4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
38 * DVA-based Adjustable Replacement Cache
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
241 * uncompressed | | | |
244 * | uncompressed | | |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will bcopy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch
= B_FALSE
;
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t
*arc_reap_zthr
;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t
*arc_evict_zthr
;
332 static kmutex_t arc_evict_lock
;
333 static boolean_t arc_evict_needed
= B_FALSE
;
336 * Count of bytes evicted since boot.
338 static uint64_t arc_evict_count
;
341 * List of arc_evict_waiter_t's, representing threads waiting for the
342 * arc_evict_count to reach specific values.
344 static list_t arc_evict_waiters
;
347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
348 * the requested amount of data to be evicted. For example, by default for
349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
350 * Since this is above 100%, it ensures that progress is made towards getting
351 * arc_size under arc_c. Since this is finite, it ensures that allocations
352 * can still happen, even during the potentially long time that arc_size is
355 int zfs_arc_eviction_pct
= 200;
358 * The number of headers to evict in arc_evict_state_impl() before
359 * dropping the sublist lock and evicting from another sublist. A lower
360 * value means we're more likely to evict the "correct" header (i.e. the
361 * oldest header in the arc state), but comes with higher overhead
362 * (i.e. more invocations of arc_evict_state_impl()).
364 int zfs_arc_evict_batch_limit
= 10;
366 /* number of seconds before growing cache again */
367 int arc_grow_retry
= 5;
370 * Minimum time between calls to arc_kmem_reap_soon().
372 int arc_kmem_cache_reap_retry_ms
= 1000;
374 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
375 int zfs_arc_overflow_shift
= 8;
377 /* shift of arc_c for calculating both min and max arc_p */
378 int arc_p_min_shift
= 4;
380 /* log2(fraction of arc to reclaim) */
381 int arc_shrink_shift
= 7;
383 /* percent of pagecache to reclaim arc to */
385 uint_t zfs_arc_pc_percent
= 0;
389 * log2(fraction of ARC which must be free to allow growing).
390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391 * when reading a new block into the ARC, we will evict an equal-sized block
394 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395 * we will still not allow it to grow.
397 int arc_no_grow_shift
= 5;
401 * minimum lifespan of a prefetch block in clock ticks
402 * (initialized in arc_init())
404 static int arc_min_prefetch_ms
;
405 static int arc_min_prescient_prefetch_ms
;
408 * If this percent of memory is free, don't throttle.
410 int arc_lotsfree_percent
= 10;
413 * The arc has filled available memory and has now warmed up.
418 * These tunables are for performance analysis.
420 unsigned long zfs_arc_max
= 0;
421 unsigned long zfs_arc_min
= 0;
422 unsigned long zfs_arc_meta_limit
= 0;
423 unsigned long zfs_arc_meta_min
= 0;
424 unsigned long zfs_arc_dnode_limit
= 0;
425 unsigned long zfs_arc_dnode_reduce_percent
= 10;
426 int zfs_arc_grow_retry
= 0;
427 int zfs_arc_shrink_shift
= 0;
428 int zfs_arc_p_min_shift
= 0;
429 int zfs_arc_average_blocksize
= 8 * 1024; /* 8KB */
432 * ARC dirty data constraints for arc_tempreserve_space() throttle.
434 unsigned long zfs_arc_dirty_limit_percent
= 50; /* total dirty data limit */
435 unsigned long zfs_arc_anon_limit_percent
= 25; /* anon block dirty limit */
436 unsigned long zfs_arc_pool_dirty_percent
= 20; /* each pool's anon allowance */
439 * Enable or disable compressed arc buffers.
441 int zfs_compressed_arc_enabled
= B_TRUE
;
444 * ARC will evict meta buffers that exceed arc_meta_limit. This
445 * tunable make arc_meta_limit adjustable for different workloads.
447 unsigned long zfs_arc_meta_limit_percent
= 75;
450 * Percentage that can be consumed by dnodes of ARC meta buffers.
452 unsigned long zfs_arc_dnode_limit_percent
= 10;
455 * These tunables are Linux specific
457 unsigned long zfs_arc_sys_free
= 0;
458 int zfs_arc_min_prefetch_ms
= 0;
459 int zfs_arc_min_prescient_prefetch_ms
= 0;
460 int zfs_arc_p_dampener_disable
= 1;
461 int zfs_arc_meta_prune
= 10000;
462 int zfs_arc_meta_strategy
= ARC_STRATEGY_META_BALANCED
;
463 int zfs_arc_meta_adjust_restarts
= 4096;
464 int zfs_arc_lotsfree_percent
= 10;
467 arc_state_t ARC_anon
;
469 arc_state_t ARC_mru_ghost
;
471 arc_state_t ARC_mfu_ghost
;
472 arc_state_t ARC_l2c_only
;
474 arc_stats_t arc_stats
= {
475 { "hits", KSTAT_DATA_UINT64
},
476 { "misses", KSTAT_DATA_UINT64
},
477 { "demand_data_hits", KSTAT_DATA_UINT64
},
478 { "demand_data_misses", KSTAT_DATA_UINT64
},
479 { "demand_metadata_hits", KSTAT_DATA_UINT64
},
480 { "demand_metadata_misses", KSTAT_DATA_UINT64
},
481 { "prefetch_data_hits", KSTAT_DATA_UINT64
},
482 { "prefetch_data_misses", KSTAT_DATA_UINT64
},
483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64
},
484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64
},
485 { "mru_hits", KSTAT_DATA_UINT64
},
486 { "mru_ghost_hits", KSTAT_DATA_UINT64
},
487 { "mfu_hits", KSTAT_DATA_UINT64
},
488 { "mfu_ghost_hits", KSTAT_DATA_UINT64
},
489 { "deleted", KSTAT_DATA_UINT64
},
490 { "mutex_miss", KSTAT_DATA_UINT64
},
491 { "access_skip", KSTAT_DATA_UINT64
},
492 { "evict_skip", KSTAT_DATA_UINT64
},
493 { "evict_not_enough", KSTAT_DATA_UINT64
},
494 { "evict_l2_cached", KSTAT_DATA_UINT64
},
495 { "evict_l2_eligible", KSTAT_DATA_UINT64
},
496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64
},
497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64
},
498 { "evict_l2_ineligible", KSTAT_DATA_UINT64
},
499 { "evict_l2_skip", KSTAT_DATA_UINT64
},
500 { "hash_elements", KSTAT_DATA_UINT64
},
501 { "hash_elements_max", KSTAT_DATA_UINT64
},
502 { "hash_collisions", KSTAT_DATA_UINT64
},
503 { "hash_chains", KSTAT_DATA_UINT64
},
504 { "hash_chain_max", KSTAT_DATA_UINT64
},
505 { "p", KSTAT_DATA_UINT64
},
506 { "c", KSTAT_DATA_UINT64
},
507 { "c_min", KSTAT_DATA_UINT64
},
508 { "c_max", KSTAT_DATA_UINT64
},
509 { "size", KSTAT_DATA_UINT64
},
510 { "compressed_size", KSTAT_DATA_UINT64
},
511 { "uncompressed_size", KSTAT_DATA_UINT64
},
512 { "overhead_size", KSTAT_DATA_UINT64
},
513 { "hdr_size", KSTAT_DATA_UINT64
},
514 { "data_size", KSTAT_DATA_UINT64
},
515 { "metadata_size", KSTAT_DATA_UINT64
},
516 { "dbuf_size", KSTAT_DATA_UINT64
},
517 { "dnode_size", KSTAT_DATA_UINT64
},
518 { "bonus_size", KSTAT_DATA_UINT64
},
519 #if defined(COMPAT_FREEBSD11)
520 { "other_size", KSTAT_DATA_UINT64
},
522 { "anon_size", KSTAT_DATA_UINT64
},
523 { "anon_evictable_data", KSTAT_DATA_UINT64
},
524 { "anon_evictable_metadata", KSTAT_DATA_UINT64
},
525 { "mru_size", KSTAT_DATA_UINT64
},
526 { "mru_evictable_data", KSTAT_DATA_UINT64
},
527 { "mru_evictable_metadata", KSTAT_DATA_UINT64
},
528 { "mru_ghost_size", KSTAT_DATA_UINT64
},
529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64
},
530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
531 { "mfu_size", KSTAT_DATA_UINT64
},
532 { "mfu_evictable_data", KSTAT_DATA_UINT64
},
533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64
},
534 { "mfu_ghost_size", KSTAT_DATA_UINT64
},
535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64
},
536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
537 { "l2_hits", KSTAT_DATA_UINT64
},
538 { "l2_misses", KSTAT_DATA_UINT64
},
539 { "l2_prefetch_asize", KSTAT_DATA_UINT64
},
540 { "l2_mru_asize", KSTAT_DATA_UINT64
},
541 { "l2_mfu_asize", KSTAT_DATA_UINT64
},
542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64
},
543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64
},
544 { "l2_feeds", KSTAT_DATA_UINT64
},
545 { "l2_rw_clash", KSTAT_DATA_UINT64
},
546 { "l2_read_bytes", KSTAT_DATA_UINT64
},
547 { "l2_write_bytes", KSTAT_DATA_UINT64
},
548 { "l2_writes_sent", KSTAT_DATA_UINT64
},
549 { "l2_writes_done", KSTAT_DATA_UINT64
},
550 { "l2_writes_error", KSTAT_DATA_UINT64
},
551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64
},
552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64
},
553 { "l2_evict_reading", KSTAT_DATA_UINT64
},
554 { "l2_evict_l1cached", KSTAT_DATA_UINT64
},
555 { "l2_free_on_write", KSTAT_DATA_UINT64
},
556 { "l2_abort_lowmem", KSTAT_DATA_UINT64
},
557 { "l2_cksum_bad", KSTAT_DATA_UINT64
},
558 { "l2_io_error", KSTAT_DATA_UINT64
},
559 { "l2_size", KSTAT_DATA_UINT64
},
560 { "l2_asize", KSTAT_DATA_UINT64
},
561 { "l2_hdr_size", KSTAT_DATA_UINT64
},
562 { "l2_log_blk_writes", KSTAT_DATA_UINT64
},
563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64
},
564 { "l2_log_blk_asize", KSTAT_DATA_UINT64
},
565 { "l2_log_blk_count", KSTAT_DATA_UINT64
},
566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64
},
567 { "l2_rebuild_success", KSTAT_DATA_UINT64
},
568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64
},
569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64
},
570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64
},
571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64
},
572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64
},
573 { "l2_rebuild_size", KSTAT_DATA_UINT64
},
574 { "l2_rebuild_asize", KSTAT_DATA_UINT64
},
575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64
},
576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64
},
577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64
},
578 { "memory_throttle_count", KSTAT_DATA_UINT64
},
579 { "memory_direct_count", KSTAT_DATA_UINT64
},
580 { "memory_indirect_count", KSTAT_DATA_UINT64
},
581 { "memory_all_bytes", KSTAT_DATA_UINT64
},
582 { "memory_free_bytes", KSTAT_DATA_UINT64
},
583 { "memory_available_bytes", KSTAT_DATA_INT64
},
584 { "arc_no_grow", KSTAT_DATA_UINT64
},
585 { "arc_tempreserve", KSTAT_DATA_UINT64
},
586 { "arc_loaned_bytes", KSTAT_DATA_UINT64
},
587 { "arc_prune", KSTAT_DATA_UINT64
},
588 { "arc_meta_used", KSTAT_DATA_UINT64
},
589 { "arc_meta_limit", KSTAT_DATA_UINT64
},
590 { "arc_dnode_limit", KSTAT_DATA_UINT64
},
591 { "arc_meta_max", KSTAT_DATA_UINT64
},
592 { "arc_meta_min", KSTAT_DATA_UINT64
},
593 { "async_upgrade_sync", KSTAT_DATA_UINT64
},
594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64
},
595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64
},
596 { "arc_need_free", KSTAT_DATA_UINT64
},
597 { "arc_sys_free", KSTAT_DATA_UINT64
},
598 { "arc_raw_size", KSTAT_DATA_UINT64
},
599 { "cached_only_in_progress", KSTAT_DATA_UINT64
},
600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64
},
605 #define ARCSTAT_MAX(stat, val) { \
607 while ((val) > (m = arc_stats.stat.value.ui64) && \
608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
613 * We define a macro to allow ARC hits/misses to be easily broken down by
614 * two separate conditions, giving a total of four different subtypes for
615 * each of hits and misses (so eight statistics total).
617 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
633 * This macro allows us to use kstats as floating averages. Each time we
634 * update this kstat, we first factor it and the update value by
635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
636 * average. This macro assumes that integer loads and stores are atomic, but
637 * is not safe for multiple writers updating the kstat in parallel (only the
638 * last writer's update will remain).
640 #define ARCSTAT_F_AVG_FACTOR 3
641 #define ARCSTAT_F_AVG(stat, value) \
643 uint64_t x = ARCSTAT(stat); \
644 x = x - x / ARCSTAT_F_AVG_FACTOR + \
645 (value) / ARCSTAT_F_AVG_FACTOR; \
652 * There are several ARC variables that are critical to export as kstats --
653 * but we don't want to have to grovel around in the kstat whenever we wish to
654 * manipulate them. For these variables, we therefore define them to be in
655 * terms of the statistic variable. This assures that we are not introducing
656 * the possibility of inconsistency by having shadow copies of the variables,
657 * while still allowing the code to be readable.
659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
662 /* max size for dnodes */
663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
665 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
667 hrtime_t arc_growtime
;
668 list_t arc_prune_list
;
669 kmutex_t arc_prune_mtx
;
670 taskq_t
*arc_prune_taskq
;
672 #define GHOST_STATE(state) \
673 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
674 (state) == arc_l2c_only)
676 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
677 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
678 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
679 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
680 #define HDR_PRESCIENT_PREFETCH(hdr) \
681 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
682 #define HDR_COMPRESSION_ENABLED(hdr) \
683 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
685 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
686 #define HDR_L2_READING(hdr) \
687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
689 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
690 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
691 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
692 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
693 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
694 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
696 #define HDR_ISTYPE_METADATA(hdr) \
697 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
698 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
700 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
701 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
702 #define HDR_HAS_RABD(hdr) \
703 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
704 (hdr)->b_crypt_hdr.b_rabd != NULL)
705 #define HDR_ENCRYPTED(hdr) \
706 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
707 #define HDR_AUTHENTICATED(hdr) \
708 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
710 /* For storing compression mode in b_flags */
711 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
713 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
714 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
715 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
716 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
718 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
719 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
720 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
721 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
727 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
728 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
729 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
732 * Hash table routines
735 #define BUF_LOCKS 2048
736 typedef struct buf_hash_table
{
738 arc_buf_hdr_t
**ht_table
;
739 kmutex_t ht_locks
[BUF_LOCKS
] ____cacheline_aligned
;
742 static buf_hash_table_t buf_hash_table
;
744 #define BUF_HASH_INDEX(spa, dva, birth) \
745 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
746 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
747 #define HDR_LOCK(hdr) \
748 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
750 uint64_t zfs_crc64_table
[256];
756 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
757 #define L2ARC_HEADROOM 2 /* num of writes */
760 * If we discover during ARC scan any buffers to be compressed, we boost
761 * our headroom for the next scanning cycle by this percentage multiple.
763 #define L2ARC_HEADROOM_BOOST 200
764 #define L2ARC_FEED_SECS 1 /* caching interval secs */
765 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
768 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
769 * and each of the state has two types: data and metadata.
771 #define L2ARC_FEED_TYPES 4
773 /* L2ARC Performance Tunables */
774 unsigned long l2arc_write_max
= L2ARC_WRITE_SIZE
; /* def max write size */
775 unsigned long l2arc_write_boost
= L2ARC_WRITE_SIZE
; /* extra warmup write */
776 unsigned long l2arc_headroom
= L2ARC_HEADROOM
; /* # of dev writes */
777 unsigned long l2arc_headroom_boost
= L2ARC_HEADROOM_BOOST
;
778 unsigned long l2arc_feed_secs
= L2ARC_FEED_SECS
; /* interval seconds */
779 unsigned long l2arc_feed_min_ms
= L2ARC_FEED_MIN_MS
; /* min interval msecs */
780 int l2arc_noprefetch
= B_TRUE
; /* don't cache prefetch bufs */
781 int l2arc_feed_again
= B_TRUE
; /* turbo warmup */
782 int l2arc_norw
= B_FALSE
; /* no reads during writes */
783 int l2arc_meta_percent
= 33; /* limit on headers size */
788 static list_t L2ARC_dev_list
; /* device list */
789 static list_t
*l2arc_dev_list
; /* device list pointer */
790 static kmutex_t l2arc_dev_mtx
; /* device list mutex */
791 static l2arc_dev_t
*l2arc_dev_last
; /* last device used */
792 static list_t L2ARC_free_on_write
; /* free after write buf list */
793 static list_t
*l2arc_free_on_write
; /* free after write list ptr */
794 static kmutex_t l2arc_free_on_write_mtx
; /* mutex for list */
795 static uint64_t l2arc_ndev
; /* number of devices */
797 typedef struct l2arc_read_callback
{
798 arc_buf_hdr_t
*l2rcb_hdr
; /* read header */
799 blkptr_t l2rcb_bp
; /* original blkptr */
800 zbookmark_phys_t l2rcb_zb
; /* original bookmark */
801 int l2rcb_flags
; /* original flags */
802 abd_t
*l2rcb_abd
; /* temporary buffer */
803 } l2arc_read_callback_t
;
805 typedef struct l2arc_data_free
{
806 /* protected by l2arc_free_on_write_mtx */
809 arc_buf_contents_t l2df_type
;
810 list_node_t l2df_list_node
;
813 typedef enum arc_fill_flags
{
814 ARC_FILL_LOCKED
= 1 << 0, /* hdr lock is held */
815 ARC_FILL_COMPRESSED
= 1 << 1, /* fill with compressed data */
816 ARC_FILL_ENCRYPTED
= 1 << 2, /* fill with encrypted data */
817 ARC_FILL_NOAUTH
= 1 << 3, /* don't attempt to authenticate */
818 ARC_FILL_IN_PLACE
= 1 << 4 /* fill in place (special case) */
821 typedef enum arc_ovf_level
{
822 ARC_OVF_NONE
, /* ARC within target size. */
823 ARC_OVF_SOME
, /* ARC is slightly overflowed. */
824 ARC_OVF_SEVERE
/* ARC is severely overflowed. */
827 static kmutex_t l2arc_feed_thr_lock
;
828 static kcondvar_t l2arc_feed_thr_cv
;
829 static uint8_t l2arc_thread_exit
;
831 static kmutex_t l2arc_rebuild_thr_lock
;
832 static kcondvar_t l2arc_rebuild_thr_cv
;
834 enum arc_hdr_alloc_flags
{
835 ARC_HDR_ALLOC_RDATA
= 0x1,
836 ARC_HDR_DO_ADAPT
= 0x2,
840 static abd_t
*arc_get_data_abd(arc_buf_hdr_t
*, uint64_t, void *, boolean_t
);
841 static void *arc_get_data_buf(arc_buf_hdr_t
*, uint64_t, void *);
842 static void arc_get_data_impl(arc_buf_hdr_t
*, uint64_t, void *, boolean_t
);
843 static void arc_free_data_abd(arc_buf_hdr_t
*, abd_t
*, uint64_t, void *);
844 static void arc_free_data_buf(arc_buf_hdr_t
*, void *, uint64_t, void *);
845 static void arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
);
846 static void arc_hdr_free_abd(arc_buf_hdr_t
*, boolean_t
);
847 static void arc_hdr_alloc_abd(arc_buf_hdr_t
*, int);
848 static void arc_access(arc_buf_hdr_t
*, kmutex_t
*);
849 static void arc_buf_watch(arc_buf_t
*);
851 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t
*);
852 static uint32_t arc_bufc_to_flags(arc_buf_contents_t
);
853 static inline void arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
854 static inline void arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
856 static boolean_t
l2arc_write_eligible(uint64_t, arc_buf_hdr_t
*);
857 static void l2arc_read_done(zio_t
*);
858 static void l2arc_do_free_on_write(void);
859 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
860 boolean_t state_only
);
862 #define l2arc_hdr_arcstats_increment(hdr) \
863 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
864 #define l2arc_hdr_arcstats_decrement(hdr) \
865 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
866 #define l2arc_hdr_arcstats_increment_state(hdr) \
867 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
868 #define l2arc_hdr_arcstats_decrement_state(hdr) \
869 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
872 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
873 * metadata and data are cached from ARC into L2ARC.
875 int l2arc_mfuonly
= 0;
879 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
880 * the current write size (l2arc_write_max) we should TRIM if we
881 * have filled the device. It is defined as a percentage of the
882 * write size. If set to 100 we trim twice the space required to
883 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
884 * It also enables TRIM of the whole L2ARC device upon creation or
885 * addition to an existing pool or if the header of the device is
886 * invalid upon importing a pool or onlining a cache device. The
887 * default is 0, which disables TRIM on L2ARC altogether as it can
888 * put significant stress on the underlying storage devices. This
889 * will vary depending of how well the specific device handles
892 unsigned long l2arc_trim_ahead
= 0;
895 * Performance tuning of L2ARC persistence:
897 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
898 * an L2ARC device (either at pool import or later) will attempt
899 * to rebuild L2ARC buffer contents.
900 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
901 * whether log blocks are written to the L2ARC device. If the L2ARC
902 * device is less than 1GB, the amount of data l2arc_evict()
903 * evicts is significant compared to the amount of restored L2ARC
904 * data. In this case do not write log blocks in L2ARC in order
905 * not to waste space.
907 int l2arc_rebuild_enabled
= B_TRUE
;
908 unsigned long l2arc_rebuild_blocks_min_l2size
= 1024 * 1024 * 1024;
910 /* L2ARC persistence rebuild control routines. */
911 void l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
);
912 static void l2arc_dev_rebuild_thread(void *arg
);
913 static int l2arc_rebuild(l2arc_dev_t
*dev
);
915 /* L2ARC persistence read I/O routines. */
916 static int l2arc_dev_hdr_read(l2arc_dev_t
*dev
);
917 static int l2arc_log_blk_read(l2arc_dev_t
*dev
,
918 const l2arc_log_blkptr_t
*this_lp
, const l2arc_log_blkptr_t
*next_lp
,
919 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
920 zio_t
*this_io
, zio_t
**next_io
);
921 static zio_t
*l2arc_log_blk_fetch(vdev_t
*vd
,
922 const l2arc_log_blkptr_t
*lp
, l2arc_log_blk_phys_t
*lb
);
923 static void l2arc_log_blk_fetch_abort(zio_t
*zio
);
925 /* L2ARC persistence block restoration routines. */
926 static void l2arc_log_blk_restore(l2arc_dev_t
*dev
,
927 const l2arc_log_blk_phys_t
*lb
, uint64_t lb_asize
);
928 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
,
931 /* L2ARC persistence write I/O routines. */
932 static void l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
,
933 l2arc_write_callback_t
*cb
);
935 /* L2ARC persistence auxiliary routines. */
936 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t
*dev
,
937 const l2arc_log_blkptr_t
*lbp
);
938 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t
*dev
,
939 const arc_buf_hdr_t
*ab
);
940 boolean_t
l2arc_range_check_overlap(uint64_t bottom
,
941 uint64_t top
, uint64_t check
);
942 static void l2arc_blk_fetch_done(zio_t
*zio
);
943 static inline uint64_t
944 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
);
947 * We use Cityhash for this. It's fast, and has good hash properties without
948 * requiring any large static buffers.
951 buf_hash(uint64_t spa
, const dva_t
*dva
, uint64_t birth
)
953 return (cityhash4(spa
, dva
->dva_word
[0], dva
->dva_word
[1], birth
));
956 #define HDR_EMPTY(hdr) \
957 ((hdr)->b_dva.dva_word[0] == 0 && \
958 (hdr)->b_dva.dva_word[1] == 0)
960 #define HDR_EMPTY_OR_LOCKED(hdr) \
961 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
963 #define HDR_EQUAL(spa, dva, birth, hdr) \
964 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
965 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
966 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
969 buf_discard_identity(arc_buf_hdr_t
*hdr
)
971 hdr
->b_dva
.dva_word
[0] = 0;
972 hdr
->b_dva
.dva_word
[1] = 0;
976 static arc_buf_hdr_t
*
977 buf_hash_find(uint64_t spa
, const blkptr_t
*bp
, kmutex_t
**lockp
)
979 const dva_t
*dva
= BP_IDENTITY(bp
);
980 uint64_t birth
= BP_PHYSICAL_BIRTH(bp
);
981 uint64_t idx
= BUF_HASH_INDEX(spa
, dva
, birth
);
982 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
985 mutex_enter(hash_lock
);
986 for (hdr
= buf_hash_table
.ht_table
[idx
]; hdr
!= NULL
;
987 hdr
= hdr
->b_hash_next
) {
988 if (HDR_EQUAL(spa
, dva
, birth
, hdr
)) {
993 mutex_exit(hash_lock
);
999 * Insert an entry into the hash table. If there is already an element
1000 * equal to elem in the hash table, then the already existing element
1001 * will be returned and the new element will not be inserted.
1002 * Otherwise returns NULL.
1003 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1005 static arc_buf_hdr_t
*
1006 buf_hash_insert(arc_buf_hdr_t
*hdr
, kmutex_t
**lockp
)
1008 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1009 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1010 arc_buf_hdr_t
*fhdr
;
1013 ASSERT(!DVA_IS_EMPTY(&hdr
->b_dva
));
1014 ASSERT(hdr
->b_birth
!= 0);
1015 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
1017 if (lockp
!= NULL
) {
1019 mutex_enter(hash_lock
);
1021 ASSERT(MUTEX_HELD(hash_lock
));
1024 for (fhdr
= buf_hash_table
.ht_table
[idx
], i
= 0; fhdr
!= NULL
;
1025 fhdr
= fhdr
->b_hash_next
, i
++) {
1026 if (HDR_EQUAL(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
, fhdr
))
1030 hdr
->b_hash_next
= buf_hash_table
.ht_table
[idx
];
1031 buf_hash_table
.ht_table
[idx
] = hdr
;
1032 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1034 /* collect some hash table performance data */
1036 ARCSTAT_BUMP(arcstat_hash_collisions
);
1038 ARCSTAT_BUMP(arcstat_hash_chains
);
1040 ARCSTAT_MAX(arcstat_hash_chain_max
, i
);
1042 uint64_t he
= atomic_inc_64_nv(
1043 &arc_stats
.arcstat_hash_elements
.value
.ui64
);
1044 ARCSTAT_MAX(arcstat_hash_elements_max
, he
);
1050 buf_hash_remove(arc_buf_hdr_t
*hdr
)
1052 arc_buf_hdr_t
*fhdr
, **hdrp
;
1053 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1055 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx
)));
1056 ASSERT(HDR_IN_HASH_TABLE(hdr
));
1058 hdrp
= &buf_hash_table
.ht_table
[idx
];
1059 while ((fhdr
= *hdrp
) != hdr
) {
1060 ASSERT3P(fhdr
, !=, NULL
);
1061 hdrp
= &fhdr
->b_hash_next
;
1063 *hdrp
= hdr
->b_hash_next
;
1064 hdr
->b_hash_next
= NULL
;
1065 arc_hdr_clear_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1067 /* collect some hash table performance data */
1068 atomic_dec_64(&arc_stats
.arcstat_hash_elements
.value
.ui64
);
1070 if (buf_hash_table
.ht_table
[idx
] &&
1071 buf_hash_table
.ht_table
[idx
]->b_hash_next
== NULL
)
1072 ARCSTAT_BUMPDOWN(arcstat_hash_chains
);
1076 * Global data structures and functions for the buf kmem cache.
1079 static kmem_cache_t
*hdr_full_cache
;
1080 static kmem_cache_t
*hdr_full_crypt_cache
;
1081 static kmem_cache_t
*hdr_l2only_cache
;
1082 static kmem_cache_t
*buf_cache
;
1089 #if defined(_KERNEL)
1091 * Large allocations which do not require contiguous pages
1092 * should be using vmem_free() in the linux kernel\
1094 vmem_free(buf_hash_table
.ht_table
,
1095 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1097 kmem_free(buf_hash_table
.ht_table
,
1098 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1100 for (i
= 0; i
< BUF_LOCKS
; i
++)
1101 mutex_destroy(BUF_HASH_LOCK(i
));
1102 kmem_cache_destroy(hdr_full_cache
);
1103 kmem_cache_destroy(hdr_full_crypt_cache
);
1104 kmem_cache_destroy(hdr_l2only_cache
);
1105 kmem_cache_destroy(buf_cache
);
1109 * Constructor callback - called when the cache is empty
1110 * and a new buf is requested.
1114 hdr_full_cons(void *vbuf
, void *unused
, int kmflag
)
1116 arc_buf_hdr_t
*hdr
= vbuf
;
1118 bzero(hdr
, HDR_FULL_SIZE
);
1119 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
1120 cv_init(&hdr
->b_l1hdr
.b_cv
, NULL
, CV_DEFAULT
, NULL
);
1121 zfs_refcount_create(&hdr
->b_l1hdr
.b_refcnt
);
1122 mutex_init(&hdr
->b_l1hdr
.b_freeze_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1123 list_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1124 list_link_init(&hdr
->b_l2hdr
.b_l2node
);
1125 multilist_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1126 arc_space_consume(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1133 hdr_full_crypt_cons(void *vbuf
, void *unused
, int kmflag
)
1135 arc_buf_hdr_t
*hdr
= vbuf
;
1137 hdr_full_cons(vbuf
, unused
, kmflag
);
1138 bzero(&hdr
->b_crypt_hdr
, sizeof (hdr
->b_crypt_hdr
));
1139 arc_space_consume(sizeof (hdr
->b_crypt_hdr
), ARC_SPACE_HDRS
);
1146 hdr_l2only_cons(void *vbuf
, void *unused
, int kmflag
)
1148 arc_buf_hdr_t
*hdr
= vbuf
;
1150 bzero(hdr
, HDR_L2ONLY_SIZE
);
1151 arc_space_consume(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1158 buf_cons(void *vbuf
, void *unused
, int kmflag
)
1160 arc_buf_t
*buf
= vbuf
;
1162 bzero(buf
, sizeof (arc_buf_t
));
1163 mutex_init(&buf
->b_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1164 arc_space_consume(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1170 * Destructor callback - called when a cached buf is
1171 * no longer required.
1175 hdr_full_dest(void *vbuf
, void *unused
)
1177 arc_buf_hdr_t
*hdr
= vbuf
;
1179 ASSERT(HDR_EMPTY(hdr
));
1180 cv_destroy(&hdr
->b_l1hdr
.b_cv
);
1181 zfs_refcount_destroy(&hdr
->b_l1hdr
.b_refcnt
);
1182 mutex_destroy(&hdr
->b_l1hdr
.b_freeze_lock
);
1183 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
1184 arc_space_return(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1189 hdr_full_crypt_dest(void *vbuf
, void *unused
)
1191 arc_buf_hdr_t
*hdr
= vbuf
;
1193 hdr_full_dest(vbuf
, unused
);
1194 arc_space_return(sizeof (hdr
->b_crypt_hdr
), ARC_SPACE_HDRS
);
1199 hdr_l2only_dest(void *vbuf
, void *unused
)
1201 arc_buf_hdr_t
*hdr __maybe_unused
= vbuf
;
1203 ASSERT(HDR_EMPTY(hdr
));
1204 arc_space_return(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1209 buf_dest(void *vbuf
, void *unused
)
1211 arc_buf_t
*buf
= vbuf
;
1213 mutex_destroy(&buf
->b_evict_lock
);
1214 arc_space_return(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1220 uint64_t *ct
= NULL
;
1221 uint64_t hsize
= 1ULL << 12;
1225 * The hash table is big enough to fill all of physical memory
1226 * with an average block size of zfs_arc_average_blocksize (default 8K).
1227 * By default, the table will take up
1228 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1230 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory())
1233 buf_hash_table
.ht_mask
= hsize
- 1;
1234 #if defined(_KERNEL)
1236 * Large allocations which do not require contiguous pages
1237 * should be using vmem_alloc() in the linux kernel
1239 buf_hash_table
.ht_table
=
1240 vmem_zalloc(hsize
* sizeof (void*), KM_SLEEP
);
1242 buf_hash_table
.ht_table
=
1243 kmem_zalloc(hsize
* sizeof (void*), KM_NOSLEEP
);
1245 if (buf_hash_table
.ht_table
== NULL
) {
1246 ASSERT(hsize
> (1ULL << 8));
1251 hdr_full_cache
= kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE
,
1252 0, hdr_full_cons
, hdr_full_dest
, NULL
, NULL
, NULL
, 0);
1253 hdr_full_crypt_cache
= kmem_cache_create("arc_buf_hdr_t_full_crypt",
1254 HDR_FULL_CRYPT_SIZE
, 0, hdr_full_crypt_cons
, hdr_full_crypt_dest
,
1255 NULL
, NULL
, NULL
, 0);
1256 hdr_l2only_cache
= kmem_cache_create("arc_buf_hdr_t_l2only",
1257 HDR_L2ONLY_SIZE
, 0, hdr_l2only_cons
, hdr_l2only_dest
, NULL
,
1259 buf_cache
= kmem_cache_create("arc_buf_t", sizeof (arc_buf_t
),
1260 0, buf_cons
, buf_dest
, NULL
, NULL
, NULL
, 0);
1262 for (i
= 0; i
< 256; i
++)
1263 for (ct
= zfs_crc64_table
+ i
, *ct
= i
, j
= 8; j
> 0; j
--)
1264 *ct
= (*ct
>> 1) ^ (-(*ct
& 1) & ZFS_CRC64_POLY
);
1266 for (i
= 0; i
< BUF_LOCKS
; i
++)
1267 mutex_init(BUF_HASH_LOCK(i
), NULL
, MUTEX_DEFAULT
, NULL
);
1270 #define ARC_MINTIME (hz>>4) /* 62 ms */
1273 * This is the size that the buf occupies in memory. If the buf is compressed,
1274 * it will correspond to the compressed size. You should use this method of
1275 * getting the buf size unless you explicitly need the logical size.
1278 arc_buf_size(arc_buf_t
*buf
)
1280 return (ARC_BUF_COMPRESSED(buf
) ?
1281 HDR_GET_PSIZE(buf
->b_hdr
) : HDR_GET_LSIZE(buf
->b_hdr
));
1285 arc_buf_lsize(arc_buf_t
*buf
)
1287 return (HDR_GET_LSIZE(buf
->b_hdr
));
1291 * This function will return B_TRUE if the buffer is encrypted in memory.
1292 * This buffer can be decrypted by calling arc_untransform().
1295 arc_is_encrypted(arc_buf_t
*buf
)
1297 return (ARC_BUF_ENCRYPTED(buf
) != 0);
1301 * Returns B_TRUE if the buffer represents data that has not had its MAC
1305 arc_is_unauthenticated(arc_buf_t
*buf
)
1307 return (HDR_NOAUTH(buf
->b_hdr
) != 0);
1311 arc_get_raw_params(arc_buf_t
*buf
, boolean_t
*byteorder
, uint8_t *salt
,
1312 uint8_t *iv
, uint8_t *mac
)
1314 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1316 ASSERT(HDR_PROTECTED(hdr
));
1318 bcopy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
1319 bcopy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
1320 bcopy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
1321 *byteorder
= (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
1322 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
1326 * Indicates how this buffer is compressed in memory. If it is not compressed
1327 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1328 * arc_untransform() as long as it is also unencrypted.
1331 arc_get_compression(arc_buf_t
*buf
)
1333 return (ARC_BUF_COMPRESSED(buf
) ?
1334 HDR_GET_COMPRESS(buf
->b_hdr
) : ZIO_COMPRESS_OFF
);
1338 * Return the compression algorithm used to store this data in the ARC. If ARC
1339 * compression is enabled or this is an encrypted block, this will be the same
1340 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1342 static inline enum zio_compress
1343 arc_hdr_get_compress(arc_buf_hdr_t
*hdr
)
1345 return (HDR_COMPRESSION_ENABLED(hdr
) ?
1346 HDR_GET_COMPRESS(hdr
) : ZIO_COMPRESS_OFF
);
1350 arc_get_complevel(arc_buf_t
*buf
)
1352 return (buf
->b_hdr
->b_complevel
);
1355 static inline boolean_t
1356 arc_buf_is_shared(arc_buf_t
*buf
)
1358 boolean_t shared
= (buf
->b_data
!= NULL
&&
1359 buf
->b_hdr
->b_l1hdr
.b_pabd
!= NULL
&&
1360 abd_is_linear(buf
->b_hdr
->b_l1hdr
.b_pabd
) &&
1361 buf
->b_data
== abd_to_buf(buf
->b_hdr
->b_l1hdr
.b_pabd
));
1362 IMPLY(shared
, HDR_SHARED_DATA(buf
->b_hdr
));
1363 IMPLY(shared
, ARC_BUF_SHARED(buf
));
1364 IMPLY(shared
, ARC_BUF_COMPRESSED(buf
) || ARC_BUF_LAST(buf
));
1367 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1368 * already being shared" requirement prevents us from doing that.
1375 * Free the checksum associated with this header. If there is no checksum, this
1379 arc_cksum_free(arc_buf_hdr_t
*hdr
)
1381 ASSERT(HDR_HAS_L1HDR(hdr
));
1383 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1384 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1385 kmem_free(hdr
->b_l1hdr
.b_freeze_cksum
, sizeof (zio_cksum_t
));
1386 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
1388 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1392 * Return true iff at least one of the bufs on hdr is not compressed.
1393 * Encrypted buffers count as compressed.
1396 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t
*hdr
)
1398 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY_OR_LOCKED(hdr
));
1400 for (arc_buf_t
*b
= hdr
->b_l1hdr
.b_buf
; b
!= NULL
; b
= b
->b_next
) {
1401 if (!ARC_BUF_COMPRESSED(b
)) {
1410 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1411 * matches the checksum that is stored in the hdr. If there is no checksum,
1412 * or if the buf is compressed, this is a no-op.
1415 arc_cksum_verify(arc_buf_t
*buf
)
1417 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1420 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1423 if (ARC_BUF_COMPRESSED(buf
))
1426 ASSERT(HDR_HAS_L1HDR(hdr
));
1428 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1430 if (hdr
->b_l1hdr
.b_freeze_cksum
== NULL
|| HDR_IO_ERROR(hdr
)) {
1431 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1435 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
, &zc
);
1436 if (!ZIO_CHECKSUM_EQUAL(*hdr
->b_l1hdr
.b_freeze_cksum
, zc
))
1437 panic("buffer modified while frozen!");
1438 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1442 * This function makes the assumption that data stored in the L2ARC
1443 * will be transformed exactly as it is in the main pool. Because of
1444 * this we can verify the checksum against the reading process's bp.
1447 arc_cksum_is_equal(arc_buf_hdr_t
*hdr
, zio_t
*zio
)
1449 ASSERT(!BP_IS_EMBEDDED(zio
->io_bp
));
1450 VERIFY3U(BP_GET_PSIZE(zio
->io_bp
), ==, HDR_GET_PSIZE(hdr
));
1453 * Block pointers always store the checksum for the logical data.
1454 * If the block pointer has the gang bit set, then the checksum
1455 * it represents is for the reconstituted data and not for an
1456 * individual gang member. The zio pipeline, however, must be able to
1457 * determine the checksum of each of the gang constituents so it
1458 * treats the checksum comparison differently than what we need
1459 * for l2arc blocks. This prevents us from using the
1460 * zio_checksum_error() interface directly. Instead we must call the
1461 * zio_checksum_error_impl() so that we can ensure the checksum is
1462 * generated using the correct checksum algorithm and accounts for the
1463 * logical I/O size and not just a gang fragment.
1465 return (zio_checksum_error_impl(zio
->io_spa
, zio
->io_bp
,
1466 BP_GET_CHECKSUM(zio
->io_bp
), zio
->io_abd
, zio
->io_size
,
1467 zio
->io_offset
, NULL
) == 0);
1471 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1472 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1473 * isn't modified later on. If buf is compressed or there is already a checksum
1474 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1477 arc_cksum_compute(arc_buf_t
*buf
)
1479 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1481 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1484 ASSERT(HDR_HAS_L1HDR(hdr
));
1486 mutex_enter(&buf
->b_hdr
->b_l1hdr
.b_freeze_lock
);
1487 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
|| ARC_BUF_COMPRESSED(buf
)) {
1488 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1492 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
1493 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1494 hdr
->b_l1hdr
.b_freeze_cksum
= kmem_alloc(sizeof (zio_cksum_t
),
1496 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
,
1497 hdr
->b_l1hdr
.b_freeze_cksum
);
1498 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1504 arc_buf_sigsegv(int sig
, siginfo_t
*si
, void *unused
)
1506 panic("Got SIGSEGV at address: 0x%lx\n", (long)si
->si_addr
);
1512 arc_buf_unwatch(arc_buf_t
*buf
)
1516 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1517 PROT_READ
| PROT_WRITE
));
1524 arc_buf_watch(arc_buf_t
*buf
)
1528 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1533 static arc_buf_contents_t
1534 arc_buf_type(arc_buf_hdr_t
*hdr
)
1536 arc_buf_contents_t type
;
1537 if (HDR_ISTYPE_METADATA(hdr
)) {
1538 type
= ARC_BUFC_METADATA
;
1540 type
= ARC_BUFC_DATA
;
1542 VERIFY3U(hdr
->b_type
, ==, type
);
1547 arc_is_metadata(arc_buf_t
*buf
)
1549 return (HDR_ISTYPE_METADATA(buf
->b_hdr
) != 0);
1553 arc_bufc_to_flags(arc_buf_contents_t type
)
1557 /* metadata field is 0 if buffer contains normal data */
1559 case ARC_BUFC_METADATA
:
1560 return (ARC_FLAG_BUFC_METADATA
);
1564 panic("undefined ARC buffer type!");
1565 return ((uint32_t)-1);
1569 arc_buf_thaw(arc_buf_t
*buf
)
1571 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1573 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
1574 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
1576 arc_cksum_verify(buf
);
1579 * Compressed buffers do not manipulate the b_freeze_cksum.
1581 if (ARC_BUF_COMPRESSED(buf
))
1584 ASSERT(HDR_HAS_L1HDR(hdr
));
1585 arc_cksum_free(hdr
);
1586 arc_buf_unwatch(buf
);
1590 arc_buf_freeze(arc_buf_t
*buf
)
1592 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1595 if (ARC_BUF_COMPRESSED(buf
))
1598 ASSERT(HDR_HAS_L1HDR(buf
->b_hdr
));
1599 arc_cksum_compute(buf
);
1603 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1604 * the following functions should be used to ensure that the flags are
1605 * updated in a thread-safe way. When manipulating the flags either
1606 * the hash_lock must be held or the hdr must be undiscoverable. This
1607 * ensures that we're not racing with any other threads when updating
1611 arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1613 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1614 hdr
->b_flags
|= flags
;
1618 arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1620 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1621 hdr
->b_flags
&= ~flags
;
1625 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1626 * done in a special way since we have to clear and set bits
1627 * at the same time. Consumers that wish to set the compression bits
1628 * must use this function to ensure that the flags are updated in
1629 * thread-safe manner.
1632 arc_hdr_set_compress(arc_buf_hdr_t
*hdr
, enum zio_compress cmp
)
1634 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1637 * Holes and embedded blocks will always have a psize = 0 so
1638 * we ignore the compression of the blkptr and set the
1639 * want to uncompress them. Mark them as uncompressed.
1641 if (!zfs_compressed_arc_enabled
|| HDR_GET_PSIZE(hdr
) == 0) {
1642 arc_hdr_clear_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1643 ASSERT(!HDR_COMPRESSION_ENABLED(hdr
));
1645 arc_hdr_set_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1646 ASSERT(HDR_COMPRESSION_ENABLED(hdr
));
1649 HDR_SET_COMPRESS(hdr
, cmp
);
1650 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, cmp
);
1654 * Looks for another buf on the same hdr which has the data decompressed, copies
1655 * from it, and returns true. If no such buf exists, returns false.
1658 arc_buf_try_copy_decompressed_data(arc_buf_t
*buf
)
1660 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1661 boolean_t copied
= B_FALSE
;
1663 ASSERT(HDR_HAS_L1HDR(hdr
));
1664 ASSERT3P(buf
->b_data
, !=, NULL
);
1665 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1667 for (arc_buf_t
*from
= hdr
->b_l1hdr
.b_buf
; from
!= NULL
;
1668 from
= from
->b_next
) {
1669 /* can't use our own data buffer */
1674 if (!ARC_BUF_COMPRESSED(from
)) {
1675 bcopy(from
->b_data
, buf
->b_data
, arc_buf_size(buf
));
1682 * There were no decompressed bufs, so there should not be a
1683 * checksum on the hdr either.
1685 if (zfs_flags
& ZFS_DEBUG_MODIFY
)
1686 EQUIV(!copied
, hdr
->b_l1hdr
.b_freeze_cksum
== NULL
);
1692 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1693 * This is used during l2arc reconstruction to make empty ARC buffers
1694 * which circumvent the regular disk->arc->l2arc path and instead come
1695 * into being in the reverse order, i.e. l2arc->arc.
1697 static arc_buf_hdr_t
*
1698 arc_buf_alloc_l2only(size_t size
, arc_buf_contents_t type
, l2arc_dev_t
*dev
,
1699 dva_t dva
, uint64_t daddr
, int32_t psize
, uint64_t birth
,
1700 enum zio_compress compress
, uint8_t complevel
, boolean_t
protected,
1701 boolean_t prefetch
, arc_state_type_t arcs_state
)
1706 hdr
= kmem_cache_alloc(hdr_l2only_cache
, KM_SLEEP
);
1707 hdr
->b_birth
= birth
;
1710 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L2HDR
);
1711 HDR_SET_LSIZE(hdr
, size
);
1712 HDR_SET_PSIZE(hdr
, psize
);
1713 arc_hdr_set_compress(hdr
, compress
);
1714 hdr
->b_complevel
= complevel
;
1716 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
1718 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
1719 hdr
->b_spa
= spa_load_guid(dev
->l2ad_vdev
->vdev_spa
);
1723 hdr
->b_l2hdr
.b_dev
= dev
;
1724 hdr
->b_l2hdr
.b_daddr
= daddr
;
1725 hdr
->b_l2hdr
.b_arcs_state
= arcs_state
;
1731 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1734 arc_hdr_size(arc_buf_hdr_t
*hdr
)
1738 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
1739 HDR_GET_PSIZE(hdr
) > 0) {
1740 size
= HDR_GET_PSIZE(hdr
);
1742 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, 0);
1743 size
= HDR_GET_LSIZE(hdr
);
1749 arc_hdr_authenticate(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1753 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
1754 uint64_t psize
= HDR_GET_PSIZE(hdr
);
1755 void *tmpbuf
= NULL
;
1756 abd_t
*abd
= hdr
->b_l1hdr
.b_pabd
;
1758 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1759 ASSERT(HDR_AUTHENTICATED(hdr
));
1760 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1763 * The MAC is calculated on the compressed data that is stored on disk.
1764 * However, if compressed arc is disabled we will only have the
1765 * decompressed data available to us now. Compress it into a temporary
1766 * abd so we can verify the MAC. The performance overhead of this will
1767 * be relatively low, since most objects in an encrypted objset will
1768 * be encrypted (instead of authenticated) anyway.
1770 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1771 !HDR_COMPRESSION_ENABLED(hdr
)) {
1772 tmpbuf
= zio_buf_alloc(lsize
);
1773 abd
= abd_get_from_buf(tmpbuf
, lsize
);
1774 abd_take_ownership_of_buf(abd
, B_TRUE
);
1775 csize
= zio_compress_data(HDR_GET_COMPRESS(hdr
),
1776 hdr
->b_l1hdr
.b_pabd
, tmpbuf
, lsize
, hdr
->b_complevel
);
1777 ASSERT3U(csize
, <=, psize
);
1778 abd_zero_off(abd
, csize
, psize
- csize
);
1782 * Authentication is best effort. We authenticate whenever the key is
1783 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1785 if (hdr
->b_crypt_hdr
.b_ot
== DMU_OT_OBJSET
) {
1786 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, ZIO_COMPRESS_OFF
);
1787 ASSERT3U(lsize
, ==, psize
);
1788 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
, dsobj
, abd
,
1789 psize
, hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1791 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
, abd
, psize
,
1792 hdr
->b_crypt_hdr
.b_mac
);
1796 arc_hdr_clear_flags(hdr
, ARC_FLAG_NOAUTH
);
1797 else if (ret
!= ENOENT
)
1813 * This function will take a header that only has raw encrypted data in
1814 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1815 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1816 * also decompress the data.
1819 arc_hdr_decrypt(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
)
1824 boolean_t no_crypt
= B_FALSE
;
1825 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1827 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1828 ASSERT(HDR_ENCRYPTED(hdr
));
1830 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
1832 ret
= spa_do_crypt_abd(B_FALSE
, spa
, zb
, hdr
->b_crypt_hdr
.b_ot
,
1833 B_FALSE
, bswap
, hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_iv
,
1834 hdr
->b_crypt_hdr
.b_mac
, HDR_GET_PSIZE(hdr
), hdr
->b_l1hdr
.b_pabd
,
1835 hdr
->b_crypt_hdr
.b_rabd
, &no_crypt
);
1840 abd_copy(hdr
->b_l1hdr
.b_pabd
, hdr
->b_crypt_hdr
.b_rabd
,
1841 HDR_GET_PSIZE(hdr
));
1845 * If this header has disabled arc compression but the b_pabd is
1846 * compressed after decrypting it, we need to decompress the newly
1849 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1850 !HDR_COMPRESSION_ENABLED(hdr
)) {
1852 * We want to make sure that we are correctly honoring the
1853 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1854 * and then loan a buffer from it, rather than allocating a
1855 * linear buffer and wrapping it in an abd later.
1857 cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
, B_TRUE
);
1858 tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
1860 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
1861 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
1862 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
1864 abd_return_buf(cabd
, tmp
, arc_hdr_size(hdr
));
1868 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
1869 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
1870 arc_hdr_size(hdr
), hdr
);
1871 hdr
->b_l1hdr
.b_pabd
= cabd
;
1877 arc_hdr_free_abd(hdr
, B_FALSE
);
1879 arc_free_data_buf(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
1885 * This function is called during arc_buf_fill() to prepare the header's
1886 * abd plaintext pointer for use. This involves authenticated protected
1887 * data and decrypting encrypted data into the plaintext abd.
1890 arc_fill_hdr_crypt(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, spa_t
*spa
,
1891 const zbookmark_phys_t
*zb
, boolean_t noauth
)
1895 ASSERT(HDR_PROTECTED(hdr
));
1897 if (hash_lock
!= NULL
)
1898 mutex_enter(hash_lock
);
1900 if (HDR_NOAUTH(hdr
) && !noauth
) {
1902 * The caller requested authenticated data but our data has
1903 * not been authenticated yet. Verify the MAC now if we can.
1905 ret
= arc_hdr_authenticate(hdr
, spa
, zb
->zb_objset
);
1908 } else if (HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
== NULL
) {
1910 * If we only have the encrypted version of the data, but the
1911 * unencrypted version was requested we take this opportunity
1912 * to store the decrypted version in the header for future use.
1914 ret
= arc_hdr_decrypt(hdr
, spa
, zb
);
1919 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1921 if (hash_lock
!= NULL
)
1922 mutex_exit(hash_lock
);
1927 if (hash_lock
!= NULL
)
1928 mutex_exit(hash_lock
);
1934 * This function is used by the dbuf code to decrypt bonus buffers in place.
1935 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1936 * block, so we use the hash lock here to protect against concurrent calls to
1940 arc_buf_untransform_in_place(arc_buf_t
*buf
, kmutex_t
*hash_lock
)
1942 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1944 ASSERT(HDR_ENCRYPTED(hdr
));
1945 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
1946 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1947 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1949 zio_crypt_copy_dnode_bonus(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
1951 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
1952 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
1953 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
1957 * Given a buf that has a data buffer attached to it, this function will
1958 * efficiently fill the buf with data of the specified compression setting from
1959 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1960 * are already sharing a data buf, no copy is performed.
1962 * If the buf is marked as compressed but uncompressed data was requested, this
1963 * will allocate a new data buffer for the buf, remove that flag, and fill the
1964 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1965 * uncompressed data, and (since we haven't added support for it yet) if you
1966 * want compressed data your buf must already be marked as compressed and have
1967 * the correct-sized data buffer.
1970 arc_buf_fill(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
1971 arc_fill_flags_t flags
)
1974 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1975 boolean_t hdr_compressed
=
1976 (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
1977 boolean_t compressed
= (flags
& ARC_FILL_COMPRESSED
) != 0;
1978 boolean_t encrypted
= (flags
& ARC_FILL_ENCRYPTED
) != 0;
1979 dmu_object_byteswap_t bswap
= hdr
->b_l1hdr
.b_byteswap
;
1980 kmutex_t
*hash_lock
= (flags
& ARC_FILL_LOCKED
) ? NULL
: HDR_LOCK(hdr
);
1982 ASSERT3P(buf
->b_data
, !=, NULL
);
1983 IMPLY(compressed
, hdr_compressed
|| ARC_BUF_ENCRYPTED(buf
));
1984 IMPLY(compressed
, ARC_BUF_COMPRESSED(buf
));
1985 IMPLY(encrypted
, HDR_ENCRYPTED(hdr
));
1986 IMPLY(encrypted
, ARC_BUF_ENCRYPTED(buf
));
1987 IMPLY(encrypted
, ARC_BUF_COMPRESSED(buf
));
1988 IMPLY(encrypted
, !ARC_BUF_SHARED(buf
));
1991 * If the caller wanted encrypted data we just need to copy it from
1992 * b_rabd and potentially byteswap it. We won't be able to do any
1993 * further transforms on it.
1996 ASSERT(HDR_HAS_RABD(hdr
));
1997 abd_copy_to_buf(buf
->b_data
, hdr
->b_crypt_hdr
.b_rabd
,
1998 HDR_GET_PSIZE(hdr
));
2003 * Adjust encrypted and authenticated headers to accommodate
2004 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2005 * allowed to fail decryption due to keys not being loaded
2006 * without being marked as an IO error.
2008 if (HDR_PROTECTED(hdr
)) {
2009 error
= arc_fill_hdr_crypt(hdr
, hash_lock
, spa
,
2010 zb
, !!(flags
& ARC_FILL_NOAUTH
));
2011 if (error
== EACCES
&& (flags
& ARC_FILL_IN_PLACE
) != 0) {
2013 } else if (error
!= 0) {
2014 if (hash_lock
!= NULL
)
2015 mutex_enter(hash_lock
);
2016 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2017 if (hash_lock
!= NULL
)
2018 mutex_exit(hash_lock
);
2024 * There is a special case here for dnode blocks which are
2025 * decrypting their bonus buffers. These blocks may request to
2026 * be decrypted in-place. This is necessary because there may
2027 * be many dnodes pointing into this buffer and there is
2028 * currently no method to synchronize replacing the backing
2029 * b_data buffer and updating all of the pointers. Here we use
2030 * the hash lock to ensure there are no races. If the need
2031 * arises for other types to be decrypted in-place, they must
2032 * add handling here as well.
2034 if ((flags
& ARC_FILL_IN_PLACE
) != 0) {
2035 ASSERT(!hdr_compressed
);
2036 ASSERT(!compressed
);
2039 if (HDR_ENCRYPTED(hdr
) && ARC_BUF_ENCRYPTED(buf
)) {
2040 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2042 if (hash_lock
!= NULL
)
2043 mutex_enter(hash_lock
);
2044 arc_buf_untransform_in_place(buf
, hash_lock
);
2045 if (hash_lock
!= NULL
)
2046 mutex_exit(hash_lock
);
2048 /* Compute the hdr's checksum if necessary */
2049 arc_cksum_compute(buf
);
2055 if (hdr_compressed
== compressed
) {
2056 if (!arc_buf_is_shared(buf
)) {
2057 abd_copy_to_buf(buf
->b_data
, hdr
->b_l1hdr
.b_pabd
,
2061 ASSERT(hdr_compressed
);
2062 ASSERT(!compressed
);
2063 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, HDR_GET_PSIZE(hdr
));
2066 * If the buf is sharing its data with the hdr, unlink it and
2067 * allocate a new data buffer for the buf.
2069 if (arc_buf_is_shared(buf
)) {
2070 ASSERT(ARC_BUF_COMPRESSED(buf
));
2072 /* We need to give the buf its own b_data */
2073 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2075 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2076 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2078 /* Previously overhead was 0; just add new overhead */
2079 ARCSTAT_INCR(arcstat_overhead_size
, HDR_GET_LSIZE(hdr
));
2080 } else if (ARC_BUF_COMPRESSED(buf
)) {
2081 /* We need to reallocate the buf's b_data */
2082 arc_free_data_buf(hdr
, buf
->b_data
, HDR_GET_PSIZE(hdr
),
2085 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2087 /* We increased the size of b_data; update overhead */
2088 ARCSTAT_INCR(arcstat_overhead_size
,
2089 HDR_GET_LSIZE(hdr
) - HDR_GET_PSIZE(hdr
));
2093 * Regardless of the buf's previous compression settings, it
2094 * should not be compressed at the end of this function.
2096 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2099 * Try copying the data from another buf which already has a
2100 * decompressed version. If that's not possible, it's time to
2101 * bite the bullet and decompress the data from the hdr.
2103 if (arc_buf_try_copy_decompressed_data(buf
)) {
2104 /* Skip byteswapping and checksumming (already done) */
2107 error
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
2108 hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
2109 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
),
2113 * Absent hardware errors or software bugs, this should
2114 * be impossible, but log it anyway so we can debug it.
2118 "hdr %px, compress %d, psize %d, lsize %d",
2119 hdr
, arc_hdr_get_compress(hdr
),
2120 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2121 if (hash_lock
!= NULL
)
2122 mutex_enter(hash_lock
);
2123 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2124 if (hash_lock
!= NULL
)
2125 mutex_exit(hash_lock
);
2126 return (SET_ERROR(EIO
));
2132 /* Byteswap the buf's data if necessary */
2133 if (bswap
!= DMU_BSWAP_NUMFUNCS
) {
2134 ASSERT(!HDR_SHARED_DATA(hdr
));
2135 ASSERT3U(bswap
, <, DMU_BSWAP_NUMFUNCS
);
2136 dmu_ot_byteswap
[bswap
].ob_func(buf
->b_data
, HDR_GET_LSIZE(hdr
));
2139 /* Compute the hdr's checksum if necessary */
2140 arc_cksum_compute(buf
);
2146 * If this function is being called to decrypt an encrypted buffer or verify an
2147 * authenticated one, the key must be loaded and a mapping must be made
2148 * available in the keystore via spa_keystore_create_mapping() or one of its
2152 arc_untransform(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2156 arc_fill_flags_t flags
= 0;
2159 flags
|= ARC_FILL_IN_PLACE
;
2161 ret
= arc_buf_fill(buf
, spa
, zb
, flags
);
2162 if (ret
== ECKSUM
) {
2164 * Convert authentication and decryption errors to EIO
2165 * (and generate an ereport) before leaving the ARC.
2167 ret
= SET_ERROR(EIO
);
2168 spa_log_error(spa
, zb
);
2169 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
2170 spa
, NULL
, zb
, NULL
, 0);
2177 * Increment the amount of evictable space in the arc_state_t's refcount.
2178 * We account for the space used by the hdr and the arc buf individually
2179 * so that we can add and remove them from the refcount individually.
2182 arc_evictable_space_increment(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2184 arc_buf_contents_t type
= arc_buf_type(hdr
);
2186 ASSERT(HDR_HAS_L1HDR(hdr
));
2188 if (GHOST_STATE(state
)) {
2189 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2190 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2191 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2192 ASSERT(!HDR_HAS_RABD(hdr
));
2193 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2194 HDR_GET_LSIZE(hdr
), hdr
);
2198 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2199 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2200 arc_hdr_size(hdr
), hdr
);
2202 if (HDR_HAS_RABD(hdr
)) {
2203 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2204 HDR_GET_PSIZE(hdr
), hdr
);
2207 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2208 buf
= buf
->b_next
) {
2209 if (arc_buf_is_shared(buf
))
2211 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2212 arc_buf_size(buf
), buf
);
2217 * Decrement the amount of evictable space in the arc_state_t's refcount.
2218 * We account for the space used by the hdr and the arc buf individually
2219 * so that we can add and remove them from the refcount individually.
2222 arc_evictable_space_decrement(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2224 arc_buf_contents_t type
= arc_buf_type(hdr
);
2226 ASSERT(HDR_HAS_L1HDR(hdr
));
2228 if (GHOST_STATE(state
)) {
2229 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2230 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2231 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2232 ASSERT(!HDR_HAS_RABD(hdr
));
2233 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2234 HDR_GET_LSIZE(hdr
), hdr
);
2238 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2239 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2240 arc_hdr_size(hdr
), hdr
);
2242 if (HDR_HAS_RABD(hdr
)) {
2243 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2244 HDR_GET_PSIZE(hdr
), hdr
);
2247 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2248 buf
= buf
->b_next
) {
2249 if (arc_buf_is_shared(buf
))
2251 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2252 arc_buf_size(buf
), buf
);
2257 * Add a reference to this hdr indicating that someone is actively
2258 * referencing that memory. When the refcount transitions from 0 to 1,
2259 * we remove it from the respective arc_state_t list to indicate that
2260 * it is not evictable.
2263 add_reference(arc_buf_hdr_t
*hdr
, void *tag
)
2267 ASSERT(HDR_HAS_L1HDR(hdr
));
2268 if (!HDR_EMPTY(hdr
) && !MUTEX_HELD(HDR_LOCK(hdr
))) {
2269 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
2270 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2271 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2274 state
= hdr
->b_l1hdr
.b_state
;
2276 if ((zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
) == 1) &&
2277 (state
!= arc_anon
)) {
2278 /* We don't use the L2-only state list. */
2279 if (state
!= arc_l2c_only
) {
2280 multilist_remove(&state
->arcs_list
[arc_buf_type(hdr
)],
2282 arc_evictable_space_decrement(hdr
, state
);
2284 /* remove the prefetch flag if we get a reference */
2285 if (HDR_HAS_L2HDR(hdr
))
2286 l2arc_hdr_arcstats_decrement_state(hdr
);
2287 arc_hdr_clear_flags(hdr
, ARC_FLAG_PREFETCH
);
2288 if (HDR_HAS_L2HDR(hdr
))
2289 l2arc_hdr_arcstats_increment_state(hdr
);
2294 * Remove a reference from this hdr. When the reference transitions from
2295 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2296 * list making it eligible for eviction.
2299 remove_reference(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, void *tag
)
2302 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2304 ASSERT(HDR_HAS_L1HDR(hdr
));
2305 ASSERT(state
== arc_anon
|| MUTEX_HELD(hash_lock
));
2306 ASSERT(!GHOST_STATE(state
));
2309 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2310 * check to prevent usage of the arc_l2c_only list.
2312 if (((cnt
= zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
)) == 0) &&
2313 (state
!= arc_anon
)) {
2314 multilist_insert(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2315 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
2316 arc_evictable_space_increment(hdr
, state
);
2322 * Returns detailed information about a specific arc buffer. When the
2323 * state_index argument is set the function will calculate the arc header
2324 * list position for its arc state. Since this requires a linear traversal
2325 * callers are strongly encourage not to do this. However, it can be helpful
2326 * for targeted analysis so the functionality is provided.
2329 arc_buf_info(arc_buf_t
*ab
, arc_buf_info_t
*abi
, int state_index
)
2331 arc_buf_hdr_t
*hdr
= ab
->b_hdr
;
2332 l1arc_buf_hdr_t
*l1hdr
= NULL
;
2333 l2arc_buf_hdr_t
*l2hdr
= NULL
;
2334 arc_state_t
*state
= NULL
;
2336 memset(abi
, 0, sizeof (arc_buf_info_t
));
2341 abi
->abi_flags
= hdr
->b_flags
;
2343 if (HDR_HAS_L1HDR(hdr
)) {
2344 l1hdr
= &hdr
->b_l1hdr
;
2345 state
= l1hdr
->b_state
;
2347 if (HDR_HAS_L2HDR(hdr
))
2348 l2hdr
= &hdr
->b_l2hdr
;
2351 abi
->abi_bufcnt
= l1hdr
->b_bufcnt
;
2352 abi
->abi_access
= l1hdr
->b_arc_access
;
2353 abi
->abi_mru_hits
= l1hdr
->b_mru_hits
;
2354 abi
->abi_mru_ghost_hits
= l1hdr
->b_mru_ghost_hits
;
2355 abi
->abi_mfu_hits
= l1hdr
->b_mfu_hits
;
2356 abi
->abi_mfu_ghost_hits
= l1hdr
->b_mfu_ghost_hits
;
2357 abi
->abi_holds
= zfs_refcount_count(&l1hdr
->b_refcnt
);
2361 abi
->abi_l2arc_dattr
= l2hdr
->b_daddr
;
2362 abi
->abi_l2arc_hits
= l2hdr
->b_hits
;
2365 abi
->abi_state_type
= state
? state
->arcs_state
: ARC_STATE_ANON
;
2366 abi
->abi_state_contents
= arc_buf_type(hdr
);
2367 abi
->abi_size
= arc_hdr_size(hdr
);
2371 * Move the supplied buffer to the indicated state. The hash lock
2372 * for the buffer must be held by the caller.
2375 arc_change_state(arc_state_t
*new_state
, arc_buf_hdr_t
*hdr
,
2376 kmutex_t
*hash_lock
)
2378 arc_state_t
*old_state
;
2381 boolean_t update_old
, update_new
;
2382 arc_buf_contents_t buftype
= arc_buf_type(hdr
);
2385 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2386 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2387 * L1 hdr doesn't always exist when we change state to arc_anon before
2388 * destroying a header, in which case reallocating to add the L1 hdr is
2391 if (HDR_HAS_L1HDR(hdr
)) {
2392 old_state
= hdr
->b_l1hdr
.b_state
;
2393 refcnt
= zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
);
2394 bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
2395 update_old
= (bufcnt
> 0 || hdr
->b_l1hdr
.b_pabd
!= NULL
||
2398 old_state
= arc_l2c_only
;
2401 update_old
= B_FALSE
;
2403 update_new
= update_old
;
2405 ASSERT(MUTEX_HELD(hash_lock
));
2406 ASSERT3P(new_state
, !=, old_state
);
2407 ASSERT(!GHOST_STATE(new_state
) || bufcnt
== 0);
2408 ASSERT(old_state
!= arc_anon
|| bufcnt
<= 1);
2411 * If this buffer is evictable, transfer it from the
2412 * old state list to the new state list.
2415 if (old_state
!= arc_anon
&& old_state
!= arc_l2c_only
) {
2416 ASSERT(HDR_HAS_L1HDR(hdr
));
2417 multilist_remove(&old_state
->arcs_list
[buftype
], hdr
);
2419 if (GHOST_STATE(old_state
)) {
2421 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2422 update_old
= B_TRUE
;
2424 arc_evictable_space_decrement(hdr
, old_state
);
2426 if (new_state
!= arc_anon
&& new_state
!= arc_l2c_only
) {
2428 * An L1 header always exists here, since if we're
2429 * moving to some L1-cached state (i.e. not l2c_only or
2430 * anonymous), we realloc the header to add an L1hdr
2433 ASSERT(HDR_HAS_L1HDR(hdr
));
2434 multilist_insert(&new_state
->arcs_list
[buftype
], hdr
);
2436 if (GHOST_STATE(new_state
)) {
2438 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2439 update_new
= B_TRUE
;
2441 arc_evictable_space_increment(hdr
, new_state
);
2445 ASSERT(!HDR_EMPTY(hdr
));
2446 if (new_state
== arc_anon
&& HDR_IN_HASH_TABLE(hdr
))
2447 buf_hash_remove(hdr
);
2449 /* adjust state sizes (ignore arc_l2c_only) */
2451 if (update_new
&& new_state
!= arc_l2c_only
) {
2452 ASSERT(HDR_HAS_L1HDR(hdr
));
2453 if (GHOST_STATE(new_state
)) {
2457 * When moving a header to a ghost state, we first
2458 * remove all arc buffers. Thus, we'll have a
2459 * bufcnt of zero, and no arc buffer to use for
2460 * the reference. As a result, we use the arc
2461 * header pointer for the reference.
2463 (void) zfs_refcount_add_many(&new_state
->arcs_size
,
2464 HDR_GET_LSIZE(hdr
), hdr
);
2465 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2466 ASSERT(!HDR_HAS_RABD(hdr
));
2468 uint32_t buffers
= 0;
2471 * Each individual buffer holds a unique reference,
2472 * thus we must remove each of these references one
2475 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2476 buf
= buf
->b_next
) {
2477 ASSERT3U(bufcnt
, !=, 0);
2481 * When the arc_buf_t is sharing the data
2482 * block with the hdr, the owner of the
2483 * reference belongs to the hdr. Only
2484 * add to the refcount if the arc_buf_t is
2487 if (arc_buf_is_shared(buf
))
2490 (void) zfs_refcount_add_many(
2491 &new_state
->arcs_size
,
2492 arc_buf_size(buf
), buf
);
2494 ASSERT3U(bufcnt
, ==, buffers
);
2496 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2497 (void) zfs_refcount_add_many(
2498 &new_state
->arcs_size
,
2499 arc_hdr_size(hdr
), hdr
);
2502 if (HDR_HAS_RABD(hdr
)) {
2503 (void) zfs_refcount_add_many(
2504 &new_state
->arcs_size
,
2505 HDR_GET_PSIZE(hdr
), hdr
);
2510 if (update_old
&& old_state
!= arc_l2c_only
) {
2511 ASSERT(HDR_HAS_L1HDR(hdr
));
2512 if (GHOST_STATE(old_state
)) {
2514 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2515 ASSERT(!HDR_HAS_RABD(hdr
));
2518 * When moving a header off of a ghost state,
2519 * the header will not contain any arc buffers.
2520 * We use the arc header pointer for the reference
2521 * which is exactly what we did when we put the
2522 * header on the ghost state.
2525 (void) zfs_refcount_remove_many(&old_state
->arcs_size
,
2526 HDR_GET_LSIZE(hdr
), hdr
);
2528 uint32_t buffers
= 0;
2531 * Each individual buffer holds a unique reference,
2532 * thus we must remove each of these references one
2535 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2536 buf
= buf
->b_next
) {
2537 ASSERT3U(bufcnt
, !=, 0);
2541 * When the arc_buf_t is sharing the data
2542 * block with the hdr, the owner of the
2543 * reference belongs to the hdr. Only
2544 * add to the refcount if the arc_buf_t is
2547 if (arc_buf_is_shared(buf
))
2550 (void) zfs_refcount_remove_many(
2551 &old_state
->arcs_size
, arc_buf_size(buf
),
2554 ASSERT3U(bufcnt
, ==, buffers
);
2555 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
2558 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2559 (void) zfs_refcount_remove_many(
2560 &old_state
->arcs_size
, arc_hdr_size(hdr
),
2564 if (HDR_HAS_RABD(hdr
)) {
2565 (void) zfs_refcount_remove_many(
2566 &old_state
->arcs_size
, HDR_GET_PSIZE(hdr
),
2572 if (HDR_HAS_L1HDR(hdr
)) {
2573 hdr
->b_l1hdr
.b_state
= new_state
;
2575 if (HDR_HAS_L2HDR(hdr
) && new_state
!= arc_l2c_only
) {
2576 l2arc_hdr_arcstats_decrement_state(hdr
);
2577 hdr
->b_l2hdr
.b_arcs_state
= new_state
->arcs_state
;
2578 l2arc_hdr_arcstats_increment_state(hdr
);
2583 * L2 headers should never be on the L2 state list since they don't
2584 * have L1 headers allocated.
2586 ASSERT(multilist_is_empty(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]) &&
2587 multilist_is_empty(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]));
2591 arc_space_consume(uint64_t space
, arc_space_type_t type
)
2593 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2598 case ARC_SPACE_DATA
:
2599 ARCSTAT_INCR(arcstat_data_size
, space
);
2601 case ARC_SPACE_META
:
2602 ARCSTAT_INCR(arcstat_metadata_size
, space
);
2604 case ARC_SPACE_BONUS
:
2605 ARCSTAT_INCR(arcstat_bonus_size
, space
);
2607 case ARC_SPACE_DNODE
:
2608 aggsum_add(&arc_sums
.arcstat_dnode_size
, space
);
2610 case ARC_SPACE_DBUF
:
2611 ARCSTAT_INCR(arcstat_dbuf_size
, space
);
2613 case ARC_SPACE_HDRS
:
2614 ARCSTAT_INCR(arcstat_hdr_size
, space
);
2616 case ARC_SPACE_L2HDRS
:
2617 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, space
);
2619 case ARC_SPACE_ABD_CHUNK_WASTE
:
2621 * Note: this includes space wasted by all scatter ABD's, not
2622 * just those allocated by the ARC. But the vast majority of
2623 * scatter ABD's come from the ARC, because other users are
2626 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, space
);
2630 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2631 aggsum_add(&arc_sums
.arcstat_meta_used
, space
);
2633 aggsum_add(&arc_sums
.arcstat_size
, space
);
2637 arc_space_return(uint64_t space
, arc_space_type_t type
)
2639 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2644 case ARC_SPACE_DATA
:
2645 ARCSTAT_INCR(arcstat_data_size
, -space
);
2647 case ARC_SPACE_META
:
2648 ARCSTAT_INCR(arcstat_metadata_size
, -space
);
2650 case ARC_SPACE_BONUS
:
2651 ARCSTAT_INCR(arcstat_bonus_size
, -space
);
2653 case ARC_SPACE_DNODE
:
2654 aggsum_add(&arc_sums
.arcstat_dnode_size
, -space
);
2656 case ARC_SPACE_DBUF
:
2657 ARCSTAT_INCR(arcstat_dbuf_size
, -space
);
2659 case ARC_SPACE_HDRS
:
2660 ARCSTAT_INCR(arcstat_hdr_size
, -space
);
2662 case ARC_SPACE_L2HDRS
:
2663 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, -space
);
2665 case ARC_SPACE_ABD_CHUNK_WASTE
:
2666 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, -space
);
2670 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
) {
2671 ASSERT(aggsum_compare(&arc_sums
.arcstat_meta_used
,
2673 ARCSTAT_MAX(arcstat_meta_max
,
2674 aggsum_upper_bound(&arc_sums
.arcstat_meta_used
));
2675 aggsum_add(&arc_sums
.arcstat_meta_used
, -space
);
2678 ASSERT(aggsum_compare(&arc_sums
.arcstat_size
, space
) >= 0);
2679 aggsum_add(&arc_sums
.arcstat_size
, -space
);
2683 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2684 * with the hdr's b_pabd.
2687 arc_can_share(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2690 * The criteria for sharing a hdr's data are:
2691 * 1. the buffer is not encrypted
2692 * 2. the hdr's compression matches the buf's compression
2693 * 3. the hdr doesn't need to be byteswapped
2694 * 4. the hdr isn't already being shared
2695 * 5. the buf is either compressed or it is the last buf in the hdr list
2697 * Criterion #5 maintains the invariant that shared uncompressed
2698 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2699 * might ask, "if a compressed buf is allocated first, won't that be the
2700 * last thing in the list?", but in that case it's impossible to create
2701 * a shared uncompressed buf anyway (because the hdr must be compressed
2702 * to have the compressed buf). You might also think that #3 is
2703 * sufficient to make this guarantee, however it's possible
2704 * (specifically in the rare L2ARC write race mentioned in
2705 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2706 * is shareable, but wasn't at the time of its allocation. Rather than
2707 * allow a new shared uncompressed buf to be created and then shuffle
2708 * the list around to make it the last element, this simply disallows
2709 * sharing if the new buf isn't the first to be added.
2711 ASSERT3P(buf
->b_hdr
, ==, hdr
);
2712 boolean_t hdr_compressed
=
2713 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
;
2714 boolean_t buf_compressed
= ARC_BUF_COMPRESSED(buf
) != 0;
2715 return (!ARC_BUF_ENCRYPTED(buf
) &&
2716 buf_compressed
== hdr_compressed
&&
2717 hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
&&
2718 !HDR_SHARED_DATA(hdr
) &&
2719 (ARC_BUF_LAST(buf
) || ARC_BUF_COMPRESSED(buf
)));
2723 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2724 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2725 * copy was made successfully, or an error code otherwise.
2728 arc_buf_alloc_impl(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2729 void *tag
, boolean_t encrypted
, boolean_t compressed
, boolean_t noauth
,
2730 boolean_t fill
, arc_buf_t
**ret
)
2733 arc_fill_flags_t flags
= ARC_FILL_LOCKED
;
2735 ASSERT(HDR_HAS_L1HDR(hdr
));
2736 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
2737 VERIFY(hdr
->b_type
== ARC_BUFC_DATA
||
2738 hdr
->b_type
== ARC_BUFC_METADATA
);
2739 ASSERT3P(ret
, !=, NULL
);
2740 ASSERT3P(*ret
, ==, NULL
);
2741 IMPLY(encrypted
, compressed
);
2743 hdr
->b_l1hdr
.b_mru_hits
= 0;
2744 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
2745 hdr
->b_l1hdr
.b_mfu_hits
= 0;
2746 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
2747 hdr
->b_l1hdr
.b_l2_hits
= 0;
2749 buf
= *ret
= kmem_cache_alloc(buf_cache
, KM_PUSHPAGE
);
2752 buf
->b_next
= hdr
->b_l1hdr
.b_buf
;
2755 add_reference(hdr
, tag
);
2758 * We're about to change the hdr's b_flags. We must either
2759 * hold the hash_lock or be undiscoverable.
2761 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2764 * Only honor requests for compressed bufs if the hdr is actually
2765 * compressed. This must be overridden if the buffer is encrypted since
2766 * encrypted buffers cannot be decompressed.
2769 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2770 buf
->b_flags
|= ARC_BUF_FLAG_ENCRYPTED
;
2771 flags
|= ARC_FILL_COMPRESSED
| ARC_FILL_ENCRYPTED
;
2772 } else if (compressed
&&
2773 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
2774 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2775 flags
|= ARC_FILL_COMPRESSED
;
2780 flags
|= ARC_FILL_NOAUTH
;
2784 * If the hdr's data can be shared then we share the data buffer and
2785 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2786 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2787 * buffer to store the buf's data.
2789 * There are two additional restrictions here because we're sharing
2790 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2791 * actively involved in an L2ARC write, because if this buf is used by
2792 * an arc_write() then the hdr's data buffer will be released when the
2793 * write completes, even though the L2ARC write might still be using it.
2794 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2795 * need to be ABD-aware. It must be allocated via
2796 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2797 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2798 * page" buffers because the ABD code needs to handle freeing them
2801 boolean_t can_share
= arc_can_share(hdr
, buf
) &&
2802 !HDR_L2_WRITING(hdr
) &&
2803 hdr
->b_l1hdr
.b_pabd
!= NULL
&&
2804 abd_is_linear(hdr
->b_l1hdr
.b_pabd
) &&
2805 !abd_is_linear_page(hdr
->b_l1hdr
.b_pabd
);
2807 /* Set up b_data and sharing */
2809 buf
->b_data
= abd_to_buf(hdr
->b_l1hdr
.b_pabd
);
2810 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2811 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2814 arc_get_data_buf(hdr
, arc_buf_size(buf
), buf
);
2815 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
2817 VERIFY3P(buf
->b_data
, !=, NULL
);
2819 hdr
->b_l1hdr
.b_buf
= buf
;
2820 hdr
->b_l1hdr
.b_bufcnt
+= 1;
2822 hdr
->b_crypt_hdr
.b_ebufcnt
+= 1;
2825 * If the user wants the data from the hdr, we need to either copy or
2826 * decompress the data.
2829 ASSERT3P(zb
, !=, NULL
);
2830 return (arc_buf_fill(buf
, spa
, zb
, flags
));
2836 static char *arc_onloan_tag
= "onloan";
2839 arc_loaned_bytes_update(int64_t delta
)
2841 atomic_add_64(&arc_loaned_bytes
, delta
);
2843 /* assert that it did not wrap around */
2844 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
2848 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2849 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2850 * buffers must be returned to the arc before they can be used by the DMU or
2854 arc_loan_buf(spa_t
*spa
, boolean_t is_metadata
, int size
)
2856 arc_buf_t
*buf
= arc_alloc_buf(spa
, arc_onloan_tag
,
2857 is_metadata
? ARC_BUFC_METADATA
: ARC_BUFC_DATA
, size
);
2859 arc_loaned_bytes_update(arc_buf_size(buf
));
2865 arc_loan_compressed_buf(spa_t
*spa
, uint64_t psize
, uint64_t lsize
,
2866 enum zio_compress compression_type
, uint8_t complevel
)
2868 arc_buf_t
*buf
= arc_alloc_compressed_buf(spa
, arc_onloan_tag
,
2869 psize
, lsize
, compression_type
, complevel
);
2871 arc_loaned_bytes_update(arc_buf_size(buf
));
2877 arc_loan_raw_buf(spa_t
*spa
, uint64_t dsobj
, boolean_t byteorder
,
2878 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
2879 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
2880 enum zio_compress compression_type
, uint8_t complevel
)
2882 arc_buf_t
*buf
= arc_alloc_raw_buf(spa
, arc_onloan_tag
, dsobj
,
2883 byteorder
, salt
, iv
, mac
, ot
, psize
, lsize
, compression_type
,
2886 atomic_add_64(&arc_loaned_bytes
, psize
);
2892 * Return a loaned arc buffer to the arc.
2895 arc_return_buf(arc_buf_t
*buf
, void *tag
)
2897 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2899 ASSERT3P(buf
->b_data
, !=, NULL
);
2900 ASSERT(HDR_HAS_L1HDR(hdr
));
2901 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2902 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2904 arc_loaned_bytes_update(-arc_buf_size(buf
));
2907 /* Detach an arc_buf from a dbuf (tag) */
2909 arc_loan_inuse_buf(arc_buf_t
*buf
, void *tag
)
2911 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2913 ASSERT3P(buf
->b_data
, !=, NULL
);
2914 ASSERT(HDR_HAS_L1HDR(hdr
));
2915 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2916 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2918 arc_loaned_bytes_update(arc_buf_size(buf
));
2922 l2arc_free_abd_on_write(abd_t
*abd
, size_t size
, arc_buf_contents_t type
)
2924 l2arc_data_free_t
*df
= kmem_alloc(sizeof (*df
), KM_SLEEP
);
2927 df
->l2df_size
= size
;
2928 df
->l2df_type
= type
;
2929 mutex_enter(&l2arc_free_on_write_mtx
);
2930 list_insert_head(l2arc_free_on_write
, df
);
2931 mutex_exit(&l2arc_free_on_write_mtx
);
2935 arc_hdr_free_on_write(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
2937 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2938 arc_buf_contents_t type
= arc_buf_type(hdr
);
2939 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
2941 /* protected by hash lock, if in the hash table */
2942 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2943 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2944 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
2946 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2949 (void) zfs_refcount_remove_many(&state
->arcs_size
, size
, hdr
);
2950 if (type
== ARC_BUFC_METADATA
) {
2951 arc_space_return(size
, ARC_SPACE_META
);
2953 ASSERT(type
== ARC_BUFC_DATA
);
2954 arc_space_return(size
, ARC_SPACE_DATA
);
2958 l2arc_free_abd_on_write(hdr
->b_crypt_hdr
.b_rabd
, size
, type
);
2960 l2arc_free_abd_on_write(hdr
->b_l1hdr
.b_pabd
, size
, type
);
2965 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2966 * data buffer, we transfer the refcount ownership to the hdr and update
2967 * the appropriate kstats.
2970 arc_share_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2972 ASSERT(arc_can_share(hdr
, buf
));
2973 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2974 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
2975 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2978 * Start sharing the data buffer. We transfer the
2979 * refcount ownership to the hdr since it always owns
2980 * the refcount whenever an arc_buf_t is shared.
2982 zfs_refcount_transfer_ownership_many(&hdr
->b_l1hdr
.b_state
->arcs_size
,
2983 arc_hdr_size(hdr
), buf
, hdr
);
2984 hdr
->b_l1hdr
.b_pabd
= abd_get_from_buf(buf
->b_data
, arc_buf_size(buf
));
2985 abd_take_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
,
2986 HDR_ISTYPE_METADATA(hdr
));
2987 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2988 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2991 * Since we've transferred ownership to the hdr we need
2992 * to increment its compressed and uncompressed kstats and
2993 * decrement the overhead size.
2995 ARCSTAT_INCR(arcstat_compressed_size
, arc_hdr_size(hdr
));
2996 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
2997 ARCSTAT_INCR(arcstat_overhead_size
, -arc_buf_size(buf
));
3001 arc_unshare_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3003 ASSERT(arc_buf_is_shared(buf
));
3004 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3005 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3008 * We are no longer sharing this buffer so we need
3009 * to transfer its ownership to the rightful owner.
3011 zfs_refcount_transfer_ownership_many(&hdr
->b_l1hdr
.b_state
->arcs_size
,
3012 arc_hdr_size(hdr
), hdr
, buf
);
3013 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3014 abd_release_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
);
3015 abd_free(hdr
->b_l1hdr
.b_pabd
);
3016 hdr
->b_l1hdr
.b_pabd
= NULL
;
3017 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
3020 * Since the buffer is no longer shared between
3021 * the arc buf and the hdr, count it as overhead.
3023 ARCSTAT_INCR(arcstat_compressed_size
, -arc_hdr_size(hdr
));
3024 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3025 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
3029 * Remove an arc_buf_t from the hdr's buf list and return the last
3030 * arc_buf_t on the list. If no buffers remain on the list then return
3034 arc_buf_remove(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3036 ASSERT(HDR_HAS_L1HDR(hdr
));
3037 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3039 arc_buf_t
**bufp
= &hdr
->b_l1hdr
.b_buf
;
3040 arc_buf_t
*lastbuf
= NULL
;
3043 * Remove the buf from the hdr list and locate the last
3044 * remaining buffer on the list.
3046 while (*bufp
!= NULL
) {
3048 *bufp
= buf
->b_next
;
3051 * If we've removed a buffer in the middle of
3052 * the list then update the lastbuf and update
3055 if (*bufp
!= NULL
) {
3057 bufp
= &(*bufp
)->b_next
;
3061 ASSERT3P(lastbuf
, !=, buf
);
3062 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, lastbuf
!= NULL
);
3063 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, hdr
->b_l1hdr
.b_buf
!= NULL
);
3064 IMPLY(lastbuf
!= NULL
, ARC_BUF_LAST(lastbuf
));
3070 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3074 arc_buf_destroy_impl(arc_buf_t
*buf
)
3076 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3079 * Free up the data associated with the buf but only if we're not
3080 * sharing this with the hdr. If we are sharing it with the hdr, the
3081 * hdr is responsible for doing the free.
3083 if (buf
->b_data
!= NULL
) {
3085 * We're about to change the hdr's b_flags. We must either
3086 * hold the hash_lock or be undiscoverable.
3088 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3090 arc_cksum_verify(buf
);
3091 arc_buf_unwatch(buf
);
3093 if (arc_buf_is_shared(buf
)) {
3094 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3096 uint64_t size
= arc_buf_size(buf
);
3097 arc_free_data_buf(hdr
, buf
->b_data
, size
, buf
);
3098 ARCSTAT_INCR(arcstat_overhead_size
, -size
);
3102 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3103 hdr
->b_l1hdr
.b_bufcnt
-= 1;
3105 if (ARC_BUF_ENCRYPTED(buf
)) {
3106 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
3109 * If we have no more encrypted buffers and we've
3110 * already gotten a copy of the decrypted data we can
3111 * free b_rabd to save some space.
3113 if (hdr
->b_crypt_hdr
.b_ebufcnt
== 0 &&
3114 HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
!= NULL
&&
3115 !HDR_IO_IN_PROGRESS(hdr
)) {
3116 arc_hdr_free_abd(hdr
, B_TRUE
);
3121 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
3123 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
3125 * If the current arc_buf_t is sharing its data buffer with the
3126 * hdr, then reassign the hdr's b_pabd to share it with the new
3127 * buffer at the end of the list. The shared buffer is always
3128 * the last one on the hdr's buffer list.
3130 * There is an equivalent case for compressed bufs, but since
3131 * they aren't guaranteed to be the last buf in the list and
3132 * that is an exceedingly rare case, we just allow that space be
3133 * wasted temporarily. We must also be careful not to share
3134 * encrypted buffers, since they cannot be shared.
3136 if (lastbuf
!= NULL
&& !ARC_BUF_ENCRYPTED(lastbuf
)) {
3137 /* Only one buf can be shared at once */
3138 VERIFY(!arc_buf_is_shared(lastbuf
));
3139 /* hdr is uncompressed so can't have compressed buf */
3140 VERIFY(!ARC_BUF_COMPRESSED(lastbuf
));
3142 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3143 arc_hdr_free_abd(hdr
, B_FALSE
);
3146 * We must setup a new shared block between the
3147 * last buffer and the hdr. The data would have
3148 * been allocated by the arc buf so we need to transfer
3149 * ownership to the hdr since it's now being shared.
3151 arc_share_buf(hdr
, lastbuf
);
3153 } else if (HDR_SHARED_DATA(hdr
)) {
3155 * Uncompressed shared buffers are always at the end
3156 * of the list. Compressed buffers don't have the
3157 * same requirements. This makes it hard to
3158 * simply assert that the lastbuf is shared so
3159 * we rely on the hdr's compression flags to determine
3160 * if we have a compressed, shared buffer.
3162 ASSERT3P(lastbuf
, !=, NULL
);
3163 ASSERT(arc_buf_is_shared(lastbuf
) ||
3164 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
3168 * Free the checksum if we're removing the last uncompressed buf from
3171 if (!arc_hdr_has_uncompressed_buf(hdr
)) {
3172 arc_cksum_free(hdr
);
3175 /* clean up the buf */
3177 kmem_cache_free(buf_cache
, buf
);
3181 arc_hdr_alloc_abd(arc_buf_hdr_t
*hdr
, int alloc_flags
)
3184 boolean_t alloc_rdata
= ((alloc_flags
& ARC_HDR_ALLOC_RDATA
) != 0);
3185 boolean_t do_adapt
= ((alloc_flags
& ARC_HDR_DO_ADAPT
) != 0);
3187 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
3188 ASSERT(HDR_HAS_L1HDR(hdr
));
3189 ASSERT(!HDR_SHARED_DATA(hdr
) || alloc_rdata
);
3190 IMPLY(alloc_rdata
, HDR_PROTECTED(hdr
));
3193 size
= HDR_GET_PSIZE(hdr
);
3194 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, ==, NULL
);
3195 hdr
->b_crypt_hdr
.b_rabd
= arc_get_data_abd(hdr
, size
, hdr
,
3197 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, !=, NULL
);
3198 ARCSTAT_INCR(arcstat_raw_size
, size
);
3200 size
= arc_hdr_size(hdr
);
3201 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3202 hdr
->b_l1hdr
.b_pabd
= arc_get_data_abd(hdr
, size
, hdr
,
3204 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3207 ARCSTAT_INCR(arcstat_compressed_size
, size
);
3208 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3212 arc_hdr_free_abd(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
3214 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
3216 ASSERT(HDR_HAS_L1HDR(hdr
));
3217 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
3218 IMPLY(free_rdata
, HDR_HAS_RABD(hdr
));
3221 * If the hdr is currently being written to the l2arc then
3222 * we defer freeing the data by adding it to the l2arc_free_on_write
3223 * list. The l2arc will free the data once it's finished
3224 * writing it to the l2arc device.
3226 if (HDR_L2_WRITING(hdr
)) {
3227 arc_hdr_free_on_write(hdr
, free_rdata
);
3228 ARCSTAT_BUMP(arcstat_l2_free_on_write
);
3229 } else if (free_rdata
) {
3230 arc_free_data_abd(hdr
, hdr
->b_crypt_hdr
.b_rabd
, size
, hdr
);
3232 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
, size
, hdr
);
3236 hdr
->b_crypt_hdr
.b_rabd
= NULL
;
3237 ARCSTAT_INCR(arcstat_raw_size
, -size
);
3239 hdr
->b_l1hdr
.b_pabd
= NULL
;
3242 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3243 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3245 ARCSTAT_INCR(arcstat_compressed_size
, -size
);
3246 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3249 static arc_buf_hdr_t
*
3250 arc_hdr_alloc(uint64_t spa
, int32_t psize
, int32_t lsize
,
3251 boolean_t
protected, enum zio_compress compression_type
, uint8_t complevel
,
3252 arc_buf_contents_t type
, boolean_t alloc_rdata
)
3255 int flags
= ARC_HDR_DO_ADAPT
;
3257 VERIFY(type
== ARC_BUFC_DATA
|| type
== ARC_BUFC_METADATA
);
3259 hdr
= kmem_cache_alloc(hdr_full_crypt_cache
, KM_PUSHPAGE
);
3261 hdr
= kmem_cache_alloc(hdr_full_cache
, KM_PUSHPAGE
);
3263 flags
|= alloc_rdata
? ARC_HDR_ALLOC_RDATA
: 0;
3265 ASSERT(HDR_EMPTY(hdr
));
3266 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3267 HDR_SET_PSIZE(hdr
, psize
);
3268 HDR_SET_LSIZE(hdr
, lsize
);
3272 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L1HDR
);
3273 arc_hdr_set_compress(hdr
, compression_type
);
3274 hdr
->b_complevel
= complevel
;
3276 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3278 hdr
->b_l1hdr
.b_state
= arc_anon
;
3279 hdr
->b_l1hdr
.b_arc_access
= 0;
3280 hdr
->b_l1hdr
.b_bufcnt
= 0;
3281 hdr
->b_l1hdr
.b_buf
= NULL
;
3284 * Allocate the hdr's buffer. This will contain either
3285 * the compressed or uncompressed data depending on the block
3286 * it references and compressed arc enablement.
3288 arc_hdr_alloc_abd(hdr
, flags
);
3289 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3295 * Transition between the two allocation states for the arc_buf_hdr struct.
3296 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3297 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3298 * version is used when a cache buffer is only in the L2ARC in order to reduce
3301 static arc_buf_hdr_t
*
3302 arc_hdr_realloc(arc_buf_hdr_t
*hdr
, kmem_cache_t
*old
, kmem_cache_t
*new)
3304 ASSERT(HDR_HAS_L2HDR(hdr
));
3306 arc_buf_hdr_t
*nhdr
;
3307 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3309 ASSERT((old
== hdr_full_cache
&& new == hdr_l2only_cache
) ||
3310 (old
== hdr_l2only_cache
&& new == hdr_full_cache
));
3313 * if the caller wanted a new full header and the header is to be
3314 * encrypted we will actually allocate the header from the full crypt
3315 * cache instead. The same applies to freeing from the old cache.
3317 if (HDR_PROTECTED(hdr
) && new == hdr_full_cache
)
3318 new = hdr_full_crypt_cache
;
3319 if (HDR_PROTECTED(hdr
) && old
== hdr_full_cache
)
3320 old
= hdr_full_crypt_cache
;
3322 nhdr
= kmem_cache_alloc(new, KM_PUSHPAGE
);
3324 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3325 buf_hash_remove(hdr
);
3327 bcopy(hdr
, nhdr
, HDR_L2ONLY_SIZE
);
3329 if (new == hdr_full_cache
|| new == hdr_full_crypt_cache
) {
3330 arc_hdr_set_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3332 * arc_access and arc_change_state need to be aware that a
3333 * header has just come out of L2ARC, so we set its state to
3334 * l2c_only even though it's about to change.
3336 nhdr
->b_l1hdr
.b_state
= arc_l2c_only
;
3338 /* Verify previous threads set to NULL before freeing */
3339 ASSERT3P(nhdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3340 ASSERT(!HDR_HAS_RABD(hdr
));
3342 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3343 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
3344 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3347 * If we've reached here, We must have been called from
3348 * arc_evict_hdr(), as such we should have already been
3349 * removed from any ghost list we were previously on
3350 * (which protects us from racing with arc_evict_state),
3351 * thus no locking is needed during this check.
3353 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3356 * A buffer must not be moved into the arc_l2c_only
3357 * state if it's not finished being written out to the
3358 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3359 * might try to be accessed, even though it was removed.
3361 VERIFY(!HDR_L2_WRITING(hdr
));
3362 VERIFY3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3363 ASSERT(!HDR_HAS_RABD(hdr
));
3365 arc_hdr_clear_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3368 * The header has been reallocated so we need to re-insert it into any
3371 (void) buf_hash_insert(nhdr
, NULL
);
3373 ASSERT(list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3375 mutex_enter(&dev
->l2ad_mtx
);
3378 * We must place the realloc'ed header back into the list at
3379 * the same spot. Otherwise, if it's placed earlier in the list,
3380 * l2arc_write_buffers() could find it during the function's
3381 * write phase, and try to write it out to the l2arc.
3383 list_insert_after(&dev
->l2ad_buflist
, hdr
, nhdr
);
3384 list_remove(&dev
->l2ad_buflist
, hdr
);
3386 mutex_exit(&dev
->l2ad_mtx
);
3389 * Since we're using the pointer address as the tag when
3390 * incrementing and decrementing the l2ad_alloc refcount, we
3391 * must remove the old pointer (that we're about to destroy) and
3392 * add the new pointer to the refcount. Otherwise we'd remove
3393 * the wrong pointer address when calling arc_hdr_destroy() later.
3396 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
3397 arc_hdr_size(hdr
), hdr
);
3398 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
3399 arc_hdr_size(nhdr
), nhdr
);
3401 buf_discard_identity(hdr
);
3402 kmem_cache_free(old
, hdr
);
3408 * This function allows an L1 header to be reallocated as a crypt
3409 * header and vice versa. If we are going to a crypt header, the
3410 * new fields will be zeroed out.
3412 static arc_buf_hdr_t
*
3413 arc_hdr_realloc_crypt(arc_buf_hdr_t
*hdr
, boolean_t need_crypt
)
3415 arc_buf_hdr_t
*nhdr
;
3417 kmem_cache_t
*ncache
, *ocache
;
3420 * This function requires that hdr is in the arc_anon state.
3421 * Therefore it won't have any L2ARC data for us to worry
3424 ASSERT(HDR_HAS_L1HDR(hdr
));
3425 ASSERT(!HDR_HAS_L2HDR(hdr
));
3426 ASSERT3U(!!HDR_PROTECTED(hdr
), !=, need_crypt
);
3427 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3428 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3429 ASSERT(!list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3430 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3433 ncache
= hdr_full_crypt_cache
;
3434 ocache
= hdr_full_cache
;
3436 ncache
= hdr_full_cache
;
3437 ocache
= hdr_full_crypt_cache
;
3440 nhdr
= kmem_cache_alloc(ncache
, KM_PUSHPAGE
);
3443 * Copy all members that aren't locks or condvars to the new header.
3444 * No lists are pointing to us (as we asserted above), so we don't
3445 * need to worry about the list nodes.
3447 nhdr
->b_dva
= hdr
->b_dva
;
3448 nhdr
->b_birth
= hdr
->b_birth
;
3449 nhdr
->b_type
= hdr
->b_type
;
3450 nhdr
->b_flags
= hdr
->b_flags
;
3451 nhdr
->b_psize
= hdr
->b_psize
;
3452 nhdr
->b_lsize
= hdr
->b_lsize
;
3453 nhdr
->b_spa
= hdr
->b_spa
;
3454 nhdr
->b_l1hdr
.b_freeze_cksum
= hdr
->b_l1hdr
.b_freeze_cksum
;
3455 nhdr
->b_l1hdr
.b_bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
3456 nhdr
->b_l1hdr
.b_byteswap
= hdr
->b_l1hdr
.b_byteswap
;
3457 nhdr
->b_l1hdr
.b_state
= hdr
->b_l1hdr
.b_state
;
3458 nhdr
->b_l1hdr
.b_arc_access
= hdr
->b_l1hdr
.b_arc_access
;
3459 nhdr
->b_l1hdr
.b_mru_hits
= hdr
->b_l1hdr
.b_mru_hits
;
3460 nhdr
->b_l1hdr
.b_mru_ghost_hits
= hdr
->b_l1hdr
.b_mru_ghost_hits
;
3461 nhdr
->b_l1hdr
.b_mfu_hits
= hdr
->b_l1hdr
.b_mfu_hits
;
3462 nhdr
->b_l1hdr
.b_mfu_ghost_hits
= hdr
->b_l1hdr
.b_mfu_ghost_hits
;
3463 nhdr
->b_l1hdr
.b_l2_hits
= hdr
->b_l1hdr
.b_l2_hits
;
3464 nhdr
->b_l1hdr
.b_acb
= hdr
->b_l1hdr
.b_acb
;
3465 nhdr
->b_l1hdr
.b_pabd
= hdr
->b_l1hdr
.b_pabd
;
3468 * This zfs_refcount_add() exists only to ensure that the individual
3469 * arc buffers always point to a header that is referenced, avoiding
3470 * a small race condition that could trigger ASSERTs.
3472 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3473 nhdr
->b_l1hdr
.b_buf
= hdr
->b_l1hdr
.b_buf
;
3474 for (buf
= nhdr
->b_l1hdr
.b_buf
; buf
!= NULL
; buf
= buf
->b_next
) {
3475 mutex_enter(&buf
->b_evict_lock
);
3477 mutex_exit(&buf
->b_evict_lock
);
3480 zfs_refcount_transfer(&nhdr
->b_l1hdr
.b_refcnt
, &hdr
->b_l1hdr
.b_refcnt
);
3481 (void) zfs_refcount_remove(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3482 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3485 arc_hdr_set_flags(nhdr
, ARC_FLAG_PROTECTED
);
3487 arc_hdr_clear_flags(nhdr
, ARC_FLAG_PROTECTED
);
3490 /* unset all members of the original hdr */
3491 bzero(&hdr
->b_dva
, sizeof (dva_t
));
3493 hdr
->b_type
= ARC_BUFC_INVALID
;
3498 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
3499 hdr
->b_l1hdr
.b_buf
= NULL
;
3500 hdr
->b_l1hdr
.b_bufcnt
= 0;
3501 hdr
->b_l1hdr
.b_byteswap
= 0;
3502 hdr
->b_l1hdr
.b_state
= NULL
;
3503 hdr
->b_l1hdr
.b_arc_access
= 0;
3504 hdr
->b_l1hdr
.b_mru_hits
= 0;
3505 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3506 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3507 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3508 hdr
->b_l1hdr
.b_l2_hits
= 0;
3509 hdr
->b_l1hdr
.b_acb
= NULL
;
3510 hdr
->b_l1hdr
.b_pabd
= NULL
;
3512 if (ocache
== hdr_full_crypt_cache
) {
3513 ASSERT(!HDR_HAS_RABD(hdr
));
3514 hdr
->b_crypt_hdr
.b_ot
= DMU_OT_NONE
;
3515 hdr
->b_crypt_hdr
.b_ebufcnt
= 0;
3516 hdr
->b_crypt_hdr
.b_dsobj
= 0;
3517 bzero(hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
3518 bzero(hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
3519 bzero(hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
3522 buf_discard_identity(hdr
);
3523 kmem_cache_free(ocache
, hdr
);
3529 * This function is used by the send / receive code to convert a newly
3530 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3531 * is also used to allow the root objset block to be updated without altering
3532 * its embedded MACs. Both block types will always be uncompressed so we do not
3533 * have to worry about compression type or psize.
3536 arc_convert_to_raw(arc_buf_t
*buf
, uint64_t dsobj
, boolean_t byteorder
,
3537 dmu_object_type_t ot
, const uint8_t *salt
, const uint8_t *iv
,
3540 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3542 ASSERT(ot
== DMU_OT_DNODE
|| ot
== DMU_OT_OBJSET
);
3543 ASSERT(HDR_HAS_L1HDR(hdr
));
3544 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3546 buf
->b_flags
|= (ARC_BUF_FLAG_COMPRESSED
| ARC_BUF_FLAG_ENCRYPTED
);
3547 if (!HDR_PROTECTED(hdr
))
3548 hdr
= arc_hdr_realloc_crypt(hdr
, B_TRUE
);
3549 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3550 hdr
->b_crypt_hdr
.b_ot
= ot
;
3551 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3552 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3553 if (!arc_hdr_has_uncompressed_buf(hdr
))
3554 arc_cksum_free(hdr
);
3557 bcopy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
3559 bcopy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
3561 bcopy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
3565 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3566 * The buf is returned thawed since we expect the consumer to modify it.
3569 arc_alloc_buf(spa_t
*spa
, void *tag
, arc_buf_contents_t type
, int32_t size
)
3571 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), size
, size
,
3572 B_FALSE
, ZIO_COMPRESS_OFF
, 0, type
, B_FALSE
);
3574 arc_buf_t
*buf
= NULL
;
3575 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
, B_FALSE
,
3576 B_FALSE
, B_FALSE
, &buf
));
3583 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3584 * for bufs containing metadata.
3587 arc_alloc_compressed_buf(spa_t
*spa
, void *tag
, uint64_t psize
, uint64_t lsize
,
3588 enum zio_compress compression_type
, uint8_t complevel
)
3590 ASSERT3U(lsize
, >, 0);
3591 ASSERT3U(lsize
, >=, psize
);
3592 ASSERT3U(compression_type
, >, ZIO_COMPRESS_OFF
);
3593 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3595 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
3596 B_FALSE
, compression_type
, complevel
, ARC_BUFC_DATA
, B_FALSE
);
3598 arc_buf_t
*buf
= NULL
;
3599 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
,
3600 B_TRUE
, B_FALSE
, B_FALSE
, &buf
));
3602 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3604 if (!arc_buf_is_shared(buf
)) {
3606 * To ensure that the hdr has the correct data in it if we call
3607 * arc_untransform() on this buf before it's been written to
3608 * disk, it's easiest if we just set up sharing between the
3611 arc_hdr_free_abd(hdr
, B_FALSE
);
3612 arc_share_buf(hdr
, buf
);
3619 arc_alloc_raw_buf(spa_t
*spa
, void *tag
, uint64_t dsobj
, boolean_t byteorder
,
3620 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
3621 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
3622 enum zio_compress compression_type
, uint8_t complevel
)
3626 arc_buf_contents_t type
= DMU_OT_IS_METADATA(ot
) ?
3627 ARC_BUFC_METADATA
: ARC_BUFC_DATA
;
3629 ASSERT3U(lsize
, >, 0);
3630 ASSERT3U(lsize
, >=, psize
);
3631 ASSERT3U(compression_type
, >=, ZIO_COMPRESS_OFF
);
3632 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3634 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
, B_TRUE
,
3635 compression_type
, complevel
, type
, B_TRUE
);
3637 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3638 hdr
->b_crypt_hdr
.b_ot
= ot
;
3639 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3640 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3641 bcopy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
3642 bcopy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
3643 bcopy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
3646 * This buffer will be considered encrypted even if the ot is not an
3647 * encrypted type. It will become authenticated instead in
3648 * arc_write_ready().
3651 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_TRUE
, B_TRUE
,
3652 B_FALSE
, B_FALSE
, &buf
));
3654 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3660 l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
3661 boolean_t state_only
)
3663 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3664 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3665 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
3666 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3667 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3668 arc_buf_contents_t type
= hdr
->b_type
;
3683 /* If the buffer is a prefetch, count it as such. */
3684 if (HDR_PREFETCH(hdr
)) {
3685 ARCSTAT_INCR(arcstat_l2_prefetch_asize
, asize_s
);
3688 * We use the value stored in the L2 header upon initial
3689 * caching in L2ARC. This value will be updated in case
3690 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3691 * metadata (log entry) cannot currently be updated. Having
3692 * the ARC state in the L2 header solves the problem of a
3693 * possibly absent L1 header (apparent in buffers restored
3694 * from persistent L2ARC).
3696 switch (hdr
->b_l2hdr
.b_arcs_state
) {
3697 case ARC_STATE_MRU_GHOST
:
3699 ARCSTAT_INCR(arcstat_l2_mru_asize
, asize_s
);
3701 case ARC_STATE_MFU_GHOST
:
3703 ARCSTAT_INCR(arcstat_l2_mfu_asize
, asize_s
);
3713 ARCSTAT_INCR(arcstat_l2_psize
, psize_s
);
3714 ARCSTAT_INCR(arcstat_l2_lsize
, lsize_s
);
3718 ARCSTAT_INCR(arcstat_l2_bufc_data_asize
, asize_s
);
3720 case ARC_BUFC_METADATA
:
3721 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize
, asize_s
);
3730 arc_hdr_l2hdr_destroy(arc_buf_hdr_t
*hdr
)
3732 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3733 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3734 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3735 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3737 ASSERT(MUTEX_HELD(&dev
->l2ad_mtx
));
3738 ASSERT(HDR_HAS_L2HDR(hdr
));
3740 list_remove(&dev
->l2ad_buflist
, hdr
);
3742 l2arc_hdr_arcstats_decrement(hdr
);
3743 vdev_space_update(dev
->l2ad_vdev
, -asize
, 0, 0);
3745 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
),
3747 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
3751 arc_hdr_destroy(arc_buf_hdr_t
*hdr
)
3753 if (HDR_HAS_L1HDR(hdr
)) {
3754 ASSERT(hdr
->b_l1hdr
.b_buf
== NULL
||
3755 hdr
->b_l1hdr
.b_bufcnt
> 0);
3756 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3757 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3759 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3760 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
3762 if (HDR_HAS_L2HDR(hdr
)) {
3763 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3764 boolean_t buflist_held
= MUTEX_HELD(&dev
->l2ad_mtx
);
3767 mutex_enter(&dev
->l2ad_mtx
);
3770 * Even though we checked this conditional above, we
3771 * need to check this again now that we have the
3772 * l2ad_mtx. This is because we could be racing with
3773 * another thread calling l2arc_evict() which might have
3774 * destroyed this header's L2 portion as we were waiting
3775 * to acquire the l2ad_mtx. If that happens, we don't
3776 * want to re-destroy the header's L2 portion.
3778 if (HDR_HAS_L2HDR(hdr
))
3779 arc_hdr_l2hdr_destroy(hdr
);
3782 mutex_exit(&dev
->l2ad_mtx
);
3786 * The header's identify can only be safely discarded once it is no
3787 * longer discoverable. This requires removing it from the hash table
3788 * and the l2arc header list. After this point the hash lock can not
3789 * be used to protect the header.
3791 if (!HDR_EMPTY(hdr
))
3792 buf_discard_identity(hdr
);
3794 if (HDR_HAS_L1HDR(hdr
)) {
3795 arc_cksum_free(hdr
);
3797 while (hdr
->b_l1hdr
.b_buf
!= NULL
)
3798 arc_buf_destroy_impl(hdr
->b_l1hdr
.b_buf
);
3800 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3801 arc_hdr_free_abd(hdr
, B_FALSE
);
3803 if (HDR_HAS_RABD(hdr
))
3804 arc_hdr_free_abd(hdr
, B_TRUE
);
3807 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3808 if (HDR_HAS_L1HDR(hdr
)) {
3809 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3810 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
3812 if (!HDR_PROTECTED(hdr
)) {
3813 kmem_cache_free(hdr_full_cache
, hdr
);
3815 kmem_cache_free(hdr_full_crypt_cache
, hdr
);
3818 kmem_cache_free(hdr_l2only_cache
, hdr
);
3823 arc_buf_destroy(arc_buf_t
*buf
, void* tag
)
3825 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3827 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
3828 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
3829 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3830 VERIFY0(remove_reference(hdr
, NULL
, tag
));
3831 arc_hdr_destroy(hdr
);
3835 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
3836 mutex_enter(hash_lock
);
3838 ASSERT3P(hdr
, ==, buf
->b_hdr
);
3839 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3840 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
3841 ASSERT3P(hdr
->b_l1hdr
.b_state
, !=, arc_anon
);
3842 ASSERT3P(buf
->b_data
, !=, NULL
);
3844 (void) remove_reference(hdr
, hash_lock
, tag
);
3845 arc_buf_destroy_impl(buf
);
3846 mutex_exit(hash_lock
);
3850 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3851 * state of the header is dependent on its state prior to entering this
3852 * function. The following transitions are possible:
3854 * - arc_mru -> arc_mru_ghost
3855 * - arc_mfu -> arc_mfu_ghost
3856 * - arc_mru_ghost -> arc_l2c_only
3857 * - arc_mru_ghost -> deleted
3858 * - arc_mfu_ghost -> arc_l2c_only
3859 * - arc_mfu_ghost -> deleted
3861 * Return total size of evicted data buffers for eviction progress tracking.
3862 * When evicting from ghost states return logical buffer size to make eviction
3863 * progress at the same (or at least comparable) rate as from non-ghost states.
3865 * Return *real_evicted for actual ARC size reduction to wake up threads
3866 * waiting for it. For non-ghost states it includes size of evicted data
3867 * buffers (the headers are not freed there). For ghost states it includes
3868 * only the evicted headers size.
3871 arc_evict_hdr(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, uint64_t *real_evicted
)
3873 arc_state_t
*evicted_state
, *state
;
3874 int64_t bytes_evicted
= 0;
3875 int min_lifetime
= HDR_PRESCIENT_PREFETCH(hdr
) ?
3876 arc_min_prescient_prefetch_ms
: arc_min_prefetch_ms
;
3878 ASSERT(MUTEX_HELD(hash_lock
));
3879 ASSERT(HDR_HAS_L1HDR(hdr
));
3882 state
= hdr
->b_l1hdr
.b_state
;
3883 if (GHOST_STATE(state
)) {
3884 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3885 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3888 * l2arc_write_buffers() relies on a header's L1 portion
3889 * (i.e. its b_pabd field) during it's write phase.
3890 * Thus, we cannot push a header onto the arc_l2c_only
3891 * state (removing its L1 piece) until the header is
3892 * done being written to the l2arc.
3894 if (HDR_HAS_L2HDR(hdr
) && HDR_L2_WRITING(hdr
)) {
3895 ARCSTAT_BUMP(arcstat_evict_l2_skip
);
3896 return (bytes_evicted
);
3899 ARCSTAT_BUMP(arcstat_deleted
);
3900 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3902 DTRACE_PROBE1(arc__delete
, arc_buf_hdr_t
*, hdr
);
3904 if (HDR_HAS_L2HDR(hdr
)) {
3905 ASSERT(hdr
->b_l1hdr
.b_pabd
== NULL
);
3906 ASSERT(!HDR_HAS_RABD(hdr
));
3908 * This buffer is cached on the 2nd Level ARC;
3909 * don't destroy the header.
3911 arc_change_state(arc_l2c_only
, hdr
, hash_lock
);
3913 * dropping from L1+L2 cached to L2-only,
3914 * realloc to remove the L1 header.
3916 hdr
= arc_hdr_realloc(hdr
, hdr_full_cache
,
3918 *real_evicted
+= HDR_FULL_SIZE
- HDR_L2ONLY_SIZE
;
3920 arc_change_state(arc_anon
, hdr
, hash_lock
);
3921 arc_hdr_destroy(hdr
);
3922 *real_evicted
+= HDR_FULL_SIZE
;
3924 return (bytes_evicted
);
3927 ASSERT(state
== arc_mru
|| state
== arc_mfu
);
3928 evicted_state
= (state
== arc_mru
) ? arc_mru_ghost
: arc_mfu_ghost
;
3930 /* prefetch buffers have a minimum lifespan */
3931 if (HDR_IO_IN_PROGRESS(hdr
) ||
3932 ((hdr
->b_flags
& (ARC_FLAG_PREFETCH
| ARC_FLAG_INDIRECT
)) &&
3933 ddi_get_lbolt() - hdr
->b_l1hdr
.b_arc_access
<
3934 MSEC_TO_TICK(min_lifetime
))) {
3935 ARCSTAT_BUMP(arcstat_evict_skip
);
3936 return (bytes_evicted
);
3939 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3940 while (hdr
->b_l1hdr
.b_buf
) {
3941 arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
;
3942 if (!mutex_tryenter(&buf
->b_evict_lock
)) {
3943 ARCSTAT_BUMP(arcstat_mutex_miss
);
3946 if (buf
->b_data
!= NULL
) {
3947 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3948 *real_evicted
+= HDR_GET_LSIZE(hdr
);
3950 mutex_exit(&buf
->b_evict_lock
);
3951 arc_buf_destroy_impl(buf
);
3954 if (HDR_HAS_L2HDR(hdr
)) {
3955 ARCSTAT_INCR(arcstat_evict_l2_cached
, HDR_GET_LSIZE(hdr
));
3957 if (l2arc_write_eligible(hdr
->b_spa
, hdr
)) {
3958 ARCSTAT_INCR(arcstat_evict_l2_eligible
,
3959 HDR_GET_LSIZE(hdr
));
3961 switch (state
->arcs_state
) {
3964 arcstat_evict_l2_eligible_mru
,
3965 HDR_GET_LSIZE(hdr
));
3969 arcstat_evict_l2_eligible_mfu
,
3970 HDR_GET_LSIZE(hdr
));
3976 ARCSTAT_INCR(arcstat_evict_l2_ineligible
,
3977 HDR_GET_LSIZE(hdr
));
3981 if (hdr
->b_l1hdr
.b_bufcnt
== 0) {
3982 arc_cksum_free(hdr
);
3984 bytes_evicted
+= arc_hdr_size(hdr
);
3985 *real_evicted
+= arc_hdr_size(hdr
);
3988 * If this hdr is being evicted and has a compressed
3989 * buffer then we discard it here before we change states.
3990 * This ensures that the accounting is updated correctly
3991 * in arc_free_data_impl().
3993 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3994 arc_hdr_free_abd(hdr
, B_FALSE
);
3996 if (HDR_HAS_RABD(hdr
))
3997 arc_hdr_free_abd(hdr
, B_TRUE
);
3999 arc_change_state(evicted_state
, hdr
, hash_lock
);
4000 ASSERT(HDR_IN_HASH_TABLE(hdr
));
4001 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
4002 DTRACE_PROBE1(arc__evict
, arc_buf_hdr_t
*, hdr
);
4005 return (bytes_evicted
);
4009 arc_set_need_free(void)
4011 ASSERT(MUTEX_HELD(&arc_evict_lock
));
4012 int64_t remaining
= arc_free_memory() - arc_sys_free
/ 2;
4013 arc_evict_waiter_t
*aw
= list_tail(&arc_evict_waiters
);
4015 arc_need_free
= MAX(-remaining
, 0);
4018 MAX(-remaining
, (int64_t)(aw
->aew_count
- arc_evict_count
));
4023 arc_evict_state_impl(multilist_t
*ml
, int idx
, arc_buf_hdr_t
*marker
,
4024 uint64_t spa
, uint64_t bytes
)
4026 multilist_sublist_t
*mls
;
4027 uint64_t bytes_evicted
= 0, real_evicted
= 0;
4029 kmutex_t
*hash_lock
;
4030 int evict_count
= zfs_arc_evict_batch_limit
;
4032 ASSERT3P(marker
, !=, NULL
);
4034 mls
= multilist_sublist_lock(ml
, idx
);
4036 for (hdr
= multilist_sublist_prev(mls
, marker
); likely(hdr
!= NULL
);
4037 hdr
= multilist_sublist_prev(mls
, marker
)) {
4038 if ((evict_count
<= 0) || (bytes_evicted
>= bytes
))
4042 * To keep our iteration location, move the marker
4043 * forward. Since we're not holding hdr's hash lock, we
4044 * must be very careful and not remove 'hdr' from the
4045 * sublist. Otherwise, other consumers might mistake the
4046 * 'hdr' as not being on a sublist when they call the
4047 * multilist_link_active() function (they all rely on
4048 * the hash lock protecting concurrent insertions and
4049 * removals). multilist_sublist_move_forward() was
4050 * specifically implemented to ensure this is the case
4051 * (only 'marker' will be removed and re-inserted).
4053 multilist_sublist_move_forward(mls
, marker
);
4056 * The only case where the b_spa field should ever be
4057 * zero, is the marker headers inserted by
4058 * arc_evict_state(). It's possible for multiple threads
4059 * to be calling arc_evict_state() concurrently (e.g.
4060 * dsl_pool_close() and zio_inject_fault()), so we must
4061 * skip any markers we see from these other threads.
4063 if (hdr
->b_spa
== 0)
4066 /* we're only interested in evicting buffers of a certain spa */
4067 if (spa
!= 0 && hdr
->b_spa
!= spa
) {
4068 ARCSTAT_BUMP(arcstat_evict_skip
);
4072 hash_lock
= HDR_LOCK(hdr
);
4075 * We aren't calling this function from any code path
4076 * that would already be holding a hash lock, so we're
4077 * asserting on this assumption to be defensive in case
4078 * this ever changes. Without this check, it would be
4079 * possible to incorrectly increment arcstat_mutex_miss
4080 * below (e.g. if the code changed such that we called
4081 * this function with a hash lock held).
4083 ASSERT(!MUTEX_HELD(hash_lock
));
4085 if (mutex_tryenter(hash_lock
)) {
4087 uint64_t evicted
= arc_evict_hdr(hdr
, hash_lock
,
4089 mutex_exit(hash_lock
);
4091 bytes_evicted
+= evicted
;
4092 real_evicted
+= revicted
;
4095 * If evicted is zero, arc_evict_hdr() must have
4096 * decided to skip this header, don't increment
4097 * evict_count in this case.
4103 ARCSTAT_BUMP(arcstat_mutex_miss
);
4107 multilist_sublist_unlock(mls
);
4110 * Increment the count of evicted bytes, and wake up any threads that
4111 * are waiting for the count to reach this value. Since the list is
4112 * ordered by ascending aew_count, we pop off the beginning of the
4113 * list until we reach the end, or a waiter that's past the current
4114 * "count". Doing this outside the loop reduces the number of times
4115 * we need to acquire the global arc_evict_lock.
4117 * Only wake when there's sufficient free memory in the system
4118 * (specifically, arc_sys_free/2, which by default is a bit more than
4119 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4121 mutex_enter(&arc_evict_lock
);
4122 arc_evict_count
+= real_evicted
;
4124 if (arc_free_memory() > arc_sys_free
/ 2) {
4125 arc_evict_waiter_t
*aw
;
4126 while ((aw
= list_head(&arc_evict_waiters
)) != NULL
&&
4127 aw
->aew_count
<= arc_evict_count
) {
4128 list_remove(&arc_evict_waiters
, aw
);
4129 cv_broadcast(&aw
->aew_cv
);
4132 arc_set_need_free();
4133 mutex_exit(&arc_evict_lock
);
4136 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4137 * if the average cached block is small), eviction can be on-CPU for
4138 * many seconds. To ensure that other threads that may be bound to
4139 * this CPU are able to make progress, make a voluntary preemption
4144 return (bytes_evicted
);
4148 * Evict buffers from the given arc state, until we've removed the
4149 * specified number of bytes. Move the removed buffers to the
4150 * appropriate evict state.
4152 * This function makes a "best effort". It skips over any buffers
4153 * it can't get a hash_lock on, and so, may not catch all candidates.
4154 * It may also return without evicting as much space as requested.
4156 * If bytes is specified using the special value ARC_EVICT_ALL, this
4157 * will evict all available (i.e. unlocked and evictable) buffers from
4158 * the given arc state; which is used by arc_flush().
4161 arc_evict_state(arc_state_t
*state
, uint64_t spa
, uint64_t bytes
,
4162 arc_buf_contents_t type
)
4164 uint64_t total_evicted
= 0;
4165 multilist_t
*ml
= &state
->arcs_list
[type
];
4167 arc_buf_hdr_t
**markers
;
4169 num_sublists
= multilist_get_num_sublists(ml
);
4172 * If we've tried to evict from each sublist, made some
4173 * progress, but still have not hit the target number of bytes
4174 * to evict, we want to keep trying. The markers allow us to
4175 * pick up where we left off for each individual sublist, rather
4176 * than starting from the tail each time.
4178 markers
= kmem_zalloc(sizeof (*markers
) * num_sublists
, KM_SLEEP
);
4179 for (int i
= 0; i
< num_sublists
; i
++) {
4180 multilist_sublist_t
*mls
;
4182 markers
[i
] = kmem_cache_alloc(hdr_full_cache
, KM_SLEEP
);
4185 * A b_spa of 0 is used to indicate that this header is
4186 * a marker. This fact is used in arc_evict_type() and
4187 * arc_evict_state_impl().
4189 markers
[i
]->b_spa
= 0;
4191 mls
= multilist_sublist_lock(ml
, i
);
4192 multilist_sublist_insert_tail(mls
, markers
[i
]);
4193 multilist_sublist_unlock(mls
);
4197 * While we haven't hit our target number of bytes to evict, or
4198 * we're evicting all available buffers.
4200 while (total_evicted
< bytes
) {
4201 int sublist_idx
= multilist_get_random_index(ml
);
4202 uint64_t scan_evicted
= 0;
4205 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4206 * Request that 10% of the LRUs be scanned by the superblock
4209 if (type
== ARC_BUFC_DATA
&& aggsum_compare(
4210 &arc_sums
.arcstat_dnode_size
, arc_dnode_size_limit
) > 0) {
4211 arc_prune_async((aggsum_upper_bound(
4212 &arc_sums
.arcstat_dnode_size
) -
4213 arc_dnode_size_limit
) / sizeof (dnode_t
) /
4214 zfs_arc_dnode_reduce_percent
);
4218 * Start eviction using a randomly selected sublist,
4219 * this is to try and evenly balance eviction across all
4220 * sublists. Always starting at the same sublist
4221 * (e.g. index 0) would cause evictions to favor certain
4222 * sublists over others.
4224 for (int i
= 0; i
< num_sublists
; i
++) {
4225 uint64_t bytes_remaining
;
4226 uint64_t bytes_evicted
;
4228 if (total_evicted
< bytes
)
4229 bytes_remaining
= bytes
- total_evicted
;
4233 bytes_evicted
= arc_evict_state_impl(ml
, sublist_idx
,
4234 markers
[sublist_idx
], spa
, bytes_remaining
);
4236 scan_evicted
+= bytes_evicted
;
4237 total_evicted
+= bytes_evicted
;
4239 /* we've reached the end, wrap to the beginning */
4240 if (++sublist_idx
>= num_sublists
)
4245 * If we didn't evict anything during this scan, we have
4246 * no reason to believe we'll evict more during another
4247 * scan, so break the loop.
4249 if (scan_evicted
== 0) {
4250 /* This isn't possible, let's make that obvious */
4251 ASSERT3S(bytes
, !=, 0);
4254 * When bytes is ARC_EVICT_ALL, the only way to
4255 * break the loop is when scan_evicted is zero.
4256 * In that case, we actually have evicted enough,
4257 * so we don't want to increment the kstat.
4259 if (bytes
!= ARC_EVICT_ALL
) {
4260 ASSERT3S(total_evicted
, <, bytes
);
4261 ARCSTAT_BUMP(arcstat_evict_not_enough
);
4268 for (int i
= 0; i
< num_sublists
; i
++) {
4269 multilist_sublist_t
*mls
= multilist_sublist_lock(ml
, i
);
4270 multilist_sublist_remove(mls
, markers
[i
]);
4271 multilist_sublist_unlock(mls
);
4273 kmem_cache_free(hdr_full_cache
, markers
[i
]);
4275 kmem_free(markers
, sizeof (*markers
) * num_sublists
);
4277 return (total_evicted
);
4281 * Flush all "evictable" data of the given type from the arc state
4282 * specified. This will not evict any "active" buffers (i.e. referenced).
4284 * When 'retry' is set to B_FALSE, the function will make a single pass
4285 * over the state and evict any buffers that it can. Since it doesn't
4286 * continually retry the eviction, it might end up leaving some buffers
4287 * in the ARC due to lock misses.
4289 * When 'retry' is set to B_TRUE, the function will continually retry the
4290 * eviction until *all* evictable buffers have been removed from the
4291 * state. As a result, if concurrent insertions into the state are
4292 * allowed (e.g. if the ARC isn't shutting down), this function might
4293 * wind up in an infinite loop, continually trying to evict buffers.
4296 arc_flush_state(arc_state_t
*state
, uint64_t spa
, arc_buf_contents_t type
,
4299 uint64_t evicted
= 0;
4301 while (zfs_refcount_count(&state
->arcs_esize
[type
]) != 0) {
4302 evicted
+= arc_evict_state(state
, spa
, ARC_EVICT_ALL
, type
);
4312 * Evict the specified number of bytes from the state specified,
4313 * restricting eviction to the spa and type given. This function
4314 * prevents us from trying to evict more from a state's list than
4315 * is "evictable", and to skip evicting altogether when passed a
4316 * negative value for "bytes". In contrast, arc_evict_state() will
4317 * evict everything it can, when passed a negative value for "bytes".
4320 arc_evict_impl(arc_state_t
*state
, uint64_t spa
, int64_t bytes
,
4321 arc_buf_contents_t type
)
4325 if (bytes
> 0 && zfs_refcount_count(&state
->arcs_esize
[type
]) > 0) {
4326 delta
= MIN(zfs_refcount_count(&state
->arcs_esize
[type
]),
4328 return (arc_evict_state(state
, spa
, delta
, type
));
4335 * The goal of this function is to evict enough meta data buffers from the
4336 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4337 * more complicated than it appears because it is common for data buffers
4338 * to have holds on meta data buffers. In addition, dnode meta data buffers
4339 * will be held by the dnodes in the block preventing them from being freed.
4340 * This means we can't simply traverse the ARC and expect to always find
4341 * enough unheld meta data buffer to release.
4343 * Therefore, this function has been updated to make alternating passes
4344 * over the ARC releasing data buffers and then newly unheld meta data
4345 * buffers. This ensures forward progress is maintained and meta_used
4346 * will decrease. Normally this is sufficient, but if required the ARC
4347 * will call the registered prune callbacks causing dentry and inodes to
4348 * be dropped from the VFS cache. This will make dnode meta data buffers
4349 * available for reclaim.
4352 arc_evict_meta_balanced(uint64_t meta_used
)
4354 int64_t delta
, prune
= 0, adjustmnt
;
4355 uint64_t total_evicted
= 0;
4356 arc_buf_contents_t type
= ARC_BUFC_DATA
;
4357 int restarts
= MAX(zfs_arc_meta_adjust_restarts
, 0);
4361 * This slightly differs than the way we evict from the mru in
4362 * arc_evict because we don't have a "target" value (i.e. no
4363 * "meta" arc_p). As a result, I think we can completely
4364 * cannibalize the metadata in the MRU before we evict the
4365 * metadata from the MFU. I think we probably need to implement a
4366 * "metadata arc_p" value to do this properly.
4368 adjustmnt
= meta_used
- arc_meta_limit
;
4370 if (adjustmnt
> 0 &&
4371 zfs_refcount_count(&arc_mru
->arcs_esize
[type
]) > 0) {
4372 delta
= MIN(zfs_refcount_count(&arc_mru
->arcs_esize
[type
]),
4374 total_evicted
+= arc_evict_impl(arc_mru
, 0, delta
, type
);
4379 * We can't afford to recalculate adjustmnt here. If we do,
4380 * new metadata buffers can sneak into the MRU or ANON lists,
4381 * thus penalize the MFU metadata. Although the fudge factor is
4382 * small, it has been empirically shown to be significant for
4383 * certain workloads (e.g. creating many empty directories). As
4384 * such, we use the original calculation for adjustmnt, and
4385 * simply decrement the amount of data evicted from the MRU.
4388 if (adjustmnt
> 0 &&
4389 zfs_refcount_count(&arc_mfu
->arcs_esize
[type
]) > 0) {
4390 delta
= MIN(zfs_refcount_count(&arc_mfu
->arcs_esize
[type
]),
4392 total_evicted
+= arc_evict_impl(arc_mfu
, 0, delta
, type
);
4395 adjustmnt
= meta_used
- arc_meta_limit
;
4397 if (adjustmnt
> 0 &&
4398 zfs_refcount_count(&arc_mru_ghost
->arcs_esize
[type
]) > 0) {
4399 delta
= MIN(adjustmnt
,
4400 zfs_refcount_count(&arc_mru_ghost
->arcs_esize
[type
]));
4401 total_evicted
+= arc_evict_impl(arc_mru_ghost
, 0, delta
, type
);
4405 if (adjustmnt
> 0 &&
4406 zfs_refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]) > 0) {
4407 delta
= MIN(adjustmnt
,
4408 zfs_refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]));
4409 total_evicted
+= arc_evict_impl(arc_mfu_ghost
, 0, delta
, type
);
4413 * If after attempting to make the requested adjustment to the ARC
4414 * the meta limit is still being exceeded then request that the
4415 * higher layers drop some cached objects which have holds on ARC
4416 * meta buffers. Requests to the upper layers will be made with
4417 * increasingly large scan sizes until the ARC is below the limit.
4419 if (meta_used
> arc_meta_limit
) {
4420 if (type
== ARC_BUFC_DATA
) {
4421 type
= ARC_BUFC_METADATA
;
4423 type
= ARC_BUFC_DATA
;
4425 if (zfs_arc_meta_prune
) {
4426 prune
+= zfs_arc_meta_prune
;
4427 arc_prune_async(prune
);
4436 return (total_evicted
);
4440 * Evict metadata buffers from the cache, such that arcstat_meta_used is
4441 * capped by the arc_meta_limit tunable.
4444 arc_evict_meta_only(uint64_t meta_used
)
4446 uint64_t total_evicted
= 0;
4450 * If we're over the meta limit, we want to evict enough
4451 * metadata to get back under the meta limit. We don't want to
4452 * evict so much that we drop the MRU below arc_p, though. If
4453 * we're over the meta limit more than we're over arc_p, we
4454 * evict some from the MRU here, and some from the MFU below.
4456 target
= MIN((int64_t)(meta_used
- arc_meta_limit
),
4457 (int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) +
4458 zfs_refcount_count(&arc_mru
->arcs_size
) - arc_p
));
4460 total_evicted
+= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4463 * Similar to the above, we want to evict enough bytes to get us
4464 * below the meta limit, but not so much as to drop us below the
4465 * space allotted to the MFU (which is defined as arc_c - arc_p).
4467 target
= MIN((int64_t)(meta_used
- arc_meta_limit
),
4468 (int64_t)(zfs_refcount_count(&arc_mfu
->arcs_size
) -
4471 total_evicted
+= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4473 return (total_evicted
);
4477 arc_evict_meta(uint64_t meta_used
)
4479 if (zfs_arc_meta_strategy
== ARC_STRATEGY_META_ONLY
)
4480 return (arc_evict_meta_only(meta_used
));
4482 return (arc_evict_meta_balanced(meta_used
));
4486 * Return the type of the oldest buffer in the given arc state
4488 * This function will select a random sublist of type ARC_BUFC_DATA and
4489 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4490 * is compared, and the type which contains the "older" buffer will be
4493 static arc_buf_contents_t
4494 arc_evict_type(arc_state_t
*state
)
4496 multilist_t
*data_ml
= &state
->arcs_list
[ARC_BUFC_DATA
];
4497 multilist_t
*meta_ml
= &state
->arcs_list
[ARC_BUFC_METADATA
];
4498 int data_idx
= multilist_get_random_index(data_ml
);
4499 int meta_idx
= multilist_get_random_index(meta_ml
);
4500 multilist_sublist_t
*data_mls
;
4501 multilist_sublist_t
*meta_mls
;
4502 arc_buf_contents_t type
;
4503 arc_buf_hdr_t
*data_hdr
;
4504 arc_buf_hdr_t
*meta_hdr
;
4507 * We keep the sublist lock until we're finished, to prevent
4508 * the headers from being destroyed via arc_evict_state().
4510 data_mls
= multilist_sublist_lock(data_ml
, data_idx
);
4511 meta_mls
= multilist_sublist_lock(meta_ml
, meta_idx
);
4514 * These two loops are to ensure we skip any markers that
4515 * might be at the tail of the lists due to arc_evict_state().
4518 for (data_hdr
= multilist_sublist_tail(data_mls
); data_hdr
!= NULL
;
4519 data_hdr
= multilist_sublist_prev(data_mls
, data_hdr
)) {
4520 if (data_hdr
->b_spa
!= 0)
4524 for (meta_hdr
= multilist_sublist_tail(meta_mls
); meta_hdr
!= NULL
;
4525 meta_hdr
= multilist_sublist_prev(meta_mls
, meta_hdr
)) {
4526 if (meta_hdr
->b_spa
!= 0)
4530 if (data_hdr
== NULL
&& meta_hdr
== NULL
) {
4531 type
= ARC_BUFC_DATA
;
4532 } else if (data_hdr
== NULL
) {
4533 ASSERT3P(meta_hdr
, !=, NULL
);
4534 type
= ARC_BUFC_METADATA
;
4535 } else if (meta_hdr
== NULL
) {
4536 ASSERT3P(data_hdr
, !=, NULL
);
4537 type
= ARC_BUFC_DATA
;
4539 ASSERT3P(data_hdr
, !=, NULL
);
4540 ASSERT3P(meta_hdr
, !=, NULL
);
4542 /* The headers can't be on the sublist without an L1 header */
4543 ASSERT(HDR_HAS_L1HDR(data_hdr
));
4544 ASSERT(HDR_HAS_L1HDR(meta_hdr
));
4546 if (data_hdr
->b_l1hdr
.b_arc_access
<
4547 meta_hdr
->b_l1hdr
.b_arc_access
) {
4548 type
= ARC_BUFC_DATA
;
4550 type
= ARC_BUFC_METADATA
;
4554 multilist_sublist_unlock(meta_mls
);
4555 multilist_sublist_unlock(data_mls
);
4561 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4566 uint64_t total_evicted
= 0;
4569 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4570 uint64_t ameta
= aggsum_value(&arc_sums
.arcstat_meta_used
);
4573 * If we're over arc_meta_limit, we want to correct that before
4574 * potentially evicting data buffers below.
4576 total_evicted
+= arc_evict_meta(ameta
);
4581 * If we're over the target cache size, we want to evict enough
4582 * from the list to get back to our target size. We don't want
4583 * to evict too much from the MRU, such that it drops below
4584 * arc_p. So, if we're over our target cache size more than
4585 * the MRU is over arc_p, we'll evict enough to get back to
4586 * arc_p here, and then evict more from the MFU below.
4588 target
= MIN((int64_t)(asize
- arc_c
),
4589 (int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) +
4590 zfs_refcount_count(&arc_mru
->arcs_size
) + ameta
- arc_p
));
4593 * If we're below arc_meta_min, always prefer to evict data.
4594 * Otherwise, try to satisfy the requested number of bytes to
4595 * evict from the type which contains older buffers; in an
4596 * effort to keep newer buffers in the cache regardless of their
4597 * type. If we cannot satisfy the number of bytes from this
4598 * type, spill over into the next type.
4600 if (arc_evict_type(arc_mru
) == ARC_BUFC_METADATA
&&
4601 ameta
> arc_meta_min
) {
4602 bytes
= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4603 total_evicted
+= bytes
;
4606 * If we couldn't evict our target number of bytes from
4607 * metadata, we try to get the rest from data.
4612 arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4614 bytes
= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4615 total_evicted
+= bytes
;
4618 * If we couldn't evict our target number of bytes from
4619 * data, we try to get the rest from metadata.
4624 arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4628 * Re-sum ARC stats after the first round of evictions.
4630 asize
= aggsum_value(&arc_sums
.arcstat_size
);
4631 ameta
= aggsum_value(&arc_sums
.arcstat_meta_used
);
4637 * Now that we've tried to evict enough from the MRU to get its
4638 * size back to arc_p, if we're still above the target cache
4639 * size, we evict the rest from the MFU.
4641 target
= asize
- arc_c
;
4643 if (arc_evict_type(arc_mfu
) == ARC_BUFC_METADATA
&&
4644 ameta
> arc_meta_min
) {
4645 bytes
= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4646 total_evicted
+= bytes
;
4649 * If we couldn't evict our target number of bytes from
4650 * metadata, we try to get the rest from data.
4655 arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4657 bytes
= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4658 total_evicted
+= bytes
;
4661 * If we couldn't evict our target number of bytes from
4662 * data, we try to get the rest from data.
4667 arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4671 * Adjust ghost lists
4673 * In addition to the above, the ARC also defines target values
4674 * for the ghost lists. The sum of the mru list and mru ghost
4675 * list should never exceed the target size of the cache, and
4676 * the sum of the mru list, mfu list, mru ghost list, and mfu
4677 * ghost list should never exceed twice the target size of the
4678 * cache. The following logic enforces these limits on the ghost
4679 * caches, and evicts from them as needed.
4681 target
= zfs_refcount_count(&arc_mru
->arcs_size
) +
4682 zfs_refcount_count(&arc_mru_ghost
->arcs_size
) - arc_c
;
4684 bytes
= arc_evict_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_DATA
);
4685 total_evicted
+= bytes
;
4690 arc_evict_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_METADATA
);
4693 * We assume the sum of the mru list and mfu list is less than
4694 * or equal to arc_c (we enforced this above), which means we
4695 * can use the simpler of the two equations below:
4697 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4698 * mru ghost + mfu ghost <= arc_c
4700 target
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
) +
4701 zfs_refcount_count(&arc_mfu_ghost
->arcs_size
) - arc_c
;
4703 bytes
= arc_evict_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_DATA
);
4704 total_evicted
+= bytes
;
4709 arc_evict_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_METADATA
);
4711 return (total_evicted
);
4715 arc_flush(spa_t
*spa
, boolean_t retry
)
4720 * If retry is B_TRUE, a spa must not be specified since we have
4721 * no good way to determine if all of a spa's buffers have been
4722 * evicted from an arc state.
4724 ASSERT(!retry
|| spa
== 0);
4727 guid
= spa_load_guid(spa
);
4729 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_DATA
, retry
);
4730 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_METADATA
, retry
);
4732 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_DATA
, retry
);
4733 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_METADATA
, retry
);
4735 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4736 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4738 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4739 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4743 arc_reduce_target_size(int64_t to_free
)
4745 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4748 * All callers want the ARC to actually evict (at least) this much
4749 * memory. Therefore we reduce from the lower of the current size and
4750 * the target size. This way, even if arc_c is much higher than
4751 * arc_size (as can be the case after many calls to arc_freed(), we will
4752 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4755 uint64_t c
= MIN(arc_c
, asize
);
4757 if (c
> to_free
&& c
- to_free
> arc_c_min
) {
4758 arc_c
= c
- to_free
;
4759 atomic_add_64(&arc_p
, -(arc_p
>> arc_shrink_shift
));
4761 arc_p
= (arc_c
>> 1);
4762 ASSERT(arc_c
>= arc_c_min
);
4763 ASSERT((int64_t)arc_p
>= 0);
4768 if (asize
> arc_c
) {
4769 /* See comment in arc_evict_cb_check() on why lock+flag */
4770 mutex_enter(&arc_evict_lock
);
4771 arc_evict_needed
= B_TRUE
;
4772 mutex_exit(&arc_evict_lock
);
4773 zthr_wakeup(arc_evict_zthr
);
4778 * Determine if the system is under memory pressure and is asking
4779 * to reclaim memory. A return value of B_TRUE indicates that the system
4780 * is under memory pressure and that the arc should adjust accordingly.
4783 arc_reclaim_needed(void)
4785 return (arc_available_memory() < 0);
4789 arc_kmem_reap_soon(void)
4792 kmem_cache_t
*prev_cache
= NULL
;
4793 kmem_cache_t
*prev_data_cache
= NULL
;
4794 extern kmem_cache_t
*zio_buf_cache
[];
4795 extern kmem_cache_t
*zio_data_buf_cache
[];
4798 if ((aggsum_compare(&arc_sums
.arcstat_meta_used
,
4799 arc_meta_limit
) >= 0) && zfs_arc_meta_prune
) {
4801 * We are exceeding our meta-data cache limit.
4802 * Prune some entries to release holds on meta-data.
4804 arc_prune_async(zfs_arc_meta_prune
);
4808 * Reclaim unused memory from all kmem caches.
4814 for (i
= 0; i
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; i
++) {
4816 /* reach upper limit of cache size on 32-bit */
4817 if (zio_buf_cache
[i
] == NULL
)
4820 if (zio_buf_cache
[i
] != prev_cache
) {
4821 prev_cache
= zio_buf_cache
[i
];
4822 kmem_cache_reap_now(zio_buf_cache
[i
]);
4824 if (zio_data_buf_cache
[i
] != prev_data_cache
) {
4825 prev_data_cache
= zio_data_buf_cache
[i
];
4826 kmem_cache_reap_now(zio_data_buf_cache
[i
]);
4829 kmem_cache_reap_now(buf_cache
);
4830 kmem_cache_reap_now(hdr_full_cache
);
4831 kmem_cache_reap_now(hdr_l2only_cache
);
4832 kmem_cache_reap_now(zfs_btree_leaf_cache
);
4833 abd_cache_reap_now();
4838 arc_evict_cb_check(void *arg
, zthr_t
*zthr
)
4842 * This is necessary in order to keep the kstat information
4843 * up to date for tools that display kstat data such as the
4844 * mdb ::arc dcmd and the Linux crash utility. These tools
4845 * typically do not call kstat's update function, but simply
4846 * dump out stats from the most recent update. Without
4847 * this call, these commands may show stale stats for the
4848 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4849 * with this call, the data might be out of date if the
4850 * evict thread hasn't been woken recently; but that should
4851 * suffice. The arc_state_t structures can be queried
4852 * directly if more accurate information is needed.
4854 if (arc_ksp
!= NULL
)
4855 arc_ksp
->ks_update(arc_ksp
, KSTAT_READ
);
4859 * We have to rely on arc_wait_for_eviction() to tell us when to
4860 * evict, rather than checking if we are overflowing here, so that we
4861 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4862 * If we have become "not overflowing" since arc_wait_for_eviction()
4863 * checked, we need to wake it up. We could broadcast the CV here,
4864 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4865 * would need to use a mutex to ensure that this function doesn't
4866 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4867 * the arc_evict_lock). However, the lock ordering of such a lock
4868 * would necessarily be incorrect with respect to the zthr_lock,
4869 * which is held before this function is called, and is held by
4870 * arc_wait_for_eviction() when it calls zthr_wakeup().
4872 return (arc_evict_needed
);
4876 * Keep arc_size under arc_c by running arc_evict which evicts data
4881 arc_evict_cb(void *arg
, zthr_t
*zthr
)
4883 uint64_t evicted
= 0;
4884 fstrans_cookie_t cookie
= spl_fstrans_mark();
4886 /* Evict from cache */
4887 evicted
= arc_evict();
4890 * If evicted is zero, we couldn't evict anything
4891 * via arc_evict(). This could be due to hash lock
4892 * collisions, but more likely due to the majority of
4893 * arc buffers being unevictable. Therefore, even if
4894 * arc_size is above arc_c, another pass is unlikely to
4895 * be helpful and could potentially cause us to enter an
4896 * infinite loop. Additionally, zthr_iscancelled() is
4897 * checked here so that if the arc is shutting down, the
4898 * broadcast will wake any remaining arc evict waiters.
4900 mutex_enter(&arc_evict_lock
);
4901 arc_evict_needed
= !zthr_iscancelled(arc_evict_zthr
) &&
4902 evicted
> 0 && aggsum_compare(&arc_sums
.arcstat_size
, arc_c
) > 0;
4903 if (!arc_evict_needed
) {
4905 * We're either no longer overflowing, or we
4906 * can't evict anything more, so we should wake
4907 * arc_get_data_impl() sooner.
4909 arc_evict_waiter_t
*aw
;
4910 while ((aw
= list_remove_head(&arc_evict_waiters
)) != NULL
) {
4911 cv_broadcast(&aw
->aew_cv
);
4913 arc_set_need_free();
4915 mutex_exit(&arc_evict_lock
);
4916 spl_fstrans_unmark(cookie
);
4921 arc_reap_cb_check(void *arg
, zthr_t
*zthr
)
4923 int64_t free_memory
= arc_available_memory();
4924 static int reap_cb_check_counter
= 0;
4927 * If a kmem reap is already active, don't schedule more. We must
4928 * check for this because kmem_cache_reap_soon() won't actually
4929 * block on the cache being reaped (this is to prevent callers from
4930 * becoming implicitly blocked by a system-wide kmem reap -- which,
4931 * on a system with many, many full magazines, can take minutes).
4933 if (!kmem_cache_reap_active() && free_memory
< 0) {
4935 arc_no_grow
= B_TRUE
;
4938 * Wait at least zfs_grow_retry (default 5) seconds
4939 * before considering growing.
4941 arc_growtime
= gethrtime() + SEC2NSEC(arc_grow_retry
);
4943 } else if (free_memory
< arc_c
>> arc_no_grow_shift
) {
4944 arc_no_grow
= B_TRUE
;
4945 } else if (gethrtime() >= arc_growtime
) {
4946 arc_no_grow
= B_FALSE
;
4950 * Called unconditionally every 60 seconds to reclaim unused
4951 * zstd compression and decompression context. This is done
4952 * here to avoid the need for an independent thread.
4954 if (!((reap_cb_check_counter
++) % 60))
4955 zfs_zstd_cache_reap_now();
4961 * Keep enough free memory in the system by reaping the ARC's kmem
4962 * caches. To cause more slabs to be reapable, we may reduce the
4963 * target size of the cache (arc_c), causing the arc_evict_cb()
4964 * to free more buffers.
4968 arc_reap_cb(void *arg
, zthr_t
*zthr
)
4970 int64_t free_memory
;
4971 fstrans_cookie_t cookie
= spl_fstrans_mark();
4974 * Kick off asynchronous kmem_reap()'s of all our caches.
4976 arc_kmem_reap_soon();
4979 * Wait at least arc_kmem_cache_reap_retry_ms between
4980 * arc_kmem_reap_soon() calls. Without this check it is possible to
4981 * end up in a situation where we spend lots of time reaping
4982 * caches, while we're near arc_c_min. Waiting here also gives the
4983 * subsequent free memory check a chance of finding that the
4984 * asynchronous reap has already freed enough memory, and we don't
4985 * need to call arc_reduce_target_size().
4987 delay((hz
* arc_kmem_cache_reap_retry_ms
+ 999) / 1000);
4990 * Reduce the target size as needed to maintain the amount of free
4991 * memory in the system at a fraction of the arc_size (1/128th by
4992 * default). If oversubscribed (free_memory < 0) then reduce the
4993 * target arc_size by the deficit amount plus the fractional
4994 * amount. If free memory is positive but less than the fractional
4995 * amount, reduce by what is needed to hit the fractional amount.
4997 free_memory
= arc_available_memory();
5000 (arc_c
>> arc_shrink_shift
) - free_memory
;
5002 arc_reduce_target_size(to_free
);
5004 spl_fstrans_unmark(cookie
);
5009 * Determine the amount of memory eligible for eviction contained in the
5010 * ARC. All clean data reported by the ghost lists can always be safely
5011 * evicted. Due to arc_c_min, the same does not hold for all clean data
5012 * contained by the regular mru and mfu lists.
5014 * In the case of the regular mru and mfu lists, we need to report as
5015 * much clean data as possible, such that evicting that same reported
5016 * data will not bring arc_size below arc_c_min. Thus, in certain
5017 * circumstances, the total amount of clean data in the mru and mfu
5018 * lists might not actually be evictable.
5020 * The following two distinct cases are accounted for:
5022 * 1. The sum of the amount of dirty data contained by both the mru and
5023 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5024 * is greater than or equal to arc_c_min.
5025 * (i.e. amount of dirty data >= arc_c_min)
5027 * This is the easy case; all clean data contained by the mru and mfu
5028 * lists is evictable. Evicting all clean data can only drop arc_size
5029 * to the amount of dirty data, which is greater than arc_c_min.
5031 * 2. The sum of the amount of dirty data contained by both the mru and
5032 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5033 * is less than arc_c_min.
5034 * (i.e. arc_c_min > amount of dirty data)
5036 * 2.1. arc_size is greater than or equal arc_c_min.
5037 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5039 * In this case, not all clean data from the regular mru and mfu
5040 * lists is actually evictable; we must leave enough clean data
5041 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5042 * evictable data from the two lists combined, is exactly the
5043 * difference between arc_size and arc_c_min.
5045 * 2.2. arc_size is less than arc_c_min
5046 * (i.e. arc_c_min > arc_size > amount of dirty data)
5048 * In this case, none of the data contained in the mru and mfu
5049 * lists is evictable, even if it's clean. Since arc_size is
5050 * already below arc_c_min, evicting any more would only
5051 * increase this negative difference.
5054 #endif /* _KERNEL */
5057 * Adapt arc info given the number of bytes we are trying to add and
5058 * the state that we are coming from. This function is only called
5059 * when we are adding new content to the cache.
5062 arc_adapt(int bytes
, arc_state_t
*state
)
5065 uint64_t arc_p_min
= (arc_c
>> arc_p_min_shift
);
5066 int64_t mrug_size
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
);
5067 int64_t mfug_size
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
);
5071 * Adapt the target size of the MRU list:
5072 * - if we just hit in the MRU ghost list, then increase
5073 * the target size of the MRU list.
5074 * - if we just hit in the MFU ghost list, then increase
5075 * the target size of the MFU list by decreasing the
5076 * target size of the MRU list.
5078 if (state
== arc_mru_ghost
) {
5079 mult
= (mrug_size
>= mfug_size
) ? 1 : (mfug_size
/ mrug_size
);
5080 if (!zfs_arc_p_dampener_disable
)
5081 mult
= MIN(mult
, 10); /* avoid wild arc_p adjustment */
5083 arc_p
= MIN(arc_c
- arc_p_min
, arc_p
+ bytes
* mult
);
5084 } else if (state
== arc_mfu_ghost
) {
5087 mult
= (mfug_size
>= mrug_size
) ? 1 : (mrug_size
/ mfug_size
);
5088 if (!zfs_arc_p_dampener_disable
)
5089 mult
= MIN(mult
, 10);
5091 delta
= MIN(bytes
* mult
, arc_p
);
5092 arc_p
= MAX(arc_p_min
, arc_p
- delta
);
5094 ASSERT((int64_t)arc_p
>= 0);
5097 * Wake reap thread if we do not have any available memory
5099 if (arc_reclaim_needed()) {
5100 zthr_wakeup(arc_reap_zthr
);
5107 if (arc_c
>= arc_c_max
)
5111 * If we're within (2 * maxblocksize) bytes of the target
5112 * cache size, increment the target cache size
5114 ASSERT3U(arc_c
, >=, 2ULL << SPA_MAXBLOCKSHIFT
);
5115 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) >=
5116 arc_c
- (2ULL << SPA_MAXBLOCKSHIFT
)) {
5117 atomic_add_64(&arc_c
, (int64_t)bytes
);
5118 if (arc_c
> arc_c_max
)
5120 else if (state
== arc_anon
)
5121 atomic_add_64(&arc_p
, (int64_t)bytes
);
5125 ASSERT((int64_t)arc_p
>= 0);
5129 * Check if arc_size has grown past our upper threshold, determined by
5130 * zfs_arc_overflow_shift.
5132 static arc_ovf_level_t
5133 arc_is_overflowing(void)
5135 /* Always allow at least one block of overflow */
5136 int64_t overflow
= MAX(SPA_MAXBLOCKSIZE
,
5137 arc_c
>> zfs_arc_overflow_shift
);
5140 * We just compare the lower bound here for performance reasons. Our
5141 * primary goals are to make sure that the arc never grows without
5142 * bound, and that it can reach its maximum size. This check
5143 * accomplishes both goals. The maximum amount we could run over by is
5144 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5145 * in the ARC. In practice, that's in the tens of MB, which is low
5146 * enough to be safe.
5148 int64_t over
= aggsum_lower_bound(&arc_sums
.arcstat_size
) -
5149 arc_c
- overflow
/ 2;
5150 return (over
< 0 ? ARC_OVF_NONE
:
5151 over
< overflow
? ARC_OVF_SOME
: ARC_OVF_SEVERE
);
5155 arc_get_data_abd(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
,
5158 arc_buf_contents_t type
= arc_buf_type(hdr
);
5160 arc_get_data_impl(hdr
, size
, tag
, do_adapt
);
5161 if (type
== ARC_BUFC_METADATA
) {
5162 return (abd_alloc(size
, B_TRUE
));
5164 ASSERT(type
== ARC_BUFC_DATA
);
5165 return (abd_alloc(size
, B_FALSE
));
5170 arc_get_data_buf(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5172 arc_buf_contents_t type
= arc_buf_type(hdr
);
5174 arc_get_data_impl(hdr
, size
, tag
, B_TRUE
);
5175 if (type
== ARC_BUFC_METADATA
) {
5176 return (zio_buf_alloc(size
));
5178 ASSERT(type
== ARC_BUFC_DATA
);
5179 return (zio_data_buf_alloc(size
));
5184 * Wait for the specified amount of data (in bytes) to be evicted from the
5185 * ARC, and for there to be sufficient free memory in the system. Waiting for
5186 * eviction ensures that the memory used by the ARC decreases. Waiting for
5187 * free memory ensures that the system won't run out of free pages, regardless
5188 * of ARC behavior and settings. See arc_lowmem_init().
5191 arc_wait_for_eviction(uint64_t amount
)
5193 switch (arc_is_overflowing()) {
5198 * This is a bit racy without taking arc_evict_lock, but the
5199 * worst that can happen is we either call zthr_wakeup() extra
5200 * time due to race with other thread here, or the set flag
5201 * get cleared by arc_evict_cb(), which is unlikely due to
5202 * big hysteresis, but also not important since at this level
5203 * of overflow the eviction is purely advisory. Same time
5204 * taking the global lock here every time without waiting for
5205 * the actual eviction creates a significant lock contention.
5207 if (!arc_evict_needed
) {
5208 arc_evict_needed
= B_TRUE
;
5209 zthr_wakeup(arc_evict_zthr
);
5212 case ARC_OVF_SEVERE
:
5215 arc_evict_waiter_t aw
;
5216 list_link_init(&aw
.aew_node
);
5217 cv_init(&aw
.aew_cv
, NULL
, CV_DEFAULT
, NULL
);
5219 uint64_t last_count
= 0;
5220 mutex_enter(&arc_evict_lock
);
5221 if (!list_is_empty(&arc_evict_waiters
)) {
5222 arc_evict_waiter_t
*last
=
5223 list_tail(&arc_evict_waiters
);
5224 last_count
= last
->aew_count
;
5225 } else if (!arc_evict_needed
) {
5226 arc_evict_needed
= B_TRUE
;
5227 zthr_wakeup(arc_evict_zthr
);
5230 * Note, the last waiter's count may be less than
5231 * arc_evict_count if we are low on memory in which
5232 * case arc_evict_state_impl() may have deferred
5233 * wakeups (but still incremented arc_evict_count).
5235 aw
.aew_count
= MAX(last_count
, arc_evict_count
) + amount
;
5237 list_insert_tail(&arc_evict_waiters
, &aw
);
5239 arc_set_need_free();
5241 DTRACE_PROBE3(arc__wait__for__eviction
,
5243 uint64_t, arc_evict_count
,
5244 uint64_t, aw
.aew_count
);
5247 * We will be woken up either when arc_evict_count reaches
5248 * aew_count, or when the ARC is no longer overflowing and
5249 * eviction completes.
5250 * In case of "false" wakeup, we will still be on the list.
5253 cv_wait(&aw
.aew_cv
, &arc_evict_lock
);
5254 } while (list_link_active(&aw
.aew_node
));
5255 mutex_exit(&arc_evict_lock
);
5257 cv_destroy(&aw
.aew_cv
);
5263 * Allocate a block and return it to the caller. If we are hitting the
5264 * hard limit for the cache size, we must sleep, waiting for the eviction
5265 * thread to catch up. If we're past the target size but below the hard
5266 * limit, we'll only signal the reclaim thread and continue on.
5269 arc_get_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
,
5272 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5273 arc_buf_contents_t type
= arc_buf_type(hdr
);
5276 arc_adapt(size
, state
);
5279 * If arc_size is currently overflowing, we must be adding data
5280 * faster than we are evicting. To ensure we don't compound the
5281 * problem by adding more data and forcing arc_size to grow even
5282 * further past it's target size, we wait for the eviction thread to
5283 * make some progress. We also wait for there to be sufficient free
5284 * memory in the system, as measured by arc_free_memory().
5286 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5287 * requested size to be evicted. This should be more than 100%, to
5288 * ensure that that progress is also made towards getting arc_size
5289 * under arc_c. See the comment above zfs_arc_eviction_pct.
5291 arc_wait_for_eviction(size
* zfs_arc_eviction_pct
/ 100);
5293 VERIFY3U(hdr
->b_type
, ==, type
);
5294 if (type
== ARC_BUFC_METADATA
) {
5295 arc_space_consume(size
, ARC_SPACE_META
);
5297 arc_space_consume(size
, ARC_SPACE_DATA
);
5301 * Update the state size. Note that ghost states have a
5302 * "ghost size" and so don't need to be updated.
5304 if (!GHOST_STATE(state
)) {
5306 (void) zfs_refcount_add_many(&state
->arcs_size
, size
, tag
);
5309 * If this is reached via arc_read, the link is
5310 * protected by the hash lock. If reached via
5311 * arc_buf_alloc, the header should not be accessed by
5312 * any other thread. And, if reached via arc_read_done,
5313 * the hash lock will protect it if it's found in the
5314 * hash table; otherwise no other thread should be
5315 * trying to [add|remove]_reference it.
5317 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5318 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5319 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
5324 * If we are growing the cache, and we are adding anonymous
5325 * data, and we have outgrown arc_p, update arc_p
5327 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) < arc_c
&&
5328 hdr
->b_l1hdr
.b_state
== arc_anon
&&
5329 (zfs_refcount_count(&arc_anon
->arcs_size
) +
5330 zfs_refcount_count(&arc_mru
->arcs_size
) > arc_p
))
5331 arc_p
= MIN(arc_c
, arc_p
+ size
);
5336 arc_free_data_abd(arc_buf_hdr_t
*hdr
, abd_t
*abd
, uint64_t size
, void *tag
)
5338 arc_free_data_impl(hdr
, size
, tag
);
5343 arc_free_data_buf(arc_buf_hdr_t
*hdr
, void *buf
, uint64_t size
, void *tag
)
5345 arc_buf_contents_t type
= arc_buf_type(hdr
);
5347 arc_free_data_impl(hdr
, size
, tag
);
5348 if (type
== ARC_BUFC_METADATA
) {
5349 zio_buf_free(buf
, size
);
5351 ASSERT(type
== ARC_BUFC_DATA
);
5352 zio_data_buf_free(buf
, size
);
5357 * Free the arc data buffer.
5360 arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5362 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5363 arc_buf_contents_t type
= arc_buf_type(hdr
);
5365 /* protected by hash lock, if in the hash table */
5366 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5367 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5368 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
5370 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
5373 (void) zfs_refcount_remove_many(&state
->arcs_size
, size
, tag
);
5375 VERIFY3U(hdr
->b_type
, ==, type
);
5376 if (type
== ARC_BUFC_METADATA
) {
5377 arc_space_return(size
, ARC_SPACE_META
);
5379 ASSERT(type
== ARC_BUFC_DATA
);
5380 arc_space_return(size
, ARC_SPACE_DATA
);
5385 * This routine is called whenever a buffer is accessed.
5386 * NOTE: the hash lock is dropped in this function.
5389 arc_access(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
)
5393 ASSERT(MUTEX_HELD(hash_lock
));
5394 ASSERT(HDR_HAS_L1HDR(hdr
));
5396 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
5398 * This buffer is not in the cache, and does not
5399 * appear in our "ghost" list. Add the new buffer
5403 ASSERT0(hdr
->b_l1hdr
.b_arc_access
);
5404 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5405 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5406 arc_change_state(arc_mru
, hdr
, hash_lock
);
5408 } else if (hdr
->b_l1hdr
.b_state
== arc_mru
) {
5409 now
= ddi_get_lbolt();
5412 * If this buffer is here because of a prefetch, then either:
5413 * - clear the flag if this is a "referencing" read
5414 * (any subsequent access will bump this into the MFU state).
5416 * - move the buffer to the head of the list if this is
5417 * another prefetch (to make it less likely to be evicted).
5419 if (HDR_PREFETCH(hdr
) || HDR_PRESCIENT_PREFETCH(hdr
)) {
5420 if (zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 0) {
5421 /* link protected by hash lock */
5422 ASSERT(multilist_link_active(
5423 &hdr
->b_l1hdr
.b_arc_node
));
5425 if (HDR_HAS_L2HDR(hdr
))
5426 l2arc_hdr_arcstats_decrement_state(hdr
);
5427 arc_hdr_clear_flags(hdr
,
5429 ARC_FLAG_PRESCIENT_PREFETCH
);
5430 atomic_inc_32(&hdr
->b_l1hdr
.b_mru_hits
);
5431 ARCSTAT_BUMP(arcstat_mru_hits
);
5432 if (HDR_HAS_L2HDR(hdr
))
5433 l2arc_hdr_arcstats_increment_state(hdr
);
5435 hdr
->b_l1hdr
.b_arc_access
= now
;
5440 * This buffer has been "accessed" only once so far,
5441 * but it is still in the cache. Move it to the MFU
5444 if (ddi_time_after(now
, hdr
->b_l1hdr
.b_arc_access
+
5447 * More than 125ms have passed since we
5448 * instantiated this buffer. Move it to the
5449 * most frequently used state.
5451 hdr
->b_l1hdr
.b_arc_access
= now
;
5452 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5453 arc_change_state(arc_mfu
, hdr
, hash_lock
);
5455 atomic_inc_32(&hdr
->b_l1hdr
.b_mru_hits
);
5456 ARCSTAT_BUMP(arcstat_mru_hits
);
5457 } else if (hdr
->b_l1hdr
.b_state
== arc_mru_ghost
) {
5458 arc_state_t
*new_state
;
5460 * This buffer has been "accessed" recently, but
5461 * was evicted from the cache. Move it to the
5464 if (HDR_PREFETCH(hdr
) || HDR_PRESCIENT_PREFETCH(hdr
)) {
5465 new_state
= arc_mru
;
5466 if (zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) > 0) {
5467 if (HDR_HAS_L2HDR(hdr
))
5468 l2arc_hdr_arcstats_decrement_state(hdr
);
5469 arc_hdr_clear_flags(hdr
,
5471 ARC_FLAG_PRESCIENT_PREFETCH
);
5472 if (HDR_HAS_L2HDR(hdr
))
5473 l2arc_hdr_arcstats_increment_state(hdr
);
5475 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5477 new_state
= arc_mfu
;
5478 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5481 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5482 arc_change_state(new_state
, hdr
, hash_lock
);
5484 atomic_inc_32(&hdr
->b_l1hdr
.b_mru_ghost_hits
);
5485 ARCSTAT_BUMP(arcstat_mru_ghost_hits
);
5486 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu
) {
5488 * This buffer has been accessed more than once and is
5489 * still in the cache. Keep it in the MFU state.
5491 * NOTE: an add_reference() that occurred when we did
5492 * the arc_read() will have kicked this off the list.
5493 * If it was a prefetch, we will explicitly move it to
5494 * the head of the list now.
5497 atomic_inc_32(&hdr
->b_l1hdr
.b_mfu_hits
);
5498 ARCSTAT_BUMP(arcstat_mfu_hits
);
5499 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5500 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu_ghost
) {
5501 arc_state_t
*new_state
= arc_mfu
;
5503 * This buffer has been accessed more than once but has
5504 * been evicted from the cache. Move it back to the
5508 if (HDR_PREFETCH(hdr
) || HDR_PRESCIENT_PREFETCH(hdr
)) {
5510 * This is a prefetch access...
5511 * move this block back to the MRU state.
5513 new_state
= arc_mru
;
5516 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5517 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5518 arc_change_state(new_state
, hdr
, hash_lock
);
5520 atomic_inc_32(&hdr
->b_l1hdr
.b_mfu_ghost_hits
);
5521 ARCSTAT_BUMP(arcstat_mfu_ghost_hits
);
5522 } else if (hdr
->b_l1hdr
.b_state
== arc_l2c_only
) {
5524 * This buffer is on the 2nd Level ARC.
5527 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5528 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5529 arc_change_state(arc_mfu
, hdr
, hash_lock
);
5531 cmn_err(CE_PANIC
, "invalid arc state 0x%p",
5532 hdr
->b_l1hdr
.b_state
);
5537 * This routine is called by dbuf_hold() to update the arc_access() state
5538 * which otherwise would be skipped for entries in the dbuf cache.
5541 arc_buf_access(arc_buf_t
*buf
)
5543 mutex_enter(&buf
->b_evict_lock
);
5544 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
5547 * Avoid taking the hash_lock when possible as an optimization.
5548 * The header must be checked again under the hash_lock in order
5549 * to handle the case where it is concurrently being released.
5551 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5552 mutex_exit(&buf
->b_evict_lock
);
5556 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
5557 mutex_enter(hash_lock
);
5559 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5560 mutex_exit(hash_lock
);
5561 mutex_exit(&buf
->b_evict_lock
);
5562 ARCSTAT_BUMP(arcstat_access_skip
);
5566 mutex_exit(&buf
->b_evict_lock
);
5568 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5569 hdr
->b_l1hdr
.b_state
== arc_mfu
);
5571 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5572 arc_access(hdr
, hash_lock
);
5573 mutex_exit(hash_lock
);
5575 ARCSTAT_BUMP(arcstat_hits
);
5576 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
) && !HDR_PRESCIENT_PREFETCH(hdr
),
5577 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
, metadata
, hits
);
5580 /* a generic arc_read_done_func_t which you can use */
5583 arc_bcopy_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5584 arc_buf_t
*buf
, void *arg
)
5589 bcopy(buf
->b_data
, arg
, arc_buf_size(buf
));
5590 arc_buf_destroy(buf
, arg
);
5593 /* a generic arc_read_done_func_t */
5596 arc_getbuf_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5597 arc_buf_t
*buf
, void *arg
)
5599 arc_buf_t
**bufp
= arg
;
5602 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
5605 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
5607 ASSERT(buf
->b_data
!= NULL
);
5612 arc_hdr_verify(arc_buf_hdr_t
*hdr
, blkptr_t
*bp
)
5614 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
5615 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, 0);
5616 ASSERT3U(arc_hdr_get_compress(hdr
), ==, ZIO_COMPRESS_OFF
);
5618 if (HDR_COMPRESSION_ENABLED(hdr
)) {
5619 ASSERT3U(arc_hdr_get_compress(hdr
), ==,
5620 BP_GET_COMPRESS(bp
));
5622 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
5623 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, BP_GET_PSIZE(bp
));
5624 ASSERT3U(!!HDR_PROTECTED(hdr
), ==, BP_IS_PROTECTED(bp
));
5629 arc_read_done(zio_t
*zio
)
5631 blkptr_t
*bp
= zio
->io_bp
;
5632 arc_buf_hdr_t
*hdr
= zio
->io_private
;
5633 kmutex_t
*hash_lock
= NULL
;
5634 arc_callback_t
*callback_list
;
5635 arc_callback_t
*acb
;
5636 boolean_t freeable
= B_FALSE
;
5639 * The hdr was inserted into hash-table and removed from lists
5640 * prior to starting I/O. We should find this header, since
5641 * it's in the hash table, and it should be legit since it's
5642 * not possible to evict it during the I/O. The only possible
5643 * reason for it not to be found is if we were freed during the
5646 if (HDR_IN_HASH_TABLE(hdr
)) {
5647 arc_buf_hdr_t
*found
;
5649 ASSERT3U(hdr
->b_birth
, ==, BP_PHYSICAL_BIRTH(zio
->io_bp
));
5650 ASSERT3U(hdr
->b_dva
.dva_word
[0], ==,
5651 BP_IDENTITY(zio
->io_bp
)->dva_word
[0]);
5652 ASSERT3U(hdr
->b_dva
.dva_word
[1], ==,
5653 BP_IDENTITY(zio
->io_bp
)->dva_word
[1]);
5655 found
= buf_hash_find(hdr
->b_spa
, zio
->io_bp
, &hash_lock
);
5657 ASSERT((found
== hdr
&&
5658 DVA_EQUAL(&hdr
->b_dva
, BP_IDENTITY(zio
->io_bp
))) ||
5659 (found
== hdr
&& HDR_L2_READING(hdr
)));
5660 ASSERT3P(hash_lock
, !=, NULL
);
5663 if (BP_IS_PROTECTED(bp
)) {
5664 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
5665 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
5666 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
5667 hdr
->b_crypt_hdr
.b_iv
);
5669 if (BP_GET_TYPE(bp
) == DMU_OT_INTENT_LOG
) {
5672 tmpbuf
= abd_borrow_buf_copy(zio
->io_abd
,
5673 sizeof (zil_chain_t
));
5674 zio_crypt_decode_mac_zil(tmpbuf
,
5675 hdr
->b_crypt_hdr
.b_mac
);
5676 abd_return_buf(zio
->io_abd
, tmpbuf
,
5677 sizeof (zil_chain_t
));
5679 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
5683 if (zio
->io_error
== 0) {
5684 /* byteswap if necessary */
5685 if (BP_SHOULD_BYTESWAP(zio
->io_bp
)) {
5686 if (BP_GET_LEVEL(zio
->io_bp
) > 0) {
5687 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
5689 hdr
->b_l1hdr
.b_byteswap
=
5690 DMU_OT_BYTESWAP(BP_GET_TYPE(zio
->io_bp
));
5693 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
5695 if (!HDR_L2_READING(hdr
)) {
5696 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
5700 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_EVICTED
);
5701 if (l2arc_noprefetch
&& HDR_PREFETCH(hdr
))
5702 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2CACHE
);
5704 callback_list
= hdr
->b_l1hdr
.b_acb
;
5705 ASSERT3P(callback_list
, !=, NULL
);
5707 if (hash_lock
&& zio
->io_error
== 0 &&
5708 hdr
->b_l1hdr
.b_state
== arc_anon
) {
5710 * Only call arc_access on anonymous buffers. This is because
5711 * if we've issued an I/O for an evicted buffer, we've already
5712 * called arc_access (to prevent any simultaneous readers from
5713 * getting confused).
5715 arc_access(hdr
, hash_lock
);
5719 * If a read request has a callback (i.e. acb_done is not NULL), then we
5720 * make a buf containing the data according to the parameters which were
5721 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5722 * aren't needlessly decompressing the data multiple times.
5724 int callback_cnt
= 0;
5725 for (acb
= callback_list
; acb
!= NULL
; acb
= acb
->acb_next
) {
5726 if (!acb
->acb_done
|| acb
->acb_nobuf
)
5731 if (zio
->io_error
!= 0)
5734 int error
= arc_buf_alloc_impl(hdr
, zio
->io_spa
,
5735 &acb
->acb_zb
, acb
->acb_private
, acb
->acb_encrypted
,
5736 acb
->acb_compressed
, acb
->acb_noauth
, B_TRUE
,
5740 * Assert non-speculative zios didn't fail because an
5741 * encryption key wasn't loaded
5743 ASSERT((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) ||
5747 * If we failed to decrypt, report an error now (as the zio
5748 * layer would have done if it had done the transforms).
5750 if (error
== ECKSUM
) {
5751 ASSERT(BP_IS_PROTECTED(bp
));
5752 error
= SET_ERROR(EIO
);
5753 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5754 spa_log_error(zio
->io_spa
, &acb
->acb_zb
);
5755 (void) zfs_ereport_post(
5756 FM_EREPORT_ZFS_AUTHENTICATION
,
5757 zio
->io_spa
, NULL
, &acb
->acb_zb
, zio
, 0);
5763 * Decompression or decryption failed. Set
5764 * io_error so that when we call acb_done
5765 * (below), we will indicate that the read
5766 * failed. Note that in the unusual case
5767 * where one callback is compressed and another
5768 * uncompressed, we will mark all of them
5769 * as failed, even though the uncompressed
5770 * one can't actually fail. In this case,
5771 * the hdr will not be anonymous, because
5772 * if there are multiple callbacks, it's
5773 * because multiple threads found the same
5774 * arc buf in the hash table.
5776 zio
->io_error
= error
;
5781 * If there are multiple callbacks, we must have the hash lock,
5782 * because the only way for multiple threads to find this hdr is
5783 * in the hash table. This ensures that if there are multiple
5784 * callbacks, the hdr is not anonymous. If it were anonymous,
5785 * we couldn't use arc_buf_destroy() in the error case below.
5787 ASSERT(callback_cnt
< 2 || hash_lock
!= NULL
);
5789 hdr
->b_l1hdr
.b_acb
= NULL
;
5790 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5791 if (callback_cnt
== 0)
5792 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
5794 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
) ||
5795 callback_list
!= NULL
);
5797 if (zio
->io_error
== 0) {
5798 arc_hdr_verify(hdr
, zio
->io_bp
);
5800 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
5801 if (hdr
->b_l1hdr
.b_state
!= arc_anon
)
5802 arc_change_state(arc_anon
, hdr
, hash_lock
);
5803 if (HDR_IN_HASH_TABLE(hdr
))
5804 buf_hash_remove(hdr
);
5805 freeable
= zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
);
5809 * Broadcast before we drop the hash_lock to avoid the possibility
5810 * that the hdr (and hence the cv) might be freed before we get to
5811 * the cv_broadcast().
5813 cv_broadcast(&hdr
->b_l1hdr
.b_cv
);
5815 if (hash_lock
!= NULL
) {
5816 mutex_exit(hash_lock
);
5819 * This block was freed while we waited for the read to
5820 * complete. It has been removed from the hash table and
5821 * moved to the anonymous state (so that it won't show up
5824 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
5825 freeable
= zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
);
5828 /* execute each callback and free its structure */
5829 while ((acb
= callback_list
) != NULL
) {
5830 if (acb
->acb_done
!= NULL
) {
5831 if (zio
->io_error
!= 0 && acb
->acb_buf
!= NULL
) {
5833 * If arc_buf_alloc_impl() fails during
5834 * decompression, the buf will still be
5835 * allocated, and needs to be freed here.
5837 arc_buf_destroy(acb
->acb_buf
,
5839 acb
->acb_buf
= NULL
;
5841 acb
->acb_done(zio
, &zio
->io_bookmark
, zio
->io_bp
,
5842 acb
->acb_buf
, acb
->acb_private
);
5845 if (acb
->acb_zio_dummy
!= NULL
) {
5846 acb
->acb_zio_dummy
->io_error
= zio
->io_error
;
5847 zio_nowait(acb
->acb_zio_dummy
);
5850 callback_list
= acb
->acb_next
;
5851 kmem_free(acb
, sizeof (arc_callback_t
));
5855 arc_hdr_destroy(hdr
);
5859 * "Read" the block at the specified DVA (in bp) via the
5860 * cache. If the block is found in the cache, invoke the provided
5861 * callback immediately and return. Note that the `zio' parameter
5862 * in the callback will be NULL in this case, since no IO was
5863 * required. If the block is not in the cache pass the read request
5864 * on to the spa with a substitute callback function, so that the
5865 * requested block will be added to the cache.
5867 * If a read request arrives for a block that has a read in-progress,
5868 * either wait for the in-progress read to complete (and return the
5869 * results); or, if this is a read with a "done" func, add a record
5870 * to the read to invoke the "done" func when the read completes,
5871 * and return; or just return.
5873 * arc_read_done() will invoke all the requested "done" functions
5874 * for readers of this block.
5877 arc_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
5878 arc_read_done_func_t
*done
, void *private, zio_priority_t priority
,
5879 int zio_flags
, arc_flags_t
*arc_flags
, const zbookmark_phys_t
*zb
)
5881 arc_buf_hdr_t
*hdr
= NULL
;
5882 kmutex_t
*hash_lock
= NULL
;
5884 uint64_t guid
= spa_load_guid(spa
);
5885 boolean_t compressed_read
= (zio_flags
& ZIO_FLAG_RAW_COMPRESS
) != 0;
5886 boolean_t encrypted_read
= BP_IS_ENCRYPTED(bp
) &&
5887 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5888 boolean_t noauth_read
= BP_IS_AUTHENTICATED(bp
) &&
5889 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5890 boolean_t embedded_bp
= !!BP_IS_EMBEDDED(bp
);
5891 boolean_t no_buf
= *arc_flags
& ARC_FLAG_NO_BUF
;
5894 ASSERT(!embedded_bp
||
5895 BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
);
5896 ASSERT(!BP_IS_HOLE(bp
));
5897 ASSERT(!BP_IS_REDACTED(bp
));
5900 * Normally SPL_FSTRANS will already be set since kernel threads which
5901 * expect to call the DMU interfaces will set it when created. System
5902 * calls are similarly handled by setting/cleaning the bit in the
5903 * registered callback (module/os/.../zfs/zpl_*).
5905 * External consumers such as Lustre which call the exported DMU
5906 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5907 * on the hash_lock always set and clear the bit.
5909 fstrans_cookie_t cookie
= spl_fstrans_mark();
5913 * Embedded BP's have no DVA and require no I/O to "read".
5914 * Create an anonymous arc buf to back it.
5916 if (!zfs_blkptr_verify(spa
, bp
, zio_flags
&
5917 ZIO_FLAG_CONFIG_WRITER
, BLK_VERIFY_LOG
)) {
5918 rc
= SET_ERROR(ECKSUM
);
5922 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5926 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5927 * we maintain encrypted data separately from compressed / uncompressed
5928 * data. If the user is requesting raw encrypted data and we don't have
5929 * that in the header we will read from disk to guarantee that we can
5930 * get it even if the encryption keys aren't loaded.
5932 if (hdr
!= NULL
&& HDR_HAS_L1HDR(hdr
) && (HDR_HAS_RABD(hdr
) ||
5933 (hdr
->b_l1hdr
.b_pabd
!= NULL
&& !encrypted_read
))) {
5934 arc_buf_t
*buf
= NULL
;
5935 *arc_flags
|= ARC_FLAG_CACHED
;
5937 if (HDR_IO_IN_PROGRESS(hdr
)) {
5938 zio_t
*head_zio
= hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
5940 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
5941 mutex_exit(hash_lock
);
5942 ARCSTAT_BUMP(arcstat_cached_only_in_progress
);
5943 rc
= SET_ERROR(ENOENT
);
5947 ASSERT3P(head_zio
, !=, NULL
);
5948 if ((hdr
->b_flags
& ARC_FLAG_PRIO_ASYNC_READ
) &&
5949 priority
== ZIO_PRIORITY_SYNC_READ
) {
5951 * This is a sync read that needs to wait for
5952 * an in-flight async read. Request that the
5953 * zio have its priority upgraded.
5955 zio_change_priority(head_zio
, priority
);
5956 DTRACE_PROBE1(arc__async__upgrade__sync
,
5957 arc_buf_hdr_t
*, hdr
);
5958 ARCSTAT_BUMP(arcstat_async_upgrade_sync
);
5960 if (hdr
->b_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
) {
5961 arc_hdr_clear_flags(hdr
,
5962 ARC_FLAG_PREDICTIVE_PREFETCH
);
5965 if (*arc_flags
& ARC_FLAG_WAIT
) {
5966 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
5967 mutex_exit(hash_lock
);
5970 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
5973 arc_callback_t
*acb
= NULL
;
5975 acb
= kmem_zalloc(sizeof (arc_callback_t
),
5977 acb
->acb_done
= done
;
5978 acb
->acb_private
= private;
5979 acb
->acb_compressed
= compressed_read
;
5980 acb
->acb_encrypted
= encrypted_read
;
5981 acb
->acb_noauth
= noauth_read
;
5982 acb
->acb_nobuf
= no_buf
;
5985 acb
->acb_zio_dummy
= zio_null(pio
,
5986 spa
, NULL
, NULL
, NULL
, zio_flags
);
5988 ASSERT3P(acb
->acb_done
, !=, NULL
);
5989 acb
->acb_zio_head
= head_zio
;
5990 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
5991 hdr
->b_l1hdr
.b_acb
= acb
;
5993 mutex_exit(hash_lock
);
5997 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5998 hdr
->b_l1hdr
.b_state
== arc_mfu
);
6000 if (done
&& !no_buf
) {
6001 if (hdr
->b_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
) {
6003 * This is a demand read which does not have to
6004 * wait for i/o because we did a predictive
6005 * prefetch i/o for it, which has completed.
6008 arc__demand__hit__predictive__prefetch
,
6009 arc_buf_hdr_t
*, hdr
);
6011 arcstat_demand_hit_predictive_prefetch
);
6012 arc_hdr_clear_flags(hdr
,
6013 ARC_FLAG_PREDICTIVE_PREFETCH
);
6016 if (hdr
->b_flags
& ARC_FLAG_PRESCIENT_PREFETCH
) {
6018 arcstat_demand_hit_prescient_prefetch
);
6019 arc_hdr_clear_flags(hdr
,
6020 ARC_FLAG_PRESCIENT_PREFETCH
);
6023 ASSERT(!embedded_bp
|| !BP_IS_HOLE(bp
));
6025 /* Get a buf with the desired data in it. */
6026 rc
= arc_buf_alloc_impl(hdr
, spa
, zb
, private,
6027 encrypted_read
, compressed_read
, noauth_read
,
6031 * Convert authentication and decryption errors
6032 * to EIO (and generate an ereport if needed)
6033 * before leaving the ARC.
6035 rc
= SET_ERROR(EIO
);
6036 if ((zio_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
6037 spa_log_error(spa
, zb
);
6038 (void) zfs_ereport_post(
6039 FM_EREPORT_ZFS_AUTHENTICATION
,
6040 spa
, NULL
, zb
, NULL
, 0);
6044 (void) remove_reference(hdr
, hash_lock
,
6046 arc_buf_destroy_impl(buf
);
6050 /* assert any errors weren't due to unloaded keys */
6051 ASSERT((zio_flags
& ZIO_FLAG_SPECULATIVE
) ||
6053 } else if (*arc_flags
& ARC_FLAG_PREFETCH
&&
6054 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6055 if (HDR_HAS_L2HDR(hdr
))
6056 l2arc_hdr_arcstats_decrement_state(hdr
);
6057 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
6058 if (HDR_HAS_L2HDR(hdr
))
6059 l2arc_hdr_arcstats_increment_state(hdr
);
6061 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
6062 arc_access(hdr
, hash_lock
);
6063 if (*arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
)
6064 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
6065 if (*arc_flags
& ARC_FLAG_L2CACHE
)
6066 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6067 mutex_exit(hash_lock
);
6068 ARCSTAT_BUMP(arcstat_hits
);
6069 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
),
6070 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
),
6071 data
, metadata
, hits
);
6074 done(NULL
, zb
, bp
, buf
, private);
6076 uint64_t lsize
= BP_GET_LSIZE(bp
);
6077 uint64_t psize
= BP_GET_PSIZE(bp
);
6078 arc_callback_t
*acb
;
6081 boolean_t devw
= B_FALSE
;
6084 int alloc_flags
= encrypted_read
? ARC_HDR_ALLOC_RDATA
: 0;
6086 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
6087 rc
= SET_ERROR(ENOENT
);
6088 if (hash_lock
!= NULL
)
6089 mutex_exit(hash_lock
);
6095 * This block is not in the cache or it has
6098 arc_buf_hdr_t
*exists
= NULL
;
6099 arc_buf_contents_t type
= BP_GET_BUFC_TYPE(bp
);
6100 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
6101 BP_IS_PROTECTED(bp
), BP_GET_COMPRESS(bp
), 0, type
,
6105 hdr
->b_dva
= *BP_IDENTITY(bp
);
6106 hdr
->b_birth
= BP_PHYSICAL_BIRTH(bp
);
6107 exists
= buf_hash_insert(hdr
, &hash_lock
);
6109 if (exists
!= NULL
) {
6110 /* somebody beat us to the hash insert */
6111 mutex_exit(hash_lock
);
6112 buf_discard_identity(hdr
);
6113 arc_hdr_destroy(hdr
);
6114 goto top
; /* restart the IO request */
6118 * This block is in the ghost cache or encrypted data
6119 * was requested and we didn't have it. If it was
6120 * L2-only (and thus didn't have an L1 hdr),
6121 * we realloc the header to add an L1 hdr.
6123 if (!HDR_HAS_L1HDR(hdr
)) {
6124 hdr
= arc_hdr_realloc(hdr
, hdr_l2only_cache
,
6128 if (GHOST_STATE(hdr
->b_l1hdr
.b_state
)) {
6129 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6130 ASSERT(!HDR_HAS_RABD(hdr
));
6131 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6132 ASSERT0(zfs_refcount_count(
6133 &hdr
->b_l1hdr
.b_refcnt
));
6134 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
6135 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
6136 } else if (HDR_IO_IN_PROGRESS(hdr
)) {
6138 * If this header already had an IO in progress
6139 * and we are performing another IO to fetch
6140 * encrypted data we must wait until the first
6141 * IO completes so as not to confuse
6142 * arc_read_done(). This should be very rare
6143 * and so the performance impact shouldn't
6146 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
6147 mutex_exit(hash_lock
);
6152 * This is a delicate dance that we play here.
6153 * This hdr might be in the ghost list so we access
6154 * it to move it out of the ghost list before we
6155 * initiate the read. If it's a prefetch then
6156 * it won't have a callback so we'll remove the
6157 * reference that arc_buf_alloc_impl() created. We
6158 * do this after we've called arc_access() to
6159 * avoid hitting an assert in remove_reference().
6161 arc_adapt(arc_hdr_size(hdr
), hdr
->b_l1hdr
.b_state
);
6162 arc_access(hdr
, hash_lock
);
6163 arc_hdr_alloc_abd(hdr
, alloc_flags
);
6166 if (encrypted_read
) {
6167 ASSERT(HDR_HAS_RABD(hdr
));
6168 size
= HDR_GET_PSIZE(hdr
);
6169 hdr_abd
= hdr
->b_crypt_hdr
.b_rabd
;
6170 zio_flags
|= ZIO_FLAG_RAW
;
6172 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
6173 size
= arc_hdr_size(hdr
);
6174 hdr_abd
= hdr
->b_l1hdr
.b_pabd
;
6176 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
6177 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6181 * For authenticated bp's, we do not ask the ZIO layer
6182 * to authenticate them since this will cause the entire
6183 * IO to fail if the key isn't loaded. Instead, we
6184 * defer authentication until arc_buf_fill(), which will
6185 * verify the data when the key is available.
6187 if (BP_IS_AUTHENTICATED(bp
))
6188 zio_flags
|= ZIO_FLAG_RAW_ENCRYPT
;
6191 if (*arc_flags
& ARC_FLAG_PREFETCH
&&
6192 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6193 if (HDR_HAS_L2HDR(hdr
))
6194 l2arc_hdr_arcstats_decrement_state(hdr
);
6195 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
6196 if (HDR_HAS_L2HDR(hdr
))
6197 l2arc_hdr_arcstats_increment_state(hdr
);
6199 if (*arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
)
6200 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
6201 if (*arc_flags
& ARC_FLAG_L2CACHE
)
6202 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6203 if (BP_IS_AUTHENTICATED(bp
))
6204 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6205 if (BP_GET_LEVEL(bp
) > 0)
6206 arc_hdr_set_flags(hdr
, ARC_FLAG_INDIRECT
);
6207 if (*arc_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
)
6208 arc_hdr_set_flags(hdr
, ARC_FLAG_PREDICTIVE_PREFETCH
);
6209 ASSERT(!GHOST_STATE(hdr
->b_l1hdr
.b_state
));
6211 acb
= kmem_zalloc(sizeof (arc_callback_t
), KM_SLEEP
);
6212 acb
->acb_done
= done
;
6213 acb
->acb_private
= private;
6214 acb
->acb_compressed
= compressed_read
;
6215 acb
->acb_encrypted
= encrypted_read
;
6216 acb
->acb_noauth
= noauth_read
;
6219 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6220 hdr
->b_l1hdr
.b_acb
= acb
;
6221 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6223 if (HDR_HAS_L2HDR(hdr
) &&
6224 (vd
= hdr
->b_l2hdr
.b_dev
->l2ad_vdev
) != NULL
) {
6225 devw
= hdr
->b_l2hdr
.b_dev
->l2ad_writing
;
6226 addr
= hdr
->b_l2hdr
.b_daddr
;
6228 * Lock out L2ARC device removal.
6230 if (vdev_is_dead(vd
) ||
6231 !spa_config_tryenter(spa
, SCL_L2ARC
, vd
, RW_READER
))
6236 * We count both async reads and scrub IOs as asynchronous so
6237 * that both can be upgraded in the event of a cache hit while
6238 * the read IO is still in-flight.
6240 if (priority
== ZIO_PRIORITY_ASYNC_READ
||
6241 priority
== ZIO_PRIORITY_SCRUB
)
6242 arc_hdr_set_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6244 arc_hdr_clear_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6247 * At this point, we have a level 1 cache miss or a blkptr
6248 * with embedded data. Try again in L2ARC if possible.
6250 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, lsize
);
6253 * Skip ARC stat bump for block pointers with embedded
6254 * data. The data are read from the blkptr itself via
6255 * decode_embedded_bp_compressed().
6258 DTRACE_PROBE4(arc__miss
, arc_buf_hdr_t
*, hdr
,
6259 blkptr_t
*, bp
, uint64_t, lsize
,
6260 zbookmark_phys_t
*, zb
);
6261 ARCSTAT_BUMP(arcstat_misses
);
6262 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
),
6263 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
,
6265 zfs_racct_read(size
, 1);
6268 /* Check if the spa even has l2 configured */
6269 const boolean_t spa_has_l2
= l2arc_ndev
!= 0 &&
6270 spa
->spa_l2cache
.sav_count
> 0;
6272 if (vd
!= NULL
&& spa_has_l2
&& !(l2arc_norw
&& devw
)) {
6274 * Read from the L2ARC if the following are true:
6275 * 1. The L2ARC vdev was previously cached.
6276 * 2. This buffer still has L2ARC metadata.
6277 * 3. This buffer isn't currently writing to the L2ARC.
6278 * 4. The L2ARC entry wasn't evicted, which may
6279 * also have invalidated the vdev.
6280 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6282 if (HDR_HAS_L2HDR(hdr
) &&
6283 !HDR_L2_WRITING(hdr
) && !HDR_L2_EVICTED(hdr
) &&
6284 !(l2arc_noprefetch
&& HDR_PREFETCH(hdr
))) {
6285 l2arc_read_callback_t
*cb
;
6289 DTRACE_PROBE1(l2arc__hit
, arc_buf_hdr_t
*, hdr
);
6290 ARCSTAT_BUMP(arcstat_l2_hits
);
6291 atomic_inc_32(&hdr
->b_l2hdr
.b_hits
);
6293 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
),
6295 cb
->l2rcb_hdr
= hdr
;
6298 cb
->l2rcb_flags
= zio_flags
;
6301 * When Compressed ARC is disabled, but the
6302 * L2ARC block is compressed, arc_hdr_size()
6303 * will have returned LSIZE rather than PSIZE.
6305 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
6306 !HDR_COMPRESSION_ENABLED(hdr
) &&
6307 HDR_GET_PSIZE(hdr
) != 0) {
6308 size
= HDR_GET_PSIZE(hdr
);
6311 asize
= vdev_psize_to_asize(vd
, size
);
6312 if (asize
!= size
) {
6313 abd
= abd_alloc_for_io(asize
,
6314 HDR_ISTYPE_METADATA(hdr
));
6315 cb
->l2rcb_abd
= abd
;
6320 ASSERT(addr
>= VDEV_LABEL_START_SIZE
&&
6321 addr
+ asize
<= vd
->vdev_psize
-
6322 VDEV_LABEL_END_SIZE
);
6325 * l2arc read. The SCL_L2ARC lock will be
6326 * released by l2arc_read_done().
6327 * Issue a null zio if the underlying buffer
6328 * was squashed to zero size by compression.
6330 ASSERT3U(arc_hdr_get_compress(hdr
), !=,
6331 ZIO_COMPRESS_EMPTY
);
6332 rzio
= zio_read_phys(pio
, vd
, addr
,
6335 l2arc_read_done
, cb
, priority
,
6336 zio_flags
| ZIO_FLAG_DONT_CACHE
|
6338 ZIO_FLAG_DONT_PROPAGATE
|
6339 ZIO_FLAG_DONT_RETRY
, B_FALSE
);
6340 acb
->acb_zio_head
= rzio
;
6342 if (hash_lock
!= NULL
)
6343 mutex_exit(hash_lock
);
6345 DTRACE_PROBE2(l2arc__read
, vdev_t
*, vd
,
6347 ARCSTAT_INCR(arcstat_l2_read_bytes
,
6348 HDR_GET_PSIZE(hdr
));
6350 if (*arc_flags
& ARC_FLAG_NOWAIT
) {
6355 ASSERT(*arc_flags
& ARC_FLAG_WAIT
);
6356 if (zio_wait(rzio
) == 0)
6359 /* l2arc read error; goto zio_read() */
6360 if (hash_lock
!= NULL
)
6361 mutex_enter(hash_lock
);
6363 DTRACE_PROBE1(l2arc__miss
,
6364 arc_buf_hdr_t
*, hdr
);
6365 ARCSTAT_BUMP(arcstat_l2_misses
);
6366 if (HDR_L2_WRITING(hdr
))
6367 ARCSTAT_BUMP(arcstat_l2_rw_clash
);
6368 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6372 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6375 * Only a spa with l2 should contribute to l2
6376 * miss stats. (Including the case of having a
6377 * faulted cache device - that's also a miss.)
6381 * Skip ARC stat bump for block pointers with
6382 * embedded data. The data are read from the
6384 * decode_embedded_bp_compressed().
6387 DTRACE_PROBE1(l2arc__miss
,
6388 arc_buf_hdr_t
*, hdr
);
6389 ARCSTAT_BUMP(arcstat_l2_misses
);
6394 rzio
= zio_read(pio
, spa
, bp
, hdr_abd
, size
,
6395 arc_read_done
, hdr
, priority
, zio_flags
, zb
);
6396 acb
->acb_zio_head
= rzio
;
6398 if (hash_lock
!= NULL
)
6399 mutex_exit(hash_lock
);
6401 if (*arc_flags
& ARC_FLAG_WAIT
) {
6402 rc
= zio_wait(rzio
);
6406 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6411 /* embedded bps don't actually go to disk */
6413 spa_read_history_add(spa
, zb
, *arc_flags
);
6414 spl_fstrans_unmark(cookie
);
6419 arc_add_prune_callback(arc_prune_func_t
*func
, void *private)
6423 p
= kmem_alloc(sizeof (*p
), KM_SLEEP
);
6425 p
->p_private
= private;
6426 list_link_init(&p
->p_node
);
6427 zfs_refcount_create(&p
->p_refcnt
);
6429 mutex_enter(&arc_prune_mtx
);
6430 zfs_refcount_add(&p
->p_refcnt
, &arc_prune_list
);
6431 list_insert_head(&arc_prune_list
, p
);
6432 mutex_exit(&arc_prune_mtx
);
6438 arc_remove_prune_callback(arc_prune_t
*p
)
6440 boolean_t wait
= B_FALSE
;
6441 mutex_enter(&arc_prune_mtx
);
6442 list_remove(&arc_prune_list
, p
);
6443 if (zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
) > 0)
6445 mutex_exit(&arc_prune_mtx
);
6447 /* wait for arc_prune_task to finish */
6449 taskq_wait_outstanding(arc_prune_taskq
, 0);
6450 ASSERT0(zfs_refcount_count(&p
->p_refcnt
));
6451 zfs_refcount_destroy(&p
->p_refcnt
);
6452 kmem_free(p
, sizeof (*p
));
6456 * Notify the arc that a block was freed, and thus will never be used again.
6459 arc_freed(spa_t
*spa
, const blkptr_t
*bp
)
6462 kmutex_t
*hash_lock
;
6463 uint64_t guid
= spa_load_guid(spa
);
6465 ASSERT(!BP_IS_EMBEDDED(bp
));
6467 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6472 * We might be trying to free a block that is still doing I/O
6473 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6474 * dmu_sync-ed block). If this block is being prefetched, then it
6475 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6476 * until the I/O completes. A block may also have a reference if it is
6477 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6478 * have written the new block to its final resting place on disk but
6479 * without the dedup flag set. This would have left the hdr in the MRU
6480 * state and discoverable. When the txg finally syncs it detects that
6481 * the block was overridden in open context and issues an override I/O.
6482 * Since this is a dedup block, the override I/O will determine if the
6483 * block is already in the DDT. If so, then it will replace the io_bp
6484 * with the bp from the DDT and allow the I/O to finish. When the I/O
6485 * reaches the done callback, dbuf_write_override_done, it will
6486 * check to see if the io_bp and io_bp_override are identical.
6487 * If they are not, then it indicates that the bp was replaced with
6488 * the bp in the DDT and the override bp is freed. This allows
6489 * us to arrive here with a reference on a block that is being
6490 * freed. So if we have an I/O in progress, or a reference to
6491 * this hdr, then we don't destroy the hdr.
6493 if (!HDR_HAS_L1HDR(hdr
) || (!HDR_IO_IN_PROGRESS(hdr
) &&
6494 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
))) {
6495 arc_change_state(arc_anon
, hdr
, hash_lock
);
6496 arc_hdr_destroy(hdr
);
6497 mutex_exit(hash_lock
);
6499 mutex_exit(hash_lock
);
6505 * Release this buffer from the cache, making it an anonymous buffer. This
6506 * must be done after a read and prior to modifying the buffer contents.
6507 * If the buffer has more than one reference, we must make
6508 * a new hdr for the buffer.
6511 arc_release(arc_buf_t
*buf
, void *tag
)
6513 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6516 * It would be nice to assert that if its DMU metadata (level >
6517 * 0 || it's the dnode file), then it must be syncing context.
6518 * But we don't know that information at this level.
6521 mutex_enter(&buf
->b_evict_lock
);
6523 ASSERT(HDR_HAS_L1HDR(hdr
));
6526 * We don't grab the hash lock prior to this check, because if
6527 * the buffer's header is in the arc_anon state, it won't be
6528 * linked into the hash table.
6530 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
6531 mutex_exit(&buf
->b_evict_lock
);
6532 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6533 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
6534 ASSERT(!HDR_HAS_L2HDR(hdr
));
6535 ASSERT(HDR_EMPTY(hdr
));
6537 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6538 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), ==, 1);
6539 ASSERT(!list_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6541 hdr
->b_l1hdr
.b_arc_access
= 0;
6544 * If the buf is being overridden then it may already
6545 * have a hdr that is not empty.
6547 buf_discard_identity(hdr
);
6553 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
6554 mutex_enter(hash_lock
);
6557 * This assignment is only valid as long as the hash_lock is
6558 * held, we must be careful not to reference state or the
6559 * b_state field after dropping the lock.
6561 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
6562 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
6563 ASSERT3P(state
, !=, arc_anon
);
6565 /* this buffer is not on any list */
6566 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), >, 0);
6568 if (HDR_HAS_L2HDR(hdr
)) {
6569 mutex_enter(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6572 * We have to recheck this conditional again now that
6573 * we're holding the l2ad_mtx to prevent a race with
6574 * another thread which might be concurrently calling
6575 * l2arc_evict(). In that case, l2arc_evict() might have
6576 * destroyed the header's L2 portion as we were waiting
6577 * to acquire the l2ad_mtx.
6579 if (HDR_HAS_L2HDR(hdr
))
6580 arc_hdr_l2hdr_destroy(hdr
);
6582 mutex_exit(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6586 * Do we have more than one buf?
6588 if (hdr
->b_l1hdr
.b_bufcnt
> 1) {
6589 arc_buf_hdr_t
*nhdr
;
6590 uint64_t spa
= hdr
->b_spa
;
6591 uint64_t psize
= HDR_GET_PSIZE(hdr
);
6592 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
6593 boolean_t
protected = HDR_PROTECTED(hdr
);
6594 enum zio_compress compress
= arc_hdr_get_compress(hdr
);
6595 arc_buf_contents_t type
= arc_buf_type(hdr
);
6596 VERIFY3U(hdr
->b_type
, ==, type
);
6598 ASSERT(hdr
->b_l1hdr
.b_buf
!= buf
|| buf
->b_next
!= NULL
);
6599 (void) remove_reference(hdr
, hash_lock
, tag
);
6601 if (arc_buf_is_shared(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
6602 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6603 ASSERT(ARC_BUF_LAST(buf
));
6607 * Pull the data off of this hdr and attach it to
6608 * a new anonymous hdr. Also find the last buffer
6609 * in the hdr's buffer list.
6611 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
6612 ASSERT3P(lastbuf
, !=, NULL
);
6615 * If the current arc_buf_t and the hdr are sharing their data
6616 * buffer, then we must stop sharing that block.
6618 if (arc_buf_is_shared(buf
)) {
6619 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6620 VERIFY(!arc_buf_is_shared(lastbuf
));
6623 * First, sever the block sharing relationship between
6624 * buf and the arc_buf_hdr_t.
6626 arc_unshare_buf(hdr
, buf
);
6629 * Now we need to recreate the hdr's b_pabd. Since we
6630 * have lastbuf handy, we try to share with it, but if
6631 * we can't then we allocate a new b_pabd and copy the
6632 * data from buf into it.
6634 if (arc_can_share(hdr
, lastbuf
)) {
6635 arc_share_buf(hdr
, lastbuf
);
6637 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
6638 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
,
6639 buf
->b_data
, psize
);
6641 VERIFY3P(lastbuf
->b_data
, !=, NULL
);
6642 } else if (HDR_SHARED_DATA(hdr
)) {
6644 * Uncompressed shared buffers are always at the end
6645 * of the list. Compressed buffers don't have the
6646 * same requirements. This makes it hard to
6647 * simply assert that the lastbuf is shared so
6648 * we rely on the hdr's compression flags to determine
6649 * if we have a compressed, shared buffer.
6651 ASSERT(arc_buf_is_shared(lastbuf
) ||
6652 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
6653 ASSERT(!ARC_BUF_SHARED(buf
));
6656 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
6657 ASSERT3P(state
, !=, arc_l2c_only
);
6659 (void) zfs_refcount_remove_many(&state
->arcs_size
,
6660 arc_buf_size(buf
), buf
);
6662 if (zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6663 ASSERT3P(state
, !=, arc_l2c_only
);
6664 (void) zfs_refcount_remove_many(
6665 &state
->arcs_esize
[type
],
6666 arc_buf_size(buf
), buf
);
6669 hdr
->b_l1hdr
.b_bufcnt
-= 1;
6670 if (ARC_BUF_ENCRYPTED(buf
))
6671 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
6673 arc_cksum_verify(buf
);
6674 arc_buf_unwatch(buf
);
6676 /* if this is the last uncompressed buf free the checksum */
6677 if (!arc_hdr_has_uncompressed_buf(hdr
))
6678 arc_cksum_free(hdr
);
6680 mutex_exit(hash_lock
);
6683 * Allocate a new hdr. The new hdr will contain a b_pabd
6684 * buffer which will be freed in arc_write().
6686 nhdr
= arc_hdr_alloc(spa
, psize
, lsize
, protected,
6687 compress
, hdr
->b_complevel
, type
, HDR_HAS_RABD(hdr
));
6688 ASSERT3P(nhdr
->b_l1hdr
.b_buf
, ==, NULL
);
6689 ASSERT0(nhdr
->b_l1hdr
.b_bufcnt
);
6690 ASSERT0(zfs_refcount_count(&nhdr
->b_l1hdr
.b_refcnt
));
6691 VERIFY3U(nhdr
->b_type
, ==, type
);
6692 ASSERT(!HDR_SHARED_DATA(nhdr
));
6694 nhdr
->b_l1hdr
.b_buf
= buf
;
6695 nhdr
->b_l1hdr
.b_bufcnt
= 1;
6696 if (ARC_BUF_ENCRYPTED(buf
))
6697 nhdr
->b_crypt_hdr
.b_ebufcnt
= 1;
6698 nhdr
->b_l1hdr
.b_mru_hits
= 0;
6699 nhdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6700 nhdr
->b_l1hdr
.b_mfu_hits
= 0;
6701 nhdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6702 nhdr
->b_l1hdr
.b_l2_hits
= 0;
6703 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, tag
);
6706 mutex_exit(&buf
->b_evict_lock
);
6707 (void) zfs_refcount_add_many(&arc_anon
->arcs_size
,
6708 arc_buf_size(buf
), buf
);
6710 mutex_exit(&buf
->b_evict_lock
);
6711 ASSERT(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 1);
6712 /* protected by hash lock, or hdr is on arc_anon */
6713 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6714 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6715 hdr
->b_l1hdr
.b_mru_hits
= 0;
6716 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6717 hdr
->b_l1hdr
.b_mfu_hits
= 0;
6718 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6719 hdr
->b_l1hdr
.b_l2_hits
= 0;
6720 arc_change_state(arc_anon
, hdr
, hash_lock
);
6721 hdr
->b_l1hdr
.b_arc_access
= 0;
6723 mutex_exit(hash_lock
);
6724 buf_discard_identity(hdr
);
6730 arc_released(arc_buf_t
*buf
)
6734 mutex_enter(&buf
->b_evict_lock
);
6735 released
= (buf
->b_data
!= NULL
&&
6736 buf
->b_hdr
->b_l1hdr
.b_state
== arc_anon
);
6737 mutex_exit(&buf
->b_evict_lock
);
6743 arc_referenced(arc_buf_t
*buf
)
6747 mutex_enter(&buf
->b_evict_lock
);
6748 referenced
= (zfs_refcount_count(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6749 mutex_exit(&buf
->b_evict_lock
);
6750 return (referenced
);
6755 arc_write_ready(zio_t
*zio
)
6757 arc_write_callback_t
*callback
= zio
->io_private
;
6758 arc_buf_t
*buf
= callback
->awcb_buf
;
6759 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6760 blkptr_t
*bp
= zio
->io_bp
;
6761 uint64_t psize
= BP_IS_HOLE(bp
) ? 0 : BP_GET_PSIZE(bp
);
6762 fstrans_cookie_t cookie
= spl_fstrans_mark();
6764 ASSERT(HDR_HAS_L1HDR(hdr
));
6765 ASSERT(!zfs_refcount_is_zero(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6766 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
6769 * If we're reexecuting this zio because the pool suspended, then
6770 * cleanup any state that was previously set the first time the
6771 * callback was invoked.
6773 if (zio
->io_flags
& ZIO_FLAG_REEXECUTED
) {
6774 arc_cksum_free(hdr
);
6775 arc_buf_unwatch(buf
);
6776 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6777 if (arc_buf_is_shared(buf
)) {
6778 arc_unshare_buf(hdr
, buf
);
6780 arc_hdr_free_abd(hdr
, B_FALSE
);
6784 if (HDR_HAS_RABD(hdr
))
6785 arc_hdr_free_abd(hdr
, B_TRUE
);
6787 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6788 ASSERT(!HDR_HAS_RABD(hdr
));
6789 ASSERT(!HDR_SHARED_DATA(hdr
));
6790 ASSERT(!arc_buf_is_shared(buf
));
6792 callback
->awcb_ready(zio
, buf
, callback
->awcb_private
);
6794 if (HDR_IO_IN_PROGRESS(hdr
))
6795 ASSERT(zio
->io_flags
& ZIO_FLAG_REEXECUTED
);
6797 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6799 if (BP_IS_PROTECTED(bp
) != !!HDR_PROTECTED(hdr
))
6800 hdr
= arc_hdr_realloc_crypt(hdr
, BP_IS_PROTECTED(bp
));
6802 if (BP_IS_PROTECTED(bp
)) {
6803 /* ZIL blocks are written through zio_rewrite */
6804 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
6805 ASSERT(HDR_PROTECTED(hdr
));
6807 if (BP_SHOULD_BYTESWAP(bp
)) {
6808 if (BP_GET_LEVEL(bp
) > 0) {
6809 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
6811 hdr
->b_l1hdr
.b_byteswap
=
6812 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
6815 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
6818 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
6819 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
6820 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
6821 hdr
->b_crypt_hdr
.b_iv
);
6822 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
6826 * If this block was written for raw encryption but the zio layer
6827 * ended up only authenticating it, adjust the buffer flags now.
6829 if (BP_IS_AUTHENTICATED(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6830 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6831 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6832 if (BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_OFF
)
6833 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6834 } else if (BP_IS_HOLE(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6835 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6836 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6839 /* this must be done after the buffer flags are adjusted */
6840 arc_cksum_compute(buf
);
6842 enum zio_compress compress
;
6843 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
6844 compress
= ZIO_COMPRESS_OFF
;
6846 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
6847 compress
= BP_GET_COMPRESS(bp
);
6849 HDR_SET_PSIZE(hdr
, psize
);
6850 arc_hdr_set_compress(hdr
, compress
);
6851 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
6853 if (zio
->io_error
!= 0 || psize
== 0)
6857 * Fill the hdr with data. If the buffer is encrypted we have no choice
6858 * but to copy the data into b_radb. If the hdr is compressed, the data
6859 * we want is available from the zio, otherwise we can take it from
6862 * We might be able to share the buf's data with the hdr here. However,
6863 * doing so would cause the ARC to be full of linear ABDs if we write a
6864 * lot of shareable data. As a compromise, we check whether scattered
6865 * ABDs are allowed, and assume that if they are then the user wants
6866 * the ARC to be primarily filled with them regardless of the data being
6867 * written. Therefore, if they're allowed then we allocate one and copy
6868 * the data into it; otherwise, we share the data directly if we can.
6870 if (ARC_BUF_ENCRYPTED(buf
)) {
6871 ASSERT3U(psize
, >, 0);
6872 ASSERT(ARC_BUF_COMPRESSED(buf
));
6873 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|ARC_HDR_ALLOC_RDATA
);
6874 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6875 } else if (zfs_abd_scatter_enabled
|| !arc_can_share(hdr
, buf
)) {
6877 * Ideally, we would always copy the io_abd into b_pabd, but the
6878 * user may have disabled compressed ARC, thus we must check the
6879 * hdr's compression setting rather than the io_bp's.
6881 if (BP_IS_ENCRYPTED(bp
)) {
6882 ASSERT3U(psize
, >, 0);
6883 arc_hdr_alloc_abd(hdr
,
6884 ARC_HDR_DO_ADAPT
|ARC_HDR_ALLOC_RDATA
);
6885 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6886 } else if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
6887 !ARC_BUF_COMPRESSED(buf
)) {
6888 ASSERT3U(psize
, >, 0);
6889 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
6890 abd_copy(hdr
->b_l1hdr
.b_pabd
, zio
->io_abd
, psize
);
6892 ASSERT3U(zio
->io_orig_size
, ==, arc_hdr_size(hdr
));
6893 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
6894 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
6898 ASSERT3P(buf
->b_data
, ==, abd_to_buf(zio
->io_orig_abd
));
6899 ASSERT3U(zio
->io_orig_size
, ==, arc_buf_size(buf
));
6900 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6902 arc_share_buf(hdr
, buf
);
6906 arc_hdr_verify(hdr
, bp
);
6907 spl_fstrans_unmark(cookie
);
6911 arc_write_children_ready(zio_t
*zio
)
6913 arc_write_callback_t
*callback
= zio
->io_private
;
6914 arc_buf_t
*buf
= callback
->awcb_buf
;
6916 callback
->awcb_children_ready(zio
, buf
, callback
->awcb_private
);
6920 * The SPA calls this callback for each physical write that happens on behalf
6921 * of a logical write. See the comment in dbuf_write_physdone() for details.
6924 arc_write_physdone(zio_t
*zio
)
6926 arc_write_callback_t
*cb
= zio
->io_private
;
6927 if (cb
->awcb_physdone
!= NULL
)
6928 cb
->awcb_physdone(zio
, cb
->awcb_buf
, cb
->awcb_private
);
6932 arc_write_done(zio_t
*zio
)
6934 arc_write_callback_t
*callback
= zio
->io_private
;
6935 arc_buf_t
*buf
= callback
->awcb_buf
;
6936 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6938 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6940 if (zio
->io_error
== 0) {
6941 arc_hdr_verify(hdr
, zio
->io_bp
);
6943 if (BP_IS_HOLE(zio
->io_bp
) || BP_IS_EMBEDDED(zio
->io_bp
)) {
6944 buf_discard_identity(hdr
);
6946 hdr
->b_dva
= *BP_IDENTITY(zio
->io_bp
);
6947 hdr
->b_birth
= BP_PHYSICAL_BIRTH(zio
->io_bp
);
6950 ASSERT(HDR_EMPTY(hdr
));
6954 * If the block to be written was all-zero or compressed enough to be
6955 * embedded in the BP, no write was performed so there will be no
6956 * dva/birth/checksum. The buffer must therefore remain anonymous
6959 if (!HDR_EMPTY(hdr
)) {
6960 arc_buf_hdr_t
*exists
;
6961 kmutex_t
*hash_lock
;
6963 ASSERT3U(zio
->io_error
, ==, 0);
6965 arc_cksum_verify(buf
);
6967 exists
= buf_hash_insert(hdr
, &hash_lock
);
6968 if (exists
!= NULL
) {
6970 * This can only happen if we overwrite for
6971 * sync-to-convergence, because we remove
6972 * buffers from the hash table when we arc_free().
6974 if (zio
->io_flags
& ZIO_FLAG_IO_REWRITE
) {
6975 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6976 panic("bad overwrite, hdr=%p exists=%p",
6977 (void *)hdr
, (void *)exists
);
6978 ASSERT(zfs_refcount_is_zero(
6979 &exists
->b_l1hdr
.b_refcnt
));
6980 arc_change_state(arc_anon
, exists
, hash_lock
);
6981 arc_hdr_destroy(exists
);
6982 mutex_exit(hash_lock
);
6983 exists
= buf_hash_insert(hdr
, &hash_lock
);
6984 ASSERT3P(exists
, ==, NULL
);
6985 } else if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
6987 ASSERT(zio
->io_prop
.zp_nopwrite
);
6988 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6989 panic("bad nopwrite, hdr=%p exists=%p",
6990 (void *)hdr
, (void *)exists
);
6993 ASSERT(hdr
->b_l1hdr
.b_bufcnt
== 1);
6994 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
6995 ASSERT(BP_GET_DEDUP(zio
->io_bp
));
6996 ASSERT(BP_GET_LEVEL(zio
->io_bp
) == 0);
6999 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
7000 /* if it's not anon, we are doing a scrub */
7001 if (exists
== NULL
&& hdr
->b_l1hdr
.b_state
== arc_anon
)
7002 arc_access(hdr
, hash_lock
);
7003 mutex_exit(hash_lock
);
7005 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
7008 ASSERT(!zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
7009 callback
->awcb_done(zio
, buf
, callback
->awcb_private
);
7011 abd_free(zio
->io_abd
);
7012 kmem_free(callback
, sizeof (arc_write_callback_t
));
7016 arc_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
,
7017 blkptr_t
*bp
, arc_buf_t
*buf
, boolean_t l2arc
,
7018 const zio_prop_t
*zp
, arc_write_done_func_t
*ready
,
7019 arc_write_done_func_t
*children_ready
, arc_write_done_func_t
*physdone
,
7020 arc_write_done_func_t
*done
, void *private, zio_priority_t priority
,
7021 int zio_flags
, const zbookmark_phys_t
*zb
)
7023 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
7024 arc_write_callback_t
*callback
;
7026 zio_prop_t localprop
= *zp
;
7028 ASSERT3P(ready
, !=, NULL
);
7029 ASSERT3P(done
, !=, NULL
);
7030 ASSERT(!HDR_IO_ERROR(hdr
));
7031 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
7032 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
7033 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
7035 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
7037 if (ARC_BUF_ENCRYPTED(buf
)) {
7038 ASSERT(ARC_BUF_COMPRESSED(buf
));
7039 localprop
.zp_encrypt
= B_TRUE
;
7040 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
7041 localprop
.zp_complevel
= hdr
->b_complevel
;
7042 localprop
.zp_byteorder
=
7043 (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
7044 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
7045 bcopy(hdr
->b_crypt_hdr
.b_salt
, localprop
.zp_salt
,
7047 bcopy(hdr
->b_crypt_hdr
.b_iv
, localprop
.zp_iv
,
7049 bcopy(hdr
->b_crypt_hdr
.b_mac
, localprop
.zp_mac
,
7051 if (DMU_OT_IS_ENCRYPTED(localprop
.zp_type
)) {
7052 localprop
.zp_nopwrite
= B_FALSE
;
7053 localprop
.zp_copies
=
7054 MIN(localprop
.zp_copies
, SPA_DVAS_PER_BP
- 1);
7056 zio_flags
|= ZIO_FLAG_RAW
;
7057 } else if (ARC_BUF_COMPRESSED(buf
)) {
7058 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, arc_buf_size(buf
));
7059 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
7060 localprop
.zp_complevel
= hdr
->b_complevel
;
7061 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
7063 callback
= kmem_zalloc(sizeof (arc_write_callback_t
), KM_SLEEP
);
7064 callback
->awcb_ready
= ready
;
7065 callback
->awcb_children_ready
= children_ready
;
7066 callback
->awcb_physdone
= physdone
;
7067 callback
->awcb_done
= done
;
7068 callback
->awcb_private
= private;
7069 callback
->awcb_buf
= buf
;
7072 * The hdr's b_pabd is now stale, free it now. A new data block
7073 * will be allocated when the zio pipeline calls arc_write_ready().
7075 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
7077 * If the buf is currently sharing the data block with
7078 * the hdr then we need to break that relationship here.
7079 * The hdr will remain with a NULL data pointer and the
7080 * buf will take sole ownership of the block.
7082 if (arc_buf_is_shared(buf
)) {
7083 arc_unshare_buf(hdr
, buf
);
7085 arc_hdr_free_abd(hdr
, B_FALSE
);
7087 VERIFY3P(buf
->b_data
, !=, NULL
);
7090 if (HDR_HAS_RABD(hdr
))
7091 arc_hdr_free_abd(hdr
, B_TRUE
);
7093 if (!(zio_flags
& ZIO_FLAG_RAW
))
7094 arc_hdr_set_compress(hdr
, ZIO_COMPRESS_OFF
);
7096 ASSERT(!arc_buf_is_shared(buf
));
7097 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
7099 zio
= zio_write(pio
, spa
, txg
, bp
,
7100 abd_get_from_buf(buf
->b_data
, HDR_GET_LSIZE(hdr
)),
7101 HDR_GET_LSIZE(hdr
), arc_buf_size(buf
), &localprop
, arc_write_ready
,
7102 (children_ready
!= NULL
) ? arc_write_children_ready
: NULL
,
7103 arc_write_physdone
, arc_write_done
, callback
,
7104 priority
, zio_flags
, zb
);
7110 arc_tempreserve_clear(uint64_t reserve
)
7112 atomic_add_64(&arc_tempreserve
, -reserve
);
7113 ASSERT((int64_t)arc_tempreserve
>= 0);
7117 arc_tempreserve_space(spa_t
*spa
, uint64_t reserve
, uint64_t txg
)
7123 reserve
> arc_c
/4 &&
7124 reserve
* 4 > (2ULL << SPA_MAXBLOCKSHIFT
))
7125 arc_c
= MIN(arc_c_max
, reserve
* 4);
7128 * Throttle when the calculated memory footprint for the TXG
7129 * exceeds the target ARC size.
7131 if (reserve
> arc_c
) {
7132 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve
);
7133 return (SET_ERROR(ERESTART
));
7137 * Don't count loaned bufs as in flight dirty data to prevent long
7138 * network delays from blocking transactions that are ready to be
7139 * assigned to a txg.
7142 /* assert that it has not wrapped around */
7143 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
7145 anon_size
= MAX((int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) -
7146 arc_loaned_bytes
), 0);
7149 * Writes will, almost always, require additional memory allocations
7150 * in order to compress/encrypt/etc the data. We therefore need to
7151 * make sure that there is sufficient available memory for this.
7153 error
= arc_memory_throttle(spa
, reserve
, txg
);
7158 * Throttle writes when the amount of dirty data in the cache
7159 * gets too large. We try to keep the cache less than half full
7160 * of dirty blocks so that our sync times don't grow too large.
7162 * In the case of one pool being built on another pool, we want
7163 * to make sure we don't end up throttling the lower (backing)
7164 * pool when the upper pool is the majority contributor to dirty
7165 * data. To insure we make forward progress during throttling, we
7166 * also check the current pool's net dirty data and only throttle
7167 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7168 * data in the cache.
7170 * Note: if two requests come in concurrently, we might let them
7171 * both succeed, when one of them should fail. Not a huge deal.
7173 uint64_t total_dirty
= reserve
+ arc_tempreserve
+ anon_size
;
7174 uint64_t spa_dirty_anon
= spa_dirty_data(spa
);
7175 uint64_t rarc_c
= arc_warm
? arc_c
: arc_c_max
;
7176 if (total_dirty
> rarc_c
* zfs_arc_dirty_limit_percent
/ 100 &&
7177 anon_size
> rarc_c
* zfs_arc_anon_limit_percent
/ 100 &&
7178 spa_dirty_anon
> anon_size
* zfs_arc_pool_dirty_percent
/ 100) {
7180 uint64_t meta_esize
= zfs_refcount_count(
7181 &arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7182 uint64_t data_esize
=
7183 zfs_refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7184 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7185 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7186 (u_longlong_t
)arc_tempreserve
>> 10,
7187 (u_longlong_t
)meta_esize
>> 10,
7188 (u_longlong_t
)data_esize
>> 10,
7189 (u_longlong_t
)reserve
>> 10,
7190 (u_longlong_t
)rarc_c
>> 10);
7192 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle
);
7193 return (SET_ERROR(ERESTART
));
7195 atomic_add_64(&arc_tempreserve
, reserve
);
7200 arc_kstat_update_state(arc_state_t
*state
, kstat_named_t
*size
,
7201 kstat_named_t
*evict_data
, kstat_named_t
*evict_metadata
)
7203 size
->value
.ui64
= zfs_refcount_count(&state
->arcs_size
);
7204 evict_data
->value
.ui64
=
7205 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_DATA
]);
7206 evict_metadata
->value
.ui64
=
7207 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_METADATA
]);
7211 arc_kstat_update(kstat_t
*ksp
, int rw
)
7213 arc_stats_t
*as
= ksp
->ks_data
;
7215 if (rw
== KSTAT_WRITE
)
7216 return (SET_ERROR(EACCES
));
7218 as
->arcstat_hits
.value
.ui64
=
7219 wmsum_value(&arc_sums
.arcstat_hits
);
7220 as
->arcstat_misses
.value
.ui64
=
7221 wmsum_value(&arc_sums
.arcstat_misses
);
7222 as
->arcstat_demand_data_hits
.value
.ui64
=
7223 wmsum_value(&arc_sums
.arcstat_demand_data_hits
);
7224 as
->arcstat_demand_data_misses
.value
.ui64
=
7225 wmsum_value(&arc_sums
.arcstat_demand_data_misses
);
7226 as
->arcstat_demand_metadata_hits
.value
.ui64
=
7227 wmsum_value(&arc_sums
.arcstat_demand_metadata_hits
);
7228 as
->arcstat_demand_metadata_misses
.value
.ui64
=
7229 wmsum_value(&arc_sums
.arcstat_demand_metadata_misses
);
7230 as
->arcstat_prefetch_data_hits
.value
.ui64
=
7231 wmsum_value(&arc_sums
.arcstat_prefetch_data_hits
);
7232 as
->arcstat_prefetch_data_misses
.value
.ui64
=
7233 wmsum_value(&arc_sums
.arcstat_prefetch_data_misses
);
7234 as
->arcstat_prefetch_metadata_hits
.value
.ui64
=
7235 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_hits
);
7236 as
->arcstat_prefetch_metadata_misses
.value
.ui64
=
7237 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_misses
);
7238 as
->arcstat_mru_hits
.value
.ui64
=
7239 wmsum_value(&arc_sums
.arcstat_mru_hits
);
7240 as
->arcstat_mru_ghost_hits
.value
.ui64
=
7241 wmsum_value(&arc_sums
.arcstat_mru_ghost_hits
);
7242 as
->arcstat_mfu_hits
.value
.ui64
=
7243 wmsum_value(&arc_sums
.arcstat_mfu_hits
);
7244 as
->arcstat_mfu_ghost_hits
.value
.ui64
=
7245 wmsum_value(&arc_sums
.arcstat_mfu_ghost_hits
);
7246 as
->arcstat_deleted
.value
.ui64
=
7247 wmsum_value(&arc_sums
.arcstat_deleted
);
7248 as
->arcstat_mutex_miss
.value
.ui64
=
7249 wmsum_value(&arc_sums
.arcstat_mutex_miss
);
7250 as
->arcstat_access_skip
.value
.ui64
=
7251 wmsum_value(&arc_sums
.arcstat_access_skip
);
7252 as
->arcstat_evict_skip
.value
.ui64
=
7253 wmsum_value(&arc_sums
.arcstat_evict_skip
);
7254 as
->arcstat_evict_not_enough
.value
.ui64
=
7255 wmsum_value(&arc_sums
.arcstat_evict_not_enough
);
7256 as
->arcstat_evict_l2_cached
.value
.ui64
=
7257 wmsum_value(&arc_sums
.arcstat_evict_l2_cached
);
7258 as
->arcstat_evict_l2_eligible
.value
.ui64
=
7259 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible
);
7260 as
->arcstat_evict_l2_eligible_mfu
.value
.ui64
=
7261 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7262 as
->arcstat_evict_l2_eligible_mru
.value
.ui64
=
7263 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7264 as
->arcstat_evict_l2_ineligible
.value
.ui64
=
7265 wmsum_value(&arc_sums
.arcstat_evict_l2_ineligible
);
7266 as
->arcstat_evict_l2_skip
.value
.ui64
=
7267 wmsum_value(&arc_sums
.arcstat_evict_l2_skip
);
7268 as
->arcstat_hash_collisions
.value
.ui64
=
7269 wmsum_value(&arc_sums
.arcstat_hash_collisions
);
7270 as
->arcstat_hash_chains
.value
.ui64
=
7271 wmsum_value(&arc_sums
.arcstat_hash_chains
);
7272 as
->arcstat_size
.value
.ui64
=
7273 aggsum_value(&arc_sums
.arcstat_size
);
7274 as
->arcstat_compressed_size
.value
.ui64
=
7275 wmsum_value(&arc_sums
.arcstat_compressed_size
);
7276 as
->arcstat_uncompressed_size
.value
.ui64
=
7277 wmsum_value(&arc_sums
.arcstat_uncompressed_size
);
7278 as
->arcstat_overhead_size
.value
.ui64
=
7279 wmsum_value(&arc_sums
.arcstat_overhead_size
);
7280 as
->arcstat_hdr_size
.value
.ui64
=
7281 wmsum_value(&arc_sums
.arcstat_hdr_size
);
7282 as
->arcstat_data_size
.value
.ui64
=
7283 wmsum_value(&arc_sums
.arcstat_data_size
);
7284 as
->arcstat_metadata_size
.value
.ui64
=
7285 wmsum_value(&arc_sums
.arcstat_metadata_size
);
7286 as
->arcstat_dbuf_size
.value
.ui64
=
7287 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7288 #if defined(COMPAT_FREEBSD11)
7289 as
->arcstat_other_size
.value
.ui64
=
7290 wmsum_value(&arc_sums
.arcstat_bonus_size
) +
7291 aggsum_value(&arc_sums
.arcstat_dnode_size
) +
7292 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7295 arc_kstat_update_state(arc_anon
,
7296 &as
->arcstat_anon_size
,
7297 &as
->arcstat_anon_evictable_data
,
7298 &as
->arcstat_anon_evictable_metadata
);
7299 arc_kstat_update_state(arc_mru
,
7300 &as
->arcstat_mru_size
,
7301 &as
->arcstat_mru_evictable_data
,
7302 &as
->arcstat_mru_evictable_metadata
);
7303 arc_kstat_update_state(arc_mru_ghost
,
7304 &as
->arcstat_mru_ghost_size
,
7305 &as
->arcstat_mru_ghost_evictable_data
,
7306 &as
->arcstat_mru_ghost_evictable_metadata
);
7307 arc_kstat_update_state(arc_mfu
,
7308 &as
->arcstat_mfu_size
,
7309 &as
->arcstat_mfu_evictable_data
,
7310 &as
->arcstat_mfu_evictable_metadata
);
7311 arc_kstat_update_state(arc_mfu_ghost
,
7312 &as
->arcstat_mfu_ghost_size
,
7313 &as
->arcstat_mfu_ghost_evictable_data
,
7314 &as
->arcstat_mfu_ghost_evictable_metadata
);
7316 as
->arcstat_dnode_size
.value
.ui64
=
7317 aggsum_value(&arc_sums
.arcstat_dnode_size
);
7318 as
->arcstat_bonus_size
.value
.ui64
=
7319 wmsum_value(&arc_sums
.arcstat_bonus_size
);
7320 as
->arcstat_l2_hits
.value
.ui64
=
7321 wmsum_value(&arc_sums
.arcstat_l2_hits
);
7322 as
->arcstat_l2_misses
.value
.ui64
=
7323 wmsum_value(&arc_sums
.arcstat_l2_misses
);
7324 as
->arcstat_l2_prefetch_asize
.value
.ui64
=
7325 wmsum_value(&arc_sums
.arcstat_l2_prefetch_asize
);
7326 as
->arcstat_l2_mru_asize
.value
.ui64
=
7327 wmsum_value(&arc_sums
.arcstat_l2_mru_asize
);
7328 as
->arcstat_l2_mfu_asize
.value
.ui64
=
7329 wmsum_value(&arc_sums
.arcstat_l2_mfu_asize
);
7330 as
->arcstat_l2_bufc_data_asize
.value
.ui64
=
7331 wmsum_value(&arc_sums
.arcstat_l2_bufc_data_asize
);
7332 as
->arcstat_l2_bufc_metadata_asize
.value
.ui64
=
7333 wmsum_value(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7334 as
->arcstat_l2_feeds
.value
.ui64
=
7335 wmsum_value(&arc_sums
.arcstat_l2_feeds
);
7336 as
->arcstat_l2_rw_clash
.value
.ui64
=
7337 wmsum_value(&arc_sums
.arcstat_l2_rw_clash
);
7338 as
->arcstat_l2_read_bytes
.value
.ui64
=
7339 wmsum_value(&arc_sums
.arcstat_l2_read_bytes
);
7340 as
->arcstat_l2_write_bytes
.value
.ui64
=
7341 wmsum_value(&arc_sums
.arcstat_l2_write_bytes
);
7342 as
->arcstat_l2_writes_sent
.value
.ui64
=
7343 wmsum_value(&arc_sums
.arcstat_l2_writes_sent
);
7344 as
->arcstat_l2_writes_done
.value
.ui64
=
7345 wmsum_value(&arc_sums
.arcstat_l2_writes_done
);
7346 as
->arcstat_l2_writes_error
.value
.ui64
=
7347 wmsum_value(&arc_sums
.arcstat_l2_writes_error
);
7348 as
->arcstat_l2_writes_lock_retry
.value
.ui64
=
7349 wmsum_value(&arc_sums
.arcstat_l2_writes_lock_retry
);
7350 as
->arcstat_l2_evict_lock_retry
.value
.ui64
=
7351 wmsum_value(&arc_sums
.arcstat_l2_evict_lock_retry
);
7352 as
->arcstat_l2_evict_reading
.value
.ui64
=
7353 wmsum_value(&arc_sums
.arcstat_l2_evict_reading
);
7354 as
->arcstat_l2_evict_l1cached
.value
.ui64
=
7355 wmsum_value(&arc_sums
.arcstat_l2_evict_l1cached
);
7356 as
->arcstat_l2_free_on_write
.value
.ui64
=
7357 wmsum_value(&arc_sums
.arcstat_l2_free_on_write
);
7358 as
->arcstat_l2_abort_lowmem
.value
.ui64
=
7359 wmsum_value(&arc_sums
.arcstat_l2_abort_lowmem
);
7360 as
->arcstat_l2_cksum_bad
.value
.ui64
=
7361 wmsum_value(&arc_sums
.arcstat_l2_cksum_bad
);
7362 as
->arcstat_l2_io_error
.value
.ui64
=
7363 wmsum_value(&arc_sums
.arcstat_l2_io_error
);
7364 as
->arcstat_l2_lsize
.value
.ui64
=
7365 wmsum_value(&arc_sums
.arcstat_l2_lsize
);
7366 as
->arcstat_l2_psize
.value
.ui64
=
7367 wmsum_value(&arc_sums
.arcstat_l2_psize
);
7368 as
->arcstat_l2_hdr_size
.value
.ui64
=
7369 aggsum_value(&arc_sums
.arcstat_l2_hdr_size
);
7370 as
->arcstat_l2_log_blk_writes
.value
.ui64
=
7371 wmsum_value(&arc_sums
.arcstat_l2_log_blk_writes
);
7372 as
->arcstat_l2_log_blk_asize
.value
.ui64
=
7373 wmsum_value(&arc_sums
.arcstat_l2_log_blk_asize
);
7374 as
->arcstat_l2_log_blk_count
.value
.ui64
=
7375 wmsum_value(&arc_sums
.arcstat_l2_log_blk_count
);
7376 as
->arcstat_l2_rebuild_success
.value
.ui64
=
7377 wmsum_value(&arc_sums
.arcstat_l2_rebuild_success
);
7378 as
->arcstat_l2_rebuild_abort_unsupported
.value
.ui64
=
7379 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7380 as
->arcstat_l2_rebuild_abort_io_errors
.value
.ui64
=
7381 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7382 as
->arcstat_l2_rebuild_abort_dh_errors
.value
.ui64
=
7383 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7384 as
->arcstat_l2_rebuild_abort_cksum_lb_errors
.value
.ui64
=
7385 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7386 as
->arcstat_l2_rebuild_abort_lowmem
.value
.ui64
=
7387 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7388 as
->arcstat_l2_rebuild_size
.value
.ui64
=
7389 wmsum_value(&arc_sums
.arcstat_l2_rebuild_size
);
7390 as
->arcstat_l2_rebuild_asize
.value
.ui64
=
7391 wmsum_value(&arc_sums
.arcstat_l2_rebuild_asize
);
7392 as
->arcstat_l2_rebuild_bufs
.value
.ui64
=
7393 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs
);
7394 as
->arcstat_l2_rebuild_bufs_precached
.value
.ui64
=
7395 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7396 as
->arcstat_l2_rebuild_log_blks
.value
.ui64
=
7397 wmsum_value(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7398 as
->arcstat_memory_throttle_count
.value
.ui64
=
7399 wmsum_value(&arc_sums
.arcstat_memory_throttle_count
);
7400 as
->arcstat_memory_direct_count
.value
.ui64
=
7401 wmsum_value(&arc_sums
.arcstat_memory_direct_count
);
7402 as
->arcstat_memory_indirect_count
.value
.ui64
=
7403 wmsum_value(&arc_sums
.arcstat_memory_indirect_count
);
7405 as
->arcstat_memory_all_bytes
.value
.ui64
=
7407 as
->arcstat_memory_free_bytes
.value
.ui64
=
7409 as
->arcstat_memory_available_bytes
.value
.i64
=
7410 arc_available_memory();
7412 as
->arcstat_prune
.value
.ui64
=
7413 wmsum_value(&arc_sums
.arcstat_prune
);
7414 as
->arcstat_meta_used
.value
.ui64
=
7415 aggsum_value(&arc_sums
.arcstat_meta_used
);
7416 as
->arcstat_async_upgrade_sync
.value
.ui64
=
7417 wmsum_value(&arc_sums
.arcstat_async_upgrade_sync
);
7418 as
->arcstat_demand_hit_predictive_prefetch
.value
.ui64
=
7419 wmsum_value(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7420 as
->arcstat_demand_hit_prescient_prefetch
.value
.ui64
=
7421 wmsum_value(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7422 as
->arcstat_raw_size
.value
.ui64
=
7423 wmsum_value(&arc_sums
.arcstat_raw_size
);
7424 as
->arcstat_cached_only_in_progress
.value
.ui64
=
7425 wmsum_value(&arc_sums
.arcstat_cached_only_in_progress
);
7426 as
->arcstat_abd_chunk_waste_size
.value
.ui64
=
7427 wmsum_value(&arc_sums
.arcstat_abd_chunk_waste_size
);
7433 * This function *must* return indices evenly distributed between all
7434 * sublists of the multilist. This is needed due to how the ARC eviction
7435 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7436 * distributed between all sublists and uses this assumption when
7437 * deciding which sublist to evict from and how much to evict from it.
7440 arc_state_multilist_index_func(multilist_t
*ml
, void *obj
)
7442 arc_buf_hdr_t
*hdr
= obj
;
7445 * We rely on b_dva to generate evenly distributed index
7446 * numbers using buf_hash below. So, as an added precaution,
7447 * let's make sure we never add empty buffers to the arc lists.
7449 ASSERT(!HDR_EMPTY(hdr
));
7452 * The assumption here, is the hash value for a given
7453 * arc_buf_hdr_t will remain constant throughout its lifetime
7454 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7455 * Thus, we don't need to store the header's sublist index
7456 * on insertion, as this index can be recalculated on removal.
7458 * Also, the low order bits of the hash value are thought to be
7459 * distributed evenly. Otherwise, in the case that the multilist
7460 * has a power of two number of sublists, each sublists' usage
7461 * would not be evenly distributed. In this context full 64bit
7462 * division would be a waste of time, so limit it to 32 bits.
7464 return ((unsigned int)buf_hash(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
) %
7465 multilist_get_num_sublists(ml
));
7468 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7469 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7471 "ignoring tunable %s (using %llu instead)", \
7472 (#tuning), (u_longlong_t)(value)); \
7477 * Called during module initialization and periodically thereafter to
7478 * apply reasonable changes to the exposed performance tunings. Can also be
7479 * called explicitly by param_set_arc_*() functions when ARC tunables are
7480 * updated manually. Non-zero zfs_* values which differ from the currently set
7481 * values will be applied.
7484 arc_tuning_update(boolean_t verbose
)
7486 uint64_t allmem
= arc_all_memory();
7487 unsigned long limit
;
7489 /* Valid range: 32M - <arc_c_max> */
7490 if ((zfs_arc_min
) && (zfs_arc_min
!= arc_c_min
) &&
7491 (zfs_arc_min
>= 2ULL << SPA_MAXBLOCKSHIFT
) &&
7492 (zfs_arc_min
<= arc_c_max
)) {
7493 arc_c_min
= zfs_arc_min
;
7494 arc_c
= MAX(arc_c
, arc_c_min
);
7496 WARN_IF_TUNING_IGNORED(zfs_arc_min
, arc_c_min
, verbose
);
7498 /* Valid range: 64M - <all physical memory> */
7499 if ((zfs_arc_max
) && (zfs_arc_max
!= arc_c_max
) &&
7500 (zfs_arc_max
>= 64 << 20) && (zfs_arc_max
< allmem
) &&
7501 (zfs_arc_max
> arc_c_min
)) {
7502 arc_c_max
= zfs_arc_max
;
7503 arc_c
= MIN(arc_c
, arc_c_max
);
7504 arc_p
= (arc_c
>> 1);
7505 if (arc_meta_limit
> arc_c_max
)
7506 arc_meta_limit
= arc_c_max
;
7507 if (arc_dnode_size_limit
> arc_meta_limit
)
7508 arc_dnode_size_limit
= arc_meta_limit
;
7510 WARN_IF_TUNING_IGNORED(zfs_arc_max
, arc_c_max
, verbose
);
7512 /* Valid range: 16M - <arc_c_max> */
7513 if ((zfs_arc_meta_min
) && (zfs_arc_meta_min
!= arc_meta_min
) &&
7514 (zfs_arc_meta_min
>= 1ULL << SPA_MAXBLOCKSHIFT
) &&
7515 (zfs_arc_meta_min
<= arc_c_max
)) {
7516 arc_meta_min
= zfs_arc_meta_min
;
7517 if (arc_meta_limit
< arc_meta_min
)
7518 arc_meta_limit
= arc_meta_min
;
7519 if (arc_dnode_size_limit
< arc_meta_min
)
7520 arc_dnode_size_limit
= arc_meta_min
;
7522 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min
, arc_meta_min
, verbose
);
7524 /* Valid range: <arc_meta_min> - <arc_c_max> */
7525 limit
= zfs_arc_meta_limit
? zfs_arc_meta_limit
:
7526 MIN(zfs_arc_meta_limit_percent
, 100) * arc_c_max
/ 100;
7527 if ((limit
!= arc_meta_limit
) &&
7528 (limit
>= arc_meta_min
) &&
7529 (limit
<= arc_c_max
))
7530 arc_meta_limit
= limit
;
7531 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit
, arc_meta_limit
, verbose
);
7533 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7534 limit
= zfs_arc_dnode_limit
? zfs_arc_dnode_limit
:
7535 MIN(zfs_arc_dnode_limit_percent
, 100) * arc_meta_limit
/ 100;
7536 if ((limit
!= arc_dnode_size_limit
) &&
7537 (limit
>= arc_meta_min
) &&
7538 (limit
<= arc_meta_limit
))
7539 arc_dnode_size_limit
= limit
;
7540 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit
, arc_dnode_size_limit
,
7543 /* Valid range: 1 - N */
7544 if (zfs_arc_grow_retry
)
7545 arc_grow_retry
= zfs_arc_grow_retry
;
7547 /* Valid range: 1 - N */
7548 if (zfs_arc_shrink_shift
) {
7549 arc_shrink_shift
= zfs_arc_shrink_shift
;
7550 arc_no_grow_shift
= MIN(arc_no_grow_shift
, arc_shrink_shift
-1);
7553 /* Valid range: 1 - N */
7554 if (zfs_arc_p_min_shift
)
7555 arc_p_min_shift
= zfs_arc_p_min_shift
;
7557 /* Valid range: 1 - N ms */
7558 if (zfs_arc_min_prefetch_ms
)
7559 arc_min_prefetch_ms
= zfs_arc_min_prefetch_ms
;
7561 /* Valid range: 1 - N ms */
7562 if (zfs_arc_min_prescient_prefetch_ms
) {
7563 arc_min_prescient_prefetch_ms
=
7564 zfs_arc_min_prescient_prefetch_ms
;
7567 /* Valid range: 0 - 100 */
7568 if ((zfs_arc_lotsfree_percent
>= 0) &&
7569 (zfs_arc_lotsfree_percent
<= 100))
7570 arc_lotsfree_percent
= zfs_arc_lotsfree_percent
;
7571 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent
, arc_lotsfree_percent
,
7574 /* Valid range: 0 - <all physical memory> */
7575 if ((zfs_arc_sys_free
) && (zfs_arc_sys_free
!= arc_sys_free
))
7576 arc_sys_free
= MIN(MAX(zfs_arc_sys_free
, 0), allmem
);
7577 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free
, arc_sys_free
, verbose
);
7581 arc_state_init(void)
7583 multilist_create(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
],
7584 sizeof (arc_buf_hdr_t
),
7585 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7586 arc_state_multilist_index_func
);
7587 multilist_create(&arc_mru
->arcs_list
[ARC_BUFC_DATA
],
7588 sizeof (arc_buf_hdr_t
),
7589 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7590 arc_state_multilist_index_func
);
7591 multilist_create(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7592 sizeof (arc_buf_hdr_t
),
7593 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7594 arc_state_multilist_index_func
);
7595 multilist_create(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
],
7596 sizeof (arc_buf_hdr_t
),
7597 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7598 arc_state_multilist_index_func
);
7599 multilist_create(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
],
7600 sizeof (arc_buf_hdr_t
),
7601 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7602 arc_state_multilist_index_func
);
7603 multilist_create(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
],
7604 sizeof (arc_buf_hdr_t
),
7605 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7606 arc_state_multilist_index_func
);
7607 multilist_create(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7608 sizeof (arc_buf_hdr_t
),
7609 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7610 arc_state_multilist_index_func
);
7611 multilist_create(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
],
7612 sizeof (arc_buf_hdr_t
),
7613 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7614 arc_state_multilist_index_func
);
7615 multilist_create(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
],
7616 sizeof (arc_buf_hdr_t
),
7617 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7618 arc_state_multilist_index_func
);
7619 multilist_create(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
],
7620 sizeof (arc_buf_hdr_t
),
7621 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
),
7622 arc_state_multilist_index_func
);
7624 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7625 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7626 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7627 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7628 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7629 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7630 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7631 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7632 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7633 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7634 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7635 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7637 zfs_refcount_create(&arc_anon
->arcs_size
);
7638 zfs_refcount_create(&arc_mru
->arcs_size
);
7639 zfs_refcount_create(&arc_mru_ghost
->arcs_size
);
7640 zfs_refcount_create(&arc_mfu
->arcs_size
);
7641 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
);
7642 zfs_refcount_create(&arc_l2c_only
->arcs_size
);
7644 wmsum_init(&arc_sums
.arcstat_hits
, 0);
7645 wmsum_init(&arc_sums
.arcstat_misses
, 0);
7646 wmsum_init(&arc_sums
.arcstat_demand_data_hits
, 0);
7647 wmsum_init(&arc_sums
.arcstat_demand_data_misses
, 0);
7648 wmsum_init(&arc_sums
.arcstat_demand_metadata_hits
, 0);
7649 wmsum_init(&arc_sums
.arcstat_demand_metadata_misses
, 0);
7650 wmsum_init(&arc_sums
.arcstat_prefetch_data_hits
, 0);
7651 wmsum_init(&arc_sums
.arcstat_prefetch_data_misses
, 0);
7652 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_hits
, 0);
7653 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_misses
, 0);
7654 wmsum_init(&arc_sums
.arcstat_mru_hits
, 0);
7655 wmsum_init(&arc_sums
.arcstat_mru_ghost_hits
, 0);
7656 wmsum_init(&arc_sums
.arcstat_mfu_hits
, 0);
7657 wmsum_init(&arc_sums
.arcstat_mfu_ghost_hits
, 0);
7658 wmsum_init(&arc_sums
.arcstat_deleted
, 0);
7659 wmsum_init(&arc_sums
.arcstat_mutex_miss
, 0);
7660 wmsum_init(&arc_sums
.arcstat_access_skip
, 0);
7661 wmsum_init(&arc_sums
.arcstat_evict_skip
, 0);
7662 wmsum_init(&arc_sums
.arcstat_evict_not_enough
, 0);
7663 wmsum_init(&arc_sums
.arcstat_evict_l2_cached
, 0);
7664 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible
, 0);
7665 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mfu
, 0);
7666 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mru
, 0);
7667 wmsum_init(&arc_sums
.arcstat_evict_l2_ineligible
, 0);
7668 wmsum_init(&arc_sums
.arcstat_evict_l2_skip
, 0);
7669 wmsum_init(&arc_sums
.arcstat_hash_collisions
, 0);
7670 wmsum_init(&arc_sums
.arcstat_hash_chains
, 0);
7671 aggsum_init(&arc_sums
.arcstat_size
, 0);
7672 wmsum_init(&arc_sums
.arcstat_compressed_size
, 0);
7673 wmsum_init(&arc_sums
.arcstat_uncompressed_size
, 0);
7674 wmsum_init(&arc_sums
.arcstat_overhead_size
, 0);
7675 wmsum_init(&arc_sums
.arcstat_hdr_size
, 0);
7676 wmsum_init(&arc_sums
.arcstat_data_size
, 0);
7677 wmsum_init(&arc_sums
.arcstat_metadata_size
, 0);
7678 wmsum_init(&arc_sums
.arcstat_dbuf_size
, 0);
7679 aggsum_init(&arc_sums
.arcstat_dnode_size
, 0);
7680 wmsum_init(&arc_sums
.arcstat_bonus_size
, 0);
7681 wmsum_init(&arc_sums
.arcstat_l2_hits
, 0);
7682 wmsum_init(&arc_sums
.arcstat_l2_misses
, 0);
7683 wmsum_init(&arc_sums
.arcstat_l2_prefetch_asize
, 0);
7684 wmsum_init(&arc_sums
.arcstat_l2_mru_asize
, 0);
7685 wmsum_init(&arc_sums
.arcstat_l2_mfu_asize
, 0);
7686 wmsum_init(&arc_sums
.arcstat_l2_bufc_data_asize
, 0);
7687 wmsum_init(&arc_sums
.arcstat_l2_bufc_metadata_asize
, 0);
7688 wmsum_init(&arc_sums
.arcstat_l2_feeds
, 0);
7689 wmsum_init(&arc_sums
.arcstat_l2_rw_clash
, 0);
7690 wmsum_init(&arc_sums
.arcstat_l2_read_bytes
, 0);
7691 wmsum_init(&arc_sums
.arcstat_l2_write_bytes
, 0);
7692 wmsum_init(&arc_sums
.arcstat_l2_writes_sent
, 0);
7693 wmsum_init(&arc_sums
.arcstat_l2_writes_done
, 0);
7694 wmsum_init(&arc_sums
.arcstat_l2_writes_error
, 0);
7695 wmsum_init(&arc_sums
.arcstat_l2_writes_lock_retry
, 0);
7696 wmsum_init(&arc_sums
.arcstat_l2_evict_lock_retry
, 0);
7697 wmsum_init(&arc_sums
.arcstat_l2_evict_reading
, 0);
7698 wmsum_init(&arc_sums
.arcstat_l2_evict_l1cached
, 0);
7699 wmsum_init(&arc_sums
.arcstat_l2_free_on_write
, 0);
7700 wmsum_init(&arc_sums
.arcstat_l2_abort_lowmem
, 0);
7701 wmsum_init(&arc_sums
.arcstat_l2_cksum_bad
, 0);
7702 wmsum_init(&arc_sums
.arcstat_l2_io_error
, 0);
7703 wmsum_init(&arc_sums
.arcstat_l2_lsize
, 0);
7704 wmsum_init(&arc_sums
.arcstat_l2_psize
, 0);
7705 aggsum_init(&arc_sums
.arcstat_l2_hdr_size
, 0);
7706 wmsum_init(&arc_sums
.arcstat_l2_log_blk_writes
, 0);
7707 wmsum_init(&arc_sums
.arcstat_l2_log_blk_asize
, 0);
7708 wmsum_init(&arc_sums
.arcstat_l2_log_blk_count
, 0);
7709 wmsum_init(&arc_sums
.arcstat_l2_rebuild_success
, 0);
7710 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
, 0);
7711 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
, 0);
7712 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
, 0);
7713 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
, 0);
7714 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
, 0);
7715 wmsum_init(&arc_sums
.arcstat_l2_rebuild_size
, 0);
7716 wmsum_init(&arc_sums
.arcstat_l2_rebuild_asize
, 0);
7717 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs
, 0);
7718 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs_precached
, 0);
7719 wmsum_init(&arc_sums
.arcstat_l2_rebuild_log_blks
, 0);
7720 wmsum_init(&arc_sums
.arcstat_memory_throttle_count
, 0);
7721 wmsum_init(&arc_sums
.arcstat_memory_direct_count
, 0);
7722 wmsum_init(&arc_sums
.arcstat_memory_indirect_count
, 0);
7723 wmsum_init(&arc_sums
.arcstat_prune
, 0);
7724 aggsum_init(&arc_sums
.arcstat_meta_used
, 0);
7725 wmsum_init(&arc_sums
.arcstat_async_upgrade_sync
, 0);
7726 wmsum_init(&arc_sums
.arcstat_demand_hit_predictive_prefetch
, 0);
7727 wmsum_init(&arc_sums
.arcstat_demand_hit_prescient_prefetch
, 0);
7728 wmsum_init(&arc_sums
.arcstat_raw_size
, 0);
7729 wmsum_init(&arc_sums
.arcstat_cached_only_in_progress
, 0);
7730 wmsum_init(&arc_sums
.arcstat_abd_chunk_waste_size
, 0);
7732 arc_anon
->arcs_state
= ARC_STATE_ANON
;
7733 arc_mru
->arcs_state
= ARC_STATE_MRU
;
7734 arc_mru_ghost
->arcs_state
= ARC_STATE_MRU_GHOST
;
7735 arc_mfu
->arcs_state
= ARC_STATE_MFU
;
7736 arc_mfu_ghost
->arcs_state
= ARC_STATE_MFU_GHOST
;
7737 arc_l2c_only
->arcs_state
= ARC_STATE_L2C_ONLY
;
7741 arc_state_fini(void)
7743 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7744 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7745 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7746 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7747 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7748 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7749 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7750 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7751 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7752 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7753 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7754 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7756 zfs_refcount_destroy(&arc_anon
->arcs_size
);
7757 zfs_refcount_destroy(&arc_mru
->arcs_size
);
7758 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
);
7759 zfs_refcount_destroy(&arc_mfu
->arcs_size
);
7760 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
);
7761 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
);
7763 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
]);
7764 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7765 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
]);
7766 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7767 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_DATA
]);
7768 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7769 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
]);
7770 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7771 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]);
7772 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]);
7774 wmsum_fini(&arc_sums
.arcstat_hits
);
7775 wmsum_fini(&arc_sums
.arcstat_misses
);
7776 wmsum_fini(&arc_sums
.arcstat_demand_data_hits
);
7777 wmsum_fini(&arc_sums
.arcstat_demand_data_misses
);
7778 wmsum_fini(&arc_sums
.arcstat_demand_metadata_hits
);
7779 wmsum_fini(&arc_sums
.arcstat_demand_metadata_misses
);
7780 wmsum_fini(&arc_sums
.arcstat_prefetch_data_hits
);
7781 wmsum_fini(&arc_sums
.arcstat_prefetch_data_misses
);
7782 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_hits
);
7783 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_misses
);
7784 wmsum_fini(&arc_sums
.arcstat_mru_hits
);
7785 wmsum_fini(&arc_sums
.arcstat_mru_ghost_hits
);
7786 wmsum_fini(&arc_sums
.arcstat_mfu_hits
);
7787 wmsum_fini(&arc_sums
.arcstat_mfu_ghost_hits
);
7788 wmsum_fini(&arc_sums
.arcstat_deleted
);
7789 wmsum_fini(&arc_sums
.arcstat_mutex_miss
);
7790 wmsum_fini(&arc_sums
.arcstat_access_skip
);
7791 wmsum_fini(&arc_sums
.arcstat_evict_skip
);
7792 wmsum_fini(&arc_sums
.arcstat_evict_not_enough
);
7793 wmsum_fini(&arc_sums
.arcstat_evict_l2_cached
);
7794 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible
);
7795 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7796 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7797 wmsum_fini(&arc_sums
.arcstat_evict_l2_ineligible
);
7798 wmsum_fini(&arc_sums
.arcstat_evict_l2_skip
);
7799 wmsum_fini(&arc_sums
.arcstat_hash_collisions
);
7800 wmsum_fini(&arc_sums
.arcstat_hash_chains
);
7801 aggsum_fini(&arc_sums
.arcstat_size
);
7802 wmsum_fini(&arc_sums
.arcstat_compressed_size
);
7803 wmsum_fini(&arc_sums
.arcstat_uncompressed_size
);
7804 wmsum_fini(&arc_sums
.arcstat_overhead_size
);
7805 wmsum_fini(&arc_sums
.arcstat_hdr_size
);
7806 wmsum_fini(&arc_sums
.arcstat_data_size
);
7807 wmsum_fini(&arc_sums
.arcstat_metadata_size
);
7808 wmsum_fini(&arc_sums
.arcstat_dbuf_size
);
7809 aggsum_fini(&arc_sums
.arcstat_dnode_size
);
7810 wmsum_fini(&arc_sums
.arcstat_bonus_size
);
7811 wmsum_fini(&arc_sums
.arcstat_l2_hits
);
7812 wmsum_fini(&arc_sums
.arcstat_l2_misses
);
7813 wmsum_fini(&arc_sums
.arcstat_l2_prefetch_asize
);
7814 wmsum_fini(&arc_sums
.arcstat_l2_mru_asize
);
7815 wmsum_fini(&arc_sums
.arcstat_l2_mfu_asize
);
7816 wmsum_fini(&arc_sums
.arcstat_l2_bufc_data_asize
);
7817 wmsum_fini(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7818 wmsum_fini(&arc_sums
.arcstat_l2_feeds
);
7819 wmsum_fini(&arc_sums
.arcstat_l2_rw_clash
);
7820 wmsum_fini(&arc_sums
.arcstat_l2_read_bytes
);
7821 wmsum_fini(&arc_sums
.arcstat_l2_write_bytes
);
7822 wmsum_fini(&arc_sums
.arcstat_l2_writes_sent
);
7823 wmsum_fini(&arc_sums
.arcstat_l2_writes_done
);
7824 wmsum_fini(&arc_sums
.arcstat_l2_writes_error
);
7825 wmsum_fini(&arc_sums
.arcstat_l2_writes_lock_retry
);
7826 wmsum_fini(&arc_sums
.arcstat_l2_evict_lock_retry
);
7827 wmsum_fini(&arc_sums
.arcstat_l2_evict_reading
);
7828 wmsum_fini(&arc_sums
.arcstat_l2_evict_l1cached
);
7829 wmsum_fini(&arc_sums
.arcstat_l2_free_on_write
);
7830 wmsum_fini(&arc_sums
.arcstat_l2_abort_lowmem
);
7831 wmsum_fini(&arc_sums
.arcstat_l2_cksum_bad
);
7832 wmsum_fini(&arc_sums
.arcstat_l2_io_error
);
7833 wmsum_fini(&arc_sums
.arcstat_l2_lsize
);
7834 wmsum_fini(&arc_sums
.arcstat_l2_psize
);
7835 aggsum_fini(&arc_sums
.arcstat_l2_hdr_size
);
7836 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_writes
);
7837 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_asize
);
7838 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_count
);
7839 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_success
);
7840 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7841 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7842 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7843 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7844 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7845 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_size
);
7846 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_asize
);
7847 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs
);
7848 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7849 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7850 wmsum_fini(&arc_sums
.arcstat_memory_throttle_count
);
7851 wmsum_fini(&arc_sums
.arcstat_memory_direct_count
);
7852 wmsum_fini(&arc_sums
.arcstat_memory_indirect_count
);
7853 wmsum_fini(&arc_sums
.arcstat_prune
);
7854 aggsum_fini(&arc_sums
.arcstat_meta_used
);
7855 wmsum_fini(&arc_sums
.arcstat_async_upgrade_sync
);
7856 wmsum_fini(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7857 wmsum_fini(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7858 wmsum_fini(&arc_sums
.arcstat_raw_size
);
7859 wmsum_fini(&arc_sums
.arcstat_cached_only_in_progress
);
7860 wmsum_fini(&arc_sums
.arcstat_abd_chunk_waste_size
);
7864 arc_target_bytes(void)
7870 arc_set_limits(uint64_t allmem
)
7872 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7873 arc_c_min
= MAX(allmem
/ 32, 2ULL << SPA_MAXBLOCKSHIFT
);
7875 /* How to set default max varies by platform. */
7876 arc_c_max
= arc_default_max(arc_c_min
, allmem
);
7881 uint64_t percent
, allmem
= arc_all_memory();
7882 mutex_init(&arc_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7883 list_create(&arc_evict_waiters
, sizeof (arc_evict_waiter_t
),
7884 offsetof(arc_evict_waiter_t
, aew_node
));
7886 arc_min_prefetch_ms
= 1000;
7887 arc_min_prescient_prefetch_ms
= 6000;
7889 #if defined(_KERNEL)
7893 arc_set_limits(allmem
);
7897 * In userland, there's only the memory pressure that we artificially
7898 * create (see arc_available_memory()). Don't let arc_c get too
7899 * small, because it can cause transactions to be larger than
7900 * arc_c, causing arc_tempreserve_space() to fail.
7902 arc_c_min
= MAX(arc_c_max
/ 2, 2ULL << SPA_MAXBLOCKSHIFT
);
7906 arc_p
= (arc_c
>> 1);
7908 /* Set min to 1/2 of arc_c_min */
7909 arc_meta_min
= 1ULL << SPA_MAXBLOCKSHIFT
;
7911 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7912 * arc_meta_min, and a ceiling of arc_c_max.
7914 percent
= MIN(zfs_arc_meta_limit_percent
, 100);
7915 arc_meta_limit
= MAX(arc_meta_min
, (percent
* arc_c_max
) / 100);
7916 percent
= MIN(zfs_arc_dnode_limit_percent
, 100);
7917 arc_dnode_size_limit
= (percent
* arc_meta_limit
) / 100;
7919 /* Apply user specified tunings */
7920 arc_tuning_update(B_TRUE
);
7922 /* if kmem_flags are set, lets try to use less memory */
7923 if (kmem_debugging())
7925 if (arc_c
< arc_c_min
)
7928 arc_register_hotplug();
7934 list_create(&arc_prune_list
, sizeof (arc_prune_t
),
7935 offsetof(arc_prune_t
, p_node
));
7936 mutex_init(&arc_prune_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
7938 arc_prune_taskq
= taskq_create("arc_prune", 100, defclsyspri
,
7939 boot_ncpus
, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
|
7940 TASKQ_THREADS_CPU_PCT
);
7942 arc_ksp
= kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED
,
7943 sizeof (arc_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
7945 if (arc_ksp
!= NULL
) {
7946 arc_ksp
->ks_data
= &arc_stats
;
7947 arc_ksp
->ks_update
= arc_kstat_update
;
7948 kstat_install(arc_ksp
);
7951 arc_evict_zthr
= zthr_create("arc_evict",
7952 arc_evict_cb_check
, arc_evict_cb
, NULL
);
7953 arc_reap_zthr
= zthr_create_timer("arc_reap",
7954 arc_reap_cb_check
, arc_reap_cb
, NULL
, SEC2NSEC(1));
7959 * Calculate maximum amount of dirty data per pool.
7961 * If it has been set by a module parameter, take that.
7962 * Otherwise, use a percentage of physical memory defined by
7963 * zfs_dirty_data_max_percent (default 10%) with a cap at
7964 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7967 if (zfs_dirty_data_max_max
== 0)
7968 zfs_dirty_data_max_max
= MIN(4ULL * 1024 * 1024 * 1024,
7969 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7971 if (zfs_dirty_data_max_max
== 0)
7972 zfs_dirty_data_max_max
= MIN(1ULL * 1024 * 1024 * 1024,
7973 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7976 if (zfs_dirty_data_max
== 0) {
7977 zfs_dirty_data_max
= allmem
*
7978 zfs_dirty_data_max_percent
/ 100;
7979 zfs_dirty_data_max
= MIN(zfs_dirty_data_max
,
7980 zfs_dirty_data_max_max
);
7983 if (zfs_wrlog_data_max
== 0) {
7986 * dp_wrlog_total is reduced for each txg at the end of
7987 * spa_sync(). However, dp_dirty_total is reduced every time
7988 * a block is written out. Thus under normal operation,
7989 * dp_wrlog_total could grow 2 times as big as
7990 * zfs_dirty_data_max.
7992 zfs_wrlog_data_max
= zfs_dirty_data_max
* 2;
8003 #endif /* _KERNEL */
8005 /* Use B_TRUE to ensure *all* buffers are evicted */
8006 arc_flush(NULL
, B_TRUE
);
8008 if (arc_ksp
!= NULL
) {
8009 kstat_delete(arc_ksp
);
8013 taskq_wait(arc_prune_taskq
);
8014 taskq_destroy(arc_prune_taskq
);
8016 mutex_enter(&arc_prune_mtx
);
8017 while ((p
= list_head(&arc_prune_list
)) != NULL
) {
8018 list_remove(&arc_prune_list
, p
);
8019 zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
);
8020 zfs_refcount_destroy(&p
->p_refcnt
);
8021 kmem_free(p
, sizeof (*p
));
8023 mutex_exit(&arc_prune_mtx
);
8025 list_destroy(&arc_prune_list
);
8026 mutex_destroy(&arc_prune_mtx
);
8028 (void) zthr_cancel(arc_evict_zthr
);
8029 (void) zthr_cancel(arc_reap_zthr
);
8031 mutex_destroy(&arc_evict_lock
);
8032 list_destroy(&arc_evict_waiters
);
8035 * Free any buffers that were tagged for destruction. This needs
8036 * to occur before arc_state_fini() runs and destroys the aggsum
8037 * values which are updated when freeing scatter ABDs.
8039 l2arc_do_free_on_write();
8042 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8043 * trigger the release of kmem magazines, which can callback to
8044 * arc_space_return() which accesses aggsums freed in act_state_fini().
8049 arc_unregister_hotplug();
8052 * We destroy the zthrs after all the ARC state has been
8053 * torn down to avoid the case of them receiving any
8054 * wakeup() signals after they are destroyed.
8056 zthr_destroy(arc_evict_zthr
);
8057 zthr_destroy(arc_reap_zthr
);
8059 ASSERT0(arc_loaned_bytes
);
8065 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8066 * It uses dedicated storage devices to hold cached data, which are populated
8067 * using large infrequent writes. The main role of this cache is to boost
8068 * the performance of random read workloads. The intended L2ARC devices
8069 * include short-stroked disks, solid state disks, and other media with
8070 * substantially faster read latency than disk.
8072 * +-----------------------+
8074 * +-----------------------+
8077 * l2arc_feed_thread() arc_read()
8081 * +---------------+ |
8083 * +---------------+ |
8088 * +-------+ +-------+
8090 * | cache | | cache |
8091 * +-------+ +-------+
8092 * +=========+ .-----.
8093 * : L2ARC : |-_____-|
8094 * : devices : | Disks |
8095 * +=========+ `-_____-'
8097 * Read requests are satisfied from the following sources, in order:
8100 * 2) vdev cache of L2ARC devices
8102 * 4) vdev cache of disks
8105 * Some L2ARC device types exhibit extremely slow write performance.
8106 * To accommodate for this there are some significant differences between
8107 * the L2ARC and traditional cache design:
8109 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8110 * the ARC behave as usual, freeing buffers and placing headers on ghost
8111 * lists. The ARC does not send buffers to the L2ARC during eviction as
8112 * this would add inflated write latencies for all ARC memory pressure.
8114 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8115 * It does this by periodically scanning buffers from the eviction-end of
8116 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8117 * not already there. It scans until a headroom of buffers is satisfied,
8118 * which itself is a buffer for ARC eviction. If a compressible buffer is
8119 * found during scanning and selected for writing to an L2ARC device, we
8120 * temporarily boost scanning headroom during the next scan cycle to make
8121 * sure we adapt to compression effects (which might significantly reduce
8122 * the data volume we write to L2ARC). The thread that does this is
8123 * l2arc_feed_thread(), illustrated below; example sizes are included to
8124 * provide a better sense of ratio than this diagram:
8127 * +---------------------+----------+
8128 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8129 * +---------------------+----------+ | o L2ARC eligible
8130 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8131 * +---------------------+----------+ |
8132 * 15.9 Gbytes ^ 32 Mbytes |
8134 * l2arc_feed_thread()
8136 * l2arc write hand <--[oooo]--'
8140 * +==============================+
8141 * L2ARC dev |####|#|###|###| |####| ... |
8142 * +==============================+
8145 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8146 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8147 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8148 * safe to say that this is an uncommon case, since buffers at the end of
8149 * the ARC lists have moved there due to inactivity.
8151 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8152 * then the L2ARC simply misses copying some buffers. This serves as a
8153 * pressure valve to prevent heavy read workloads from both stalling the ARC
8154 * with waits and clogging the L2ARC with writes. This also helps prevent
8155 * the potential for the L2ARC to churn if it attempts to cache content too
8156 * quickly, such as during backups of the entire pool.
8158 * 5. After system boot and before the ARC has filled main memory, there are
8159 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8160 * lists can remain mostly static. Instead of searching from tail of these
8161 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8162 * for eligible buffers, greatly increasing its chance of finding them.
8164 * The L2ARC device write speed is also boosted during this time so that
8165 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8166 * there are no L2ARC reads, and no fear of degrading read performance
8167 * through increased writes.
8169 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8170 * the vdev queue can aggregate them into larger and fewer writes. Each
8171 * device is written to in a rotor fashion, sweeping writes through
8172 * available space then repeating.
8174 * 7. The L2ARC does not store dirty content. It never needs to flush
8175 * write buffers back to disk based storage.
8177 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8178 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8180 * The performance of the L2ARC can be tweaked by a number of tunables, which
8181 * may be necessary for different workloads:
8183 * l2arc_write_max max write bytes per interval
8184 * l2arc_write_boost extra write bytes during device warmup
8185 * l2arc_noprefetch skip caching prefetched buffers
8186 * l2arc_headroom number of max device writes to precache
8187 * l2arc_headroom_boost when we find compressed buffers during ARC
8188 * scanning, we multiply headroom by this
8189 * percentage factor for the next scan cycle,
8190 * since more compressed buffers are likely to
8192 * l2arc_feed_secs seconds between L2ARC writing
8194 * Tunables may be removed or added as future performance improvements are
8195 * integrated, and also may become zpool properties.
8197 * There are three key functions that control how the L2ARC warms up:
8199 * l2arc_write_eligible() check if a buffer is eligible to cache
8200 * l2arc_write_size() calculate how much to write
8201 * l2arc_write_interval() calculate sleep delay between writes
8203 * These three functions determine what to write, how much, and how quickly
8206 * L2ARC persistence:
8208 * When writing buffers to L2ARC, we periodically add some metadata to
8209 * make sure we can pick them up after reboot, thus dramatically reducing
8210 * the impact that any downtime has on the performance of storage systems
8211 * with large caches.
8213 * The implementation works fairly simply by integrating the following two
8216 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8217 * which is an additional piece of metadata which describes what's been
8218 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8219 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8220 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8221 * time-wise and offset-wise interleaved, but that is an optimization rather
8222 * than for correctness. The log block also includes a pointer to the
8223 * previous block in its chain.
8225 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8226 * for our header bookkeeping purposes. This contains a device header,
8227 * which contains our top-level reference structures. We update it each
8228 * time we write a new log block, so that we're able to locate it in the
8229 * L2ARC device. If this write results in an inconsistent device header
8230 * (e.g. due to power failure), we detect this by verifying the header's
8231 * checksum and simply fail to reconstruct the L2ARC after reboot.
8233 * Implementation diagram:
8235 * +=== L2ARC device (not to scale) ======================================+
8236 * | ___two newest log block pointers__.__________ |
8237 * | / \dh_start_lbps[1] |
8238 * | / \ \dh_start_lbps[0]|
8240 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8241 * || hdr| ^ /^ /^ / / |
8242 * |+------+ ...--\-------/ \-----/--\------/ / |
8243 * | \--------------/ \--------------/ |
8244 * +======================================================================+
8246 * As can be seen on the diagram, rather than using a simple linked list,
8247 * we use a pair of linked lists with alternating elements. This is a
8248 * performance enhancement due to the fact that we only find out the
8249 * address of the next log block access once the current block has been
8250 * completely read in. Obviously, this hurts performance, because we'd be
8251 * keeping the device's I/O queue at only a 1 operation deep, thus
8252 * incurring a large amount of I/O round-trip latency. Having two lists
8253 * allows us to fetch two log blocks ahead of where we are currently
8254 * rebuilding L2ARC buffers.
8256 * On-device data structures:
8258 * L2ARC device header: l2arc_dev_hdr_phys_t
8259 * L2ARC log block: l2arc_log_blk_phys_t
8261 * L2ARC reconstruction:
8263 * When writing data, we simply write in the standard rotary fashion,
8264 * evicting buffers as we go and simply writing new data over them (writing
8265 * a new log block every now and then). This obviously means that once we
8266 * loop around the end of the device, we will start cutting into an already
8267 * committed log block (and its referenced data buffers), like so:
8269 * current write head__ __old tail
8272 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8273 * ^ ^^^^^^^^^___________________________________
8275 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8277 * When importing the pool, we detect this situation and use it to stop
8278 * our scanning process (see l2arc_rebuild).
8280 * There is one significant caveat to consider when rebuilding ARC contents
8281 * from an L2ARC device: what about invalidated buffers? Given the above
8282 * construction, we cannot update blocks which we've already written to amend
8283 * them to remove buffers which were invalidated. Thus, during reconstruction,
8284 * we might be populating the cache with buffers for data that's not on the
8285 * main pool anymore, or may have been overwritten!
8287 * As it turns out, this isn't a problem. Every arc_read request includes
8288 * both the DVA and, crucially, the birth TXG of the BP the caller is
8289 * looking for. So even if the cache were populated by completely rotten
8290 * blocks for data that had been long deleted and/or overwritten, we'll
8291 * never actually return bad data from the cache, since the DVA with the
8292 * birth TXG uniquely identify a block in space and time - once created,
8293 * a block is immutable on disk. The worst thing we have done is wasted
8294 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8295 * entries that will get dropped from the l2arc as it is being updated
8298 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8299 * hand are not restored. This is done by saving the offset (in bytes)
8300 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8301 * into account when restoring buffers.
8305 l2arc_write_eligible(uint64_t spa_guid
, arc_buf_hdr_t
*hdr
)
8308 * A buffer is *not* eligible for the L2ARC if it:
8309 * 1. belongs to a different spa.
8310 * 2. is already cached on the L2ARC.
8311 * 3. has an I/O in progress (it may be an incomplete read).
8312 * 4. is flagged not eligible (zfs property).
8314 if (hdr
->b_spa
!= spa_guid
|| HDR_HAS_L2HDR(hdr
) ||
8315 HDR_IO_IN_PROGRESS(hdr
) || !HDR_L2CACHE(hdr
))
8322 l2arc_write_size(l2arc_dev_t
*dev
)
8324 uint64_t size
, dev_size
, tsize
;
8327 * Make sure our globals have meaningful values in case the user
8330 size
= l2arc_write_max
;
8332 cmn_err(CE_NOTE
, "Bad value for l2arc_write_max, value must "
8333 "be greater than zero, resetting it to the default (%d)",
8335 size
= l2arc_write_max
= L2ARC_WRITE_SIZE
;
8338 if (arc_warm
== B_FALSE
)
8339 size
+= l2arc_write_boost
;
8342 * Make sure the write size does not exceed the size of the cache
8343 * device. This is important in l2arc_evict(), otherwise infinite
8344 * iteration can occur.
8346 dev_size
= dev
->l2ad_end
- dev
->l2ad_start
;
8347 tsize
= size
+ l2arc_log_blk_overhead(size
, dev
);
8348 if (dev
->l2ad_vdev
->vdev_has_trim
&& l2arc_trim_ahead
> 0)
8349 tsize
+= MAX(64 * 1024 * 1024,
8350 (tsize
* l2arc_trim_ahead
) / 100);
8352 if (tsize
>= dev_size
) {
8353 cmn_err(CE_NOTE
, "l2arc_write_max or l2arc_write_boost "
8354 "plus the overhead of log blocks (persistent L2ARC, "
8355 "%llu bytes) exceeds the size of the cache device "
8356 "(guid %llu), resetting them to the default (%d)",
8357 l2arc_log_blk_overhead(size
, dev
),
8358 dev
->l2ad_vdev
->vdev_guid
, L2ARC_WRITE_SIZE
);
8359 size
= l2arc_write_max
= l2arc_write_boost
= L2ARC_WRITE_SIZE
;
8361 if (arc_warm
== B_FALSE
)
8362 size
+= l2arc_write_boost
;
8370 l2arc_write_interval(clock_t began
, uint64_t wanted
, uint64_t wrote
)
8372 clock_t interval
, next
, now
;
8375 * If the ARC lists are busy, increase our write rate; if the
8376 * lists are stale, idle back. This is achieved by checking
8377 * how much we previously wrote - if it was more than half of
8378 * what we wanted, schedule the next write much sooner.
8380 if (l2arc_feed_again
&& wrote
> (wanted
/ 2))
8381 interval
= (hz
* l2arc_feed_min_ms
) / 1000;
8383 interval
= hz
* l2arc_feed_secs
;
8385 now
= ddi_get_lbolt();
8386 next
= MAX(now
, MIN(now
+ interval
, began
+ interval
));
8392 * Cycle through L2ARC devices. This is how L2ARC load balances.
8393 * If a device is returned, this also returns holding the spa config lock.
8395 static l2arc_dev_t
*
8396 l2arc_dev_get_next(void)
8398 l2arc_dev_t
*first
, *next
= NULL
;
8401 * Lock out the removal of spas (spa_namespace_lock), then removal
8402 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8403 * both locks will be dropped and a spa config lock held instead.
8405 mutex_enter(&spa_namespace_lock
);
8406 mutex_enter(&l2arc_dev_mtx
);
8408 /* if there are no vdevs, there is nothing to do */
8409 if (l2arc_ndev
== 0)
8413 next
= l2arc_dev_last
;
8415 /* loop around the list looking for a non-faulted vdev */
8417 next
= list_head(l2arc_dev_list
);
8419 next
= list_next(l2arc_dev_list
, next
);
8421 next
= list_head(l2arc_dev_list
);
8424 /* if we have come back to the start, bail out */
8427 else if (next
== first
)
8430 } while (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8431 next
->l2ad_trim_all
);
8433 /* if we were unable to find any usable vdevs, return NULL */
8434 if (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8435 next
->l2ad_trim_all
)
8438 l2arc_dev_last
= next
;
8441 mutex_exit(&l2arc_dev_mtx
);
8444 * Grab the config lock to prevent the 'next' device from being
8445 * removed while we are writing to it.
8448 spa_config_enter(next
->l2ad_spa
, SCL_L2ARC
, next
, RW_READER
);
8449 mutex_exit(&spa_namespace_lock
);
8455 * Free buffers that were tagged for destruction.
8458 l2arc_do_free_on_write(void)
8461 l2arc_data_free_t
*df
, *df_prev
;
8463 mutex_enter(&l2arc_free_on_write_mtx
);
8464 buflist
= l2arc_free_on_write
;
8466 for (df
= list_tail(buflist
); df
; df
= df_prev
) {
8467 df_prev
= list_prev(buflist
, df
);
8468 ASSERT3P(df
->l2df_abd
, !=, NULL
);
8469 abd_free(df
->l2df_abd
);
8470 list_remove(buflist
, df
);
8471 kmem_free(df
, sizeof (l2arc_data_free_t
));
8474 mutex_exit(&l2arc_free_on_write_mtx
);
8478 * A write to a cache device has completed. Update all headers to allow
8479 * reads from these buffers to begin.
8482 l2arc_write_done(zio_t
*zio
)
8484 l2arc_write_callback_t
*cb
;
8485 l2arc_lb_abd_buf_t
*abd_buf
;
8486 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
8488 l2arc_dev_hdr_phys_t
*l2dhdr
;
8490 arc_buf_hdr_t
*head
, *hdr
, *hdr_prev
;
8491 kmutex_t
*hash_lock
;
8492 int64_t bytes_dropped
= 0;
8494 cb
= zio
->io_private
;
8495 ASSERT3P(cb
, !=, NULL
);
8496 dev
= cb
->l2wcb_dev
;
8497 l2dhdr
= dev
->l2ad_dev_hdr
;
8498 ASSERT3P(dev
, !=, NULL
);
8499 head
= cb
->l2wcb_head
;
8500 ASSERT3P(head
, !=, NULL
);
8501 buflist
= &dev
->l2ad_buflist
;
8502 ASSERT3P(buflist
, !=, NULL
);
8503 DTRACE_PROBE2(l2arc__iodone
, zio_t
*, zio
,
8504 l2arc_write_callback_t
*, cb
);
8507 * All writes completed, or an error was hit.
8510 mutex_enter(&dev
->l2ad_mtx
);
8511 for (hdr
= list_prev(buflist
, head
); hdr
; hdr
= hdr_prev
) {
8512 hdr_prev
= list_prev(buflist
, hdr
);
8514 hash_lock
= HDR_LOCK(hdr
);
8517 * We cannot use mutex_enter or else we can deadlock
8518 * with l2arc_write_buffers (due to swapping the order
8519 * the hash lock and l2ad_mtx are taken).
8521 if (!mutex_tryenter(hash_lock
)) {
8523 * Missed the hash lock. We must retry so we
8524 * don't leave the ARC_FLAG_L2_WRITING bit set.
8526 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry
);
8529 * We don't want to rescan the headers we've
8530 * already marked as having been written out, so
8531 * we reinsert the head node so we can pick up
8532 * where we left off.
8534 list_remove(buflist
, head
);
8535 list_insert_after(buflist
, hdr
, head
);
8537 mutex_exit(&dev
->l2ad_mtx
);
8540 * We wait for the hash lock to become available
8541 * to try and prevent busy waiting, and increase
8542 * the chance we'll be able to acquire the lock
8543 * the next time around.
8545 mutex_enter(hash_lock
);
8546 mutex_exit(hash_lock
);
8551 * We could not have been moved into the arc_l2c_only
8552 * state while in-flight due to our ARC_FLAG_L2_WRITING
8553 * bit being set. Let's just ensure that's being enforced.
8555 ASSERT(HDR_HAS_L1HDR(hdr
));
8558 * Skipped - drop L2ARC entry and mark the header as no
8559 * longer L2 eligibile.
8561 if (zio
->io_error
!= 0) {
8563 * Error - drop L2ARC entry.
8565 list_remove(buflist
, hdr
);
8566 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
8568 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8569 l2arc_hdr_arcstats_decrement(hdr
);
8572 vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
8573 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
8574 arc_hdr_size(hdr
), hdr
);
8578 * Allow ARC to begin reads and ghost list evictions to
8581 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_WRITING
);
8583 mutex_exit(hash_lock
);
8587 * Free the allocated abd buffers for writing the log blocks.
8588 * If the zio failed reclaim the allocated space and remove the
8589 * pointers to these log blocks from the log block pointer list
8590 * of the L2ARC device.
8592 while ((abd_buf
= list_remove_tail(&cb
->l2wcb_abd_list
)) != NULL
) {
8593 abd_free(abd_buf
->abd
);
8594 zio_buf_free(abd_buf
, sizeof (*abd_buf
));
8595 if (zio
->io_error
!= 0) {
8596 lb_ptr_buf
= list_remove_head(&dev
->l2ad_lbptr_list
);
8598 * L2BLK_GET_PSIZE returns aligned size for log
8602 L2BLK_GET_PSIZE((lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8603 bytes_dropped
+= asize
;
8604 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8605 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8606 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8608 zfs_refcount_remove(&dev
->l2ad_lb_count
, lb_ptr_buf
);
8609 kmem_free(lb_ptr_buf
->lb_ptr
,
8610 sizeof (l2arc_log_blkptr_t
));
8611 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8614 list_destroy(&cb
->l2wcb_abd_list
);
8616 if (zio
->io_error
!= 0) {
8617 ARCSTAT_BUMP(arcstat_l2_writes_error
);
8620 * Restore the lbps array in the header to its previous state.
8621 * If the list of log block pointers is empty, zero out the
8622 * log block pointers in the device header.
8624 lb_ptr_buf
= list_head(&dev
->l2ad_lbptr_list
);
8625 for (int i
= 0; i
< 2; i
++) {
8626 if (lb_ptr_buf
== NULL
) {
8628 * If the list is empty zero out the device
8629 * header. Otherwise zero out the second log
8630 * block pointer in the header.
8633 bzero(l2dhdr
, dev
->l2ad_dev_hdr_asize
);
8635 bzero(&l2dhdr
->dh_start_lbps
[i
],
8636 sizeof (l2arc_log_blkptr_t
));
8640 bcopy(lb_ptr_buf
->lb_ptr
, &l2dhdr
->dh_start_lbps
[i
],
8641 sizeof (l2arc_log_blkptr_t
));
8642 lb_ptr_buf
= list_next(&dev
->l2ad_lbptr_list
,
8647 ARCSTAT_BUMP(arcstat_l2_writes_done
);
8648 list_remove(buflist
, head
);
8649 ASSERT(!HDR_HAS_L1HDR(head
));
8650 kmem_cache_free(hdr_l2only_cache
, head
);
8651 mutex_exit(&dev
->l2ad_mtx
);
8653 ASSERT(dev
->l2ad_vdev
!= NULL
);
8654 vdev_space_update(dev
->l2ad_vdev
, -bytes_dropped
, 0, 0);
8656 l2arc_do_free_on_write();
8658 kmem_free(cb
, sizeof (l2arc_write_callback_t
));
8662 l2arc_untransform(zio_t
*zio
, l2arc_read_callback_t
*cb
)
8665 spa_t
*spa
= zio
->io_spa
;
8666 arc_buf_hdr_t
*hdr
= cb
->l2rcb_hdr
;
8667 blkptr_t
*bp
= zio
->io_bp
;
8668 uint8_t salt
[ZIO_DATA_SALT_LEN
];
8669 uint8_t iv
[ZIO_DATA_IV_LEN
];
8670 uint8_t mac
[ZIO_DATA_MAC_LEN
];
8671 boolean_t no_crypt
= B_FALSE
;
8674 * ZIL data is never be written to the L2ARC, so we don't need
8675 * special handling for its unique MAC storage.
8677 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
8678 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
8679 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8682 * If the data was encrypted, decrypt it now. Note that
8683 * we must check the bp here and not the hdr, since the
8684 * hdr does not have its encryption parameters updated
8685 * until arc_read_done().
8687 if (BP_IS_ENCRYPTED(bp
)) {
8688 abd_t
*eabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8691 zio_crypt_decode_params_bp(bp
, salt
, iv
);
8692 zio_crypt_decode_mac_bp(bp
, mac
);
8694 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &cb
->l2rcb_zb
,
8695 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
8696 salt
, iv
, mac
, HDR_GET_PSIZE(hdr
), eabd
,
8697 hdr
->b_l1hdr
.b_pabd
, &no_crypt
);
8699 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8704 * If we actually performed decryption, replace b_pabd
8705 * with the decrypted data. Otherwise we can just throw
8706 * our decryption buffer away.
8709 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8710 arc_hdr_size(hdr
), hdr
);
8711 hdr
->b_l1hdr
.b_pabd
= eabd
;
8714 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8719 * If the L2ARC block was compressed, but ARC compression
8720 * is disabled we decompress the data into a new buffer and
8721 * replace the existing data.
8723 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8724 !HDR_COMPRESSION_ENABLED(hdr
)) {
8725 abd_t
*cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8727 void *tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
8729 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
8730 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
8731 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
8733 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8734 arc_free_data_abd(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
8738 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8739 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8740 arc_hdr_size(hdr
), hdr
);
8741 hdr
->b_l1hdr
.b_pabd
= cabd
;
8743 zio
->io_size
= HDR_GET_LSIZE(hdr
);
8754 * A read to a cache device completed. Validate buffer contents before
8755 * handing over to the regular ARC routines.
8758 l2arc_read_done(zio_t
*zio
)
8761 l2arc_read_callback_t
*cb
= zio
->io_private
;
8763 kmutex_t
*hash_lock
;
8764 boolean_t valid_cksum
;
8765 boolean_t using_rdata
= (BP_IS_ENCRYPTED(&cb
->l2rcb_bp
) &&
8766 (cb
->l2rcb_flags
& ZIO_FLAG_RAW_ENCRYPT
));
8768 ASSERT3P(zio
->io_vd
, !=, NULL
);
8769 ASSERT(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
);
8771 spa_config_exit(zio
->io_spa
, SCL_L2ARC
, zio
->io_vd
);
8773 ASSERT3P(cb
, !=, NULL
);
8774 hdr
= cb
->l2rcb_hdr
;
8775 ASSERT3P(hdr
, !=, NULL
);
8777 hash_lock
= HDR_LOCK(hdr
);
8778 mutex_enter(hash_lock
);
8779 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
8782 * If the data was read into a temporary buffer,
8783 * move it and free the buffer.
8785 if (cb
->l2rcb_abd
!= NULL
) {
8786 ASSERT3U(arc_hdr_size(hdr
), <, zio
->io_size
);
8787 if (zio
->io_error
== 0) {
8789 abd_copy(hdr
->b_crypt_hdr
.b_rabd
,
8790 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8792 abd_copy(hdr
->b_l1hdr
.b_pabd
,
8793 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8798 * The following must be done regardless of whether
8799 * there was an error:
8800 * - free the temporary buffer
8801 * - point zio to the real ARC buffer
8802 * - set zio size accordingly
8803 * These are required because zio is either re-used for
8804 * an I/O of the block in the case of the error
8805 * or the zio is passed to arc_read_done() and it
8808 abd_free(cb
->l2rcb_abd
);
8809 zio
->io_size
= zio
->io_orig_size
= arc_hdr_size(hdr
);
8812 ASSERT(HDR_HAS_RABD(hdr
));
8813 zio
->io_abd
= zio
->io_orig_abd
=
8814 hdr
->b_crypt_hdr
.b_rabd
;
8816 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8817 zio
->io_abd
= zio
->io_orig_abd
= hdr
->b_l1hdr
.b_pabd
;
8821 ASSERT3P(zio
->io_abd
, !=, NULL
);
8824 * Check this survived the L2ARC journey.
8826 ASSERT(zio
->io_abd
== hdr
->b_l1hdr
.b_pabd
||
8827 (HDR_HAS_RABD(hdr
) && zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
));
8828 zio
->io_bp_copy
= cb
->l2rcb_bp
; /* XXX fix in L2ARC 2.0 */
8829 zio
->io_bp
= &zio
->io_bp_copy
; /* XXX fix in L2ARC 2.0 */
8830 zio
->io_prop
.zp_complevel
= hdr
->b_complevel
;
8832 valid_cksum
= arc_cksum_is_equal(hdr
, zio
);
8835 * b_rabd will always match the data as it exists on disk if it is
8836 * being used. Therefore if we are reading into b_rabd we do not
8837 * attempt to untransform the data.
8839 if (valid_cksum
&& !using_rdata
)
8840 tfm_error
= l2arc_untransform(zio
, cb
);
8842 if (valid_cksum
&& tfm_error
== 0 && zio
->io_error
== 0 &&
8843 !HDR_L2_EVICTED(hdr
)) {
8844 mutex_exit(hash_lock
);
8845 zio
->io_private
= hdr
;
8849 * Buffer didn't survive caching. Increment stats and
8850 * reissue to the original storage device.
8852 if (zio
->io_error
!= 0) {
8853 ARCSTAT_BUMP(arcstat_l2_io_error
);
8855 zio
->io_error
= SET_ERROR(EIO
);
8857 if (!valid_cksum
|| tfm_error
!= 0)
8858 ARCSTAT_BUMP(arcstat_l2_cksum_bad
);
8861 * If there's no waiter, issue an async i/o to the primary
8862 * storage now. If there *is* a waiter, the caller must
8863 * issue the i/o in a context where it's OK to block.
8865 if (zio
->io_waiter
== NULL
) {
8866 zio_t
*pio
= zio_unique_parent(zio
);
8867 void *abd
= (using_rdata
) ?
8868 hdr
->b_crypt_hdr
.b_rabd
: hdr
->b_l1hdr
.b_pabd
;
8870 ASSERT(!pio
|| pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
8872 zio
= zio_read(pio
, zio
->io_spa
, zio
->io_bp
,
8873 abd
, zio
->io_size
, arc_read_done
,
8874 hdr
, zio
->io_priority
, cb
->l2rcb_flags
,
8878 * Original ZIO will be freed, so we need to update
8879 * ARC header with the new ZIO pointer to be used
8880 * by zio_change_priority() in arc_read().
8882 for (struct arc_callback
*acb
= hdr
->b_l1hdr
.b_acb
;
8883 acb
!= NULL
; acb
= acb
->acb_next
)
8884 acb
->acb_zio_head
= zio
;
8886 mutex_exit(hash_lock
);
8889 mutex_exit(hash_lock
);
8893 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
8897 * This is the list priority from which the L2ARC will search for pages to
8898 * cache. This is used within loops (0..3) to cycle through lists in the
8899 * desired order. This order can have a significant effect on cache
8902 * Currently the metadata lists are hit first, MFU then MRU, followed by
8903 * the data lists. This function returns a locked list, and also returns
8906 static multilist_sublist_t
*
8907 l2arc_sublist_lock(int list_num
)
8909 multilist_t
*ml
= NULL
;
8912 ASSERT(list_num
>= 0 && list_num
< L2ARC_FEED_TYPES
);
8916 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_METADATA
];
8919 ml
= &arc_mru
->arcs_list
[ARC_BUFC_METADATA
];
8922 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_DATA
];
8925 ml
= &arc_mru
->arcs_list
[ARC_BUFC_DATA
];
8932 * Return a randomly-selected sublist. This is acceptable
8933 * because the caller feeds only a little bit of data for each
8934 * call (8MB). Subsequent calls will result in different
8935 * sublists being selected.
8937 idx
= multilist_get_random_index(ml
);
8938 return (multilist_sublist_lock(ml
, idx
));
8942 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8943 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8944 * overhead in processing to make sure there is enough headroom available
8945 * when writing buffers.
8947 static inline uint64_t
8948 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
)
8950 if (dev
->l2ad_log_entries
== 0) {
8953 uint64_t log_entries
= write_sz
>> SPA_MINBLOCKSHIFT
;
8955 uint64_t log_blocks
= (log_entries
+
8956 dev
->l2ad_log_entries
- 1) /
8957 dev
->l2ad_log_entries
;
8959 return (vdev_psize_to_asize(dev
->l2ad_vdev
,
8960 sizeof (l2arc_log_blk_phys_t
)) * log_blocks
);
8965 * Evict buffers from the device write hand to the distance specified in
8966 * bytes. This distance may span populated buffers, it may span nothing.
8967 * This is clearing a region on the L2ARC device ready for writing.
8968 * If the 'all' boolean is set, every buffer is evicted.
8971 l2arc_evict(l2arc_dev_t
*dev
, uint64_t distance
, boolean_t all
)
8974 arc_buf_hdr_t
*hdr
, *hdr_prev
;
8975 kmutex_t
*hash_lock
;
8977 l2arc_lb_ptr_buf_t
*lb_ptr_buf
, *lb_ptr_buf_prev
;
8978 vdev_t
*vd
= dev
->l2ad_vdev
;
8981 buflist
= &dev
->l2ad_buflist
;
8984 * We need to add in the worst case scenario of log block overhead.
8986 distance
+= l2arc_log_blk_overhead(distance
, dev
);
8987 if (vd
->vdev_has_trim
&& l2arc_trim_ahead
> 0) {
8989 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8990 * times the write size, whichever is greater.
8992 distance
+= MAX(64 * 1024 * 1024,
8993 (distance
* l2arc_trim_ahead
) / 100);
8998 if (dev
->l2ad_hand
>= (dev
->l2ad_end
- distance
)) {
9000 * When there is no space to accommodate upcoming writes,
9001 * evict to the end. Then bump the write and evict hands
9002 * to the start and iterate. This iteration does not
9003 * happen indefinitely as we make sure in
9004 * l2arc_write_size() that when the write hand is reset,
9005 * the write size does not exceed the end of the device.
9008 taddr
= dev
->l2ad_end
;
9010 taddr
= dev
->l2ad_hand
+ distance
;
9012 DTRACE_PROBE4(l2arc__evict
, l2arc_dev_t
*, dev
, list_t
*, buflist
,
9013 uint64_t, taddr
, boolean_t
, all
);
9017 * This check has to be placed after deciding whether to
9020 if (dev
->l2ad_first
) {
9022 * This is the first sweep through the device. There is
9023 * nothing to evict. We have already trimmmed the
9029 * Trim the space to be evicted.
9031 if (vd
->vdev_has_trim
&& dev
->l2ad_evict
< taddr
&&
9032 l2arc_trim_ahead
> 0) {
9034 * We have to drop the spa_config lock because
9035 * vdev_trim_range() will acquire it.
9036 * l2ad_evict already accounts for the label
9037 * size. To prevent vdev_trim_ranges() from
9038 * adding it again, we subtract it from
9041 spa_config_exit(dev
->l2ad_spa
, SCL_L2ARC
, dev
);
9042 vdev_trim_simple(vd
,
9043 dev
->l2ad_evict
- VDEV_LABEL_START_SIZE
,
9044 taddr
- dev
->l2ad_evict
);
9045 spa_config_enter(dev
->l2ad_spa
, SCL_L2ARC
, dev
,
9050 * When rebuilding L2ARC we retrieve the evict hand
9051 * from the header of the device. Of note, l2arc_evict()
9052 * does not actually delete buffers from the cache
9053 * device, but trimming may do so depending on the
9054 * hardware implementation. Thus keeping track of the
9055 * evict hand is useful.
9057 dev
->l2ad_evict
= MAX(dev
->l2ad_evict
, taddr
);
9062 mutex_enter(&dev
->l2ad_mtx
);
9064 * We have to account for evicted log blocks. Run vdev_space_update()
9065 * on log blocks whose offset (in bytes) is before the evicted offset
9066 * (in bytes) by searching in the list of pointers to log blocks
9067 * present in the L2ARC device.
9069 for (lb_ptr_buf
= list_tail(&dev
->l2ad_lbptr_list
); lb_ptr_buf
;
9070 lb_ptr_buf
= lb_ptr_buf_prev
) {
9072 lb_ptr_buf_prev
= list_prev(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9074 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9075 uint64_t asize
= L2BLK_GET_PSIZE(
9076 (lb_ptr_buf
->lb_ptr
)->lbp_prop
);
9079 * We don't worry about log blocks left behind (ie
9080 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9081 * will never write more than l2arc_evict() evicts.
9083 if (!all
&& l2arc_log_blkptr_valid(dev
, lb_ptr_buf
->lb_ptr
)) {
9086 vdev_space_update(vd
, -asize
, 0, 0);
9087 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
9088 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
9089 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
9091 zfs_refcount_remove(&dev
->l2ad_lb_count
, lb_ptr_buf
);
9092 list_remove(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9093 kmem_free(lb_ptr_buf
->lb_ptr
,
9094 sizeof (l2arc_log_blkptr_t
));
9095 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
9099 for (hdr
= list_tail(buflist
); hdr
; hdr
= hdr_prev
) {
9100 hdr_prev
= list_prev(buflist
, hdr
);
9102 ASSERT(!HDR_EMPTY(hdr
));
9103 hash_lock
= HDR_LOCK(hdr
);
9106 * We cannot use mutex_enter or else we can deadlock
9107 * with l2arc_write_buffers (due to swapping the order
9108 * the hash lock and l2ad_mtx are taken).
9110 if (!mutex_tryenter(hash_lock
)) {
9112 * Missed the hash lock. Retry.
9114 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry
);
9115 mutex_exit(&dev
->l2ad_mtx
);
9116 mutex_enter(hash_lock
);
9117 mutex_exit(hash_lock
);
9122 * A header can't be on this list if it doesn't have L2 header.
9124 ASSERT(HDR_HAS_L2HDR(hdr
));
9126 /* Ensure this header has finished being written. */
9127 ASSERT(!HDR_L2_WRITING(hdr
));
9128 ASSERT(!HDR_L2_WRITE_HEAD(hdr
));
9130 if (!all
&& (hdr
->b_l2hdr
.b_daddr
>= dev
->l2ad_evict
||
9131 hdr
->b_l2hdr
.b_daddr
< dev
->l2ad_hand
)) {
9133 * We've evicted to the target address,
9134 * or the end of the device.
9136 mutex_exit(hash_lock
);
9140 if (!HDR_HAS_L1HDR(hdr
)) {
9141 ASSERT(!HDR_L2_READING(hdr
));
9143 * This doesn't exist in the ARC. Destroy.
9144 * arc_hdr_destroy() will call list_remove()
9145 * and decrement arcstat_l2_lsize.
9147 arc_change_state(arc_anon
, hdr
, hash_lock
);
9148 arc_hdr_destroy(hdr
);
9150 ASSERT(hdr
->b_l1hdr
.b_state
!= arc_l2c_only
);
9151 ARCSTAT_BUMP(arcstat_l2_evict_l1cached
);
9153 * Invalidate issued or about to be issued
9154 * reads, since we may be about to write
9155 * over this location.
9157 if (HDR_L2_READING(hdr
)) {
9158 ARCSTAT_BUMP(arcstat_l2_evict_reading
);
9159 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_EVICTED
);
9162 arc_hdr_l2hdr_destroy(hdr
);
9164 mutex_exit(hash_lock
);
9166 mutex_exit(&dev
->l2ad_mtx
);
9170 * We need to check if we evict all buffers, otherwise we may iterate
9173 if (!all
&& rerun
) {
9175 * Bump device hand to the device start if it is approaching the
9176 * end. l2arc_evict() has already evicted ahead for this case.
9178 dev
->l2ad_hand
= dev
->l2ad_start
;
9179 dev
->l2ad_evict
= dev
->l2ad_start
;
9180 dev
->l2ad_first
= B_FALSE
;
9186 * In case of cache device removal (all) the following
9187 * assertions may be violated without functional consequences
9188 * as the device is about to be removed.
9190 ASSERT3U(dev
->l2ad_hand
+ distance
, <, dev
->l2ad_end
);
9191 if (!dev
->l2ad_first
)
9192 ASSERT3U(dev
->l2ad_hand
, <, dev
->l2ad_evict
);
9197 * Handle any abd transforms that might be required for writing to the L2ARC.
9198 * If successful, this function will always return an abd with the data
9199 * transformed as it is on disk in a new abd of asize bytes.
9202 l2arc_apply_transforms(spa_t
*spa
, arc_buf_hdr_t
*hdr
, uint64_t asize
,
9207 abd_t
*cabd
= NULL
, *eabd
= NULL
, *to_write
= hdr
->b_l1hdr
.b_pabd
;
9208 enum zio_compress compress
= HDR_GET_COMPRESS(hdr
);
9209 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9210 uint64_t size
= arc_hdr_size(hdr
);
9211 boolean_t ismd
= HDR_ISTYPE_METADATA(hdr
);
9212 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
9213 dsl_crypto_key_t
*dck
= NULL
;
9214 uint8_t mac
[ZIO_DATA_MAC_LEN
] = { 0 };
9215 boolean_t no_crypt
= B_FALSE
;
9217 ASSERT((HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
9218 !HDR_COMPRESSION_ENABLED(hdr
)) ||
9219 HDR_ENCRYPTED(hdr
) || HDR_SHARED_DATA(hdr
) || psize
!= asize
);
9220 ASSERT3U(psize
, <=, asize
);
9223 * If this data simply needs its own buffer, we simply allocate it
9224 * and copy the data. This may be done to eliminate a dependency on a
9225 * shared buffer or to reallocate the buffer to match asize.
9227 if (HDR_HAS_RABD(hdr
) && asize
!= psize
) {
9228 ASSERT3U(asize
, >=, psize
);
9229 to_write
= abd_alloc_for_io(asize
, ismd
);
9230 abd_copy(to_write
, hdr
->b_crypt_hdr
.b_rabd
, psize
);
9232 abd_zero_off(to_write
, psize
, asize
- psize
);
9236 if ((compress
== ZIO_COMPRESS_OFF
|| HDR_COMPRESSION_ENABLED(hdr
)) &&
9237 !HDR_ENCRYPTED(hdr
)) {
9238 ASSERT3U(size
, ==, psize
);
9239 to_write
= abd_alloc_for_io(asize
, ismd
);
9240 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
9242 abd_zero_off(to_write
, size
, asize
- size
);
9246 if (compress
!= ZIO_COMPRESS_OFF
&& !HDR_COMPRESSION_ENABLED(hdr
)) {
9247 cabd
= abd_alloc_for_io(asize
, ismd
);
9248 tmp
= abd_borrow_buf(cabd
, asize
);
9250 psize
= zio_compress_data(compress
, to_write
, tmp
, size
,
9253 if (psize
>= size
) {
9254 abd_return_buf(cabd
, tmp
, asize
);
9255 HDR_SET_COMPRESS(hdr
, ZIO_COMPRESS_OFF
);
9257 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
9259 abd_zero_off(to_write
, size
, asize
- size
);
9262 ASSERT3U(psize
, <=, HDR_GET_PSIZE(hdr
));
9264 bzero((char *)tmp
+ psize
, asize
- psize
);
9265 psize
= HDR_GET_PSIZE(hdr
);
9266 abd_return_buf_copy(cabd
, tmp
, asize
);
9271 if (HDR_ENCRYPTED(hdr
)) {
9272 eabd
= abd_alloc_for_io(asize
, ismd
);
9275 * If the dataset was disowned before the buffer
9276 * made it to this point, the key to re-encrypt
9277 * it won't be available. In this case we simply
9278 * won't write the buffer to the L2ARC.
9280 ret
= spa_keystore_lookup_key(spa
, hdr
->b_crypt_hdr
.b_dsobj
,
9285 ret
= zio_do_crypt_abd(B_TRUE
, &dck
->dck_key
,
9286 hdr
->b_crypt_hdr
.b_ot
, bswap
, hdr
->b_crypt_hdr
.b_salt
,
9287 hdr
->b_crypt_hdr
.b_iv
, mac
, psize
, to_write
, eabd
,
9293 abd_copy(eabd
, to_write
, psize
);
9296 abd_zero_off(eabd
, psize
, asize
- psize
);
9298 /* assert that the MAC we got here matches the one we saved */
9299 ASSERT0(bcmp(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
));
9300 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9302 if (to_write
== cabd
)
9309 ASSERT3P(to_write
, !=, hdr
->b_l1hdr
.b_pabd
);
9310 *abd_out
= to_write
;
9315 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9326 l2arc_blk_fetch_done(zio_t
*zio
)
9328 l2arc_read_callback_t
*cb
;
9330 cb
= zio
->io_private
;
9331 if (cb
->l2rcb_abd
!= NULL
)
9332 abd_free(cb
->l2rcb_abd
);
9333 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
9337 * Find and write ARC buffers to the L2ARC device.
9339 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9340 * for reading until they have completed writing.
9341 * The headroom_boost is an in-out parameter used to maintain headroom boost
9342 * state between calls to this function.
9344 * Returns the number of bytes actually written (which may be smaller than
9345 * the delta by which the device hand has changed due to alignment and the
9346 * writing of log blocks).
9349 l2arc_write_buffers(spa_t
*spa
, l2arc_dev_t
*dev
, uint64_t target_sz
)
9351 arc_buf_hdr_t
*hdr
, *hdr_prev
, *head
;
9352 uint64_t write_asize
, write_psize
, write_lsize
, headroom
;
9354 l2arc_write_callback_t
*cb
= NULL
;
9356 uint64_t guid
= spa_load_guid(spa
);
9357 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9359 ASSERT3P(dev
->l2ad_vdev
, !=, NULL
);
9362 write_lsize
= write_asize
= write_psize
= 0;
9364 head
= kmem_cache_alloc(hdr_l2only_cache
, KM_PUSHPAGE
);
9365 arc_hdr_set_flags(head
, ARC_FLAG_L2_WRITE_HEAD
| ARC_FLAG_HAS_L2HDR
);
9368 * Copy buffers for L2ARC writing.
9370 for (int pass
= 0; pass
< L2ARC_FEED_TYPES
; pass
++) {
9372 * If pass == 1 or 3, we cache MRU metadata and data
9375 if (l2arc_mfuonly
) {
9376 if (pass
== 1 || pass
== 3)
9380 multilist_sublist_t
*mls
= l2arc_sublist_lock(pass
);
9381 uint64_t passed_sz
= 0;
9383 VERIFY3P(mls
, !=, NULL
);
9386 * L2ARC fast warmup.
9388 * Until the ARC is warm and starts to evict, read from the
9389 * head of the ARC lists rather than the tail.
9391 if (arc_warm
== B_FALSE
)
9392 hdr
= multilist_sublist_head(mls
);
9394 hdr
= multilist_sublist_tail(mls
);
9396 headroom
= target_sz
* l2arc_headroom
;
9397 if (zfs_compressed_arc_enabled
)
9398 headroom
= (headroom
* l2arc_headroom_boost
) / 100;
9400 for (; hdr
; hdr
= hdr_prev
) {
9401 kmutex_t
*hash_lock
;
9402 abd_t
*to_write
= NULL
;
9404 if (arc_warm
== B_FALSE
)
9405 hdr_prev
= multilist_sublist_next(mls
, hdr
);
9407 hdr_prev
= multilist_sublist_prev(mls
, hdr
);
9409 hash_lock
= HDR_LOCK(hdr
);
9410 if (!mutex_tryenter(hash_lock
)) {
9412 * Skip this buffer rather than waiting.
9417 passed_sz
+= HDR_GET_LSIZE(hdr
);
9418 if (l2arc_headroom
!= 0 && passed_sz
> headroom
) {
9422 mutex_exit(hash_lock
);
9426 if (!l2arc_write_eligible(guid
, hdr
)) {
9427 mutex_exit(hash_lock
);
9432 * We rely on the L1 portion of the header below, so
9433 * it's invalid for this header to have been evicted out
9434 * of the ghost cache, prior to being written out. The
9435 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9437 ASSERT(HDR_HAS_L1HDR(hdr
));
9439 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
9440 ASSERT3U(arc_hdr_size(hdr
), >, 0);
9441 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
9443 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9444 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
9447 if ((write_asize
+ asize
) > target_sz
) {
9449 mutex_exit(hash_lock
);
9454 * We rely on the L1 portion of the header below, so
9455 * it's invalid for this header to have been evicted out
9456 * of the ghost cache, prior to being written out. The
9457 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9459 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_WRITING
);
9460 ASSERT(HDR_HAS_L1HDR(hdr
));
9462 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
9463 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
9465 ASSERT3U(arc_hdr_size(hdr
), >, 0);
9468 * If this header has b_rabd, we can use this since it
9469 * must always match the data exactly as it exists on
9470 * disk. Otherwise, the L2ARC can normally use the
9471 * hdr's data, but if we're sharing data between the
9472 * hdr and one of its bufs, L2ARC needs its own copy of
9473 * the data so that the ZIO below can't race with the
9474 * buf consumer. To ensure that this copy will be
9475 * available for the lifetime of the ZIO and be cleaned
9476 * up afterwards, we add it to the l2arc_free_on_write
9477 * queue. If we need to apply any transforms to the
9478 * data (compression, encryption) we will also need the
9481 if (HDR_HAS_RABD(hdr
) && psize
== asize
) {
9482 to_write
= hdr
->b_crypt_hdr
.b_rabd
;
9483 } else if ((HDR_COMPRESSION_ENABLED(hdr
) ||
9484 HDR_GET_COMPRESS(hdr
) == ZIO_COMPRESS_OFF
) &&
9485 !HDR_ENCRYPTED(hdr
) && !HDR_SHARED_DATA(hdr
) &&
9487 to_write
= hdr
->b_l1hdr
.b_pabd
;
9490 arc_buf_contents_t type
= arc_buf_type(hdr
);
9492 ret
= l2arc_apply_transforms(spa
, hdr
, asize
,
9495 arc_hdr_clear_flags(hdr
,
9496 ARC_FLAG_L2_WRITING
);
9497 mutex_exit(hash_lock
);
9501 l2arc_free_abd_on_write(to_write
, asize
, type
);
9506 * Insert a dummy header on the buflist so
9507 * l2arc_write_done() can find where the
9508 * write buffers begin without searching.
9510 mutex_enter(&dev
->l2ad_mtx
);
9511 list_insert_head(&dev
->l2ad_buflist
, head
);
9512 mutex_exit(&dev
->l2ad_mtx
);
9515 sizeof (l2arc_write_callback_t
), KM_SLEEP
);
9516 cb
->l2wcb_dev
= dev
;
9517 cb
->l2wcb_head
= head
;
9519 * Create a list to save allocated abd buffers
9520 * for l2arc_log_blk_commit().
9522 list_create(&cb
->l2wcb_abd_list
,
9523 sizeof (l2arc_lb_abd_buf_t
),
9524 offsetof(l2arc_lb_abd_buf_t
, node
));
9525 pio
= zio_root(spa
, l2arc_write_done
, cb
,
9529 hdr
->b_l2hdr
.b_dev
= dev
;
9530 hdr
->b_l2hdr
.b_hits
= 0;
9532 hdr
->b_l2hdr
.b_daddr
= dev
->l2ad_hand
;
9533 hdr
->b_l2hdr
.b_arcs_state
=
9534 hdr
->b_l1hdr
.b_state
->arcs_state
;
9535 arc_hdr_set_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
9537 mutex_enter(&dev
->l2ad_mtx
);
9538 list_insert_head(&dev
->l2ad_buflist
, hdr
);
9539 mutex_exit(&dev
->l2ad_mtx
);
9541 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
9542 arc_hdr_size(hdr
), hdr
);
9544 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
,
9545 hdr
->b_l2hdr
.b_daddr
, asize
, to_write
,
9546 ZIO_CHECKSUM_OFF
, NULL
, hdr
,
9547 ZIO_PRIORITY_ASYNC_WRITE
,
9548 ZIO_FLAG_CANFAIL
, B_FALSE
);
9550 write_lsize
+= HDR_GET_LSIZE(hdr
);
9551 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
,
9554 write_psize
+= psize
;
9555 write_asize
+= asize
;
9556 dev
->l2ad_hand
+= asize
;
9557 l2arc_hdr_arcstats_increment(hdr
);
9558 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
9560 mutex_exit(hash_lock
);
9563 * Append buf info to current log and commit if full.
9564 * arcstat_l2_{size,asize} kstats are updated
9567 if (l2arc_log_blk_insert(dev
, hdr
))
9568 l2arc_log_blk_commit(dev
, pio
, cb
);
9573 multilist_sublist_unlock(mls
);
9579 /* No buffers selected for writing? */
9581 ASSERT0(write_lsize
);
9582 ASSERT(!HDR_HAS_L1HDR(head
));
9583 kmem_cache_free(hdr_l2only_cache
, head
);
9586 * Although we did not write any buffers l2ad_evict may
9589 if (dev
->l2ad_evict
!= l2dhdr
->dh_evict
)
9590 l2arc_dev_hdr_update(dev
);
9595 if (!dev
->l2ad_first
)
9596 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
9598 ASSERT3U(write_asize
, <=, target_sz
);
9599 ARCSTAT_BUMP(arcstat_l2_writes_sent
);
9600 ARCSTAT_INCR(arcstat_l2_write_bytes
, write_psize
);
9602 dev
->l2ad_writing
= B_TRUE
;
9603 (void) zio_wait(pio
);
9604 dev
->l2ad_writing
= B_FALSE
;
9607 * Update the device header after the zio completes as
9608 * l2arc_write_done() may have updated the memory holding the log block
9609 * pointers in the device header.
9611 l2arc_dev_hdr_update(dev
);
9613 return (write_asize
);
9617 l2arc_hdr_limit_reached(void)
9619 int64_t s
= aggsum_upper_bound(&arc_sums
.arcstat_l2_hdr_size
);
9621 return (arc_reclaim_needed() || (s
> arc_meta_limit
* 3 / 4) ||
9622 (s
> (arc_warm
? arc_c
: arc_c_max
) * l2arc_meta_percent
/ 100));
9626 * This thread feeds the L2ARC at regular intervals. This is the beating
9627 * heart of the L2ARC.
9631 l2arc_feed_thread(void *unused
)
9636 uint64_t size
, wrote
;
9637 clock_t begin
, next
= ddi_get_lbolt();
9638 fstrans_cookie_t cookie
;
9640 CALLB_CPR_INIT(&cpr
, &l2arc_feed_thr_lock
, callb_generic_cpr
, FTAG
);
9642 mutex_enter(&l2arc_feed_thr_lock
);
9644 cookie
= spl_fstrans_mark();
9645 while (l2arc_thread_exit
== 0) {
9646 CALLB_CPR_SAFE_BEGIN(&cpr
);
9647 (void) cv_timedwait_idle(&l2arc_feed_thr_cv
,
9648 &l2arc_feed_thr_lock
, next
);
9649 CALLB_CPR_SAFE_END(&cpr
, &l2arc_feed_thr_lock
);
9650 next
= ddi_get_lbolt() + hz
;
9653 * Quick check for L2ARC devices.
9655 mutex_enter(&l2arc_dev_mtx
);
9656 if (l2arc_ndev
== 0) {
9657 mutex_exit(&l2arc_dev_mtx
);
9660 mutex_exit(&l2arc_dev_mtx
);
9661 begin
= ddi_get_lbolt();
9664 * This selects the next l2arc device to write to, and in
9665 * doing so the next spa to feed from: dev->l2ad_spa. This
9666 * will return NULL if there are now no l2arc devices or if
9667 * they are all faulted.
9669 * If a device is returned, its spa's config lock is also
9670 * held to prevent device removal. l2arc_dev_get_next()
9671 * will grab and release l2arc_dev_mtx.
9673 if ((dev
= l2arc_dev_get_next()) == NULL
)
9676 spa
= dev
->l2ad_spa
;
9677 ASSERT3P(spa
, !=, NULL
);
9680 * If the pool is read-only then force the feed thread to
9681 * sleep a little longer.
9683 if (!spa_writeable(spa
)) {
9684 next
= ddi_get_lbolt() + 5 * l2arc_feed_secs
* hz
;
9685 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9690 * Avoid contributing to memory pressure.
9692 if (l2arc_hdr_limit_reached()) {
9693 ARCSTAT_BUMP(arcstat_l2_abort_lowmem
);
9694 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9698 ARCSTAT_BUMP(arcstat_l2_feeds
);
9700 size
= l2arc_write_size(dev
);
9703 * Evict L2ARC buffers that will be overwritten.
9705 l2arc_evict(dev
, size
, B_FALSE
);
9708 * Write ARC buffers.
9710 wrote
= l2arc_write_buffers(spa
, dev
, size
);
9713 * Calculate interval between writes.
9715 next
= l2arc_write_interval(begin
, size
, wrote
);
9716 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9718 spl_fstrans_unmark(cookie
);
9720 l2arc_thread_exit
= 0;
9721 cv_broadcast(&l2arc_feed_thr_cv
);
9722 CALLB_CPR_EXIT(&cpr
); /* drops l2arc_feed_thr_lock */
9727 l2arc_vdev_present(vdev_t
*vd
)
9729 return (l2arc_vdev_get(vd
) != NULL
);
9733 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9734 * the vdev_t isn't an L2ARC device.
9737 l2arc_vdev_get(vdev_t
*vd
)
9741 mutex_enter(&l2arc_dev_mtx
);
9742 for (dev
= list_head(l2arc_dev_list
); dev
!= NULL
;
9743 dev
= list_next(l2arc_dev_list
, dev
)) {
9744 if (dev
->l2ad_vdev
== vd
)
9747 mutex_exit(&l2arc_dev_mtx
);
9753 l2arc_rebuild_dev(l2arc_dev_t
*dev
, boolean_t reopen
)
9755 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9756 uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
9757 spa_t
*spa
= dev
->l2ad_spa
;
9760 * The L2ARC has to hold at least the payload of one log block for
9761 * them to be restored (persistent L2ARC). The payload of a log block
9762 * depends on the amount of its log entries. We always write log blocks
9763 * with 1022 entries. How many of them are committed or restored depends
9764 * on the size of the L2ARC device. Thus the maximum payload of
9765 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9766 * is less than that, we reduce the amount of committed and restored
9767 * log entries per block so as to enable persistence.
9769 if (dev
->l2ad_end
< l2arc_rebuild_blocks_min_l2size
) {
9770 dev
->l2ad_log_entries
= 0;
9772 dev
->l2ad_log_entries
= MIN((dev
->l2ad_end
-
9773 dev
->l2ad_start
) >> SPA_MAXBLOCKSHIFT
,
9774 L2ARC_LOG_BLK_MAX_ENTRIES
);
9778 * Read the device header, if an error is returned do not rebuild L2ARC.
9780 if (l2arc_dev_hdr_read(dev
) == 0 && dev
->l2ad_log_entries
> 0) {
9782 * If we are onlining a cache device (vdev_reopen) that was
9783 * still present (l2arc_vdev_present()) and rebuild is enabled,
9784 * we should evict all ARC buffers and pointers to log blocks
9785 * and reclaim their space before restoring its contents to
9789 if (!l2arc_rebuild_enabled
) {
9792 l2arc_evict(dev
, 0, B_TRUE
);
9793 /* start a new log block */
9794 dev
->l2ad_log_ent_idx
= 0;
9795 dev
->l2ad_log_blk_payload_asize
= 0;
9796 dev
->l2ad_log_blk_payload_start
= 0;
9800 * Just mark the device as pending for a rebuild. We won't
9801 * be starting a rebuild in line here as it would block pool
9802 * import. Instead spa_load_impl will hand that off to an
9803 * async task which will call l2arc_spa_rebuild_start.
9805 dev
->l2ad_rebuild
= B_TRUE
;
9806 } else if (spa_writeable(spa
)) {
9808 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9809 * otherwise create a new header. We zero out the memory holding
9810 * the header to reset dh_start_lbps. If we TRIM the whole
9811 * device the new header will be written by
9812 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9813 * trim_state in the header too. When reading the header, if
9814 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9815 * we opt to TRIM the whole device again.
9817 if (l2arc_trim_ahead
> 0) {
9818 dev
->l2ad_trim_all
= B_TRUE
;
9820 bzero(l2dhdr
, l2dhdr_asize
);
9821 l2arc_dev_hdr_update(dev
);
9827 * Add a vdev for use by the L2ARC. By this point the spa has already
9828 * validated the vdev and opened it.
9831 l2arc_add_vdev(spa_t
*spa
, vdev_t
*vd
)
9833 l2arc_dev_t
*adddev
;
9834 uint64_t l2dhdr_asize
;
9836 ASSERT(!l2arc_vdev_present(vd
));
9839 * Create a new l2arc device entry.
9841 adddev
= vmem_zalloc(sizeof (l2arc_dev_t
), KM_SLEEP
);
9842 adddev
->l2ad_spa
= spa
;
9843 adddev
->l2ad_vdev
= vd
;
9844 /* leave extra size for an l2arc device header */
9845 l2dhdr_asize
= adddev
->l2ad_dev_hdr_asize
=
9846 MAX(sizeof (*adddev
->l2ad_dev_hdr
), 1 << vd
->vdev_ashift
);
9847 adddev
->l2ad_start
= VDEV_LABEL_START_SIZE
+ l2dhdr_asize
;
9848 adddev
->l2ad_end
= VDEV_LABEL_START_SIZE
+ vdev_get_min_asize(vd
);
9849 ASSERT3U(adddev
->l2ad_start
, <, adddev
->l2ad_end
);
9850 adddev
->l2ad_hand
= adddev
->l2ad_start
;
9851 adddev
->l2ad_evict
= adddev
->l2ad_start
;
9852 adddev
->l2ad_first
= B_TRUE
;
9853 adddev
->l2ad_writing
= B_FALSE
;
9854 adddev
->l2ad_trim_all
= B_FALSE
;
9855 list_link_init(&adddev
->l2ad_node
);
9856 adddev
->l2ad_dev_hdr
= kmem_zalloc(l2dhdr_asize
, KM_SLEEP
);
9858 mutex_init(&adddev
->l2ad_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9860 * This is a list of all ARC buffers that are still valid on the
9863 list_create(&adddev
->l2ad_buflist
, sizeof (arc_buf_hdr_t
),
9864 offsetof(arc_buf_hdr_t
, b_l2hdr
.b_l2node
));
9867 * This is a list of pointers to log blocks that are still present
9870 list_create(&adddev
->l2ad_lbptr_list
, sizeof (l2arc_lb_ptr_buf_t
),
9871 offsetof(l2arc_lb_ptr_buf_t
, node
));
9873 vdev_space_update(vd
, 0, 0, adddev
->l2ad_end
- adddev
->l2ad_hand
);
9874 zfs_refcount_create(&adddev
->l2ad_alloc
);
9875 zfs_refcount_create(&adddev
->l2ad_lb_asize
);
9876 zfs_refcount_create(&adddev
->l2ad_lb_count
);
9879 * Decide if dev is eligible for L2ARC rebuild or whole device
9880 * trimming. This has to happen before the device is added in the
9881 * cache device list and l2arc_dev_mtx is released. Otherwise
9882 * l2arc_feed_thread() might already start writing on the
9885 l2arc_rebuild_dev(adddev
, B_FALSE
);
9888 * Add device to global list
9890 mutex_enter(&l2arc_dev_mtx
);
9891 list_insert_head(l2arc_dev_list
, adddev
);
9892 atomic_inc_64(&l2arc_ndev
);
9893 mutex_exit(&l2arc_dev_mtx
);
9897 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9898 * in case of onlining a cache device.
9901 l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
)
9903 l2arc_dev_t
*dev
= NULL
;
9905 dev
= l2arc_vdev_get(vd
);
9906 ASSERT3P(dev
, !=, NULL
);
9909 * In contrast to l2arc_add_vdev() we do not have to worry about
9910 * l2arc_feed_thread() invalidating previous content when onlining a
9911 * cache device. The device parameters (l2ad*) are not cleared when
9912 * offlining the device and writing new buffers will not invalidate
9913 * all previous content. In worst case only buffers that have not had
9914 * their log block written to the device will be lost.
9915 * When onlining the cache device (ie offline->online without exporting
9916 * the pool in between) this happens:
9917 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9919 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9920 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9921 * is set to B_TRUE we might write additional buffers to the device.
9923 l2arc_rebuild_dev(dev
, reopen
);
9927 * Remove a vdev from the L2ARC.
9930 l2arc_remove_vdev(vdev_t
*vd
)
9932 l2arc_dev_t
*remdev
= NULL
;
9935 * Find the device by vdev
9937 remdev
= l2arc_vdev_get(vd
);
9938 ASSERT3P(remdev
, !=, NULL
);
9941 * Cancel any ongoing or scheduled rebuild.
9943 mutex_enter(&l2arc_rebuild_thr_lock
);
9944 if (remdev
->l2ad_rebuild_began
== B_TRUE
) {
9945 remdev
->l2ad_rebuild_cancel
= B_TRUE
;
9946 while (remdev
->l2ad_rebuild
== B_TRUE
)
9947 cv_wait(&l2arc_rebuild_thr_cv
, &l2arc_rebuild_thr_lock
);
9949 mutex_exit(&l2arc_rebuild_thr_lock
);
9952 * Remove device from global list
9954 mutex_enter(&l2arc_dev_mtx
);
9955 list_remove(l2arc_dev_list
, remdev
);
9956 l2arc_dev_last
= NULL
; /* may have been invalidated */
9957 atomic_dec_64(&l2arc_ndev
);
9958 mutex_exit(&l2arc_dev_mtx
);
9961 * Clear all buflists and ARC references. L2ARC device flush.
9963 l2arc_evict(remdev
, 0, B_TRUE
);
9964 list_destroy(&remdev
->l2ad_buflist
);
9965 ASSERT(list_is_empty(&remdev
->l2ad_lbptr_list
));
9966 list_destroy(&remdev
->l2ad_lbptr_list
);
9967 mutex_destroy(&remdev
->l2ad_mtx
);
9968 zfs_refcount_destroy(&remdev
->l2ad_alloc
);
9969 zfs_refcount_destroy(&remdev
->l2ad_lb_asize
);
9970 zfs_refcount_destroy(&remdev
->l2ad_lb_count
);
9971 kmem_free(remdev
->l2ad_dev_hdr
, remdev
->l2ad_dev_hdr_asize
);
9972 vmem_free(remdev
, sizeof (l2arc_dev_t
));
9978 l2arc_thread_exit
= 0;
9981 mutex_init(&l2arc_feed_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
9982 cv_init(&l2arc_feed_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
9983 mutex_init(&l2arc_rebuild_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
9984 cv_init(&l2arc_rebuild_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
9985 mutex_init(&l2arc_dev_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9986 mutex_init(&l2arc_free_on_write_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9988 l2arc_dev_list
= &L2ARC_dev_list
;
9989 l2arc_free_on_write
= &L2ARC_free_on_write
;
9990 list_create(l2arc_dev_list
, sizeof (l2arc_dev_t
),
9991 offsetof(l2arc_dev_t
, l2ad_node
));
9992 list_create(l2arc_free_on_write
, sizeof (l2arc_data_free_t
),
9993 offsetof(l2arc_data_free_t
, l2df_list_node
));
9999 mutex_destroy(&l2arc_feed_thr_lock
);
10000 cv_destroy(&l2arc_feed_thr_cv
);
10001 mutex_destroy(&l2arc_rebuild_thr_lock
);
10002 cv_destroy(&l2arc_rebuild_thr_cv
);
10003 mutex_destroy(&l2arc_dev_mtx
);
10004 mutex_destroy(&l2arc_free_on_write_mtx
);
10006 list_destroy(l2arc_dev_list
);
10007 list_destroy(l2arc_free_on_write
);
10013 if (!(spa_mode_global
& SPA_MODE_WRITE
))
10016 (void) thread_create(NULL
, 0, l2arc_feed_thread
, NULL
, 0, &p0
,
10017 TS_RUN
, defclsyspri
);
10023 if (!(spa_mode_global
& SPA_MODE_WRITE
))
10026 mutex_enter(&l2arc_feed_thr_lock
);
10027 cv_signal(&l2arc_feed_thr_cv
); /* kick thread out of startup */
10028 l2arc_thread_exit
= 1;
10029 while (l2arc_thread_exit
!= 0)
10030 cv_wait(&l2arc_feed_thr_cv
, &l2arc_feed_thr_lock
);
10031 mutex_exit(&l2arc_feed_thr_lock
);
10035 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10036 * be called after pool import from the spa async thread, since starting
10037 * these threads directly from spa_import() will make them part of the
10038 * "zpool import" context and delay process exit (and thus pool import).
10041 l2arc_spa_rebuild_start(spa_t
*spa
)
10043 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
10046 * Locate the spa's l2arc devices and kick off rebuild threads.
10048 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
10050 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
10052 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10055 mutex_enter(&l2arc_rebuild_thr_lock
);
10056 if (dev
->l2ad_rebuild
&& !dev
->l2ad_rebuild_cancel
) {
10057 dev
->l2ad_rebuild_began
= B_TRUE
;
10058 (void) thread_create(NULL
, 0, l2arc_dev_rebuild_thread
,
10059 dev
, 0, &p0
, TS_RUN
, minclsyspri
);
10061 mutex_exit(&l2arc_rebuild_thr_lock
);
10066 * Main entry point for L2ARC rebuilding.
10069 l2arc_dev_rebuild_thread(void *arg
)
10071 l2arc_dev_t
*dev
= arg
;
10073 VERIFY(!dev
->l2ad_rebuild_cancel
);
10074 VERIFY(dev
->l2ad_rebuild
);
10075 (void) l2arc_rebuild(dev
);
10076 mutex_enter(&l2arc_rebuild_thr_lock
);
10077 dev
->l2ad_rebuild_began
= B_FALSE
;
10078 dev
->l2ad_rebuild
= B_FALSE
;
10079 mutex_exit(&l2arc_rebuild_thr_lock
);
10085 * This function implements the actual L2ARC metadata rebuild. It:
10086 * starts reading the log block chain and restores each block's contents
10087 * to memory (reconstructing arc_buf_hdr_t's).
10089 * Operation stops under any of the following conditions:
10091 * 1) We reach the end of the log block chain.
10092 * 2) We encounter *any* error condition (cksum errors, io errors)
10095 l2arc_rebuild(l2arc_dev_t
*dev
)
10097 vdev_t
*vd
= dev
->l2ad_vdev
;
10098 spa_t
*spa
= vd
->vdev_spa
;
10100 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10101 l2arc_log_blk_phys_t
*this_lb
, *next_lb
;
10102 zio_t
*this_io
= NULL
, *next_io
= NULL
;
10103 l2arc_log_blkptr_t lbps
[2];
10104 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10105 boolean_t lock_held
;
10107 this_lb
= vmem_zalloc(sizeof (*this_lb
), KM_SLEEP
);
10108 next_lb
= vmem_zalloc(sizeof (*next_lb
), KM_SLEEP
);
10111 * We prevent device removal while issuing reads to the device,
10112 * then during the rebuilding phases we drop this lock again so
10113 * that a spa_unload or device remove can be initiated - this is
10114 * safe, because the spa will signal us to stop before removing
10115 * our device and wait for us to stop.
10117 spa_config_enter(spa
, SCL_L2ARC
, vd
, RW_READER
);
10118 lock_held
= B_TRUE
;
10121 * Retrieve the persistent L2ARC device state.
10122 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10124 dev
->l2ad_evict
= MAX(l2dhdr
->dh_evict
, dev
->l2ad_start
);
10125 dev
->l2ad_hand
= MAX(l2dhdr
->dh_start_lbps
[0].lbp_daddr
+
10126 L2BLK_GET_PSIZE((&l2dhdr
->dh_start_lbps
[0])->lbp_prop
),
10128 dev
->l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
10130 vd
->vdev_trim_action_time
= l2dhdr
->dh_trim_action_time
;
10131 vd
->vdev_trim_state
= l2dhdr
->dh_trim_state
;
10134 * In case the zfs module parameter l2arc_rebuild_enabled is false
10135 * we do not start the rebuild process.
10137 if (!l2arc_rebuild_enabled
)
10140 /* Prepare the rebuild process */
10141 bcopy(l2dhdr
->dh_start_lbps
, lbps
, sizeof (lbps
));
10143 /* Start the rebuild process */
10145 if (!l2arc_log_blkptr_valid(dev
, &lbps
[0]))
10148 if ((err
= l2arc_log_blk_read(dev
, &lbps
[0], &lbps
[1],
10149 this_lb
, next_lb
, this_io
, &next_io
)) != 0)
10153 * Our memory pressure valve. If the system is running low
10154 * on memory, rather than swamping memory with new ARC buf
10155 * hdrs, we opt not to rebuild the L2ARC. At this point,
10156 * however, we have already set up our L2ARC dev to chain in
10157 * new metadata log blocks, so the user may choose to offline/
10158 * online the L2ARC dev at a later time (or re-import the pool)
10159 * to reconstruct it (when there's less memory pressure).
10161 if (l2arc_hdr_limit_reached()) {
10162 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem
);
10163 cmn_err(CE_NOTE
, "System running low on memory, "
10164 "aborting L2ARC rebuild.");
10165 err
= SET_ERROR(ENOMEM
);
10169 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10170 lock_held
= B_FALSE
;
10173 * Now that we know that the next_lb checks out alright, we
10174 * can start reconstruction from this log block.
10175 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10177 uint64_t asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
10178 l2arc_log_blk_restore(dev
, this_lb
, asize
);
10181 * log block restored, include its pointer in the list of
10182 * pointers to log blocks present in the L2ARC device.
10184 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10185 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
),
10187 bcopy(&lbps
[0], lb_ptr_buf
->lb_ptr
,
10188 sizeof (l2arc_log_blkptr_t
));
10189 mutex_enter(&dev
->l2ad_mtx
);
10190 list_insert_tail(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10191 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10192 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10193 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10194 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10195 mutex_exit(&dev
->l2ad_mtx
);
10196 vdev_space_update(vd
, asize
, 0, 0);
10199 * Protection against loops of log blocks:
10201 * l2ad_hand l2ad_evict
10203 * l2ad_start |=======================================| l2ad_end
10204 * -----|||----|||---|||----|||
10206 * ---|||---|||----|||---|||
10209 * In this situation the pointer of log block (4) passes
10210 * l2arc_log_blkptr_valid() but the log block should not be
10211 * restored as it is overwritten by the payload of log block
10212 * (0). Only log blocks (0)-(3) should be restored. We check
10213 * whether l2ad_evict lies in between the payload starting
10214 * offset of the next log block (lbps[1].lbp_payload_start)
10215 * and the payload starting offset of the present log block
10216 * (lbps[0].lbp_payload_start). If true and this isn't the
10217 * first pass, we are looping from the beginning and we should
10220 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
10221 lbps
[0].lbp_payload_start
, dev
->l2ad_evict
) &&
10227 mutex_enter(&l2arc_rebuild_thr_lock
);
10228 if (dev
->l2ad_rebuild_cancel
) {
10229 dev
->l2ad_rebuild
= B_FALSE
;
10230 cv_signal(&l2arc_rebuild_thr_cv
);
10231 mutex_exit(&l2arc_rebuild_thr_lock
);
10232 err
= SET_ERROR(ECANCELED
);
10235 mutex_exit(&l2arc_rebuild_thr_lock
);
10236 if (spa_config_tryenter(spa
, SCL_L2ARC
, vd
,
10238 lock_held
= B_TRUE
;
10242 * L2ARC config lock held by somebody in writer,
10243 * possibly due to them trying to remove us. They'll
10244 * likely to want us to shut down, so after a little
10245 * delay, we check l2ad_rebuild_cancel and retry
10252 * Continue with the next log block.
10255 lbps
[1] = this_lb
->lb_prev_lbp
;
10256 PTR_SWAP(this_lb
, next_lb
);
10261 if (this_io
!= NULL
)
10262 l2arc_log_blk_fetch_abort(this_io
);
10264 if (next_io
!= NULL
)
10265 l2arc_log_blk_fetch_abort(next_io
);
10266 vmem_free(this_lb
, sizeof (*this_lb
));
10267 vmem_free(next_lb
, sizeof (*next_lb
));
10269 if (!l2arc_rebuild_enabled
) {
10270 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10272 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) > 0) {
10273 ARCSTAT_BUMP(arcstat_l2_rebuild_success
);
10274 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10275 "successful, restored %llu blocks",
10276 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10277 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) == 0) {
10279 * No error but also nothing restored, meaning the lbps array
10280 * in the device header points to invalid/non-present log
10281 * blocks. Reset the header.
10283 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10284 "no valid log blocks");
10285 bzero(l2dhdr
, dev
->l2ad_dev_hdr_asize
);
10286 l2arc_dev_hdr_update(dev
);
10287 } else if (err
== ECANCELED
) {
10289 * In case the rebuild was canceled do not log to spa history
10290 * log as the pool may be in the process of being removed.
10292 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10293 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10294 } else if (err
!= 0) {
10295 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10296 "aborted, restored %llu blocks",
10297 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10301 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10307 * Attempts to read the device header on the provided L2ARC device and writes
10308 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10309 * error code is returned.
10312 l2arc_dev_hdr_read(l2arc_dev_t
*dev
)
10316 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10317 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10320 guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10322 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10324 err
= zio_wait(zio_read_phys(NULL
, dev
->l2ad_vdev
,
10325 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
,
10326 ZIO_CHECKSUM_LABEL
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
10327 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
|
10328 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
10329 ZIO_FLAG_SPECULATIVE
, B_FALSE
));
10334 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors
);
10335 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10336 "vdev guid: %llu", err
,
10337 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10341 if (l2dhdr
->dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
10342 byteswap_uint64_array(l2dhdr
, sizeof (*l2dhdr
));
10344 if (l2dhdr
->dh_magic
!= L2ARC_DEV_HDR_MAGIC
||
10345 l2dhdr
->dh_spa_guid
!= guid
||
10346 l2dhdr
->dh_vdev_guid
!= dev
->l2ad_vdev
->vdev_guid
||
10347 l2dhdr
->dh_version
!= L2ARC_PERSISTENT_VERSION
||
10348 l2dhdr
->dh_log_entries
!= dev
->l2ad_log_entries
||
10349 l2dhdr
->dh_end
!= dev
->l2ad_end
||
10350 !l2arc_range_check_overlap(dev
->l2ad_start
, dev
->l2ad_end
,
10351 l2dhdr
->dh_evict
) ||
10352 (l2dhdr
->dh_trim_state
!= VDEV_TRIM_COMPLETE
&&
10353 l2arc_trim_ahead
> 0)) {
10355 * Attempt to rebuild a device containing no actual dev hdr
10356 * or containing a header from some other pool or from another
10357 * version of persistent L2ARC.
10359 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported
);
10360 return (SET_ERROR(ENOTSUP
));
10367 * Reads L2ARC log blocks from storage and validates their contents.
10369 * This function implements a simple fetcher to make sure that while
10370 * we're processing one buffer the L2ARC is already fetching the next
10371 * one in the chain.
10373 * The arguments this_lp and next_lp point to the current and next log block
10374 * address in the block chain. Similarly, this_lb and next_lb hold the
10375 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10377 * The `this_io' and `next_io' arguments are used for block fetching.
10378 * When issuing the first blk IO during rebuild, you should pass NULL for
10379 * `this_io'. This function will then issue a sync IO to read the block and
10380 * also issue an async IO to fetch the next block in the block chain. The
10381 * fetched IO is returned in `next_io'. On subsequent calls to this
10382 * function, pass the value returned in `next_io' from the previous call
10383 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10384 * Prior to the call, you should initialize your `next_io' pointer to be
10385 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10387 * On success, this function returns 0, otherwise it returns an appropriate
10388 * error code. On error the fetching IO is aborted and cleared before
10389 * returning from this function. Therefore, if we return `success', the
10390 * caller can assume that we have taken care of cleanup of fetch IOs.
10393 l2arc_log_blk_read(l2arc_dev_t
*dev
,
10394 const l2arc_log_blkptr_t
*this_lbp
, const l2arc_log_blkptr_t
*next_lbp
,
10395 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
10396 zio_t
*this_io
, zio_t
**next_io
)
10403 ASSERT(this_lbp
!= NULL
&& next_lbp
!= NULL
);
10404 ASSERT(this_lb
!= NULL
&& next_lb
!= NULL
);
10405 ASSERT(next_io
!= NULL
&& *next_io
== NULL
);
10406 ASSERT(l2arc_log_blkptr_valid(dev
, this_lbp
));
10409 * Check to see if we have issued the IO for this log block in a
10410 * previous run. If not, this is the first call, so issue it now.
10412 if (this_io
== NULL
) {
10413 this_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, this_lbp
,
10418 * Peek to see if we can start issuing the next IO immediately.
10420 if (l2arc_log_blkptr_valid(dev
, next_lbp
)) {
10422 * Start issuing IO for the next log block early - this
10423 * should help keep the L2ARC device busy while we
10424 * decompress and restore this log block.
10426 *next_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, next_lbp
,
10430 /* Wait for the IO to read this log block to complete */
10431 if ((err
= zio_wait(this_io
)) != 0) {
10432 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors
);
10433 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10434 "offset: %llu, vdev guid: %llu", err
,
10435 (u_longlong_t
)this_lbp
->lbp_daddr
,
10436 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10441 * Make sure the buffer checks out.
10442 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10444 asize
= L2BLK_GET_PSIZE((this_lbp
)->lbp_prop
);
10445 fletcher_4_native(this_lb
, asize
, NULL
, &cksum
);
10446 if (!ZIO_CHECKSUM_EQUAL(cksum
, this_lbp
->lbp_cksum
)) {
10447 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors
);
10448 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10449 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10450 (u_longlong_t
)this_lbp
->lbp_daddr
,
10451 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
,
10452 (u_longlong_t
)dev
->l2ad_hand
,
10453 (u_longlong_t
)dev
->l2ad_evict
);
10454 err
= SET_ERROR(ECKSUM
);
10458 /* Now we can take our time decoding this buffer */
10459 switch (L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
)) {
10460 case ZIO_COMPRESS_OFF
:
10462 case ZIO_COMPRESS_LZ4
:
10463 abd
= abd_alloc_for_io(asize
, B_TRUE
);
10464 abd_copy_from_buf_off(abd
, this_lb
, 0, asize
);
10465 if ((err
= zio_decompress_data(
10466 L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
),
10467 abd
, this_lb
, asize
, sizeof (*this_lb
), NULL
)) != 0) {
10468 err
= SET_ERROR(EINVAL
);
10473 err
= SET_ERROR(EINVAL
);
10476 if (this_lb
->lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
10477 byteswap_uint64_array(this_lb
, sizeof (*this_lb
));
10478 if (this_lb
->lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
10479 err
= SET_ERROR(EINVAL
);
10483 /* Abort an in-flight fetch I/O in case of error */
10484 if (err
!= 0 && *next_io
!= NULL
) {
10485 l2arc_log_blk_fetch_abort(*next_io
);
10494 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10495 * entries which only contain an l2arc hdr, essentially restoring the
10496 * buffers to their L2ARC evicted state. This function also updates space
10497 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10500 l2arc_log_blk_restore(l2arc_dev_t
*dev
, const l2arc_log_blk_phys_t
*lb
,
10503 uint64_t size
= 0, asize
= 0;
10504 uint64_t log_entries
= dev
->l2ad_log_entries
;
10507 * Usually arc_adapt() is called only for data, not headers, but
10508 * since we may allocate significant amount of memory here, let ARC
10511 arc_adapt(log_entries
* HDR_L2ONLY_SIZE
, arc_l2c_only
);
10513 for (int i
= log_entries
- 1; i
>= 0; i
--) {
10515 * Restore goes in the reverse temporal direction to preserve
10516 * correct temporal ordering of buffers in the l2ad_buflist.
10517 * l2arc_hdr_restore also does a list_insert_tail instead of
10518 * list_insert_head on the l2ad_buflist:
10520 * LIST l2ad_buflist LIST
10521 * HEAD <------ (time) ------ TAIL
10522 * direction +-----+-----+-----+-----+-----+ direction
10523 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10524 * fill +-----+-----+-----+-----+-----+
10528 * l2arc_feed_thread l2arc_rebuild
10529 * will place new bufs here restores bufs here
10531 * During l2arc_rebuild() the device is not used by
10532 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10534 size
+= L2BLK_GET_LSIZE((&lb
->lb_entries
[i
])->le_prop
);
10535 asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10536 L2BLK_GET_PSIZE((&lb
->lb_entries
[i
])->le_prop
));
10537 l2arc_hdr_restore(&lb
->lb_entries
[i
], dev
);
10541 * Record rebuild stats:
10542 * size Logical size of restored buffers in the L2ARC
10543 * asize Aligned size of restored buffers in the L2ARC
10545 ARCSTAT_INCR(arcstat_l2_rebuild_size
, size
);
10546 ARCSTAT_INCR(arcstat_l2_rebuild_asize
, asize
);
10547 ARCSTAT_INCR(arcstat_l2_rebuild_bufs
, log_entries
);
10548 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, lb_asize
);
10549 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
, asize
/ lb_asize
);
10550 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks
);
10554 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10555 * into a state indicating that it has been evicted to L2ARC.
10558 l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
, l2arc_dev_t
*dev
)
10560 arc_buf_hdr_t
*hdr
, *exists
;
10561 kmutex_t
*hash_lock
;
10562 arc_buf_contents_t type
= L2BLK_GET_TYPE((le
)->le_prop
);
10566 * Do all the allocation before grabbing any locks, this lets us
10567 * sleep if memory is full and we don't have to deal with failed
10570 hdr
= arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le
)->le_prop
), type
,
10571 dev
, le
->le_dva
, le
->le_daddr
,
10572 L2BLK_GET_PSIZE((le
)->le_prop
), le
->le_birth
,
10573 L2BLK_GET_COMPRESS((le
)->le_prop
), le
->le_complevel
,
10574 L2BLK_GET_PROTECTED((le
)->le_prop
),
10575 L2BLK_GET_PREFETCH((le
)->le_prop
),
10576 L2BLK_GET_STATE((le
)->le_prop
));
10577 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
10578 L2BLK_GET_PSIZE((le
)->le_prop
));
10581 * vdev_space_update() has to be called before arc_hdr_destroy() to
10582 * avoid underflow since the latter also calls vdev_space_update().
10584 l2arc_hdr_arcstats_increment(hdr
);
10585 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10587 mutex_enter(&dev
->l2ad_mtx
);
10588 list_insert_tail(&dev
->l2ad_buflist
, hdr
);
10589 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
), hdr
);
10590 mutex_exit(&dev
->l2ad_mtx
);
10592 exists
= buf_hash_insert(hdr
, &hash_lock
);
10594 /* Buffer was already cached, no need to restore it. */
10595 arc_hdr_destroy(hdr
);
10597 * If the buffer is already cached, check whether it has
10598 * L2ARC metadata. If not, enter them and update the flag.
10599 * This is important is case of onlining a cache device, since
10600 * we previously evicted all L2ARC metadata from ARC.
10602 if (!HDR_HAS_L2HDR(exists
)) {
10603 arc_hdr_set_flags(exists
, ARC_FLAG_HAS_L2HDR
);
10604 exists
->b_l2hdr
.b_dev
= dev
;
10605 exists
->b_l2hdr
.b_daddr
= le
->le_daddr
;
10606 exists
->b_l2hdr
.b_arcs_state
=
10607 L2BLK_GET_STATE((le
)->le_prop
);
10608 mutex_enter(&dev
->l2ad_mtx
);
10609 list_insert_tail(&dev
->l2ad_buflist
, exists
);
10610 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
10611 arc_hdr_size(exists
), exists
);
10612 mutex_exit(&dev
->l2ad_mtx
);
10613 l2arc_hdr_arcstats_increment(exists
);
10614 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10616 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached
);
10619 mutex_exit(hash_lock
);
10623 * Starts an asynchronous read IO to read a log block. This is used in log
10624 * block reconstruction to start reading the next block before we are done
10625 * decoding and reconstructing the current block, to keep the l2arc device
10626 * nice and hot with read IO to process.
10627 * The returned zio will contain a newly allocated memory buffers for the IO
10628 * data which should then be freed by the caller once the zio is no longer
10629 * needed (i.e. due to it having completed). If you wish to abort this
10630 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10631 * care of disposing of the allocated buffers correctly.
10634 l2arc_log_blk_fetch(vdev_t
*vd
, const l2arc_log_blkptr_t
*lbp
,
10635 l2arc_log_blk_phys_t
*lb
)
10639 l2arc_read_callback_t
*cb
;
10641 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10642 asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10643 ASSERT(asize
<= sizeof (l2arc_log_blk_phys_t
));
10645 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
), KM_SLEEP
);
10646 cb
->l2rcb_abd
= abd_get_from_buf(lb
, asize
);
10647 pio
= zio_root(vd
->vdev_spa
, l2arc_blk_fetch_done
, cb
,
10648 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
|
10649 ZIO_FLAG_DONT_RETRY
);
10650 (void) zio_nowait(zio_read_phys(pio
, vd
, lbp
->lbp_daddr
, asize
,
10651 cb
->l2rcb_abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10652 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
|
10653 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
, B_FALSE
));
10659 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10660 * buffers allocated for it.
10663 l2arc_log_blk_fetch_abort(zio_t
*zio
)
10665 (void) zio_wait(zio
);
10669 * Creates a zio to update the device header on an l2arc device.
10672 l2arc_dev_hdr_update(l2arc_dev_t
*dev
)
10674 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10675 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10679 VERIFY(spa_config_held(dev
->l2ad_spa
, SCL_STATE_ALL
, RW_READER
));
10681 l2dhdr
->dh_magic
= L2ARC_DEV_HDR_MAGIC
;
10682 l2dhdr
->dh_version
= L2ARC_PERSISTENT_VERSION
;
10683 l2dhdr
->dh_spa_guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10684 l2dhdr
->dh_vdev_guid
= dev
->l2ad_vdev
->vdev_guid
;
10685 l2dhdr
->dh_log_entries
= dev
->l2ad_log_entries
;
10686 l2dhdr
->dh_evict
= dev
->l2ad_evict
;
10687 l2dhdr
->dh_start
= dev
->l2ad_start
;
10688 l2dhdr
->dh_end
= dev
->l2ad_end
;
10689 l2dhdr
->dh_lb_asize
= zfs_refcount_count(&dev
->l2ad_lb_asize
);
10690 l2dhdr
->dh_lb_count
= zfs_refcount_count(&dev
->l2ad_lb_count
);
10691 l2dhdr
->dh_flags
= 0;
10692 l2dhdr
->dh_trim_action_time
= dev
->l2ad_vdev
->vdev_trim_action_time
;
10693 l2dhdr
->dh_trim_state
= dev
->l2ad_vdev
->vdev_trim_state
;
10694 if (dev
->l2ad_first
)
10695 l2dhdr
->dh_flags
|= L2ARC_DEV_HDR_EVICT_FIRST
;
10697 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10699 err
= zio_wait(zio_write_phys(NULL
, dev
->l2ad_vdev
,
10700 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
, ZIO_CHECKSUM_LABEL
, NULL
,
10701 NULL
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
));
10706 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10707 "vdev guid: %llu", err
,
10708 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10713 * Commits a log block to the L2ARC device. This routine is invoked from
10714 * l2arc_write_buffers when the log block fills up.
10715 * This function allocates some memory to temporarily hold the serialized
10716 * buffer to be written. This is then released in l2arc_write_done.
10719 l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
, l2arc_write_callback_t
*cb
)
10721 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10722 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10723 uint64_t psize
, asize
;
10725 l2arc_lb_abd_buf_t
*abd_buf
;
10727 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10729 VERIFY3S(dev
->l2ad_log_ent_idx
, ==, dev
->l2ad_log_entries
);
10731 tmpbuf
= zio_buf_alloc(sizeof (*lb
));
10732 abd_buf
= zio_buf_alloc(sizeof (*abd_buf
));
10733 abd_buf
->abd
= abd_get_from_buf(lb
, sizeof (*lb
));
10734 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10735 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
), KM_SLEEP
);
10737 /* link the buffer into the block chain */
10738 lb
->lb_prev_lbp
= l2dhdr
->dh_start_lbps
[1];
10739 lb
->lb_magic
= L2ARC_LOG_BLK_MAGIC
;
10742 * l2arc_log_blk_commit() may be called multiple times during a single
10743 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10744 * so we can free them in l2arc_write_done() later on.
10746 list_insert_tail(&cb
->l2wcb_abd_list
, abd_buf
);
10748 /* try to compress the buffer */
10749 psize
= zio_compress_data(ZIO_COMPRESS_LZ4
,
10750 abd_buf
->abd
, tmpbuf
, sizeof (*lb
), 0);
10752 /* a log block is never entirely zero */
10753 ASSERT(psize
!= 0);
10754 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
10755 ASSERT(asize
<= sizeof (*lb
));
10758 * Update the start log block pointer in the device header to point
10759 * to the log block we're about to write.
10761 l2dhdr
->dh_start_lbps
[1] = l2dhdr
->dh_start_lbps
[0];
10762 l2dhdr
->dh_start_lbps
[0].lbp_daddr
= dev
->l2ad_hand
;
10763 l2dhdr
->dh_start_lbps
[0].lbp_payload_asize
=
10764 dev
->l2ad_log_blk_payload_asize
;
10765 l2dhdr
->dh_start_lbps
[0].lbp_payload_start
=
10766 dev
->l2ad_log_blk_payload_start
;
10768 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, sizeof (*lb
));
10770 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, asize
);
10771 L2BLK_SET_CHECKSUM(
10772 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10773 ZIO_CHECKSUM_FLETCHER_4
);
10774 if (asize
< sizeof (*lb
)) {
10775 /* compression succeeded */
10776 bzero(tmpbuf
+ psize
, asize
- psize
);
10777 L2BLK_SET_COMPRESS(
10778 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10781 /* compression failed */
10782 bcopy(lb
, tmpbuf
, sizeof (*lb
));
10783 L2BLK_SET_COMPRESS(
10784 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10788 /* checksum what we're about to write */
10789 fletcher_4_native(tmpbuf
, asize
, NULL
,
10790 &l2dhdr
->dh_start_lbps
[0].lbp_cksum
);
10792 abd_free(abd_buf
->abd
);
10794 /* perform the write itself */
10795 abd_buf
->abd
= abd_get_from_buf(tmpbuf
, sizeof (*lb
));
10796 abd_take_ownership_of_buf(abd_buf
->abd
, B_TRUE
);
10797 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
, dev
->l2ad_hand
,
10798 asize
, abd_buf
->abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10799 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
);
10800 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
, zio_t
*, wzio
);
10801 (void) zio_nowait(wzio
);
10803 dev
->l2ad_hand
+= asize
;
10805 * Include the committed log block's pointer in the list of pointers
10806 * to log blocks present in the L2ARC device.
10808 bcopy(&l2dhdr
->dh_start_lbps
[0], lb_ptr_buf
->lb_ptr
,
10809 sizeof (l2arc_log_blkptr_t
));
10810 mutex_enter(&dev
->l2ad_mtx
);
10811 list_insert_head(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10812 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10813 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10814 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10815 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10816 mutex_exit(&dev
->l2ad_mtx
);
10817 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10819 /* bump the kstats */
10820 ARCSTAT_INCR(arcstat_l2_write_bytes
, asize
);
10821 ARCSTAT_BUMP(arcstat_l2_log_blk_writes
);
10822 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, asize
);
10823 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
,
10824 dev
->l2ad_log_blk_payload_asize
/ asize
);
10826 /* start a new log block */
10827 dev
->l2ad_log_ent_idx
= 0;
10828 dev
->l2ad_log_blk_payload_asize
= 0;
10829 dev
->l2ad_log_blk_payload_start
= 0;
10833 * Validates an L2ARC log block address to make sure that it can be read
10834 * from the provided L2ARC device.
10837 l2arc_log_blkptr_valid(l2arc_dev_t
*dev
, const l2arc_log_blkptr_t
*lbp
)
10839 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10840 uint64_t asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10841 uint64_t end
= lbp
->lbp_daddr
+ asize
- 1;
10842 uint64_t start
= lbp
->lbp_payload_start
;
10843 boolean_t evicted
= B_FALSE
;
10846 * A log block is valid if all of the following conditions are true:
10847 * - it fits entirely (including its payload) between l2ad_start and
10849 * - it has a valid size
10850 * - neither the log block itself nor part of its payload was evicted
10851 * by l2arc_evict():
10853 * l2ad_hand l2ad_evict
10858 * l2ad_start ============================================ l2ad_end
10859 * --------------------------||||
10866 l2arc_range_check_overlap(start
, end
, dev
->l2ad_hand
) ||
10867 l2arc_range_check_overlap(start
, end
, dev
->l2ad_evict
) ||
10868 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, start
) ||
10869 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, end
);
10871 return (start
>= dev
->l2ad_start
&& end
<= dev
->l2ad_end
&&
10872 asize
> 0 && asize
<= sizeof (l2arc_log_blk_phys_t
) &&
10873 (!evicted
|| dev
->l2ad_first
));
10877 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10878 * the device. The buffer being inserted must be present in L2ARC.
10879 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10880 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10883 l2arc_log_blk_insert(l2arc_dev_t
*dev
, const arc_buf_hdr_t
*hdr
)
10885 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10886 l2arc_log_ent_phys_t
*le
;
10888 if (dev
->l2ad_log_entries
== 0)
10891 int index
= dev
->l2ad_log_ent_idx
++;
10893 ASSERT3S(index
, <, dev
->l2ad_log_entries
);
10894 ASSERT(HDR_HAS_L2HDR(hdr
));
10896 le
= &lb
->lb_entries
[index
];
10897 bzero(le
, sizeof (*le
));
10898 le
->le_dva
= hdr
->b_dva
;
10899 le
->le_birth
= hdr
->b_birth
;
10900 le
->le_daddr
= hdr
->b_l2hdr
.b_daddr
;
10902 dev
->l2ad_log_blk_payload_start
= le
->le_daddr
;
10903 L2BLK_SET_LSIZE((le
)->le_prop
, HDR_GET_LSIZE(hdr
));
10904 L2BLK_SET_PSIZE((le
)->le_prop
, HDR_GET_PSIZE(hdr
));
10905 L2BLK_SET_COMPRESS((le
)->le_prop
, HDR_GET_COMPRESS(hdr
));
10906 le
->le_complevel
= hdr
->b_complevel
;
10907 L2BLK_SET_TYPE((le
)->le_prop
, hdr
->b_type
);
10908 L2BLK_SET_PROTECTED((le
)->le_prop
, !!(HDR_PROTECTED(hdr
)));
10909 L2BLK_SET_PREFETCH((le
)->le_prop
, !!(HDR_PREFETCH(hdr
)));
10910 L2BLK_SET_STATE((le
)->le_prop
, hdr
->b_l1hdr
.b_state
->arcs_state
);
10912 dev
->l2ad_log_blk_payload_asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10913 HDR_GET_PSIZE(hdr
));
10915 return (dev
->l2ad_log_ent_idx
== dev
->l2ad_log_entries
);
10919 * Checks whether a given L2ARC device address sits in a time-sequential
10920 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10921 * just do a range comparison, we need to handle the situation in which the
10922 * range wraps around the end of the L2ARC device. Arguments:
10923 * bottom -- Lower end of the range to check (written to earlier).
10924 * top -- Upper end of the range to check (written to later).
10925 * check -- The address for which we want to determine if it sits in
10926 * between the top and bottom.
10928 * The 3-way conditional below represents the following cases:
10930 * bottom < top : Sequentially ordered case:
10931 * <check>--------+-------------------+
10932 * | (overlap here?) |
10934 * |---------------<bottom>============<top>--------------|
10936 * bottom > top: Looped-around case:
10937 * <check>--------+------------------+
10938 * | (overlap here?) |
10940 * |===============<top>---------------<bottom>===========|
10943 * +---------------+---------<check>
10945 * top == bottom : Just a single address comparison.
10948 l2arc_range_check_overlap(uint64_t bottom
, uint64_t top
, uint64_t check
)
10951 return (bottom
<= check
&& check
<= top
);
10952 else if (bottom
> top
)
10953 return (check
<= top
|| bottom
<= check
);
10955 return (check
== top
);
10958 EXPORT_SYMBOL(arc_buf_size
);
10959 EXPORT_SYMBOL(arc_write
);
10960 EXPORT_SYMBOL(arc_read
);
10961 EXPORT_SYMBOL(arc_buf_info
);
10962 EXPORT_SYMBOL(arc_getbuf_func
);
10963 EXPORT_SYMBOL(arc_add_prune_callback
);
10964 EXPORT_SYMBOL(arc_remove_prune_callback
);
10966 /* BEGIN CSTYLED */
10967 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min
, param_set_arc_long
,
10968 param_get_long
, ZMOD_RW
, "Min arc size");
10970 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, max
, param_set_arc_long
,
10971 param_get_long
, ZMOD_RW
, "Max arc size");
10973 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_limit
, param_set_arc_long
,
10974 param_get_long
, ZMOD_RW
, "Metadata limit for arc size");
10976 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_limit_percent
,
10977 param_set_arc_long
, param_get_long
, ZMOD_RW
,
10978 "Percent of arc size for arc meta limit");
10980 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_min
, param_set_arc_long
,
10981 param_get_long
, ZMOD_RW
, "Min arc metadata");
10983 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_prune
, INT
, ZMOD_RW
,
10984 "Meta objects to scan for prune");
10986 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_adjust_restarts
, INT
, ZMOD_RW
,
10987 "Limit number of restarts in arc_evict_meta");
10989 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_strategy
, INT
, ZMOD_RW
,
10990 "Meta reclaim strategy");
10992 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, grow_retry
, param_set_arc_int
,
10993 param_get_int
, ZMOD_RW
, "Seconds before growing arc size");
10995 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, p_dampener_disable
, INT
, ZMOD_RW
,
10996 "Disable arc_p adapt dampener");
10998 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, shrink_shift
, param_set_arc_int
,
10999 param_get_int
, ZMOD_RW
, "log2(fraction of arc to reclaim)");
11001 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, pc_percent
, UINT
, ZMOD_RW
,
11002 "Percent of pagecache to reclaim arc to");
11004 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, p_min_shift
, param_set_arc_int
,
11005 param_get_int
, ZMOD_RW
, "arc_c shift to calc min/max arc_p");
11007 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, average_blocksize
, INT
, ZMOD_RD
,
11008 "Target average block size");
11010 ZFS_MODULE_PARAM(zfs
, zfs_
, compressed_arc_enabled
, INT
, ZMOD_RW
,
11011 "Disable compressed arc buffers");
11013 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prefetch_ms
, param_set_arc_int
,
11014 param_get_int
, ZMOD_RW
, "Min life of prefetch block in ms");
11016 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prescient_prefetch_ms
,
11017 param_set_arc_int
, param_get_int
, ZMOD_RW
,
11018 "Min life of prescient prefetched block in ms");
11020 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_max
, ULONG
, ZMOD_RW
,
11021 "Max write bytes per interval");
11023 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_boost
, ULONG
, ZMOD_RW
,
11024 "Extra write bytes during device warmup");
11026 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom
, ULONG
, ZMOD_RW
,
11027 "Number of max device writes to precache");
11029 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom_boost
, ULONG
, ZMOD_RW
,
11030 "Compressed l2arc_headroom multiplier");
11032 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, trim_ahead
, ULONG
, ZMOD_RW
,
11033 "TRIM ahead L2ARC write size multiplier");
11035 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_secs
, ULONG
, ZMOD_RW
,
11036 "Seconds between L2ARC writing");
11038 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_min_ms
, ULONG
, ZMOD_RW
,
11039 "Min feed interval in milliseconds");
11041 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, noprefetch
, INT
, ZMOD_RW
,
11042 "Skip caching prefetched buffers");
11044 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_again
, INT
, ZMOD_RW
,
11045 "Turbo L2ARC warmup");
11047 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, norw
, INT
, ZMOD_RW
,
11048 "No reads during writes");
11050 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, meta_percent
, INT
, ZMOD_RW
,
11051 "Percent of ARC size allowed for L2ARC-only headers");
11053 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_enabled
, INT
, ZMOD_RW
,
11054 "Rebuild the L2ARC when importing a pool");
11056 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_blocks_min_l2size
, ULONG
, ZMOD_RW
,
11057 "Min size in bytes to write rebuild log blocks in L2ARC");
11059 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, mfuonly
, INT
, ZMOD_RW
,
11060 "Cache only MFU data from ARC into L2ARC");
11062 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, lotsfree_percent
, param_set_arc_int
,
11063 param_get_int
, ZMOD_RW
, "System free memory I/O throttle in bytes");
11065 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, sys_free
, param_set_arc_long
,
11066 param_get_long
, ZMOD_RW
, "System free memory target size in bytes");
11068 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit
, param_set_arc_long
,
11069 param_get_long
, ZMOD_RW
, "Minimum bytes of dnodes in arc");
11071 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit_percent
,
11072 param_set_arc_long
, param_get_long
, ZMOD_RW
,
11073 "Percent of ARC meta buffers for dnodes");
11075 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, dnode_reduce_percent
, ULONG
, ZMOD_RW
,
11076 "Percentage of excess dnodes to try to unpin");
11078 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, eviction_pct
, INT
, ZMOD_RW
,
11079 "When full, ARC allocation waits for eviction of this % of alloc size");
11081 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, evict_batch_limit
, INT
, ZMOD_RW
,
11082 "The number of headers to evict per sublist before moving to the next");