdev_raidz_checksum_error(zio
,
2039 rc
, rc
->rc_orig_data
);
2043 rc
->rc_need_orig_restore
= B_FALSE
;
2047 vdev_raidz_io_done_verified(zio
, rr
);
2050 zio_checksum_verified(zio
);
2055 /* Reconstruction failed - restore original data */
2056 raidz_restore_orig_data(rm
);
2061 * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
2062 * Note that the algorithm below is non-optimal because it doesn't take into
2063 * account how reconstruction is actually performed. For example, with
2064 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
2065 * is targeted as invalid as if columns 1 and 4 are targeted since in both
2066 * cases we'd only use parity information in column 0.
2068 * The order that we find the various possible combinations of failed
2069 * disks is dictated by these rules:
2070 * - Examine each "slot" (the "i" in tgts[i])
2071 * - Try to increment this slot (tgts[i] = tgts[i] + 1)
2072 * - if we can't increment because it runs into the next slot,
2073 * reset our slot to the minimum, and examine the next slot
2075 * For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
2076 * 3 columns to reconstruct), we will generate the following sequence:
2079 * 0 1 2 special case: skip since these are all parity
2080 * 0 1 3 first slot: reset to 0; middle slot: increment to 2
2081 * 0 2 3 first slot: increment to 1
2082 * 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4
2083 * 0 1 4 first: reset to 0; middle: increment to 2
2084 * 0 2 4 first: increment to 1
2085 * 1 2 4 first: reset to 0; middle: increment to 3
2086 * 0 3 4 first: increment to 1
2087 * 1 3 4 first: increment to 2
2088 * 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5
2089 * 0 1 5 first: reset to 0; middle: increment to 2
2090 * 0 2 5 first: increment to 1
2091 * 1 2 5 first: reset to 0; middle: increment to 3
2092 * 0 3 5 first: increment to 1
2093 * 1 3 5 first: increment to 2
2094 * 2 3 5 first: reset to 0; middle: increment to 4
2095 * 0 4 5 first: increment to 1
2096 * 1 4 5 first: increment to 2
2097 * 2 4 5 first: increment to 3
2100 * This strategy works for dRAID but is less efficient when there are a large
2101 * number of child vdevs and therefore permutations to check. Furthermore,
2102 * since the raidz_map_t rows likely do not overlap reconstruction would be
2103 * possible as long as there are no more than nparity data errors per row.
2104 * These additional permutations are not currently checked but could be as
2105 * a future improvement.
2108 vdev_raidz_combrec(zio_t
*zio
)
2110 int nparity
= vdev_get_nparity(zio
->io_vd
);
2111 raidz_map_t
*rm
= zio
->io_vsd
;
2113 /* Check if there's enough data to attempt reconstrution. */
2114 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2115 raidz_row_t
*rr
= rm
->rm_row
[i
];
2116 int total_errors
= 0;
2118 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2119 if (rr
->rr_col
[c
].rc_error
)
2123 if (total_errors
> nparity
)
2124 return (vdev_raidz_worst_error(rr
));
2127 for (int num_failures
= 1; num_failures
<= nparity
; num_failures
++) {
2128 int tstore
[VDEV_RAIDZ_MAXPARITY
+ 2];
2129 int *ltgts
= &tstore
[1]; /* value is logical child ID */
2131 /* Determine number of logical children, n */
2132 int n
= zio
->io_vd
->vdev_children
;
2134 ASSERT3U(num_failures
, <=, nparity
);
2135 ASSERT3U(num_failures
, <=, VDEV_RAIDZ_MAXPARITY
);
2137 /* Handle corner cases in combrec logic */
2139 for (int i
= 0; i
< num_failures
; i
++) {
2142 ltgts
[num_failures
] = n
;
2145 int err
= raidz_reconstruct(zio
, ltgts
, num_failures
,
2147 if (err
== EINVAL
) {
2149 * Reconstruction not possible with this #
2150 * failures; try more failures.
2153 } else if (err
== 0)
2156 /* Compute next targets to try */
2157 for (int t
= 0; ; t
++) {
2158 ASSERT3U(t
, <, num_failures
);
2160 if (ltgts
[t
] == n
) {
2161 /* try more failures */
2162 ASSERT3U(t
, ==, num_failures
- 1);
2166 ASSERT3U(ltgts
[t
], <, n
);
2167 ASSERT3U(ltgts
[t
], <=, ltgts
[t
+ 1]);
2170 * If that spot is available, we're done here.
2171 * Try the next combination.
2173 if (ltgts
[t
] != ltgts
[t
+ 1])
2177 * Otherwise, reset this tgt to the minimum,
2178 * and move on to the next tgt.
2180 ltgts
[t
] = ltgts
[t
- 1] + 1;
2181 ASSERT3U(ltgts
[t
], ==, t
);
2184 /* Increase the number of failures and keep trying. */
2185 if (ltgts
[num_failures
- 1] == n
)
2194 vdev_raidz_reconstruct(raidz_map_t
*rm
, const int *t
, int nt
)
2196 for (uint64_t row
= 0; row
< rm
->rm_nrows
; row
++) {
2197 raidz_row_t
*rr
= rm
->rm_row
[row
];
2198 vdev_raidz_reconstruct_row(rm
, rr
, t
, nt
);
2203 * Complete a write IO operation on a RAIDZ VDev
2206 * 1. Check for errors on the child IOs.
2207 * 2. Return, setting an error code if too few child VDevs were written
2208 * to reconstruct the data later. Note that partial writes are
2209 * considered successful if they can be reconstructed at all.
2212 vdev_raidz_io_done_write_impl(zio_t
*zio
, raidz_row_t
*rr
)
2214 int total_errors
= 0;
2216 ASSERT3U(rr
->rr_missingparity
, <=, rr
->rr_firstdatacol
);
2217 ASSERT3U(rr
->rr_missingdata
, <=, rr
->rr_cols
- rr
->rr_firstdatacol
);
2218 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
2220 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2221 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2224 ASSERT(rc
->rc_error
!= ECKSUM
); /* child has no bp */
2231 * Treat partial writes as a success. If we couldn't write enough
2232 * columns to reconstruct the data, the I/O failed. Otherwise,
2235 * Now that we support write reallocation, it would be better
2236 * to treat partial failure as real failure unless there are
2237 * no non-degraded top-level vdevs left, and not update DTLs
2238 * if we intend to reallocate.
2240 if (total_errors
> rr
->rr_firstdatacol
) {
2241 zio
->io_error
= zio_worst_error(zio
->io_error
,
2242 vdev_raidz_worst_error(rr
));
2247 vdev_raidz_io_done_reconstruct_known_missing(zio_t
*zio
, raidz_map_t
*rm
,
2250 int parity_errors
= 0;
2251 int parity_untried
= 0;
2252 int data_errors
= 0;
2253 int total_errors
= 0;
2255 ASSERT3U(rr
->rr_missingparity
, <=, rr
->rr_firstdatacol
);
2256 ASSERT3U(rr
->rr_missingdata
, <=, rr
->rr_cols
- rr
->rr_firstdatacol
);
2257 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
2259 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2260 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2263 * If scrubbing and a replacing/sparing child vdev determined
2264 * that not all of its children have an identical copy of the
2265 * data, then clear the error so the column is treated like
2266 * any other read and force a repair to correct the damage.
2268 if (rc
->rc_error
== ECKSUM
) {
2269 ASSERT(zio
->io_flags
& ZIO_FLAG_SCRUB
);
2270 vdev_raidz_checksum_error(zio
, rc
, rc
->rc_abd
);
2271 rc
->rc_force_repair
= 1;
2276 if (c
< rr
->rr_firstdatacol
)
2282 } else if (c
< rr
->rr_firstdatacol
&& !rc
->rc_tried
) {
2288 * If there were data errors and the number of errors we saw was
2289 * correctable -- less than or equal to the number of parity disks read
2290 * -- reconstruct based on the missing data.
2292 if (data_errors
!= 0 &&
2293 total_errors
<= rr
->rr_firstdatacol
- parity_untried
) {
2295 * We either attempt to read all the parity columns or
2296 * none of them. If we didn't try to read parity, we
2297 * wouldn't be here in the correctable case. There must
2298 * also have been fewer parity errors than parity
2299 * columns or, again, we wouldn't be in this code path.
2301 ASSERT(parity_untried
== 0);
2302 ASSERT(parity_errors
< rr
->rr_firstdatacol
);
2305 * Identify the data columns that reported an error.
2308 int tgts
[VDEV_RAIDZ_MAXPARITY
];
2309 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
2310 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2311 if (rc
->rc_error
!= 0) {
2312 ASSERT(n
< VDEV_RAIDZ_MAXPARITY
);
2317 ASSERT(rr
->rr_firstdatacol
>= n
);
2319 vdev_raidz_reconstruct_row(rm
, rr
, tgts
, n
);
2324 * Return the number of reads issued.
2327 vdev_raidz_read_all(zio_t
*zio
, raidz_row_t
*rr
)
2329 vdev_t
*vd
= zio
->io_vd
;
2332 rr
->rr_missingdata
= 0;
2333 rr
->rr_missingparity
= 0;
2336 * If this rows contains empty sectors which are not required
2337 * for a normal read then allocate an ABD for them now so they
2338 * may be read, verified, and any needed repairs performed.
2340 if (rr
->rr_nempty
&& rr
->rr_abd_empty
== NULL
)
2341 vdev_draid_map_alloc_empty(zio
, rr
);
2343 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2344 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2345 if (rc
->rc_tried
|| rc
->rc_size
== 0)
2348 zio_nowait(zio_vdev_child_io(zio
, NULL
,
2349 vd
->vdev_child
[rc
->rc_devidx
],
2350 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
2351 zio
->io_type
, zio
->io_priority
, 0,
2352 vdev_raidz_child_done
, rc
));
2359 * We're here because either there were too many errors to even attempt
2360 * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
2361 * failed. In either case, there is enough bad data to prevent reconstruction.
2362 * Start checksum ereports for all children which haven't failed.
2365 vdev_raidz_io_done_unrecoverable(zio_t
*zio
)
2367 raidz_map_t
*rm
= zio
->io_vsd
;
2369 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2370 raidz_row_t
*rr
= rm
->rm_row
[i
];
2372 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2373 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2374 vdev_t
*cvd
= zio
->io_vd
->vdev_child
[rc
->rc_devidx
];
2376 if (rc
->rc_error
!= 0)
2379 zio_bad_cksum_t zbc
;
2380 zbc
.zbc_has_cksum
= 0;
2381 zbc
.zbc_injected
= rm
->rm_ecksuminjected
;
2383 mutex_enter(&cvd
->vdev_stat_lock
);
2384 cvd
->vdev_stat
.vs_checksum_errors
++;
2385 mutex_exit(&cvd
->vdev_stat_lock
);
2386 (void) zfs_ereport_start_checksum(zio
->io_spa
,
2387 cvd
, &zio
->io_bookmark
, zio
, rc
->rc_offset
,
2394 vdev_raidz_io_done(zio_t
*zio
)
2396 raidz_map_t
*rm
= zio
->io_vsd
;
2398 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2399 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2400 vdev_raidz_io_done_write_impl(zio
, rm
->rm_row
[i
]);
2403 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2404 raidz_row_t
*rr
= rm
->rm_row
[i
];
2405 vdev_raidz_io_done_reconstruct_known_missing(zio
,
2409 if (raidz_checksum_verify(zio
) == 0) {
2410 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2411 raidz_row_t
*rr
= rm
->rm_row
[i
];
2412 vdev_raidz_io_done_verified(zio
, rr
);
2414 zio_checksum_verified(zio
);
2417 * A sequential resilver has no checksum which makes
2418 * combinatoral reconstruction impossible. This code
2419 * path is unreachable since raidz_checksum_verify()
2420 * has no checksum to verify and must succeed.
2422 ASSERT3U(zio
->io_priority
, !=, ZIO_PRIORITY_REBUILD
);
2425 * This isn't a typical situation -- either we got a
2426 * read error or a child silently returned bad data.
2427 * Read every block so we can try again with as much
2428 * data and parity as we can track down. If we've
2429 * already been through once before, all children will
2430 * be marked as tried so we'll proceed to combinatorial
2434 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2435 nread
+= vdev_raidz_read_all(zio
,
2440 * Normally our stage is VDEV_IO_DONE, but if
2441 * we've already called redone(), it will have
2442 * changed to VDEV_IO_START, in which case we
2443 * don't want to call redone() again.
2445 if (zio
->io_stage
!= ZIO_STAGE_VDEV_IO_START
)
2446 zio_vdev_io_redone(zio
);
2450 zio
->io_error
= vdev_raidz_combrec(zio
);
2451 if (zio
->io_error
== ECKSUM
&&
2452 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
2453 vdev_raidz_io_done_unrecoverable(zio
);
2460 vdev_raidz_state_change(vdev_t
*vd
, int faulted
, int degraded
)
2462 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2463 if (faulted
> vdrz
->vd_nparity
)
2464 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2465 VDEV_AUX_NO_REPLICAS
);
2466 else if (degraded
+ faulted
!= 0)
2467 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
, VDEV_AUX_NONE
);
2469 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_HEALTHY
, VDEV_AUX_NONE
);
2473 * Determine if any portion of the provided block resides on a child vdev
2474 * with a dirty DTL and therefore needs to be resilvered. The function
2475 * assumes that at least one DTL is dirty which implies that full stripe
2476 * width blocks must be resilvered.
2479 vdev_raidz_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
2480 uint64_t phys_birth
)
2482 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2483 uint64_t dcols
= vd
->vdev_children
;
2484 uint64_t nparity
= vdrz
->vd_nparity
;
2485 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
2486 /* The starting RAIDZ (parent) vdev sector of the block. */
2487 uint64_t b
= DVA_GET_OFFSET(dva
) >> ashift
;
2488 /* The zio's size in units of the vdev's minimum sector size. */
2489 uint64_t s
= ((psize
- 1) >> ashift
) + 1;
2490 /* The first column for this stripe. */
2491 uint64_t f
= b
% dcols
;
2493 /* Unreachable by sequential resilver. */
2494 ASSERT3U(phys_birth
, !=, TXG_UNKNOWN
);
2496 if (!vdev_dtl_contains(vd
, DTL_PARTIAL
, phys_birth
, 1))
2499 if (s
+ nparity
>= dcols
)
2502 for (uint64_t c
= 0; c
< s
+ nparity
; c
++) {
2503 uint64_t devidx
= (f
+ c
) % dcols
;
2504 vdev_t
*cvd
= vd
->vdev_child
[devidx
];
2507 * dsl_scan_need_resilver() already checked vd with
2508 * vdev_dtl_contains(). So here just check cvd with
2509 * vdev_dtl_empty(), cheaper and a good approximation.
2511 if (!vdev_dtl_empty(cvd
, DTL_PARTIAL
))
2519 vdev_raidz_xlate(vdev_t
*cvd
, const range_seg64_t
*logical_rs
,
2520 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
2524 vdev_t
*raidvd
= cvd
->vdev_parent
;
2525 ASSERT(raidvd
->vdev_ops
== &vdev_raidz_ops
);
2527 uint64_t width
= raidvd
->vdev_children
;
2528 uint64_t tgt_col
= cvd
->vdev_id
;
2529 uint64_t ashift
= raidvd
->vdev_top
->vdev_ashift
;
2531 /* make sure the offsets are block-aligned */
2532 ASSERT0(logical_rs
->rs_start
% (1 << ashift
));
2533 ASSERT0(logical_rs
->rs_end
% (1 << ashift
));
2534 uint64_t b_start
= logical_rs
->rs_start
>> ashift
;
2535 uint64_t b_end
= logical_rs
->rs_end
>> ashift
;
2537 uint64_t start_row
= 0;
2538 if (b_start
> tgt_col
) /* avoid underflow */
2539 start_row
= ((b_start
- tgt_col
- 1) / width
) + 1;
2541 uint64_t end_row
= 0;
2542 if (b_end
> tgt_col
)
2543 end_row
= ((b_end
- tgt_col
- 1) / width
) + 1;
2545 physical_rs
->rs_start
= start_row
<< ashift
;
2546 physical_rs
->rs_end
= end_row
<< ashift
;
2548 ASSERT3U(physical_rs
->rs_start
, <=, logical_rs
->rs_start
);
2549 ASSERT3U(physical_rs
->rs_end
- physical_rs
->rs_start
, <=,
2550 logical_rs
->rs_end
- logical_rs
->rs_start
);
2554 * Initialize private RAIDZ specific fields from the nvlist.
2557 vdev_raidz_init(spa_t
*spa
, nvlist_t
*nv
, void **tsd
)
2564 int error
= nvlist_lookup_nvlist_array(nv
,
2565 ZPOOL_CONFIG_CHILDREN
, &child
, &children
);
2567 return (SET_ERROR(EINVAL
));
2569 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NPARITY
, &nparity
) == 0) {
2570 if (nparity
== 0 || nparity
> VDEV_RAIDZ_MAXPARITY
)
2571 return (SET_ERROR(EINVAL
));
2574 * Previous versions could only support 1 or 2 parity
2577 if (nparity
> 1 && spa_version(spa
) < SPA_VERSION_RAIDZ2
)
2578 return (SET_ERROR(EINVAL
));
2579 else if (nparity
> 2 && spa_version(spa
) < SPA_VERSION_RAIDZ3
)
2580 return (SET_ERROR(EINVAL
));
2583 * We require the parity to be specified for SPAs that
2584 * support multiple parity levels.
2586 if (spa_version(spa
) >= SPA_VERSION_RAIDZ2
)
2587 return (SET_ERROR(EINVAL
));
2590 * Otherwise, we default to 1 parity device for RAID-Z.
2595 vdrz
= kmem_zalloc(sizeof (*vdrz
), KM_SLEEP
);
2596 vdrz
->vd_logical_width
= children
;
2597 vdrz
->vd_nparity
= nparity
;
2605 vdev_raidz_fini(vdev_t
*vd
)
2607 kmem_free(vd
->vdev_tsd
, sizeof (vdev_raidz_t
));
2611 * Add RAIDZ specific fields to the config nvlist.
2614 vdev_raidz_config_generate(vdev_t
*vd
, nvlist_t
*nv
)
2616 ASSERT3P(vd
->vdev_ops
, ==, &vdev_raidz_ops
);
2617 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2620 * Make sure someone hasn't managed to sneak a fancy new vdev
2621 * into a crufty old storage pool.
2623 ASSERT(vdrz
->vd_nparity
== 1 ||
2624 (vdrz
->vd_nparity
<= 2 &&
2625 spa_version(vd
->vdev_spa
) >= SPA_VERSION_RAIDZ2
) ||
2626 (vdrz
->vd_nparity
<= 3 &&
2627 spa_version(vd
->vdev_spa
) >= SPA_VERSION_RAIDZ3
));
2630 * Note that we'll add these even on storage pools where they
2631 * aren't strictly required -- older software will just ignore
2634 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NPARITY
, vdrz
->vd_nparity
);
2638 vdev_raidz_nparity(vdev_t
*vd
)
2640 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2641 return (vdrz
->vd_nparity
);
2645 vdev_raidz_ndisks(vdev_t
*vd
)
2647 return (vd
->vdev_children
);
2650 vdev_ops_t vdev_raidz_ops
= {
2651 .vdev_op_init
= vdev_raidz_init
,
2652 .vdev_op_fini
= vdev_raidz_fini
,
2653 .vdev_op_open
= vdev_raidz_open
,
2654 .vdev_op_close
= vdev_raidz_close
,
2655 .vdev_op_asize
= vdev_raidz_asize
,
2656 .vdev_op_min_asize
= vdev_raidz_min_asize
,
2657 .vdev_op_min_alloc
= NULL
,
2658 .vdev_op_io_start
= vdev_raidz_io_start
,
2659 .vdev_op_io_done
= vdev_raidz_io_done
,
2660 .vdev_op_state_change
= vdev_raidz_state_change
,
2661 .vdev_op_need_resilver
= vdev_raidz_need_resilver
,
2662 .vdev_op_hold
= NULL
,
2663 .vdev_op_rele
= NULL
,
2664 .vdev_op_remap
= NULL
,
2665 .vdev_op_xlate
= vdev_raidz_xlate
,
2666 .vdev_op_rebuild_asize
= NULL
,
2667 .vdev_op_metaslab_init
= NULL
,
2668 .vdev_op_config_generate
= vdev_raidz_config_generate
,
2669 .vdev_op_nparity
= vdev_raidz_nparity
,
2670 .vdev_op_ndisks
= vdev_raidz_ndisks
,
2671 .vdev_op_type
= VDEV_TYPE_RAIDZ
, /* name of this vdev type */
2672 .vdev_op_leaf
= B_FALSE
/* not a leaf vdev */