4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Datto Inc. All rights reserved.
31 * Copyright (c) 2021, Klara Inc.
32 * Copyright [2021] Hewlett Packard Enterprise Development LP
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/bpobj.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_rebuild.h>
45 #include <sys/vdev_draid.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/space_map.h>
50 #include <sys/space_reftree.h>
53 #include <sys/fs/zfs.h>
56 #include <sys/dsl_scan.h>
57 #include <sys/vdev_raidz.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
62 #include <sys/zfs_ratelimit.h>
66 * One metaslab from each (normal-class) vdev is used by the ZIL. These are
67 * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
68 * part of the spa_embedded_log_class. The metaslab with the most free space
69 * in each vdev is selected for this purpose when the pool is opened (or a
70 * vdev is added). See vdev_metaslab_init().
72 * Log blocks can be allocated from the following locations. Each one is tried
73 * in order until the allocation succeeds:
74 * 1. dedicated log vdevs, aka "slog" (spa_log_class)
75 * 2. embedded slog metaslabs (spa_embedded_log_class)
76 * 3. other metaslabs in normal vdevs (spa_normal_class)
78 * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
79 * than this number of metaslabs in the vdev. This ensures that we don't set
80 * aside an unreasonable amount of space for the ZIL. If set to less than
81 * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
82 * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
84 static uint_t zfs_embedded_slog_min_ms
= 64;
86 /* default target for number of metaslabs per top-level vdev */
87 static uint_t zfs_vdev_default_ms_count
= 200;
89 /* minimum number of metaslabs per top-level vdev */
90 static uint_t zfs_vdev_min_ms_count
= 16;
92 /* practical upper limit of total metaslabs per top-level vdev */
93 static uint_t zfs_vdev_ms_count_limit
= 1ULL << 17;
95 /* lower limit for metaslab size (512M) */
96 static uint_t zfs_vdev_default_ms_shift
= 29;
98 /* upper limit for metaslab size (16G) */
99 static uint_t zfs_vdev_max_ms_shift
= 34;
101 int vdev_validate_skip
= B_FALSE
;
104 * Since the DTL space map of a vdev is not expected to have a lot of
105 * entries, we default its block size to 4K.
107 int zfs_vdev_dtl_sm_blksz
= (1 << 12);
110 * Rate limit slow IO (delay) events to this many per second.
112 static unsigned int zfs_slow_io_events_per_second
= 20;
115 * Rate limit checksum events after this many checksum errors per second.
117 static unsigned int zfs_checksum_events_per_second
= 20;
120 * Ignore errors during scrub/resilver. Allows to work around resilver
121 * upon import when there are pool errors.
123 static int zfs_scan_ignore_errors
= 0;
126 * vdev-wide space maps that have lots of entries written to them at
127 * the end of each transaction can benefit from a higher I/O bandwidth
128 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
130 int zfs_vdev_standard_sm_blksz
= (1 << 17);
133 * Tunable parameter for debugging or performance analysis. Setting this
134 * will cause pool corruption on power loss if a volatile out-of-order
135 * write cache is enabled.
137 int zfs_nocacheflush
= 0;
140 * Maximum and minimum ashift values that can be automatically set based on
141 * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX
142 * is higher than the maximum value, it is intentionally limited here to not
143 * excessively impact pool space efficiency. Higher ashift values may still
144 * be forced by vdev logical ashift or by user via ashift property, but won't
145 * be set automatically as a performance optimization.
147 uint_t zfs_vdev_max_auto_ashift
= 14;
148 uint_t zfs_vdev_min_auto_ashift
= ASHIFT_MIN
;
151 vdev_dbgmsg(vdev_t
*vd
, const char *fmt
, ...)
157 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
160 if (vd
->vdev_path
!= NULL
) {
161 zfs_dbgmsg("%s vdev '%s': %s", vd
->vdev_ops
->vdev_op_type
,
164 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
165 vd
->vdev_ops
->vdev_op_type
,
166 (u_longlong_t
)vd
->vdev_id
,
167 (u_longlong_t
)vd
->vdev_guid
, buf
);
172 vdev_dbgmsg_print_tree(vdev_t
*vd
, int indent
)
176 if (vd
->vdev_ishole
|| vd
->vdev_ops
== &vdev_missing_ops
) {
177 zfs_dbgmsg("%*svdev %llu: %s", indent
, "",
178 (u_longlong_t
)vd
->vdev_id
,
179 vd
->vdev_ops
->vdev_op_type
);
183 switch (vd
->vdev_state
) {
184 case VDEV_STATE_UNKNOWN
:
185 (void) snprintf(state
, sizeof (state
), "unknown");
187 case VDEV_STATE_CLOSED
:
188 (void) snprintf(state
, sizeof (state
), "closed");
190 case VDEV_STATE_OFFLINE
:
191 (void) snprintf(state
, sizeof (state
), "offline");
193 case VDEV_STATE_REMOVED
:
194 (void) snprintf(state
, sizeof (state
), "removed");
196 case VDEV_STATE_CANT_OPEN
:
197 (void) snprintf(state
, sizeof (state
), "can't open");
199 case VDEV_STATE_FAULTED
:
200 (void) snprintf(state
, sizeof (state
), "faulted");
202 case VDEV_STATE_DEGRADED
:
203 (void) snprintf(state
, sizeof (state
), "degraded");
205 case VDEV_STATE_HEALTHY
:
206 (void) snprintf(state
, sizeof (state
), "healthy");
209 (void) snprintf(state
, sizeof (state
), "<state %u>",
210 (uint_t
)vd
->vdev_state
);
213 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent
,
214 "", (int)vd
->vdev_id
, vd
->vdev_ops
->vdev_op_type
,
215 vd
->vdev_islog
? " (log)" : "",
216 (u_longlong_t
)vd
->vdev_guid
,
217 vd
->vdev_path
? vd
->vdev_path
: "N/A", state
);
219 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
220 vdev_dbgmsg_print_tree(vd
->vdev_child
[i
], indent
+ 2);
224 * Virtual device management.
227 static vdev_ops_t
*const vdev_ops_table
[] = {
231 &vdev_draid_spare_ops
,
244 * Given a vdev type, return the appropriate ops vector.
247 vdev_getops(const char *type
)
249 vdev_ops_t
*ops
, *const *opspp
;
251 for (opspp
= vdev_ops_table
; (ops
= *opspp
) != NULL
; opspp
++)
252 if (strcmp(ops
->vdev_op_type
, type
) == 0)
259 * Given a vdev and a metaslab class, find which metaslab group we're
260 * interested in. All vdevs may belong to two different metaslab classes.
261 * Dedicated slog devices use only the primary metaslab group, rather than a
262 * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
265 vdev_get_mg(vdev_t
*vd
, metaslab_class_t
*mc
)
267 if (mc
== spa_embedded_log_class(vd
->vdev_spa
) &&
268 vd
->vdev_log_mg
!= NULL
)
269 return (vd
->vdev_log_mg
);
271 return (vd
->vdev_mg
);
275 vdev_default_xlate(vdev_t
*vd
, const range_seg64_t
*logical_rs
,
276 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
278 (void) vd
, (void) remain_rs
;
280 physical_rs
->rs_start
= logical_rs
->rs_start
;
281 physical_rs
->rs_end
= logical_rs
->rs_end
;
285 * Derive the enumerated allocation bias from string input.
286 * String origin is either the per-vdev zap or zpool(8).
288 static vdev_alloc_bias_t
289 vdev_derive_alloc_bias(const char *bias
)
291 vdev_alloc_bias_t alloc_bias
= VDEV_BIAS_NONE
;
293 if (strcmp(bias
, VDEV_ALLOC_BIAS_LOG
) == 0)
294 alloc_bias
= VDEV_BIAS_LOG
;
295 else if (strcmp(bias
, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
296 alloc_bias
= VDEV_BIAS_SPECIAL
;
297 else if (strcmp(bias
, VDEV_ALLOC_BIAS_DEDUP
) == 0)
298 alloc_bias
= VDEV_BIAS_DEDUP
;
304 * Default asize function: return the MAX of psize with the asize of
305 * all children. This is what's used by anything other than RAID-Z.
308 vdev_default_asize(vdev_t
*vd
, uint64_t psize
)
310 uint64_t asize
= P2ROUNDUP(psize
, 1ULL << vd
->vdev_top
->vdev_ashift
);
313 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
314 csize
= vdev_psize_to_asize(vd
->vdev_child
[c
], psize
);
315 asize
= MAX(asize
, csize
);
322 vdev_default_min_asize(vdev_t
*vd
)
324 return (vd
->vdev_min_asize
);
328 * Get the minimum allocatable size. We define the allocatable size as
329 * the vdev's asize rounded to the nearest metaslab. This allows us to
330 * replace or attach devices which don't have the same physical size but
331 * can still satisfy the same number of allocations.
334 vdev_get_min_asize(vdev_t
*vd
)
336 vdev_t
*pvd
= vd
->vdev_parent
;
339 * If our parent is NULL (inactive spare or cache) or is the root,
340 * just return our own asize.
343 return (vd
->vdev_asize
);
346 * The top-level vdev just returns the allocatable size rounded
347 * to the nearest metaslab.
349 if (vd
== vd
->vdev_top
)
350 return (P2ALIGN(vd
->vdev_asize
, 1ULL << vd
->vdev_ms_shift
));
352 return (pvd
->vdev_ops
->vdev_op_min_asize(pvd
));
356 vdev_set_min_asize(vdev_t
*vd
)
358 vd
->vdev_min_asize
= vdev_get_min_asize(vd
);
360 for (int c
= 0; c
< vd
->vdev_children
; c
++)
361 vdev_set_min_asize(vd
->vdev_child
[c
]);
365 * Get the minimal allocation size for the top-level vdev.
368 vdev_get_min_alloc(vdev_t
*vd
)
370 uint64_t min_alloc
= 1ULL << vd
->vdev_ashift
;
372 if (vd
->vdev_ops
->vdev_op_min_alloc
!= NULL
)
373 min_alloc
= vd
->vdev_ops
->vdev_op_min_alloc(vd
);
379 * Get the parity level for a top-level vdev.
382 vdev_get_nparity(vdev_t
*vd
)
384 uint64_t nparity
= 0;
386 if (vd
->vdev_ops
->vdev_op_nparity
!= NULL
)
387 nparity
= vd
->vdev_ops
->vdev_op_nparity(vd
);
393 vdev_prop_get_int(vdev_t
*vd
, vdev_prop_t prop
, uint64_t *value
)
395 spa_t
*spa
= vd
->vdev_spa
;
396 objset_t
*mos
= spa
->spa_meta_objset
;
400 if (vd
->vdev_root_zap
!= 0) {
401 objid
= vd
->vdev_root_zap
;
402 } else if (vd
->vdev_top_zap
!= 0) {
403 objid
= vd
->vdev_top_zap
;
404 } else if (vd
->vdev_leaf_zap
!= 0) {
405 objid
= vd
->vdev_leaf_zap
;
410 err
= zap_lookup(mos
, objid
, vdev_prop_to_name(prop
),
411 sizeof (uint64_t), 1, value
);
414 *value
= vdev_prop_default_numeric(prop
);
420 * Get the number of data disks for a top-level vdev.
423 vdev_get_ndisks(vdev_t
*vd
)
427 if (vd
->vdev_ops
->vdev_op_ndisks
!= NULL
)
428 ndisks
= vd
->vdev_ops
->vdev_op_ndisks(vd
);
434 vdev_lookup_top(spa_t
*spa
, uint64_t vdev
)
436 vdev_t
*rvd
= spa
->spa_root_vdev
;
438 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
440 if (vdev
< rvd
->vdev_children
) {
441 ASSERT(rvd
->vdev_child
[vdev
] != NULL
);
442 return (rvd
->vdev_child
[vdev
]);
449 vdev_lookup_by_guid(vdev_t
*vd
, uint64_t guid
)
453 if (vd
->vdev_guid
== guid
)
456 for (int c
= 0; c
< vd
->vdev_children
; c
++)
457 if ((mvd
= vdev_lookup_by_guid(vd
->vdev_child
[c
], guid
)) !=
465 vdev_count_leaves_impl(vdev_t
*vd
)
469 if (vd
->vdev_ops
->vdev_op_leaf
)
472 for (int c
= 0; c
< vd
->vdev_children
; c
++)
473 n
+= vdev_count_leaves_impl(vd
->vdev_child
[c
]);
479 vdev_count_leaves(spa_t
*spa
)
483 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
484 rc
= vdev_count_leaves_impl(spa
->spa_root_vdev
);
485 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
491 vdev_add_child(vdev_t
*pvd
, vdev_t
*cvd
)
493 size_t oldsize
, newsize
;
494 uint64_t id
= cvd
->vdev_id
;
497 ASSERT(spa_config_held(cvd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
498 ASSERT(cvd
->vdev_parent
== NULL
);
500 cvd
->vdev_parent
= pvd
;
505 ASSERT(id
>= pvd
->vdev_children
|| pvd
->vdev_child
[id
] == NULL
);
507 oldsize
= pvd
->vdev_children
* sizeof (vdev_t
*);
508 pvd
->vdev_children
= MAX(pvd
->vdev_children
, id
+ 1);
509 newsize
= pvd
->vdev_children
* sizeof (vdev_t
*);
511 newchild
= kmem_alloc(newsize
, KM_SLEEP
);
512 if (pvd
->vdev_child
!= NULL
) {
513 memcpy(newchild
, pvd
->vdev_child
, oldsize
);
514 kmem_free(pvd
->vdev_child
, oldsize
);
517 pvd
->vdev_child
= newchild
;
518 pvd
->vdev_child
[id
] = cvd
;
520 cvd
->vdev_top
= (pvd
->vdev_top
? pvd
->vdev_top
: cvd
);
521 ASSERT(cvd
->vdev_top
->vdev_parent
->vdev_parent
== NULL
);
524 * Walk up all ancestors to update guid sum.
526 for (; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
527 pvd
->vdev_guid_sum
+= cvd
->vdev_guid_sum
;
529 if (cvd
->vdev_ops
->vdev_op_leaf
) {
530 list_insert_head(&cvd
->vdev_spa
->spa_leaf_list
, cvd
);
531 cvd
->vdev_spa
->spa_leaf_list_gen
++;
536 vdev_remove_child(vdev_t
*pvd
, vdev_t
*cvd
)
539 uint_t id
= cvd
->vdev_id
;
541 ASSERT(cvd
->vdev_parent
== pvd
);
546 ASSERT(id
< pvd
->vdev_children
);
547 ASSERT(pvd
->vdev_child
[id
] == cvd
);
549 pvd
->vdev_child
[id
] = NULL
;
550 cvd
->vdev_parent
= NULL
;
552 for (c
= 0; c
< pvd
->vdev_children
; c
++)
553 if (pvd
->vdev_child
[c
])
556 if (c
== pvd
->vdev_children
) {
557 kmem_free(pvd
->vdev_child
, c
* sizeof (vdev_t
*));
558 pvd
->vdev_child
= NULL
;
559 pvd
->vdev_children
= 0;
562 if (cvd
->vdev_ops
->vdev_op_leaf
) {
563 spa_t
*spa
= cvd
->vdev_spa
;
564 list_remove(&spa
->spa_leaf_list
, cvd
);
565 spa
->spa_leaf_list_gen
++;
569 * Walk up all ancestors to update guid sum.
571 for (; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
572 pvd
->vdev_guid_sum
-= cvd
->vdev_guid_sum
;
576 * Remove any holes in the child array.
579 vdev_compact_children(vdev_t
*pvd
)
581 vdev_t
**newchild
, *cvd
;
582 int oldc
= pvd
->vdev_children
;
585 ASSERT(spa_config_held(pvd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
590 for (int c
= newc
= 0; c
< oldc
; c
++)
591 if (pvd
->vdev_child
[c
])
595 newchild
= kmem_zalloc(newc
* sizeof (vdev_t
*), KM_SLEEP
);
597 for (int c
= newc
= 0; c
< oldc
; c
++) {
598 if ((cvd
= pvd
->vdev_child
[c
]) != NULL
) {
599 newchild
[newc
] = cvd
;
600 cvd
->vdev_id
= newc
++;
607 kmem_free(pvd
->vdev_child
, oldc
* sizeof (vdev_t
*));
608 pvd
->vdev_child
= newchild
;
609 pvd
->vdev_children
= newc
;
613 * Allocate and minimally initialize a vdev_t.
616 vdev_alloc_common(spa_t
*spa
, uint_t id
, uint64_t guid
, vdev_ops_t
*ops
)
619 vdev_indirect_config_t
*vic
;
621 vd
= kmem_zalloc(sizeof (vdev_t
), KM_SLEEP
);
622 vic
= &vd
->vdev_indirect_config
;
624 if (spa
->spa_root_vdev
== NULL
) {
625 ASSERT(ops
== &vdev_root_ops
);
626 spa
->spa_root_vdev
= vd
;
627 spa
->spa_load_guid
= spa_generate_guid(NULL
);
630 if (guid
== 0 && ops
!= &vdev_hole_ops
) {
631 if (spa
->spa_root_vdev
== vd
) {
633 * The root vdev's guid will also be the pool guid,
634 * which must be unique among all pools.
636 guid
= spa_generate_guid(NULL
);
639 * Any other vdev's guid must be unique within the pool.
641 guid
= spa_generate_guid(spa
);
643 ASSERT(!spa_guid_exists(spa_guid(spa
), guid
));
648 vd
->vdev_guid
= guid
;
649 vd
->vdev_guid_sum
= guid
;
651 vd
->vdev_state
= VDEV_STATE_CLOSED
;
652 vd
->vdev_ishole
= (ops
== &vdev_hole_ops
);
653 vic
->vic_prev_indirect_vdev
= UINT64_MAX
;
655 rw_init(&vd
->vdev_indirect_rwlock
, NULL
, RW_DEFAULT
, NULL
);
656 mutex_init(&vd
->vdev_obsolete_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
657 vd
->vdev_obsolete_segments
= range_tree_create(NULL
, RANGE_SEG64
, NULL
,
661 * Initialize rate limit structs for events. We rate limit ZIO delay
662 * and checksum events so that we don't overwhelm ZED with thousands
663 * of events when a disk is acting up.
665 zfs_ratelimit_init(&vd
->vdev_delay_rl
, &zfs_slow_io_events_per_second
,
667 zfs_ratelimit_init(&vd
->vdev_deadman_rl
, &zfs_slow_io_events_per_second
,
669 zfs_ratelimit_init(&vd
->vdev_checksum_rl
,
670 &zfs_checksum_events_per_second
, 1);
673 * Default Thresholds for tuning ZED
675 vd
->vdev_checksum_n
= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N
);
676 vd
->vdev_checksum_t
= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T
);
677 vd
->vdev_io_n
= vdev_prop_default_numeric(VDEV_PROP_IO_N
);
678 vd
->vdev_io_t
= vdev_prop_default_numeric(VDEV_PROP_IO_T
);
680 list_link_init(&vd
->vdev_config_dirty_node
);
681 list_link_init(&vd
->vdev_state_dirty_node
);
682 list_link_init(&vd
->vdev_initialize_node
);
683 list_link_init(&vd
->vdev_leaf_node
);
684 list_link_init(&vd
->vdev_trim_node
);
686 mutex_init(&vd
->vdev_dtl_lock
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
687 mutex_init(&vd
->vdev_stat_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
688 mutex_init(&vd
->vdev_probe_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
689 mutex_init(&vd
->vdev_scan_io_queue_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
691 mutex_init(&vd
->vdev_initialize_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
692 mutex_init(&vd
->vdev_initialize_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
693 cv_init(&vd
->vdev_initialize_cv
, NULL
, CV_DEFAULT
, NULL
);
694 cv_init(&vd
->vdev_initialize_io_cv
, NULL
, CV_DEFAULT
, NULL
);
696 mutex_init(&vd
->vdev_trim_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
697 mutex_init(&vd
->vdev_autotrim_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
698 mutex_init(&vd
->vdev_trim_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
699 cv_init(&vd
->vdev_trim_cv
, NULL
, CV_DEFAULT
, NULL
);
700 cv_init(&vd
->vdev_autotrim_cv
, NULL
, CV_DEFAULT
, NULL
);
701 cv_init(&vd
->vdev_autotrim_kick_cv
, NULL
, CV_DEFAULT
, NULL
);
702 cv_init(&vd
->vdev_trim_io_cv
, NULL
, CV_DEFAULT
, NULL
);
704 mutex_init(&vd
->vdev_rebuild_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
705 cv_init(&vd
->vdev_rebuild_cv
, NULL
, CV_DEFAULT
, NULL
);
707 for (int t
= 0; t
< DTL_TYPES
; t
++) {
708 vd
->vdev_dtl
[t
] = range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0,
712 txg_list_create(&vd
->vdev_ms_list
, spa
,
713 offsetof(struct metaslab
, ms_txg_node
));
714 txg_list_create(&vd
->vdev_dtl_list
, spa
,
715 offsetof(struct vdev
, vdev_dtl_node
));
716 vd
->vdev_stat
.vs_timestamp
= gethrtime();
724 * Allocate a new vdev. The 'alloctype' is used to control whether we are
725 * creating a new vdev or loading an existing one - the behavior is slightly
726 * different for each case.
729 vdev_alloc(spa_t
*spa
, vdev_t
**vdp
, nvlist_t
*nv
, vdev_t
*parent
, uint_t id
,
734 uint64_t guid
= 0, islog
;
736 vdev_indirect_config_t
*vic
;
737 const char *tmp
= NULL
;
739 vdev_alloc_bias_t alloc_bias
= VDEV_BIAS_NONE
;
740 boolean_t top_level
= (parent
&& !parent
->vdev_parent
);
742 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
744 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_TYPE
, &type
) != 0)
745 return (SET_ERROR(EINVAL
));
747 if ((ops
= vdev_getops(type
)) == NULL
)
748 return (SET_ERROR(EINVAL
));
751 * If this is a load, get the vdev guid from the nvlist.
752 * Otherwise, vdev_alloc_common() will generate one for us.
754 if (alloctype
== VDEV_ALLOC_LOAD
) {
757 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ID
, &label_id
) ||
759 return (SET_ERROR(EINVAL
));
761 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
762 return (SET_ERROR(EINVAL
));
763 } else if (alloctype
== VDEV_ALLOC_SPARE
) {
764 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
765 return (SET_ERROR(EINVAL
));
766 } else if (alloctype
== VDEV_ALLOC_L2CACHE
) {
767 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
768 return (SET_ERROR(EINVAL
));
769 } else if (alloctype
== VDEV_ALLOC_ROOTPOOL
) {
770 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_GUID
, &guid
) != 0)
771 return (SET_ERROR(EINVAL
));
775 * The first allocated vdev must be of type 'root'.
777 if (ops
!= &vdev_root_ops
&& spa
->spa_root_vdev
== NULL
)
778 return (SET_ERROR(EINVAL
));
781 * Determine whether we're a log vdev.
784 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_IS_LOG
, &islog
);
785 if (islog
&& spa_version(spa
) < SPA_VERSION_SLOGS
)
786 return (SET_ERROR(ENOTSUP
));
788 if (ops
== &vdev_hole_ops
&& spa_version(spa
) < SPA_VERSION_HOLES
)
789 return (SET_ERROR(ENOTSUP
));
791 if (top_level
&& alloctype
== VDEV_ALLOC_ADD
) {
795 * If creating a top-level vdev, check for allocation
798 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_ALLOCATION_BIAS
,
800 alloc_bias
= vdev_derive_alloc_bias(bias
);
802 /* spa_vdev_add() expects feature to be enabled */
803 if (spa
->spa_load_state
!= SPA_LOAD_CREATE
&&
804 !spa_feature_is_enabled(spa
,
805 SPA_FEATURE_ALLOCATION_CLASSES
)) {
806 return (SET_ERROR(ENOTSUP
));
810 /* spa_vdev_add() expects feature to be enabled */
811 if (ops
== &vdev_draid_ops
&&
812 spa
->spa_load_state
!= SPA_LOAD_CREATE
&&
813 !spa_feature_is_enabled(spa
, SPA_FEATURE_DRAID
)) {
814 return (SET_ERROR(ENOTSUP
));
819 * Initialize the vdev specific data. This is done before calling
820 * vdev_alloc_common() since it may fail and this simplifies the
821 * error reporting and cleanup code paths.
824 if (ops
->vdev_op_init
!= NULL
) {
825 rc
= ops
->vdev_op_init(spa
, nv
, &tsd
);
831 vd
= vdev_alloc_common(spa
, id
, guid
, ops
);
833 vd
->vdev_islog
= islog
;
835 if (top_level
&& alloc_bias
!= VDEV_BIAS_NONE
)
836 vd
->vdev_alloc_bias
= alloc_bias
;
838 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_PATH
, &tmp
) == 0)
839 vd
->vdev_path
= spa_strdup(tmp
);
842 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
843 * fault on a vdev and want it to persist across imports (like with
846 rc
= nvlist_lookup_string(nv
, ZPOOL_CONFIG_AUX_STATE
, &tmp
);
847 if (rc
== 0 && tmp
!= NULL
&& strcmp(tmp
, "external") == 0) {
848 vd
->vdev_stat
.vs_aux
= VDEV_AUX_EXTERNAL
;
849 vd
->vdev_faulted
= 1;
850 vd
->vdev_label_aux
= VDEV_AUX_EXTERNAL
;
853 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_DEVID
, &tmp
) == 0)
854 vd
->vdev_devid
= spa_strdup(tmp
);
855 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_PHYS_PATH
, &tmp
) == 0)
856 vd
->vdev_physpath
= spa_strdup(tmp
);
858 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH
,
860 vd
->vdev_enc_sysfs_path
= spa_strdup(tmp
);
862 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_FRU
, &tmp
) == 0)
863 vd
->vdev_fru
= spa_strdup(tmp
);
866 * Set the whole_disk property. If it's not specified, leave the value
869 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_WHOLE_DISK
,
870 &vd
->vdev_wholedisk
) != 0)
871 vd
->vdev_wholedisk
= -1ULL;
873 vic
= &vd
->vdev_indirect_config
;
875 ASSERT0(vic
->vic_mapping_object
);
876 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_INDIRECT_OBJECT
,
877 &vic
->vic_mapping_object
);
878 ASSERT0(vic
->vic_births_object
);
879 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_INDIRECT_BIRTHS
,
880 &vic
->vic_births_object
);
881 ASSERT3U(vic
->vic_prev_indirect_vdev
, ==, UINT64_MAX
);
882 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_PREV_INDIRECT_VDEV
,
883 &vic
->vic_prev_indirect_vdev
);
886 * Look for the 'not present' flag. This will only be set if the device
887 * was not present at the time of import.
889 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NOT_PRESENT
,
890 &vd
->vdev_not_present
);
893 * Get the alignment requirement.
895 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ASHIFT
, &vd
->vdev_ashift
);
898 * Retrieve the vdev creation time.
900 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_CREATE_TXG
,
903 if (vd
->vdev_ops
== &vdev_root_ops
&&
904 (alloctype
== VDEV_ALLOC_LOAD
||
905 alloctype
== VDEV_ALLOC_SPLIT
||
906 alloctype
== VDEV_ALLOC_ROOTPOOL
)) {
907 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_VDEV_ROOT_ZAP
,
912 * If we're a top-level vdev, try to load the allocation parameters.
915 (alloctype
== VDEV_ALLOC_LOAD
|| alloctype
== VDEV_ALLOC_SPLIT
)) {
916 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_METASLAB_ARRAY
,
918 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_METASLAB_SHIFT
,
920 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ASIZE
,
922 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NONALLOCATING
,
924 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_REMOVING
,
926 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_VDEV_TOP_ZAP
,
929 ASSERT0(vd
->vdev_top_zap
);
932 if (top_level
&& alloctype
!= VDEV_ALLOC_ATTACH
) {
933 ASSERT(alloctype
== VDEV_ALLOC_LOAD
||
934 alloctype
== VDEV_ALLOC_ADD
||
935 alloctype
== VDEV_ALLOC_SPLIT
||
936 alloctype
== VDEV_ALLOC_ROOTPOOL
);
937 /* Note: metaslab_group_create() is now deferred */
940 if (vd
->vdev_ops
->vdev_op_leaf
&&
941 (alloctype
== VDEV_ALLOC_LOAD
|| alloctype
== VDEV_ALLOC_SPLIT
)) {
942 (void) nvlist_lookup_uint64(nv
,
943 ZPOOL_CONFIG_VDEV_LEAF_ZAP
, &vd
->vdev_leaf_zap
);
945 ASSERT0(vd
->vdev_leaf_zap
);
949 * If we're a leaf vdev, try to load the DTL object and other state.
952 if (vd
->vdev_ops
->vdev_op_leaf
&&
953 (alloctype
== VDEV_ALLOC_LOAD
|| alloctype
== VDEV_ALLOC_L2CACHE
||
954 alloctype
== VDEV_ALLOC_ROOTPOOL
)) {
955 if (alloctype
== VDEV_ALLOC_LOAD
) {
956 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DTL
,
957 &vd
->vdev_dtl_object
);
958 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_UNSPARE
,
962 if (alloctype
== VDEV_ALLOC_ROOTPOOL
) {
965 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
,
966 &spare
) == 0 && spare
)
970 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_OFFLINE
,
973 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_RESILVER_TXG
,
974 &vd
->vdev_resilver_txg
);
976 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_REBUILD_TXG
,
977 &vd
->vdev_rebuild_txg
);
979 if (nvlist_exists(nv
, ZPOOL_CONFIG_RESILVER_DEFER
))
980 vdev_defer_resilver(vd
);
983 * In general, when importing a pool we want to ignore the
984 * persistent fault state, as the diagnosis made on another
985 * system may not be valid in the current context. The only
986 * exception is if we forced a vdev to a persistently faulted
987 * state with 'zpool offline -f'. The persistent fault will
988 * remain across imports until cleared.
990 * Local vdevs will remain in the faulted state.
992 if (spa_load_state(spa
) == SPA_LOAD_OPEN
||
993 spa_load_state(spa
) == SPA_LOAD_IMPORT
) {
994 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_FAULTED
,
996 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_DEGRADED
,
998 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_REMOVED
,
1001 if (vd
->vdev_faulted
|| vd
->vdev_degraded
) {
1004 vd
->vdev_label_aux
=
1005 VDEV_AUX_ERR_EXCEEDED
;
1006 if (nvlist_lookup_string(nv
,
1007 ZPOOL_CONFIG_AUX_STATE
, &aux
) == 0 &&
1008 strcmp(aux
, "external") == 0)
1009 vd
->vdev_label_aux
= VDEV_AUX_EXTERNAL
;
1011 vd
->vdev_faulted
= 0ULL;
1017 * Add ourselves to the parent's list of children.
1019 vdev_add_child(parent
, vd
);
1027 vdev_free(vdev_t
*vd
)
1029 spa_t
*spa
= vd
->vdev_spa
;
1031 ASSERT3P(vd
->vdev_initialize_thread
, ==, NULL
);
1032 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1033 ASSERT3P(vd
->vdev_autotrim_thread
, ==, NULL
);
1034 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
1037 * Scan queues are normally destroyed at the end of a scan. If the
1038 * queue exists here, that implies the vdev is being removed while
1039 * the scan is still running.
1041 if (vd
->vdev_scan_io_queue
!= NULL
) {
1042 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
1043 dsl_scan_io_queue_destroy(vd
->vdev_scan_io_queue
);
1044 vd
->vdev_scan_io_queue
= NULL
;
1045 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
1049 * vdev_free() implies closing the vdev first. This is simpler than
1050 * trying to ensure complicated semantics for all callers.
1054 ASSERT(!list_link_active(&vd
->vdev_config_dirty_node
));
1055 ASSERT(!list_link_active(&vd
->vdev_state_dirty_node
));
1058 * Free all children.
1060 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1061 vdev_free(vd
->vdev_child
[c
]);
1063 ASSERT(vd
->vdev_child
== NULL
);
1064 ASSERT(vd
->vdev_guid_sum
== vd
->vdev_guid
);
1066 if (vd
->vdev_ops
->vdev_op_fini
!= NULL
)
1067 vd
->vdev_ops
->vdev_op_fini(vd
);
1070 * Discard allocation state.
1072 if (vd
->vdev_mg
!= NULL
) {
1073 vdev_metaslab_fini(vd
);
1074 metaslab_group_destroy(vd
->vdev_mg
);
1077 if (vd
->vdev_log_mg
!= NULL
) {
1078 ASSERT0(vd
->vdev_ms_count
);
1079 metaslab_group_destroy(vd
->vdev_log_mg
);
1080 vd
->vdev_log_mg
= NULL
;
1083 ASSERT0(vd
->vdev_stat
.vs_space
);
1084 ASSERT0(vd
->vdev_stat
.vs_dspace
);
1085 ASSERT0(vd
->vdev_stat
.vs_alloc
);
1088 * Remove this vdev from its parent's child list.
1090 vdev_remove_child(vd
->vdev_parent
, vd
);
1092 ASSERT(vd
->vdev_parent
== NULL
);
1093 ASSERT(!list_link_active(&vd
->vdev_leaf_node
));
1096 * Clean up vdev structure.
1098 vdev_queue_fini(vd
);
1099 vdev_cache_fini(vd
);
1102 spa_strfree(vd
->vdev_path
);
1104 spa_strfree(vd
->vdev_devid
);
1105 if (vd
->vdev_physpath
)
1106 spa_strfree(vd
->vdev_physpath
);
1108 if (vd
->vdev_enc_sysfs_path
)
1109 spa_strfree(vd
->vdev_enc_sysfs_path
);
1112 spa_strfree(vd
->vdev_fru
);
1114 if (vd
->vdev_isspare
)
1115 spa_spare_remove(vd
);
1116 if (vd
->vdev_isl2cache
)
1117 spa_l2cache_remove(vd
);
1119 txg_list_destroy(&vd
->vdev_ms_list
);
1120 txg_list_destroy(&vd
->vdev_dtl_list
);
1122 mutex_enter(&vd
->vdev_dtl_lock
);
1123 space_map_close(vd
->vdev_dtl_sm
);
1124 for (int t
= 0; t
< DTL_TYPES
; t
++) {
1125 range_tree_vacate(vd
->vdev_dtl
[t
], NULL
, NULL
);
1126 range_tree_destroy(vd
->vdev_dtl
[t
]);
1128 mutex_exit(&vd
->vdev_dtl_lock
);
1130 EQUIV(vd
->vdev_indirect_births
!= NULL
,
1131 vd
->vdev_indirect_mapping
!= NULL
);
1132 if (vd
->vdev_indirect_births
!= NULL
) {
1133 vdev_indirect_mapping_close(vd
->vdev_indirect_mapping
);
1134 vdev_indirect_births_close(vd
->vdev_indirect_births
);
1137 if (vd
->vdev_obsolete_sm
!= NULL
) {
1138 ASSERT(vd
->vdev_removing
||
1139 vd
->vdev_ops
== &vdev_indirect_ops
);
1140 space_map_close(vd
->vdev_obsolete_sm
);
1141 vd
->vdev_obsolete_sm
= NULL
;
1143 range_tree_destroy(vd
->vdev_obsolete_segments
);
1144 rw_destroy(&vd
->vdev_indirect_rwlock
);
1145 mutex_destroy(&vd
->vdev_obsolete_lock
);
1147 mutex_destroy(&vd
->vdev_dtl_lock
);
1148 mutex_destroy(&vd
->vdev_stat_lock
);
1149 mutex_destroy(&vd
->vdev_probe_lock
);
1150 mutex_destroy(&vd
->vdev_scan_io_queue_lock
);
1152 mutex_destroy(&vd
->vdev_initialize_lock
);
1153 mutex_destroy(&vd
->vdev_initialize_io_lock
);
1154 cv_destroy(&vd
->vdev_initialize_io_cv
);
1155 cv_destroy(&vd
->vdev_initialize_cv
);
1157 mutex_destroy(&vd
->vdev_trim_lock
);
1158 mutex_destroy(&vd
->vdev_autotrim_lock
);
1159 mutex_destroy(&vd
->vdev_trim_io_lock
);
1160 cv_destroy(&vd
->vdev_trim_cv
);
1161 cv_destroy(&vd
->vdev_autotrim_cv
);
1162 cv_destroy(&vd
->vdev_autotrim_kick_cv
);
1163 cv_destroy(&vd
->vdev_trim_io_cv
);
1165 mutex_destroy(&vd
->vdev_rebuild_lock
);
1166 cv_destroy(&vd
->vdev_rebuild_cv
);
1168 zfs_ratelimit_fini(&vd
->vdev_delay_rl
);
1169 zfs_ratelimit_fini(&vd
->vdev_deadman_rl
);
1170 zfs_ratelimit_fini(&vd
->vdev_checksum_rl
);
1172 if (vd
== spa
->spa_root_vdev
)
1173 spa
->spa_root_vdev
= NULL
;
1175 kmem_free(vd
, sizeof (vdev_t
));
1179 * Transfer top-level vdev state from svd to tvd.
1182 vdev_top_transfer(vdev_t
*svd
, vdev_t
*tvd
)
1184 spa_t
*spa
= svd
->vdev_spa
;
1189 ASSERT(tvd
== tvd
->vdev_top
);
1191 tvd
->vdev_pending_fastwrite
= svd
->vdev_pending_fastwrite
;
1192 tvd
->vdev_ms_array
= svd
->vdev_ms_array
;
1193 tvd
->vdev_ms_shift
= svd
->vdev_ms_shift
;
1194 tvd
->vdev_ms_count
= svd
->vdev_ms_count
;
1195 tvd
->vdev_top_zap
= svd
->vdev_top_zap
;
1197 svd
->vdev_ms_array
= 0;
1198 svd
->vdev_ms_shift
= 0;
1199 svd
->vdev_ms_count
= 0;
1200 svd
->vdev_top_zap
= 0;
1203 ASSERT3P(tvd
->vdev_mg
, ==, svd
->vdev_mg
);
1204 if (tvd
->vdev_log_mg
)
1205 ASSERT3P(tvd
->vdev_log_mg
, ==, svd
->vdev_log_mg
);
1206 tvd
->vdev_mg
= svd
->vdev_mg
;
1207 tvd
->vdev_log_mg
= svd
->vdev_log_mg
;
1208 tvd
->vdev_ms
= svd
->vdev_ms
;
1210 svd
->vdev_mg
= NULL
;
1211 svd
->vdev_log_mg
= NULL
;
1212 svd
->vdev_ms
= NULL
;
1214 if (tvd
->vdev_mg
!= NULL
)
1215 tvd
->vdev_mg
->mg_vd
= tvd
;
1216 if (tvd
->vdev_log_mg
!= NULL
)
1217 tvd
->vdev_log_mg
->mg_vd
= tvd
;
1219 tvd
->vdev_checkpoint_sm
= svd
->vdev_checkpoint_sm
;
1220 svd
->vdev_checkpoint_sm
= NULL
;
1222 tvd
->vdev_alloc_bias
= svd
->vdev_alloc_bias
;
1223 svd
->vdev_alloc_bias
= VDEV_BIAS_NONE
;
1225 tvd
->vdev_stat
.vs_alloc
= svd
->vdev_stat
.vs_alloc
;
1226 tvd
->vdev_stat
.vs_space
= svd
->vdev_stat
.vs_space
;
1227 tvd
->vdev_stat
.vs_dspace
= svd
->vdev_stat
.vs_dspace
;
1229 svd
->vdev_stat
.vs_alloc
= 0;
1230 svd
->vdev_stat
.vs_space
= 0;
1231 svd
->vdev_stat
.vs_dspace
= 0;
1234 * State which may be set on a top-level vdev that's in the
1235 * process of being removed.
1237 ASSERT0(tvd
->vdev_indirect_config
.vic_births_object
);
1238 ASSERT0(tvd
->vdev_indirect_config
.vic_mapping_object
);
1239 ASSERT3U(tvd
->vdev_indirect_config
.vic_prev_indirect_vdev
, ==, -1ULL);
1240 ASSERT3P(tvd
->vdev_indirect_mapping
, ==, NULL
);
1241 ASSERT3P(tvd
->vdev_indirect_births
, ==, NULL
);
1242 ASSERT3P(tvd
->vdev_obsolete_sm
, ==, NULL
);
1243 ASSERT0(tvd
->vdev_noalloc
);
1244 ASSERT0(tvd
->vdev_removing
);
1245 ASSERT0(tvd
->vdev_rebuilding
);
1246 tvd
->vdev_noalloc
= svd
->vdev_noalloc
;
1247 tvd
->vdev_removing
= svd
->vdev_removing
;
1248 tvd
->vdev_rebuilding
= svd
->vdev_rebuilding
;
1249 tvd
->vdev_rebuild_config
= svd
->vdev_rebuild_config
;
1250 tvd
->vdev_indirect_config
= svd
->vdev_indirect_config
;
1251 tvd
->vdev_indirect_mapping
= svd
->vdev_indirect_mapping
;
1252 tvd
->vdev_indirect_births
= svd
->vdev_indirect_births
;
1253 range_tree_swap(&svd
->vdev_obsolete_segments
,
1254 &tvd
->vdev_obsolete_segments
);
1255 tvd
->vdev_obsolete_sm
= svd
->vdev_obsolete_sm
;
1256 svd
->vdev_indirect_config
.vic_mapping_object
= 0;
1257 svd
->vdev_indirect_config
.vic_births_object
= 0;
1258 svd
->vdev_indirect_config
.vic_prev_indirect_vdev
= -1ULL;
1259 svd
->vdev_indirect_mapping
= NULL
;
1260 svd
->vdev_indirect_births
= NULL
;
1261 svd
->vdev_obsolete_sm
= NULL
;
1262 svd
->vdev_noalloc
= 0;
1263 svd
->vdev_removing
= 0;
1264 svd
->vdev_rebuilding
= 0;
1266 for (t
= 0; t
< TXG_SIZE
; t
++) {
1267 while ((msp
= txg_list_remove(&svd
->vdev_ms_list
, t
)) != NULL
)
1268 (void) txg_list_add(&tvd
->vdev_ms_list
, msp
, t
);
1269 while ((vd
= txg_list_remove(&svd
->vdev_dtl_list
, t
)) != NULL
)
1270 (void) txg_list_add(&tvd
->vdev_dtl_list
, vd
, t
);
1271 if (txg_list_remove_this(&spa
->spa_vdev_txg_list
, svd
, t
))
1272 (void) txg_list_add(&spa
->spa_vdev_txg_list
, tvd
, t
);
1275 if (list_link_active(&svd
->vdev_config_dirty_node
)) {
1276 vdev_config_clean(svd
);
1277 vdev_config_dirty(tvd
);
1280 if (list_link_active(&svd
->vdev_state_dirty_node
)) {
1281 vdev_state_clean(svd
);
1282 vdev_state_dirty(tvd
);
1285 tvd
->vdev_deflate_ratio
= svd
->vdev_deflate_ratio
;
1286 svd
->vdev_deflate_ratio
= 0;
1288 tvd
->vdev_islog
= svd
->vdev_islog
;
1289 svd
->vdev_islog
= 0;
1291 dsl_scan_io_queue_vdev_xfer(svd
, tvd
);
1295 vdev_top_update(vdev_t
*tvd
, vdev_t
*vd
)
1302 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1303 vdev_top_update(tvd
, vd
->vdev_child
[c
]);
1307 * Add a mirror/replacing vdev above an existing vdev. There is no need to
1308 * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1311 vdev_add_parent(vdev_t
*cvd
, vdev_ops_t
*ops
)
1313 spa_t
*spa
= cvd
->vdev_spa
;
1314 vdev_t
*pvd
= cvd
->vdev_parent
;
1317 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1319 mvd
= vdev_alloc_common(spa
, cvd
->vdev_id
, 0, ops
);
1321 mvd
->vdev_asize
= cvd
->vdev_asize
;
1322 mvd
->vdev_min_asize
= cvd
->vdev_min_asize
;
1323 mvd
->vdev_max_asize
= cvd
->vdev_max_asize
;
1324 mvd
->vdev_psize
= cvd
->vdev_psize
;
1325 mvd
->vdev_ashift
= cvd
->vdev_ashift
;
1326 mvd
->vdev_logical_ashift
= cvd
->vdev_logical_ashift
;
1327 mvd
->vdev_physical_ashift
= cvd
->vdev_physical_ashift
;
1328 mvd
->vdev_state
= cvd
->vdev_state
;
1329 mvd
->vdev_crtxg
= cvd
->vdev_crtxg
;
1331 vdev_remove_child(pvd
, cvd
);
1332 vdev_add_child(pvd
, mvd
);
1333 cvd
->vdev_id
= mvd
->vdev_children
;
1334 vdev_add_child(mvd
, cvd
);
1335 vdev_top_update(cvd
->vdev_top
, cvd
->vdev_top
);
1337 if (mvd
== mvd
->vdev_top
)
1338 vdev_top_transfer(cvd
, mvd
);
1344 * Remove a 1-way mirror/replacing vdev from the tree.
1347 vdev_remove_parent(vdev_t
*cvd
)
1349 vdev_t
*mvd
= cvd
->vdev_parent
;
1350 vdev_t
*pvd
= mvd
->vdev_parent
;
1352 ASSERT(spa_config_held(cvd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1354 ASSERT(mvd
->vdev_children
== 1);
1355 ASSERT(mvd
->vdev_ops
== &vdev_mirror_ops
||
1356 mvd
->vdev_ops
== &vdev_replacing_ops
||
1357 mvd
->vdev_ops
== &vdev_spare_ops
);
1358 cvd
->vdev_ashift
= mvd
->vdev_ashift
;
1359 cvd
->vdev_logical_ashift
= mvd
->vdev_logical_ashift
;
1360 cvd
->vdev_physical_ashift
= mvd
->vdev_physical_ashift
;
1361 vdev_remove_child(mvd
, cvd
);
1362 vdev_remove_child(pvd
, mvd
);
1365 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1366 * Otherwise, we could have detached an offline device, and when we
1367 * go to import the pool we'll think we have two top-level vdevs,
1368 * instead of a different version of the same top-level vdev.
1370 if (mvd
->vdev_top
== mvd
) {
1371 uint64_t guid_delta
= mvd
->vdev_guid
- cvd
->vdev_guid
;
1372 cvd
->vdev_orig_guid
= cvd
->vdev_guid
;
1373 cvd
->vdev_guid
+= guid_delta
;
1374 cvd
->vdev_guid_sum
+= guid_delta
;
1377 * If pool not set for autoexpand, we need to also preserve
1378 * mvd's asize to prevent automatic expansion of cvd.
1379 * Otherwise if we are adjusting the mirror by attaching and
1380 * detaching children of non-uniform sizes, the mirror could
1381 * autoexpand, unexpectedly requiring larger devices to
1382 * re-establish the mirror.
1384 if (!cvd
->vdev_spa
->spa_autoexpand
)
1385 cvd
->vdev_asize
= mvd
->vdev_asize
;
1387 cvd
->vdev_id
= mvd
->vdev_id
;
1388 vdev_add_child(pvd
, cvd
);
1389 vdev_top_update(cvd
->vdev_top
, cvd
->vdev_top
);
1391 if (cvd
== cvd
->vdev_top
)
1392 vdev_top_transfer(mvd
, cvd
);
1394 ASSERT(mvd
->vdev_children
== 0);
1399 vdev_metaslab_group_create(vdev_t
*vd
)
1401 spa_t
*spa
= vd
->vdev_spa
;
1404 * metaslab_group_create was delayed until allocation bias was available
1406 if (vd
->vdev_mg
== NULL
) {
1407 metaslab_class_t
*mc
;
1409 if (vd
->vdev_islog
&& vd
->vdev_alloc_bias
== VDEV_BIAS_NONE
)
1410 vd
->vdev_alloc_bias
= VDEV_BIAS_LOG
;
1412 ASSERT3U(vd
->vdev_islog
, ==,
1413 (vd
->vdev_alloc_bias
== VDEV_BIAS_LOG
));
1415 switch (vd
->vdev_alloc_bias
) {
1417 mc
= spa_log_class(spa
);
1419 case VDEV_BIAS_SPECIAL
:
1420 mc
= spa_special_class(spa
);
1422 case VDEV_BIAS_DEDUP
:
1423 mc
= spa_dedup_class(spa
);
1426 mc
= spa_normal_class(spa
);
1429 vd
->vdev_mg
= metaslab_group_create(mc
, vd
,
1430 spa
->spa_alloc_count
);
1432 if (!vd
->vdev_islog
) {
1433 vd
->vdev_log_mg
= metaslab_group_create(
1434 spa_embedded_log_class(spa
), vd
, 1);
1438 * The spa ashift min/max only apply for the normal metaslab
1439 * class. Class destination is late binding so ashift boundary
1440 * setting had to wait until now.
1442 if (vd
->vdev_top
== vd
&& vd
->vdev_ashift
!= 0 &&
1443 mc
== spa_normal_class(spa
) && vd
->vdev_aux
== NULL
) {
1444 if (vd
->vdev_ashift
> spa
->spa_max_ashift
)
1445 spa
->spa_max_ashift
= vd
->vdev_ashift
;
1446 if (vd
->vdev_ashift
< spa
->spa_min_ashift
)
1447 spa
->spa_min_ashift
= vd
->vdev_ashift
;
1449 uint64_t min_alloc
= vdev_get_min_alloc(vd
);
1450 if (min_alloc
< spa
->spa_min_alloc
)
1451 spa
->spa_min_alloc
= min_alloc
;
1457 vdev_metaslab_init(vdev_t
*vd
, uint64_t txg
)
1459 spa_t
*spa
= vd
->vdev_spa
;
1460 uint64_t oldc
= vd
->vdev_ms_count
;
1461 uint64_t newc
= vd
->vdev_asize
>> vd
->vdev_ms_shift
;
1464 boolean_t expanding
= (oldc
!= 0);
1466 ASSERT(txg
== 0 || spa_config_held(spa
, SCL_ALLOC
, RW_WRITER
));
1469 * This vdev is not being allocated from yet or is a hole.
1471 if (vd
->vdev_ms_shift
== 0)
1474 ASSERT(!vd
->vdev_ishole
);
1476 ASSERT(oldc
<= newc
);
1478 mspp
= vmem_zalloc(newc
* sizeof (*mspp
), KM_SLEEP
);
1481 memcpy(mspp
, vd
->vdev_ms
, oldc
* sizeof (*mspp
));
1482 vmem_free(vd
->vdev_ms
, oldc
* sizeof (*mspp
));
1486 vd
->vdev_ms_count
= newc
;
1488 for (uint64_t m
= oldc
; m
< newc
; m
++) {
1489 uint64_t object
= 0;
1491 * vdev_ms_array may be 0 if we are creating the "fake"
1492 * metaslabs for an indirect vdev for zdb's leak detection.
1493 * See zdb_leak_init().
1495 if (txg
== 0 && vd
->vdev_ms_array
!= 0) {
1496 error
= dmu_read(spa
->spa_meta_objset
,
1498 m
* sizeof (uint64_t), sizeof (uint64_t), &object
,
1501 vdev_dbgmsg(vd
, "unable to read the metaslab "
1502 "array [error=%d]", error
);
1507 error
= metaslab_init(vd
->vdev_mg
, m
, object
, txg
,
1510 vdev_dbgmsg(vd
, "metaslab_init failed [error=%d]",
1517 * Find the emptiest metaslab on the vdev and mark it for use for
1518 * embedded slog by moving it from the regular to the log metaslab
1521 if (vd
->vdev_mg
->mg_class
== spa_normal_class(spa
) &&
1522 vd
->vdev_ms_count
> zfs_embedded_slog_min_ms
&&
1523 avl_is_empty(&vd
->vdev_log_mg
->mg_metaslab_tree
)) {
1524 uint64_t slog_msid
= 0;
1525 uint64_t smallest
= UINT64_MAX
;
1528 * Note, we only search the new metaslabs, because the old
1529 * (pre-existing) ones may be active (e.g. have non-empty
1530 * range_tree's), and we don't move them to the new
1533 for (uint64_t m
= oldc
; m
< newc
; m
++) {
1535 space_map_allocated(vd
->vdev_ms
[m
]->ms_sm
);
1536 if (alloc
< smallest
) {
1541 metaslab_t
*slog_ms
= vd
->vdev_ms
[slog_msid
];
1543 * The metaslab was marked as dirty at the end of
1544 * metaslab_init(). Remove it from the dirty list so that we
1545 * can uninitialize and reinitialize it to the new class.
1548 (void) txg_list_remove_this(&vd
->vdev_ms_list
,
1551 uint64_t sm_obj
= space_map_object(slog_ms
->ms_sm
);
1552 metaslab_fini(slog_ms
);
1553 VERIFY0(metaslab_init(vd
->vdev_log_mg
, slog_msid
, sm_obj
, txg
,
1554 &vd
->vdev_ms
[slog_msid
]));
1558 spa_config_enter(spa
, SCL_ALLOC
, FTAG
, RW_WRITER
);
1561 * If the vdev is marked as non-allocating then don't
1562 * activate the metaslabs since we want to ensure that
1563 * no allocations are performed on this device.
1565 if (vd
->vdev_noalloc
) {
1566 /* track non-allocating vdev space */
1567 spa
->spa_nonallocating_dspace
+= spa_deflate(spa
) ?
1568 vd
->vdev_stat
.vs_dspace
: vd
->vdev_stat
.vs_space
;
1569 } else if (!expanding
) {
1570 metaslab_group_activate(vd
->vdev_mg
);
1571 if (vd
->vdev_log_mg
!= NULL
)
1572 metaslab_group_activate(vd
->vdev_log_mg
);
1576 spa_config_exit(spa
, SCL_ALLOC
, FTAG
);
1582 vdev_metaslab_fini(vdev_t
*vd
)
1584 if (vd
->vdev_checkpoint_sm
!= NULL
) {
1585 ASSERT(spa_feature_is_active(vd
->vdev_spa
,
1586 SPA_FEATURE_POOL_CHECKPOINT
));
1587 space_map_close(vd
->vdev_checkpoint_sm
);
1589 * Even though we close the space map, we need to set its
1590 * pointer to NULL. The reason is that vdev_metaslab_fini()
1591 * may be called multiple times for certain operations
1592 * (i.e. when destroying a pool) so we need to ensure that
1593 * this clause never executes twice. This logic is similar
1594 * to the one used for the vdev_ms clause below.
1596 vd
->vdev_checkpoint_sm
= NULL
;
1599 if (vd
->vdev_ms
!= NULL
) {
1600 metaslab_group_t
*mg
= vd
->vdev_mg
;
1602 metaslab_group_passivate(mg
);
1603 if (vd
->vdev_log_mg
!= NULL
) {
1604 ASSERT(!vd
->vdev_islog
);
1605 metaslab_group_passivate(vd
->vdev_log_mg
);
1608 uint64_t count
= vd
->vdev_ms_count
;
1609 for (uint64_t m
= 0; m
< count
; m
++) {
1610 metaslab_t
*msp
= vd
->vdev_ms
[m
];
1614 vmem_free(vd
->vdev_ms
, count
* sizeof (metaslab_t
*));
1616 vd
->vdev_ms_count
= 0;
1618 for (int i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
1619 ASSERT0(mg
->mg_histogram
[i
]);
1620 if (vd
->vdev_log_mg
!= NULL
)
1621 ASSERT0(vd
->vdev_log_mg
->mg_histogram
[i
]);
1624 ASSERT0(vd
->vdev_ms_count
);
1625 ASSERT3U(vd
->vdev_pending_fastwrite
, ==, 0);
1628 typedef struct vdev_probe_stats
{
1629 boolean_t vps_readable
;
1630 boolean_t vps_writeable
;
1632 } vdev_probe_stats_t
;
1635 vdev_probe_done(zio_t
*zio
)
1637 spa_t
*spa
= zio
->io_spa
;
1638 vdev_t
*vd
= zio
->io_vd
;
1639 vdev_probe_stats_t
*vps
= zio
->io_private
;
1641 ASSERT(vd
->vdev_probe_zio
!= NULL
);
1643 if (zio
->io_type
== ZIO_TYPE_READ
) {
1644 if (zio
->io_error
== 0)
1645 vps
->vps_readable
= 1;
1646 if (zio
->io_error
== 0 && spa_writeable(spa
)) {
1647 zio_nowait(zio_write_phys(vd
->vdev_probe_zio
, vd
,
1648 zio
->io_offset
, zio
->io_size
, zio
->io_abd
,
1649 ZIO_CHECKSUM_OFF
, vdev_probe_done
, vps
,
1650 ZIO_PRIORITY_SYNC_WRITE
, vps
->vps_flags
, B_TRUE
));
1652 abd_free(zio
->io_abd
);
1654 } else if (zio
->io_type
== ZIO_TYPE_WRITE
) {
1655 if (zio
->io_error
== 0)
1656 vps
->vps_writeable
= 1;
1657 abd_free(zio
->io_abd
);
1658 } else if (zio
->io_type
== ZIO_TYPE_NULL
) {
1662 vd
->vdev_cant_read
|= !vps
->vps_readable
;
1663 vd
->vdev_cant_write
|= !vps
->vps_writeable
;
1665 if (vdev_readable(vd
) &&
1666 (vdev_writeable(vd
) || !spa_writeable(spa
))) {
1669 ASSERT(zio
->io_error
!= 0);
1670 vdev_dbgmsg(vd
, "failed probe");
1671 (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE
,
1672 spa
, vd
, NULL
, NULL
, 0);
1673 zio
->io_error
= SET_ERROR(ENXIO
);
1676 mutex_enter(&vd
->vdev_probe_lock
);
1677 ASSERT(vd
->vdev_probe_zio
== zio
);
1678 vd
->vdev_probe_zio
= NULL
;
1679 mutex_exit(&vd
->vdev_probe_lock
);
1682 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
)
1683 if (!vdev_accessible(vd
, pio
))
1684 pio
->io_error
= SET_ERROR(ENXIO
);
1686 kmem_free(vps
, sizeof (*vps
));
1691 * Determine whether this device is accessible.
1693 * Read and write to several known locations: the pad regions of each
1694 * vdev label but the first, which we leave alone in case it contains
1698 vdev_probe(vdev_t
*vd
, zio_t
*zio
)
1700 spa_t
*spa
= vd
->vdev_spa
;
1701 vdev_probe_stats_t
*vps
= NULL
;
1704 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1707 * Don't probe the probe.
1709 if (zio
&& (zio
->io_flags
& ZIO_FLAG_PROBE
))
1713 * To prevent 'probe storms' when a device fails, we create
1714 * just one probe i/o at a time. All zios that want to probe
1715 * this vdev will become parents of the probe io.
1717 mutex_enter(&vd
->vdev_probe_lock
);
1719 if ((pio
= vd
->vdev_probe_zio
) == NULL
) {
1720 vps
= kmem_zalloc(sizeof (*vps
), KM_SLEEP
);
1722 vps
->vps_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_PROBE
|
1723 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_AGGREGATE
|
1726 if (spa_config_held(spa
, SCL_ZIO
, RW_WRITER
)) {
1728 * vdev_cant_read and vdev_cant_write can only
1729 * transition from TRUE to FALSE when we have the
1730 * SCL_ZIO lock as writer; otherwise they can only
1731 * transition from FALSE to TRUE. This ensures that
1732 * any zio looking at these values can assume that
1733 * failures persist for the life of the I/O. That's
1734 * important because when a device has intermittent
1735 * connectivity problems, we want to ensure that
1736 * they're ascribed to the device (ENXIO) and not
1739 * Since we hold SCL_ZIO as writer here, clear both
1740 * values so the probe can reevaluate from first
1743 vps
->vps_flags
|= ZIO_FLAG_CONFIG_WRITER
;
1744 vd
->vdev_cant_read
= B_FALSE
;
1745 vd
->vdev_cant_write
= B_FALSE
;
1748 vd
->vdev_probe_zio
= pio
= zio_null(NULL
, spa
, vd
,
1749 vdev_probe_done
, vps
,
1750 vps
->vps_flags
| ZIO_FLAG_DONT_PROPAGATE
);
1753 * We can't change the vdev state in this context, so we
1754 * kick off an async task to do it on our behalf.
1757 vd
->vdev_probe_wanted
= B_TRUE
;
1758 spa_async_request(spa
, SPA_ASYNC_PROBE
);
1763 zio_add_child(zio
, pio
);
1765 mutex_exit(&vd
->vdev_probe_lock
);
1768 ASSERT(zio
!= NULL
);
1772 for (int l
= 1; l
< VDEV_LABELS
; l
++) {
1773 zio_nowait(zio_read_phys(pio
, vd
,
1774 vdev_label_offset(vd
->vdev_psize
, l
,
1775 offsetof(vdev_label_t
, vl_be
)), VDEV_PAD_SIZE
,
1776 abd_alloc_for_io(VDEV_PAD_SIZE
, B_TRUE
),
1777 ZIO_CHECKSUM_OFF
, vdev_probe_done
, vps
,
1778 ZIO_PRIORITY_SYNC_READ
, vps
->vps_flags
, B_TRUE
));
1789 vdev_load_child(void *arg
)
1793 vd
->vdev_load_error
= vdev_load(vd
);
1797 vdev_open_child(void *arg
)
1801 vd
->vdev_open_thread
= curthread
;
1802 vd
->vdev_open_error
= vdev_open(vd
);
1803 vd
->vdev_open_thread
= NULL
;
1807 vdev_uses_zvols(vdev_t
*vd
)
1810 if (zvol_is_zvol(vd
->vdev_path
))
1814 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1815 if (vdev_uses_zvols(vd
->vdev_child
[c
]))
1822 * Returns B_TRUE if the passed child should be opened.
1825 vdev_default_open_children_func(vdev_t
*vd
)
1832 * Open the requested child vdevs. If any of the leaf vdevs are using
1833 * a ZFS volume then do the opens in a single thread. This avoids a
1834 * deadlock when the current thread is holding the spa_namespace_lock.
1837 vdev_open_children_impl(vdev_t
*vd
, vdev_open_children_func_t
*open_func
)
1839 int children
= vd
->vdev_children
;
1841 taskq_t
*tq
= taskq_create("vdev_open", children
, minclsyspri
,
1842 children
, children
, TASKQ_PREPOPULATE
);
1843 vd
->vdev_nonrot
= B_TRUE
;
1845 for (int c
= 0; c
< children
; c
++) {
1846 vdev_t
*cvd
= vd
->vdev_child
[c
];
1848 if (open_func(cvd
) == B_FALSE
)
1851 if (tq
== NULL
|| vdev_uses_zvols(vd
)) {
1852 cvd
->vdev_open_error
= vdev_open(cvd
);
1854 VERIFY(taskq_dispatch(tq
, vdev_open_child
,
1855 cvd
, TQ_SLEEP
) != TASKQID_INVALID
);
1858 vd
->vdev_nonrot
&= cvd
->vdev_nonrot
;
1868 * Open all child vdevs.
1871 vdev_open_children(vdev_t
*vd
)
1873 vdev_open_children_impl(vd
, vdev_default_open_children_func
);
1877 * Conditionally open a subset of child vdevs.
1880 vdev_open_children_subset(vdev_t
*vd
, vdev_open_children_func_t
*open_func
)
1882 vdev_open_children_impl(vd
, open_func
);
1886 * Compute the raidz-deflation ratio. Note, we hard-code
1887 * in 128k (1 << 17) because it is the "typical" blocksize.
1888 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1889 * otherwise it would inconsistently account for existing bp's.
1892 vdev_set_deflate_ratio(vdev_t
*vd
)
1894 if (vd
== vd
->vdev_top
&& !vd
->vdev_ishole
&& vd
->vdev_ashift
!= 0) {
1895 vd
->vdev_deflate_ratio
= (1 << 17) /
1896 (vdev_psize_to_asize(vd
, 1 << 17) >> SPA_MINBLOCKSHIFT
);
1901 * Choose the best of two ashifts, preferring one between logical ashift
1902 * (absolute minimum) and administrator defined maximum, otherwise take
1903 * the biggest of the two.
1906 vdev_best_ashift(uint64_t logical
, uint64_t a
, uint64_t b
)
1908 if (a
> logical
&& a
<= zfs_vdev_max_auto_ashift
) {
1909 if (b
<= logical
|| b
> zfs_vdev_max_auto_ashift
)
1913 } else if (b
<= logical
|| b
> zfs_vdev_max_auto_ashift
)
1919 * Maximize performance by inflating the configured ashift for top level
1920 * vdevs to be as close to the physical ashift as possible while maintaining
1921 * administrator defined limits and ensuring it doesn't go below the
1925 vdev_ashift_optimize(vdev_t
*vd
)
1927 ASSERT(vd
== vd
->vdev_top
);
1929 if (vd
->vdev_ashift
< vd
->vdev_physical_ashift
&&
1930 vd
->vdev_physical_ashift
<= zfs_vdev_max_auto_ashift
) {
1931 vd
->vdev_ashift
= MIN(
1932 MAX(zfs_vdev_max_auto_ashift
, vd
->vdev_ashift
),
1933 MAX(zfs_vdev_min_auto_ashift
,
1934 vd
->vdev_physical_ashift
));
1937 * If the logical and physical ashifts are the same, then
1938 * we ensure that the top-level vdev's ashift is not smaller
1939 * than our minimum ashift value. For the unusual case
1940 * where logical ashift > physical ashift, we can't cap
1941 * the calculated ashift based on max ashift as that
1942 * would cause failures.
1943 * We still check if we need to increase it to match
1946 vd
->vdev_ashift
= MAX(zfs_vdev_min_auto_ashift
,
1952 * Prepare a virtual device for access.
1955 vdev_open(vdev_t
*vd
)
1957 spa_t
*spa
= vd
->vdev_spa
;
1960 uint64_t max_osize
= 0;
1961 uint64_t asize
, max_asize
, psize
;
1962 uint64_t logical_ashift
= 0;
1963 uint64_t physical_ashift
= 0;
1965 ASSERT(vd
->vdev_open_thread
== curthread
||
1966 spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
1967 ASSERT(vd
->vdev_state
== VDEV_STATE_CLOSED
||
1968 vd
->vdev_state
== VDEV_STATE_CANT_OPEN
||
1969 vd
->vdev_state
== VDEV_STATE_OFFLINE
);
1971 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NONE
;
1972 vd
->vdev_cant_read
= B_FALSE
;
1973 vd
->vdev_cant_write
= B_FALSE
;
1974 vd
->vdev_min_asize
= vdev_get_min_asize(vd
);
1977 * If this vdev is not removed, check its fault status. If it's
1978 * faulted, bail out of the open.
1980 if (!vd
->vdev_removed
&& vd
->vdev_faulted
) {
1981 ASSERT(vd
->vdev_children
== 0);
1982 ASSERT(vd
->vdev_label_aux
== VDEV_AUX_ERR_EXCEEDED
||
1983 vd
->vdev_label_aux
== VDEV_AUX_EXTERNAL
);
1984 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_FAULTED
,
1985 vd
->vdev_label_aux
);
1986 return (SET_ERROR(ENXIO
));
1987 } else if (vd
->vdev_offline
) {
1988 ASSERT(vd
->vdev_children
== 0);
1989 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_OFFLINE
, VDEV_AUX_NONE
);
1990 return (SET_ERROR(ENXIO
));
1993 error
= vd
->vdev_ops
->vdev_op_open(vd
, &osize
, &max_osize
,
1994 &logical_ashift
, &physical_ashift
);
1996 /* Keep the device in removed state if unplugged */
1997 if (error
== ENOENT
&& vd
->vdev_removed
) {
1998 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_REMOVED
,
2004 * Physical volume size should never be larger than its max size, unless
2005 * the disk has shrunk while we were reading it or the device is buggy
2006 * or damaged: either way it's not safe for use, bail out of the open.
2008 if (osize
> max_osize
) {
2009 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2010 VDEV_AUX_OPEN_FAILED
);
2011 return (SET_ERROR(ENXIO
));
2015 * Reset the vdev_reopening flag so that we actually close
2016 * the vdev on error.
2018 vd
->vdev_reopening
= B_FALSE
;
2019 if (zio_injection_enabled
&& error
== 0)
2020 error
= zio_handle_device_injection(vd
, NULL
, SET_ERROR(ENXIO
));
2023 if (vd
->vdev_removed
&&
2024 vd
->vdev_stat
.vs_aux
!= VDEV_AUX_OPEN_FAILED
)
2025 vd
->vdev_removed
= B_FALSE
;
2027 if (vd
->vdev_stat
.vs_aux
== VDEV_AUX_CHILDREN_OFFLINE
) {
2028 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_OFFLINE
,
2029 vd
->vdev_stat
.vs_aux
);
2031 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2032 vd
->vdev_stat
.vs_aux
);
2037 vd
->vdev_removed
= B_FALSE
;
2040 * Recheck the faulted flag now that we have confirmed that
2041 * the vdev is accessible. If we're faulted, bail.
2043 if (vd
->vdev_faulted
) {
2044 ASSERT(vd
->vdev_children
== 0);
2045 ASSERT(vd
->vdev_label_aux
== VDEV_AUX_ERR_EXCEEDED
||
2046 vd
->vdev_label_aux
== VDEV_AUX_EXTERNAL
);
2047 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_FAULTED
,
2048 vd
->vdev_label_aux
);
2049 return (SET_ERROR(ENXIO
));
2052 if (vd
->vdev_degraded
) {
2053 ASSERT(vd
->vdev_children
== 0);
2054 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_DEGRADED
,
2055 VDEV_AUX_ERR_EXCEEDED
);
2057 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_HEALTHY
, 0);
2061 * For hole or missing vdevs we just return success.
2063 if (vd
->vdev_ishole
|| vd
->vdev_ops
== &vdev_missing_ops
)
2066 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
2067 if (vd
->vdev_child
[c
]->vdev_state
!= VDEV_STATE_HEALTHY
) {
2068 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_DEGRADED
,
2074 osize
= P2ALIGN(osize
, (uint64_t)sizeof (vdev_label_t
));
2075 max_osize
= P2ALIGN(max_osize
, (uint64_t)sizeof (vdev_label_t
));
2077 if (vd
->vdev_children
== 0) {
2078 if (osize
< SPA_MINDEVSIZE
) {
2079 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2080 VDEV_AUX_TOO_SMALL
);
2081 return (SET_ERROR(EOVERFLOW
));
2084 asize
= osize
- (VDEV_LABEL_START_SIZE
+ VDEV_LABEL_END_SIZE
);
2085 max_asize
= max_osize
- (VDEV_LABEL_START_SIZE
+
2086 VDEV_LABEL_END_SIZE
);
2088 if (vd
->vdev_parent
!= NULL
&& osize
< SPA_MINDEVSIZE
-
2089 (VDEV_LABEL_START_SIZE
+ VDEV_LABEL_END_SIZE
)) {
2090 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2091 VDEV_AUX_TOO_SMALL
);
2092 return (SET_ERROR(EOVERFLOW
));
2096 max_asize
= max_osize
;
2100 * If the vdev was expanded, record this so that we can re-create the
2101 * uberblock rings in labels {2,3}, during the next sync.
2103 if ((psize
> vd
->vdev_psize
) && (vd
->vdev_psize
!= 0))
2104 vd
->vdev_copy_uberblocks
= B_TRUE
;
2106 vd
->vdev_psize
= psize
;
2109 * Make sure the allocatable size hasn't shrunk too much.
2111 if (asize
< vd
->vdev_min_asize
) {
2112 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2113 VDEV_AUX_BAD_LABEL
);
2114 return (SET_ERROR(EINVAL
));
2118 * We can always set the logical/physical ashift members since
2119 * their values are only used to calculate the vdev_ashift when
2120 * the device is first added to the config. These values should
2121 * not be used for anything else since they may change whenever
2122 * the device is reopened and we don't store them in the label.
2124 vd
->vdev_physical_ashift
=
2125 MAX(physical_ashift
, vd
->vdev_physical_ashift
);
2126 vd
->vdev_logical_ashift
= MAX(logical_ashift
,
2127 vd
->vdev_logical_ashift
);
2129 if (vd
->vdev_asize
== 0) {
2131 * This is the first-ever open, so use the computed values.
2132 * For compatibility, a different ashift can be requested.
2134 vd
->vdev_asize
= asize
;
2135 vd
->vdev_max_asize
= max_asize
;
2138 * If the vdev_ashift was not overridden at creation time,
2139 * then set it the logical ashift and optimize the ashift.
2141 if (vd
->vdev_ashift
== 0) {
2142 vd
->vdev_ashift
= vd
->vdev_logical_ashift
;
2144 if (vd
->vdev_logical_ashift
> ASHIFT_MAX
) {
2145 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2146 VDEV_AUX_ASHIFT_TOO_BIG
);
2147 return (SET_ERROR(EDOM
));
2150 if (vd
->vdev_top
== vd
) {
2151 vdev_ashift_optimize(vd
);
2154 if (vd
->vdev_ashift
!= 0 && (vd
->vdev_ashift
< ASHIFT_MIN
||
2155 vd
->vdev_ashift
> ASHIFT_MAX
)) {
2156 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2157 VDEV_AUX_BAD_ASHIFT
);
2158 return (SET_ERROR(EDOM
));
2162 * Make sure the alignment required hasn't increased.
2164 if (vd
->vdev_ashift
> vd
->vdev_top
->vdev_ashift
&&
2165 vd
->vdev_ops
->vdev_op_leaf
) {
2166 (void) zfs_ereport_post(
2167 FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT
,
2168 spa
, vd
, NULL
, NULL
, 0);
2169 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
2170 VDEV_AUX_BAD_LABEL
);
2171 return (SET_ERROR(EDOM
));
2173 vd
->vdev_max_asize
= max_asize
;
2177 * If all children are healthy we update asize if either:
2178 * The asize has increased, due to a device expansion caused by dynamic
2179 * LUN growth or vdev replacement, and automatic expansion is enabled;
2180 * making the additional space available.
2182 * The asize has decreased, due to a device shrink usually caused by a
2183 * vdev replace with a smaller device. This ensures that calculations
2184 * based of max_asize and asize e.g. esize are always valid. It's safe
2185 * to do this as we've already validated that asize is greater than
2188 if (vd
->vdev_state
== VDEV_STATE_HEALTHY
&&
2189 ((asize
> vd
->vdev_asize
&&
2190 (vd
->vdev_expanding
|| spa
->spa_autoexpand
)) ||
2191 (asize
< vd
->vdev_asize
)))
2192 vd
->vdev_asize
= asize
;
2194 vdev_set_min_asize(vd
);
2197 * Ensure we can issue some IO before declaring the
2198 * vdev open for business.
2200 if (vd
->vdev_ops
->vdev_op_leaf
&&
2201 (error
= zio_wait(vdev_probe(vd
, NULL
))) != 0) {
2202 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_FAULTED
,
2203 VDEV_AUX_ERR_EXCEEDED
);
2208 * Track the minimum allocation size.
2210 if (vd
->vdev_top
== vd
&& vd
->vdev_ashift
!= 0 &&
2211 vd
->vdev_islog
== 0 && vd
->vdev_aux
== NULL
) {
2212 uint64_t min_alloc
= vdev_get_min_alloc(vd
);
2213 if (min_alloc
< spa
->spa_min_alloc
)
2214 spa
->spa_min_alloc
= min_alloc
;
2218 * If this is a leaf vdev, assess whether a resilver is needed.
2219 * But don't do this if we are doing a reopen for a scrub, since
2220 * this would just restart the scrub we are already doing.
2222 if (vd
->vdev_ops
->vdev_op_leaf
&& !spa
->spa_scrub_reopen
)
2223 dsl_scan_assess_vdev(spa
->spa_dsl_pool
, vd
);
2229 vdev_validate_child(void *arg
)
2233 vd
->vdev_validate_thread
= curthread
;
2234 vd
->vdev_validate_error
= vdev_validate(vd
);
2235 vd
->vdev_validate_thread
= NULL
;
2239 * Called once the vdevs are all opened, this routine validates the label
2240 * contents. This needs to be done before vdev_load() so that we don't
2241 * inadvertently do repair I/Os to the wrong device.
2243 * This function will only return failure if one of the vdevs indicates that it
2244 * has since been destroyed or exported. This is only possible if
2245 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
2246 * will be updated but the function will return 0.
2249 vdev_validate(vdev_t
*vd
)
2251 spa_t
*spa
= vd
->vdev_spa
;
2254 uint64_t guid
= 0, aux_guid
= 0, top_guid
;
2258 int children
= vd
->vdev_children
;
2260 if (vdev_validate_skip
)
2264 tq
= taskq_create("vdev_validate", children
, minclsyspri
,
2265 children
, children
, TASKQ_PREPOPULATE
);
2268 for (uint64_t c
= 0; c
< children
; c
++) {
2269 vdev_t
*cvd
= vd
->vdev_child
[c
];
2271 if (tq
== NULL
|| vdev_uses_zvols(cvd
)) {
2272 vdev_validate_child(cvd
);
2274 VERIFY(taskq_dispatch(tq
, vdev_validate_child
, cvd
,
2275 TQ_SLEEP
) != TASKQID_INVALID
);
2282 for (int c
= 0; c
< children
; c
++) {
2283 int error
= vd
->vdev_child
[c
]->vdev_validate_error
;
2286 return (SET_ERROR(EBADF
));
2291 * If the device has already failed, or was marked offline, don't do
2292 * any further validation. Otherwise, label I/O will fail and we will
2293 * overwrite the previous state.
2295 if (!vd
->vdev_ops
->vdev_op_leaf
|| !vdev_readable(vd
))
2299 * If we are performing an extreme rewind, we allow for a label that
2300 * was modified at a point after the current txg.
2301 * If config lock is not held do not check for the txg. spa_sync could
2302 * be updating the vdev's label before updating spa_last_synced_txg.
2304 if (spa
->spa_extreme_rewind
|| spa_last_synced_txg(spa
) == 0 ||
2305 spa_config_held(spa
, SCL_CONFIG
, RW_WRITER
) != SCL_CONFIG
)
2308 txg
= spa_last_synced_txg(spa
);
2310 if ((label
= vdev_label_read_config(vd
, txg
)) == NULL
) {
2311 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2312 VDEV_AUX_BAD_LABEL
);
2313 vdev_dbgmsg(vd
, "vdev_validate: failed reading config for "
2314 "txg %llu", (u_longlong_t
)txg
);
2319 * Determine if this vdev has been split off into another
2320 * pool. If so, then refuse to open it.
2322 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_SPLIT_GUID
,
2323 &aux_guid
) == 0 && aux_guid
== spa_guid(spa
)) {
2324 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2325 VDEV_AUX_SPLIT_POOL
);
2327 vdev_dbgmsg(vd
, "vdev_validate: vdev split into other pool");
2331 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_GUID
, &guid
) != 0) {
2332 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2333 VDEV_AUX_CORRUPT_DATA
);
2335 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2336 ZPOOL_CONFIG_POOL_GUID
);
2341 * If config is not trusted then ignore the spa guid check. This is
2342 * necessary because if the machine crashed during a re-guid the new
2343 * guid might have been written to all of the vdev labels, but not the
2344 * cached config. The check will be performed again once we have the
2345 * trusted config from the MOS.
2347 if (spa
->spa_trust_config
&& guid
!= spa_guid(spa
)) {
2348 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2349 VDEV_AUX_CORRUPT_DATA
);
2351 vdev_dbgmsg(vd
, "vdev_validate: vdev label pool_guid doesn't "
2352 "match config (%llu != %llu)", (u_longlong_t
)guid
,
2353 (u_longlong_t
)spa_guid(spa
));
2357 if (nvlist_lookup_nvlist(label
, ZPOOL_CONFIG_VDEV_TREE
, &nvl
)
2358 != 0 || nvlist_lookup_uint64(nvl
, ZPOOL_CONFIG_ORIG_GUID
,
2362 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
, &guid
) != 0) {
2363 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2364 VDEV_AUX_CORRUPT_DATA
);
2366 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2371 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_TOP_GUID
, &top_guid
)
2373 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2374 VDEV_AUX_CORRUPT_DATA
);
2376 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2377 ZPOOL_CONFIG_TOP_GUID
);
2382 * If this vdev just became a top-level vdev because its sibling was
2383 * detached, it will have adopted the parent's vdev guid -- but the
2384 * label may or may not be on disk yet. Fortunately, either version
2385 * of the label will have the same top guid, so if we're a top-level
2386 * vdev, we can safely compare to that instead.
2387 * However, if the config comes from a cachefile that failed to update
2388 * after the detach, a top-level vdev will appear as a non top-level
2389 * vdev in the config. Also relax the constraints if we perform an
2392 * If we split this vdev off instead, then we also check the
2393 * original pool's guid. We don't want to consider the vdev
2394 * corrupt if it is partway through a split operation.
2396 if (vd
->vdev_guid
!= guid
&& vd
->vdev_guid
!= aux_guid
) {
2397 boolean_t mismatch
= B_FALSE
;
2398 if (spa
->spa_trust_config
&& !spa
->spa_extreme_rewind
) {
2399 if (vd
!= vd
->vdev_top
|| vd
->vdev_guid
!= top_guid
)
2402 if (vd
->vdev_guid
!= top_guid
&&
2403 vd
->vdev_top
->vdev_guid
!= guid
)
2408 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2409 VDEV_AUX_CORRUPT_DATA
);
2411 vdev_dbgmsg(vd
, "vdev_validate: config guid "
2412 "doesn't match label guid");
2413 vdev_dbgmsg(vd
, "CONFIG: guid %llu, top_guid %llu",
2414 (u_longlong_t
)vd
->vdev_guid
,
2415 (u_longlong_t
)vd
->vdev_top
->vdev_guid
);
2416 vdev_dbgmsg(vd
, "LABEL: guid %llu, top_guid %llu, "
2417 "aux_guid %llu", (u_longlong_t
)guid
,
2418 (u_longlong_t
)top_guid
, (u_longlong_t
)aux_guid
);
2423 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
2425 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
2426 VDEV_AUX_CORRUPT_DATA
);
2428 vdev_dbgmsg(vd
, "vdev_validate: '%s' missing from label",
2429 ZPOOL_CONFIG_POOL_STATE
);
2436 * If this is a verbatim import, no need to check the
2437 * state of the pool.
2439 if (!(spa
->spa_import_flags
& ZFS_IMPORT_VERBATIM
) &&
2440 spa_load_state(spa
) == SPA_LOAD_OPEN
&&
2441 state
!= POOL_STATE_ACTIVE
) {
2442 vdev_dbgmsg(vd
, "vdev_validate: invalid pool state (%llu) "
2443 "for spa %s", (u_longlong_t
)state
, spa
->spa_name
);
2444 return (SET_ERROR(EBADF
));
2448 * If we were able to open and validate a vdev that was
2449 * previously marked permanently unavailable, clear that state
2452 if (vd
->vdev_not_present
)
2453 vd
->vdev_not_present
= 0;
2459 vdev_copy_path_impl(vdev_t
*svd
, vdev_t
*dvd
)
2462 if (svd
->vdev_path
!= NULL
&& dvd
->vdev_path
!= NULL
) {
2463 if (strcmp(svd
->vdev_path
, dvd
->vdev_path
) != 0) {
2464 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2465 "from '%s' to '%s'", (u_longlong_t
)dvd
->vdev_guid
,
2466 dvd
->vdev_path
, svd
->vdev_path
);
2467 spa_strfree(dvd
->vdev_path
);
2468 dvd
->vdev_path
= spa_strdup(svd
->vdev_path
);
2470 } else if (svd
->vdev_path
!= NULL
) {
2471 dvd
->vdev_path
= spa_strdup(svd
->vdev_path
);
2472 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2473 (u_longlong_t
)dvd
->vdev_guid
, dvd
->vdev_path
);
2477 * Our enclosure sysfs path may have changed between imports
2479 old
= dvd
->vdev_enc_sysfs_path
;
2480 new = svd
->vdev_enc_sysfs_path
;
2481 if ((old
!= NULL
&& new == NULL
) ||
2482 (old
== NULL
&& new != NULL
) ||
2483 ((old
!= NULL
&& new != NULL
) && strcmp(new, old
) != 0)) {
2484 zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path "
2485 "changed from '%s' to '%s'", (u_longlong_t
)dvd
->vdev_guid
,
2488 if (dvd
->vdev_enc_sysfs_path
)
2489 spa_strfree(dvd
->vdev_enc_sysfs_path
);
2491 if (svd
->vdev_enc_sysfs_path
) {
2492 dvd
->vdev_enc_sysfs_path
= spa_strdup(
2493 svd
->vdev_enc_sysfs_path
);
2495 dvd
->vdev_enc_sysfs_path
= NULL
;
2501 * Recursively copy vdev paths from one vdev to another. Source and destination
2502 * vdev trees must have same geometry otherwise return error. Intended to copy
2503 * paths from userland config into MOS config.
2506 vdev_copy_path_strict(vdev_t
*svd
, vdev_t
*dvd
)
2508 if ((svd
->vdev_ops
== &vdev_missing_ops
) ||
2509 (svd
->vdev_ishole
&& dvd
->vdev_ishole
) ||
2510 (dvd
->vdev_ops
== &vdev_indirect_ops
))
2513 if (svd
->vdev_ops
!= dvd
->vdev_ops
) {
2514 vdev_dbgmsg(svd
, "vdev_copy_path: vdev type mismatch: %s != %s",
2515 svd
->vdev_ops
->vdev_op_type
, dvd
->vdev_ops
->vdev_op_type
);
2516 return (SET_ERROR(EINVAL
));
2519 if (svd
->vdev_guid
!= dvd
->vdev_guid
) {
2520 vdev_dbgmsg(svd
, "vdev_copy_path: guids mismatch (%llu != "
2521 "%llu)", (u_longlong_t
)svd
->vdev_guid
,
2522 (u_longlong_t
)dvd
->vdev_guid
);
2523 return (SET_ERROR(EINVAL
));
2526 if (svd
->vdev_children
!= dvd
->vdev_children
) {
2527 vdev_dbgmsg(svd
, "vdev_copy_path: children count mismatch: "
2528 "%llu != %llu", (u_longlong_t
)svd
->vdev_children
,
2529 (u_longlong_t
)dvd
->vdev_children
);
2530 return (SET_ERROR(EINVAL
));
2533 for (uint64_t i
= 0; i
< svd
->vdev_children
; i
++) {
2534 int error
= vdev_copy_path_strict(svd
->vdev_child
[i
],
2535 dvd
->vdev_child
[i
]);
2540 if (svd
->vdev_ops
->vdev_op_leaf
)
2541 vdev_copy_path_impl(svd
, dvd
);
2547 vdev_copy_path_search(vdev_t
*stvd
, vdev_t
*dvd
)
2549 ASSERT(stvd
->vdev_top
== stvd
);
2550 ASSERT3U(stvd
->vdev_id
, ==, dvd
->vdev_top
->vdev_id
);
2552 for (uint64_t i
= 0; i
< dvd
->vdev_children
; i
++) {
2553 vdev_copy_path_search(stvd
, dvd
->vdev_child
[i
]);
2556 if (!dvd
->vdev_ops
->vdev_op_leaf
|| !vdev_is_concrete(dvd
))
2560 * The idea here is that while a vdev can shift positions within
2561 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2562 * step outside of it.
2564 vdev_t
*vd
= vdev_lookup_by_guid(stvd
, dvd
->vdev_guid
);
2566 if (vd
== NULL
|| vd
->vdev_ops
!= dvd
->vdev_ops
)
2569 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
2571 vdev_copy_path_impl(vd
, dvd
);
2575 * Recursively copy vdev paths from one root vdev to another. Source and
2576 * destination vdev trees may differ in geometry. For each destination leaf
2577 * vdev, search a vdev with the same guid and top vdev id in the source.
2578 * Intended to copy paths from userland config into MOS config.
2581 vdev_copy_path_relaxed(vdev_t
*srvd
, vdev_t
*drvd
)
2583 uint64_t children
= MIN(srvd
->vdev_children
, drvd
->vdev_children
);
2584 ASSERT(srvd
->vdev_ops
== &vdev_root_ops
);
2585 ASSERT(drvd
->vdev_ops
== &vdev_root_ops
);
2587 for (uint64_t i
= 0; i
< children
; i
++) {
2588 vdev_copy_path_search(srvd
->vdev_child
[i
],
2589 drvd
->vdev_child
[i
]);
2594 * Close a virtual device.
2597 vdev_close(vdev_t
*vd
)
2599 vdev_t
*pvd
= vd
->vdev_parent
;
2600 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
2603 ASSERT(vd
->vdev_open_thread
== curthread
||
2604 spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
2607 * If our parent is reopening, then we are as well, unless we are
2610 if (pvd
!= NULL
&& pvd
->vdev_reopening
)
2611 vd
->vdev_reopening
= (pvd
->vdev_reopening
&& !vd
->vdev_offline
);
2613 vd
->vdev_ops
->vdev_op_close(vd
);
2615 vdev_cache_purge(vd
);
2618 * We record the previous state before we close it, so that if we are
2619 * doing a reopen(), we don't generate FMA ereports if we notice that
2620 * it's still faulted.
2622 vd
->vdev_prevstate
= vd
->vdev_state
;
2624 if (vd
->vdev_offline
)
2625 vd
->vdev_state
= VDEV_STATE_OFFLINE
;
2627 vd
->vdev_state
= VDEV_STATE_CLOSED
;
2628 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NONE
;
2632 vdev_hold(vdev_t
*vd
)
2634 spa_t
*spa
= vd
->vdev_spa
;
2636 ASSERT(spa_is_root(spa
));
2637 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
2640 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2641 vdev_hold(vd
->vdev_child
[c
]);
2643 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_ops
->vdev_op_hold
!= NULL
)
2644 vd
->vdev_ops
->vdev_op_hold(vd
);
2648 vdev_rele(vdev_t
*vd
)
2650 ASSERT(spa_is_root(vd
->vdev_spa
));
2651 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2652 vdev_rele(vd
->vdev_child
[c
]);
2654 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_ops
->vdev_op_rele
!= NULL
)
2655 vd
->vdev_ops
->vdev_op_rele(vd
);
2659 * Reopen all interior vdevs and any unopened leaves. We don't actually
2660 * reopen leaf vdevs which had previously been opened as they might deadlock
2661 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2662 * If the leaf has never been opened then open it, as usual.
2665 vdev_reopen(vdev_t
*vd
)
2667 spa_t
*spa
= vd
->vdev_spa
;
2669 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
2671 /* set the reopening flag unless we're taking the vdev offline */
2672 vd
->vdev_reopening
= !vd
->vdev_offline
;
2674 (void) vdev_open(vd
);
2677 * Call vdev_validate() here to make sure we have the same device.
2678 * Otherwise, a device with an invalid label could be successfully
2679 * opened in response to vdev_reopen().
2682 (void) vdev_validate_aux(vd
);
2683 if (vdev_readable(vd
) && vdev_writeable(vd
) &&
2684 vd
->vdev_aux
== &spa
->spa_l2cache
) {
2686 * In case the vdev is present we should evict all ARC
2687 * buffers and pointers to log blocks and reclaim their
2688 * space before restoring its contents to L2ARC.
2690 if (l2arc_vdev_present(vd
)) {
2691 l2arc_rebuild_vdev(vd
, B_TRUE
);
2693 l2arc_add_vdev(spa
, vd
);
2695 spa_async_request(spa
, SPA_ASYNC_L2CACHE_REBUILD
);
2696 spa_async_request(spa
, SPA_ASYNC_L2CACHE_TRIM
);
2699 (void) vdev_validate(vd
);
2703 * Reassess parent vdev's health.
2705 vdev_propagate_state(vd
);
2709 vdev_create(vdev_t
*vd
, uint64_t txg
, boolean_t isreplacing
)
2714 * Normally, partial opens (e.g. of a mirror) are allowed.
2715 * For a create, however, we want to fail the request if
2716 * there are any components we can't open.
2718 error
= vdev_open(vd
);
2720 if (error
|| vd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
2722 return (error
? error
: SET_ERROR(ENXIO
));
2726 * Recursively load DTLs and initialize all labels.
2728 if ((error
= vdev_dtl_load(vd
)) != 0 ||
2729 (error
= vdev_label_init(vd
, txg
, isreplacing
?
2730 VDEV_LABEL_REPLACE
: VDEV_LABEL_CREATE
)) != 0) {
2739 vdev_metaslab_set_size(vdev_t
*vd
)
2741 uint64_t asize
= vd
->vdev_asize
;
2742 uint64_t ms_count
= asize
>> zfs_vdev_default_ms_shift
;
2746 * There are two dimensions to the metaslab sizing calculation:
2747 * the size of the metaslab and the count of metaslabs per vdev.
2749 * The default values used below are a good balance between memory
2750 * usage (larger metaslab size means more memory needed for loaded
2751 * metaslabs; more metaslabs means more memory needed for the
2752 * metaslab_t structs), metaslab load time (larger metaslabs take
2753 * longer to load), and metaslab sync time (more metaslabs means
2754 * more time spent syncing all of them).
2756 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2757 * The range of the dimensions are as follows:
2759 * 2^29 <= ms_size <= 2^34
2760 * 16 <= ms_count <= 131,072
2762 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2763 * at least 512MB (2^29) to minimize fragmentation effects when
2764 * testing with smaller devices. However, the count constraint
2765 * of at least 16 metaslabs will override this minimum size goal.
2767 * On the upper end of vdev sizes, we aim for a maximum metaslab
2768 * size of 16GB. However, we will cap the total count to 2^17
2769 * metaslabs to keep our memory footprint in check and let the
2770 * metaslab size grow from there if that limit is hit.
2772 * The net effect of applying above constrains is summarized below.
2774 * vdev size metaslab count
2775 * --------------|-----------------
2777 * 8GB - 100GB one per 512MB
2779 * 3TB - 2PB one per 16GB
2781 * --------------------------------
2783 * Finally, note that all of the above calculate the initial
2784 * number of metaslabs. Expanding a top-level vdev will result
2785 * in additional metaslabs being allocated making it possible
2786 * to exceed the zfs_vdev_ms_count_limit.
2789 if (ms_count
< zfs_vdev_min_ms_count
)
2790 ms_shift
= highbit64(asize
/ zfs_vdev_min_ms_count
);
2791 else if (ms_count
> zfs_vdev_default_ms_count
)
2792 ms_shift
= highbit64(asize
/ zfs_vdev_default_ms_count
);
2794 ms_shift
= zfs_vdev_default_ms_shift
;
2796 if (ms_shift
< SPA_MAXBLOCKSHIFT
) {
2797 ms_shift
= SPA_MAXBLOCKSHIFT
;
2798 } else if (ms_shift
> zfs_vdev_max_ms_shift
) {
2799 ms_shift
= zfs_vdev_max_ms_shift
;
2800 /* cap the total count to constrain memory footprint */
2801 if ((asize
>> ms_shift
) > zfs_vdev_ms_count_limit
)
2802 ms_shift
= highbit64(asize
/ zfs_vdev_ms_count_limit
);
2805 vd
->vdev_ms_shift
= ms_shift
;
2806 ASSERT3U(vd
->vdev_ms_shift
, >=, SPA_MAXBLOCKSHIFT
);
2810 vdev_dirty(vdev_t
*vd
, int flags
, void *arg
, uint64_t txg
)
2812 ASSERT(vd
== vd
->vdev_top
);
2813 /* indirect vdevs don't have metaslabs or dtls */
2814 ASSERT(vdev_is_concrete(vd
) || flags
== 0);
2815 ASSERT(ISP2(flags
));
2816 ASSERT(spa_writeable(vd
->vdev_spa
));
2818 if (flags
& VDD_METASLAB
)
2819 (void) txg_list_add(&vd
->vdev_ms_list
, arg
, txg
);
2821 if (flags
& VDD_DTL
)
2822 (void) txg_list_add(&vd
->vdev_dtl_list
, arg
, txg
);
2824 (void) txg_list_add(&vd
->vdev_spa
->spa_vdev_txg_list
, vd
, txg
);
2828 vdev_dirty_leaves(vdev_t
*vd
, int flags
, uint64_t txg
)
2830 for (int c
= 0; c
< vd
->vdev_children
; c
++)
2831 vdev_dirty_leaves(vd
->vdev_child
[c
], flags
, txg
);
2833 if (vd
->vdev_ops
->vdev_op_leaf
)
2834 vdev_dirty(vd
->vdev_top
, flags
, vd
, txg
);
2840 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2841 * the vdev has less than perfect replication. There are four kinds of DTL:
2843 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2845 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2847 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2848 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2849 * txgs that was scrubbed.
2851 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2852 * persistent errors or just some device being offline.
2853 * Unlike the other three, the DTL_OUTAGE map is not generally
2854 * maintained; it's only computed when needed, typically to
2855 * determine whether a device can be detached.
2857 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2858 * either has the data or it doesn't.
2860 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2861 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2862 * if any child is less than fully replicated, then so is its parent.
2863 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2864 * comprising only those txgs which appear in 'maxfaults' or more children;
2865 * those are the txgs we don't have enough replication to read. For example,
2866 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2867 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2868 * two child DTL_MISSING maps.
2870 * It should be clear from the above that to compute the DTLs and outage maps
2871 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2872 * Therefore, that is all we keep on disk. When loading the pool, or after
2873 * a configuration change, we generate all other DTLs from first principles.
2876 vdev_dtl_dirty(vdev_t
*vd
, vdev_dtl_type_t t
, uint64_t txg
, uint64_t size
)
2878 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2880 ASSERT(t
< DTL_TYPES
);
2881 ASSERT(vd
!= vd
->vdev_spa
->spa_root_vdev
);
2882 ASSERT(spa_writeable(vd
->vdev_spa
));
2884 mutex_enter(&vd
->vdev_dtl_lock
);
2885 if (!range_tree_contains(rt
, txg
, size
))
2886 range_tree_add(rt
, txg
, size
);
2887 mutex_exit(&vd
->vdev_dtl_lock
);
2891 vdev_dtl_contains(vdev_t
*vd
, vdev_dtl_type_t t
, uint64_t txg
, uint64_t size
)
2893 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2894 boolean_t dirty
= B_FALSE
;
2896 ASSERT(t
< DTL_TYPES
);
2897 ASSERT(vd
!= vd
->vdev_spa
->spa_root_vdev
);
2900 * While we are loading the pool, the DTLs have not been loaded yet.
2901 * This isn't a problem but it can result in devices being tried
2902 * which are known to not have the data. In which case, the import
2903 * is relying on the checksum to ensure that we get the right data.
2904 * Note that while importing we are only reading the MOS, which is
2905 * always checksummed.
2907 mutex_enter(&vd
->vdev_dtl_lock
);
2908 if (!range_tree_is_empty(rt
))
2909 dirty
= range_tree_contains(rt
, txg
, size
);
2910 mutex_exit(&vd
->vdev_dtl_lock
);
2916 vdev_dtl_empty(vdev_t
*vd
, vdev_dtl_type_t t
)
2918 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2921 mutex_enter(&vd
->vdev_dtl_lock
);
2922 empty
= range_tree_is_empty(rt
);
2923 mutex_exit(&vd
->vdev_dtl_lock
);
2929 * Check if the txg falls within the range which must be
2930 * resilvered. DVAs outside this range can always be skipped.
2933 vdev_default_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
2934 uint64_t phys_birth
)
2936 (void) dva
, (void) psize
;
2938 /* Set by sequential resilver. */
2939 if (phys_birth
== TXG_UNKNOWN
)
2942 return (vdev_dtl_contains(vd
, DTL_PARTIAL
, phys_birth
, 1));
2946 * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2949 vdev_dtl_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
2950 uint64_t phys_birth
)
2952 ASSERT(vd
!= vd
->vdev_spa
->spa_root_vdev
);
2954 if (vd
->vdev_ops
->vdev_op_need_resilver
== NULL
||
2955 vd
->vdev_ops
->vdev_op_leaf
)
2958 return (vd
->vdev_ops
->vdev_op_need_resilver(vd
, dva
, psize
,
2963 * Returns the lowest txg in the DTL range.
2966 vdev_dtl_min(vdev_t
*vd
)
2968 ASSERT(MUTEX_HELD(&vd
->vdev_dtl_lock
));
2969 ASSERT3U(range_tree_space(vd
->vdev_dtl
[DTL_MISSING
]), !=, 0);
2970 ASSERT0(vd
->vdev_children
);
2972 return (range_tree_min(vd
->vdev_dtl
[DTL_MISSING
]) - 1);
2976 * Returns the highest txg in the DTL.
2979 vdev_dtl_max(vdev_t
*vd
)
2981 ASSERT(MUTEX_HELD(&vd
->vdev_dtl_lock
));
2982 ASSERT3U(range_tree_space(vd
->vdev_dtl
[DTL_MISSING
]), !=, 0);
2983 ASSERT0(vd
->vdev_children
);
2985 return (range_tree_max(vd
->vdev_dtl
[DTL_MISSING
]));
2989 * Determine if a resilvering vdev should remove any DTL entries from
2990 * its range. If the vdev was resilvering for the entire duration of the
2991 * scan then it should excise that range from its DTLs. Otherwise, this
2992 * vdev is considered partially resilvered and should leave its DTL
2993 * entries intact. The comment in vdev_dtl_reassess() describes how we
2997 vdev_dtl_should_excise(vdev_t
*vd
, boolean_t rebuild_done
)
2999 ASSERT0(vd
->vdev_children
);
3001 if (vd
->vdev_state
< VDEV_STATE_DEGRADED
)
3004 if (vd
->vdev_resilver_deferred
)
3007 if (range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
]))
3011 vdev_rebuild_t
*vr
= &vd
->vdev_top
->vdev_rebuild_config
;
3012 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
3014 /* Rebuild not initiated by attach */
3015 if (vd
->vdev_rebuild_txg
== 0)
3019 * When a rebuild completes without error then all missing data
3020 * up to the rebuild max txg has been reconstructed and the DTL
3021 * is eligible for excision.
3023 if (vrp
->vrp_rebuild_state
== VDEV_REBUILD_COMPLETE
&&
3024 vdev_dtl_max(vd
) <= vrp
->vrp_max_txg
) {
3025 ASSERT3U(vrp
->vrp_min_txg
, <=, vdev_dtl_min(vd
));
3026 ASSERT3U(vrp
->vrp_min_txg
, <, vd
->vdev_rebuild_txg
);
3027 ASSERT3U(vd
->vdev_rebuild_txg
, <=, vrp
->vrp_max_txg
);
3031 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
3032 dsl_scan_phys_t
*scnp __maybe_unused
= &scn
->scn_phys
;
3034 /* Resilver not initiated by attach */
3035 if (vd
->vdev_resilver_txg
== 0)
3039 * When a resilver is initiated the scan will assign the
3040 * scn_max_txg value to the highest txg value that exists
3041 * in all DTLs. If this device's max DTL is not part of this
3042 * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
3043 * then it is not eligible for excision.
3045 if (vdev_dtl_max(vd
) <= scn
->scn_phys
.scn_max_txg
) {
3046 ASSERT3U(scnp
->scn_min_txg
, <=, vdev_dtl_min(vd
));
3047 ASSERT3U(scnp
->scn_min_txg
, <, vd
->vdev_resilver_txg
);
3048 ASSERT3U(vd
->vdev_resilver_txg
, <=, scnp
->scn_max_txg
);
3057 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
3058 * write operations will be issued to the pool.
3061 vdev_dtl_reassess(vdev_t
*vd
, uint64_t txg
, uint64_t scrub_txg
,
3062 boolean_t scrub_done
, boolean_t rebuild_done
)
3064 spa_t
*spa
= vd
->vdev_spa
;
3068 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
3070 for (int c
= 0; c
< vd
->vdev_children
; c
++)
3071 vdev_dtl_reassess(vd
->vdev_child
[c
], txg
,
3072 scrub_txg
, scrub_done
, rebuild_done
);
3074 if (vd
== spa
->spa_root_vdev
|| !vdev_is_concrete(vd
) || vd
->vdev_aux
)
3077 if (vd
->vdev_ops
->vdev_op_leaf
) {
3078 dsl_scan_t
*scn
= spa
->spa_dsl_pool
->dp_scan
;
3079 vdev_rebuild_t
*vr
= &vd
->vdev_top
->vdev_rebuild_config
;
3080 boolean_t check_excise
= B_FALSE
;
3081 boolean_t wasempty
= B_TRUE
;
3083 mutex_enter(&vd
->vdev_dtl_lock
);
3086 * If requested, pretend the scan or rebuild completed cleanly.
3088 if (zfs_scan_ignore_errors
) {
3090 scn
->scn_phys
.scn_errors
= 0;
3092 vr
->vr_rebuild_phys
.vrp_errors
= 0;
3095 if (scrub_txg
!= 0 &&
3096 !range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
])) {
3098 zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
3099 "dtl:%llu/%llu errors:%llu",
3100 (u_longlong_t
)vd
->vdev_guid
, (u_longlong_t
)txg
,
3101 (u_longlong_t
)scrub_txg
, spa
->spa_scrub_started
,
3102 (u_longlong_t
)vdev_dtl_min(vd
),
3103 (u_longlong_t
)vdev_dtl_max(vd
),
3104 (u_longlong_t
)(scn
? scn
->scn_phys
.scn_errors
: 0));
3108 * If we've completed a scrub/resilver or a rebuild cleanly
3109 * then determine if this vdev should remove any DTLs. We
3110 * only want to excise regions on vdevs that were available
3111 * during the entire duration of this scan.
3114 vr
!= NULL
&& vr
->vr_rebuild_phys
.vrp_errors
== 0) {
3115 check_excise
= B_TRUE
;
3117 if (spa
->spa_scrub_started
||
3118 (scn
!= NULL
&& scn
->scn_phys
.scn_errors
== 0)) {
3119 check_excise
= B_TRUE
;
3123 if (scrub_txg
&& check_excise
&&
3124 vdev_dtl_should_excise(vd
, rebuild_done
)) {
3126 * We completed a scrub, resilver or rebuild up to
3127 * scrub_txg. If we did it without rebooting, then
3128 * the scrub dtl will be valid, so excise the old
3129 * region and fold in the scrub dtl. Otherwise,
3130 * leave the dtl as-is if there was an error.
3132 * There's little trick here: to excise the beginning
3133 * of the DTL_MISSING map, we put it into a reference
3134 * tree and then add a segment with refcnt -1 that
3135 * covers the range [0, scrub_txg). This means
3136 * that each txg in that range has refcnt -1 or 0.
3137 * We then add DTL_SCRUB with a refcnt of 2, so that
3138 * entries in the range [0, scrub_txg) will have a
3139 * positive refcnt -- either 1 or 2. We then convert
3140 * the reference tree into the new DTL_MISSING map.
3142 space_reftree_create(&reftree
);
3143 space_reftree_add_map(&reftree
,
3144 vd
->vdev_dtl
[DTL_MISSING
], 1);
3145 space_reftree_add_seg(&reftree
, 0, scrub_txg
, -1);
3146 space_reftree_add_map(&reftree
,
3147 vd
->vdev_dtl
[DTL_SCRUB
], 2);
3148 space_reftree_generate_map(&reftree
,
3149 vd
->vdev_dtl
[DTL_MISSING
], 1);
3150 space_reftree_destroy(&reftree
);
3152 if (!range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
])) {
3153 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3154 (u_longlong_t
)vdev_dtl_min(vd
),
3155 (u_longlong_t
)vdev_dtl_max(vd
));
3156 } else if (!wasempty
) {
3157 zfs_dbgmsg("DTL_MISSING is now empty");
3160 range_tree_vacate(vd
->vdev_dtl
[DTL_PARTIAL
], NULL
, NULL
);
3161 range_tree_walk(vd
->vdev_dtl
[DTL_MISSING
],
3162 range_tree_add
, vd
->vdev_dtl
[DTL_PARTIAL
]);
3164 range_tree_vacate(vd
->vdev_dtl
[DTL_SCRUB
], NULL
, NULL
);
3165 range_tree_vacate(vd
->vdev_dtl
[DTL_OUTAGE
], NULL
, NULL
);
3166 if (!vdev_readable(vd
))
3167 range_tree_add(vd
->vdev_dtl
[DTL_OUTAGE
], 0, -1ULL);
3169 range_tree_walk(vd
->vdev_dtl
[DTL_MISSING
],
3170 range_tree_add
, vd
->vdev_dtl
[DTL_OUTAGE
]);
3173 * If the vdev was resilvering or rebuilding and no longer
3174 * has any DTLs then reset the appropriate flag and dirty
3175 * the top level so that we persist the change.
3178 range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
]) &&
3179 range_tree_is_empty(vd
->vdev_dtl
[DTL_OUTAGE
])) {
3180 if (vd
->vdev_rebuild_txg
!= 0) {
3181 vd
->vdev_rebuild_txg
= 0;
3182 vdev_config_dirty(vd
->vdev_top
);
3183 } else if (vd
->vdev_resilver_txg
!= 0) {
3184 vd
->vdev_resilver_txg
= 0;
3185 vdev_config_dirty(vd
->vdev_top
);
3189 mutex_exit(&vd
->vdev_dtl_lock
);
3192 vdev_dirty(vd
->vdev_top
, VDD_DTL
, vd
, txg
);
3196 mutex_enter(&vd
->vdev_dtl_lock
);
3197 for (int t
= 0; t
< DTL_TYPES
; t
++) {
3198 /* account for child's outage in parent's missing map */
3199 int s
= (t
== DTL_MISSING
) ? DTL_OUTAGE
: t
;
3201 continue; /* leaf vdevs only */
3202 if (t
== DTL_PARTIAL
)
3203 minref
= 1; /* i.e. non-zero */
3204 else if (vdev_get_nparity(vd
) != 0)
3205 minref
= vdev_get_nparity(vd
) + 1; /* RAID-Z, dRAID */
3207 minref
= vd
->vdev_children
; /* any kind of mirror */
3208 space_reftree_create(&reftree
);
3209 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3210 vdev_t
*cvd
= vd
->vdev_child
[c
];
3211 mutex_enter(&cvd
->vdev_dtl_lock
);
3212 space_reftree_add_map(&reftree
, cvd
->vdev_dtl
[s
], 1);
3213 mutex_exit(&cvd
->vdev_dtl_lock
);
3215 space_reftree_generate_map(&reftree
, vd
->vdev_dtl
[t
], minref
);
3216 space_reftree_destroy(&reftree
);
3218 mutex_exit(&vd
->vdev_dtl_lock
);
3222 * Iterate over all the vdevs except spare, and post kobj events
3225 vdev_post_kobj_evt(vdev_t
*vd
)
3227 if (vd
->vdev_ops
->vdev_op_kobj_evt_post
&&
3228 vd
->vdev_kobj_flag
== B_FALSE
) {
3229 vd
->vdev_kobj_flag
= B_TRUE
;
3230 vd
->vdev_ops
->vdev_op_kobj_evt_post(vd
);
3233 for (int c
= 0; c
< vd
->vdev_children
; c
++)
3234 vdev_post_kobj_evt(vd
->vdev_child
[c
]);
3238 * Iterate over all the vdevs except spare, and clear kobj events
3241 vdev_clear_kobj_evt(vdev_t
*vd
)
3243 vd
->vdev_kobj_flag
= B_FALSE
;
3245 for (int c
= 0; c
< vd
->vdev_children
; c
++)
3246 vdev_clear_kobj_evt(vd
->vdev_child
[c
]);
3250 vdev_dtl_load(vdev_t
*vd
)
3252 spa_t
*spa
= vd
->vdev_spa
;
3253 objset_t
*mos
= spa
->spa_meta_objset
;
3257 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_dtl_object
!= 0) {
3258 ASSERT(vdev_is_concrete(vd
));
3261 * If the dtl cannot be sync'd there is no need to open it.
3263 if (spa
->spa_mode
== SPA_MODE_READ
&& !spa
->spa_read_spacemaps
)
3266 error
= space_map_open(&vd
->vdev_dtl_sm
, mos
,
3267 vd
->vdev_dtl_object
, 0, -1ULL, 0);
3270 ASSERT(vd
->vdev_dtl_sm
!= NULL
);
3272 rt
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
3273 error
= space_map_load(vd
->vdev_dtl_sm
, rt
, SM_ALLOC
);
3275 mutex_enter(&vd
->vdev_dtl_lock
);
3276 range_tree_walk(rt
, range_tree_add
,
3277 vd
->vdev_dtl
[DTL_MISSING
]);
3278 mutex_exit(&vd
->vdev_dtl_lock
);
3281 range_tree_vacate(rt
, NULL
, NULL
);
3282 range_tree_destroy(rt
);
3287 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3288 error
= vdev_dtl_load(vd
->vdev_child
[c
]);
3297 vdev_zap_allocation_data(vdev_t
*vd
, dmu_tx_t
*tx
)
3299 spa_t
*spa
= vd
->vdev_spa
;
3300 objset_t
*mos
= spa
->spa_meta_objset
;
3301 vdev_alloc_bias_t alloc_bias
= vd
->vdev_alloc_bias
;
3304 ASSERT(alloc_bias
!= VDEV_BIAS_NONE
);
3307 (alloc_bias
== VDEV_BIAS_LOG
) ? VDEV_ALLOC_BIAS_LOG
:
3308 (alloc_bias
== VDEV_BIAS_SPECIAL
) ? VDEV_ALLOC_BIAS_SPECIAL
:
3309 (alloc_bias
== VDEV_BIAS_DEDUP
) ? VDEV_ALLOC_BIAS_DEDUP
: NULL
;
3311 ASSERT(string
!= NULL
);
3312 VERIFY0(zap_add(mos
, vd
->vdev_top_zap
, VDEV_TOP_ZAP_ALLOCATION_BIAS
,
3313 1, strlen(string
) + 1, string
, tx
));
3315 if (alloc_bias
== VDEV_BIAS_SPECIAL
|| alloc_bias
== VDEV_BIAS_DEDUP
) {
3316 spa_activate_allocation_classes(spa
, tx
);
3321 vdev_destroy_unlink_zap(vdev_t
*vd
, uint64_t zapobj
, dmu_tx_t
*tx
)
3323 spa_t
*spa
= vd
->vdev_spa
;
3325 VERIFY0(zap_destroy(spa
->spa_meta_objset
, zapobj
, tx
));
3326 VERIFY0(zap_remove_int(spa
->spa_meta_objset
, spa
->spa_all_vdev_zaps
,
3331 vdev_create_link_zap(vdev_t
*vd
, dmu_tx_t
*tx
)
3333 spa_t
*spa
= vd
->vdev_spa
;
3334 uint64_t zap
= zap_create(spa
->spa_meta_objset
, DMU_OTN_ZAP_METADATA
,
3335 DMU_OT_NONE
, 0, tx
);
3338 VERIFY0(zap_add_int(spa
->spa_meta_objset
, spa
->spa_all_vdev_zaps
,
3345 vdev_construct_zaps(vdev_t
*vd
, dmu_tx_t
*tx
)
3347 if (vd
->vdev_ops
!= &vdev_hole_ops
&&
3348 vd
->vdev_ops
!= &vdev_missing_ops
&&
3349 vd
->vdev_ops
!= &vdev_root_ops
&&
3350 !vd
->vdev_top
->vdev_removing
) {
3351 if (vd
->vdev_ops
->vdev_op_leaf
&& vd
->vdev_leaf_zap
== 0) {
3352 vd
->vdev_leaf_zap
= vdev_create_link_zap(vd
, tx
);
3354 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
== 0) {
3355 vd
->vdev_top_zap
= vdev_create_link_zap(vd
, tx
);
3356 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
)
3357 vdev_zap_allocation_data(vd
, tx
);
3360 if (vd
->vdev_ops
== &vdev_root_ops
&& vd
->vdev_root_zap
== 0 &&
3361 spa_feature_is_enabled(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
)) {
3362 if (!spa_feature_is_active(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
))
3363 spa_feature_incr(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
, tx
);
3364 vd
->vdev_root_zap
= vdev_create_link_zap(vd
, tx
);
3367 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
3368 vdev_construct_zaps(vd
->vdev_child
[i
], tx
);
3373 vdev_dtl_sync(vdev_t
*vd
, uint64_t txg
)
3375 spa_t
*spa
= vd
->vdev_spa
;
3376 range_tree_t
*rt
= vd
->vdev_dtl
[DTL_MISSING
];
3377 objset_t
*mos
= spa
->spa_meta_objset
;
3378 range_tree_t
*rtsync
;
3380 uint64_t object
= space_map_object(vd
->vdev_dtl_sm
);
3382 ASSERT(vdev_is_concrete(vd
));
3383 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3385 tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
3387 if (vd
->vdev_detached
|| vd
->vdev_top
->vdev_removing
) {
3388 mutex_enter(&vd
->vdev_dtl_lock
);
3389 space_map_free(vd
->vdev_dtl_sm
, tx
);
3390 space_map_close(vd
->vdev_dtl_sm
);
3391 vd
->vdev_dtl_sm
= NULL
;
3392 mutex_exit(&vd
->vdev_dtl_lock
);
3395 * We only destroy the leaf ZAP for detached leaves or for
3396 * removed log devices. Removed data devices handle leaf ZAP
3397 * cleanup later, once cancellation is no longer possible.
3399 if (vd
->vdev_leaf_zap
!= 0 && (vd
->vdev_detached
||
3400 vd
->vdev_top
->vdev_islog
)) {
3401 vdev_destroy_unlink_zap(vd
, vd
->vdev_leaf_zap
, tx
);
3402 vd
->vdev_leaf_zap
= 0;
3409 if (vd
->vdev_dtl_sm
== NULL
) {
3410 uint64_t new_object
;
3412 new_object
= space_map_alloc(mos
, zfs_vdev_dtl_sm_blksz
, tx
);
3413 VERIFY3U(new_object
, !=, 0);
3415 VERIFY0(space_map_open(&vd
->vdev_dtl_sm
, mos
, new_object
,
3417 ASSERT(vd
->vdev_dtl_sm
!= NULL
);
3420 rtsync
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
3422 mutex_enter(&vd
->vdev_dtl_lock
);
3423 range_tree_walk(rt
, range_tree_add
, rtsync
);
3424 mutex_exit(&vd
->vdev_dtl_lock
);
3426 space_map_truncate(vd
->vdev_dtl_sm
, zfs_vdev_dtl_sm_blksz
, tx
);
3427 space_map_write(vd
->vdev_dtl_sm
, rtsync
, SM_ALLOC
, SM_NO_VDEVID
, tx
);
3428 range_tree_vacate(rtsync
, NULL
, NULL
);
3430 range_tree_destroy(rtsync
);
3433 * If the object for the space map has changed then dirty
3434 * the top level so that we update the config.
3436 if (object
!= space_map_object(vd
->vdev_dtl_sm
)) {
3437 vdev_dbgmsg(vd
, "txg %llu, spa %s, DTL old object %llu, "
3438 "new object %llu", (u_longlong_t
)txg
, spa_name(spa
),
3439 (u_longlong_t
)object
,
3440 (u_longlong_t
)space_map_object(vd
->vdev_dtl_sm
));
3441 vdev_config_dirty(vd
->vdev_top
);
3448 * Determine whether the specified vdev can be offlined/detached/removed
3449 * without losing data.
3452 vdev_dtl_required(vdev_t
*vd
)
3454 spa_t
*spa
= vd
->vdev_spa
;
3455 vdev_t
*tvd
= vd
->vdev_top
;
3456 uint8_t cant_read
= vd
->vdev_cant_read
;
3459 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
3461 if (vd
== spa
->spa_root_vdev
|| vd
== tvd
)
3465 * Temporarily mark the device as unreadable, and then determine
3466 * whether this results in any DTL outages in the top-level vdev.
3467 * If not, we can safely offline/detach/remove the device.
3469 vd
->vdev_cant_read
= B_TRUE
;
3470 vdev_dtl_reassess(tvd
, 0, 0, B_FALSE
, B_FALSE
);
3471 required
= !vdev_dtl_empty(tvd
, DTL_OUTAGE
);
3472 vd
->vdev_cant_read
= cant_read
;
3473 vdev_dtl_reassess(tvd
, 0, 0, B_FALSE
, B_FALSE
);
3475 if (!required
&& zio_injection_enabled
) {
3476 required
= !!zio_handle_device_injection(vd
, NULL
,
3484 * Determine if resilver is needed, and if so the txg range.
3487 vdev_resilver_needed(vdev_t
*vd
, uint64_t *minp
, uint64_t *maxp
)
3489 boolean_t needed
= B_FALSE
;
3490 uint64_t thismin
= UINT64_MAX
;
3491 uint64_t thismax
= 0;
3493 if (vd
->vdev_children
== 0) {
3494 mutex_enter(&vd
->vdev_dtl_lock
);
3495 if (!range_tree_is_empty(vd
->vdev_dtl
[DTL_MISSING
]) &&
3496 vdev_writeable(vd
)) {
3498 thismin
= vdev_dtl_min(vd
);
3499 thismax
= vdev_dtl_max(vd
);
3502 mutex_exit(&vd
->vdev_dtl_lock
);
3504 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3505 vdev_t
*cvd
= vd
->vdev_child
[c
];
3506 uint64_t cmin
, cmax
;
3508 if (vdev_resilver_needed(cvd
, &cmin
, &cmax
)) {
3509 thismin
= MIN(thismin
, cmin
);
3510 thismax
= MAX(thismax
, cmax
);
3516 if (needed
&& minp
) {
3524 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
3525 * will contain either the checkpoint spacemap object or zero if none exists.
3526 * All other errors are returned to the caller.
3529 vdev_checkpoint_sm_object(vdev_t
*vd
, uint64_t *sm_obj
)
3531 ASSERT0(spa_config_held(vd
->vdev_spa
, SCL_ALL
, RW_WRITER
));
3533 if (vd
->vdev_top_zap
== 0) {
3538 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
), vd
->vdev_top_zap
,
3539 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
, sizeof (uint64_t), 1, sm_obj
);
3540 if (error
== ENOENT
) {
3549 vdev_load(vdev_t
*vd
)
3551 int children
= vd
->vdev_children
;
3556 * It's only worthwhile to use the taskq for the root vdev, because the
3557 * slow part is metaslab_init, and that only happens for top-level
3560 if (vd
->vdev_ops
== &vdev_root_ops
&& vd
->vdev_children
> 0) {
3561 tq
= taskq_create("vdev_load", children
, minclsyspri
,
3562 children
, children
, TASKQ_PREPOPULATE
);
3566 * Recursively load all children.
3568 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3569 vdev_t
*cvd
= vd
->vdev_child
[c
];
3571 if (tq
== NULL
|| vdev_uses_zvols(cvd
)) {
3572 cvd
->vdev_load_error
= vdev_load(cvd
);
3574 VERIFY(taskq_dispatch(tq
, vdev_load_child
,
3575 cvd
, TQ_SLEEP
) != TASKQID_INVALID
);
3584 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3585 int error
= vd
->vdev_child
[c
]->vdev_load_error
;
3591 vdev_set_deflate_ratio(vd
);
3594 * On spa_load path, grab the allocation bias from our zap
3596 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
!= 0) {
3597 spa_t
*spa
= vd
->vdev_spa
;
3600 error
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
3601 VDEV_TOP_ZAP_ALLOCATION_BIAS
, 1, sizeof (bias_str
),
3604 ASSERT(vd
->vdev_alloc_bias
== VDEV_BIAS_NONE
);
3605 vd
->vdev_alloc_bias
= vdev_derive_alloc_bias(bias_str
);
3606 } else if (error
!= ENOENT
) {
3607 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3608 VDEV_AUX_CORRUPT_DATA
);
3609 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(top_zap=%llu) "
3610 "failed [error=%d]",
3611 (u_longlong_t
)vd
->vdev_top_zap
, error
);
3616 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
!= 0) {
3617 spa_t
*spa
= vd
->vdev_spa
;
3620 error
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
3621 vdev_prop_to_name(VDEV_PROP_FAILFAST
), sizeof (failfast
),
3624 vd
->vdev_failfast
= failfast
& 1;
3625 } else if (error
== ENOENT
) {
3626 vd
->vdev_failfast
= vdev_prop_default_numeric(
3627 VDEV_PROP_FAILFAST
);
3630 "vdev_load: zap_lookup(top_zap=%llu) "
3631 "failed [error=%d]",
3632 (u_longlong_t
)vd
->vdev_top_zap
, error
);
3637 * Load any rebuild state from the top-level vdev zap.
3639 if (vd
== vd
->vdev_top
&& vd
->vdev_top_zap
!= 0) {
3640 error
= vdev_rebuild_load(vd
);
3641 if (error
&& error
!= ENOTSUP
) {
3642 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3643 VDEV_AUX_CORRUPT_DATA
);
3644 vdev_dbgmsg(vd
, "vdev_load: vdev_rebuild_load "
3645 "failed [error=%d]", error
);
3650 if (vd
->vdev_top_zap
!= 0 || vd
->vdev_leaf_zap
!= 0) {
3653 if (vd
->vdev_top_zap
!= 0)
3654 zapobj
= vd
->vdev_top_zap
;
3656 zapobj
= vd
->vdev_leaf_zap
;
3658 error
= vdev_prop_get_int(vd
, VDEV_PROP_CHECKSUM_N
,
3659 &vd
->vdev_checksum_n
);
3660 if (error
&& error
!= ENOENT
)
3661 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3662 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3664 error
= vdev_prop_get_int(vd
, VDEV_PROP_CHECKSUM_T
,
3665 &vd
->vdev_checksum_t
);
3666 if (error
&& error
!= ENOENT
)
3667 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3668 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3670 error
= vdev_prop_get_int(vd
, VDEV_PROP_IO_N
,
3672 if (error
&& error
!= ENOENT
)
3673 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3674 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3676 error
= vdev_prop_get_int(vd
, VDEV_PROP_IO_T
,
3678 if (error
&& error
!= ENOENT
)
3679 vdev_dbgmsg(vd
, "vdev_load: zap_lookup(zap=%llu) "
3680 "failed [error=%d]", (u_longlong_t
)zapobj
, error
);
3684 * If this is a top-level vdev, initialize its metaslabs.
3686 if (vd
== vd
->vdev_top
&& vdev_is_concrete(vd
)) {
3687 vdev_metaslab_group_create(vd
);
3689 if (vd
->vdev_ashift
== 0 || vd
->vdev_asize
== 0) {
3690 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3691 VDEV_AUX_CORRUPT_DATA
);
3692 vdev_dbgmsg(vd
, "vdev_load: invalid size. ashift=%llu, "
3693 "asize=%llu", (u_longlong_t
)vd
->vdev_ashift
,
3694 (u_longlong_t
)vd
->vdev_asize
);
3695 return (SET_ERROR(ENXIO
));
3698 error
= vdev_metaslab_init(vd
, 0);
3700 vdev_dbgmsg(vd
, "vdev_load: metaslab_init failed "
3701 "[error=%d]", error
);
3702 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3703 VDEV_AUX_CORRUPT_DATA
);
3707 uint64_t checkpoint_sm_obj
;
3708 error
= vdev_checkpoint_sm_object(vd
, &checkpoint_sm_obj
);
3709 if (error
== 0 && checkpoint_sm_obj
!= 0) {
3710 objset_t
*mos
= spa_meta_objset(vd
->vdev_spa
);
3711 ASSERT(vd
->vdev_asize
!= 0);
3712 ASSERT3P(vd
->vdev_checkpoint_sm
, ==, NULL
);
3714 error
= space_map_open(&vd
->vdev_checkpoint_sm
,
3715 mos
, checkpoint_sm_obj
, 0, vd
->vdev_asize
,
3718 vdev_dbgmsg(vd
, "vdev_load: space_map_open "
3719 "failed for checkpoint spacemap (obj %llu) "
3721 (u_longlong_t
)checkpoint_sm_obj
, error
);
3724 ASSERT3P(vd
->vdev_checkpoint_sm
, !=, NULL
);
3727 * Since the checkpoint_sm contains free entries
3728 * exclusively we can use space_map_allocated() to
3729 * indicate the cumulative checkpointed space that
3732 vd
->vdev_stat
.vs_checkpoint_space
=
3733 -space_map_allocated(vd
->vdev_checkpoint_sm
);
3734 vd
->vdev_spa
->spa_checkpoint_info
.sci_dspace
+=
3735 vd
->vdev_stat
.vs_checkpoint_space
;
3736 } else if (error
!= 0) {
3737 vdev_dbgmsg(vd
, "vdev_load: failed to retrieve "
3738 "checkpoint space map object from vdev ZAP "
3739 "[error=%d]", error
);
3745 * If this is a leaf vdev, load its DTL.
3747 if (vd
->vdev_ops
->vdev_op_leaf
&& (error
= vdev_dtl_load(vd
)) != 0) {
3748 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3749 VDEV_AUX_CORRUPT_DATA
);
3750 vdev_dbgmsg(vd
, "vdev_load: vdev_dtl_load failed "
3751 "[error=%d]", error
);
3755 uint64_t obsolete_sm_object
;
3756 error
= vdev_obsolete_sm_object(vd
, &obsolete_sm_object
);
3757 if (error
== 0 && obsolete_sm_object
!= 0) {
3758 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
3759 ASSERT(vd
->vdev_asize
!= 0);
3760 ASSERT3P(vd
->vdev_obsolete_sm
, ==, NULL
);
3762 if ((error
= space_map_open(&vd
->vdev_obsolete_sm
, mos
,
3763 obsolete_sm_object
, 0, vd
->vdev_asize
, 0))) {
3764 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3765 VDEV_AUX_CORRUPT_DATA
);
3766 vdev_dbgmsg(vd
, "vdev_load: space_map_open failed for "
3767 "obsolete spacemap (obj %llu) [error=%d]",
3768 (u_longlong_t
)obsolete_sm_object
, error
);
3771 } else if (error
!= 0) {
3772 vdev_dbgmsg(vd
, "vdev_load: failed to retrieve obsolete "
3773 "space map object from vdev ZAP [error=%d]", error
);
3781 * The special vdev case is used for hot spares and l2cache devices. Its
3782 * sole purpose it to set the vdev state for the associated vdev. To do this,
3783 * we make sure that we can open the underlying device, then try to read the
3784 * label, and make sure that the label is sane and that it hasn't been
3785 * repurposed to another pool.
3788 vdev_validate_aux(vdev_t
*vd
)
3791 uint64_t guid
, version
;
3794 if (!vdev_readable(vd
))
3797 if ((label
= vdev_label_read_config(vd
, -1ULL)) == NULL
) {
3798 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
3799 VDEV_AUX_CORRUPT_DATA
);
3803 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_VERSION
, &version
) != 0 ||
3804 !SPA_VERSION_IS_SUPPORTED(version
) ||
3805 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
, &guid
) != 0 ||
3806 guid
!= vd
->vdev_guid
||
3807 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
, &state
) != 0) {
3808 vdev_set_state(vd
, B_TRUE
, VDEV_STATE_CANT_OPEN
,
3809 VDEV_AUX_CORRUPT_DATA
);
3815 * We don't actually check the pool state here. If it's in fact in
3816 * use by another pool, we update this fact on the fly when requested.
3823 vdev_destroy_ms_flush_data(vdev_t
*vd
, dmu_tx_t
*tx
)
3825 objset_t
*mos
= spa_meta_objset(vd
->vdev_spa
);
3827 if (vd
->vdev_top_zap
== 0)
3830 uint64_t object
= 0;
3831 int err
= zap_lookup(mos
, vd
->vdev_top_zap
,
3832 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
, sizeof (uint64_t), 1, &object
);
3837 VERIFY0(dmu_object_free(mos
, object
, tx
));
3838 VERIFY0(zap_remove(mos
, vd
->vdev_top_zap
,
3839 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
, tx
));
3843 * Free the objects used to store this vdev's spacemaps, and the array
3844 * that points to them.
3847 vdev_destroy_spacemaps(vdev_t
*vd
, dmu_tx_t
*tx
)
3849 if (vd
->vdev_ms_array
== 0)
3852 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
3853 uint64_t array_count
= vd
->vdev_asize
>> vd
->vdev_ms_shift
;
3854 size_t array_bytes
= array_count
* sizeof (uint64_t);
3855 uint64_t *smobj_array
= kmem_alloc(array_bytes
, KM_SLEEP
);
3856 VERIFY0(dmu_read(mos
, vd
->vdev_ms_array
, 0,
3857 array_bytes
, smobj_array
, 0));
3859 for (uint64_t i
= 0; i
< array_count
; i
++) {
3860 uint64_t smobj
= smobj_array
[i
];
3864 space_map_free_obj(mos
, smobj
, tx
);
3867 kmem_free(smobj_array
, array_bytes
);
3868 VERIFY0(dmu_object_free(mos
, vd
->vdev_ms_array
, tx
));
3869 vdev_destroy_ms_flush_data(vd
, tx
);
3870 vd
->vdev_ms_array
= 0;
3874 vdev_remove_empty_log(vdev_t
*vd
, uint64_t txg
)
3876 spa_t
*spa
= vd
->vdev_spa
;
3878 ASSERT(vd
->vdev_islog
);
3879 ASSERT(vd
== vd
->vdev_top
);
3880 ASSERT3U(txg
, ==, spa_syncing_txg(spa
));
3882 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa_get_dsl(spa
), txg
);
3884 vdev_destroy_spacemaps(vd
, tx
);
3885 if (vd
->vdev_top_zap
!= 0) {
3886 vdev_destroy_unlink_zap(vd
, vd
->vdev_top_zap
, tx
);
3887 vd
->vdev_top_zap
= 0;
3894 vdev_sync_done(vdev_t
*vd
, uint64_t txg
)
3897 boolean_t reassess
= !txg_list_empty(&vd
->vdev_ms_list
, TXG_CLEAN(txg
));
3899 ASSERT(vdev_is_concrete(vd
));
3901 while ((msp
= txg_list_remove(&vd
->vdev_ms_list
, TXG_CLEAN(txg
)))
3903 metaslab_sync_done(msp
, txg
);
3906 metaslab_sync_reassess(vd
->vdev_mg
);
3907 if (vd
->vdev_log_mg
!= NULL
)
3908 metaslab_sync_reassess(vd
->vdev_log_mg
);
3913 vdev_sync(vdev_t
*vd
, uint64_t txg
)
3915 spa_t
*spa
= vd
->vdev_spa
;
3919 ASSERT3U(txg
, ==, spa
->spa_syncing_txg
);
3920 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
3921 if (range_tree_space(vd
->vdev_obsolete_segments
) > 0) {
3922 ASSERT(vd
->vdev_removing
||
3923 vd
->vdev_ops
== &vdev_indirect_ops
);
3925 vdev_indirect_sync_obsolete(vd
, tx
);
3928 * If the vdev is indirect, it can't have dirty
3929 * metaslabs or DTLs.
3931 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
3932 ASSERT(txg_list_empty(&vd
->vdev_ms_list
, txg
));
3933 ASSERT(txg_list_empty(&vd
->vdev_dtl_list
, txg
));
3939 ASSERT(vdev_is_concrete(vd
));
3941 if (vd
->vdev_ms_array
== 0 && vd
->vdev_ms_shift
!= 0 &&
3942 !vd
->vdev_removing
) {
3943 ASSERT(vd
== vd
->vdev_top
);
3944 ASSERT0(vd
->vdev_indirect_config
.vic_mapping_object
);
3945 vd
->vdev_ms_array
= dmu_object_alloc(spa
->spa_meta_objset
,
3946 DMU_OT_OBJECT_ARRAY
, 0, DMU_OT_NONE
, 0, tx
);
3947 ASSERT(vd
->vdev_ms_array
!= 0);
3948 vdev_config_dirty(vd
);
3951 while ((msp
= txg_list_remove(&vd
->vdev_ms_list
, txg
)) != NULL
) {
3952 metaslab_sync(msp
, txg
);
3953 (void) txg_list_add(&vd
->vdev_ms_list
, msp
, TXG_CLEAN(txg
));
3956 while ((lvd
= txg_list_remove(&vd
->vdev_dtl_list
, txg
)) != NULL
)
3957 vdev_dtl_sync(lvd
, txg
);
3960 * If this is an empty log device being removed, destroy the
3961 * metadata associated with it.
3963 if (vd
->vdev_islog
&& vd
->vdev_stat
.vs_alloc
== 0 && vd
->vdev_removing
)
3964 vdev_remove_empty_log(vd
, txg
);
3966 (void) txg_list_add(&spa
->spa_vdev_txg_list
, vd
, TXG_CLEAN(txg
));
3971 vdev_psize_to_asize(vdev_t
*vd
, uint64_t psize
)
3973 return (vd
->vdev_ops
->vdev_op_asize(vd
, psize
));
3977 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3978 * not be opened, and no I/O is attempted.
3981 vdev_fault(spa_t
*spa
, uint64_t guid
, vdev_aux_t aux
)
3985 spa_vdev_state_enter(spa
, SCL_NONE
);
3987 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
3988 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
3990 if (!vd
->vdev_ops
->vdev_op_leaf
)
3991 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
3996 * If user did a 'zpool offline -f' then make the fault persist across
3999 if (aux
== VDEV_AUX_EXTERNAL_PERSIST
) {
4001 * There are two kinds of forced faults: temporary and
4002 * persistent. Temporary faults go away at pool import, while
4003 * persistent faults stay set. Both types of faults can be
4004 * cleared with a zpool clear.
4006 * We tell if a vdev is persistently faulted by looking at the
4007 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
4008 * import then it's a persistent fault. Otherwise, it's
4009 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
4010 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
4011 * tells vdev_config_generate() (which gets run later) to set
4012 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
4014 vd
->vdev_stat
.vs_aux
= VDEV_AUX_EXTERNAL
;
4015 vd
->vdev_tmpoffline
= B_FALSE
;
4016 aux
= VDEV_AUX_EXTERNAL
;
4018 vd
->vdev_tmpoffline
= B_TRUE
;
4022 * We don't directly use the aux state here, but if we do a
4023 * vdev_reopen(), we need this value to be present to remember why we
4026 vd
->vdev_label_aux
= aux
;
4029 * Faulted state takes precedence over degraded.
4031 vd
->vdev_delayed_close
= B_FALSE
;
4032 vd
->vdev_faulted
= 1ULL;
4033 vd
->vdev_degraded
= 0ULL;
4034 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_FAULTED
, aux
);
4037 * If this device has the only valid copy of the data, then
4038 * back off and simply mark the vdev as degraded instead.
4040 if (!tvd
->vdev_islog
&& vd
->vdev_aux
== NULL
&& vdev_dtl_required(vd
)) {
4041 vd
->vdev_degraded
= 1ULL;
4042 vd
->vdev_faulted
= 0ULL;
4045 * If we reopen the device and it's not dead, only then do we
4050 if (vdev_readable(vd
))
4051 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
, aux
);
4054 return (spa_vdev_state_exit(spa
, vd
, 0));
4058 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
4059 * user that something is wrong. The vdev continues to operate as normal as far
4060 * as I/O is concerned.
4063 vdev_degrade(spa_t
*spa
, uint64_t guid
, vdev_aux_t aux
)
4067 spa_vdev_state_enter(spa
, SCL_NONE
);
4069 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4070 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4072 if (!vd
->vdev_ops
->vdev_op_leaf
)
4073 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
4076 * If the vdev is already faulted, then don't do anything.
4078 if (vd
->vdev_faulted
|| vd
->vdev_degraded
)
4079 return (spa_vdev_state_exit(spa
, NULL
, 0));
4081 vd
->vdev_degraded
= 1ULL;
4082 if (!vdev_is_dead(vd
))
4083 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
,
4086 return (spa_vdev_state_exit(spa
, vd
, 0));
4090 vdev_remove_wanted(spa_t
*spa
, uint64_t guid
)
4094 spa_vdev_state_enter(spa
, SCL_NONE
);
4096 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4097 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4100 * If the vdev is already removed, then don't do anything.
4102 if (vd
->vdev_removed
)
4103 return (spa_vdev_state_exit(spa
, NULL
, 0));
4105 vd
->vdev_remove_wanted
= B_TRUE
;
4106 spa_async_request(spa
, SPA_ASYNC_REMOVE
);
4108 return (spa_vdev_state_exit(spa
, vd
, 0));
4113 * Online the given vdev.
4115 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
4116 * spare device should be detached when the device finishes resilvering.
4117 * Second, the online should be treated like a 'test' online case, so no FMA
4118 * events are generated if the device fails to open.
4121 vdev_online(spa_t
*spa
, uint64_t guid
, uint64_t flags
, vdev_state_t
*newstate
)
4123 vdev_t
*vd
, *tvd
, *pvd
, *rvd
= spa
->spa_root_vdev
;
4124 boolean_t wasoffline
;
4125 vdev_state_t oldstate
;
4127 spa_vdev_state_enter(spa
, SCL_NONE
);
4129 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4130 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4132 if (!vd
->vdev_ops
->vdev_op_leaf
)
4133 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
4135 wasoffline
= (vd
->vdev_offline
|| vd
->vdev_tmpoffline
);
4136 oldstate
= vd
->vdev_state
;
4139 vd
->vdev_offline
= B_FALSE
;
4140 vd
->vdev_tmpoffline
= B_FALSE
;
4141 vd
->vdev_checkremove
= !!(flags
& ZFS_ONLINE_CHECKREMOVE
);
4142 vd
->vdev_forcefault
= !!(flags
& ZFS_ONLINE_FORCEFAULT
);
4144 /* XXX - L2ARC 1.0 does not support expansion */
4145 if (!vd
->vdev_aux
) {
4146 for (pvd
= vd
; pvd
!= rvd
; pvd
= pvd
->vdev_parent
)
4147 pvd
->vdev_expanding
= !!((flags
& ZFS_ONLINE_EXPAND
) ||
4148 spa
->spa_autoexpand
);
4149 vd
->vdev_expansion_time
= gethrestime_sec();
4153 vd
->vdev_checkremove
= vd
->vdev_forcefault
= B_FALSE
;
4155 if (!vd
->vdev_aux
) {
4156 for (pvd
= vd
; pvd
!= rvd
; pvd
= pvd
->vdev_parent
)
4157 pvd
->vdev_expanding
= B_FALSE
;
4161 *newstate
= vd
->vdev_state
;
4162 if ((flags
& ZFS_ONLINE_UNSPARE
) &&
4163 !vdev_is_dead(vd
) && vd
->vdev_parent
&&
4164 vd
->vdev_parent
->vdev_ops
== &vdev_spare_ops
&&
4165 vd
->vdev_parent
->vdev_child
[0] == vd
)
4166 vd
->vdev_unspare
= B_TRUE
;
4168 if ((flags
& ZFS_ONLINE_EXPAND
) || spa
->spa_autoexpand
) {
4170 /* XXX - L2ARC 1.0 does not support expansion */
4172 return (spa_vdev_state_exit(spa
, vd
, ENOTSUP
));
4173 spa_async_request(spa
, SPA_ASYNC_CONFIG_UPDATE
);
4176 /* Restart initializing if necessary */
4177 mutex_enter(&vd
->vdev_initialize_lock
);
4178 if (vdev_writeable(vd
) &&
4179 vd
->vdev_initialize_thread
== NULL
&&
4180 vd
->vdev_initialize_state
== VDEV_INITIALIZE_ACTIVE
) {
4181 (void) vdev_initialize(vd
);
4183 mutex_exit(&vd
->vdev_initialize_lock
);
4186 * Restart trimming if necessary. We do not restart trimming for cache
4187 * devices here. This is triggered by l2arc_rebuild_vdev()
4188 * asynchronously for the whole device or in l2arc_evict() as it evicts
4189 * space for upcoming writes.
4191 mutex_enter(&vd
->vdev_trim_lock
);
4192 if (vdev_writeable(vd
) && !vd
->vdev_isl2cache
&&
4193 vd
->vdev_trim_thread
== NULL
&&
4194 vd
->vdev_trim_state
== VDEV_TRIM_ACTIVE
) {
4195 (void) vdev_trim(vd
, vd
->vdev_trim_rate
, vd
->vdev_trim_partial
,
4196 vd
->vdev_trim_secure
);
4198 mutex_exit(&vd
->vdev_trim_lock
);
4201 (oldstate
< VDEV_STATE_DEGRADED
&&
4202 vd
->vdev_state
>= VDEV_STATE_DEGRADED
)) {
4203 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_VDEV_ONLINE
);
4206 * Asynchronously detach spare vdev if resilver or
4207 * rebuild is not required
4209 if (vd
->vdev_unspare
&&
4210 !dsl_scan_resilvering(spa
->spa_dsl_pool
) &&
4211 !dsl_scan_resilver_scheduled(spa
->spa_dsl_pool
) &&
4212 !vdev_rebuild_active(tvd
))
4213 spa_async_request(spa
, SPA_ASYNC_DETACH_SPARE
);
4215 return (spa_vdev_state_exit(spa
, vd
, 0));
4219 vdev_offline_locked(spa_t
*spa
, uint64_t guid
, uint64_t flags
)
4223 uint64_t generation
;
4224 metaslab_group_t
*mg
;
4227 spa_vdev_state_enter(spa
, SCL_ALLOC
);
4229 if ((vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
)) == NULL
)
4230 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENODEV
)));
4232 if (!vd
->vdev_ops
->vdev_op_leaf
)
4233 return (spa_vdev_state_exit(spa
, NULL
, SET_ERROR(ENOTSUP
)));
4235 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
4236 return (spa_vdev_state_exit(spa
, NULL
, ENOTSUP
));
4240 generation
= spa
->spa_config_generation
+ 1;
4243 * If the device isn't already offline, try to offline it.
4245 if (!vd
->vdev_offline
) {
4247 * If this device has the only valid copy of some data,
4248 * don't allow it to be offlined. Log devices are always
4251 if (!tvd
->vdev_islog
&& vd
->vdev_aux
== NULL
&&
4252 vdev_dtl_required(vd
))
4253 return (spa_vdev_state_exit(spa
, NULL
,
4257 * If the top-level is a slog and it has had allocations
4258 * then proceed. We check that the vdev's metaslab group
4259 * is not NULL since it's possible that we may have just
4260 * added this vdev but not yet initialized its metaslabs.
4262 if (tvd
->vdev_islog
&& mg
!= NULL
) {
4264 * Prevent any future allocations.
4266 ASSERT3P(tvd
->vdev_log_mg
, ==, NULL
);
4267 metaslab_group_passivate(mg
);
4268 (void) spa_vdev_state_exit(spa
, vd
, 0);
4270 error
= spa_reset_logs(spa
);
4273 * If the log device was successfully reset but has
4274 * checkpointed data, do not offline it.
4277 tvd
->vdev_checkpoint_sm
!= NULL
) {
4278 ASSERT3U(space_map_allocated(
4279 tvd
->vdev_checkpoint_sm
), !=, 0);
4280 error
= ZFS_ERR_CHECKPOINT_EXISTS
;
4283 spa_vdev_state_enter(spa
, SCL_ALLOC
);
4286 * Check to see if the config has changed.
4288 if (error
|| generation
!= spa
->spa_config_generation
) {
4289 metaslab_group_activate(mg
);
4291 return (spa_vdev_state_exit(spa
,
4293 (void) spa_vdev_state_exit(spa
, vd
, 0);
4296 ASSERT0(tvd
->vdev_stat
.vs_alloc
);
4300 * Offline this device and reopen its top-level vdev.
4301 * If the top-level vdev is a log device then just offline
4302 * it. Otherwise, if this action results in the top-level
4303 * vdev becoming unusable, undo it and fail the request.
4305 vd
->vdev_offline
= B_TRUE
;
4308 if (!tvd
->vdev_islog
&& vd
->vdev_aux
== NULL
&&
4309 vdev_is_dead(tvd
)) {
4310 vd
->vdev_offline
= B_FALSE
;
4312 return (spa_vdev_state_exit(spa
, NULL
,
4317 * Add the device back into the metaslab rotor so that
4318 * once we online the device it's open for business.
4320 if (tvd
->vdev_islog
&& mg
!= NULL
)
4321 metaslab_group_activate(mg
);
4324 vd
->vdev_tmpoffline
= !!(flags
& ZFS_OFFLINE_TEMPORARY
);
4326 return (spa_vdev_state_exit(spa
, vd
, 0));
4330 vdev_offline(spa_t
*spa
, uint64_t guid
, uint64_t flags
)
4334 mutex_enter(&spa
->spa_vdev_top_lock
);
4335 error
= vdev_offline_locked(spa
, guid
, flags
);
4336 mutex_exit(&spa
->spa_vdev_top_lock
);
4342 * Clear the error counts associated with this vdev. Unlike vdev_online() and
4343 * vdev_offline(), we assume the spa config is locked. We also clear all
4344 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
4347 vdev_clear(spa_t
*spa
, vdev_t
*vd
)
4349 vdev_t
*rvd
= spa
->spa_root_vdev
;
4351 ASSERT(spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
4356 vd
->vdev_stat
.vs_read_errors
= 0;
4357 vd
->vdev_stat
.vs_write_errors
= 0;
4358 vd
->vdev_stat
.vs_checksum_errors
= 0;
4359 vd
->vdev_stat
.vs_slow_ios
= 0;
4361 for (int c
= 0; c
< vd
->vdev_children
; c
++)
4362 vdev_clear(spa
, vd
->vdev_child
[c
]);
4365 * It makes no sense to "clear" an indirect or removed vdev.
4367 if (!vdev_is_concrete(vd
) || vd
->vdev_removed
)
4371 * If we're in the FAULTED state or have experienced failed I/O, then
4372 * clear the persistent state and attempt to reopen the device. We
4373 * also mark the vdev config dirty, so that the new faulted state is
4374 * written out to disk.
4376 if (vd
->vdev_faulted
|| vd
->vdev_degraded
||
4377 !vdev_readable(vd
) || !vdev_writeable(vd
)) {
4379 * When reopening in response to a clear event, it may be due to
4380 * a fmadm repair request. In this case, if the device is
4381 * still broken, we want to still post the ereport again.
4383 vd
->vdev_forcefault
= B_TRUE
;
4385 vd
->vdev_faulted
= vd
->vdev_degraded
= 0ULL;
4386 vd
->vdev_cant_read
= B_FALSE
;
4387 vd
->vdev_cant_write
= B_FALSE
;
4388 vd
->vdev_stat
.vs_aux
= 0;
4390 vdev_reopen(vd
== rvd
? rvd
: vd
->vdev_top
);
4392 vd
->vdev_forcefault
= B_FALSE
;
4394 if (vd
!= rvd
&& vdev_writeable(vd
->vdev_top
))
4395 vdev_state_dirty(vd
->vdev_top
);
4397 /* If a resilver isn't required, check if vdevs can be culled */
4398 if (vd
->vdev_aux
== NULL
&& !vdev_is_dead(vd
) &&
4399 !dsl_scan_resilvering(spa
->spa_dsl_pool
) &&
4400 !dsl_scan_resilver_scheduled(spa
->spa_dsl_pool
))
4401 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
4403 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_VDEV_CLEAR
);
4407 * When clearing a FMA-diagnosed fault, we always want to
4408 * unspare the device, as we assume that the original spare was
4409 * done in response to the FMA fault.
4411 if (!vdev_is_dead(vd
) && vd
->vdev_parent
!= NULL
&&
4412 vd
->vdev_parent
->vdev_ops
== &vdev_spare_ops
&&
4413 vd
->vdev_parent
->vdev_child
[0] == vd
)
4414 vd
->vdev_unspare
= B_TRUE
;
4416 /* Clear recent error events cache (i.e. duplicate events tracking) */
4417 zfs_ereport_clear(spa
, vd
);
4421 vdev_is_dead(vdev_t
*vd
)
4424 * Holes and missing devices are always considered "dead".
4425 * This simplifies the code since we don't have to check for
4426 * these types of devices in the various code paths.
4427 * Instead we rely on the fact that we skip over dead devices
4428 * before issuing I/O to them.
4430 return (vd
->vdev_state
< VDEV_STATE_DEGRADED
||
4431 vd
->vdev_ops
== &vdev_hole_ops
||
4432 vd
->vdev_ops
== &vdev_missing_ops
);
4436 vdev_readable(vdev_t
*vd
)
4438 return (!vdev_is_dead(vd
) && !vd
->vdev_cant_read
);
4442 vdev_writeable(vdev_t
*vd
)
4444 return (!vdev_is_dead(vd
) && !vd
->vdev_cant_write
&&
4445 vdev_is_concrete(vd
));
4449 vdev_allocatable(vdev_t
*vd
)
4451 uint64_t state
= vd
->vdev_state
;
4454 * We currently allow allocations from vdevs which may be in the
4455 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4456 * fails to reopen then we'll catch it later when we're holding
4457 * the proper locks. Note that we have to get the vdev state
4458 * in a local variable because although it changes atomically,
4459 * we're asking two separate questions about it.
4461 return (!(state
< VDEV_STATE_DEGRADED
&& state
!= VDEV_STATE_CLOSED
) &&
4462 !vd
->vdev_cant_write
&& vdev_is_concrete(vd
) &&
4463 vd
->vdev_mg
->mg_initialized
);
4467 vdev_accessible(vdev_t
*vd
, zio_t
*zio
)
4469 ASSERT(zio
->io_vd
== vd
);
4471 if (vdev_is_dead(vd
) || vd
->vdev_remove_wanted
)
4474 if (zio
->io_type
== ZIO_TYPE_READ
)
4475 return (!vd
->vdev_cant_read
);
4477 if (zio
->io_type
== ZIO_TYPE_WRITE
)
4478 return (!vd
->vdev_cant_write
);
4484 vdev_get_child_stat(vdev_t
*cvd
, vdev_stat_t
*vs
, vdev_stat_t
*cvs
)
4487 * Exclude the dRAID spare when aggregating to avoid double counting
4488 * the ops and bytes. These IOs are counted by the physical leaves.
4490 if (cvd
->vdev_ops
== &vdev_draid_spare_ops
)
4493 for (int t
= 0; t
< VS_ZIO_TYPES
; t
++) {
4494 vs
->vs_ops
[t
] += cvs
->vs_ops
[t
];
4495 vs
->vs_bytes
[t
] += cvs
->vs_bytes
[t
];
4498 cvs
->vs_scan_removing
= cvd
->vdev_removing
;
4502 * Get extended stats
4505 vdev_get_child_stat_ex(vdev_t
*cvd
, vdev_stat_ex_t
*vsx
, vdev_stat_ex_t
*cvsx
)
4510 for (t
= 0; t
< ZIO_TYPES
; t
++) {
4511 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_disk_histo
[0]); b
++)
4512 vsx
->vsx_disk_histo
[t
][b
] += cvsx
->vsx_disk_histo
[t
][b
];
4514 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_total_histo
[0]); b
++) {
4515 vsx
->vsx_total_histo
[t
][b
] +=
4516 cvsx
->vsx_total_histo
[t
][b
];
4520 for (t
= 0; t
< ZIO_PRIORITY_NUM_QUEUEABLE
; t
++) {
4521 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_queue_histo
[0]); b
++) {
4522 vsx
->vsx_queue_histo
[t
][b
] +=
4523 cvsx
->vsx_queue_histo
[t
][b
];
4525 vsx
->vsx_active_queue
[t
] += cvsx
->vsx_active_queue
[t
];
4526 vsx
->vsx_pend_queue
[t
] += cvsx
->vsx_pend_queue
[t
];
4528 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_ind_histo
[0]); b
++)
4529 vsx
->vsx_ind_histo
[t
][b
] += cvsx
->vsx_ind_histo
[t
][b
];
4531 for (b
= 0; b
< ARRAY_SIZE(vsx
->vsx_agg_histo
[0]); b
++)
4532 vsx
->vsx_agg_histo
[t
][b
] += cvsx
->vsx_agg_histo
[t
][b
];
4538 vdev_is_spacemap_addressable(vdev_t
*vd
)
4540 if (spa_feature_is_active(vd
->vdev_spa
, SPA_FEATURE_SPACEMAP_V2
))
4544 * If double-word space map entries are not enabled we assume
4545 * 47 bits of the space map entry are dedicated to the entry's
4546 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4547 * to calculate the maximum address that can be described by a
4548 * space map entry for the given device.
4550 uint64_t shift
= vd
->vdev_ashift
+ SM_OFFSET_BITS
;
4552 if (shift
>= 63) /* detect potential overflow */
4555 return (vd
->vdev_asize
< (1ULL << shift
));
4559 * Get statistics for the given vdev.
4562 vdev_get_stats_ex_impl(vdev_t
*vd
, vdev_stat_t
*vs
, vdev_stat_ex_t
*vsx
)
4566 * If we're getting stats on the root vdev, aggregate the I/O counts
4567 * over all top-level vdevs (i.e. the direct children of the root).
4569 if (!vd
->vdev_ops
->vdev_op_leaf
) {
4571 memset(vs
->vs_ops
, 0, sizeof (vs
->vs_ops
));
4572 memset(vs
->vs_bytes
, 0, sizeof (vs
->vs_bytes
));
4575 memset(vsx
, 0, sizeof (*vsx
));
4577 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
4578 vdev_t
*cvd
= vd
->vdev_child
[c
];
4579 vdev_stat_t
*cvs
= &cvd
->vdev_stat
;
4580 vdev_stat_ex_t
*cvsx
= &cvd
->vdev_stat_ex
;
4582 vdev_get_stats_ex_impl(cvd
, cvs
, cvsx
);
4584 vdev_get_child_stat(cvd
, vs
, cvs
);
4586 vdev_get_child_stat_ex(cvd
, vsx
, cvsx
);
4590 * We're a leaf. Just copy our ZIO active queue stats in. The
4591 * other leaf stats are updated in vdev_stat_update().
4596 memcpy(vsx
, &vd
->vdev_stat_ex
, sizeof (vd
->vdev_stat_ex
));
4598 for (t
= 0; t
< ARRAY_SIZE(vd
->vdev_queue
.vq_class
); t
++) {
4599 vsx
->vsx_active_queue
[t
] =
4600 vd
->vdev_queue
.vq_class
[t
].vqc_active
;
4601 vsx
->vsx_pend_queue
[t
] = avl_numnodes(
4602 &vd
->vdev_queue
.vq_class
[t
].vqc_queued_tree
);
4608 vdev_get_stats_ex(vdev_t
*vd
, vdev_stat_t
*vs
, vdev_stat_ex_t
*vsx
)
4610 vdev_t
*tvd
= vd
->vdev_top
;
4611 mutex_enter(&vd
->vdev_stat_lock
);
4613 memcpy(vs
, &vd
->vdev_stat
, sizeof (*vs
));
4614 vs
->vs_timestamp
= gethrtime() - vs
->vs_timestamp
;
4615 vs
->vs_state
= vd
->vdev_state
;
4616 vs
->vs_rsize
= vdev_get_min_asize(vd
);
4618 if (vd
->vdev_ops
->vdev_op_leaf
) {
4619 vs
->vs_pspace
= vd
->vdev_psize
;
4620 vs
->vs_rsize
+= VDEV_LABEL_START_SIZE
+
4621 VDEV_LABEL_END_SIZE
;
4623 * Report initializing progress. Since we don't
4624 * have the initializing locks held, this is only
4625 * an estimate (although a fairly accurate one).
4627 vs
->vs_initialize_bytes_done
=
4628 vd
->vdev_initialize_bytes_done
;
4629 vs
->vs_initialize_bytes_est
=
4630 vd
->vdev_initialize_bytes_est
;
4631 vs
->vs_initialize_state
= vd
->vdev_initialize_state
;
4632 vs
->vs_initialize_action_time
=
4633 vd
->vdev_initialize_action_time
;
4636 * Report manual TRIM progress. Since we don't have
4637 * the manual TRIM locks held, this is only an
4638 * estimate (although fairly accurate one).
4640 vs
->vs_trim_notsup
= !vd
->vdev_has_trim
;
4641 vs
->vs_trim_bytes_done
= vd
->vdev_trim_bytes_done
;
4642 vs
->vs_trim_bytes_est
= vd
->vdev_trim_bytes_est
;
4643 vs
->vs_trim_state
= vd
->vdev_trim_state
;
4644 vs
->vs_trim_action_time
= vd
->vdev_trim_action_time
;
4646 /* Set when there is a deferred resilver. */
4647 vs
->vs_resilver_deferred
= vd
->vdev_resilver_deferred
;
4651 * Report expandable space on top-level, non-auxiliary devices
4652 * only. The expandable space is reported in terms of metaslab
4653 * sized units since that determines how much space the pool
4656 if (vd
->vdev_aux
== NULL
&& tvd
!= NULL
) {
4657 vs
->vs_esize
= P2ALIGN(
4658 vd
->vdev_max_asize
- vd
->vdev_asize
,
4659 1ULL << tvd
->vdev_ms_shift
);
4662 vs
->vs_configured_ashift
= vd
->vdev_top
!= NULL
4663 ? vd
->vdev_top
->vdev_ashift
: vd
->vdev_ashift
;
4664 vs
->vs_logical_ashift
= vd
->vdev_logical_ashift
;
4665 if (vd
->vdev_physical_ashift
<= ASHIFT_MAX
)
4666 vs
->vs_physical_ashift
= vd
->vdev_physical_ashift
;
4668 vs
->vs_physical_ashift
= 0;
4671 * Report fragmentation and rebuild progress for top-level,
4672 * non-auxiliary, concrete devices.
4674 if (vd
->vdev_aux
== NULL
&& vd
== vd
->vdev_top
&&
4675 vdev_is_concrete(vd
)) {
4677 * The vdev fragmentation rating doesn't take into
4678 * account the embedded slog metaslab (vdev_log_mg).
4679 * Since it's only one metaslab, it would have a tiny
4680 * impact on the overall fragmentation.
4682 vs
->vs_fragmentation
= (vd
->vdev_mg
!= NULL
) ?
4683 vd
->vdev_mg
->mg_fragmentation
: 0;
4685 vs
->vs_noalloc
= MAX(vd
->vdev_noalloc
,
4686 tvd
? tvd
->vdev_noalloc
: 0);
4689 vdev_get_stats_ex_impl(vd
, vs
, vsx
);
4690 mutex_exit(&vd
->vdev_stat_lock
);
4694 vdev_get_stats(vdev_t
*vd
, vdev_stat_t
*vs
)
4696 return (vdev_get_stats_ex(vd
, vs
, NULL
));
4700 vdev_clear_stats(vdev_t
*vd
)
4702 mutex_enter(&vd
->vdev_stat_lock
);
4703 vd
->vdev_stat
.vs_space
= 0;
4704 vd
->vdev_stat
.vs_dspace
= 0;
4705 vd
->vdev_stat
.vs_alloc
= 0;
4706 mutex_exit(&vd
->vdev_stat_lock
);
4710 vdev_scan_stat_init(vdev_t
*vd
)
4712 vdev_stat_t
*vs
= &vd
->vdev_stat
;
4714 for (int c
= 0; c
< vd
->vdev_children
; c
++)
4715 vdev_scan_stat_init(vd
->vdev_child
[c
]);
4717 mutex_enter(&vd
->vdev_stat_lock
);
4718 vs
->vs_scan_processed
= 0;
4719 mutex_exit(&vd
->vdev_stat_lock
);
4723 vdev_stat_update(zio_t
*zio
, uint64_t psize
)
4725 spa_t
*spa
= zio
->io_spa
;
4726 vdev_t
*rvd
= spa
->spa_root_vdev
;
4727 vdev_t
*vd
= zio
->io_vd
? zio
->io_vd
: rvd
;
4729 uint64_t txg
= zio
->io_txg
;
4730 /* Suppress ASAN false positive */
4731 #ifdef __SANITIZE_ADDRESS__
4732 vdev_stat_t
*vs
= vd
? &vd
->vdev_stat
: NULL
;
4733 vdev_stat_ex_t
*vsx
= vd
? &vd
->vdev_stat_ex
: NULL
;
4735 vdev_stat_t
*vs
= &vd
->vdev_stat
;
4736 vdev_stat_ex_t
*vsx
= &vd
->vdev_stat_ex
;
4738 zio_type_t type
= zio
->io_type
;
4739 int flags
= zio
->io_flags
;
4742 * If this i/o is a gang leader, it didn't do any actual work.
4744 if (zio
->io_gang_tree
)
4747 if (zio
->io_error
== 0) {
4749 * If this is a root i/o, don't count it -- we've already
4750 * counted the top-level vdevs, and vdev_get_stats() will
4751 * aggregate them when asked. This reduces contention on
4752 * the root vdev_stat_lock and implicitly handles blocks
4753 * that compress away to holes, for which there is no i/o.
4754 * (Holes never create vdev children, so all the counters
4755 * remain zero, which is what we want.)
4757 * Note: this only applies to successful i/o (io_error == 0)
4758 * because unlike i/o counts, errors are not additive.
4759 * When reading a ditto block, for example, failure of
4760 * one top-level vdev does not imply a root-level error.
4765 ASSERT(vd
== zio
->io_vd
);
4767 if (flags
& ZIO_FLAG_IO_BYPASS
)
4770 mutex_enter(&vd
->vdev_stat_lock
);
4772 if (flags
& ZIO_FLAG_IO_REPAIR
) {
4774 * Repair is the result of a resilver issued by the
4775 * scan thread (spa_sync).
4777 if (flags
& ZIO_FLAG_SCAN_THREAD
) {
4778 dsl_scan_t
*scn
= spa
->spa_dsl_pool
->dp_scan
;
4779 dsl_scan_phys_t
*scn_phys
= &scn
->scn_phys
;
4780 uint64_t *processed
= &scn_phys
->scn_processed
;
4782 if (vd
->vdev_ops
->vdev_op_leaf
)
4783 atomic_add_64(processed
, psize
);
4784 vs
->vs_scan_processed
+= psize
;
4788 * Repair is the result of a rebuild issued by the
4789 * rebuild thread (vdev_rebuild_thread). To avoid
4790 * double counting repaired bytes the virtual dRAID
4791 * spare vdev is excluded from the processed bytes.
4793 if (zio
->io_priority
== ZIO_PRIORITY_REBUILD
) {
4794 vdev_t
*tvd
= vd
->vdev_top
;
4795 vdev_rebuild_t
*vr
= &tvd
->vdev_rebuild_config
;
4796 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
4797 uint64_t *rebuilt
= &vrp
->vrp_bytes_rebuilt
;
4799 if (vd
->vdev_ops
->vdev_op_leaf
&&
4800 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
4801 atomic_add_64(rebuilt
, psize
);
4803 vs
->vs_rebuild_processed
+= psize
;
4806 if (flags
& ZIO_FLAG_SELF_HEAL
)
4807 vs
->vs_self_healed
+= psize
;
4811 * The bytes/ops/histograms are recorded at the leaf level and
4812 * aggregated into the higher level vdevs in vdev_get_stats().
4814 if (vd
->vdev_ops
->vdev_op_leaf
&&
4815 (zio
->io_priority
< ZIO_PRIORITY_NUM_QUEUEABLE
)) {
4816 zio_type_t vs_type
= type
;
4817 zio_priority_t priority
= zio
->io_priority
;
4820 * TRIM ops and bytes are reported to user space as
4821 * ZIO_TYPE_IOCTL. This is done to preserve the
4822 * vdev_stat_t structure layout for user space.
4824 if (type
== ZIO_TYPE_TRIM
)
4825 vs_type
= ZIO_TYPE_IOCTL
;
4828 * Solely for the purposes of 'zpool iostat -lqrw'
4829 * reporting use the priority to categorize the IO.
4830 * Only the following are reported to user space:
4832 * ZIO_PRIORITY_SYNC_READ,
4833 * ZIO_PRIORITY_SYNC_WRITE,
4834 * ZIO_PRIORITY_ASYNC_READ,
4835 * ZIO_PRIORITY_ASYNC_WRITE,
4836 * ZIO_PRIORITY_SCRUB,
4837 * ZIO_PRIORITY_TRIM,
4838 * ZIO_PRIORITY_REBUILD.
4840 if (priority
== ZIO_PRIORITY_INITIALIZING
) {
4841 ASSERT3U(type
, ==, ZIO_TYPE_WRITE
);
4842 priority
= ZIO_PRIORITY_ASYNC_WRITE
;
4843 } else if (priority
== ZIO_PRIORITY_REMOVAL
) {
4844 priority
= ((type
== ZIO_TYPE_WRITE
) ?
4845 ZIO_PRIORITY_ASYNC_WRITE
:
4846 ZIO_PRIORITY_ASYNC_READ
);
4849 vs
->vs_ops
[vs_type
]++;
4850 vs
->vs_bytes
[vs_type
] += psize
;
4852 if (flags
& ZIO_FLAG_DELEGATED
) {
4853 vsx
->vsx_agg_histo
[priority
]
4854 [RQ_HISTO(zio
->io_size
)]++;
4856 vsx
->vsx_ind_histo
[priority
]
4857 [RQ_HISTO(zio
->io_size
)]++;
4860 if (zio
->io_delta
&& zio
->io_delay
) {
4861 vsx
->vsx_queue_histo
[priority
]
4862 [L_HISTO(zio
->io_delta
- zio
->io_delay
)]++;
4863 vsx
->vsx_disk_histo
[type
]
4864 [L_HISTO(zio
->io_delay
)]++;
4865 vsx
->vsx_total_histo
[type
]
4866 [L_HISTO(zio
->io_delta
)]++;
4870 mutex_exit(&vd
->vdev_stat_lock
);
4874 if (flags
& ZIO_FLAG_SPECULATIVE
)
4878 * If this is an I/O error that is going to be retried, then ignore the
4879 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4880 * hard errors, when in reality they can happen for any number of
4881 * innocuous reasons (bus resets, MPxIO link failure, etc).
4883 if (zio
->io_error
== EIO
&&
4884 !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
))
4888 * Intent logs writes won't propagate their error to the root
4889 * I/O so don't mark these types of failures as pool-level
4892 if (zio
->io_vd
== NULL
&& (zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
))
4895 if (type
== ZIO_TYPE_WRITE
&& txg
!= 0 &&
4896 (!(flags
& ZIO_FLAG_IO_REPAIR
) ||
4897 (flags
& ZIO_FLAG_SCAN_THREAD
) ||
4898 spa
->spa_claiming
)) {
4900 * This is either a normal write (not a repair), or it's
4901 * a repair induced by the scrub thread, or it's a repair
4902 * made by zil_claim() during spa_load() in the first txg.
4903 * In the normal case, we commit the DTL change in the same
4904 * txg as the block was born. In the scrub-induced repair
4905 * case, we know that scrubs run in first-pass syncing context,
4906 * so we commit the DTL change in spa_syncing_txg(spa).
4907 * In the zil_claim() case, we commit in spa_first_txg(spa).
4909 * We currently do not make DTL entries for failed spontaneous
4910 * self-healing writes triggered by normal (non-scrubbing)
4911 * reads, because we have no transactional context in which to
4912 * do so -- and it's not clear that it'd be desirable anyway.
4914 if (vd
->vdev_ops
->vdev_op_leaf
) {
4915 uint64_t commit_txg
= txg
;
4916 if (flags
& ZIO_FLAG_SCAN_THREAD
) {
4917 ASSERT(flags
& ZIO_FLAG_IO_REPAIR
);
4918 ASSERT(spa_sync_pass(spa
) == 1);
4919 vdev_dtl_dirty(vd
, DTL_SCRUB
, txg
, 1);
4920 commit_txg
= spa_syncing_txg(spa
);
4921 } else if (spa
->spa_claiming
) {
4922 ASSERT(flags
& ZIO_FLAG_IO_REPAIR
);
4923 commit_txg
= spa_first_txg(spa
);
4925 ASSERT(commit_txg
>= spa_syncing_txg(spa
));
4926 if (vdev_dtl_contains(vd
, DTL_MISSING
, txg
, 1))
4928 for (pvd
= vd
; pvd
!= rvd
; pvd
= pvd
->vdev_parent
)
4929 vdev_dtl_dirty(pvd
, DTL_PARTIAL
, txg
, 1);
4930 vdev_dirty(vd
->vdev_top
, VDD_DTL
, vd
, commit_txg
);
4933 vdev_dtl_dirty(vd
, DTL_MISSING
, txg
, 1);
4938 vdev_deflated_space(vdev_t
*vd
, int64_t space
)
4940 ASSERT((space
& (SPA_MINBLOCKSIZE
-1)) == 0);
4941 ASSERT(vd
->vdev_deflate_ratio
!= 0 || vd
->vdev_isl2cache
);
4943 return ((space
>> SPA_MINBLOCKSHIFT
) * vd
->vdev_deflate_ratio
);
4947 * Update the in-core space usage stats for this vdev, its metaslab class,
4948 * and the root vdev.
4951 vdev_space_update(vdev_t
*vd
, int64_t alloc_delta
, int64_t defer_delta
,
4952 int64_t space_delta
)
4955 int64_t dspace_delta
;
4956 spa_t
*spa
= vd
->vdev_spa
;
4957 vdev_t
*rvd
= spa
->spa_root_vdev
;
4959 ASSERT(vd
== vd
->vdev_top
);
4962 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4963 * factor. We must calculate this here and not at the root vdev
4964 * because the root vdev's psize-to-asize is simply the max of its
4965 * children's, thus not accurate enough for us.
4967 dspace_delta
= vdev_deflated_space(vd
, space_delta
);
4969 mutex_enter(&vd
->vdev_stat_lock
);
4970 /* ensure we won't underflow */
4971 if (alloc_delta
< 0) {
4972 ASSERT3U(vd
->vdev_stat
.vs_alloc
, >=, -alloc_delta
);
4975 vd
->vdev_stat
.vs_alloc
+= alloc_delta
;
4976 vd
->vdev_stat
.vs_space
+= space_delta
;
4977 vd
->vdev_stat
.vs_dspace
+= dspace_delta
;
4978 mutex_exit(&vd
->vdev_stat_lock
);
4980 /* every class but log contributes to root space stats */
4981 if (vd
->vdev_mg
!= NULL
&& !vd
->vdev_islog
) {
4982 ASSERT(!vd
->vdev_isl2cache
);
4983 mutex_enter(&rvd
->vdev_stat_lock
);
4984 rvd
->vdev_stat
.vs_alloc
+= alloc_delta
;
4985 rvd
->vdev_stat
.vs_space
+= space_delta
;
4986 rvd
->vdev_stat
.vs_dspace
+= dspace_delta
;
4987 mutex_exit(&rvd
->vdev_stat_lock
);
4989 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4993 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4994 * so that it will be written out next time the vdev configuration is synced.
4995 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4998 vdev_config_dirty(vdev_t
*vd
)
5000 spa_t
*spa
= vd
->vdev_spa
;
5001 vdev_t
*rvd
= spa
->spa_root_vdev
;
5004 ASSERT(spa_writeable(spa
));
5007 * If this is an aux vdev (as with l2cache and spare devices), then we
5008 * update the vdev config manually and set the sync flag.
5010 if (vd
->vdev_aux
!= NULL
) {
5011 spa_aux_vdev_t
*sav
= vd
->vdev_aux
;
5015 for (c
= 0; c
< sav
->sav_count
; c
++) {
5016 if (sav
->sav_vdevs
[c
] == vd
)
5020 if (c
== sav
->sav_count
) {
5022 * We're being removed. There's nothing more to do.
5024 ASSERT(sav
->sav_sync
== B_TRUE
);
5028 sav
->sav_sync
= B_TRUE
;
5030 if (nvlist_lookup_nvlist_array(sav
->sav_config
,
5031 ZPOOL_CONFIG_L2CACHE
, &aux
, &naux
) != 0) {
5032 VERIFY(nvlist_lookup_nvlist_array(sav
->sav_config
,
5033 ZPOOL_CONFIG_SPARES
, &aux
, &naux
) == 0);
5039 * Setting the nvlist in the middle if the array is a little
5040 * sketchy, but it will work.
5042 nvlist_free(aux
[c
]);
5043 aux
[c
] = vdev_config_generate(spa
, vd
, B_TRUE
, 0);
5049 * The dirty list is protected by the SCL_CONFIG lock. The caller
5050 * must either hold SCL_CONFIG as writer, or must be the sync thread
5051 * (which holds SCL_CONFIG as reader). There's only one sync thread,
5052 * so this is sufficient to ensure mutual exclusion.
5054 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_WRITER
) ||
5055 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5056 spa_config_held(spa
, SCL_CONFIG
, RW_READER
)));
5059 for (c
= 0; c
< rvd
->vdev_children
; c
++)
5060 vdev_config_dirty(rvd
->vdev_child
[c
]);
5062 ASSERT(vd
== vd
->vdev_top
);
5064 if (!list_link_active(&vd
->vdev_config_dirty_node
) &&
5065 vdev_is_concrete(vd
)) {
5066 list_insert_head(&spa
->spa_config_dirty_list
, vd
);
5072 vdev_config_clean(vdev_t
*vd
)
5074 spa_t
*spa
= vd
->vdev_spa
;
5076 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_WRITER
) ||
5077 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5078 spa_config_held(spa
, SCL_CONFIG
, RW_READER
)));
5080 ASSERT(list_link_active(&vd
->vdev_config_dirty_node
));
5081 list_remove(&spa
->spa_config_dirty_list
, vd
);
5085 * Mark a top-level vdev's state as dirty, so that the next pass of
5086 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
5087 * the state changes from larger config changes because they require
5088 * much less locking, and are often needed for administrative actions.
5091 vdev_state_dirty(vdev_t
*vd
)
5093 spa_t
*spa
= vd
->vdev_spa
;
5095 ASSERT(spa_writeable(spa
));
5096 ASSERT(vd
== vd
->vdev_top
);
5099 * The state list is protected by the SCL_STATE lock. The caller
5100 * must either hold SCL_STATE as writer, or must be the sync thread
5101 * (which holds SCL_STATE as reader). There's only one sync thread,
5102 * so this is sufficient to ensure mutual exclusion.
5104 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_WRITER
) ||
5105 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5106 spa_config_held(spa
, SCL_STATE
, RW_READER
)));
5108 if (!list_link_active(&vd
->vdev_state_dirty_node
) &&
5109 vdev_is_concrete(vd
))
5110 list_insert_head(&spa
->spa_state_dirty_list
, vd
);
5114 vdev_state_clean(vdev_t
*vd
)
5116 spa_t
*spa
= vd
->vdev_spa
;
5118 ASSERT(spa_config_held(spa
, SCL_STATE
, RW_WRITER
) ||
5119 (dsl_pool_sync_context(spa_get_dsl(spa
)) &&
5120 spa_config_held(spa
, SCL_STATE
, RW_READER
)));
5122 ASSERT(list_link_active(&vd
->vdev_state_dirty_node
));
5123 list_remove(&spa
->spa_state_dirty_list
, vd
);
5127 * Propagate vdev state up from children to parent.
5130 vdev_propagate_state(vdev_t
*vd
)
5132 spa_t
*spa
= vd
->vdev_spa
;
5133 vdev_t
*rvd
= spa
->spa_root_vdev
;
5134 int degraded
= 0, faulted
= 0;
5138 if (vd
->vdev_children
> 0) {
5139 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5140 child
= vd
->vdev_child
[c
];
5143 * Don't factor holes or indirect vdevs into the
5146 if (!vdev_is_concrete(child
))
5149 if (!vdev_readable(child
) ||
5150 (!vdev_writeable(child
) && spa_writeable(spa
))) {
5152 * Root special: if there is a top-level log
5153 * device, treat the root vdev as if it were
5156 if (child
->vdev_islog
&& vd
== rvd
)
5160 } else if (child
->vdev_state
<= VDEV_STATE_DEGRADED
) {
5164 if (child
->vdev_stat
.vs_aux
== VDEV_AUX_CORRUPT_DATA
)
5168 vd
->vdev_ops
->vdev_op_state_change(vd
, faulted
, degraded
);
5171 * Root special: if there is a top-level vdev that cannot be
5172 * opened due to corrupted metadata, then propagate the root
5173 * vdev's aux state as 'corrupt' rather than 'insufficient
5176 if (corrupted
&& vd
== rvd
&&
5177 rvd
->vdev_state
== VDEV_STATE_CANT_OPEN
)
5178 vdev_set_state(rvd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
5179 VDEV_AUX_CORRUPT_DATA
);
5182 if (vd
->vdev_parent
)
5183 vdev_propagate_state(vd
->vdev_parent
);
5187 * Set a vdev's state. If this is during an open, we don't update the parent
5188 * state, because we're in the process of opening children depth-first.
5189 * Otherwise, we propagate the change to the parent.
5191 * If this routine places a device in a faulted state, an appropriate ereport is
5195 vdev_set_state(vdev_t
*vd
, boolean_t isopen
, vdev_state_t state
, vdev_aux_t aux
)
5197 uint64_t save_state
;
5198 spa_t
*spa
= vd
->vdev_spa
;
5200 if (state
== vd
->vdev_state
) {
5202 * Since vdev_offline() code path is already in an offline
5203 * state we can miss a statechange event to OFFLINE. Check
5204 * the previous state to catch this condition.
5206 if (vd
->vdev_ops
->vdev_op_leaf
&&
5207 (state
== VDEV_STATE_OFFLINE
) &&
5208 (vd
->vdev_prevstate
>= VDEV_STATE_FAULTED
)) {
5209 /* post an offline state change */
5210 zfs_post_state_change(spa
, vd
, vd
->vdev_prevstate
);
5212 vd
->vdev_stat
.vs_aux
= aux
;
5216 save_state
= vd
->vdev_state
;
5218 vd
->vdev_state
= state
;
5219 vd
->vdev_stat
.vs_aux
= aux
;
5222 * If we are setting the vdev state to anything but an open state, then
5223 * always close the underlying device unless the device has requested
5224 * a delayed close (i.e. we're about to remove or fault the device).
5225 * Otherwise, we keep accessible but invalid devices open forever.
5226 * We don't call vdev_close() itself, because that implies some extra
5227 * checks (offline, etc) that we don't want here. This is limited to
5228 * leaf devices, because otherwise closing the device will affect other
5231 if (!vd
->vdev_delayed_close
&& vdev_is_dead(vd
) &&
5232 vd
->vdev_ops
->vdev_op_leaf
)
5233 vd
->vdev_ops
->vdev_op_close(vd
);
5235 if (vd
->vdev_removed
&&
5236 state
== VDEV_STATE_CANT_OPEN
&&
5237 (aux
== VDEV_AUX_OPEN_FAILED
|| vd
->vdev_checkremove
)) {
5239 * If the previous state is set to VDEV_STATE_REMOVED, then this
5240 * device was previously marked removed and someone attempted to
5241 * reopen it. If this failed due to a nonexistent device, then
5242 * keep the device in the REMOVED state. We also let this be if
5243 * it is one of our special test online cases, which is only
5244 * attempting to online the device and shouldn't generate an FMA
5247 vd
->vdev_state
= VDEV_STATE_REMOVED
;
5248 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NONE
;
5249 } else if (state
== VDEV_STATE_REMOVED
) {
5250 vd
->vdev_removed
= B_TRUE
;
5251 } else if (state
== VDEV_STATE_CANT_OPEN
) {
5253 * If we fail to open a vdev during an import or recovery, we
5254 * mark it as "not available", which signifies that it was
5255 * never there to begin with. Failure to open such a device
5256 * is not considered an error.
5258 if ((spa_load_state(spa
) == SPA_LOAD_IMPORT
||
5259 spa_load_state(spa
) == SPA_LOAD_RECOVER
) &&
5260 vd
->vdev_ops
->vdev_op_leaf
)
5261 vd
->vdev_not_present
= 1;
5264 * Post the appropriate ereport. If the 'prevstate' field is
5265 * set to something other than VDEV_STATE_UNKNOWN, it indicates
5266 * that this is part of a vdev_reopen(). In this case, we don't
5267 * want to post the ereport if the device was already in the
5268 * CANT_OPEN state beforehand.
5270 * If the 'checkremove' flag is set, then this is an attempt to
5271 * online the device in response to an insertion event. If we
5272 * hit this case, then we have detected an insertion event for a
5273 * faulted or offline device that wasn't in the removed state.
5274 * In this scenario, we don't post an ereport because we are
5275 * about to replace the device, or attempt an online with
5276 * vdev_forcefault, which will generate the fault for us.
5278 if ((vd
->vdev_prevstate
!= state
|| vd
->vdev_forcefault
) &&
5279 !vd
->vdev_not_present
&& !vd
->vdev_checkremove
&&
5280 vd
!= spa
->spa_root_vdev
) {
5284 case VDEV_AUX_OPEN_FAILED
:
5285 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED
;
5287 case VDEV_AUX_CORRUPT_DATA
:
5288 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA
;
5290 case VDEV_AUX_NO_REPLICAS
:
5291 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS
;
5293 case VDEV_AUX_BAD_GUID_SUM
:
5294 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM
;
5296 case VDEV_AUX_TOO_SMALL
:
5297 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL
;
5299 case VDEV_AUX_BAD_LABEL
:
5300 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL
;
5302 case VDEV_AUX_BAD_ASHIFT
:
5303 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT
;
5306 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN
;
5309 (void) zfs_ereport_post(class, spa
, vd
, NULL
, NULL
,
5313 /* Erase any notion of persistent removed state */
5314 vd
->vdev_removed
= B_FALSE
;
5316 vd
->vdev_removed
= B_FALSE
;
5320 * Notify ZED of any significant state-change on a leaf vdev.
5323 if (vd
->vdev_ops
->vdev_op_leaf
) {
5324 /* preserve original state from a vdev_reopen() */
5325 if ((vd
->vdev_prevstate
!= VDEV_STATE_UNKNOWN
) &&
5326 (vd
->vdev_prevstate
!= vd
->vdev_state
) &&
5327 (save_state
<= VDEV_STATE_CLOSED
))
5328 save_state
= vd
->vdev_prevstate
;
5330 /* filter out state change due to initial vdev_open */
5331 if (save_state
> VDEV_STATE_CLOSED
)
5332 zfs_post_state_change(spa
, vd
, save_state
);
5335 if (!isopen
&& vd
->vdev_parent
)
5336 vdev_propagate_state(vd
->vdev_parent
);
5340 vdev_children_are_offline(vdev_t
*vd
)
5342 ASSERT(!vd
->vdev_ops
->vdev_op_leaf
);
5344 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
5345 if (vd
->vdev_child
[i
]->vdev_state
!= VDEV_STATE_OFFLINE
)
5353 * Check the vdev configuration to ensure that it's capable of supporting
5354 * a root pool. We do not support partial configuration.
5357 vdev_is_bootable(vdev_t
*vd
)
5359 if (!vd
->vdev_ops
->vdev_op_leaf
) {
5360 const char *vdev_type
= vd
->vdev_ops
->vdev_op_type
;
5362 if (strcmp(vdev_type
, VDEV_TYPE_MISSING
) == 0)
5366 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5367 if (!vdev_is_bootable(vd
->vdev_child
[c
]))
5374 vdev_is_concrete(vdev_t
*vd
)
5376 vdev_ops_t
*ops
= vd
->vdev_ops
;
5377 if (ops
== &vdev_indirect_ops
|| ops
== &vdev_hole_ops
||
5378 ops
== &vdev_missing_ops
|| ops
== &vdev_root_ops
) {
5386 * Determine if a log device has valid content. If the vdev was
5387 * removed or faulted in the MOS config then we know that
5388 * the content on the log device has already been written to the pool.
5391 vdev_log_state_valid(vdev_t
*vd
)
5393 if (vd
->vdev_ops
->vdev_op_leaf
&& !vd
->vdev_faulted
&&
5397 for (int c
= 0; c
< vd
->vdev_children
; c
++)
5398 if (vdev_log_state_valid(vd
->vdev_child
[c
]))
5405 * Expand a vdev if possible.
5408 vdev_expand(vdev_t
*vd
, uint64_t txg
)
5410 ASSERT(vd
->vdev_top
== vd
);
5411 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
5412 ASSERT(vdev_is_concrete(vd
));
5414 vdev_set_deflate_ratio(vd
);
5416 if ((vd
->vdev_asize
>> vd
->vdev_ms_shift
) > vd
->vdev_ms_count
&&
5417 vdev_is_concrete(vd
)) {
5418 vdev_metaslab_group_create(vd
);
5419 VERIFY(vdev_metaslab_init(vd
, txg
) == 0);
5420 vdev_config_dirty(vd
);
5428 vdev_split(vdev_t
*vd
)
5430 vdev_t
*cvd
, *pvd
= vd
->vdev_parent
;
5432 VERIFY3U(pvd
->vdev_children
, >, 1);
5434 vdev_remove_child(pvd
, vd
);
5435 vdev_compact_children(pvd
);
5437 ASSERT3P(pvd
->vdev_child
, !=, NULL
);
5439 cvd
= pvd
->vdev_child
[0];
5440 if (pvd
->vdev_children
== 1) {
5441 vdev_remove_parent(cvd
);
5442 cvd
->vdev_splitting
= B_TRUE
;
5444 vdev_propagate_state(cvd
);
5448 vdev_deadman(vdev_t
*vd
, const char *tag
)
5450 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5451 vdev_t
*cvd
= vd
->vdev_child
[c
];
5453 vdev_deadman(cvd
, tag
);
5456 if (vd
->vdev_ops
->vdev_op_leaf
) {
5457 vdev_queue_t
*vq
= &vd
->vdev_queue
;
5459 mutex_enter(&vq
->vq_lock
);
5460 if (avl_numnodes(&vq
->vq_active_tree
) > 0) {
5461 spa_t
*spa
= vd
->vdev_spa
;
5465 zfs_dbgmsg("slow vdev: %s has %lu active IOs",
5466 vd
->vdev_path
, avl_numnodes(&vq
->vq_active_tree
));
5469 * Look at the head of all the pending queues,
5470 * if any I/O has been outstanding for longer than
5471 * the spa_deadman_synctime invoke the deadman logic.
5473 fio
= avl_first(&vq
->vq_active_tree
);
5474 delta
= gethrtime() - fio
->io_timestamp
;
5475 if (delta
> spa_deadman_synctime(spa
))
5476 zio_deadman(fio
, tag
);
5478 mutex_exit(&vq
->vq_lock
);
5483 vdev_defer_resilver(vdev_t
*vd
)
5485 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
5487 vd
->vdev_resilver_deferred
= B_TRUE
;
5488 vd
->vdev_spa
->spa_resilver_deferred
= B_TRUE
;
5492 * Clears the resilver deferred flag on all leaf devs under vd. Returns
5493 * B_TRUE if we have devices that need to be resilvered and are available to
5494 * accept resilver I/Os.
5497 vdev_clear_resilver_deferred(vdev_t
*vd
, dmu_tx_t
*tx
)
5499 boolean_t resilver_needed
= B_FALSE
;
5500 spa_t
*spa
= vd
->vdev_spa
;
5502 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
5503 vdev_t
*cvd
= vd
->vdev_child
[c
];
5504 resilver_needed
|= vdev_clear_resilver_deferred(cvd
, tx
);
5507 if (vd
== spa
->spa_root_vdev
&&
5508 spa_feature_is_active(spa
, SPA_FEATURE_RESILVER_DEFER
)) {
5509 spa_feature_decr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
5510 vdev_config_dirty(vd
);
5511 spa
->spa_resilver_deferred
= B_FALSE
;
5512 return (resilver_needed
);
5515 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
5516 !vd
->vdev_ops
->vdev_op_leaf
)
5517 return (resilver_needed
);
5519 vd
->vdev_resilver_deferred
= B_FALSE
;
5521 return (!vdev_is_dead(vd
) && !vd
->vdev_offline
&&
5522 vdev_resilver_needed(vd
, NULL
, NULL
));
5526 vdev_xlate_is_empty(range_seg64_t
*rs
)
5528 return (rs
->rs_start
== rs
->rs_end
);
5532 * Translate a logical range to the first contiguous physical range for the
5533 * specified vdev_t. This function is initially called with a leaf vdev and
5534 * will walk each parent vdev until it reaches a top-level vdev. Once the
5535 * top-level is reached the physical range is initialized and the recursive
5536 * function begins to unwind. As it unwinds it calls the parent's vdev
5537 * specific translation function to do the real conversion.
5540 vdev_xlate(vdev_t
*vd
, const range_seg64_t
*logical_rs
,
5541 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
5544 * Walk up the vdev tree
5546 if (vd
!= vd
->vdev_top
) {
5547 vdev_xlate(vd
->vdev_parent
, logical_rs
, physical_rs
,
5551 * We've reached the top-level vdev, initialize the physical
5552 * range to the logical range and set an empty remaining
5553 * range then start to unwind.
5555 physical_rs
->rs_start
= logical_rs
->rs_start
;
5556 physical_rs
->rs_end
= logical_rs
->rs_end
;
5558 remain_rs
->rs_start
= logical_rs
->rs_start
;
5559 remain_rs
->rs_end
= logical_rs
->rs_start
;
5564 vdev_t
*pvd
= vd
->vdev_parent
;
5565 ASSERT3P(pvd
, !=, NULL
);
5566 ASSERT3P(pvd
->vdev_ops
->vdev_op_xlate
, !=, NULL
);
5569 * As this recursive function unwinds, translate the logical
5570 * range into its physical and any remaining components by calling
5571 * the vdev specific translate function.
5573 range_seg64_t intermediate
= { 0 };
5574 pvd
->vdev_ops
->vdev_op_xlate(vd
, physical_rs
, &intermediate
, remain_rs
);
5576 physical_rs
->rs_start
= intermediate
.rs_start
;
5577 physical_rs
->rs_end
= intermediate
.rs_end
;
5581 vdev_xlate_walk(vdev_t
*vd
, const range_seg64_t
*logical_rs
,
5582 vdev_xlate_func_t
*func
, void *arg
)
5584 range_seg64_t iter_rs
= *logical_rs
;
5585 range_seg64_t physical_rs
;
5586 range_seg64_t remain_rs
;
5588 while (!vdev_xlate_is_empty(&iter_rs
)) {
5590 vdev_xlate(vd
, &iter_rs
, &physical_rs
, &remain_rs
);
5593 * With raidz and dRAID, it's possible that the logical range
5594 * does not live on this leaf vdev. Only when there is a non-
5595 * zero physical size call the provided function.
5597 if (!vdev_xlate_is_empty(&physical_rs
))
5598 func(arg
, &physical_rs
);
5600 iter_rs
= remain_rs
;
5605 vdev_name(vdev_t
*vd
, char *buf
, int buflen
)
5607 if (vd
->vdev_path
== NULL
) {
5608 if (strcmp(vd
->vdev_ops
->vdev_op_type
, "root") == 0) {
5609 strlcpy(buf
, vd
->vdev_spa
->spa_name
, buflen
);
5610 } else if (!vd
->vdev_ops
->vdev_op_leaf
) {
5611 snprintf(buf
, buflen
, "%s-%llu",
5612 vd
->vdev_ops
->vdev_op_type
,
5613 (u_longlong_t
)vd
->vdev_id
);
5616 strlcpy(buf
, vd
->vdev_path
, buflen
);
5622 * Look at the vdev tree and determine whether any devices are currently being
5626 vdev_replace_in_progress(vdev_t
*vdev
)
5628 ASSERT(spa_config_held(vdev
->vdev_spa
, SCL_ALL
, RW_READER
) != 0);
5630 if (vdev
->vdev_ops
== &vdev_replacing_ops
)
5634 * A 'spare' vdev indicates that we have a replace in progress, unless
5635 * it has exactly two children, and the second, the hot spare, has
5636 * finished being resilvered.
5638 if (vdev
->vdev_ops
== &vdev_spare_ops
&& (vdev
->vdev_children
> 2 ||
5639 !vdev_dtl_empty(vdev
->vdev_child
[1], DTL_MISSING
)))
5642 for (int i
= 0; i
< vdev
->vdev_children
; i
++) {
5643 if (vdev_replace_in_progress(vdev
->vdev_child
[i
]))
5651 * Add a (source=src, propname=propval) list to an nvlist.
5654 vdev_prop_add_list(nvlist_t
*nvl
, const char *propname
, const char *strval
,
5655 uint64_t intval
, zprop_source_t src
)
5659 propval
= fnvlist_alloc();
5660 fnvlist_add_uint64(propval
, ZPROP_SOURCE
, src
);
5663 fnvlist_add_string(propval
, ZPROP_VALUE
, strval
);
5665 fnvlist_add_uint64(propval
, ZPROP_VALUE
, intval
);
5667 fnvlist_add_nvlist(nvl
, propname
, propval
);
5668 nvlist_free(propval
);
5672 vdev_props_set_sync(void *arg
, dmu_tx_t
*tx
)
5675 nvlist_t
*nvp
= arg
;
5676 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
5677 objset_t
*mos
= spa
->spa_meta_objset
;
5678 nvpair_t
*elem
= NULL
;
5682 vdev_guid
= fnvlist_lookup_uint64(nvp
, ZPOOL_VDEV_PROPS_SET_VDEV
);
5683 nvprops
= fnvlist_lookup_nvlist(nvp
, ZPOOL_VDEV_PROPS_SET_PROPS
);
5684 vd
= spa_lookup_by_guid(spa
, vdev_guid
, B_TRUE
);
5686 /* this vdev could get removed while waiting for this sync task */
5690 mutex_enter(&spa
->spa_props_lock
);
5692 while ((elem
= nvlist_next_nvpair(nvprops
, elem
)) != NULL
) {
5693 uint64_t intval
, objid
= 0;
5696 const char *propname
= nvpair_name(elem
);
5697 zprop_type_t proptype
;
5700 * Set vdev property values in the vdev props mos object.
5702 if (vd
->vdev_root_zap
!= 0) {
5703 objid
= vd
->vdev_root_zap
;
5704 } else if (vd
->vdev_top_zap
!= 0) {
5705 objid
= vd
->vdev_top_zap
;
5706 } else if (vd
->vdev_leaf_zap
!= 0) {
5707 objid
= vd
->vdev_leaf_zap
;
5710 * XXX: implement vdev_props_set_check()
5712 panic("vdev not root/top/leaf");
5715 switch (prop
= vdev_name_to_prop(propname
)) {
5716 case VDEV_PROP_USERPROP
:
5717 if (vdev_prop_user(propname
)) {
5718 strval
= fnvpair_value_string(elem
);
5719 if (strlen(strval
) == 0) {
5720 /* remove the property if value == "" */
5721 (void) zap_remove(mos
, objid
, propname
,
5724 VERIFY0(zap_update(mos
, objid
, propname
,
5725 1, strlen(strval
) + 1, strval
, tx
));
5727 spa_history_log_internal(spa
, "vdev set", tx
,
5728 "vdev_guid=%llu: %s=%s",
5729 (u_longlong_t
)vdev_guid
, nvpair_name(elem
),
5734 /* normalize the property name */
5735 propname
= vdev_prop_to_name(prop
);
5736 proptype
= vdev_prop_get_type(prop
);
5738 if (nvpair_type(elem
) == DATA_TYPE_STRING
) {
5739 ASSERT(proptype
== PROP_TYPE_STRING
);
5740 strval
= fnvpair_value_string(elem
);
5741 VERIFY0(zap_update(mos
, objid
, propname
,
5742 1, strlen(strval
) + 1, strval
, tx
));
5743 spa_history_log_internal(spa
, "vdev set", tx
,
5744 "vdev_guid=%llu: %s=%s",
5745 (u_longlong_t
)vdev_guid
, nvpair_name(elem
),
5747 } else if (nvpair_type(elem
) == DATA_TYPE_UINT64
) {
5748 intval
= fnvpair_value_uint64(elem
);
5750 if (proptype
== PROP_TYPE_INDEX
) {
5752 VERIFY0(vdev_prop_index_to_string(
5753 prop
, intval
, &unused
));
5755 VERIFY0(zap_update(mos
, objid
, propname
,
5756 sizeof (uint64_t), 1, &intval
, tx
));
5757 spa_history_log_internal(spa
, "vdev set", tx
,
5758 "vdev_guid=%llu: %s=%lld",
5759 (u_longlong_t
)vdev_guid
,
5760 nvpair_name(elem
), (longlong_t
)intval
);
5762 panic("invalid vdev property type %u",
5769 mutex_exit(&spa
->spa_props_lock
);
5773 vdev_prop_set(vdev_t
*vd
, nvlist_t
*innvl
, nvlist_t
*outnvl
)
5775 spa_t
*spa
= vd
->vdev_spa
;
5776 nvpair_t
*elem
= NULL
;
5783 if (nvlist_lookup_uint64(innvl
, ZPOOL_VDEV_PROPS_SET_VDEV
,
5785 return (SET_ERROR(EINVAL
));
5787 if (nvlist_lookup_nvlist(innvl
, ZPOOL_VDEV_PROPS_SET_PROPS
,
5789 return (SET_ERROR(EINVAL
));
5791 if ((vd
= spa_lookup_by_guid(spa
, vdev_guid
, B_TRUE
)) == NULL
)
5792 return (SET_ERROR(EINVAL
));
5794 while ((elem
= nvlist_next_nvpair(nvprops
, elem
)) != NULL
) {
5795 const char *propname
= nvpair_name(elem
);
5796 vdev_prop_t prop
= vdev_name_to_prop(propname
);
5797 uint64_t intval
= 0;
5798 const char *strval
= NULL
;
5800 if (prop
== VDEV_PROP_USERPROP
&& !vdev_prop_user(propname
)) {
5805 if (vdev_prop_readonly(prop
)) {
5810 /* Special Processing */
5812 case VDEV_PROP_PATH
:
5813 if (vd
->vdev_path
== NULL
) {
5817 if (nvpair_value_string(elem
, &strval
) != 0) {
5821 /* New path must start with /dev/ */
5822 if (strncmp(strval
, "/dev/", 5)) {
5826 error
= spa_vdev_setpath(spa
, vdev_guid
, strval
);
5828 case VDEV_PROP_ALLOCATING
:
5829 if (nvpair_value_uint64(elem
, &intval
) != 0) {
5833 if (intval
!= vd
->vdev_noalloc
)
5836 error
= spa_vdev_noalloc(spa
, vdev_guid
);
5838 error
= spa_vdev_alloc(spa
, vdev_guid
);
5840 case VDEV_PROP_FAILFAST
:
5841 if (nvpair_value_uint64(elem
, &intval
) != 0) {
5845 vd
->vdev_failfast
= intval
& 1;
5847 case VDEV_PROP_CHECKSUM_N
:
5848 if (nvpair_value_uint64(elem
, &intval
) != 0) {
5852 vd
->vdev_checksum_n
= intval
;
5854 case VDEV_PROP_CHECKSUM_T
:
5855 if (nvpair_value_uint64(elem
, &intval
) != 0) {
5859 vd
->vdev_checksum_t
= intval
;
5861 case VDEV_PROP_IO_N
:
5862 if (nvpair_value_uint64(elem
, &intval
) != 0) {
5866 vd
->vdev_io_n
= intval
;
5868 case VDEV_PROP_IO_T
:
5869 if (nvpair_value_uint64(elem
, &intval
) != 0) {
5873 vd
->vdev_io_t
= intval
;
5876 /* Most processing is done in vdev_props_set_sync */
5882 vdev_prop_add_list(outnvl
, propname
, strval
, intval
, 0);
5887 return (dsl_sync_task(spa
->spa_name
, NULL
, vdev_props_set_sync
,
5888 innvl
, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED
));
5892 vdev_prop_get(vdev_t
*vd
, nvlist_t
*innvl
, nvlist_t
*outnvl
)
5894 spa_t
*spa
= vd
->vdev_spa
;
5895 objset_t
*mos
= spa
->spa_meta_objset
;
5899 nvpair_t
*elem
= NULL
;
5900 nvlist_t
*nvprops
= NULL
;
5901 uint64_t intval
= 0;
5902 char *strval
= NULL
;
5903 const char *propname
= NULL
;
5907 ASSERT(mos
!= NULL
);
5909 if (nvlist_lookup_uint64(innvl
, ZPOOL_VDEV_PROPS_GET_VDEV
,
5911 return (SET_ERROR(EINVAL
));
5913 nvlist_lookup_nvlist(innvl
, ZPOOL_VDEV_PROPS_GET_PROPS
, &nvprops
);
5915 if (vd
->vdev_root_zap
!= 0) {
5916 objid
= vd
->vdev_root_zap
;
5917 } else if (vd
->vdev_top_zap
!= 0) {
5918 objid
= vd
->vdev_top_zap
;
5919 } else if (vd
->vdev_leaf_zap
!= 0) {
5920 objid
= vd
->vdev_leaf_zap
;
5922 return (SET_ERROR(EINVAL
));
5926 mutex_enter(&spa
->spa_props_lock
);
5928 if (nvprops
!= NULL
) {
5929 char namebuf
[64] = { 0 };
5931 while ((elem
= nvlist_next_nvpair(nvprops
, elem
)) != NULL
) {
5934 propname
= nvpair_name(elem
);
5935 prop
= vdev_name_to_prop(propname
);
5936 zprop_source_t src
= ZPROP_SRC_DEFAULT
;
5937 uint64_t integer_size
, num_integers
;
5940 /* Special Read-only Properties */
5941 case VDEV_PROP_NAME
:
5942 strval
= vdev_name(vd
, namebuf
,
5946 vdev_prop_add_list(outnvl
, propname
, strval
, 0,
5949 case VDEV_PROP_CAPACITY
:
5951 intval
= (vd
->vdev_stat
.vs_dspace
== 0) ? 0 :
5952 (vd
->vdev_stat
.vs_alloc
* 100 /
5953 vd
->vdev_stat
.vs_dspace
);
5954 vdev_prop_add_list(outnvl
, propname
, NULL
,
5955 intval
, ZPROP_SRC_NONE
);
5957 case VDEV_PROP_STATE
:
5958 vdev_prop_add_list(outnvl
, propname
, NULL
,
5959 vd
->vdev_state
, ZPROP_SRC_NONE
);
5961 case VDEV_PROP_GUID
:
5962 vdev_prop_add_list(outnvl
, propname
, NULL
,
5963 vd
->vdev_guid
, ZPROP_SRC_NONE
);
5965 case VDEV_PROP_ASIZE
:
5966 vdev_prop_add_list(outnvl
, propname
, NULL
,
5967 vd
->vdev_asize
, ZPROP_SRC_NONE
);
5969 case VDEV_PROP_PSIZE
:
5970 vdev_prop_add_list(outnvl
, propname
, NULL
,
5971 vd
->vdev_psize
, ZPROP_SRC_NONE
);
5973 case VDEV_PROP_ASHIFT
:
5974 vdev_prop_add_list(outnvl
, propname
, NULL
,
5975 vd
->vdev_ashift
, ZPROP_SRC_NONE
);
5977 case VDEV_PROP_SIZE
:
5978 vdev_prop_add_list(outnvl
, propname
, NULL
,
5979 vd
->vdev_stat
.vs_dspace
, ZPROP_SRC_NONE
);
5981 case VDEV_PROP_FREE
:
5982 vdev_prop_add_list(outnvl
, propname
, NULL
,
5983 vd
->vdev_stat
.vs_dspace
-
5984 vd
->vdev_stat
.vs_alloc
, ZPROP_SRC_NONE
);
5986 case VDEV_PROP_ALLOCATED
:
5987 vdev_prop_add_list(outnvl
, propname
, NULL
,
5988 vd
->vdev_stat
.vs_alloc
, ZPROP_SRC_NONE
);
5990 case VDEV_PROP_EXPANDSZ
:
5991 vdev_prop_add_list(outnvl
, propname
, NULL
,
5992 vd
->vdev_stat
.vs_esize
, ZPROP_SRC_NONE
);
5994 case VDEV_PROP_FRAGMENTATION
:
5995 vdev_prop_add_list(outnvl
, propname
, NULL
,
5996 vd
->vdev_stat
.vs_fragmentation
,
5999 case VDEV_PROP_PARITY
:
6000 vdev_prop_add_list(outnvl
, propname
, NULL
,
6001 vdev_get_nparity(vd
), ZPROP_SRC_NONE
);
6003 case VDEV_PROP_PATH
:
6004 if (vd
->vdev_path
== NULL
)
6006 vdev_prop_add_list(outnvl
, propname
,
6007 vd
->vdev_path
, 0, ZPROP_SRC_NONE
);
6009 case VDEV_PROP_DEVID
:
6010 if (vd
->vdev_devid
== NULL
)
6012 vdev_prop_add_list(outnvl
, propname
,
6013 vd
->vdev_devid
, 0, ZPROP_SRC_NONE
);
6015 case VDEV_PROP_PHYS_PATH
:
6016 if (vd
->vdev_physpath
== NULL
)
6018 vdev_prop_add_list(outnvl
, propname
,
6019 vd
->vdev_physpath
, 0, ZPROP_SRC_NONE
);
6021 case VDEV_PROP_ENC_PATH
:
6022 if (vd
->vdev_enc_sysfs_path
== NULL
)
6024 vdev_prop_add_list(outnvl
, propname
,
6025 vd
->vdev_enc_sysfs_path
, 0, ZPROP_SRC_NONE
);
6028 if (vd
->vdev_fru
== NULL
)
6030 vdev_prop_add_list(outnvl
, propname
,
6031 vd
->vdev_fru
, 0, ZPROP_SRC_NONE
);
6033 case VDEV_PROP_PARENT
:
6034 if (vd
->vdev_parent
!= NULL
) {
6035 strval
= vdev_name(vd
->vdev_parent
,
6036 namebuf
, sizeof (namebuf
));
6037 vdev_prop_add_list(outnvl
, propname
,
6038 strval
, 0, ZPROP_SRC_NONE
);
6041 case VDEV_PROP_CHILDREN
:
6042 if (vd
->vdev_children
> 0)
6043 strval
= kmem_zalloc(ZAP_MAXVALUELEN
,
6045 for (uint64_t i
= 0; i
< vd
->vdev_children
;
6049 vname
= vdev_name(vd
->vdev_child
[i
],
6050 namebuf
, sizeof (namebuf
));
6052 vname
= "(unknown)";
6053 if (strlen(strval
) > 0)
6054 strlcat(strval
, ",",
6056 strlcat(strval
, vname
, ZAP_MAXVALUELEN
);
6058 if (strval
!= NULL
) {
6059 vdev_prop_add_list(outnvl
, propname
,
6060 strval
, 0, ZPROP_SRC_NONE
);
6061 kmem_free(strval
, ZAP_MAXVALUELEN
);
6064 case VDEV_PROP_NUMCHILDREN
:
6065 vdev_prop_add_list(outnvl
, propname
, NULL
,
6066 vd
->vdev_children
, ZPROP_SRC_NONE
);
6068 case VDEV_PROP_READ_ERRORS
:
6069 vdev_prop_add_list(outnvl
, propname
, NULL
,
6070 vd
->vdev_stat
.vs_read_errors
,
6073 case VDEV_PROP_WRITE_ERRORS
:
6074 vdev_prop_add_list(outnvl
, propname
, NULL
,
6075 vd
->vdev_stat
.vs_write_errors
,
6078 case VDEV_PROP_CHECKSUM_ERRORS
:
6079 vdev_prop_add_list(outnvl
, propname
, NULL
,
6080 vd
->vdev_stat
.vs_checksum_errors
,
6083 case VDEV_PROP_INITIALIZE_ERRORS
:
6084 vdev_prop_add_list(outnvl
, propname
, NULL
,
6085 vd
->vdev_stat
.vs_initialize_errors
,
6088 case VDEV_PROP_OPS_NULL
:
6089 vdev_prop_add_list(outnvl
, propname
, NULL
,
6090 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_NULL
],
6093 case VDEV_PROP_OPS_READ
:
6094 vdev_prop_add_list(outnvl
, propname
, NULL
,
6095 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_READ
],
6098 case VDEV_PROP_OPS_WRITE
:
6099 vdev_prop_add_list(outnvl
, propname
, NULL
,
6100 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_WRITE
],
6103 case VDEV_PROP_OPS_FREE
:
6104 vdev_prop_add_list(outnvl
, propname
, NULL
,
6105 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_FREE
],
6108 case VDEV_PROP_OPS_CLAIM
:
6109 vdev_prop_add_list(outnvl
, propname
, NULL
,
6110 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_CLAIM
],
6113 case VDEV_PROP_OPS_TRIM
:
6115 * TRIM ops and bytes are reported to user
6116 * space as ZIO_TYPE_IOCTL. This is done to
6117 * preserve the vdev_stat_t structure layout
6120 vdev_prop_add_list(outnvl
, propname
, NULL
,
6121 vd
->vdev_stat
.vs_ops
[ZIO_TYPE_IOCTL
],
6124 case VDEV_PROP_BYTES_NULL
:
6125 vdev_prop_add_list(outnvl
, propname
, NULL
,
6126 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_NULL
],
6129 case VDEV_PROP_BYTES_READ
:
6130 vdev_prop_add_list(outnvl
, propname
, NULL
,
6131 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_READ
],
6134 case VDEV_PROP_BYTES_WRITE
:
6135 vdev_prop_add_list(outnvl
, propname
, NULL
,
6136 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_WRITE
],
6139 case VDEV_PROP_BYTES_FREE
:
6140 vdev_prop_add_list(outnvl
, propname
, NULL
,
6141 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_FREE
],
6144 case VDEV_PROP_BYTES_CLAIM
:
6145 vdev_prop_add_list(outnvl
, propname
, NULL
,
6146 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_CLAIM
],
6149 case VDEV_PROP_BYTES_TRIM
:
6151 * TRIM ops and bytes are reported to user
6152 * space as ZIO_TYPE_IOCTL. This is done to
6153 * preserve the vdev_stat_t structure layout
6156 vdev_prop_add_list(outnvl
, propname
, NULL
,
6157 vd
->vdev_stat
.vs_bytes
[ZIO_TYPE_IOCTL
],
6160 case VDEV_PROP_REMOVING
:
6161 vdev_prop_add_list(outnvl
, propname
, NULL
,
6162 vd
->vdev_removing
, ZPROP_SRC_NONE
);
6164 /* Numeric Properites */
6165 case VDEV_PROP_ALLOCATING
:
6166 /* Leaf vdevs cannot have this property */
6167 if (vd
->vdev_mg
== NULL
&&
6168 vd
->vdev_top
!= NULL
) {
6169 src
= ZPROP_SRC_NONE
;
6170 intval
= ZPROP_BOOLEAN_NA
;
6172 err
= vdev_prop_get_int(vd
, prop
,
6174 if (err
&& err
!= ENOENT
)
6178 vdev_prop_default_numeric(prop
))
6179 src
= ZPROP_SRC_DEFAULT
;
6181 src
= ZPROP_SRC_LOCAL
;
6184 vdev_prop_add_list(outnvl
, propname
, NULL
,
6187 case VDEV_PROP_FAILFAST
:
6188 src
= ZPROP_SRC_LOCAL
;
6191 err
= zap_lookup(mos
, objid
, nvpair_name(elem
),
6192 sizeof (uint64_t), 1, &intval
);
6193 if (err
== ENOENT
) {
6194 intval
= vdev_prop_default_numeric(
6200 if (intval
== vdev_prop_default_numeric(prop
))
6201 src
= ZPROP_SRC_DEFAULT
;
6203 vdev_prop_add_list(outnvl
, propname
, strval
,
6206 case VDEV_PROP_CHECKSUM_N
:
6207 case VDEV_PROP_CHECKSUM_T
:
6208 case VDEV_PROP_IO_N
:
6209 case VDEV_PROP_IO_T
:
6210 err
= vdev_prop_get_int(vd
, prop
, &intval
);
6211 if (err
&& err
!= ENOENT
)
6214 if (intval
== vdev_prop_default_numeric(prop
))
6215 src
= ZPROP_SRC_DEFAULT
;
6217 src
= ZPROP_SRC_LOCAL
;
6219 vdev_prop_add_list(outnvl
, propname
, NULL
,
6222 /* Text Properties */
6223 case VDEV_PROP_COMMENT
:
6224 /* Exists in the ZAP below */
6226 case VDEV_PROP_USERPROP
:
6227 /* User Properites */
6228 src
= ZPROP_SRC_LOCAL
;
6230 err
= zap_length(mos
, objid
, nvpair_name(elem
),
6231 &integer_size
, &num_integers
);
6235 switch (integer_size
) {
6237 /* User properties cannot be integers */
6241 /* string property */
6242 strval
= kmem_alloc(num_integers
,
6244 err
= zap_lookup(mos
, objid
,
6245 nvpair_name(elem
), 1,
6246 num_integers
, strval
);
6252 vdev_prop_add_list(outnvl
, propname
,
6254 kmem_free(strval
, num_integers
);
6267 * Get all properties from the MOS vdev property object.
6271 for (zap_cursor_init(&zc
, mos
, objid
);
6272 (err
= zap_cursor_retrieve(&zc
, &za
)) == 0;
6273 zap_cursor_advance(&zc
)) {
6276 zprop_source_t src
= ZPROP_SRC_DEFAULT
;
6277 propname
= za
.za_name
;
6279 switch (za
.za_integer_length
) {
6281 /* We do not allow integer user properties */
6282 /* This is likely an internal value */
6285 /* string property */
6286 strval
= kmem_alloc(za
.za_num_integers
,
6288 err
= zap_lookup(mos
, objid
, za
.za_name
, 1,
6289 za
.za_num_integers
, strval
);
6291 kmem_free(strval
, za
.za_num_integers
);
6294 vdev_prop_add_list(outnvl
, propname
, strval
, 0,
6296 kmem_free(strval
, za
.za_num_integers
);
6303 zap_cursor_fini(&zc
);
6306 mutex_exit(&spa
->spa_props_lock
);
6307 if (err
&& err
!= ENOENT
) {
6314 EXPORT_SYMBOL(vdev_fault
);
6315 EXPORT_SYMBOL(vdev_degrade
);
6316 EXPORT_SYMBOL(vdev_online
);
6317 EXPORT_SYMBOL(vdev_offline
);
6318 EXPORT_SYMBOL(vdev_clear
);
6320 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, default_ms_count
, UINT
, ZMOD_RW
,
6321 "Target number of metaslabs per top-level vdev");
6323 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, default_ms_shift
, UINT
, ZMOD_RW
,
6324 "Default lower limit for metaslab size");
6326 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, max_ms_shift
, UINT
, ZMOD_RW
,
6327 "Default upper limit for metaslab size");
6329 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, min_ms_count
, UINT
, ZMOD_RW
,
6330 "Minimum number of metaslabs per top-level vdev");
6332 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, ms_count_limit
, UINT
, ZMOD_RW
,
6333 "Practical upper limit of total metaslabs per top-level vdev");
6335 ZFS_MODULE_PARAM(zfs
, zfs_
, slow_io_events_per_second
, UINT
, ZMOD_RW
,
6336 "Rate limit slow IO (delay) events to this many per second");
6339 ZFS_MODULE_PARAM(zfs
, zfs_
, checksum_events_per_second
, UINT
, ZMOD_RW
,
6340 "Rate limit checksum events to this many checksum errors per second "
6341 "(do not set below ZED threshold).");
6344 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_ignore_errors
, INT
, ZMOD_RW
,
6345 "Ignore errors during resilver/scrub");
6347 ZFS_MODULE_PARAM(zfs_vdev
, vdev_
, validate_skip
, INT
, ZMOD_RW
,
6348 "Bypass vdev_validate()");
6350 ZFS_MODULE_PARAM(zfs
, zfs_
, nocacheflush
, INT
, ZMOD_RW
,
6351 "Disable cache flushes");
6353 ZFS_MODULE_PARAM(zfs
, zfs_
, embedded_slog_min_ms
, UINT
, ZMOD_RW
,
6354 "Minimum number of metaslabs required to dedicate one for log blocks");
6357 ZFS_MODULE_PARAM_CALL(zfs_vdev
, zfs_vdev_
, min_auto_ashift
,
6358 param_set_min_auto_ashift
, param_get_uint
, ZMOD_RW
,
6359 "Minimum ashift used when creating new top-level vdevs");
6361 ZFS_MODULE_PARAM_CALL(zfs_vdev
, zfs_vdev_
, max_auto_ashift
,
6362 param_set_max_auto_ashift
, param_get_uint
, ZMOD_RW
,
6363 "Maximum ashift used when optimizing for logical -> physical sector "
6364 "size on new top-level vdevs");