Add zpool status -s (slow I/Os) and -p (parseable)
[zfs.git] / module / zfs / vdev_label.c
blobb3425cf2624333884859110bdc1f8b5b0f350df1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
30 * Virtual Device Labels
31 * ---------------------
33 * The vdev label serves several distinct purposes:
35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
36 * identity within the pool.
38 * 2. Verify that all the devices given in a configuration are present
39 * within the pool.
41 * 3. Determine the uberblock for the pool.
43 * 4. In case of an import operation, determine the configuration of the
44 * toplevel vdev of which it is a part.
46 * 5. If an import operation cannot find all the devices in the pool,
47 * provide enough information to the administrator to determine which
48 * devices are missing.
50 * It is important to note that while the kernel is responsible for writing the
51 * label, it only consumes the information in the first three cases. The
52 * latter information is only consumed in userland when determining the
53 * configuration to import a pool.
56 * Label Organization
57 * ------------------
59 * Before describing the contents of the label, it's important to understand how
60 * the labels are written and updated with respect to the uberblock.
62 * When the pool configuration is altered, either because it was newly created
63 * or a device was added, we want to update all the labels such that we can deal
64 * with fatal failure at any point. To this end, each disk has two labels which
65 * are updated before and after the uberblock is synced. Assuming we have
66 * labels and an uberblock with the following transaction groups:
68 * L1 UB L2
69 * +------+ +------+ +------+
70 * | | | | | |
71 * | t10 | | t10 | | t10 |
72 * | | | | | |
73 * +------+ +------+ +------+
75 * In this stable state, the labels and the uberblock were all updated within
76 * the same transaction group (10). Each label is mirrored and checksummed, so
77 * that we can detect when we fail partway through writing the label.
79 * In order to identify which labels are valid, the labels are written in the
80 * following manner:
82 * 1. For each vdev, update 'L1' to the new label
83 * 2. Update the uberblock
84 * 3. For each vdev, update 'L2' to the new label
86 * Given arbitrary failure, we can determine the correct label to use based on
87 * the transaction group. If we fail after updating L1 but before updating the
88 * UB, we will notice that L1's transaction group is greater than the uberblock,
89 * so L2 must be valid. If we fail after writing the uberblock but before
90 * writing L2, we will notice that L2's transaction group is less than L1, and
91 * therefore L1 is valid.
93 * Another added complexity is that not every label is updated when the config
94 * is synced. If we add a single device, we do not want to have to re-write
95 * every label for every device in the pool. This means that both L1 and L2 may
96 * be older than the pool uberblock, because the necessary information is stored
97 * on another vdev.
100 * On-disk Format
101 * --------------
103 * The vdev label consists of two distinct parts, and is wrapped within the
104 * vdev_label_t structure. The label includes 8k of padding to permit legacy
105 * VTOC disk labels, but is otherwise ignored.
107 * The first half of the label is a packed nvlist which contains pool wide
108 * properties, per-vdev properties, and configuration information. It is
109 * described in more detail below.
111 * The latter half of the label consists of a redundant array of uberblocks.
112 * These uberblocks are updated whenever a transaction group is committed,
113 * or when the configuration is updated. When a pool is loaded, we scan each
114 * vdev for the 'best' uberblock.
117 * Configuration Information
118 * -------------------------
120 * The nvlist describing the pool and vdev contains the following elements:
122 * version ZFS on-disk version
123 * name Pool name
124 * state Pool state
125 * txg Transaction group in which this label was written
126 * pool_guid Unique identifier for this pool
127 * vdev_tree An nvlist describing vdev tree.
128 * features_for_read
129 * An nvlist of the features necessary for reading the MOS.
131 * Each leaf device label also contains the following:
133 * top_guid Unique ID for top-level vdev in which this is contained
134 * guid Unique ID for the leaf vdev
136 * The 'vs' configuration follows the format described in 'spa_config.c'.
139 #include <sys/zfs_context.h>
140 #include <sys/spa.h>
141 #include <sys/spa_impl.h>
142 #include <sys/dmu.h>
143 #include <sys/zap.h>
144 #include <sys/vdev.h>
145 #include <sys/vdev_impl.h>
146 #include <sys/uberblock_impl.h>
147 #include <sys/metaslab.h>
148 #include <sys/metaslab_impl.h>
149 #include <sys/zio.h>
150 #include <sys/dsl_scan.h>
151 #include <sys/abd.h>
152 #include <sys/fs/zfs.h>
155 * Basic routines to read and write from a vdev label.
156 * Used throughout the rest of this file.
158 uint64_t
159 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
161 ASSERT(offset < sizeof (vdev_label_t));
162 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
164 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
165 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
169 * Returns back the vdev label associated with the passed in offset.
172 vdev_label_number(uint64_t psize, uint64_t offset)
174 int l;
176 if (offset >= psize - VDEV_LABEL_END_SIZE) {
177 offset -= psize - VDEV_LABEL_END_SIZE;
178 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
180 l = offset / sizeof (vdev_label_t);
181 return (l < VDEV_LABELS ? l : -1);
184 static void
185 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
186 uint64_t size, zio_done_func_t *done, void *private, int flags)
188 ASSERT(
189 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
190 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
191 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
193 zio_nowait(zio_read_phys(zio, vd,
194 vdev_label_offset(vd->vdev_psize, l, offset),
195 size, buf, ZIO_CHECKSUM_LABEL, done, private,
196 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
199 void
200 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
201 uint64_t size, zio_done_func_t *done, void *private, int flags)
203 ASSERT(
204 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
205 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
206 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
208 zio_nowait(zio_write_phys(zio, vd,
209 vdev_label_offset(vd->vdev_psize, l, offset),
210 size, buf, ZIO_CHECKSUM_LABEL, done, private,
211 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
215 * Generate the nvlist representing this vdev's stats
217 void
218 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
220 nvlist_t *nvx;
221 vdev_stat_t *vs;
222 vdev_stat_ex_t *vsx;
224 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
225 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
227 vdev_get_stats_ex(vd, vs, vsx);
228 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
229 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
231 kmem_free(vs, sizeof (*vs));
234 * Add extended stats into a special extended stats nvlist. This keeps
235 * all the extended stats nicely grouped together. The extended stats
236 * nvlist is then added to the main nvlist.
238 nvx = fnvlist_alloc();
240 /* ZIOs in flight to disk */
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
254 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
256 /* ZIOs pending */
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
270 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
272 /* Histograms */
273 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
274 vsx->vsx_total_histo[ZIO_TYPE_READ],
275 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
277 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
278 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
279 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
281 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
282 vsx->vsx_disk_histo[ZIO_TYPE_READ],
283 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
285 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
286 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
287 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
289 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
290 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
291 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
293 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
294 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
295 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
297 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
298 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
299 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
301 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
302 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
303 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
305 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
306 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
307 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
309 /* Request sizes */
310 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
311 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
312 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
314 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
315 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
316 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
318 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
319 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
320 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
322 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
323 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
324 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
326 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
327 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
328 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
330 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
331 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
332 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
334 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
335 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
336 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
338 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
339 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
340 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
342 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
343 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
344 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
346 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
347 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
348 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
350 /* IO delays */
351 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
353 /* Add extended stats nvlist to main nvlist */
354 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
356 fnvlist_free(nvx);
357 kmem_free(vsx, sizeof (*vsx));
360 static void
361 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
363 spa_t *spa = vd->vdev_spa;
365 if (vd != spa->spa_root_vdev)
366 return;
368 /* provide either current or previous scan information */
369 pool_scan_stat_t ps;
370 if (spa_scan_get_stats(spa, &ps) == 0) {
371 fnvlist_add_uint64_array(nvl,
372 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
373 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
376 pool_removal_stat_t prs;
377 if (spa_removal_get_stats(spa, &prs) == 0) {
378 fnvlist_add_uint64_array(nvl,
379 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
380 sizeof (prs) / sizeof (uint64_t));
383 pool_checkpoint_stat_t pcs;
384 if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
385 fnvlist_add_uint64_array(nvl,
386 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
387 sizeof (pcs) / sizeof (uint64_t));
392 * Generate the nvlist representing this vdev's config.
394 nvlist_t *
395 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
396 vdev_config_flag_t flags)
398 nvlist_t *nv = NULL;
399 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
401 nv = fnvlist_alloc();
403 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
404 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
405 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
406 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
408 if (vd->vdev_path != NULL)
409 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
411 if (vd->vdev_devid != NULL)
412 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
414 if (vd->vdev_physpath != NULL)
415 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
416 vd->vdev_physpath);
418 if (vd->vdev_enc_sysfs_path != NULL)
419 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
420 vd->vdev_enc_sysfs_path);
422 if (vd->vdev_fru != NULL)
423 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
425 if (vd->vdev_nparity != 0) {
426 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
427 VDEV_TYPE_RAIDZ) == 0);
430 * Make sure someone hasn't managed to sneak a fancy new vdev
431 * into a crufty old storage pool.
433 ASSERT(vd->vdev_nparity == 1 ||
434 (vd->vdev_nparity <= 2 &&
435 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
436 (vd->vdev_nparity <= 3 &&
437 spa_version(spa) >= SPA_VERSION_RAIDZ3));
440 * Note that we'll add the nparity tag even on storage pools
441 * that only support a single parity device -- older software
442 * will just ignore it.
444 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
447 if (vd->vdev_wholedisk != -1ULL)
448 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
449 vd->vdev_wholedisk);
451 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
452 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
454 if (vd->vdev_isspare)
455 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
457 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
458 vd == vd->vdev_top) {
459 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
460 vd->vdev_ms_array);
461 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
462 vd->vdev_ms_shift);
463 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
464 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
465 vd->vdev_asize);
466 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
467 if (vd->vdev_removing) {
468 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
469 vd->vdev_removing);
472 /* zpool command expects alloc class data */
473 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
474 const char *bias = NULL;
476 switch (vd->vdev_alloc_bias) {
477 case VDEV_BIAS_LOG:
478 bias = VDEV_ALLOC_BIAS_LOG;
479 break;
480 case VDEV_BIAS_SPECIAL:
481 bias = VDEV_ALLOC_BIAS_SPECIAL;
482 break;
483 case VDEV_BIAS_DEDUP:
484 bias = VDEV_ALLOC_BIAS_DEDUP;
485 break;
486 default:
487 ASSERT3U(vd->vdev_alloc_bias, ==,
488 VDEV_BIAS_NONE);
490 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
491 bias);
495 if (vd->vdev_dtl_sm != NULL) {
496 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
497 space_map_object(vd->vdev_dtl_sm));
500 if (vic->vic_mapping_object != 0) {
501 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
502 vic->vic_mapping_object);
505 if (vic->vic_births_object != 0) {
506 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
507 vic->vic_births_object);
510 if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
511 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
512 vic->vic_prev_indirect_vdev);
515 if (vd->vdev_crtxg)
516 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
518 if (flags & VDEV_CONFIG_MOS) {
519 if (vd->vdev_leaf_zap != 0) {
520 ASSERT(vd->vdev_ops->vdev_op_leaf);
521 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
522 vd->vdev_leaf_zap);
525 if (vd->vdev_top_zap != 0) {
526 ASSERT(vd == vd->vdev_top);
527 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
528 vd->vdev_top_zap);
531 if (vd->vdev_resilver_deferred) {
532 ASSERT(vd->vdev_ops->vdev_op_leaf);
533 ASSERT(spa->spa_resilver_deferred);
534 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
538 if (getstats) {
539 vdev_config_generate_stats(vd, nv);
541 root_vdev_actions_getprogress(vd, nv);
544 * Note: this can be called from open context
545 * (spa_get_stats()), so we need the rwlock to prevent
546 * the mapping from being changed by condensing.
548 rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
549 if (vd->vdev_indirect_mapping != NULL) {
550 ASSERT(vd->vdev_indirect_births != NULL);
551 vdev_indirect_mapping_t *vim =
552 vd->vdev_indirect_mapping;
553 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
554 vdev_indirect_mapping_size(vim));
556 rw_exit(&vd->vdev_indirect_rwlock);
557 if (vd->vdev_mg != NULL &&
558 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
560 * Compute approximately how much memory would be used
561 * for the indirect mapping if this device were to
562 * be removed.
564 * Note: If the frag metric is invalid, then not
565 * enough metaslabs have been converted to have
566 * histograms.
568 uint64_t seg_count = 0;
569 uint64_t to_alloc = vd->vdev_stat.vs_alloc;
572 * There are the same number of allocated segments
573 * as free segments, so we will have at least one
574 * entry per free segment. However, small free
575 * segments (smaller than vdev_removal_max_span)
576 * will be combined with adjacent allocated segments
577 * as a single mapping.
579 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
580 if (1ULL << (i + 1) < vdev_removal_max_span) {
581 to_alloc +=
582 vd->vdev_mg->mg_histogram[i] <<
583 (i + 1);
584 } else {
585 seg_count +=
586 vd->vdev_mg->mg_histogram[i];
591 * The maximum length of a mapping is
592 * zfs_remove_max_segment, so we need at least one entry
593 * per zfs_remove_max_segment of allocated data.
595 seg_count += to_alloc / zfs_remove_max_segment;
597 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
598 seg_count *
599 sizeof (vdev_indirect_mapping_entry_phys_t));
603 if (!vd->vdev_ops->vdev_op_leaf) {
604 nvlist_t **child;
605 int c, idx;
607 ASSERT(!vd->vdev_ishole);
609 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
610 KM_SLEEP);
612 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
613 vdev_t *cvd = vd->vdev_child[c];
616 * If we're generating an nvlist of removing
617 * vdevs then skip over any device which is
618 * not being removed.
620 if ((flags & VDEV_CONFIG_REMOVING) &&
621 !cvd->vdev_removing)
622 continue;
624 child[idx++] = vdev_config_generate(spa, cvd,
625 getstats, flags);
628 if (idx) {
629 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
630 child, idx);
633 for (c = 0; c < idx; c++)
634 nvlist_free(child[c]);
636 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
638 } else {
639 const char *aux = NULL;
641 if (vd->vdev_offline && !vd->vdev_tmpoffline)
642 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
643 if (vd->vdev_resilver_txg != 0)
644 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
645 vd->vdev_resilver_txg);
646 if (vd->vdev_faulted)
647 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
648 if (vd->vdev_degraded)
649 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
650 if (vd->vdev_removed)
651 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
652 if (vd->vdev_unspare)
653 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
654 if (vd->vdev_ishole)
655 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
657 /* Set the reason why we're FAULTED/DEGRADED. */
658 switch (vd->vdev_stat.vs_aux) {
659 case VDEV_AUX_ERR_EXCEEDED:
660 aux = "err_exceeded";
661 break;
663 case VDEV_AUX_EXTERNAL:
664 aux = "external";
665 break;
668 if (aux != NULL && !vd->vdev_tmpoffline) {
669 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
670 } else {
672 * We're healthy - clear any previous AUX_STATE values.
674 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
675 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
678 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
679 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
680 vd->vdev_orig_guid);
684 return (nv);
688 * Generate a view of the top-level vdevs. If we currently have holes
689 * in the namespace, then generate an array which contains a list of holey
690 * vdevs. Additionally, add the number of top-level children that currently
691 * exist.
693 void
694 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
696 vdev_t *rvd = spa->spa_root_vdev;
697 uint64_t *array;
698 uint_t c, idx;
700 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
702 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
703 vdev_t *tvd = rvd->vdev_child[c];
705 if (tvd->vdev_ishole) {
706 array[idx++] = c;
710 if (idx) {
711 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
712 array, idx) == 0);
715 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
716 rvd->vdev_children) == 0);
718 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
722 * Returns the configuration from the label of the given vdev. For vdevs
723 * which don't have a txg value stored on their label (i.e. spares/cache)
724 * or have not been completely initialized (txg = 0) just return
725 * the configuration from the first valid label we find. Otherwise,
726 * find the most up-to-date label that does not exceed the specified
727 * 'txg' value.
729 nvlist_t *
730 vdev_label_read_config(vdev_t *vd, uint64_t txg)
732 spa_t *spa = vd->vdev_spa;
733 nvlist_t *config = NULL;
734 vdev_phys_t *vp;
735 abd_t *vp_abd;
736 zio_t *zio;
737 uint64_t best_txg = 0;
738 uint64_t label_txg = 0;
739 int error = 0;
740 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
741 ZIO_FLAG_SPECULATIVE;
743 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
745 if (!vdev_readable(vd))
746 return (NULL);
748 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
749 vp = abd_to_buf(vp_abd);
751 retry:
752 for (int l = 0; l < VDEV_LABELS; l++) {
753 nvlist_t *label = NULL;
755 zio = zio_root(spa, NULL, NULL, flags);
757 vdev_label_read(zio, vd, l, vp_abd,
758 offsetof(vdev_label_t, vl_vdev_phys),
759 sizeof (vdev_phys_t), NULL, NULL, flags);
761 if (zio_wait(zio) == 0 &&
762 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
763 &label, 0) == 0) {
765 * Auxiliary vdevs won't have txg values in their
766 * labels and newly added vdevs may not have been
767 * completely initialized so just return the
768 * configuration from the first valid label we
769 * encounter.
771 error = nvlist_lookup_uint64(label,
772 ZPOOL_CONFIG_POOL_TXG, &label_txg);
773 if ((error || label_txg == 0) && !config) {
774 config = label;
775 break;
776 } else if (label_txg <= txg && label_txg > best_txg) {
777 best_txg = label_txg;
778 nvlist_free(config);
779 config = fnvlist_dup(label);
783 if (label != NULL) {
784 nvlist_free(label);
785 label = NULL;
789 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
790 flags |= ZIO_FLAG_TRYHARD;
791 goto retry;
795 * We found a valid label but it didn't pass txg restrictions.
797 if (config == NULL && label_txg != 0) {
798 vdev_dbgmsg(vd, "label discarded as txg is too large "
799 "(%llu > %llu)", (u_longlong_t)label_txg,
800 (u_longlong_t)txg);
803 abd_free(vp_abd);
805 return (config);
809 * Determine if a device is in use. The 'spare_guid' parameter will be filled
810 * in with the device guid if this spare is active elsewhere on the system.
812 static boolean_t
813 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
814 uint64_t *spare_guid, uint64_t *l2cache_guid)
816 spa_t *spa = vd->vdev_spa;
817 uint64_t state, pool_guid, device_guid, txg, spare_pool;
818 uint64_t vdtxg = 0;
819 nvlist_t *label;
821 if (spare_guid)
822 *spare_guid = 0ULL;
823 if (l2cache_guid)
824 *l2cache_guid = 0ULL;
827 * Read the label, if any, and perform some basic sanity checks.
829 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
830 return (B_FALSE);
832 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
833 &vdtxg);
835 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
836 &state) != 0 ||
837 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
838 &device_guid) != 0) {
839 nvlist_free(label);
840 return (B_FALSE);
843 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
844 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
845 &pool_guid) != 0 ||
846 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
847 &txg) != 0)) {
848 nvlist_free(label);
849 return (B_FALSE);
852 nvlist_free(label);
855 * Check to see if this device indeed belongs to the pool it claims to
856 * be a part of. The only way this is allowed is if the device is a hot
857 * spare (which we check for later on).
859 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
860 !spa_guid_exists(pool_guid, device_guid) &&
861 !spa_spare_exists(device_guid, NULL, NULL) &&
862 !spa_l2cache_exists(device_guid, NULL))
863 return (B_FALSE);
866 * If the transaction group is zero, then this an initialized (but
867 * unused) label. This is only an error if the create transaction
868 * on-disk is the same as the one we're using now, in which case the
869 * user has attempted to add the same vdev multiple times in the same
870 * transaction.
872 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
873 txg == 0 && vdtxg == crtxg)
874 return (B_TRUE);
877 * Check to see if this is a spare device. We do an explicit check for
878 * spa_has_spare() here because it may be on our pending list of spares
879 * to add. We also check if it is an l2cache device.
881 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
882 spa_has_spare(spa, device_guid)) {
883 if (spare_guid)
884 *spare_guid = device_guid;
886 switch (reason) {
887 case VDEV_LABEL_CREATE:
888 case VDEV_LABEL_L2CACHE:
889 return (B_TRUE);
891 case VDEV_LABEL_REPLACE:
892 return (!spa_has_spare(spa, device_guid) ||
893 spare_pool != 0ULL);
895 case VDEV_LABEL_SPARE:
896 return (spa_has_spare(spa, device_guid));
897 default:
898 break;
903 * Check to see if this is an l2cache device.
905 if (spa_l2cache_exists(device_guid, NULL))
906 return (B_TRUE);
909 * We can't rely on a pool's state if it's been imported
910 * read-only. Instead we look to see if the pools is marked
911 * read-only in the namespace and set the state to active.
913 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
914 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
915 spa_mode(spa) == FREAD)
916 state = POOL_STATE_ACTIVE;
919 * If the device is marked ACTIVE, then this device is in use by another
920 * pool on the system.
922 return (state == POOL_STATE_ACTIVE);
926 * Initialize a vdev label. We check to make sure each leaf device is not in
927 * use, and writable. We put down an initial label which we will later
928 * overwrite with a complete label. Note that it's important to do this
929 * sequentially, not in parallel, so that we catch cases of multiple use of the
930 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
931 * itself.
934 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
936 spa_t *spa = vd->vdev_spa;
937 nvlist_t *label;
938 vdev_phys_t *vp;
939 abd_t *vp_abd;
940 abd_t *pad2;
941 uberblock_t *ub;
942 abd_t *ub_abd;
943 zio_t *zio;
944 char *buf;
945 size_t buflen;
946 int error;
947 uint64_t spare_guid = 0, l2cache_guid = 0;
948 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
950 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
952 for (int c = 0; c < vd->vdev_children; c++)
953 if ((error = vdev_label_init(vd->vdev_child[c],
954 crtxg, reason)) != 0)
955 return (error);
957 /* Track the creation time for this vdev */
958 vd->vdev_crtxg = crtxg;
960 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
961 return (0);
964 * Dead vdevs cannot be initialized.
966 if (vdev_is_dead(vd))
967 return (SET_ERROR(EIO));
970 * Determine if the vdev is in use.
972 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
973 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
974 return (SET_ERROR(EBUSY));
977 * If this is a request to add or replace a spare or l2cache device
978 * that is in use elsewhere on the system, then we must update the
979 * guid (which was initialized to a random value) to reflect the
980 * actual GUID (which is shared between multiple pools).
982 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
983 spare_guid != 0ULL) {
984 uint64_t guid_delta = spare_guid - vd->vdev_guid;
986 vd->vdev_guid += guid_delta;
988 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
989 pvd->vdev_guid_sum += guid_delta;
992 * If this is a replacement, then we want to fallthrough to the
993 * rest of the code. If we're adding a spare, then it's already
994 * labeled appropriately and we can just return.
996 if (reason == VDEV_LABEL_SPARE)
997 return (0);
998 ASSERT(reason == VDEV_LABEL_REPLACE ||
999 reason == VDEV_LABEL_SPLIT);
1002 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1003 l2cache_guid != 0ULL) {
1004 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1006 vd->vdev_guid += guid_delta;
1008 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1009 pvd->vdev_guid_sum += guid_delta;
1012 * If this is a replacement, then we want to fallthrough to the
1013 * rest of the code. If we're adding an l2cache, then it's
1014 * already labeled appropriately and we can just return.
1016 if (reason == VDEV_LABEL_L2CACHE)
1017 return (0);
1018 ASSERT(reason == VDEV_LABEL_REPLACE);
1022 * Initialize its label.
1024 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1025 abd_zero(vp_abd, sizeof (vdev_phys_t));
1026 vp = abd_to_buf(vp_abd);
1029 * Generate a label describing the pool and our top-level vdev.
1030 * We mark it as being from txg 0 to indicate that it's not
1031 * really part of an active pool just yet. The labels will
1032 * be written again with a meaningful txg by spa_sync().
1034 if (reason == VDEV_LABEL_SPARE ||
1035 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1037 * For inactive hot spares, we generate a special label that
1038 * identifies as a mutually shared hot spare. We write the
1039 * label if we are adding a hot spare, or if we are removing an
1040 * active hot spare (in which case we want to revert the
1041 * labels).
1043 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1045 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1046 spa_version(spa)) == 0);
1047 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1048 POOL_STATE_SPARE) == 0);
1049 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1050 vd->vdev_guid) == 0);
1051 } else if (reason == VDEV_LABEL_L2CACHE ||
1052 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1054 * For level 2 ARC devices, add a special label.
1056 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1058 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1059 spa_version(spa)) == 0);
1060 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1061 POOL_STATE_L2CACHE) == 0);
1062 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1063 vd->vdev_guid) == 0);
1064 } else {
1065 uint64_t txg = 0ULL;
1067 if (reason == VDEV_LABEL_SPLIT)
1068 txg = spa->spa_uberblock.ub_txg;
1069 label = spa_config_generate(spa, vd, txg, B_FALSE);
1072 * Add our creation time. This allows us to detect multiple
1073 * vdev uses as described above, and automatically expires if we
1074 * fail.
1076 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1077 crtxg) == 0);
1080 buf = vp->vp_nvlist;
1081 buflen = sizeof (vp->vp_nvlist);
1083 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1084 if (error != 0) {
1085 nvlist_free(label);
1086 abd_free(vp_abd);
1087 /* EFAULT means nvlist_pack ran out of room */
1088 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1092 * Initialize uberblock template.
1094 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1095 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1096 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1097 ub = abd_to_buf(ub_abd);
1098 ub->ub_txg = 0;
1100 /* Initialize the 2nd padding area. */
1101 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1102 abd_zero(pad2, VDEV_PAD_SIZE);
1105 * Write everything in parallel.
1107 retry:
1108 zio = zio_root(spa, NULL, NULL, flags);
1110 for (int l = 0; l < VDEV_LABELS; l++) {
1112 vdev_label_write(zio, vd, l, vp_abd,
1113 offsetof(vdev_label_t, vl_vdev_phys),
1114 sizeof (vdev_phys_t), NULL, NULL, flags);
1117 * Skip the 1st padding area.
1118 * Zero out the 2nd padding area where it might have
1119 * left over data from previous filesystem format.
1121 vdev_label_write(zio, vd, l, pad2,
1122 offsetof(vdev_label_t, vl_pad2),
1123 VDEV_PAD_SIZE, NULL, NULL, flags);
1125 vdev_label_write(zio, vd, l, ub_abd,
1126 offsetof(vdev_label_t, vl_uberblock),
1127 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1130 error = zio_wait(zio);
1132 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1133 flags |= ZIO_FLAG_TRYHARD;
1134 goto retry;
1137 nvlist_free(label);
1138 abd_free(pad2);
1139 abd_free(ub_abd);
1140 abd_free(vp_abd);
1143 * If this vdev hasn't been previously identified as a spare, then we
1144 * mark it as such only if a) we are labeling it as a spare, or b) it
1145 * exists as a spare elsewhere in the system. Do the same for
1146 * level 2 ARC devices.
1148 if (error == 0 && !vd->vdev_isspare &&
1149 (reason == VDEV_LABEL_SPARE ||
1150 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1151 spa_spare_add(vd);
1153 if (error == 0 && !vd->vdev_isl2cache &&
1154 (reason == VDEV_LABEL_L2CACHE ||
1155 spa_l2cache_exists(vd->vdev_guid, NULL)))
1156 spa_l2cache_add(vd);
1158 return (error);
1162 * ==========================================================================
1163 * uberblock load/sync
1164 * ==========================================================================
1168 * Consider the following situation: txg is safely synced to disk. We've
1169 * written the first uberblock for txg + 1, and then we lose power. When we
1170 * come back up, we fail to see the uberblock for txg + 1 because, say,
1171 * it was on a mirrored device and the replica to which we wrote txg + 1
1172 * is now offline. If we then make some changes and sync txg + 1, and then
1173 * the missing replica comes back, then for a few seconds we'll have two
1174 * conflicting uberblocks on disk with the same txg. The solution is simple:
1175 * among uberblocks with equal txg, choose the one with the latest timestamp.
1177 static int
1178 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1180 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1181 if (likely(cmp))
1182 return (cmp);
1184 return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
1187 struct ubl_cbdata {
1188 uberblock_t *ubl_ubbest; /* Best uberblock */
1189 vdev_t *ubl_vd; /* vdev associated with the above */
1192 static void
1193 vdev_uberblock_load_done(zio_t *zio)
1195 vdev_t *vd = zio->io_vd;
1196 spa_t *spa = zio->io_spa;
1197 zio_t *rio = zio->io_private;
1198 uberblock_t *ub = abd_to_buf(zio->io_abd);
1199 struct ubl_cbdata *cbp = rio->io_private;
1201 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1203 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1204 mutex_enter(&rio->io_lock);
1205 if (ub->ub_txg <= spa->spa_load_max_txg &&
1206 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1208 * Keep track of the vdev in which this uberblock
1209 * was found. We will use this information later
1210 * to obtain the config nvlist associated with
1211 * this uberblock.
1213 *cbp->ubl_ubbest = *ub;
1214 cbp->ubl_vd = vd;
1216 mutex_exit(&rio->io_lock);
1219 abd_free(zio->io_abd);
1222 static void
1223 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1224 struct ubl_cbdata *cbp)
1226 for (int c = 0; c < vd->vdev_children; c++)
1227 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1229 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1230 for (int l = 0; l < VDEV_LABELS; l++) {
1231 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1232 vdev_label_read(zio, vd, l,
1233 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1234 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1235 VDEV_UBERBLOCK_SIZE(vd),
1236 vdev_uberblock_load_done, zio, flags);
1243 * Reads the 'best' uberblock from disk along with its associated
1244 * configuration. First, we read the uberblock array of each label of each
1245 * vdev, keeping track of the uberblock with the highest txg in each array.
1246 * Then, we read the configuration from the same vdev as the best uberblock.
1248 void
1249 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1251 zio_t *zio;
1252 spa_t *spa = rvd->vdev_spa;
1253 struct ubl_cbdata cb;
1254 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1255 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1257 ASSERT(ub);
1258 ASSERT(config);
1260 bzero(ub, sizeof (uberblock_t));
1261 *config = NULL;
1263 cb.ubl_ubbest = ub;
1264 cb.ubl_vd = NULL;
1266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1267 zio = zio_root(spa, NULL, &cb, flags);
1268 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1269 (void) zio_wait(zio);
1272 * It's possible that the best uberblock was discovered on a label
1273 * that has a configuration which was written in a future txg.
1274 * Search all labels on this vdev to find the configuration that
1275 * matches the txg for our uberblock.
1277 if (cb.ubl_vd != NULL) {
1278 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1279 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1281 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1282 if (*config == NULL && spa->spa_extreme_rewind) {
1283 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1284 "Trying again without txg restrictions.");
1285 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1287 if (*config == NULL) {
1288 vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1291 spa_config_exit(spa, SCL_ALL, FTAG);
1295 * For use when a leaf vdev is expanded.
1296 * The location of labels 2 and 3 changed, and at the new location the
1297 * uberblock rings are either empty or contain garbage. The sync will write
1298 * new configs there because the vdev is dirty, but expansion also needs the
1299 * uberblock rings copied. Read them from label 0 which did not move.
1301 * Since the point is to populate labels {2,3} with valid uberblocks,
1302 * we zero uberblocks we fail to read or which are not valid.
1305 static void
1306 vdev_copy_uberblocks(vdev_t *vd)
1308 abd_t *ub_abd;
1309 zio_t *write_zio;
1310 int locks = (SCL_L2ARC | SCL_ZIO);
1311 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1312 ZIO_FLAG_SPECULATIVE;
1314 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1315 SCL_STATE);
1316 ASSERT(vd->vdev_ops->vdev_op_leaf);
1318 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1320 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1322 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1323 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1324 const int src_label = 0;
1325 zio_t *zio;
1327 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1328 vdev_label_read(zio, vd, src_label, ub_abd,
1329 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1330 NULL, NULL, flags);
1332 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1333 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1335 for (int l = 2; l < VDEV_LABELS; l++)
1336 vdev_label_write(write_zio, vd, l, ub_abd,
1337 VDEV_UBERBLOCK_OFFSET(vd, n),
1338 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1339 flags | ZIO_FLAG_DONT_PROPAGATE);
1341 (void) zio_wait(write_zio);
1343 spa_config_exit(vd->vdev_spa, locks, FTAG);
1345 abd_free(ub_abd);
1349 * On success, increment root zio's count of good writes.
1350 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1352 static void
1353 vdev_uberblock_sync_done(zio_t *zio)
1355 uint64_t *good_writes = zio->io_private;
1357 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1358 atomic_inc_64(good_writes);
1362 * Write the uberblock to all labels of all leaves of the specified vdev.
1364 static void
1365 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1366 uberblock_t *ub, vdev_t *vd, int flags)
1368 for (uint64_t c = 0; c < vd->vdev_children; c++) {
1369 vdev_uberblock_sync(zio, good_writes,
1370 ub, vd->vdev_child[c], flags);
1373 if (!vd->vdev_ops->vdev_op_leaf)
1374 return;
1376 if (!vdev_writeable(vd))
1377 return;
1379 /* If the vdev was expanded, need to copy uberblock rings. */
1380 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1381 vd->vdev_copy_uberblocks == B_TRUE) {
1382 vdev_copy_uberblocks(vd);
1383 vd->vdev_copy_uberblocks = B_FALSE;
1386 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1387 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1389 /* Copy the uberblock_t into the ABD */
1390 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1391 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1392 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1394 for (int l = 0; l < VDEV_LABELS; l++)
1395 vdev_label_write(zio, vd, l, ub_abd,
1396 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1397 vdev_uberblock_sync_done, good_writes,
1398 flags | ZIO_FLAG_DONT_PROPAGATE);
1400 abd_free(ub_abd);
1403 /* Sync the uberblocks to all vdevs in svd[] */
1405 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1407 spa_t *spa = svd[0]->vdev_spa;
1408 zio_t *zio;
1409 uint64_t good_writes = 0;
1411 zio = zio_root(spa, NULL, NULL, flags);
1413 for (int v = 0; v < svdcount; v++)
1414 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1416 (void) zio_wait(zio);
1419 * Flush the uberblocks to disk. This ensures that the odd labels
1420 * are no longer needed (because the new uberblocks and the even
1421 * labels are safely on disk), so it is safe to overwrite them.
1423 zio = zio_root(spa, NULL, NULL, flags);
1425 for (int v = 0; v < svdcount; v++) {
1426 if (vdev_writeable(svd[v])) {
1427 zio_flush(zio, svd[v]);
1431 (void) zio_wait(zio);
1433 return (good_writes >= 1 ? 0 : EIO);
1437 * On success, increment the count of good writes for our top-level vdev.
1439 static void
1440 vdev_label_sync_done(zio_t *zio)
1442 uint64_t *good_writes = zio->io_private;
1444 if (zio->io_error == 0)
1445 atomic_inc_64(good_writes);
1449 * If there weren't enough good writes, indicate failure to the parent.
1451 static void
1452 vdev_label_sync_top_done(zio_t *zio)
1454 uint64_t *good_writes = zio->io_private;
1456 if (*good_writes == 0)
1457 zio->io_error = SET_ERROR(EIO);
1459 kmem_free(good_writes, sizeof (uint64_t));
1463 * We ignore errors for log and cache devices, simply free the private data.
1465 static void
1466 vdev_label_sync_ignore_done(zio_t *zio)
1468 kmem_free(zio->io_private, sizeof (uint64_t));
1472 * Write all even or odd labels to all leaves of the specified vdev.
1474 static void
1475 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1476 vdev_t *vd, int l, uint64_t txg, int flags)
1478 nvlist_t *label;
1479 vdev_phys_t *vp;
1480 abd_t *vp_abd;
1481 char *buf;
1482 size_t buflen;
1484 for (int c = 0; c < vd->vdev_children; c++) {
1485 vdev_label_sync(zio, good_writes,
1486 vd->vdev_child[c], l, txg, flags);
1489 if (!vd->vdev_ops->vdev_op_leaf)
1490 return;
1492 if (!vdev_writeable(vd))
1493 return;
1496 * Generate a label describing the top-level config to which we belong.
1498 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1500 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1501 abd_zero(vp_abd, sizeof (vdev_phys_t));
1502 vp = abd_to_buf(vp_abd);
1504 buf = vp->vp_nvlist;
1505 buflen = sizeof (vp->vp_nvlist);
1507 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1508 for (; l < VDEV_LABELS; l += 2) {
1509 vdev_label_write(zio, vd, l, vp_abd,
1510 offsetof(vdev_label_t, vl_vdev_phys),
1511 sizeof (vdev_phys_t),
1512 vdev_label_sync_done, good_writes,
1513 flags | ZIO_FLAG_DONT_PROPAGATE);
1517 abd_free(vp_abd);
1518 nvlist_free(label);
1522 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1524 list_t *dl = &spa->spa_config_dirty_list;
1525 vdev_t *vd;
1526 zio_t *zio;
1527 int error;
1530 * Write the new labels to disk.
1532 zio = zio_root(spa, NULL, NULL, flags);
1534 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1535 uint64_t *good_writes;
1537 ASSERT(!vd->vdev_ishole);
1539 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1540 zio_t *vio = zio_null(zio, spa, NULL,
1541 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1542 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1543 good_writes, flags);
1544 vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1545 zio_nowait(vio);
1548 error = zio_wait(zio);
1551 * Flush the new labels to disk.
1553 zio = zio_root(spa, NULL, NULL, flags);
1555 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1556 zio_flush(zio, vd);
1558 (void) zio_wait(zio);
1560 return (error);
1564 * Sync the uberblock and any changes to the vdev configuration.
1566 * The order of operations is carefully crafted to ensure that
1567 * if the system panics or loses power at any time, the state on disk
1568 * is still transactionally consistent. The in-line comments below
1569 * describe the failure semantics at each stage.
1571 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1572 * at any time, you can just call it again, and it will resume its work.
1575 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1577 spa_t *spa = svd[0]->vdev_spa;
1578 uberblock_t *ub = &spa->spa_uberblock;
1579 int error = 0;
1580 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1582 ASSERT(svdcount != 0);
1583 retry:
1585 * Normally, we don't want to try too hard to write every label and
1586 * uberblock. If there is a flaky disk, we don't want the rest of the
1587 * sync process to block while we retry. But if we can't write a
1588 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1589 * bailing out and declaring the pool faulted.
1591 if (error != 0) {
1592 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1593 return (error);
1594 flags |= ZIO_FLAG_TRYHARD;
1597 ASSERT(ub->ub_txg <= txg);
1600 * If this isn't a resync due to I/O errors,
1601 * and nothing changed in this transaction group,
1602 * and the vdev configuration hasn't changed,
1603 * then there's nothing to do.
1605 if (ub->ub_txg < txg) {
1606 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1607 txg, spa->spa_mmp.mmp_delay);
1609 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1610 return (0);
1613 if (txg > spa_freeze_txg(spa))
1614 return (0);
1616 ASSERT(txg <= spa->spa_final_txg);
1619 * Flush the write cache of every disk that's been written to
1620 * in this transaction group. This ensures that all blocks
1621 * written in this txg will be committed to stable storage
1622 * before any uberblock that references them.
1624 zio_t *zio = zio_root(spa, NULL, NULL, flags);
1626 for (vdev_t *vd =
1627 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1628 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1629 zio_flush(zio, vd);
1631 (void) zio_wait(zio);
1634 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1635 * system dies in the middle of this process, that's OK: all of the
1636 * even labels that made it to disk will be newer than any uberblock,
1637 * and will therefore be considered invalid. The odd labels (L1, L3),
1638 * which have not yet been touched, will still be valid. We flush
1639 * the new labels to disk to ensure that all even-label updates
1640 * are committed to stable storage before the uberblock update.
1642 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1643 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1644 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1645 "for pool '%s' when syncing out the even labels "
1646 "of dirty vdevs", error, spa_name(spa));
1648 goto retry;
1652 * Sync the uberblocks to all vdevs in svd[].
1653 * If the system dies in the middle of this step, there are two cases
1654 * to consider, and the on-disk state is consistent either way:
1656 * (1) If none of the new uberblocks made it to disk, then the
1657 * previous uberblock will be the newest, and the odd labels
1658 * (which had not yet been touched) will be valid with respect
1659 * to that uberblock.
1661 * (2) If one or more new uberblocks made it to disk, then they
1662 * will be the newest, and the even labels (which had all
1663 * been successfully committed) will be valid with respect
1664 * to the new uberblocks.
1666 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1667 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1668 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1669 "%d for pool '%s'", error, spa_name(spa));
1671 goto retry;
1674 if (spa_multihost(spa))
1675 mmp_update_uberblock(spa, ub);
1678 * Sync out odd labels for every dirty vdev. If the system dies
1679 * in the middle of this process, the even labels and the new
1680 * uberblocks will suffice to open the pool. The next time
1681 * the pool is opened, the first thing we'll do -- before any
1682 * user data is modified -- is mark every vdev dirty so that
1683 * all labels will be brought up to date. We flush the new labels
1684 * to disk to ensure that all odd-label updates are committed to
1685 * stable storage before the next transaction group begins.
1687 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1688 if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1689 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1690 "for pool '%s' when syncing out the odd labels of "
1691 "dirty vdevs", error, spa_name(spa));
1693 goto retry;
1696 return (0);