Linux 5.3: Fix switch() fall though compiler errors
[zfs.git] / module / zfs / abd.c
blob8b2514404a8611f070e76f49c1a9a07a4fd8294e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
27 * ARC buffer data (ABD).
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
35 * +-------------------+
36 * | ABD (linear) |
37 * | abd_flags = ... |
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
41 * no abd_chunks
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
47 * +-------------------+
48 * | ABD (scattered) |
49 * | abd_flags = ... |
50 * | abd_size = ... |
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
57 * | ...
58 * | +-----------+
59 * +----------------->| chunk N-1 |
60 * +-----------+
62 * Linear buffers act exactly like normal buffers and are always mapped into the
63 * kernel's virtual memory space, while scattered ABD data chunks are allocated
64 * as physical pages and then mapped in only while they are actually being
65 * accessed through one of the abd_* library functions. Using scattered ABDs
66 * provides several benefits:
68 * (1) They avoid use of kmem_*, preventing performance problems where running
69 * kmem_reap on very large memory systems never finishes and causes
70 * constant TLB shootdowns.
72 * (2) Fragmentation is less of an issue since when we are at the limit of
73 * allocatable space, we won't have to search around for a long free
74 * hole in the VA space for large ARC allocations. Each chunk is mapped in
75 * individually, so even if we are using HIGHMEM (see next point) we
76 * wouldn't need to worry about finding a contiguous address range.
78 * (3) If we are not using HIGHMEM, then all physical memory is always
79 * mapped into the kernel's address space, so we also avoid the map /
80 * unmap costs on each ABD access.
82 * If we are not using HIGHMEM, scattered buffers which have only one chunk
83 * can be treated as linear buffers, because they are contiguous in the
84 * kernel's virtual address space. See abd_alloc_pages() for details.
86 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
87 * B_FALSE.
89 * In addition to directly allocating a linear or scattered ABD, it is also
90 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
91 * within an existing ABD. In linear buffers this is simple (set abd_buf of
92 * the new ABD to the starting point within the original raw buffer), but
93 * scattered ABDs are a little more complex. The new ABD makes a copy of the
94 * relevant abd_chunks pointers (but not the underlying data). However, to
95 * provide arbitrary rather than only chunk-aligned starting offsets, it also
96 * tracks an abd_offset field which represents the starting point of the data
97 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
98 * creating an offset ABD marks the original ABD as the offset's parent, and the
99 * original ABD's abd_children refcount is incremented. This data allows us to
100 * ensure the root ABD isn't deleted before its children.
102 * Most consumers should never need to know what type of ABD they're using --
103 * the ABD public API ensures that it's possible to transparently switch from
104 * using a linear ABD to a scattered one when doing so would be beneficial.
106 * If you need to use the data within an ABD directly, if you know it's linear
107 * (because you allocated it) you can use abd_to_buf() to access the underlying
108 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
109 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
110 * functions to return any raw buffers that are no longer necessary when you're
111 * done using them.
113 * There are a variety of ABD APIs that implement basic buffer operations:
114 * compare, copy, read, write, and fill with zeroes. If you need a custom
115 * function which progressively accesses the whole ABD, use the abd_iterate_*
116 * functions.
119 #include <sys/abd.h>
120 #include <sys/param.h>
121 #include <sys/zio.h>
122 #include <sys/zfs_context.h>
123 #include <sys/zfs_znode.h>
124 #ifdef _KERNEL
125 #include <linux/scatterlist.h>
126 #include <linux/kmap_compat.h>
127 #else
128 #define MAX_ORDER 1
129 #endif
131 typedef struct abd_stats {
132 kstat_named_t abdstat_struct_size;
133 kstat_named_t abdstat_linear_cnt;
134 kstat_named_t abdstat_linear_data_size;
135 kstat_named_t abdstat_scatter_cnt;
136 kstat_named_t abdstat_scatter_data_size;
137 kstat_named_t abdstat_scatter_chunk_waste;
138 kstat_named_t abdstat_scatter_orders[MAX_ORDER];
139 kstat_named_t abdstat_scatter_page_multi_chunk;
140 kstat_named_t abdstat_scatter_page_multi_zone;
141 kstat_named_t abdstat_scatter_page_alloc_retry;
142 kstat_named_t abdstat_scatter_sg_table_retry;
143 } abd_stats_t;
145 static abd_stats_t abd_stats = {
146 /* Amount of memory occupied by all of the abd_t struct allocations */
147 { "struct_size", KSTAT_DATA_UINT64 },
149 * The number of linear ABDs which are currently allocated, excluding
150 * ABDs which don't own their data (for instance the ones which were
151 * allocated through abd_get_offset() and abd_get_from_buf()). If an
152 * ABD takes ownership of its buf then it will become tracked.
154 { "linear_cnt", KSTAT_DATA_UINT64 },
155 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
156 { "linear_data_size", KSTAT_DATA_UINT64 },
158 * The number of scatter ABDs which are currently allocated, excluding
159 * ABDs which don't own their data (for instance the ones which were
160 * allocated through abd_get_offset()).
162 { "scatter_cnt", KSTAT_DATA_UINT64 },
163 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
164 { "scatter_data_size", KSTAT_DATA_UINT64 },
166 * The amount of space wasted at the end of the last chunk across all
167 * scatter ABDs tracked by scatter_cnt.
169 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
171 * The number of compound allocations of a given order. These
172 * allocations are spread over all currently allocated ABDs, and
173 * act as a measure of memory fragmentation.
175 { { "scatter_order_N", KSTAT_DATA_UINT64 } },
177 * The number of scatter ABDs which contain multiple chunks.
178 * ABDs are preferentially allocated from the minimum number of
179 * contiguous multi-page chunks, a single chunk is optimal.
181 { "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
183 * The number of scatter ABDs which are split across memory zones.
184 * ABDs are preferentially allocated using pages from a single zone.
186 { "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
188 * The total number of retries encountered when attempting to
189 * allocate the pages to populate the scatter ABD.
191 { "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
193 * The total number of retries encountered when attempting to
194 * allocate the sg table for an ABD.
196 { "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
199 #define ABDSTAT(stat) (abd_stats.stat.value.ui64)
200 #define ABDSTAT_INCR(stat, val) \
201 atomic_add_64(&abd_stats.stat.value.ui64, (val))
202 #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1)
203 #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1)
205 #define ABD_SCATTER(abd) (abd->abd_u.abd_scatter)
206 #define ABD_BUF(abd) (abd->abd_u.abd_linear.abd_buf)
207 #define abd_for_each_sg(abd, sg, n, i) \
208 for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
210 /* see block comment above for description */
211 int zfs_abd_scatter_enabled = B_TRUE;
212 unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
215 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
216 * ABD's. Smaller allocations will use linear ABD's which uses
217 * zio_[data_]buf_alloc().
219 * Scatter ABD's use at least one page each, so sub-page allocations waste
220 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
221 * half of each page). Using linear ABD's for small allocations means that
222 * they will be put on slabs which contain many allocations. This can
223 * improve memory efficiency, but it also makes it much harder for ARC
224 * evictions to actually free pages, because all the buffers on one slab need
225 * to be freed in order for the slab (and underlying pages) to be freed.
226 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
227 * possible for them to actually waste more memory than scatter (one page per
228 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
230 * Spill blocks are typically 512B and are heavily used on systems running
231 * selinux with the default dnode size and the `xattr=sa` property set.
233 * By default we use linear allocations for 512B and 1KB, and scatter
234 * allocations for larger (1.5KB and up).
236 int zfs_abd_scatter_min_size = 512 * 3;
238 static kmem_cache_t *abd_cache = NULL;
239 static kstat_t *abd_ksp;
241 static inline size_t
242 abd_chunkcnt_for_bytes(size_t size)
244 return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
247 #ifdef _KERNEL
248 #ifndef CONFIG_HIGHMEM
250 #ifndef __GFP_RECLAIM
251 #define __GFP_RECLAIM __GFP_WAIT
252 #endif
255 * The goal is to minimize fragmentation by preferentially populating ABDs
256 * with higher order compound pages from a single zone. Allocation size is
257 * progressively decreased until it can be satisfied without performing
258 * reclaim or compaction. When necessary this function will degenerate to
259 * allocating individual pages and allowing reclaim to satisfy allocations.
261 static void
262 abd_alloc_pages(abd_t *abd, size_t size)
264 struct list_head pages;
265 struct sg_table table;
266 struct scatterlist *sg;
267 struct page *page, *tmp_page = NULL;
268 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
269 gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
270 int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
271 int nr_pages = abd_chunkcnt_for_bytes(size);
272 int chunks = 0, zones = 0;
273 size_t remaining_size;
274 int nid = NUMA_NO_NODE;
275 int alloc_pages = 0;
277 INIT_LIST_HEAD(&pages);
279 while (alloc_pages < nr_pages) {
280 unsigned chunk_pages;
281 int order;
283 order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
284 chunk_pages = (1U << order);
286 page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
287 if (page == NULL) {
288 if (order == 0) {
289 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
290 schedule_timeout_interruptible(1);
291 } else {
292 max_order = MAX(0, order - 1);
294 continue;
297 list_add_tail(&page->lru, &pages);
299 if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
300 zones++;
302 nid = page_to_nid(page);
303 ABDSTAT_BUMP(abdstat_scatter_orders[order]);
304 chunks++;
305 alloc_pages += chunk_pages;
308 ASSERT3S(alloc_pages, ==, nr_pages);
310 while (sg_alloc_table(&table, chunks, gfp)) {
311 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
312 schedule_timeout_interruptible(1);
315 sg = table.sgl;
316 remaining_size = size;
317 list_for_each_entry_safe(page, tmp_page, &pages, lru) {
318 size_t sg_size = MIN(PAGESIZE << compound_order(page),
319 remaining_size);
320 sg_set_page(sg, page, sg_size, 0);
321 remaining_size -= sg_size;
323 sg = sg_next(sg);
324 list_del(&page->lru);
328 * These conditions ensure that a possible transformation to a linear
329 * ABD would be valid.
331 ASSERT(!PageHighMem(sg_page(table.sgl)));
332 ASSERT0(ABD_SCATTER(abd).abd_offset);
334 if (table.nents == 1) {
336 * Since there is only one entry, this ABD can be represented
337 * as a linear buffer. All single-page (4K) ABD's can be
338 * represented this way. Some multi-page ABD's can also be
339 * represented this way, if we were able to allocate a single
340 * "chunk" (higher-order "page" which represents a power-of-2
341 * series of physically-contiguous pages). This is often the
342 * case for 2-page (8K) ABD's.
344 * Representing a single-entry scatter ABD as a linear ABD
345 * has the performance advantage of avoiding the copy (and
346 * allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
347 * A performance increase of around 5% has been observed for
348 * ARC-cached reads (of small blocks which can take advantage
349 * of this).
351 * Note that this optimization is only possible because the
352 * pages are always mapped into the kernel's address space.
353 * This is not the case for highmem pages, so the
354 * optimization can not be made there.
356 abd->abd_flags |= ABD_FLAG_LINEAR;
357 abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
358 abd->abd_u.abd_linear.abd_sgl = table.sgl;
359 abd->abd_u.abd_linear.abd_buf =
360 page_address(sg_page(table.sgl));
361 } else if (table.nents > 1) {
362 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
363 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
365 if (zones) {
366 ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
367 abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
370 ABD_SCATTER(abd).abd_sgl = table.sgl;
371 ABD_SCATTER(abd).abd_nents = table.nents;
374 #else
376 * Allocate N individual pages to construct a scatter ABD. This function
377 * makes no attempt to request contiguous pages and requires the minimal
378 * number of kernel interfaces. It's designed for maximum compatibility.
380 static void
381 abd_alloc_pages(abd_t *abd, size_t size)
383 struct scatterlist *sg = NULL;
384 struct sg_table table;
385 struct page *page;
386 gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
387 int nr_pages = abd_chunkcnt_for_bytes(size);
388 int i = 0;
390 while (sg_alloc_table(&table, nr_pages, gfp)) {
391 ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
392 schedule_timeout_interruptible(1);
395 ASSERT3U(table.nents, ==, nr_pages);
396 ABD_SCATTER(abd).abd_sgl = table.sgl;
397 ABD_SCATTER(abd).abd_nents = nr_pages;
399 abd_for_each_sg(abd, sg, nr_pages, i) {
400 while ((page = __page_cache_alloc(gfp)) == NULL) {
401 ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
402 schedule_timeout_interruptible(1);
405 ABDSTAT_BUMP(abdstat_scatter_orders[0]);
406 sg_set_page(sg, page, PAGESIZE, 0);
409 if (nr_pages > 1) {
410 ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
411 abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
414 #endif /* !CONFIG_HIGHMEM */
416 static void
417 abd_free_pages(abd_t *abd)
419 struct scatterlist *sg = NULL;
420 struct sg_table table;
421 struct page *page;
422 int nr_pages = ABD_SCATTER(abd).abd_nents;
423 int order, i = 0;
425 if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
426 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
428 if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
429 ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
431 abd_for_each_sg(abd, sg, nr_pages, i) {
432 page = sg_page(sg);
433 order = compound_order(page);
434 __free_pages(page, order);
435 ASSERT3U(sg->length, <=, PAGE_SIZE << order);
436 ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
439 table.sgl = ABD_SCATTER(abd).abd_sgl;
440 table.nents = table.orig_nents = nr_pages;
441 sg_free_table(&table);
444 #else /* _KERNEL */
446 #ifndef PAGE_SHIFT
447 #define PAGE_SHIFT (highbit64(PAGESIZE)-1)
448 #endif
450 struct page;
452 #define zfs_kmap_atomic(chunk, km) ((void *)chunk)
453 #define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0)
454 #define local_irq_save(flags) do { (void)(flags); } while (0)
455 #define local_irq_restore(flags) do { (void)(flags); } while (0)
456 #define nth_page(pg, i) \
457 ((struct page *)((void *)(pg) + (i) * PAGESIZE))
459 struct scatterlist {
460 struct page *page;
461 int length;
462 int end;
465 static void
466 sg_init_table(struct scatterlist *sg, int nr)
468 memset(sg, 0, nr * sizeof (struct scatterlist));
469 sg[nr - 1].end = 1;
472 #define for_each_sg(sgl, sg, nr, i) \
473 for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
475 static inline void
476 sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
477 unsigned int offset)
479 /* currently we don't use offset */
480 ASSERT(offset == 0);
481 sg->page = page;
482 sg->length = len;
485 static inline struct page *
486 sg_page(struct scatterlist *sg)
488 return (sg->page);
491 static inline struct scatterlist *
492 sg_next(struct scatterlist *sg)
494 if (sg->end)
495 return (NULL);
497 return (sg + 1);
500 static void
501 abd_alloc_pages(abd_t *abd, size_t size)
503 unsigned nr_pages = abd_chunkcnt_for_bytes(size);
504 struct scatterlist *sg;
505 int i;
507 ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
508 sizeof (struct scatterlist), KM_SLEEP);
509 sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
511 abd_for_each_sg(abd, sg, nr_pages, i) {
512 struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
513 sg_set_page(sg, p, PAGESIZE, 0);
515 ABD_SCATTER(abd).abd_nents = nr_pages;
518 static void
519 abd_free_pages(abd_t *abd)
521 int i, n = ABD_SCATTER(abd).abd_nents;
522 struct scatterlist *sg;
524 abd_for_each_sg(abd, sg, n, i) {
525 for (int j = 0; j < sg->length; j += PAGESIZE) {
526 struct page *p = nth_page(sg_page(sg), j >> PAGE_SHIFT);
527 umem_free(p, PAGESIZE);
531 vmem_free(ABD_SCATTER(abd).abd_sgl, n * sizeof (struct scatterlist));
534 #endif /* _KERNEL */
536 void
537 abd_init(void)
539 int i;
541 abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
542 0, NULL, NULL, NULL, NULL, NULL, 0);
544 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
545 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
546 if (abd_ksp != NULL) {
547 abd_ksp->ks_data = &abd_stats;
548 kstat_install(abd_ksp);
550 for (i = 0; i < MAX_ORDER; i++) {
551 snprintf(abd_stats.abdstat_scatter_orders[i].name,
552 KSTAT_STRLEN, "scatter_order_%d", i);
553 abd_stats.abdstat_scatter_orders[i].data_type =
554 KSTAT_DATA_UINT64;
559 void
560 abd_fini(void)
562 if (abd_ksp != NULL) {
563 kstat_delete(abd_ksp);
564 abd_ksp = NULL;
567 if (abd_cache) {
568 kmem_cache_destroy(abd_cache);
569 abd_cache = NULL;
573 static inline void
574 abd_verify(abd_t *abd)
576 ASSERT3U(abd->abd_size, >, 0);
577 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
578 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
579 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
580 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE));
581 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
582 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
583 if (abd_is_linear(abd)) {
584 ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
585 } else {
586 size_t n;
587 int i = 0;
588 struct scatterlist *sg = NULL;
590 ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
591 ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
592 ABD_SCATTER(abd).abd_sgl->length);
593 n = ABD_SCATTER(abd).abd_nents;
594 abd_for_each_sg(abd, sg, n, i) {
595 ASSERT3P(sg_page(sg), !=, NULL);
600 static inline abd_t *
601 abd_alloc_struct(void)
603 abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
605 ASSERT3P(abd, !=, NULL);
606 ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
608 return (abd);
611 static inline void
612 abd_free_struct(abd_t *abd)
614 kmem_cache_free(abd_cache, abd);
615 ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
619 * Allocate an ABD, along with its own underlying data buffers. Use this if you
620 * don't care whether the ABD is linear or not.
622 abd_t *
623 abd_alloc(size_t size, boolean_t is_metadata)
625 /* see the comment above zfs_abd_scatter_min_size */
626 if (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size)
627 return (abd_alloc_linear(size, is_metadata));
629 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
631 abd_t *abd = abd_alloc_struct();
632 abd->abd_flags = ABD_FLAG_OWNER;
633 abd->abd_u.abd_scatter.abd_offset = 0;
634 abd_alloc_pages(abd, size);
636 if (is_metadata) {
637 abd->abd_flags |= ABD_FLAG_META;
639 abd->abd_size = size;
640 abd->abd_parent = NULL;
641 zfs_refcount_create(&abd->abd_children);
643 ABDSTAT_BUMP(abdstat_scatter_cnt);
644 ABDSTAT_INCR(abdstat_scatter_data_size, size);
645 ABDSTAT_INCR(abdstat_scatter_chunk_waste,
646 P2ROUNDUP(size, PAGESIZE) - size);
648 return (abd);
651 static void
652 abd_free_scatter(abd_t *abd)
654 abd_free_pages(abd);
656 zfs_refcount_destroy(&abd->abd_children);
657 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
658 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
659 ABDSTAT_INCR(abdstat_scatter_chunk_waste,
660 (int)abd->abd_size - (int)P2ROUNDUP(abd->abd_size, PAGESIZE));
662 abd_free_struct(abd);
666 * Allocate an ABD that must be linear, along with its own underlying data
667 * buffer. Only use this when it would be very annoying to write your ABD
668 * consumer with a scattered ABD.
670 abd_t *
671 abd_alloc_linear(size_t size, boolean_t is_metadata)
673 abd_t *abd = abd_alloc_struct();
675 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
677 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
678 if (is_metadata) {
679 abd->abd_flags |= ABD_FLAG_META;
681 abd->abd_size = size;
682 abd->abd_parent = NULL;
683 zfs_refcount_create(&abd->abd_children);
685 if (is_metadata) {
686 abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
687 } else {
688 abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
691 ABDSTAT_BUMP(abdstat_linear_cnt);
692 ABDSTAT_INCR(abdstat_linear_data_size, size);
694 return (abd);
697 static void
698 abd_free_linear(abd_t *abd)
700 if (abd_is_linear_page(abd)) {
701 /* Transform it back into a scatter ABD for freeing */
702 struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
703 abd->abd_flags &= ~ABD_FLAG_LINEAR;
704 abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
705 ABD_SCATTER(abd).abd_nents = 1;
706 ABD_SCATTER(abd).abd_offset = 0;
707 ABD_SCATTER(abd).abd_sgl = sg;
708 abd_free_scatter(abd);
709 return;
711 if (abd->abd_flags & ABD_FLAG_META) {
712 zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
713 } else {
714 zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
717 zfs_refcount_destroy(&abd->abd_children);
718 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
719 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
721 abd_free_struct(abd);
725 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or
726 * abd_alloc_linear().
728 void
729 abd_free(abd_t *abd)
731 abd_verify(abd);
732 ASSERT3P(abd->abd_parent, ==, NULL);
733 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
734 if (abd_is_linear(abd))
735 abd_free_linear(abd);
736 else
737 abd_free_scatter(abd);
741 * Allocate an ABD of the same format (same metadata flag, same scatterize
742 * setting) as another ABD.
744 abd_t *
745 abd_alloc_sametype(abd_t *sabd, size_t size)
747 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
748 if (abd_is_linear(sabd) &&
749 !abd_is_linear_page(sabd)) {
750 return (abd_alloc_linear(size, is_metadata));
751 } else {
752 return (abd_alloc(size, is_metadata));
757 * If we're going to use this ABD for doing I/O using the block layer, the
758 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
759 * plan to store this ABD in memory for a long period of time, we should
760 * allocate the ABD type that requires the least data copying to do the I/O.
762 * On Illumos this is linear ABDs, however if ldi_strategy() can ever issue I/Os
763 * using a scatter/gather list we should switch to that and replace this call
764 * with vanilla abd_alloc().
766 * On Linux the optimal thing to do would be to use abd_get_offset() and
767 * construct a new ABD which shares the original pages thereby eliminating
768 * the copy. But for the moment a new linear ABD is allocated until this
769 * performance optimization can be implemented.
771 abd_t *
772 abd_alloc_for_io(size_t size, boolean_t is_metadata)
774 return (abd_alloc(size, is_metadata));
778 * Allocate a new ABD to point to offset off of sabd. It shares the underlying
779 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
780 * any derived ABDs exist.
782 static inline abd_t *
783 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
785 abd_t *abd;
787 abd_verify(sabd);
788 ASSERT3U(off, <=, sabd->abd_size);
790 if (abd_is_linear(sabd)) {
791 abd = abd_alloc_struct();
794 * Even if this buf is filesystem metadata, we only track that
795 * if we own the underlying data buffer, which is not true in
796 * this case. Therefore, we don't ever use ABD_FLAG_META here.
798 abd->abd_flags = ABD_FLAG_LINEAR;
800 abd->abd_u.abd_linear.abd_buf =
801 (char *)sabd->abd_u.abd_linear.abd_buf + off;
802 } else {
803 int i = 0;
804 struct scatterlist *sg = NULL;
805 size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
807 abd = abd_alloc_struct();
810 * Even if this buf is filesystem metadata, we only track that
811 * if we own the underlying data buffer, which is not true in
812 * this case. Therefore, we don't ever use ABD_FLAG_META here.
814 abd->abd_flags = 0;
816 abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
817 if (new_offset < sg->length)
818 break;
819 new_offset -= sg->length;
822 ABD_SCATTER(abd).abd_sgl = sg;
823 ABD_SCATTER(abd).abd_offset = new_offset;
824 ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
827 abd->abd_size = size;
828 abd->abd_parent = sabd;
829 zfs_refcount_create(&abd->abd_children);
830 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
832 return (abd);
835 abd_t *
836 abd_get_offset(abd_t *sabd, size_t off)
838 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
840 VERIFY3U(size, >, 0);
842 return (abd_get_offset_impl(sabd, off, size));
845 abd_t *
846 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
848 ASSERT3U(off + size, <=, sabd->abd_size);
850 return (abd_get_offset_impl(sabd, off, size));
854 * Allocate a linear ABD structure for buf. You must free this with abd_put()
855 * since the resulting ABD doesn't own its own buffer.
857 abd_t *
858 abd_get_from_buf(void *buf, size_t size)
860 abd_t *abd = abd_alloc_struct();
862 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
865 * Even if this buf is filesystem metadata, we only track that if we
866 * own the underlying data buffer, which is not true in this case.
867 * Therefore, we don't ever use ABD_FLAG_META here.
869 abd->abd_flags = ABD_FLAG_LINEAR;
870 abd->abd_size = size;
871 abd->abd_parent = NULL;
872 zfs_refcount_create(&abd->abd_children);
874 abd->abd_u.abd_linear.abd_buf = buf;
876 return (abd);
880 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
881 * free the underlying scatterlist or buffer.
883 void
884 abd_put(abd_t *abd)
886 abd_verify(abd);
887 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
889 if (abd->abd_parent != NULL) {
890 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
891 abd->abd_size, abd);
894 zfs_refcount_destroy(&abd->abd_children);
895 abd_free_struct(abd);
899 * Get the raw buffer associated with a linear ABD.
901 void *
902 abd_to_buf(abd_t *abd)
904 ASSERT(abd_is_linear(abd));
905 abd_verify(abd);
906 return (abd->abd_u.abd_linear.abd_buf);
910 * Borrow a raw buffer from an ABD without copying the contents of the ABD
911 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
912 * whose contents are undefined. To copy over the existing data in the ABD, use
913 * abd_borrow_buf_copy() instead.
915 void *
916 abd_borrow_buf(abd_t *abd, size_t n)
918 void *buf;
919 abd_verify(abd);
920 ASSERT3U(abd->abd_size, >=, n);
921 if (abd_is_linear(abd)) {
922 buf = abd_to_buf(abd);
923 } else {
924 buf = zio_buf_alloc(n);
926 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
928 return (buf);
931 void *
932 abd_borrow_buf_copy(abd_t *abd, size_t n)
934 void *buf = abd_borrow_buf(abd, n);
935 if (!abd_is_linear(abd)) {
936 abd_copy_to_buf(buf, abd, n);
938 return (buf);
942 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
943 * not change the contents of the ABD and will ASSERT that you didn't modify
944 * the buffer since it was borrowed. If you want any changes you made to buf to
945 * be copied back to abd, use abd_return_buf_copy() instead.
947 void
948 abd_return_buf(abd_t *abd, void *buf, size_t n)
950 abd_verify(abd);
951 ASSERT3U(abd->abd_size, >=, n);
952 if (abd_is_linear(abd)) {
953 ASSERT3P(buf, ==, abd_to_buf(abd));
954 } else {
955 ASSERT0(abd_cmp_buf(abd, buf, n));
956 zio_buf_free(buf, n);
958 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
961 void
962 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
964 if (!abd_is_linear(abd)) {
965 abd_copy_from_buf(abd, buf, n);
967 abd_return_buf(abd, buf, n);
971 * Give this ABD ownership of the buffer that it's storing. Can only be used on
972 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
973 * with abd_alloc_linear() which subsequently released ownership of their buf
974 * with abd_release_ownership_of_buf().
976 void
977 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
979 ASSERT(abd_is_linear(abd));
980 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
981 abd_verify(abd);
983 abd->abd_flags |= ABD_FLAG_OWNER;
984 if (is_metadata) {
985 abd->abd_flags |= ABD_FLAG_META;
988 ABDSTAT_BUMP(abdstat_linear_cnt);
989 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
992 void
993 abd_release_ownership_of_buf(abd_t *abd)
995 ASSERT(abd_is_linear(abd));
996 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
999 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
1000 * Since that flag does not survive the
1001 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
1002 * abd_take_ownership_of_buf() sequence, we don't allow releasing
1003 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
1005 ASSERT(!abd_is_linear_page(abd));
1007 abd_verify(abd);
1009 abd->abd_flags &= ~ABD_FLAG_OWNER;
1010 /* Disable this flag since we no longer own the data buffer */
1011 abd->abd_flags &= ~ABD_FLAG_META;
1013 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
1014 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
1017 #ifndef HAVE_1ARG_KMAP_ATOMIC
1018 #define NR_KM_TYPE (6)
1019 #ifdef _KERNEL
1020 int km_table[NR_KM_TYPE] = {
1021 KM_USER0,
1022 KM_USER1,
1023 KM_BIO_SRC_IRQ,
1024 KM_BIO_DST_IRQ,
1025 KM_PTE0,
1026 KM_PTE1,
1028 #endif
1029 #endif
1031 struct abd_iter {
1032 /* public interface */
1033 void *iter_mapaddr; /* addr corresponding to iter_pos */
1034 size_t iter_mapsize; /* length of data valid at mapaddr */
1036 /* private */
1037 abd_t *iter_abd; /* ABD being iterated through */
1038 size_t iter_pos;
1039 size_t iter_offset; /* offset in current sg/abd_buf, */
1040 /* abd_offset included */
1041 struct scatterlist *iter_sg; /* current sg */
1042 #ifndef HAVE_1ARG_KMAP_ATOMIC
1043 int iter_km; /* KM_* for kmap_atomic */
1044 #endif
1048 * Initialize the abd_iter.
1050 static void
1051 abd_iter_init(struct abd_iter *aiter, abd_t *abd, int km_type)
1053 abd_verify(abd);
1054 aiter->iter_abd = abd;
1055 aiter->iter_mapaddr = NULL;
1056 aiter->iter_mapsize = 0;
1057 aiter->iter_pos = 0;
1058 if (abd_is_linear(abd)) {
1059 aiter->iter_offset = 0;
1060 aiter->iter_sg = NULL;
1061 } else {
1062 aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
1063 aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
1065 #ifndef HAVE_1ARG_KMAP_ATOMIC
1066 ASSERT3U(km_type, <, NR_KM_TYPE);
1067 aiter->iter_km = km_type;
1068 #endif
1072 * Advance the iterator by a certain amount. Cannot be called when a chunk is
1073 * in use. This can be safely called when the aiter has already exhausted, in
1074 * which case this does nothing.
1076 static void
1077 abd_iter_advance(struct abd_iter *aiter, size_t amount)
1079 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
1080 ASSERT0(aiter->iter_mapsize);
1082 /* There's nothing left to advance to, so do nothing */
1083 if (aiter->iter_pos == aiter->iter_abd->abd_size)
1084 return;
1086 aiter->iter_pos += amount;
1087 aiter->iter_offset += amount;
1088 if (!abd_is_linear(aiter->iter_abd)) {
1089 while (aiter->iter_offset >= aiter->iter_sg->length) {
1090 aiter->iter_offset -= aiter->iter_sg->length;
1091 aiter->iter_sg = sg_next(aiter->iter_sg);
1092 if (aiter->iter_sg == NULL) {
1093 ASSERT0(aiter->iter_offset);
1094 break;
1101 * Map the current chunk into aiter. This can be safely called when the aiter
1102 * has already exhausted, in which case this does nothing.
1104 static void
1105 abd_iter_map(struct abd_iter *aiter)
1107 void *paddr;
1108 size_t offset = 0;
1110 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
1111 ASSERT0(aiter->iter_mapsize);
1113 /* There's nothing left to iterate over, so do nothing */
1114 if (aiter->iter_pos == aiter->iter_abd->abd_size)
1115 return;
1117 if (abd_is_linear(aiter->iter_abd)) {
1118 ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
1119 offset = aiter->iter_offset;
1120 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
1121 paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
1122 } else {
1123 offset = aiter->iter_offset;
1124 aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
1125 aiter->iter_abd->abd_size - aiter->iter_pos);
1127 paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg),
1128 km_table[aiter->iter_km]);
1131 aiter->iter_mapaddr = (char *)paddr + offset;
1135 * Unmap the current chunk from aiter. This can be safely called when the aiter
1136 * has already exhausted, in which case this does nothing.
1138 static void
1139 abd_iter_unmap(struct abd_iter *aiter)
1141 /* There's nothing left to unmap, so do nothing */
1142 if (aiter->iter_pos == aiter->iter_abd->abd_size)
1143 return;
1145 if (!abd_is_linear(aiter->iter_abd)) {
1146 /* LINTED E_FUNC_SET_NOT_USED */
1147 zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset,
1148 km_table[aiter->iter_km]);
1151 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
1152 ASSERT3U(aiter->iter_mapsize, >, 0);
1154 aiter->iter_mapaddr = NULL;
1155 aiter->iter_mapsize = 0;
1159 abd_iterate_func(abd_t *abd, size_t off, size_t size,
1160 abd_iter_func_t *func, void *private)
1162 int ret = 0;
1163 struct abd_iter aiter;
1165 abd_verify(abd);
1166 ASSERT3U(off + size, <=, abd->abd_size);
1168 abd_iter_init(&aiter, abd, 0);
1169 abd_iter_advance(&aiter, off);
1171 while (size > 0) {
1172 abd_iter_map(&aiter);
1174 size_t len = MIN(aiter.iter_mapsize, size);
1175 ASSERT3U(len, >, 0);
1177 ret = func(aiter.iter_mapaddr, len, private);
1179 abd_iter_unmap(&aiter);
1181 if (ret != 0)
1182 break;
1184 size -= len;
1185 abd_iter_advance(&aiter, len);
1188 return (ret);
1191 struct buf_arg {
1192 void *arg_buf;
1195 static int
1196 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
1198 struct buf_arg *ba_ptr = private;
1200 (void) memcpy(ba_ptr->arg_buf, buf, size);
1201 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
1203 return (0);
1207 * Copy abd to buf. (off is the offset in abd.)
1209 void
1210 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
1212 struct buf_arg ba_ptr = { buf };
1214 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
1215 &ba_ptr);
1218 static int
1219 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
1221 int ret;
1222 struct buf_arg *ba_ptr = private;
1224 ret = memcmp(buf, ba_ptr->arg_buf, size);
1225 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
1227 return (ret);
1231 * Compare the contents of abd to buf. (off is the offset in abd.)
1234 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
1236 struct buf_arg ba_ptr = { (void *) buf };
1238 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
1241 static int
1242 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
1244 struct buf_arg *ba_ptr = private;
1246 (void) memcpy(buf, ba_ptr->arg_buf, size);
1247 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
1249 return (0);
1253 * Copy from buf to abd. (off is the offset in abd.)
1255 void
1256 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
1258 struct buf_arg ba_ptr = { (void *) buf };
1260 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
1261 &ba_ptr);
1264 /*ARGSUSED*/
1265 static int
1266 abd_zero_off_cb(void *buf, size_t size, void *private)
1268 (void) memset(buf, 0, size);
1269 return (0);
1273 * Zero out the abd from a particular offset to the end.
1275 void
1276 abd_zero_off(abd_t *abd, size_t off, size_t size)
1278 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
1282 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
1283 * equal-sized chunks (passed to func as raw buffers). func could be called many
1284 * times during this iteration.
1287 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
1288 size_t size, abd_iter_func2_t *func, void *private)
1290 int ret = 0;
1291 struct abd_iter daiter, saiter;
1293 abd_verify(dabd);
1294 abd_verify(sabd);
1296 ASSERT3U(doff + size, <=, dabd->abd_size);
1297 ASSERT3U(soff + size, <=, sabd->abd_size);
1299 abd_iter_init(&daiter, dabd, 0);
1300 abd_iter_init(&saiter, sabd, 1);
1301 abd_iter_advance(&daiter, doff);
1302 abd_iter_advance(&saiter, soff);
1304 while (size > 0) {
1305 abd_iter_map(&daiter);
1306 abd_iter_map(&saiter);
1308 size_t dlen = MIN(daiter.iter_mapsize, size);
1309 size_t slen = MIN(saiter.iter_mapsize, size);
1310 size_t len = MIN(dlen, slen);
1311 ASSERT(dlen > 0 || slen > 0);
1313 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
1314 private);
1316 abd_iter_unmap(&saiter);
1317 abd_iter_unmap(&daiter);
1319 if (ret != 0)
1320 break;
1322 size -= len;
1323 abd_iter_advance(&daiter, len);
1324 abd_iter_advance(&saiter, len);
1327 return (ret);
1330 /*ARGSUSED*/
1331 static int
1332 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
1334 (void) memcpy(dbuf, sbuf, size);
1335 return (0);
1339 * Copy from sabd to dabd starting from soff and doff.
1341 void
1342 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
1344 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
1345 abd_copy_off_cb, NULL);
1348 /*ARGSUSED*/
1349 static int
1350 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
1352 return (memcmp(bufa, bufb, size));
1356 * Compares the contents of two ABDs.
1359 abd_cmp(abd_t *dabd, abd_t *sabd)
1361 ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1362 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1363 abd_cmp_cb, NULL));
1367 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1369 * @cabds parity ABDs, must have equal size
1370 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1371 * @func_raidz_gen should be implemented so that its behaviour
1372 * is the same when taking linear and when taking scatter
1374 void
1375 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
1376 ssize_t csize, ssize_t dsize, const unsigned parity,
1377 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1379 int i;
1380 ssize_t len, dlen;
1381 struct abd_iter caiters[3];
1382 struct abd_iter daiter = {0};
1383 void *caddrs[3];
1384 unsigned long flags;
1386 ASSERT3U(parity, <=, 3);
1388 for (i = 0; i < parity; i++)
1389 abd_iter_init(&caiters[i], cabds[i], i);
1391 if (dabd)
1392 abd_iter_init(&daiter, dabd, i);
1394 ASSERT3S(dsize, >=, 0);
1396 local_irq_save(flags);
1397 while (csize > 0) {
1398 len = csize;
1400 if (dabd && dsize > 0)
1401 abd_iter_map(&daiter);
1403 for (i = 0; i < parity; i++) {
1404 abd_iter_map(&caiters[i]);
1405 caddrs[i] = caiters[i].iter_mapaddr;
1408 switch (parity) {
1409 case 3:
1410 len = MIN(caiters[2].iter_mapsize, len);
1411 /* falls through */
1412 case 2:
1413 len = MIN(caiters[1].iter_mapsize, len);
1414 /* falls through */
1415 case 1:
1416 len = MIN(caiters[0].iter_mapsize, len);
1419 /* must be progressive */
1420 ASSERT3S(len, >, 0);
1422 if (dabd && dsize > 0) {
1423 /* this needs precise iter.length */
1424 len = MIN(daiter.iter_mapsize, len);
1425 dlen = len;
1426 } else
1427 dlen = 0;
1429 /* must be progressive */
1430 ASSERT3S(len, >, 0);
1432 * The iterated function likely will not do well if each
1433 * segment except the last one is not multiple of 512 (raidz).
1435 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1437 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
1439 for (i = parity-1; i >= 0; i--) {
1440 abd_iter_unmap(&caiters[i]);
1441 abd_iter_advance(&caiters[i], len);
1444 if (dabd && dsize > 0) {
1445 abd_iter_unmap(&daiter);
1446 abd_iter_advance(&daiter, dlen);
1447 dsize -= dlen;
1450 csize -= len;
1452 ASSERT3S(dsize, >=, 0);
1453 ASSERT3S(csize, >=, 0);
1455 local_irq_restore(flags);
1459 * Iterate over code ABDs and data reconstruction target ABDs and call
1460 * @func_raidz_rec. Function maps at most 6 pages atomically.
1462 * @cabds parity ABDs, must have equal size
1463 * @tabds rec target ABDs, at most 3
1464 * @tsize size of data target columns
1465 * @func_raidz_rec expects syndrome data in target columns. Function
1466 * reconstructs data and overwrites target columns.
1468 void
1469 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1470 ssize_t tsize, const unsigned parity,
1471 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1472 const unsigned *mul),
1473 const unsigned *mul)
1475 int i;
1476 ssize_t len;
1477 struct abd_iter citers[3];
1478 struct abd_iter xiters[3];
1479 void *caddrs[3], *xaddrs[3];
1480 unsigned long flags;
1482 ASSERT3U(parity, <=, 3);
1484 for (i = 0; i < parity; i++) {
1485 abd_iter_init(&citers[i], cabds[i], 2*i);
1486 abd_iter_init(&xiters[i], tabds[i], 2*i+1);
1489 local_irq_save(flags);
1490 while (tsize > 0) {
1492 for (i = 0; i < parity; i++) {
1493 abd_iter_map(&citers[i]);
1494 abd_iter_map(&xiters[i]);
1495 caddrs[i] = citers[i].iter_mapaddr;
1496 xaddrs[i] = xiters[i].iter_mapaddr;
1499 len = tsize;
1500 switch (parity) {
1501 case 3:
1502 len = MIN(xiters[2].iter_mapsize, len);
1503 len = MIN(citers[2].iter_mapsize, len);
1504 /* falls through */
1505 case 2:
1506 len = MIN(xiters[1].iter_mapsize, len);
1507 len = MIN(citers[1].iter_mapsize, len);
1508 /* falls through */
1509 case 1:
1510 len = MIN(xiters[0].iter_mapsize, len);
1511 len = MIN(citers[0].iter_mapsize, len);
1513 /* must be progressive */
1514 ASSERT3S(len, >, 0);
1516 * The iterated function likely will not do well if each
1517 * segment except the last one is not multiple of 512 (raidz).
1519 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1521 func_raidz_rec(xaddrs, len, caddrs, mul);
1523 for (i = parity-1; i >= 0; i--) {
1524 abd_iter_unmap(&xiters[i]);
1525 abd_iter_unmap(&citers[i]);
1526 abd_iter_advance(&xiters[i], len);
1527 abd_iter_advance(&citers[i], len);
1530 tsize -= len;
1531 ASSERT3S(tsize, >=, 0);
1533 local_irq_restore(flags);
1536 #if defined(_KERNEL)
1538 * bio_nr_pages for ABD.
1539 * @off is the offset in @abd
1541 unsigned long
1542 abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
1544 unsigned long pos;
1546 if (abd_is_linear(abd))
1547 pos = (unsigned long)abd_to_buf(abd) + off;
1548 else
1549 pos = abd->abd_u.abd_scatter.abd_offset + off;
1551 return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
1552 (pos >> PAGE_SHIFT);
1556 * bio_map for scatter ABD.
1557 * @off is the offset in @abd
1558 * Remaining IO size is returned
1560 unsigned int
1561 abd_scatter_bio_map_off(struct bio *bio, abd_t *abd,
1562 unsigned int io_size, size_t off)
1564 int i;
1565 struct abd_iter aiter;
1567 ASSERT(!abd_is_linear(abd));
1568 ASSERT3U(io_size, <=, abd->abd_size - off);
1570 abd_iter_init(&aiter, abd, 0);
1571 abd_iter_advance(&aiter, off);
1573 for (i = 0; i < bio->bi_max_vecs; i++) {
1574 struct page *pg;
1575 size_t len, sgoff, pgoff;
1576 struct scatterlist *sg;
1578 if (io_size <= 0)
1579 break;
1581 sg = aiter.iter_sg;
1582 sgoff = aiter.iter_offset;
1583 pgoff = sgoff & (PAGESIZE - 1);
1584 len = MIN(io_size, PAGESIZE - pgoff);
1585 ASSERT(len > 0);
1587 pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
1588 if (bio_add_page(bio, pg, len, pgoff) != len)
1589 break;
1591 io_size -= len;
1592 abd_iter_advance(&aiter, len);
1595 return (io_size);
1598 /* Tunable Parameters */
1599 module_param(zfs_abd_scatter_enabled, int, 0644);
1600 MODULE_PARM_DESC(zfs_abd_scatter_enabled,
1601 "Toggle whether ABD allocations must be linear.");
1602 module_param(zfs_abd_scatter_min_size, int, 0644);
1603 MODULE_PARM_DESC(zfs_abd_scatter_min_size,
1604 "Minimum size of scatter allocations.");
1605 /* CSTYLED */
1606 module_param(zfs_abd_scatter_max_order, uint, 0644);
1607 MODULE_PARM_DESC(zfs_abd_scatter_max_order,
1608 "Maximum order allocation used for a scatter ABD.");
1609 #endif