4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 * Copyright (c) 2023, 2024, Klara Inc.
37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
48 #include <sys/spa_impl.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
56 #include <sys/sa_impl.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
67 #include <sys/zil_impl.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
76 #include <sys/arc_impl.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
91 #include <libnvpair.h>
93 #include <libzfs_core.h>
100 extern int reference_tracking_enable
;
101 extern int zfs_recover
;
102 extern uint_t zfs_vdev_async_read_max_active
;
103 extern boolean_t spa_load_verify_dryrun
;
104 extern boolean_t spa_mode_readable_spacemaps
;
105 extern uint_t zfs_reconstruct_indirect_combinations_max
;
106 extern uint_t zfs_btree_verify_intensity
;
108 static const char cmdname
[] = "zdb";
109 uint8_t dump_opt
[256];
111 typedef void object_viewer_t(objset_t
*, uint64_t, void *data
, size_t size
);
113 static uint64_t *zopt_metaslab
= NULL
;
114 static unsigned zopt_metaslab_args
= 0;
117 static zopt_object_range_t
*zopt_object_ranges
= NULL
;
118 static unsigned zopt_object_args
= 0;
120 static int flagbits
[256];
123 static uint64_t max_inflight_bytes
= 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects
= 0;
125 static range_tree_t
*mos_refd_objs
;
128 static boolean_t kernel_init_done
;
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t
*,
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg
, const blkptr_t
*bp
, boolean_t free
,
139 static void zdb_print_blkptr(const blkptr_t
*bp
, int flags
);
140 static void zdb_exit(int reason
);
142 typedef struct sublivelist_verify_block_refcnt
{
143 /* block pointer entry in livelist being verified */
147 * Refcount gets incremented to 1 when we encounter the first
148 * FREE entry for the svfbr block pointer and a node for it
149 * is created in our ZDB verification/tracking metadata.
151 * As we encounter more FREE entries we increment this counter
152 * and similarly decrement it whenever we find the respective
153 * ALLOC entries for this block.
155 * When the refcount gets to 0 it means that all the FREE and
156 * ALLOC entries of this block have paired up and we no longer
157 * need to track it in our verification logic (e.g. the node
158 * containing this struct in our verification data structure
161 * [refer to sublivelist_verify_blkptr() for the actual code]
163 uint32_t svbr_refcnt
;
164 } sublivelist_verify_block_refcnt_t
;
167 sublivelist_block_refcnt_compare(const void *larg
, const void *rarg
)
169 const sublivelist_verify_block_refcnt_t
*l
= larg
;
170 const sublivelist_verify_block_refcnt_t
*r
= rarg
;
171 return (livelist_compare(&l
->svbr_blk
, &r
->svbr_blk
));
175 sublivelist_verify_blkptr(void *arg
, const blkptr_t
*bp
, boolean_t free
,
178 ASSERT3P(tx
, ==, NULL
);
179 struct sublivelist_verify
*sv
= arg
;
180 sublivelist_verify_block_refcnt_t current
= {
184 * Start with 1 in case this is the first free entry.
185 * This field is not used for our B-Tree comparisons
191 zfs_btree_index_t where
;
192 sublivelist_verify_block_refcnt_t
*pair
=
193 zfs_btree_find(&sv
->sv_pair
, ¤t
, &where
);
196 /* first free entry for this block pointer */
197 zfs_btree_add(&sv
->sv_pair
, ¤t
);
203 /* block that is currently marked as allocated */
204 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
205 if (DVA_IS_EMPTY(&bp
->blk_dva
[i
]))
207 sublivelist_verify_block_t svb
= {
208 .svb_dva
= bp
->blk_dva
[i
],
210 BP_GET_LOGICAL_BIRTH(bp
)
213 if (zfs_btree_find(&sv
->sv_leftover
, &svb
,
215 zfs_btree_add_idx(&sv
->sv_leftover
,
220 /* alloc matches a free entry */
222 if (pair
->svbr_refcnt
== 0) {
223 /* all allocs and frees have been matched */
224 zfs_btree_remove_idx(&sv
->sv_pair
, &where
);
233 sublivelist_verify_func(void *args
, dsl_deadlist_entry_t
*dle
)
236 struct sublivelist_verify
*sv
= args
;
238 zfs_btree_create(&sv
->sv_pair
, sublivelist_block_refcnt_compare
, NULL
,
239 sizeof (sublivelist_verify_block_refcnt_t
));
241 err
= bpobj_iterate_nofree(&dle
->dle_bpobj
, sublivelist_verify_blkptr
,
244 sublivelist_verify_block_refcnt_t
*e
;
245 zfs_btree_index_t
*cookie
= NULL
;
246 while ((e
= zfs_btree_destroy_nodes(&sv
->sv_pair
, &cookie
)) != NULL
) {
247 char blkbuf
[BP_SPRINTF_LEN
];
248 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
),
249 &e
->svbr_blk
, B_TRUE
);
250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 e
->svbr_refcnt
, blkbuf
);
253 zfs_btree_destroy(&sv
->sv_pair
);
259 livelist_block_compare(const void *larg
, const void *rarg
)
261 const sublivelist_verify_block_t
*l
= larg
;
262 const sublivelist_verify_block_t
*r
= rarg
;
264 if (DVA_GET_VDEV(&l
->svb_dva
) < DVA_GET_VDEV(&r
->svb_dva
))
266 else if (DVA_GET_VDEV(&l
->svb_dva
) > DVA_GET_VDEV(&r
->svb_dva
))
269 if (DVA_GET_OFFSET(&l
->svb_dva
) < DVA_GET_OFFSET(&r
->svb_dva
))
271 else if (DVA_GET_OFFSET(&l
->svb_dva
) > DVA_GET_OFFSET(&r
->svb_dva
))
274 if (DVA_GET_ASIZE(&l
->svb_dva
) < DVA_GET_ASIZE(&r
->svb_dva
))
276 else if (DVA_GET_ASIZE(&l
->svb_dva
) > DVA_GET_ASIZE(&r
->svb_dva
))
283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284 * sublivelist_verify_t: sv->sv_leftover
287 livelist_verify(dsl_deadlist_t
*dl
, void *arg
)
289 sublivelist_verify_t
*sv
= arg
;
290 dsl_deadlist_iterate(dl
, sublivelist_verify_func
, sv
);
294 * Check for errors in the livelist entry and discard the intermediary
298 sublivelist_verify_lightweight(void *args
, dsl_deadlist_entry_t
*dle
)
301 sublivelist_verify_t sv
;
302 zfs_btree_create(&sv
.sv_leftover
, livelist_block_compare
, NULL
,
303 sizeof (sublivelist_verify_block_t
));
304 int err
= sublivelist_verify_func(&sv
, dle
);
305 zfs_btree_clear(&sv
.sv_leftover
);
306 zfs_btree_destroy(&sv
.sv_leftover
);
310 typedef struct metaslab_verify
{
312 * Tree containing all the leftover ALLOCs from the livelists
313 * that are part of this metaslab.
315 zfs_btree_t mv_livelist_allocs
;
318 * Metaslab information.
326 * What's currently allocated for this metaslab.
328 range_tree_t
*mv_allocated
;
331 typedef void ll_iter_t(dsl_deadlist_t
*ll
, void *arg
);
333 typedef int (*zdb_log_sm_cb_t
)(spa_t
*spa
, space_map_entry_t
*sme
, uint64_t txg
,
336 typedef struct unflushed_iter_cb_arg
{
340 zdb_log_sm_cb_t uic_cb
;
341 } unflushed_iter_cb_arg_t
;
344 iterate_through_spacemap_logs_cb(space_map_entry_t
*sme
, void *arg
)
346 unflushed_iter_cb_arg_t
*uic
= arg
;
347 return (uic
->uic_cb(uic
->uic_spa
, sme
, uic
->uic_txg
, uic
->uic_arg
));
351 iterate_through_spacemap_logs(spa_t
*spa
, zdb_log_sm_cb_t cb
, void *arg
)
353 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
356 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
357 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
358 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
)) {
359 space_map_t
*sm
= NULL
;
360 VERIFY0(space_map_open(&sm
, spa_meta_objset(spa
),
361 sls
->sls_sm_obj
, 0, UINT64_MAX
, SPA_MINBLOCKSHIFT
));
363 unflushed_iter_cb_arg_t uic
= {
365 .uic_txg
= sls
->sls_txg
,
369 VERIFY0(space_map_iterate(sm
, space_map_length(sm
),
370 iterate_through_spacemap_logs_cb
, &uic
));
373 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
377 verify_livelist_allocs(metaslab_verify_t
*mv
, uint64_t txg
,
378 uint64_t offset
, uint64_t size
)
380 sublivelist_verify_block_t svb
= {{{0}}};
381 DVA_SET_VDEV(&svb
.svb_dva
, mv
->mv_vdid
);
382 DVA_SET_OFFSET(&svb
.svb_dva
, offset
);
383 DVA_SET_ASIZE(&svb
.svb_dva
, size
);
384 zfs_btree_index_t where
;
385 uint64_t end_offset
= offset
+ size
;
388 * Look for an exact match for spacemap entry in the livelist entries.
389 * Then, look for other livelist entries that fall within the range
390 * of the spacemap entry as it may have been condensed
392 sublivelist_verify_block_t
*found
=
393 zfs_btree_find(&mv
->mv_livelist_allocs
, &svb
, &where
);
395 found
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
);
397 for (; found
!= NULL
&& DVA_GET_VDEV(&found
->svb_dva
) == mv
->mv_vdid
&&
398 DVA_GET_OFFSET(&found
->svb_dva
) < end_offset
;
399 found
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
)) {
400 if (found
->svb_allocated_txg
<= txg
) {
401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 "from TXG %llx FREED at TXG %llx\n",
403 (u_longlong_t
)DVA_GET_OFFSET(&found
->svb_dva
),
404 (u_longlong_t
)DVA_GET_ASIZE(&found
->svb_dva
),
405 (u_longlong_t
)found
->svb_allocated_txg
,
412 metaslab_spacemap_validation_cb(space_map_entry_t
*sme
, void *arg
)
414 metaslab_verify_t
*mv
= arg
;
415 uint64_t offset
= sme
->sme_offset
;
416 uint64_t size
= sme
->sme_run
;
417 uint64_t txg
= sme
->sme_txg
;
419 if (sme
->sme_type
== SM_ALLOC
) {
420 if (range_tree_contains(mv
->mv_allocated
,
422 (void) printf("ERROR: DOUBLE ALLOC: "
424 "%llu:%llu LOG_SM\n",
425 (u_longlong_t
)txg
, (u_longlong_t
)offset
,
426 (u_longlong_t
)size
, (u_longlong_t
)mv
->mv_vdid
,
427 (u_longlong_t
)mv
->mv_msid
);
429 range_tree_add(mv
->mv_allocated
,
433 if (!range_tree_contains(mv
->mv_allocated
,
435 (void) printf("ERROR: DOUBLE FREE: "
437 "%llu:%llu LOG_SM\n",
438 (u_longlong_t
)txg
, (u_longlong_t
)offset
,
439 (u_longlong_t
)size
, (u_longlong_t
)mv
->mv_vdid
,
440 (u_longlong_t
)mv
->mv_msid
);
442 range_tree_remove(mv
->mv_allocated
,
447 if (sme
->sme_type
!= SM_ALLOC
) {
449 * If something is freed in the spacemap, verify that
450 * it is not listed as allocated in the livelist.
452 verify_livelist_allocs(mv
, txg
, offset
, size
);
458 spacemap_check_sm_log_cb(spa_t
*spa
, space_map_entry_t
*sme
,
459 uint64_t txg
, void *arg
)
461 metaslab_verify_t
*mv
= arg
;
462 uint64_t offset
= sme
->sme_offset
;
463 uint64_t vdev_id
= sme
->sme_vdev
;
465 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
467 /* skip indirect vdevs */
468 if (!vdev_is_concrete(vd
))
471 if (vdev_id
!= mv
->mv_vdid
)
474 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
475 if (ms
->ms_id
!= mv
->mv_msid
)
478 if (txg
< metaslab_unflushed_txg(ms
))
482 ASSERT3U(txg
, ==, sme
->sme_txg
);
483 return (metaslab_spacemap_validation_cb(sme
, mv
));
487 spacemap_check_sm_log(spa_t
*spa
, metaslab_verify_t
*mv
)
489 iterate_through_spacemap_logs(spa
, spacemap_check_sm_log_cb
, mv
);
493 spacemap_check_ms_sm(space_map_t
*sm
, metaslab_verify_t
*mv
)
498 VERIFY0(space_map_iterate(sm
, space_map_length(sm
),
499 metaslab_spacemap_validation_cb
, mv
));
502 static void iterate_deleted_livelists(spa_t
*spa
, ll_iter_t func
, void *arg
);
505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506 * they are part of that metaslab (mv_msid).
509 mv_populate_livelist_allocs(metaslab_verify_t
*mv
, sublivelist_verify_t
*sv
)
511 zfs_btree_index_t where
;
512 sublivelist_verify_block_t
*svb
;
513 ASSERT3U(zfs_btree_numnodes(&mv
->mv_livelist_allocs
), ==, 0);
514 for (svb
= zfs_btree_first(&sv
->sv_leftover
, &where
);
516 svb
= zfs_btree_next(&sv
->sv_leftover
, &where
, &where
)) {
517 if (DVA_GET_VDEV(&svb
->svb_dva
) != mv
->mv_vdid
)
520 if (DVA_GET_OFFSET(&svb
->svb_dva
) < mv
->mv_start
&&
521 (DVA_GET_OFFSET(&svb
->svb_dva
) +
522 DVA_GET_ASIZE(&svb
->svb_dva
)) > mv
->mv_start
) {
523 (void) printf("ERROR: Found block that crosses "
524 "metaslab boundary: <%llu:%llx:%llx>\n",
525 (u_longlong_t
)DVA_GET_VDEV(&svb
->svb_dva
),
526 (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
527 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
));
531 if (DVA_GET_OFFSET(&svb
->svb_dva
) < mv
->mv_start
)
534 if (DVA_GET_OFFSET(&svb
->svb_dva
) >= mv
->mv_end
)
537 if ((DVA_GET_OFFSET(&svb
->svb_dva
) +
538 DVA_GET_ASIZE(&svb
->svb_dva
)) > mv
->mv_end
) {
539 (void) printf("ERROR: Found block that crosses "
540 "metaslab boundary: <%llu:%llx:%llx>\n",
541 (u_longlong_t
)DVA_GET_VDEV(&svb
->svb_dva
),
542 (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
543 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
));
547 zfs_btree_add(&mv
->mv_livelist_allocs
, svb
);
550 for (svb
= zfs_btree_first(&mv
->mv_livelist_allocs
, &where
);
552 svb
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
)) {
553 zfs_btree_remove(&sv
->sv_leftover
, svb
);
559 * Iterate through all the sublivelists and:
560 * - report leftover frees (**)
561 * - record leftover ALLOCs together with their TXG [see Cross Check]
563 * (**) Note: Double ALLOCs are valid in datasets that have dedup
564 * enabled. Similarly double FREEs are allowed as well but
565 * only if they pair up with a corresponding ALLOC entry once
566 * we our done with our sublivelist iteration.
570 * - iterate over spacemap and then the metaslab's entries in the
571 * spacemap log, then report any double FREEs and ALLOCs (do not
575 * After finishing the Livelist Check phase and while being in the
576 * Spacemap Check phase, we find all the recorded leftover ALLOCs
577 * of the livelist check that are part of the metaslab that we are
578 * currently looking at in the Spacemap Check. We report any entries
579 * that are marked as ALLOCs in the livelists but have been actually
580 * freed (and potentially allocated again) after their TXG stamp in
581 * the spacemaps. Also report any ALLOCs from the livelists that
582 * belong to indirect vdevs (e.g. their vdev completed removal).
584 * Note that this will miss Log Spacemap entries that cancelled each other
585 * out before being flushed to the metaslab, so we are not guaranteed
586 * to match all erroneous ALLOCs.
589 livelist_metaslab_validate(spa_t
*spa
)
591 (void) printf("Verifying deleted livelist entries\n");
593 sublivelist_verify_t sv
;
594 zfs_btree_create(&sv
.sv_leftover
, livelist_block_compare
, NULL
,
595 sizeof (sublivelist_verify_block_t
));
596 iterate_deleted_livelists(spa
, livelist_verify
, &sv
);
598 (void) printf("Verifying metaslab entries\n");
599 vdev_t
*rvd
= spa
->spa_root_vdev
;
600 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
601 vdev_t
*vd
= rvd
->vdev_child
[c
];
603 if (!vdev_is_concrete(vd
))
606 for (uint64_t mid
= 0; mid
< vd
->vdev_ms_count
; mid
++) {
607 metaslab_t
*m
= vd
->vdev_ms
[mid
];
609 (void) fprintf(stderr
,
610 "\rverifying concrete vdev %llu, "
611 "metaslab %llu of %llu ...",
612 (longlong_t
)vd
->vdev_id
,
614 (longlong_t
)vd
->vdev_ms_count
);
616 uint64_t shift
, start
;
617 range_seg_type_t type
=
618 metaslab_calculate_range_tree_type(vd
, m
,
620 metaslab_verify_t mv
;
621 mv
.mv_allocated
= range_tree_create(NULL
,
622 type
, NULL
, start
, shift
);
623 mv
.mv_vdid
= vd
->vdev_id
;
624 mv
.mv_msid
= m
->ms_id
;
625 mv
.mv_start
= m
->ms_start
;
626 mv
.mv_end
= m
->ms_start
+ m
->ms_size
;
627 zfs_btree_create(&mv
.mv_livelist_allocs
,
628 livelist_block_compare
, NULL
,
629 sizeof (sublivelist_verify_block_t
));
631 mv_populate_livelist_allocs(&mv
, &sv
);
633 spacemap_check_ms_sm(m
->ms_sm
, &mv
);
634 spacemap_check_sm_log(spa
, &mv
);
636 range_tree_vacate(mv
.mv_allocated
, NULL
, NULL
);
637 range_tree_destroy(mv
.mv_allocated
);
638 zfs_btree_clear(&mv
.mv_livelist_allocs
);
639 zfs_btree_destroy(&mv
.mv_livelist_allocs
);
642 (void) fprintf(stderr
, "\n");
645 * If there are any segments in the leftover tree after we walked
646 * through all the metaslabs in the concrete vdevs then this means
647 * that we have segments in the livelists that belong to indirect
648 * vdevs and are marked as allocated.
650 if (zfs_btree_numnodes(&sv
.sv_leftover
) == 0) {
651 zfs_btree_destroy(&sv
.sv_leftover
);
654 (void) printf("ERROR: Found livelist blocks marked as allocated "
655 "for indirect vdevs:\n");
657 zfs_btree_index_t
*where
= NULL
;
658 sublivelist_verify_block_t
*svb
;
659 while ((svb
= zfs_btree_destroy_nodes(&sv
.sv_leftover
, &where
)) !=
661 int vdev_id
= DVA_GET_VDEV(&svb
->svb_dva
);
662 ASSERT3U(vdev_id
, <, rvd
->vdev_children
);
663 vdev_t
*vd
= rvd
->vdev_child
[vdev_id
];
664 ASSERT(!vdev_is_concrete(vd
));
665 (void) printf("<%d:%llx:%llx> TXG %llx\n",
666 vdev_id
, (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
667 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
),
668 (u_longlong_t
)svb
->svb_allocated_txg
);
671 zfs_btree_destroy(&sv
.sv_leftover
);
675 * These libumem hooks provide a reasonable set of defaults for the allocator's
676 * debugging facilities.
679 _umem_debug_init(void)
681 return ("default,verbose"); /* $UMEM_DEBUG setting */
685 _umem_logging_init(void)
687 return ("fail,contents"); /* $UMEM_LOGGING setting */
693 (void) fprintf(stderr
,
694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 "[-I <inflight I/Os>]\n"
696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 "\t%s [-v] <bookmark>\n"
705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 "\t%s -l [-Aqu] <device>\n"
707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 "\t%s -O [-K <key>] <dataset> <path>\n"
710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 "\t%s -E [-A] word0:word1:...:word15\n"
714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
716 cmdname
, cmdname
, cmdname
, cmdname
, cmdname
, cmdname
, cmdname
,
717 cmdname
, cmdname
, cmdname
, cmdname
, cmdname
);
719 (void) fprintf(stderr
, " Dataset name must include at least one "
720 "separator character '/' or '@'\n");
721 (void) fprintf(stderr
, " If dataset name is specified, only that "
722 "dataset is dumped\n");
723 (void) fprintf(stderr
, " If object numbers or object number "
724 "ranges are specified, only those\n"
725 " objects or ranges are dumped.\n\n");
726 (void) fprintf(stderr
,
727 " Object ranges take the form <start>:<end>[:<flags>]\n"
728 " start Starting object number\n"
729 " end Ending object number, or -1 for no upper bound\n"
730 " flags Optional flags to select object types:\n"
731 " A All objects (this is the default)\n"
732 " d ZFS directories\n"
734 " m SPA space maps\n"
736 " - Negate effect of next flag\n\n");
737 (void) fprintf(stderr
, " Options to control amount of output:\n");
738 (void) fprintf(stderr
, " -b --block-stats "
739 "block statistics\n");
740 (void) fprintf(stderr
, " -B --backup "
742 (void) fprintf(stderr
, " -c --checksum "
743 "checksum all metadata (twice for all data) blocks\n");
744 (void) fprintf(stderr
, " -C --config "
745 "config (or cachefile if alone)\n");
746 (void) fprintf(stderr
, " -d --datasets "
748 (void) fprintf(stderr
, " -D --dedup-stats "
749 "dedup statistics\n");
750 (void) fprintf(stderr
, " -E --embedded-block-pointer=INTEGER\n"
751 " decode and display block "
752 "from an embedded block pointer\n");
753 (void) fprintf(stderr
, " -h --history "
755 (void) fprintf(stderr
, " -i --intent-logs "
757 (void) fprintf(stderr
, " -l --label "
758 "read label contents\n");
759 (void) fprintf(stderr
, " -k --checkpointed-state "
760 "examine the checkpointed state of the pool\n");
761 (void) fprintf(stderr
, " -L --disable-leak-tracking "
762 "disable leak tracking (do not load spacemaps)\n");
763 (void) fprintf(stderr
, " -m --metaslabs "
765 (void) fprintf(stderr
, " -M --metaslab-groups "
766 "metaslab groups\n");
767 (void) fprintf(stderr
, " -O --object-lookups "
768 "perform object lookups by path\n");
769 (void) fprintf(stderr
, " -r --copy-object "
770 "copy an object by path to file\n");
771 (void) fprintf(stderr
, " -R --read-block "
772 "read and display block from a device\n");
773 (void) fprintf(stderr
, " -s --io-stats "
774 "report stats on zdb's I/O\n");
775 (void) fprintf(stderr
, " -S --simulate-dedup "
776 "simulate dedup to measure effect\n");
777 (void) fprintf(stderr
, " -v --verbose "
778 "verbose (applies to all others)\n");
779 (void) fprintf(stderr
, " -y --livelist "
780 "perform livelist and metaslab validation on any livelists being "
782 (void) fprintf(stderr
, " Below options are intended for use "
783 "with other options:\n");
784 (void) fprintf(stderr
, " -A --ignore-assertions "
785 "ignore assertions (-A), enable panic recovery (-AA) or both "
787 (void) fprintf(stderr
, " -e --exported "
788 "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 (void) fprintf(stderr
, " -F --automatic-rewind "
790 "attempt automatic rewind within safe range of transaction "
792 (void) fprintf(stderr
, " -G --dump-debug-msg "
793 "dump zfs_dbgmsg buffer before exiting\n");
794 (void) fprintf(stderr
, " -I --inflight=INTEGER "
795 "specify the maximum number of checksumming I/Os "
796 "[default is 200]\n");
797 (void) fprintf(stderr
, " -K --key=KEY "
798 "decryption key for encrypted dataset\n");
799 (void) fprintf(stderr
, " -o --option=\"OPTION=INTEGER\" "
800 "set global variable to an unsigned 32-bit integer\n");
801 (void) fprintf(stderr
, " -p --path==PATH "
802 "use one or more with -e to specify path to vdev dir\n");
803 (void) fprintf(stderr
, " -P --parseable "
804 "print numbers in parseable form\n");
805 (void) fprintf(stderr
, " -q --skip-label "
806 "don't print label contents\n");
807 (void) fprintf(stderr
, " -t --txg=INTEGER "
808 "highest txg to use when searching for uberblocks\n");
809 (void) fprintf(stderr
, " -T --brt-stats "
811 (void) fprintf(stderr
, " -u --uberblock "
813 (void) fprintf(stderr
, " -U --cachefile=PATH "
814 "use alternate cachefile\n");
815 (void) fprintf(stderr
, " -V --verbatim "
816 "do verbatim import\n");
817 (void) fprintf(stderr
, " -x --dump-blocks=PATH "
818 "dump all read blocks into specified directory\n");
819 (void) fprintf(stderr
, " -X --extreme-rewind "
820 "attempt extreme rewind (does not work with dataset)\n");
821 (void) fprintf(stderr
, " -Y --all-reconstruction "
822 "attempt all reconstruction combinations for split blocks\n");
823 (void) fprintf(stderr
, " -Z --zstd-headers "
824 "show ZSTD headers \n");
825 (void) fprintf(stderr
, "Specify an option more than once (e.g. -bb) "
826 "to make only that option verbose\n");
827 (void) fprintf(stderr
, "Default is to dump everything non-verbosely\n");
832 dump_debug_buffer(void)
834 ssize_t ret
__attribute__((unused
));
839 * We use write() instead of printf() so that this function
840 * is safe to call from a signal handler.
842 ret
= write(STDERR_FILENO
, "\n", 1);
843 zfs_dbgmsg_print(STDERR_FILENO
, "zdb");
846 static void sig_handler(int signo
)
848 struct sigaction action
;
850 libspl_backtrace(STDERR_FILENO
);
854 * Restore default action and re-raise signal so SIGSEGV and
855 * SIGABRT can trigger a core dump.
857 action
.sa_handler
= SIG_DFL
;
858 sigemptyset(&action
.sa_mask
);
860 (void) sigaction(signo
, &action
, NULL
);
865 * Called for usage errors that are discovered after a call to spa_open(),
866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
870 fatal(const char *fmt
, ...)
875 (void) fprintf(stderr
, "%s: ", cmdname
);
876 (void) vfprintf(stderr
, fmt
, ap
);
878 (void) fprintf(stderr
, "\n");
886 dump_packed_nvlist(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
890 size_t nvsize
= *(uint64_t *)data
;
891 char *packed
= umem_alloc(nvsize
, UMEM_NOFAIL
);
893 VERIFY(0 == dmu_read(os
, object
, 0, nvsize
, packed
, DMU_READ_PREFETCH
));
895 VERIFY(nvlist_unpack(packed
, nvsize
, &nv
, 0) == 0);
897 umem_free(packed
, nvsize
);
905 dump_history_offsets(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
907 (void) os
, (void) object
, (void) size
;
908 spa_history_phys_t
*shp
= data
;
913 (void) printf("\t\tpool_create_len = %llu\n",
914 (u_longlong_t
)shp
->sh_pool_create_len
);
915 (void) printf("\t\tphys_max_off = %llu\n",
916 (u_longlong_t
)shp
->sh_phys_max_off
);
917 (void) printf("\t\tbof = %llu\n",
918 (u_longlong_t
)shp
->sh_bof
);
919 (void) printf("\t\teof = %llu\n",
920 (u_longlong_t
)shp
->sh_eof
);
921 (void) printf("\t\trecords_lost = %llu\n",
922 (u_longlong_t
)shp
->sh_records_lost
);
926 zdb_nicenum(uint64_t num
, char *buf
, size_t buflen
)
929 (void) snprintf(buf
, buflen
, "%llu", (longlong_t
)num
);
931 nicenum(num
, buf
, buflen
);
935 zdb_nicebytes(uint64_t bytes
, char *buf
, size_t buflen
)
938 (void) snprintf(buf
, buflen
, "%llu", (longlong_t
)bytes
);
940 zfs_nicebytes(bytes
, buf
, buflen
);
943 static const char histo_stars
[] = "****************************************";
944 static const uint64_t histo_width
= sizeof (histo_stars
) - 1;
947 dump_histogram(const uint64_t *histo
, int size
, int offset
)
950 int minidx
= size
- 1;
954 for (i
= 0; i
< size
; i
++) {
965 if (max
< histo_width
)
968 for (i
= minidx
; i
<= maxidx
; i
++) {
969 (void) printf("\t\t\t%3u: %6llu %s\n",
970 i
+ offset
, (u_longlong_t
)histo
[i
],
971 &histo_stars
[(max
- histo
[i
]) * histo_width
/ max
]);
976 dump_zap_stats(objset_t
*os
, uint64_t object
)
981 error
= zap_get_stats(os
, object
, &zs
);
985 if (zs
.zs_ptrtbl_len
== 0) {
986 ASSERT(zs
.zs_num_blocks
== 1);
987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 (u_longlong_t
)zs
.zs_blocksize
,
989 (u_longlong_t
)zs
.zs_num_entries
);
993 (void) printf("\tFat ZAP stats:\n");
995 (void) printf("\t\tPointer table:\n");
996 (void) printf("\t\t\t%llu elements\n",
997 (u_longlong_t
)zs
.zs_ptrtbl_len
);
998 (void) printf("\t\t\tzt_blk: %llu\n",
999 (u_longlong_t
)zs
.zs_ptrtbl_zt_blk
);
1000 (void) printf("\t\t\tzt_numblks: %llu\n",
1001 (u_longlong_t
)zs
.zs_ptrtbl_zt_numblks
);
1002 (void) printf("\t\t\tzt_shift: %llu\n",
1003 (u_longlong_t
)zs
.zs_ptrtbl_zt_shift
);
1004 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 (u_longlong_t
)zs
.zs_ptrtbl_blks_copied
);
1006 (void) printf("\t\t\tzt_nextblk: %llu\n",
1007 (u_longlong_t
)zs
.zs_ptrtbl_nextblk
);
1009 (void) printf("\t\tZAP entries: %llu\n",
1010 (u_longlong_t
)zs
.zs_num_entries
);
1011 (void) printf("\t\tLeaf blocks: %llu\n",
1012 (u_longlong_t
)zs
.zs_num_leafs
);
1013 (void) printf("\t\tTotal blocks: %llu\n",
1014 (u_longlong_t
)zs
.zs_num_blocks
);
1015 (void) printf("\t\tzap_block_type: 0x%llx\n",
1016 (u_longlong_t
)zs
.zs_block_type
);
1017 (void) printf("\t\tzap_magic: 0x%llx\n",
1018 (u_longlong_t
)zs
.zs_magic
);
1019 (void) printf("\t\tzap_salt: 0x%llx\n",
1020 (u_longlong_t
)zs
.zs_salt
);
1022 (void) printf("\t\tLeafs with 2^n pointers:\n");
1023 dump_histogram(zs
.zs_leafs_with_2n_pointers
, ZAP_HISTOGRAM_SIZE
, 0);
1025 (void) printf("\t\tBlocks with n*5 entries:\n");
1026 dump_histogram(zs
.zs_blocks_with_n5_entries
, ZAP_HISTOGRAM_SIZE
, 0);
1028 (void) printf("\t\tBlocks n/10 full:\n");
1029 dump_histogram(zs
.zs_blocks_n_tenths_full
, ZAP_HISTOGRAM_SIZE
, 0);
1031 (void) printf("\t\tEntries with n chunks:\n");
1032 dump_histogram(zs
.zs_entries_using_n_chunks
, ZAP_HISTOGRAM_SIZE
, 0);
1034 (void) printf("\t\tBuckets with n entries:\n");
1035 dump_histogram(zs
.zs_buckets_with_n_entries
, ZAP_HISTOGRAM_SIZE
, 0);
1039 dump_none(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1041 (void) os
, (void) object
, (void) data
, (void) size
;
1045 dump_unknown(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1047 (void) os
, (void) object
, (void) data
, (void) size
;
1048 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1052 dump_uint8(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1054 (void) os
, (void) object
, (void) data
, (void) size
;
1058 dump_uint64(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1062 if (dump_opt
['d'] < 6)
1066 dmu_object_info_t doi
;
1068 VERIFY0(dmu_object_info(os
, object
, &doi
));
1069 size
= doi
.doi_max_offset
;
1071 * We cap the size at 1 mebibyte here to prevent
1072 * allocation failures and nigh-infinite printing if the
1073 * object is extremely large.
1075 oursize
= MIN(size
, 1 << 20);
1076 arr
= kmem_alloc(oursize
, KM_SLEEP
);
1078 int err
= dmu_read(os
, object
, 0, oursize
, arr
, 0);
1080 (void) printf("got error %u from dmu_read\n", err
);
1081 kmem_free(arr
, oursize
);
1086 * Even though the allocation is already done in this code path,
1087 * we still cap the size to prevent excessive printing.
1089 oursize
= MIN(size
, 1 << 20);
1095 kmem_free(arr
, oursize
);
1096 (void) printf("\t\t[]\n");
1100 (void) printf("\t\t[%0llx", (u_longlong_t
)arr
[0]);
1101 for (size_t i
= 1; i
* sizeof (uint64_t) < oursize
; i
++) {
1103 (void) printf(", %0llx", (u_longlong_t
)arr
[i
]);
1105 (void) printf(",\n\t\t%0llx", (u_longlong_t
)arr
[i
]);
1107 if (oursize
!= size
)
1108 (void) printf(", ... ");
1109 (void) printf("]\n");
1112 kmem_free(arr
, oursize
);
1116 dump_zap(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1118 (void) data
, (void) size
;
1120 zap_attribute_t
*attrp
= zap_attribute_long_alloc();
1124 dump_zap_stats(os
, object
);
1125 (void) printf("\n");
1127 for (zap_cursor_init(&zc
, os
, object
);
1128 zap_cursor_retrieve(&zc
, attrp
) == 0;
1129 zap_cursor_advance(&zc
)) {
1131 !!(zap_getflags(zc
.zc_zap
) & ZAP_FLAG_UINT64_KEY
);
1134 (void) printf("\t\t0x%010" PRIu64
"x = ",
1135 *(uint64_t *)attrp
->za_name
);
1137 (void) printf("\t\t%s = ", attrp
->za_name
);
1139 if (attrp
->za_num_integers
== 0) {
1140 (void) printf("\n");
1143 prop
= umem_zalloc(attrp
->za_num_integers
*
1144 attrp
->za_integer_length
, UMEM_NOFAIL
);
1147 (void) zap_lookup_uint64(os
, object
,
1148 (const uint64_t *)attrp
->za_name
, 1,
1149 attrp
->za_integer_length
, attrp
->za_num_integers
,
1152 (void) zap_lookup(os
, object
, attrp
->za_name
,
1153 attrp
->za_integer_length
, attrp
->za_num_integers
,
1156 if (attrp
->za_integer_length
== 1 && !key64
) {
1157 if (strcmp(attrp
->za_name
,
1158 DSL_CRYPTO_KEY_MASTER_KEY
) == 0 ||
1159 strcmp(attrp
->za_name
,
1160 DSL_CRYPTO_KEY_HMAC_KEY
) == 0 ||
1161 strcmp(attrp
->za_name
, DSL_CRYPTO_KEY_IV
) == 0 ||
1162 strcmp(attrp
->za_name
, DSL_CRYPTO_KEY_MAC
) == 0 ||
1163 strcmp(attrp
->za_name
,
1164 DMU_POOL_CHECKSUM_SALT
) == 0) {
1167 for (i
= 0; i
< attrp
->za_num_integers
; i
++) {
1168 (void) printf("%02x", u8
[i
]);
1171 (void) printf("%s", (char *)prop
);
1174 for (i
= 0; i
< attrp
->za_num_integers
; i
++) {
1175 switch (attrp
->za_integer_length
) {
1177 (void) printf("%u ",
1178 ((uint8_t *)prop
)[i
]);
1181 (void) printf("%u ",
1182 ((uint16_t *)prop
)[i
]);
1185 (void) printf("%u ",
1186 ((uint32_t *)prop
)[i
]);
1189 (void) printf("%lld ",
1190 (u_longlong_t
)((int64_t *)prop
)[i
]);
1195 (void) printf("\n");
1197 attrp
->za_num_integers
* attrp
->za_integer_length
);
1199 zap_cursor_fini(&zc
);
1200 zap_attribute_free(attrp
);
1204 dump_bpobj(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1206 bpobj_phys_t
*bpop
= data
;
1208 char bytes
[32], comp
[32], uncomp
[32];
1210 /* make sure the output won't get truncated */
1211 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
1212 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
1213 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
1218 zdb_nicenum(bpop
->bpo_bytes
, bytes
, sizeof (bytes
));
1219 zdb_nicenum(bpop
->bpo_comp
, comp
, sizeof (comp
));
1220 zdb_nicenum(bpop
->bpo_uncomp
, uncomp
, sizeof (uncomp
));
1222 (void) printf("\t\tnum_blkptrs = %llu\n",
1223 (u_longlong_t
)bpop
->bpo_num_blkptrs
);
1224 (void) printf("\t\tbytes = %s\n", bytes
);
1225 if (size
>= BPOBJ_SIZE_V1
) {
1226 (void) printf("\t\tcomp = %s\n", comp
);
1227 (void) printf("\t\tuncomp = %s\n", uncomp
);
1229 if (size
>= BPOBJ_SIZE_V2
) {
1230 (void) printf("\t\tsubobjs = %llu\n",
1231 (u_longlong_t
)bpop
->bpo_subobjs
);
1232 (void) printf("\t\tnum_subobjs = %llu\n",
1233 (u_longlong_t
)bpop
->bpo_num_subobjs
);
1235 if (size
>= sizeof (*bpop
)) {
1236 (void) printf("\t\tnum_freed = %llu\n",
1237 (u_longlong_t
)bpop
->bpo_num_freed
);
1240 if (dump_opt
['d'] < 5)
1243 for (i
= 0; i
< bpop
->bpo_num_blkptrs
; i
++) {
1244 char blkbuf
[BP_SPRINTF_LEN
];
1247 int err
= dmu_read(os
, object
,
1248 i
* sizeof (bp
), sizeof (bp
), &bp
, 0);
1250 (void) printf("got error %u from dmu_read\n", err
);
1253 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), &bp
,
1255 (void) printf("\t%s\n", blkbuf
);
1260 dump_bpobj_subobjs(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1262 (void) data
, (void) size
;
1263 dmu_object_info_t doi
;
1266 VERIFY0(dmu_object_info(os
, object
, &doi
));
1267 uint64_t *subobjs
= kmem_alloc(doi
.doi_max_offset
, KM_SLEEP
);
1269 int err
= dmu_read(os
, object
, 0, doi
.doi_max_offset
, subobjs
, 0);
1271 (void) printf("got error %u from dmu_read\n", err
);
1272 kmem_free(subobjs
, doi
.doi_max_offset
);
1276 int64_t last_nonzero
= -1;
1277 for (i
= 0; i
< doi
.doi_max_offset
/ 8; i
++) {
1278 if (subobjs
[i
] != 0)
1282 for (i
= 0; i
<= last_nonzero
; i
++) {
1283 (void) printf("\t%llu\n", (u_longlong_t
)subobjs
[i
]);
1285 kmem_free(subobjs
, doi
.doi_max_offset
);
1289 dump_ddt_zap(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1291 (void) data
, (void) size
;
1292 dump_zap_stats(os
, object
);
1293 /* contents are printed elsewhere, properly decoded */
1297 dump_sa_attrs(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1299 (void) data
, (void) size
;
1301 zap_attribute_t
*attrp
= zap_attribute_alloc();
1303 dump_zap_stats(os
, object
);
1304 (void) printf("\n");
1306 for (zap_cursor_init(&zc
, os
, object
);
1307 zap_cursor_retrieve(&zc
, attrp
) == 0;
1308 zap_cursor_advance(&zc
)) {
1309 (void) printf("\t\t%s = ", attrp
->za_name
);
1310 if (attrp
->za_num_integers
== 0) {
1311 (void) printf("\n");
1314 (void) printf(" %llx : [%d:%d:%d]\n",
1315 (u_longlong_t
)attrp
->za_first_integer
,
1316 (int)ATTR_LENGTH(attrp
->za_first_integer
),
1317 (int)ATTR_BSWAP(attrp
->za_first_integer
),
1318 (int)ATTR_NUM(attrp
->za_first_integer
));
1320 zap_cursor_fini(&zc
);
1321 zap_attribute_free(attrp
);
1325 dump_sa_layouts(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1327 (void) data
, (void) size
;
1329 zap_attribute_t
*attrp
= zap_attribute_alloc();
1330 uint16_t *layout_attrs
;
1333 dump_zap_stats(os
, object
);
1334 (void) printf("\n");
1336 for (zap_cursor_init(&zc
, os
, object
);
1337 zap_cursor_retrieve(&zc
, attrp
) == 0;
1338 zap_cursor_advance(&zc
)) {
1339 (void) printf("\t\t%s = [", attrp
->za_name
);
1340 if (attrp
->za_num_integers
== 0) {
1341 (void) printf("\n");
1345 VERIFY(attrp
->za_integer_length
== 2);
1346 layout_attrs
= umem_zalloc(attrp
->za_num_integers
*
1347 attrp
->za_integer_length
, UMEM_NOFAIL
);
1349 VERIFY(zap_lookup(os
, object
, attrp
->za_name
,
1350 attrp
->za_integer_length
,
1351 attrp
->za_num_integers
, layout_attrs
) == 0);
1353 for (i
= 0; i
!= attrp
->za_num_integers
; i
++)
1354 (void) printf(" %d ", (int)layout_attrs
[i
]);
1355 (void) printf("]\n");
1356 umem_free(layout_attrs
,
1357 attrp
->za_num_integers
* attrp
->za_integer_length
);
1359 zap_cursor_fini(&zc
);
1360 zap_attribute_free(attrp
);
1364 dump_zpldir(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1366 (void) data
, (void) size
;
1368 zap_attribute_t
*attrp
= zap_attribute_long_alloc();
1369 const char *typenames
[] = {
1370 /* 0 */ "not specified",
1372 /* 2 */ "Character Device",
1373 /* 3 */ "3 (invalid)",
1374 /* 4 */ "Directory",
1375 /* 5 */ "5 (invalid)",
1376 /* 6 */ "Block Device",
1377 /* 7 */ "7 (invalid)",
1378 /* 8 */ "Regular File",
1379 /* 9 */ "9 (invalid)",
1380 /* 10 */ "Symbolic Link",
1381 /* 11 */ "11 (invalid)",
1384 /* 14 */ "Event Port",
1385 /* 15 */ "15 (invalid)",
1388 dump_zap_stats(os
, object
);
1389 (void) printf("\n");
1391 for (zap_cursor_init(&zc
, os
, object
);
1392 zap_cursor_retrieve(&zc
, attrp
) == 0;
1393 zap_cursor_advance(&zc
)) {
1394 (void) printf("\t\t%s = %lld (type: %s)\n",
1395 attrp
->za_name
, ZFS_DIRENT_OBJ(attrp
->za_first_integer
),
1396 typenames
[ZFS_DIRENT_TYPE(attrp
->za_first_integer
)]);
1398 zap_cursor_fini(&zc
);
1399 zap_attribute_free(attrp
);
1403 get_dtl_refcount(vdev_t
*vd
)
1407 if (vd
->vdev_ops
->vdev_op_leaf
) {
1408 space_map_t
*sm
= vd
->vdev_dtl_sm
;
1411 sm
->sm_dbuf
->db_size
== sizeof (space_map_phys_t
))
1416 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
1417 refcount
+= get_dtl_refcount(vd
->vdev_child
[c
]);
1422 get_metaslab_refcount(vdev_t
*vd
)
1426 if (vd
->vdev_top
== vd
) {
1427 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
1428 space_map_t
*sm
= vd
->vdev_ms
[m
]->ms_sm
;
1431 sm
->sm_dbuf
->db_size
== sizeof (space_map_phys_t
))
1435 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
1436 refcount
+= get_metaslab_refcount(vd
->vdev_child
[c
]);
1442 get_obsolete_refcount(vdev_t
*vd
)
1444 uint64_t obsolete_sm_object
;
1447 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1448 if (vd
->vdev_top
== vd
&& obsolete_sm_object
!= 0) {
1449 dmu_object_info_t doi
;
1450 VERIFY0(dmu_object_info(vd
->vdev_spa
->spa_meta_objset
,
1451 obsolete_sm_object
, &doi
));
1452 if (doi
.doi_bonus_size
== sizeof (space_map_phys_t
)) {
1456 ASSERT3P(vd
->vdev_obsolete_sm
, ==, NULL
);
1457 ASSERT3U(obsolete_sm_object
, ==, 0);
1459 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++) {
1460 refcount
+= get_obsolete_refcount(vd
->vdev_child
[c
]);
1467 get_prev_obsolete_spacemap_refcount(spa_t
*spa
)
1470 spa
->spa_condensing_indirect_phys
.scip_prev_obsolete_sm_object
;
1471 if (prev_obj
!= 0) {
1472 dmu_object_info_t doi
;
1473 VERIFY0(dmu_object_info(spa
->spa_meta_objset
, prev_obj
, &doi
));
1474 if (doi
.doi_bonus_size
== sizeof (space_map_phys_t
)) {
1482 get_checkpoint_refcount(vdev_t
*vd
)
1486 if (vd
->vdev_top
== vd
&& vd
->vdev_top_zap
!= 0 &&
1487 zap_contains(spa_meta_objset(vd
->vdev_spa
),
1488 vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) == 0)
1491 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++)
1492 refcount
+= get_checkpoint_refcount(vd
->vdev_child
[c
]);
1498 get_log_spacemap_refcount(spa_t
*spa
)
1500 return (avl_numnodes(&spa
->spa_sm_logs_by_txg
));
1504 verify_spacemap_refcounts(spa_t
*spa
)
1506 uint64_t expected_refcount
= 0;
1507 uint64_t actual_refcount
;
1509 (void) feature_get_refcount(spa
,
1510 &spa_feature_table
[SPA_FEATURE_SPACEMAP_HISTOGRAM
],
1511 &expected_refcount
);
1512 actual_refcount
= get_dtl_refcount(spa
->spa_root_vdev
);
1513 actual_refcount
+= get_metaslab_refcount(spa
->spa_root_vdev
);
1514 actual_refcount
+= get_obsolete_refcount(spa
->spa_root_vdev
);
1515 actual_refcount
+= get_prev_obsolete_spacemap_refcount(spa
);
1516 actual_refcount
+= get_checkpoint_refcount(spa
->spa_root_vdev
);
1517 actual_refcount
+= get_log_spacemap_refcount(spa
);
1519 if (expected_refcount
!= actual_refcount
) {
1520 (void) printf("space map refcount mismatch: expected %lld != "
1522 (longlong_t
)expected_refcount
,
1523 (longlong_t
)actual_refcount
);
1530 dump_spacemap(objset_t
*os
, space_map_t
*sm
)
1532 const char *ddata
[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 "INVALID", "INVALID", "INVALID", "INVALID" };
1538 (void) printf("space map object %llu:\n",
1539 (longlong_t
)sm
->sm_object
);
1540 (void) printf(" smp_length = 0x%llx\n",
1541 (longlong_t
)sm
->sm_phys
->smp_length
);
1542 (void) printf(" smp_alloc = 0x%llx\n",
1543 (longlong_t
)sm
->sm_phys
->smp_alloc
);
1545 if (dump_opt
['d'] < 6 && dump_opt
['m'] < 4)
1549 * Print out the freelist entries in both encoded and decoded form.
1551 uint8_t mapshift
= sm
->sm_shift
;
1553 uint64_t word
, entry_id
= 0;
1554 for (uint64_t offset
= 0; offset
< space_map_length(sm
);
1555 offset
+= sizeof (word
)) {
1557 VERIFY0(dmu_read(os
, space_map_object(sm
), offset
,
1558 sizeof (word
), &word
, DMU_READ_PREFETCH
));
1560 if (sm_entry_is_debug(word
)) {
1561 uint64_t de_txg
= SM_DEBUG_TXG_DECODE(word
);
1562 uint64_t de_sync_pass
= SM_DEBUG_SYNCPASS_DECODE(word
);
1565 "\t [%6llu] PADDING\n",
1566 (u_longlong_t
)entry_id
);
1569 "\t [%6llu] %s: txg %llu pass %llu\n",
1570 (u_longlong_t
)entry_id
,
1571 ddata
[SM_DEBUG_ACTION_DECODE(word
)],
1572 (u_longlong_t
)de_txg
,
1573 (u_longlong_t
)de_sync_pass
);
1581 uint64_t entry_off
, entry_run
, entry_vdev
= SM_NO_VDEVID
;
1583 if (sm_entry_is_single_word(word
)) {
1584 entry_type
= (SM_TYPE_DECODE(word
) == SM_ALLOC
) ?
1586 entry_off
= (SM_OFFSET_DECODE(word
) << mapshift
) +
1588 entry_run
= SM_RUN_DECODE(word
) << mapshift
;
1591 /* it is a two-word entry so we read another word */
1592 ASSERT(sm_entry_is_double_word(word
));
1594 uint64_t extra_word
;
1595 offset
+= sizeof (extra_word
);
1596 VERIFY0(dmu_read(os
, space_map_object(sm
), offset
,
1597 sizeof (extra_word
), &extra_word
,
1598 DMU_READ_PREFETCH
));
1600 ASSERT3U(offset
, <=, space_map_length(sm
));
1602 entry_run
= SM2_RUN_DECODE(word
) << mapshift
;
1603 entry_vdev
= SM2_VDEV_DECODE(word
);
1604 entry_type
= (SM2_TYPE_DECODE(extra_word
) == SM_ALLOC
) ?
1606 entry_off
= (SM2_OFFSET_DECODE(extra_word
) <<
1607 mapshift
) + sm
->sm_start
;
1611 (void) printf("\t [%6llu] %c range:"
1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1613 (u_longlong_t
)entry_id
,
1614 entry_type
, (u_longlong_t
)entry_off
,
1615 (u_longlong_t
)(entry_off
+ entry_run
),
1616 (u_longlong_t
)entry_run
,
1617 (u_longlong_t
)entry_vdev
, words
);
1619 if (entry_type
== 'A')
1625 if (alloc
!= space_map_allocated(sm
)) {
1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 "with space map summary (%lld)\n",
1628 (longlong_t
)space_map_allocated(sm
), (longlong_t
)alloc
);
1633 dump_metaslab_stats(metaslab_t
*msp
)
1636 range_tree_t
*rt
= msp
->ms_allocatable
;
1637 zfs_btree_t
*t
= &msp
->ms_allocatable_by_size
;
1638 int free_pct
= range_tree_space(rt
) * 100 / msp
->ms_size
;
1640 /* max sure nicenum has enough space */
1641 _Static_assert(sizeof (maxbuf
) >= NN_NUMBUF_SZ
, "maxbuf truncated");
1643 zdb_nicenum(metaslab_largest_allocatable(msp
), maxbuf
, sizeof (maxbuf
));
1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1646 "segments", zfs_btree_numnodes(t
), "maxsize", maxbuf
,
1647 "freepct", free_pct
);
1648 (void) printf("\tIn-memory histogram:\n");
1649 dump_histogram(rt
->rt_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1653 dump_metaslab(metaslab_t
*msp
)
1655 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
1656 spa_t
*spa
= vd
->vdev_spa
;
1657 space_map_t
*sm
= msp
->ms_sm
;
1660 zdb_nicenum(msp
->ms_size
- space_map_allocated(sm
), freebuf
,
1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1665 (u_longlong_t
)msp
->ms_id
, (u_longlong_t
)msp
->ms_start
,
1666 (u_longlong_t
)space_map_object(sm
), freebuf
);
1668 if (dump_opt
['m'] > 2 && !dump_opt
['L']) {
1669 mutex_enter(&msp
->ms_lock
);
1670 VERIFY0(metaslab_load(msp
));
1671 range_tree_stat_verify(msp
->ms_allocatable
);
1672 dump_metaslab_stats(msp
);
1673 metaslab_unload(msp
);
1674 mutex_exit(&msp
->ms_lock
);
1677 if (dump_opt
['m'] > 1 && sm
!= NULL
&&
1678 spa_feature_is_active(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
)) {
1680 * The space map histogram represents free space in chunks
1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 (u_longlong_t
)msp
->ms_fragmentation
);
1685 dump_histogram(sm
->sm_phys
->smp_histogram
,
1686 SPACE_MAP_HISTOGRAM_SIZE
, sm
->sm_shift
);
1689 if (vd
->vdev_ops
== &vdev_draid_ops
)
1690 ASSERT3U(msp
->ms_size
, <=, 1ULL << vd
->vdev_ms_shift
);
1692 ASSERT3U(msp
->ms_size
, ==, 1ULL << vd
->vdev_ms_shift
);
1694 dump_spacemap(spa
->spa_meta_objset
, msp
->ms_sm
);
1696 if (spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
)) {
1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 (u_longlong_t
)metaslab_unflushed_txg(msp
));
1703 print_vdev_metaslab_header(vdev_t
*vd
)
1705 vdev_alloc_bias_t alloc_bias
= vd
->vdev_alloc_bias
;
1706 const char *bias_str
= "";
1707 if (alloc_bias
== VDEV_BIAS_LOG
|| vd
->vdev_islog
) {
1708 bias_str
= VDEV_ALLOC_BIAS_LOG
;
1709 } else if (alloc_bias
== VDEV_BIAS_SPECIAL
) {
1710 bias_str
= VDEV_ALLOC_BIAS_SPECIAL
;
1711 } else if (alloc_bias
== VDEV_BIAS_DEDUP
) {
1712 bias_str
= VDEV_ALLOC_BIAS_DEDUP
;
1715 uint64_t ms_flush_data_obj
= 0;
1716 if (vd
->vdev_top_zap
!= 0) {
1717 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
),
1718 vd
->vdev_top_zap
, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
,
1719 sizeof (uint64_t), 1, &ms_flush_data_obj
);
1720 if (error
!= ENOENT
) {
1725 (void) printf("\tvdev %10llu %s",
1726 (u_longlong_t
)vd
->vdev_id
, bias_str
);
1728 if (ms_flush_data_obj
!= 0) {
1729 (void) printf(" ms_unflushed_phys object %llu",
1730 (u_longlong_t
)ms_flush_data_obj
);
1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1734 "metaslabs", (u_longlong_t
)vd
->vdev_ms_count
,
1735 "offset", "spacemap", "free");
1736 (void) printf("\t%15s %19s %15s %12s\n",
1737 "---------------", "-------------------",
1738 "---------------", "------------");
1742 dump_metaslab_groups(spa_t
*spa
, boolean_t show_special
)
1744 vdev_t
*rvd
= spa
->spa_root_vdev
;
1745 metaslab_class_t
*mc
= spa_normal_class(spa
);
1746 metaslab_class_t
*smc
= spa_special_class(spa
);
1747 uint64_t fragmentation
;
1749 metaslab_class_histogram_verify(mc
);
1751 for (unsigned c
= 0; c
< rvd
->vdev_children
; c
++) {
1752 vdev_t
*tvd
= rvd
->vdev_child
[c
];
1753 metaslab_group_t
*mg
= tvd
->vdev_mg
;
1755 if (mg
== NULL
|| (mg
->mg_class
!= mc
&&
1756 (!show_special
|| mg
->mg_class
!= smc
)))
1759 metaslab_group_histogram_verify(mg
);
1760 mg
->mg_fragmentation
= metaslab_group_fragmentation(mg
);
1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1764 (u_longlong_t
)tvd
->vdev_id
,
1765 (u_longlong_t
)tvd
->vdev_ms_count
);
1766 if (mg
->mg_fragmentation
== ZFS_FRAG_INVALID
) {
1767 (void) printf("%3s\n", "-");
1769 (void) printf("%3llu%%\n",
1770 (u_longlong_t
)mg
->mg_fragmentation
);
1772 dump_histogram(mg
->mg_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa
));
1776 fragmentation
= metaslab_class_fragmentation(mc
);
1777 if (fragmentation
== ZFS_FRAG_INVALID
)
1778 (void) printf("\t%3s\n", "-");
1780 (void) printf("\t%3llu%%\n", (u_longlong_t
)fragmentation
);
1781 dump_histogram(mc
->mc_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1785 print_vdev_indirect(vdev_t
*vd
)
1787 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1788 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1789 vdev_indirect_births_t
*vib
= vd
->vdev_indirect_births
;
1792 ASSERT3P(vib
, ==, NULL
);
1796 ASSERT3U(vdev_indirect_mapping_object(vim
), ==,
1797 vic
->vic_mapping_object
);
1798 ASSERT3U(vdev_indirect_births_object(vib
), ==,
1799 vic
->vic_births_object
);
1801 (void) printf("indirect births obj %llu:\n",
1802 (longlong_t
)vic
->vic_births_object
);
1803 (void) printf(" vib_count = %llu\n",
1804 (longlong_t
)vdev_indirect_births_count(vib
));
1805 for (uint64_t i
= 0; i
< vdev_indirect_births_count(vib
); i
++) {
1806 vdev_indirect_birth_entry_phys_t
*cur_vibe
=
1807 &vib
->vib_entries
[i
];
1808 (void) printf("\toffset %llx -> txg %llu\n",
1809 (longlong_t
)cur_vibe
->vibe_offset
,
1810 (longlong_t
)cur_vibe
->vibe_phys_birth_txg
);
1812 (void) printf("\n");
1814 (void) printf("indirect mapping obj %llu:\n",
1815 (longlong_t
)vic
->vic_mapping_object
);
1816 (void) printf(" vim_max_offset = 0x%llx\n",
1817 (longlong_t
)vdev_indirect_mapping_max_offset(vim
));
1818 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1819 (longlong_t
)vdev_indirect_mapping_bytes_mapped(vim
));
1820 (void) printf(" vim_count = %llu\n",
1821 (longlong_t
)vdev_indirect_mapping_num_entries(vim
));
1823 if (dump_opt
['d'] <= 5 && dump_opt
['m'] <= 3)
1826 uint32_t *counts
= vdev_indirect_mapping_load_obsolete_counts(vim
);
1828 for (uint64_t i
= 0; i
< vdev_indirect_mapping_num_entries(vim
); i
++) {
1829 vdev_indirect_mapping_entry_phys_t
*vimep
=
1830 &vim
->vim_entries
[i
];
1831 (void) printf("\t<%llx:%llx:%llx> -> "
1832 "<%llx:%llx:%llx> (%x obsolete)\n",
1833 (longlong_t
)vd
->vdev_id
,
1834 (longlong_t
)DVA_MAPPING_GET_SRC_OFFSET(vimep
),
1835 (longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
1836 (longlong_t
)DVA_GET_VDEV(&vimep
->vimep_dst
),
1837 (longlong_t
)DVA_GET_OFFSET(&vimep
->vimep_dst
),
1838 (longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
1841 (void) printf("\n");
1843 uint64_t obsolete_sm_object
;
1844 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1845 if (obsolete_sm_object
!= 0) {
1846 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
1847 (void) printf("obsolete space map object %llu:\n",
1848 (u_longlong_t
)obsolete_sm_object
);
1849 ASSERT(vd
->vdev_obsolete_sm
!= NULL
);
1850 ASSERT3U(space_map_object(vd
->vdev_obsolete_sm
), ==,
1851 obsolete_sm_object
);
1852 dump_spacemap(mos
, vd
->vdev_obsolete_sm
);
1853 (void) printf("\n");
1858 dump_metaslabs(spa_t
*spa
)
1860 vdev_t
*vd
, *rvd
= spa
->spa_root_vdev
;
1861 uint64_t m
, c
= 0, children
= rvd
->vdev_children
;
1863 (void) printf("\nMetaslabs:\n");
1865 if (!dump_opt
['d'] && zopt_metaslab_args
> 0) {
1866 c
= zopt_metaslab
[0];
1869 (void) fatal("bad vdev id: %llu", (u_longlong_t
)c
);
1871 if (zopt_metaslab_args
> 1) {
1872 vd
= rvd
->vdev_child
[c
];
1873 print_vdev_metaslab_header(vd
);
1875 for (m
= 1; m
< zopt_metaslab_args
; m
++) {
1876 if (zopt_metaslab
[m
] < vd
->vdev_ms_count
)
1878 vd
->vdev_ms
[zopt_metaslab
[m
]]);
1880 (void) fprintf(stderr
, "bad metaslab "
1882 (u_longlong_t
)zopt_metaslab
[m
]);
1884 (void) printf("\n");
1889 for (; c
< children
; c
++) {
1890 vd
= rvd
->vdev_child
[c
];
1891 print_vdev_metaslab_header(vd
);
1893 print_vdev_indirect(vd
);
1895 for (m
= 0; m
< vd
->vdev_ms_count
; m
++)
1896 dump_metaslab(vd
->vdev_ms
[m
]);
1897 (void) printf("\n");
1902 dump_log_spacemaps(spa_t
*spa
)
1904 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
1907 (void) printf("\nLog Space Maps in Pool:\n");
1908 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
1909 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
)) {
1910 space_map_t
*sm
= NULL
;
1911 VERIFY0(space_map_open(&sm
, spa_meta_objset(spa
),
1912 sls
->sls_sm_obj
, 0, UINT64_MAX
, SPA_MINBLOCKSHIFT
));
1914 (void) printf("Log Spacemap object %llu txg %llu\n",
1915 (u_longlong_t
)sls
->sls_sm_obj
, (u_longlong_t
)sls
->sls_txg
);
1916 dump_spacemap(spa
->spa_meta_objset
, sm
);
1917 space_map_close(sm
);
1919 (void) printf("\n");
1923 dump_ddt_entry(const ddt_t
*ddt
, const ddt_lightweight_entry_t
*ddlwe
,
1926 const ddt_key_t
*ddk
= &ddlwe
->ddlwe_key
;
1927 char blkbuf
[BP_SPRINTF_LEN
];
1931 for (p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
1932 const ddt_univ_phys_t
*ddp
= &ddlwe
->ddlwe_phys
;
1933 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
1935 if (ddt_phys_birth(ddp
, v
) == 0)
1937 ddt_bp_create(ddt
->ddt_checksum
, ddk
, ddp
, v
, &blk
);
1938 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &blk
);
1939 (void) printf("index %llx refcnt %llu phys %d %s\n",
1940 (u_longlong_t
)index
, (u_longlong_t
)ddt_phys_refcnt(ddp
, v
),
1946 dump_dedup_ratio(const ddt_stat_t
*dds
)
1948 double rL
, rP
, rD
, D
, dedup
, compress
, copies
;
1950 if (dds
->dds_blocks
== 0)
1953 rL
= (double)dds
->dds_ref_lsize
;
1954 rP
= (double)dds
->dds_ref_psize
;
1955 rD
= (double)dds
->dds_ref_dsize
;
1956 D
= (double)dds
->dds_dsize
;
1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1963 "dedup * compress / copies = %.2f\n\n",
1964 dedup
, compress
, copies
, dedup
* compress
/ copies
);
1968 dump_ddt_log(ddt_t
*ddt
)
1970 for (int n
= 0; n
< 2; n
++) {
1971 ddt_log_t
*ddl
= &ddt
->ddt_log
[n
];
1973 uint64_t count
= avl_numnodes(&ddl
->ddl_tree
);
1977 printf(DMU_POOL_DDT_LOG
": %lu log entries\n",
1978 zio_checksum_table
[ddt
->ddt_checksum
].ci_name
, n
, count
);
1980 if (dump_opt
['D'] < 4)
1983 ddt_lightweight_entry_t ddlwe
;
1985 for (ddt_log_entry_t
*ddle
= avl_first(&ddl
->ddl_tree
);
1986 ddle
; ddle
= AVL_NEXT(&ddl
->ddl_tree
, ddle
)) {
1987 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt
, ddle
, &ddlwe
);
1988 dump_ddt_entry(ddt
, &ddlwe
, index
++);
1994 dump_ddt(ddt_t
*ddt
, ddt_type_t type
, ddt_class_t
class)
1996 char name
[DDT_NAMELEN
];
1997 ddt_lightweight_entry_t ddlwe
;
1999 dmu_object_info_t doi
;
2000 uint64_t count
, dspace
, mspace
;
2003 error
= ddt_object_info(ddt
, type
, class, &doi
);
2005 if (error
== ENOENT
)
2009 error
= ddt_object_count(ddt
, type
, class, &count
);
2014 dspace
= doi
.doi_physical_blocks_512
<< 9;
2015 mspace
= doi
.doi_fill_count
* doi
.doi_data_block_size
;
2017 ddt_object_name(ddt
, type
, class, name
);
2019 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2021 (u_longlong_t
)count
,
2022 (u_longlong_t
)dspace
,
2023 (u_longlong_t
)mspace
);
2025 if (dump_opt
['D'] < 3)
2028 zpool_dump_ddt(NULL
, &ddt
->ddt_histogram
[type
][class]);
2030 if (dump_opt
['D'] < 4)
2033 if (dump_opt
['D'] < 5 && class == DDT_CLASS_UNIQUE
)
2036 (void) printf("%s contents:\n\n", name
);
2038 while ((error
= ddt_object_walk(ddt
, type
, class, &walk
, &ddlwe
)) == 0)
2039 dump_ddt_entry(ddt
, &ddlwe
, walk
);
2041 ASSERT3U(error
, ==, ENOENT
);
2043 (void) printf("\n");
2047 dump_all_ddts(spa_t
*spa
)
2049 ddt_histogram_t ddh_total
= {{{0}}};
2050 ddt_stat_t dds_total
= {0};
2052 for (enum zio_checksum c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
2053 ddt_t
*ddt
= spa
->spa_ddt
[c
];
2054 if (!ddt
|| ddt
->ddt_version
== DDT_VERSION_UNCONFIGURED
)
2056 for (ddt_type_t type
= 0; type
< DDT_TYPES
; type
++) {
2057 for (ddt_class_t
class = 0; class < DDT_CLASSES
;
2059 dump_ddt(ddt
, type
, class);
2065 ddt_get_dedup_stats(spa
, &dds_total
);
2067 if (dds_total
.dds_blocks
== 0) {
2068 (void) printf("All DDTs are empty\n");
2072 (void) printf("\n");
2074 if (dump_opt
['D'] > 1) {
2075 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2076 ddt_get_dedup_histogram(spa
, &ddh_total
);
2077 zpool_dump_ddt(&dds_total
, &ddh_total
);
2080 dump_dedup_ratio(&dds_total
);
2083 * Dump a histogram of unique class entry age
2085 if (dump_opt
['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL
) {
2086 ddt_age_histo_t histogram
;
2088 (void) printf("DDT walk unique, building age histogram...\n");
2089 ddt_prune_walk(spa
, 0, &histogram
);
2092 * print out histogram for unique entry class birth
2094 if (histogram
.dah_entries
> 0) {
2095 (void) printf("%5s %9s %4s\n",
2096 "age", "blocks", "amnt");
2097 (void) printf("%5s %9s %4s\n",
2098 "-----", "---------", "----");
2099 for (int i
= 0; i
< HIST_BINS
; i
++) {
2100 (void) printf("%5d %9d %4d%%\n", 1 << i
,
2101 (int)histogram
.dah_age_histo
[i
],
2102 (int)((histogram
.dah_age_histo
[i
] * 100) /
2103 histogram
.dah_entries
));
2110 dump_brt(spa_t
*spa
)
2112 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
2113 printf("BRT: unsupported on this pool\n");
2117 if (!spa_feature_is_active(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
2118 printf("BRT: empty\n");
2122 char count
[32], used
[32], saved
[32];
2123 zdb_nicebytes(brt_get_used(spa
), used
, sizeof (used
));
2124 zdb_nicebytes(brt_get_saved(spa
), saved
, sizeof (saved
));
2125 uint64_t ratio
= brt_get_ratio(spa
);
2126 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used
, saved
,
2127 (u_longlong_t
)(ratio
/ 100), (u_longlong_t
)(ratio
% 100));
2129 if (dump_opt
['T'] < 2)
2132 for (uint64_t vdevid
= 0; vdevid
< spa
->spa_brt_nvdevs
; vdevid
++) {
2133 brt_vdev_t
*brtvd
= spa
->spa_brt_vdevs
[vdevid
];
2134 if (!brtvd
->bv_initiated
) {
2135 printf("BRT: vdev %" PRIu64
": empty\n", vdevid
);
2139 zdb_nicenum(brtvd
->bv_totalcount
, count
, sizeof (count
));
2140 zdb_nicebytes(brtvd
->bv_usedspace
, used
, sizeof (used
));
2141 zdb_nicebytes(brtvd
->bv_savedspace
, saved
, sizeof (saved
));
2142 printf("BRT: vdev %" PRIu64
": refcnt %s; used %s; saved %s\n",
2143 vdevid
, count
, used
, saved
);
2146 if (dump_opt
['T'] < 3)
2149 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2150 boolean_t do_histo
= dump_opt
['T'] == 3;
2155 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2157 for (uint64_t vdevid
= 0; vdevid
< spa
->spa_brt_nvdevs
; vdevid
++) {
2158 brt_vdev_t
*brtvd
= spa
->spa_brt_vdevs
[vdevid
];
2159 if (!brtvd
->bv_initiated
)
2162 uint64_t counts
[64] = {};
2165 zap_attribute_t
*za
= zap_attribute_alloc();
2166 for (zap_cursor_init(&zc
, spa
->spa_meta_objset
,
2167 brtvd
->bv_mos_entries
);
2168 zap_cursor_retrieve(&zc
, za
) == 0;
2169 zap_cursor_advance(&zc
)) {
2171 VERIFY0(zap_lookup_uint64(spa
->spa_meta_objset
,
2172 brtvd
->bv_mos_entries
,
2173 (const uint64_t *)za
->za_name
, 1,
2174 za
->za_integer_length
, za
->za_num_integers
,
2178 counts
[highbit64(refcnt
)]++;
2181 *(const uint64_t *)za
->za_name
;
2183 snprintf(dva
, sizeof (dva
), "%" PRIu64
":%llx",
2184 vdevid
, (u_longlong_t
)offset
);
2185 printf("%-16s %-10llu\n", dva
,
2186 (u_longlong_t
)refcnt
);
2189 zap_cursor_fini(&zc
);
2190 zap_attribute_free(za
);
2193 printf("\nBRT: vdev %" PRIu64
2194 ": DVAs with 2^n refcnts:\n", vdevid
);
2195 dump_histogram(counts
, 64, 0);
2201 dump_dtl_seg(void *arg
, uint64_t start
, uint64_t size
)
2205 (void) printf("%s [%llu,%llu) length %llu\n",
2207 (u_longlong_t
)start
,
2208 (u_longlong_t
)(start
+ size
),
2209 (u_longlong_t
)(size
));
2213 dump_dtl(vdev_t
*vd
, int indent
)
2215 spa_t
*spa
= vd
->vdev_spa
;
2217 const char *name
[DTL_TYPES
] = { "missing", "partial", "scrub",
2221 spa_vdev_state_enter(spa
, SCL_NONE
);
2222 required
= vdev_dtl_required(vd
);
2223 (void) spa_vdev_state_exit(spa
, NULL
, 0);
2226 (void) printf("\nDirty time logs:\n\n");
2228 (void) printf("\t%*s%s [%s]\n", indent
, "",
2229 vd
->vdev_path
? vd
->vdev_path
:
2230 vd
->vdev_parent
? vd
->vdev_ops
->vdev_op_type
: spa_name(spa
),
2231 required
? "DTL-required" : "DTL-expendable");
2233 for (int t
= 0; t
< DTL_TYPES
; t
++) {
2234 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2235 if (range_tree_space(rt
) == 0)
2237 (void) snprintf(prefix
, sizeof (prefix
), "\t%*s%s",
2238 indent
+ 2, "", name
[t
]);
2239 range_tree_walk(rt
, dump_dtl_seg
, prefix
);
2240 if (dump_opt
['d'] > 5 && vd
->vdev_children
== 0)
2241 dump_spacemap(spa
->spa_meta_objset
,
2245 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
2246 dump_dtl(vd
->vdev_child
[c
], indent
+ 4);
2250 dump_history(spa_t
*spa
)
2252 nvlist_t
**events
= NULL
;
2254 uint64_t resid
, len
, off
= 0;
2259 if ((buf
= malloc(SPA_OLD_MAXBLOCKSIZE
)) == NULL
) {
2260 (void) fprintf(stderr
, "%s: unable to allocate I/O buffer\n",
2266 len
= SPA_OLD_MAXBLOCKSIZE
;
2268 if ((error
= spa_history_get(spa
, &off
, &len
, buf
)) != 0) {
2269 (void) fprintf(stderr
, "Unable to read history: "
2270 "error %d\n", error
);
2275 if (zpool_history_unpack(buf
, len
, &resid
, &events
, &num
) != 0)
2281 (void) printf("\nHistory:\n");
2282 for (unsigned i
= 0; i
< num
; i
++) {
2283 boolean_t printed
= B_FALSE
;
2285 if (nvlist_exists(events
[i
], ZPOOL_HIST_TIME
)) {
2289 tsec
= fnvlist_lookup_uint64(events
[i
],
2291 (void) localtime_r(&tsec
, &t
);
2292 (void) strftime(tbuf
, sizeof (tbuf
), "%F.%T", &t
);
2297 if (nvlist_exists(events
[i
], ZPOOL_HIST_CMD
)) {
2298 (void) printf("%s %s\n", tbuf
,
2299 fnvlist_lookup_string(events
[i
], ZPOOL_HIST_CMD
));
2300 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_INT_EVENT
)) {
2303 ievent
= fnvlist_lookup_uint64(events
[i
],
2304 ZPOOL_HIST_INT_EVENT
);
2305 if (ievent
>= ZFS_NUM_LEGACY_HISTORY_EVENTS
)
2308 (void) printf(" %s [internal %s txg:%ju] %s\n",
2310 zfs_history_event_names
[ievent
],
2311 fnvlist_lookup_uint64(events
[i
],
2313 fnvlist_lookup_string(events
[i
],
2314 ZPOOL_HIST_INT_STR
));
2315 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_INT_NAME
)) {
2316 (void) printf("%s [txg:%ju] %s", tbuf
,
2317 fnvlist_lookup_uint64(events
[i
],
2319 fnvlist_lookup_string(events
[i
],
2320 ZPOOL_HIST_INT_NAME
));
2322 if (nvlist_exists(events
[i
], ZPOOL_HIST_DSNAME
)) {
2323 (void) printf(" %s (%llu)",
2324 fnvlist_lookup_string(events
[i
],
2326 (u_longlong_t
)fnvlist_lookup_uint64(
2331 (void) printf(" %s\n", fnvlist_lookup_string(events
[i
],
2332 ZPOOL_HIST_INT_STR
));
2333 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_IOCTL
)) {
2334 (void) printf("%s ioctl %s\n", tbuf
,
2335 fnvlist_lookup_string(events
[i
],
2338 if (nvlist_exists(events
[i
], ZPOOL_HIST_INPUT_NVL
)) {
2339 (void) printf(" input:\n");
2340 dump_nvlist(fnvlist_lookup_nvlist(events
[i
],
2341 ZPOOL_HIST_INPUT_NVL
), 8);
2343 if (nvlist_exists(events
[i
], ZPOOL_HIST_OUTPUT_NVL
)) {
2344 (void) printf(" output:\n");
2345 dump_nvlist(fnvlist_lookup_nvlist(events
[i
],
2346 ZPOOL_HIST_OUTPUT_NVL
), 8);
2348 if (nvlist_exists(events
[i
], ZPOOL_HIST_ERRNO
)) {
2349 (void) printf(" errno: %lld\n",
2350 (longlong_t
)fnvlist_lookup_int64(events
[i
],
2359 if (dump_opt
['h'] > 1) {
2361 (void) printf("unrecognized record:\n");
2362 dump_nvlist(events
[i
], 2);
2369 dump_dnode(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2371 (void) os
, (void) object
, (void) data
, (void) size
;
2375 blkid2offset(const dnode_phys_t
*dnp
, const blkptr_t
*bp
,
2376 const zbookmark_phys_t
*zb
)
2379 ASSERT(zb
->zb_level
< 0);
2380 if (zb
->zb_object
== 0)
2381 return (zb
->zb_blkid
);
2382 return (zb
->zb_blkid
* BP_GET_LSIZE(bp
));
2385 ASSERT(zb
->zb_level
>= 0);
2387 return ((zb
->zb_blkid
<<
2388 (zb
->zb_level
* (dnp
->dn_indblkshift
- SPA_BLKPTRSHIFT
))) *
2389 dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
);
2393 snprintf_zstd_header(spa_t
*spa
, char *blkbuf
, size_t buflen
,
2396 static abd_t
*pabd
= NULL
;
2399 zfs_zstdhdr_t zstd_hdr
;
2402 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_ZSTD
)
2408 if (BP_IS_EMBEDDED(bp
)) {
2409 buf
= malloc(SPA_MAXBLOCKSIZE
);
2411 (void) fprintf(stderr
, "out of memory\n");
2414 decode_embedded_bp_compressed(bp
, buf
);
2415 memcpy(&zstd_hdr
, buf
, sizeof (zstd_hdr
));
2417 zstd_hdr
.c_len
= BE_32(zstd_hdr
.c_len
);
2418 zstd_hdr
.raw_version_level
= BE_32(zstd_hdr
.raw_version_level
);
2419 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2420 buflen
- strlen(blkbuf
),
2421 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2422 zstd_hdr
.c_len
, zfs_get_hdrversion(&zstd_hdr
),
2423 zfs_get_hdrlevel(&zstd_hdr
));
2428 pabd
= abd_alloc_for_io(SPA_MAXBLOCKSIZE
, B_FALSE
);
2429 zio
= zio_root(spa
, NULL
, NULL
, 0);
2431 /* Decrypt but don't decompress so we can read the compression header */
2432 zio_nowait(zio_read(zio
, spa
, bp
, pabd
, BP_GET_PSIZE(bp
), NULL
, NULL
,
2433 ZIO_PRIORITY_SYNC_READ
, ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW_COMPRESS
,
2435 error
= zio_wait(zio
);
2437 (void) fprintf(stderr
, "read failed: %d\n", error
);
2440 buf
= abd_borrow_buf_copy(pabd
, BP_GET_LSIZE(bp
));
2441 memcpy(&zstd_hdr
, buf
, sizeof (zstd_hdr
));
2442 zstd_hdr
.c_len
= BE_32(zstd_hdr
.c_len
);
2443 zstd_hdr
.raw_version_level
= BE_32(zstd_hdr
.raw_version_level
);
2445 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2446 buflen
- strlen(blkbuf
),
2447 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2448 zstd_hdr
.c_len
, zfs_get_hdrversion(&zstd_hdr
),
2449 zfs_get_hdrlevel(&zstd_hdr
));
2451 abd_return_buf_copy(pabd
, buf
, BP_GET_LSIZE(bp
));
2455 snprintf_blkptr_compact(char *blkbuf
, size_t buflen
, const blkptr_t
*bp
,
2458 const dva_t
*dva
= bp
->blk_dva
;
2459 int ndvas
= dump_opt
['d'] > 5 ? BP_GET_NDVAS(bp
) : 1;
2462 if (dump_opt
['b'] >= 6) {
2463 snprintf_blkptr(blkbuf
, buflen
, bp
);
2465 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2466 buflen
- strlen(blkbuf
), " %s", "FREE");
2471 if (BP_IS_EMBEDDED(bp
)) {
2472 (void) sprintf(blkbuf
,
2473 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2474 (int)BPE_GET_ETYPE(bp
),
2475 (u_longlong_t
)BPE_GET_LSIZE(bp
),
2476 (u_longlong_t
)BPE_GET_PSIZE(bp
),
2477 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
));
2483 for (i
= 0; i
< ndvas
; i
++)
2484 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2485 buflen
- strlen(blkbuf
), "%llu:%llx:%llx ",
2486 (u_longlong_t
)DVA_GET_VDEV(&dva
[i
]),
2487 (u_longlong_t
)DVA_GET_OFFSET(&dva
[i
]),
2488 (u_longlong_t
)DVA_GET_ASIZE(&dva
[i
]));
2490 if (BP_IS_HOLE(bp
)) {
2491 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2492 buflen
- strlen(blkbuf
),
2494 (u_longlong_t
)BP_GET_LSIZE(bp
),
2495 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
));
2497 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2498 buflen
- strlen(blkbuf
),
2499 "%llxL/%llxP F=%llu B=%llu/%llu",
2500 (u_longlong_t
)BP_GET_LSIZE(bp
),
2501 (u_longlong_t
)BP_GET_PSIZE(bp
),
2502 (u_longlong_t
)BP_GET_FILL(bp
),
2503 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
),
2504 (u_longlong_t
)BP_GET_BIRTH(bp
));
2506 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2507 buflen
- strlen(blkbuf
), " %s", "FREE");
2508 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2509 buflen
- strlen(blkbuf
),
2510 " cksum=%016llx:%016llx:%016llx:%016llx",
2511 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
2512 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
2513 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
2514 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
2519 print_indirect(spa_t
*spa
, blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2520 const dnode_phys_t
*dnp
)
2522 char blkbuf
[BP_SPRINTF_LEN
];
2525 if (!BP_IS_EMBEDDED(bp
)) {
2526 ASSERT3U(BP_GET_TYPE(bp
), ==, dnp
->dn_type
);
2527 ASSERT3U(BP_GET_LEVEL(bp
), ==, zb
->zb_level
);
2530 (void) printf("%16llx ", (u_longlong_t
)blkid2offset(dnp
, bp
, zb
));
2532 ASSERT(zb
->zb_level
>= 0);
2534 for (l
= dnp
->dn_nlevels
- 1; l
>= -1; l
--) {
2535 if (l
== zb
->zb_level
) {
2536 (void) printf("L%llx", (u_longlong_t
)zb
->zb_level
);
2542 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), bp
, B_FALSE
);
2543 if (dump_opt
['Z'] && BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_ZSTD
)
2544 snprintf_zstd_header(spa
, blkbuf
, sizeof (blkbuf
), bp
);
2545 (void) printf("%s\n", blkbuf
);
2549 visit_indirect(spa_t
*spa
, const dnode_phys_t
*dnp
,
2550 blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
2554 if (BP_GET_LOGICAL_BIRTH(bp
) == 0)
2557 print_indirect(spa
, bp
, zb
, dnp
);
2559 if (BP_GET_LEVEL(bp
) > 0 && !BP_IS_HOLE(bp
)) {
2560 arc_flags_t flags
= ARC_FLAG_WAIT
;
2563 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2566 ASSERT(!BP_IS_REDACTED(bp
));
2568 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2569 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
, &flags
, zb
);
2572 ASSERT(buf
->b_data
);
2574 /* recursively visit blocks below this */
2576 for (i
= 0; i
< epb
; i
++, cbp
++) {
2577 zbookmark_phys_t czb
;
2579 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2581 zb
->zb_blkid
* epb
+ i
);
2582 err
= visit_indirect(spa
, dnp
, cbp
, &czb
);
2585 fill
+= BP_GET_FILL(cbp
);
2588 ASSERT3U(fill
, ==, BP_GET_FILL(bp
));
2589 arc_buf_destroy(buf
, &buf
);
2596 dump_indirect(dnode_t
*dn
)
2598 dnode_phys_t
*dnp
= dn
->dn_phys
;
2599 zbookmark_phys_t czb
;
2601 (void) printf("Indirect blocks:\n");
2603 SET_BOOKMARK(&czb
, dmu_objset_id(dn
->dn_objset
),
2604 dn
->dn_object
, dnp
->dn_nlevels
- 1, 0);
2605 for (int j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
2607 (void) visit_indirect(dmu_objset_spa(dn
->dn_objset
), dnp
,
2608 &dnp
->dn_blkptr
[j
], &czb
);
2611 (void) printf("\n");
2615 dump_dsl_dir(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2617 (void) os
, (void) object
;
2618 dsl_dir_phys_t
*dd
= data
;
2622 /* make sure nicenum has enough space */
2623 _Static_assert(sizeof (nice
) >= NN_NUMBUF_SZ
, "nice truncated");
2628 ASSERT3U(size
, >=, sizeof (dsl_dir_phys_t
));
2630 crtime
= dd
->dd_creation_time
;
2631 (void) printf("\t\tcreation_time = %s", ctime(&crtime
));
2632 (void) printf("\t\thead_dataset_obj = %llu\n",
2633 (u_longlong_t
)dd
->dd_head_dataset_obj
);
2634 (void) printf("\t\tparent_dir_obj = %llu\n",
2635 (u_longlong_t
)dd
->dd_parent_obj
);
2636 (void) printf("\t\torigin_obj = %llu\n",
2637 (u_longlong_t
)dd
->dd_origin_obj
);
2638 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2639 (u_longlong_t
)dd
->dd_child_dir_zapobj
);
2640 zdb_nicenum(dd
->dd_used_bytes
, nice
, sizeof (nice
));
2641 (void) printf("\t\tused_bytes = %s\n", nice
);
2642 zdb_nicenum(dd
->dd_compressed_bytes
, nice
, sizeof (nice
));
2643 (void) printf("\t\tcompressed_bytes = %s\n", nice
);
2644 zdb_nicenum(dd
->dd_uncompressed_bytes
, nice
, sizeof (nice
));
2645 (void) printf("\t\tuncompressed_bytes = %s\n", nice
);
2646 zdb_nicenum(dd
->dd_quota
, nice
, sizeof (nice
));
2647 (void) printf("\t\tquota = %s\n", nice
);
2648 zdb_nicenum(dd
->dd_reserved
, nice
, sizeof (nice
));
2649 (void) printf("\t\treserved = %s\n", nice
);
2650 (void) printf("\t\tprops_zapobj = %llu\n",
2651 (u_longlong_t
)dd
->dd_props_zapobj
);
2652 (void) printf("\t\tdeleg_zapobj = %llu\n",
2653 (u_longlong_t
)dd
->dd_deleg_zapobj
);
2654 (void) printf("\t\tflags = %llx\n",
2655 (u_longlong_t
)dd
->dd_flags
);
2658 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2660 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2667 (void) printf("\t\tclones = %llu\n",
2668 (u_longlong_t
)dd
->dd_clones
);
2672 dump_dsl_dataset(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2674 (void) os
, (void) object
;
2675 dsl_dataset_phys_t
*ds
= data
;
2677 char used
[32], compressed
[32], uncompressed
[32], unique
[32];
2678 char blkbuf
[BP_SPRINTF_LEN
];
2680 /* make sure nicenum has enough space */
2681 _Static_assert(sizeof (used
) >= NN_NUMBUF_SZ
, "used truncated");
2682 _Static_assert(sizeof (compressed
) >= NN_NUMBUF_SZ
,
2683 "compressed truncated");
2684 _Static_assert(sizeof (uncompressed
) >= NN_NUMBUF_SZ
,
2685 "uncompressed truncated");
2686 _Static_assert(sizeof (unique
) >= NN_NUMBUF_SZ
, "unique truncated");
2691 ASSERT(size
== sizeof (*ds
));
2692 crtime
= ds
->ds_creation_time
;
2693 zdb_nicenum(ds
->ds_referenced_bytes
, used
, sizeof (used
));
2694 zdb_nicenum(ds
->ds_compressed_bytes
, compressed
, sizeof (compressed
));
2695 zdb_nicenum(ds
->ds_uncompressed_bytes
, uncompressed
,
2696 sizeof (uncompressed
));
2697 zdb_nicenum(ds
->ds_unique_bytes
, unique
, sizeof (unique
));
2698 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ds
->ds_bp
);
2700 (void) printf("\t\tdir_obj = %llu\n",
2701 (u_longlong_t
)ds
->ds_dir_obj
);
2702 (void) printf("\t\tprev_snap_obj = %llu\n",
2703 (u_longlong_t
)ds
->ds_prev_snap_obj
);
2704 (void) printf("\t\tprev_snap_txg = %llu\n",
2705 (u_longlong_t
)ds
->ds_prev_snap_txg
);
2706 (void) printf("\t\tnext_snap_obj = %llu\n",
2707 (u_longlong_t
)ds
->ds_next_snap_obj
);
2708 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2709 (u_longlong_t
)ds
->ds_snapnames_zapobj
);
2710 (void) printf("\t\tnum_children = %llu\n",
2711 (u_longlong_t
)ds
->ds_num_children
);
2712 (void) printf("\t\tuserrefs_obj = %llu\n",
2713 (u_longlong_t
)ds
->ds_userrefs_obj
);
2714 (void) printf("\t\tcreation_time = %s", ctime(&crtime
));
2715 (void) printf("\t\tcreation_txg = %llu\n",
2716 (u_longlong_t
)ds
->ds_creation_txg
);
2717 (void) printf("\t\tdeadlist_obj = %llu\n",
2718 (u_longlong_t
)ds
->ds_deadlist_obj
);
2719 (void) printf("\t\tused_bytes = %s\n", used
);
2720 (void) printf("\t\tcompressed_bytes = %s\n", compressed
);
2721 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed
);
2722 (void) printf("\t\tunique = %s\n", unique
);
2723 (void) printf("\t\tfsid_guid = %llu\n",
2724 (u_longlong_t
)ds
->ds_fsid_guid
);
2725 (void) printf("\t\tguid = %llu\n",
2726 (u_longlong_t
)ds
->ds_guid
);
2727 (void) printf("\t\tflags = %llx\n",
2728 (u_longlong_t
)ds
->ds_flags
);
2729 (void) printf("\t\tnext_clones_obj = %llu\n",
2730 (u_longlong_t
)ds
->ds_next_clones_obj
);
2731 (void) printf("\t\tprops_obj = %llu\n",
2732 (u_longlong_t
)ds
->ds_props_obj
);
2733 (void) printf("\t\tbp = %s\n", blkbuf
);
2737 dump_bptree_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
2739 (void) arg
, (void) tx
;
2740 char blkbuf
[BP_SPRINTF_LEN
];
2742 if (BP_GET_LOGICAL_BIRTH(bp
) != 0) {
2743 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
2744 (void) printf("\t%s\n", blkbuf
);
2750 dump_bptree(objset_t
*os
, uint64_t obj
, const char *name
)
2756 /* make sure nicenum has enough space */
2757 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
2759 if (dump_opt
['d'] < 3)
2762 VERIFY3U(0, ==, dmu_bonus_hold(os
, obj
, FTAG
, &db
));
2764 zdb_nicenum(bt
->bt_bytes
, bytes
, sizeof (bytes
));
2765 (void) printf("\n %s: %llu datasets, %s\n",
2766 name
, (unsigned long long)(bt
->bt_end
- bt
->bt_begin
), bytes
);
2767 dmu_buf_rele(db
, FTAG
);
2769 if (dump_opt
['d'] < 5)
2772 (void) printf("\n");
2774 (void) bptree_iterate(os
, obj
, B_FALSE
, dump_bptree_cb
, NULL
, NULL
);
2778 dump_bpobj_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
, dmu_tx_t
*tx
)
2780 (void) arg
, (void) tx
;
2781 char blkbuf
[BP_SPRINTF_LEN
];
2783 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) != 0);
2784 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), bp
, bp_freed
);
2785 (void) printf("\t%s\n", blkbuf
);
2790 dump_full_bpobj(bpobj_t
*bpo
, const char *name
, int indent
)
2797 /* make sure nicenum has enough space */
2798 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
2799 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
2800 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
2802 if (dump_opt
['d'] < 3)
2805 zdb_nicenum(bpo
->bpo_phys
->bpo_bytes
, bytes
, sizeof (bytes
));
2806 if (bpo
->bpo_havesubobj
&& bpo
->bpo_phys
->bpo_subobjs
!= 0) {
2807 zdb_nicenum(bpo
->bpo_phys
->bpo_comp
, comp
, sizeof (comp
));
2808 zdb_nicenum(bpo
->bpo_phys
->bpo_uncomp
, uncomp
, sizeof (uncomp
));
2809 if (bpo
->bpo_havefreed
) {
2810 (void) printf(" %*s: object %llu, %llu local "
2811 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2812 "%s (%s/%s comp)\n",
2814 (u_longlong_t
)bpo
->bpo_object
,
2815 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2816 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_freed
,
2817 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_subobjs
,
2818 (u_longlong_t
)bpo
->bpo_phys
->bpo_subobjs
,
2819 bytes
, comp
, uncomp
);
2821 (void) printf(" %*s: object %llu, %llu local "
2822 "blkptrs, %llu subobjs in object %llu, "
2823 "%s (%s/%s comp)\n",
2825 (u_longlong_t
)bpo
->bpo_object
,
2826 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2827 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_subobjs
,
2828 (u_longlong_t
)bpo
->bpo_phys
->bpo_subobjs
,
2829 bytes
, comp
, uncomp
);
2832 for (i
= 0; i
< bpo
->bpo_phys
->bpo_num_subobjs
; i
++) {
2836 VERIFY0(dmu_read(bpo
->bpo_os
,
2837 bpo
->bpo_phys
->bpo_subobjs
,
2838 i
* sizeof (subobj
), sizeof (subobj
), &subobj
, 0));
2839 error
= bpobj_open(&subbpo
, bpo
->bpo_os
, subobj
);
2841 (void) printf("ERROR %u while trying to open "
2843 error
, (u_longlong_t
)subobj
);
2846 dump_full_bpobj(&subbpo
, "subobj", indent
+ 1);
2847 bpobj_close(&subbpo
);
2850 if (bpo
->bpo_havefreed
) {
2851 (void) printf(" %*s: object %llu, %llu blkptrs, "
2854 (u_longlong_t
)bpo
->bpo_object
,
2855 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2856 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_freed
,
2859 (void) printf(" %*s: object %llu, %llu blkptrs, "
2862 (u_longlong_t
)bpo
->bpo_object
,
2863 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2868 if (dump_opt
['d'] < 5)
2873 (void) bpobj_iterate_nofree(bpo
, dump_bpobj_cb
, NULL
, NULL
);
2874 (void) printf("\n");
2879 dump_bookmark(dsl_pool_t
*dp
, char *name
, boolean_t print_redact
,
2880 boolean_t print_list
)
2883 zfs_bookmark_phys_t prop
;
2884 objset_t
*mos
= dp
->dp_spa
->spa_meta_objset
;
2885 err
= dsl_bookmark_lookup(dp
, name
, NULL
, &prop
);
2891 (void) printf("\t#%s: ", strchr(name
, '#') + 1);
2892 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2893 "%llu redaction_obj: %llu}\n", (u_longlong_t
)prop
.zbm_guid
,
2894 (u_longlong_t
)prop
.zbm_creation_txg
,
2895 (u_longlong_t
)prop
.zbm_creation_time
,
2896 (u_longlong_t
)prop
.zbm_redaction_obj
);
2898 IMPLY(print_list
, print_redact
);
2899 if (!print_redact
|| prop
.zbm_redaction_obj
== 0)
2902 redaction_list_t
*rl
;
2903 VERIFY0(dsl_redaction_list_hold_obj(dp
,
2904 prop
.zbm_redaction_obj
, FTAG
, &rl
));
2906 redaction_list_phys_t
*rlp
= rl
->rl_phys
;
2907 (void) printf("\tRedacted:\n\t\tProgress: ");
2908 if (rlp
->rlp_last_object
!= UINT64_MAX
||
2909 rlp
->rlp_last_blkid
!= UINT64_MAX
) {
2910 (void) printf("%llu %llu (incomplete)\n",
2911 (u_longlong_t
)rlp
->rlp_last_object
,
2912 (u_longlong_t
)rlp
->rlp_last_blkid
);
2914 (void) printf("complete\n");
2916 (void) printf("\t\tSnapshots: [");
2917 for (unsigned int i
= 0; i
< rlp
->rlp_num_snaps
; i
++) {
2919 (void) printf(", ");
2920 (void) printf("%0llu",
2921 (u_longlong_t
)rlp
->rlp_snaps
[i
]);
2923 (void) printf("]\n\t\tLength: %llu\n",
2924 (u_longlong_t
)rlp
->rlp_num_entries
);
2927 dsl_redaction_list_rele(rl
, FTAG
);
2931 if (rlp
->rlp_num_entries
== 0) {
2932 dsl_redaction_list_rele(rl
, FTAG
);
2933 (void) printf("\t\tRedaction List: []\n\n");
2937 redact_block_phys_t
*rbp_buf
;
2939 dmu_object_info_t doi
;
2941 VERIFY0(dmu_object_info(mos
, prop
.zbm_redaction_obj
, &doi
));
2942 size
= doi
.doi_max_offset
;
2943 rbp_buf
= kmem_alloc(size
, KM_SLEEP
);
2945 err
= dmu_read(mos
, prop
.zbm_redaction_obj
, 0, size
,
2948 dsl_redaction_list_rele(rl
, FTAG
);
2949 kmem_free(rbp_buf
, size
);
2953 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
2954 "%llx, blksz: %x, count: %llx}",
2955 (u_longlong_t
)rbp_buf
[0].rbp_object
,
2956 (u_longlong_t
)rbp_buf
[0].rbp_blkid
,
2957 (uint_t
)(redact_block_get_size(&rbp_buf
[0])),
2958 (u_longlong_t
)redact_block_get_count(&rbp_buf
[0]));
2960 for (size_t i
= 1; i
< rlp
->rlp_num_entries
; i
++) {
2961 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
2962 "blksz: %x, count: %llx}",
2963 (u_longlong_t
)rbp_buf
[i
].rbp_object
,
2964 (u_longlong_t
)rbp_buf
[i
].rbp_blkid
,
2965 (uint_t
)(redact_block_get_size(&rbp_buf
[i
])),
2966 (u_longlong_t
)redact_block_get_count(&rbp_buf
[i
]));
2968 dsl_redaction_list_rele(rl
, FTAG
);
2969 kmem_free(rbp_buf
, size
);
2970 (void) printf("]\n\n");
2975 dump_bookmarks(objset_t
*os
, int verbosity
)
2978 zap_attribute_t
*attrp
;
2979 dsl_dataset_t
*ds
= dmu_objset_ds(os
);
2980 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
2981 objset_t
*mos
= os
->os_spa
->spa_meta_objset
;
2984 attrp
= zap_attribute_alloc();
2985 dsl_pool_config_enter(dp
, FTAG
);
2987 for (zap_cursor_init(&zc
, mos
, ds
->ds_bookmarks_obj
);
2988 zap_cursor_retrieve(&zc
, attrp
) == 0;
2989 zap_cursor_advance(&zc
)) {
2990 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
2991 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
2993 dmu_objset_name(os
, osname
);
2994 len
= snprintf(buf
, sizeof (buf
), "%s#%s", osname
,
2996 VERIFY3S(len
, <, ZFS_MAX_DATASET_NAME_LEN
);
2997 (void) dump_bookmark(dp
, buf
, verbosity
>= 5, verbosity
>= 6);
2999 zap_cursor_fini(&zc
);
3000 dsl_pool_config_exit(dp
, FTAG
);
3001 zap_attribute_free(attrp
);
3005 bpobj_count_refd(bpobj_t
*bpo
)
3007 mos_obj_refd(bpo
->bpo_object
);
3009 if (bpo
->bpo_havesubobj
&& bpo
->bpo_phys
->bpo_subobjs
!= 0) {
3010 mos_obj_refd(bpo
->bpo_phys
->bpo_subobjs
);
3011 for (uint64_t i
= 0; i
< bpo
->bpo_phys
->bpo_num_subobjs
; i
++) {
3015 VERIFY0(dmu_read(bpo
->bpo_os
,
3016 bpo
->bpo_phys
->bpo_subobjs
,
3017 i
* sizeof (subobj
), sizeof (subobj
), &subobj
, 0));
3018 error
= bpobj_open(&subbpo
, bpo
->bpo_os
, subobj
);
3020 (void) printf("ERROR %u while trying to open "
3022 error
, (u_longlong_t
)subobj
);
3025 bpobj_count_refd(&subbpo
);
3026 bpobj_close(&subbpo
);
3032 dsl_deadlist_entry_count_refd(void *arg
, dsl_deadlist_entry_t
*dle
)
3035 uint64_t empty_bpobj
= spa
->spa_dsl_pool
->dp_empty_bpobj
;
3036 if (dle
->dle_bpobj
.bpo_object
!= empty_bpobj
)
3037 bpobj_count_refd(&dle
->dle_bpobj
);
3042 dsl_deadlist_entry_dump(void *arg
, dsl_deadlist_entry_t
*dle
)
3044 ASSERT(arg
== NULL
);
3045 if (dump_opt
['d'] >= 5) {
3047 (void) snprintf(buf
, sizeof (buf
),
3048 "mintxg %llu -> obj %llu",
3049 (longlong_t
)dle
->dle_mintxg
,
3050 (longlong_t
)dle
->dle_bpobj
.bpo_object
);
3052 dump_full_bpobj(&dle
->dle_bpobj
, buf
, 0);
3054 (void) printf("mintxg %llu -> obj %llu\n",
3055 (longlong_t
)dle
->dle_mintxg
,
3056 (longlong_t
)dle
->dle_bpobj
.bpo_object
);
3062 dump_blkptr_list(dsl_deadlist_t
*dl
, const char *name
)
3068 spa_t
*spa
= dmu_objset_spa(dl
->dl_os
);
3069 uint64_t empty_bpobj
= spa
->spa_dsl_pool
->dp_empty_bpobj
;
3071 if (dl
->dl_oldfmt
) {
3072 if (dl
->dl_bpobj
.bpo_object
!= empty_bpobj
)
3073 bpobj_count_refd(&dl
->dl_bpobj
);
3075 mos_obj_refd(dl
->dl_object
);
3076 dsl_deadlist_iterate(dl
, dsl_deadlist_entry_count_refd
, spa
);
3079 /* make sure nicenum has enough space */
3080 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
3081 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
3082 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
3083 _Static_assert(sizeof (entries
) >= NN_NUMBUF_SZ
, "entries truncated");
3085 if (dump_opt
['d'] < 3)
3088 if (dl
->dl_oldfmt
) {
3089 dump_full_bpobj(&dl
->dl_bpobj
, "old-format deadlist", 0);
3093 zdb_nicenum(dl
->dl_phys
->dl_used
, bytes
, sizeof (bytes
));
3094 zdb_nicenum(dl
->dl_phys
->dl_comp
, comp
, sizeof (comp
));
3095 zdb_nicenum(dl
->dl_phys
->dl_uncomp
, uncomp
, sizeof (uncomp
));
3096 zdb_nicenum(avl_numnodes(&dl
->dl_tree
), entries
, sizeof (entries
));
3097 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3098 name
, bytes
, comp
, uncomp
, entries
);
3100 if (dump_opt
['d'] < 4)
3103 (void) putchar('\n');
3105 dsl_deadlist_iterate(dl
, dsl_deadlist_entry_dump
, NULL
);
3109 verify_dd_livelist(objset_t
*os
)
3111 uint64_t ll_used
, used
, ll_comp
, comp
, ll_uncomp
, uncomp
;
3112 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
3113 dsl_dir_t
*dd
= os
->os_dsl_dataset
->ds_dir
;
3115 ASSERT(!dmu_objset_is_snapshot(os
));
3116 if (!dsl_deadlist_is_open(&dd
->dd_livelist
))
3119 /* Iterate through the livelist to check for duplicates */
3120 dsl_deadlist_iterate(&dd
->dd_livelist
, sublivelist_verify_lightweight
,
3123 dsl_pool_config_enter(dp
, FTAG
);
3124 dsl_deadlist_space(&dd
->dd_livelist
, &ll_used
,
3125 &ll_comp
, &ll_uncomp
);
3127 dsl_dataset_t
*origin_ds
;
3128 ASSERT(dsl_pool_config_held(dp
));
3129 VERIFY0(dsl_dataset_hold_obj(dp
,
3130 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &origin_ds
));
3131 VERIFY0(dsl_dataset_space_written(origin_ds
, os
->os_dsl_dataset
,
3132 &used
, &comp
, &uncomp
));
3133 dsl_dataset_rele(origin_ds
, FTAG
);
3134 dsl_pool_config_exit(dp
, FTAG
);
3136 * It's possible that the dataset's uncomp space is larger than the
3137 * livelist's because livelists do not track embedded block pointers
3139 if (used
!= ll_used
|| comp
!= ll_comp
|| uncomp
< ll_uncomp
) {
3140 char nice_used
[32], nice_comp
[32], nice_uncomp
[32];
3141 (void) printf("Discrepancy in space accounting:\n");
3142 zdb_nicenum(used
, nice_used
, sizeof (nice_used
));
3143 zdb_nicenum(comp
, nice_comp
, sizeof (nice_comp
));
3144 zdb_nicenum(uncomp
, nice_uncomp
, sizeof (nice_uncomp
));
3145 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3146 nice_used
, nice_comp
, nice_uncomp
);
3147 zdb_nicenum(ll_used
, nice_used
, sizeof (nice_used
));
3148 zdb_nicenum(ll_comp
, nice_comp
, sizeof (nice_comp
));
3149 zdb_nicenum(ll_uncomp
, nice_uncomp
, sizeof (nice_uncomp
));
3150 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3151 nice_used
, nice_comp
, nice_uncomp
);
3157 static char *key_material
= NULL
;
3160 zdb_derive_key(dsl_dir_t
*dd
, uint8_t *key_out
)
3162 uint64_t keyformat
, salt
, iters
;
3166 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
3167 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), sizeof (uint64_t),
3170 switch (keyformat
) {
3171 case ZFS_KEYFORMAT_HEX
:
3172 for (i
= 0; i
< WRAPPING_KEY_LEN
* 2; i
+= 2) {
3173 if (!isxdigit(key_material
[i
]) ||
3174 !isxdigit(key_material
[i
+1]))
3176 if (sscanf(&key_material
[i
], "%02hhx", &c
) != 1)
3182 case ZFS_KEYFORMAT_PASSPHRASE
:
3183 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
,
3184 dd
->dd_crypto_obj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
3185 sizeof (uint64_t), 1, &salt
));
3186 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
,
3187 dd
->dd_crypto_obj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
3188 sizeof (uint64_t), 1, &iters
));
3190 if (PKCS5_PBKDF2_HMAC_SHA1(key_material
, strlen(key_material
),
3191 ((uint8_t *)&salt
), sizeof (uint64_t), iters
,
3192 WRAPPING_KEY_LEN
, key_out
) != 1)
3198 fatal("no support for key format %u\n",
3199 (unsigned int) keyformat
);
3205 static char encroot
[ZFS_MAX_DATASET_NAME_LEN
];
3206 static boolean_t key_loaded
= B_FALSE
;
3209 zdb_load_key(objset_t
*os
)
3212 dsl_dir_t
*dd
, *rdd
;
3213 uint8_t key
[WRAPPING_KEY_LEN
];
3217 dp
= spa_get_dsl(os
->os_spa
);
3218 dd
= os
->os_dsl_dataset
->ds_dir
;
3220 dsl_pool_config_enter(dp
, FTAG
);
3221 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
3222 DSL_CRYPTO_KEY_ROOT_DDOBJ
, sizeof (uint64_t), 1, &rddobj
));
3223 VERIFY0(dsl_dir_hold_obj(dd
->dd_pool
, rddobj
, NULL
, FTAG
, &rdd
));
3224 dsl_dir_name(rdd
, encroot
);
3225 dsl_dir_rele(rdd
, FTAG
);
3227 if (!zdb_derive_key(dd
, key
))
3228 fatal("couldn't derive encryption key");
3230 dsl_pool_config_exit(dp
, FTAG
);
3232 ASSERT3U(dsl_dataset_get_keystatus(dd
), ==, ZFS_KEYSTATUS_UNAVAILABLE
);
3234 dsl_crypto_params_t
*dcp
;
3235 nvlist_t
*crypto_args
;
3237 crypto_args
= fnvlist_alloc();
3238 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
3239 (uint8_t *)key
, WRAPPING_KEY_LEN
);
3240 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
,
3241 NULL
, crypto_args
, &dcp
));
3242 err
= spa_keystore_load_wkey(encroot
, dcp
, B_FALSE
);
3244 dsl_crypto_params_free(dcp
, (err
!= 0));
3245 fnvlist_free(crypto_args
);
3249 "couldn't load encryption key for %s: %s",
3250 encroot
, err
== ZFS_ERR_CRYPTO_NOTSUP
?
3251 "crypto params not supported" : strerror(err
));
3253 ASSERT3U(dsl_dataset_get_keystatus(dd
), ==, ZFS_KEYSTATUS_AVAILABLE
);
3255 printf("Unlocked encryption root: %s\n", encroot
);
3256 key_loaded
= B_TRUE
;
3260 zdb_unload_key(void)
3265 VERIFY0(spa_keystore_unload_wkey(encroot
));
3266 key_loaded
= B_FALSE
;
3269 static avl_tree_t idx_tree
;
3270 static avl_tree_t domain_tree
;
3271 static boolean_t fuid_table_loaded
;
3272 static objset_t
*sa_os
= NULL
;
3273 static sa_attr_type_t
*sa_attr_table
= NULL
;
3276 open_objset(const char *path
, const void *tag
, objset_t
**osp
)
3279 uint64_t sa_attrs
= 0;
3280 uint64_t version
= 0;
3282 VERIFY3P(sa_os
, ==, NULL
);
3285 * We can't own an objset if it's redacted. Therefore, we do this
3286 * dance: hold the objset, then acquire a long hold on its dataset, then
3287 * release the pool (which is held as part of holding the objset).
3290 if (dump_opt
['K']) {
3291 /* decryption requested, try to load keys */
3292 err
= dmu_objset_hold(path
, tag
, osp
);
3294 (void) fprintf(stderr
, "failed to hold dataset "
3296 path
, strerror(err
));
3299 dsl_dataset_long_hold(dmu_objset_ds(*osp
), tag
);
3300 dsl_pool_rele(dmu_objset_pool(*osp
), tag
);
3302 /* succeeds or dies */
3305 /* release it all */
3306 dsl_dataset_long_rele(dmu_objset_ds(*osp
), tag
);
3307 dsl_dataset_rele(dmu_objset_ds(*osp
), tag
);
3310 int ds_hold_flags
= key_loaded
? DS_HOLD_FLAG_DECRYPT
: 0;
3312 err
= dmu_objset_hold_flags(path
, ds_hold_flags
, tag
, osp
);
3314 (void) fprintf(stderr
, "failed to hold dataset '%s': %s\n",
3315 path
, strerror(err
));
3318 dsl_dataset_long_hold(dmu_objset_ds(*osp
), tag
);
3319 dsl_pool_rele(dmu_objset_pool(*osp
), tag
);
3321 if (dmu_objset_type(*osp
) == DMU_OST_ZFS
&&
3322 (key_loaded
|| !(*osp
)->os_encrypted
)) {
3323 (void) zap_lookup(*osp
, MASTER_NODE_OBJ
, ZPL_VERSION_STR
,
3325 if (version
>= ZPL_VERSION_SA
) {
3326 (void) zap_lookup(*osp
, MASTER_NODE_OBJ
, ZFS_SA_ATTRS
,
3329 err
= sa_setup(*osp
, sa_attrs
, zfs_attr_table
, ZPL_END
,
3332 (void) fprintf(stderr
, "sa_setup failed: %s\n",
3334 dsl_dataset_long_rele(dmu_objset_ds(*osp
), tag
);
3335 dsl_dataset_rele_flags(dmu_objset_ds(*osp
),
3336 ds_hold_flags
, tag
);
3346 close_objset(objset_t
*os
, const void *tag
)
3348 VERIFY3P(os
, ==, sa_os
);
3349 if (os
->os_sa
!= NULL
)
3351 dsl_dataset_long_rele(dmu_objset_ds(os
), tag
);
3352 dsl_dataset_rele_flags(dmu_objset_ds(os
),
3353 key_loaded
? DS_HOLD_FLAG_DECRYPT
: 0, tag
);
3354 sa_attr_table
= NULL
;
3361 fuid_table_destroy(void)
3363 if (fuid_table_loaded
) {
3364 zfs_fuid_table_destroy(&idx_tree
, &domain_tree
);
3365 fuid_table_loaded
= B_FALSE
;
3370 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3371 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3372 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3373 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3375 * Note that this is not a particularly efficient way to do this, but
3376 * ddt_remove() is the only public method that can do the work we need, and it
3377 * requires the right locks and etc to do the job. This is only ever called
3378 * during zdb shutdown so efficiency is not especially important.
3381 zdb_ddt_cleanup(spa_t
*spa
)
3383 for (enum zio_checksum c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
3384 ddt_t
*ddt
= spa
->spa_ddt
[c
];
3388 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3390 ddt_entry_t
*dde
= avl_first(&ddt
->ddt_tree
), *next
;
3392 next
= AVL_NEXT(&ddt
->ddt_tree
, dde
);
3394 ddt_remove(ddt
, dde
);
3398 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3403 zdb_exit(int reason
)
3406 zdb_ddt_cleanup(spa
);
3409 close_objset(os
, FTAG
);
3410 } else if (spa
!= NULL
) {
3411 spa_close(spa
, FTAG
);
3414 fuid_table_destroy();
3416 if (kernel_init_done
)
3423 * print uid or gid information.
3424 * For normal POSIX id just the id is printed in decimal format.
3425 * For CIFS files with FUID the fuid is printed in hex followed by
3426 * the domain-rid string.
3429 print_idstr(uint64_t id
, const char *id_type
)
3431 if (FUID_INDEX(id
)) {
3432 const char *domain
=
3433 zfs_fuid_idx_domain(&idx_tree
, FUID_INDEX(id
));
3434 (void) printf("\t%s %llx [%s-%d]\n", id_type
,
3435 (u_longlong_t
)id
, domain
, (int)FUID_RID(id
));
3437 (void) printf("\t%s %llu\n", id_type
, (u_longlong_t
)id
);
3443 dump_uidgid(objset_t
*os
, uint64_t uid
, uint64_t gid
)
3445 uint32_t uid_idx
, gid_idx
;
3447 uid_idx
= FUID_INDEX(uid
);
3448 gid_idx
= FUID_INDEX(gid
);
3450 /* Load domain table, if not already loaded */
3451 if (!fuid_table_loaded
&& (uid_idx
|| gid_idx
)) {
3454 /* first find the fuid object. It lives in the master node */
3455 VERIFY(zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_FUID_TABLES
,
3456 8, 1, &fuid_obj
) == 0);
3457 zfs_fuid_avl_tree_create(&idx_tree
, &domain_tree
);
3458 (void) zfs_fuid_table_load(os
, fuid_obj
,
3459 &idx_tree
, &domain_tree
);
3460 fuid_table_loaded
= B_TRUE
;
3463 print_idstr(uid
, "uid");
3464 print_idstr(gid
, "gid");
3468 dump_znode_sa_xattr(sa_handle_t
*hdl
)
3471 nvpair_t
*elem
= NULL
;
3472 int sa_xattr_size
= 0;
3473 int sa_xattr_entries
= 0;
3475 char *sa_xattr_packed
;
3477 error
= sa_size(hdl
, sa_attr_table
[ZPL_DXATTR
], &sa_xattr_size
);
3478 if (error
|| sa_xattr_size
== 0)
3481 sa_xattr_packed
= malloc(sa_xattr_size
);
3482 if (sa_xattr_packed
== NULL
)
3485 error
= sa_lookup(hdl
, sa_attr_table
[ZPL_DXATTR
],
3486 sa_xattr_packed
, sa_xattr_size
);
3488 free(sa_xattr_packed
);
3492 error
= nvlist_unpack(sa_xattr_packed
, sa_xattr_size
, &sa_xattr
, 0);
3494 free(sa_xattr_packed
);
3498 while ((elem
= nvlist_next_nvpair(sa_xattr
, elem
)) != NULL
)
3501 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3502 sa_xattr_size
, sa_xattr_entries
);
3503 while ((elem
= nvlist_next_nvpair(sa_xattr
, elem
)) != NULL
) {
3504 boolean_t can_print
= !dump_opt
['P'];
3508 (void) printf("\t\t%s = ", nvpair_name(elem
));
3509 nvpair_value_byte_array(elem
, &value
, &cnt
);
3511 for (idx
= 0; idx
< cnt
; ++idx
) {
3512 if (!isprint(value
[idx
])) {
3513 can_print
= B_FALSE
;
3518 for (idx
= 0; idx
< cnt
; ++idx
) {
3520 (void) putchar(value
[idx
]);
3522 (void) printf("\\%3.3o", value
[idx
]);
3524 (void) putchar('\n');
3527 nvlist_free(sa_xattr
);
3528 free(sa_xattr_packed
);
3532 dump_znode_symlink(sa_handle_t
*hdl
)
3534 int sa_symlink_size
= 0;
3535 char linktarget
[MAXPATHLEN
];
3538 error
= sa_size(hdl
, sa_attr_table
[ZPL_SYMLINK
], &sa_symlink_size
);
3539 if (error
|| sa_symlink_size
== 0) {
3542 if (sa_symlink_size
>= sizeof (linktarget
)) {
3543 (void) printf("symlink size %d is too large\n",
3547 linktarget
[sa_symlink_size
] = '\0';
3548 if (sa_lookup(hdl
, sa_attr_table
[ZPL_SYMLINK
],
3549 &linktarget
, sa_symlink_size
) == 0)
3550 (void) printf("\ttarget %s\n", linktarget
);
3554 dump_znode(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3556 (void) data
, (void) size
;
3557 char path
[MAXPATHLEN
* 2]; /* allow for xattr and failure prefix */
3559 uint64_t xattr
, rdev
, gen
;
3560 uint64_t uid
, gid
, mode
, fsize
, parent
, links
;
3562 uint64_t acctm
[2], modtm
[2], chgtm
[2], crtm
[2];
3563 time_t z_crtime
, z_atime
, z_mtime
, z_ctime
;
3564 sa_bulk_attr_t bulk
[12];
3568 VERIFY3P(os
, ==, sa_os
);
3569 if (sa_handle_get(os
, object
, NULL
, SA_HDL_PRIVATE
, &hdl
)) {
3570 (void) printf("Failed to get handle for SA znode\n");
3574 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_UID
], NULL
, &uid
, 8);
3575 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_GID
], NULL
, &gid
, 8);
3576 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_LINKS
], NULL
,
3578 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_GEN
], NULL
, &gen
, 8);
3579 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_MODE
], NULL
,
3581 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_PARENT
],
3583 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_SIZE
], NULL
,
3585 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_ATIME
], NULL
,
3587 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_MTIME
], NULL
,
3589 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_CRTIME
], NULL
,
3591 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_CTIME
], NULL
,
3593 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_FLAGS
], NULL
,
3596 if (sa_bulk_lookup(hdl
, bulk
, idx
)) {
3597 (void) sa_handle_destroy(hdl
);
3601 z_crtime
= (time_t)crtm
[0];
3602 z_atime
= (time_t)acctm
[0];
3603 z_mtime
= (time_t)modtm
[0];
3604 z_ctime
= (time_t)chgtm
[0];
3606 if (dump_opt
['d'] > 4) {
3607 error
= zfs_obj_to_path(os
, object
, path
, sizeof (path
));
3608 if (error
== ESTALE
) {
3609 (void) snprintf(path
, sizeof (path
), "on delete queue");
3610 } else if (error
!= 0) {
3612 (void) snprintf(path
, sizeof (path
),
3613 "path not found, possibly leaked");
3615 (void) printf("\tpath %s\n", path
);
3619 dump_znode_symlink(hdl
);
3620 dump_uidgid(os
, uid
, gid
);
3621 (void) printf("\tatime %s", ctime(&z_atime
));
3622 (void) printf("\tmtime %s", ctime(&z_mtime
));
3623 (void) printf("\tctime %s", ctime(&z_ctime
));
3624 (void) printf("\tcrtime %s", ctime(&z_crtime
));
3625 (void) printf("\tgen %llu\n", (u_longlong_t
)gen
);
3626 (void) printf("\tmode %llo\n", (u_longlong_t
)mode
);
3627 (void) printf("\tsize %llu\n", (u_longlong_t
)fsize
);
3628 (void) printf("\tparent %llu\n", (u_longlong_t
)parent
);
3629 (void) printf("\tlinks %llu\n", (u_longlong_t
)links
);
3630 (void) printf("\tpflags %llx\n", (u_longlong_t
)pflags
);
3631 if (dmu_objset_projectquota_enabled(os
) && (pflags
& ZFS_PROJID
)) {
3634 if (sa_lookup(hdl
, sa_attr_table
[ZPL_PROJID
], &projid
,
3635 sizeof (uint64_t)) == 0)
3636 (void) printf("\tprojid %llu\n", (u_longlong_t
)projid
);
3638 if (sa_lookup(hdl
, sa_attr_table
[ZPL_XATTR
], &xattr
,
3639 sizeof (uint64_t)) == 0)
3640 (void) printf("\txattr %llu\n", (u_longlong_t
)xattr
);
3641 if (sa_lookup(hdl
, sa_attr_table
[ZPL_RDEV
], &rdev
,
3642 sizeof (uint64_t)) == 0)
3643 (void) printf("\trdev 0x%016llx\n", (u_longlong_t
)rdev
);
3644 dump_znode_sa_xattr(hdl
);
3645 sa_handle_destroy(hdl
);
3649 dump_acl(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3651 (void) os
, (void) object
, (void) data
, (void) size
;
3655 dump_dmu_objset(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3657 (void) os
, (void) object
, (void) data
, (void) size
;
3660 static object_viewer_t
*object_viewer
[DMU_OT_NUMTYPES
+ 1] = {
3661 dump_none
, /* unallocated */
3662 dump_zap
, /* object directory */
3663 dump_uint64
, /* object array */
3664 dump_none
, /* packed nvlist */
3665 dump_packed_nvlist
, /* packed nvlist size */
3666 dump_none
, /* bpobj */
3667 dump_bpobj
, /* bpobj header */
3668 dump_none
, /* SPA space map header */
3669 dump_none
, /* SPA space map */
3670 dump_none
, /* ZIL intent log */
3671 dump_dnode
, /* DMU dnode */
3672 dump_dmu_objset
, /* DMU objset */
3673 dump_dsl_dir
, /* DSL directory */
3674 dump_zap
, /* DSL directory child map */
3675 dump_zap
, /* DSL dataset snap map */
3676 dump_zap
, /* DSL props */
3677 dump_dsl_dataset
, /* DSL dataset */
3678 dump_znode
, /* ZFS znode */
3679 dump_acl
, /* ZFS V0 ACL */
3680 dump_uint8
, /* ZFS plain file */
3681 dump_zpldir
, /* ZFS directory */
3682 dump_zap
, /* ZFS master node */
3683 dump_zap
, /* ZFS delete queue */
3684 dump_uint8
, /* zvol object */
3685 dump_zap
, /* zvol prop */
3686 dump_uint8
, /* other uint8[] */
3687 dump_uint64
, /* other uint64[] */
3688 dump_zap
, /* other ZAP */
3689 dump_zap
, /* persistent error log */
3690 dump_uint8
, /* SPA history */
3691 dump_history_offsets
, /* SPA history offsets */
3692 dump_zap
, /* Pool properties */
3693 dump_zap
, /* DSL permissions */
3694 dump_acl
, /* ZFS ACL */
3695 dump_uint8
, /* ZFS SYSACL */
3696 dump_none
, /* FUID nvlist */
3697 dump_packed_nvlist
, /* FUID nvlist size */
3698 dump_zap
, /* DSL dataset next clones */
3699 dump_zap
, /* DSL scrub queue */
3700 dump_zap
, /* ZFS user/group/project used */
3701 dump_zap
, /* ZFS user/group/project quota */
3702 dump_zap
, /* snapshot refcount tags */
3703 dump_ddt_zap
, /* DDT ZAP object */
3704 dump_zap
, /* DDT statistics */
3705 dump_znode
, /* SA object */
3706 dump_zap
, /* SA Master Node */
3707 dump_sa_attrs
, /* SA attribute registration */
3708 dump_sa_layouts
, /* SA attribute layouts */
3709 dump_zap
, /* DSL scrub translations */
3710 dump_none
, /* fake dedup BP */
3711 dump_zap
, /* deadlist */
3712 dump_none
, /* deadlist hdr */
3713 dump_zap
, /* dsl clones */
3714 dump_bpobj_subobjs
, /* bpobj subobjs */
3715 dump_unknown
, /* Unknown type, must be last */
3719 match_object_type(dmu_object_type_t obj_type
, uint64_t flags
)
3721 boolean_t match
= B_TRUE
;
3724 case DMU_OT_DIRECTORY_CONTENTS
:
3725 if (!(flags
& ZOR_FLAG_DIRECTORY
))
3728 case DMU_OT_PLAIN_FILE_CONTENTS
:
3729 if (!(flags
& ZOR_FLAG_PLAIN_FILE
))
3732 case DMU_OT_SPACE_MAP
:
3733 if (!(flags
& ZOR_FLAG_SPACE_MAP
))
3737 if (strcmp(zdb_ot_name(obj_type
), "zap") == 0) {
3738 if (!(flags
& ZOR_FLAG_ZAP
))
3744 * If all bits except some of the supported flags are
3745 * set, the user combined the all-types flag (A) with
3746 * a negated flag to exclude some types (e.g. A-f to
3747 * show all object types except plain files).
3749 if ((flags
| ZOR_SUPPORTED_FLAGS
) != ZOR_FLAG_ALL_TYPES
)
3759 dump_object(objset_t
*os
, uint64_t object
, int verbosity
,
3760 boolean_t
*print_header
, uint64_t *dnode_slots_used
, uint64_t flags
)
3762 dmu_buf_t
*db
= NULL
;
3763 dmu_object_info_t doi
;
3765 boolean_t dnode_held
= B_FALSE
;
3768 char iblk
[32], dblk
[32], lsize
[32], asize
[32], fill
[32], dnsize
[32];
3769 char bonus_size
[32];
3773 /* make sure nicenum has enough space */
3774 _Static_assert(sizeof (iblk
) >= NN_NUMBUF_SZ
, "iblk truncated");
3775 _Static_assert(sizeof (dblk
) >= NN_NUMBUF_SZ
, "dblk truncated");
3776 _Static_assert(sizeof (lsize
) >= NN_NUMBUF_SZ
, "lsize truncated");
3777 _Static_assert(sizeof (asize
) >= NN_NUMBUF_SZ
, "asize truncated");
3778 _Static_assert(sizeof (bonus_size
) >= NN_NUMBUF_SZ
,
3779 "bonus_size truncated");
3781 if (*print_header
) {
3782 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3783 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3784 "lsize", "%full", "type");
3789 dn
= DMU_META_DNODE(os
);
3790 dmu_object_info_from_dnode(dn
, &doi
);
3793 * Encrypted datasets will have sensitive bonus buffers
3794 * encrypted. Therefore we cannot hold the bonus buffer and
3795 * must hold the dnode itself instead.
3797 error
= dmu_object_info(os
, object
, &doi
);
3799 fatal("dmu_object_info() failed, errno %u", error
);
3801 if (!key_loaded
&& os
->os_encrypted
&&
3802 DMU_OT_IS_ENCRYPTED(doi
.doi_bonus_type
)) {
3803 error
= dnode_hold(os
, object
, FTAG
, &dn
);
3805 fatal("dnode_hold() failed, errno %u", error
);
3806 dnode_held
= B_TRUE
;
3808 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
3810 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3812 bonus
= db
->db_data
;
3813 bsize
= db
->db_size
;
3814 dn
= DB_DNODE((dmu_buf_impl_t
*)db
);
3819 * Default to showing all object types if no flags were specified.
3821 if (flags
!= 0 && flags
!= ZOR_FLAG_ALL_TYPES
&&
3822 !match_object_type(doi
.doi_type
, flags
))
3825 if (dnode_slots_used
)
3826 *dnode_slots_used
= doi
.doi_dnodesize
/ DNODE_MIN_SIZE
;
3828 zdb_nicenum(doi
.doi_metadata_block_size
, iblk
, sizeof (iblk
));
3829 zdb_nicenum(doi
.doi_data_block_size
, dblk
, sizeof (dblk
));
3830 zdb_nicenum(doi
.doi_max_offset
, lsize
, sizeof (lsize
));
3831 zdb_nicenum(doi
.doi_physical_blocks_512
<< 9, asize
, sizeof (asize
));
3832 zdb_nicenum(doi
.doi_bonus_size
, bonus_size
, sizeof (bonus_size
));
3833 zdb_nicenum(doi
.doi_dnodesize
, dnsize
, sizeof (dnsize
));
3834 (void) snprintf(fill
, sizeof (fill
), "%6.2f", 100.0 *
3835 doi
.doi_fill_count
* doi
.doi_data_block_size
/ (object
== 0 ?
3836 DNODES_PER_BLOCK
: 1) / doi
.doi_max_offset
);
3840 if (doi
.doi_checksum
!= ZIO_CHECKSUM_INHERIT
|| verbosity
>= 6) {
3841 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3842 " (K=%s)", ZDB_CHECKSUM_NAME(doi
.doi_checksum
));
3845 if (doi
.doi_compress
== ZIO_COMPRESS_INHERIT
&&
3846 ZIO_COMPRESS_HASLEVEL(os
->os_compress
) && verbosity
>= 6) {
3847 const char *compname
= NULL
;
3848 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION
,
3849 ZIO_COMPRESS_RAW(os
->os_compress
, os
->os_complevel
),
3851 (void) snprintf(aux
+ strlen(aux
),
3852 sizeof (aux
) - strlen(aux
), " (Z=inherit=%s)",
3855 (void) snprintf(aux
+ strlen(aux
),
3856 sizeof (aux
) - strlen(aux
),
3857 " (Z=inherit=%s-unknown)",
3858 ZDB_COMPRESS_NAME(os
->os_compress
));
3860 } else if (doi
.doi_compress
== ZIO_COMPRESS_INHERIT
&& verbosity
>= 6) {
3861 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3862 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os
->os_compress
));
3863 } else if (doi
.doi_compress
!= ZIO_COMPRESS_INHERIT
|| verbosity
>= 6) {
3864 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3865 " (Z=%s)", ZDB_COMPRESS_NAME(doi
.doi_compress
));
3868 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3869 (u_longlong_t
)object
, doi
.doi_indirection
, iblk
, dblk
,
3870 asize
, dnsize
, lsize
, fill
, zdb_ot_name(doi
.doi_type
), aux
);
3872 if (doi
.doi_bonus_type
!= DMU_OT_NONE
&& verbosity
> 3) {
3873 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3874 "", "", "", "", "", "", bonus_size
, "bonus",
3875 zdb_ot_name(doi
.doi_bonus_type
));
3878 if (verbosity
>= 4) {
3879 (void) printf("\tdnode flags: %s%s%s%s\n",
3880 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USED_BYTES
) ?
3882 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USERUSED_ACCOUNTED
) ?
3883 "USERUSED_ACCOUNTED " : "",
3884 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USEROBJUSED_ACCOUNTED
) ?
3885 "USEROBJUSED_ACCOUNTED " : "",
3886 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) ?
3887 "SPILL_BLKPTR" : "");
3888 (void) printf("\tdnode maxblkid: %llu\n",
3889 (longlong_t
)dn
->dn_phys
->dn_maxblkid
);
3892 object_viewer
[ZDB_OT_TYPE(doi
.doi_bonus_type
)](os
,
3893 object
, bonus
, bsize
);
3895 (void) printf("\t\t(bonus encrypted)\n");
3899 (!os
->os_encrypted
|| !DMU_OT_IS_ENCRYPTED(doi
.doi_type
))) {
3900 object_viewer
[ZDB_OT_TYPE(doi
.doi_type
)](os
, object
,
3903 (void) printf("\t\t(object encrypted)\n");
3906 *print_header
= B_TRUE
;
3909 if (verbosity
>= 5) {
3910 if (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
3911 char blkbuf
[BP_SPRINTF_LEN
];
3912 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
),
3913 DN_SPILL_BLKPTR(dn
->dn_phys
), B_FALSE
);
3914 (void) printf("\nSpill block: %s\n", blkbuf
);
3919 if (verbosity
>= 5) {
3921 * Report the list of segments that comprise the object.
3925 uint64_t blkfill
= 1;
3928 if (dn
->dn_type
== DMU_OT_DNODE
) {
3930 blkfill
= DNODES_PER_BLOCK
;
3935 /* make sure nicenum has enough space */
3936 _Static_assert(sizeof (segsize
) >= NN_NUMBUF_SZ
,
3937 "segsize truncated");
3938 error
= dnode_next_offset(dn
,
3939 0, &start
, minlvl
, blkfill
, 0);
3943 error
= dnode_next_offset(dn
,
3944 DNODE_FIND_HOLE
, &end
, minlvl
, blkfill
, 0);
3945 zdb_nicenum(end
- start
, segsize
, sizeof (segsize
));
3946 (void) printf("\t\tsegment [%016llx, %016llx)"
3947 " size %5s\n", (u_longlong_t
)start
,
3948 (u_longlong_t
)end
, segsize
);
3957 dmu_buf_rele(db
, FTAG
);
3959 dnode_rele(dn
, FTAG
);
3963 count_dir_mos_objects(dsl_dir_t
*dd
)
3965 mos_obj_refd(dd
->dd_object
);
3966 mos_obj_refd(dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
3967 mos_obj_refd(dsl_dir_phys(dd
)->dd_deleg_zapobj
);
3968 mos_obj_refd(dsl_dir_phys(dd
)->dd_props_zapobj
);
3969 mos_obj_refd(dsl_dir_phys(dd
)->dd_clones
);
3972 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3973 * Ignore the references after the first one.
3975 mos_obj_refd_multiple(dd
->dd_crypto_obj
);
3979 count_ds_mos_objects(dsl_dataset_t
*ds
)
3981 mos_obj_refd(ds
->ds_object
);
3982 mos_obj_refd(dsl_dataset_phys(ds
)->ds_next_clones_obj
);
3983 mos_obj_refd(dsl_dataset_phys(ds
)->ds_props_obj
);
3984 mos_obj_refd(dsl_dataset_phys(ds
)->ds_userrefs_obj
);
3985 mos_obj_refd(dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
3986 mos_obj_refd(ds
->ds_bookmarks_obj
);
3988 if (!dsl_dataset_is_snapshot(ds
)) {
3989 count_dir_mos_objects(ds
->ds_dir
);
3993 static const char *const objset_types
[DMU_OST_NUMTYPES
] = {
3994 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3997 * Parse a string denoting a range of object IDs of the form
3998 * <start>[:<end>[:flags]], and store the results in zor.
3999 * Return 0 on success. On error, return 1 and update the msg
4000 * pointer to point to a descriptive error message.
4003 parse_object_range(char *range
, zopt_object_range_t
*zor
, const char **msg
)
4006 char *p
, *s
, *dup
, *flagstr
, *tmp
= NULL
;
4011 if (strchr(range
, ':') == NULL
) {
4012 zor
->zor_obj_start
= strtoull(range
, &p
, 0);
4014 *msg
= "Invalid characters in object ID";
4017 zor
->zor_obj_start
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_start
);
4018 zor
->zor_obj_end
= zor
->zor_obj_start
;
4022 if (strchr(range
, ':') == range
) {
4023 *msg
= "Invalid leading colon";
4028 len
= strlen(range
);
4029 if (range
[len
- 1] == ':') {
4030 *msg
= "Invalid trailing colon";
4035 dup
= strdup(range
);
4036 s
= strtok_r(dup
, ":", &tmp
);
4037 zor
->zor_obj_start
= strtoull(s
, &p
, 0);
4040 *msg
= "Invalid characters in start object ID";
4045 s
= strtok_r(NULL
, ":", &tmp
);
4046 zor
->zor_obj_end
= strtoull(s
, &p
, 0);
4049 *msg
= "Invalid characters in end object ID";
4054 if (zor
->zor_obj_start
> zor
->zor_obj_end
) {
4055 *msg
= "Start object ID may not exceed end object ID";
4060 s
= strtok_r(NULL
, ":", &tmp
);
4062 zor
->zor_flags
= ZOR_FLAG_ALL_TYPES
;
4064 } else if (strtok_r(NULL
, ":", &tmp
) != NULL
) {
4065 *msg
= "Invalid colon-delimited field after flags";
4071 for (i
= 0; flagstr
[i
]; i
++) {
4073 boolean_t negation
= (flagstr
[i
] == '-');
4077 if (flagstr
[i
] == '\0') {
4078 *msg
= "Invalid trailing negation operator";
4083 bit
= flagbits
[(uchar_t
)flagstr
[i
]];
4085 *msg
= "Invalid flag";
4094 zor
->zor_flags
= flags
;
4096 zor
->zor_obj_start
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_start
);
4097 zor
->zor_obj_end
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_end
);
4105 dump_objset(objset_t
*os
)
4107 dmu_objset_stats_t dds
= { 0 };
4108 uint64_t object
, object_count
;
4109 uint64_t refdbytes
, usedobjs
, scratch
;
4111 char blkbuf
[BP_SPRINTF_LEN
+ 20];
4112 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
4113 const char *type
= "UNKNOWN";
4114 int verbosity
= dump_opt
['d'];
4115 boolean_t print_header
;
4118 uint64_t total_slots_used
= 0;
4119 uint64_t max_slot_used
= 0;
4120 uint64_t dnode_slots
;
4125 /* make sure nicenum has enough space */
4126 _Static_assert(sizeof (numbuf
) >= NN_NUMBUF_SZ
, "numbuf truncated");
4128 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
4129 dmu_objset_fast_stat(os
, &dds
);
4130 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
4132 print_header
= B_TRUE
;
4134 if (dds
.dds_type
< DMU_OST_NUMTYPES
)
4135 type
= objset_types
[dds
.dds_type
];
4137 if (dds
.dds_type
== DMU_OST_META
) {
4138 dds
.dds_creation_txg
= TXG_INITIAL
;
4139 usedobjs
= BP_GET_FILL(os
->os_rootbp
);
4140 refdbytes
= dsl_dir_phys(os
->os_spa
->spa_dsl_pool
->dp_mos_dir
)->
4143 dmu_objset_space(os
, &refdbytes
, &scratch
, &usedobjs
, &scratch
);
4146 ASSERT3U(usedobjs
, ==, BP_GET_FILL(os
->os_rootbp
));
4148 zdb_nicenum(refdbytes
, numbuf
, sizeof (numbuf
));
4150 if (verbosity
>= 4) {
4151 (void) snprintf(blkbuf
, sizeof (blkbuf
), ", rootbp ");
4152 (void) snprintf_blkptr(blkbuf
+ strlen(blkbuf
),
4153 sizeof (blkbuf
) - strlen(blkbuf
), os
->os_rootbp
);
4158 dmu_objset_name(os
, osname
);
4160 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4161 "%s, %llu objects%s%s\n",
4162 osname
, type
, (u_longlong_t
)dmu_objset_id(os
),
4163 (u_longlong_t
)dds
.dds_creation_txg
,
4164 numbuf
, (u_longlong_t
)usedobjs
, blkbuf
,
4165 (dds
.dds_inconsistent
) ? " (inconsistent)" : "");
4167 for (i
= 0; i
< zopt_object_args
; i
++) {
4168 obj_start
= zopt_object_ranges
[i
].zor_obj_start
;
4169 obj_end
= zopt_object_ranges
[i
].zor_obj_end
;
4170 flags
= zopt_object_ranges
[i
].zor_flags
;
4173 if (object
== 0 || obj_start
== obj_end
)
4174 dump_object(os
, object
, verbosity
, &print_header
, NULL
,
4179 while ((dmu_object_next(os
, &object
, B_FALSE
, 0) == 0) &&
4180 object
<= obj_end
) {
4181 dump_object(os
, object
, verbosity
, &print_header
, NULL
,
4186 if (zopt_object_args
> 0) {
4187 (void) printf("\n");
4191 if (dump_opt
['i'] != 0 || verbosity
>= 2)
4192 dump_intent_log(dmu_objset_zil(os
));
4194 if (dmu_objset_ds(os
) != NULL
) {
4195 dsl_dataset_t
*ds
= dmu_objset_ds(os
);
4196 dump_blkptr_list(&ds
->ds_deadlist
, "Deadlist");
4197 if (dsl_deadlist_is_open(&ds
->ds_dir
->dd_livelist
) &&
4198 !dmu_objset_is_snapshot(os
)) {
4199 dump_blkptr_list(&ds
->ds_dir
->dd_livelist
, "Livelist");
4200 if (verify_dd_livelist(os
) != 0)
4201 fatal("livelist is incorrect");
4204 if (dsl_dataset_remap_deadlist_exists(ds
)) {
4205 (void) printf("ds_remap_deadlist:\n");
4206 dump_blkptr_list(&ds
->ds_remap_deadlist
, "Deadlist");
4208 count_ds_mos_objects(ds
);
4211 if (dmu_objset_ds(os
) != NULL
)
4212 dump_bookmarks(os
, verbosity
);
4217 if (BP_IS_HOLE(os
->os_rootbp
))
4220 dump_object(os
, 0, verbosity
, &print_header
, NULL
, 0);
4222 if (DMU_USERUSED_DNODE(os
) != NULL
&&
4223 DMU_USERUSED_DNODE(os
)->dn_type
!= 0) {
4224 dump_object(os
, DMU_USERUSED_OBJECT
, verbosity
, &print_header
,
4226 dump_object(os
, DMU_GROUPUSED_OBJECT
, verbosity
, &print_header
,
4230 if (DMU_PROJECTUSED_DNODE(os
) != NULL
&&
4231 DMU_PROJECTUSED_DNODE(os
)->dn_type
!= 0)
4232 dump_object(os
, DMU_PROJECTUSED_OBJECT
, verbosity
,
4233 &print_header
, NULL
, 0);
4236 while ((error
= dmu_object_next(os
, &object
, B_FALSE
, 0)) == 0) {
4237 dump_object(os
, object
, verbosity
, &print_header
, &dnode_slots
,
4240 total_slots_used
+= dnode_slots
;
4241 max_slot_used
= object
+ dnode_slots
- 1;
4244 (void) printf("\n");
4246 (void) printf(" Dnode slots:\n");
4247 (void) printf("\tTotal used: %10llu\n",
4248 (u_longlong_t
)total_slots_used
);
4249 (void) printf("\tMax used: %10llu\n",
4250 (u_longlong_t
)max_slot_used
);
4251 (void) printf("\tPercent empty: %10lf\n",
4252 (double)(max_slot_used
- total_slots_used
)*100 /
4253 (double)max_slot_used
);
4254 (void) printf("\n");
4256 if (error
!= ESRCH
) {
4257 (void) fprintf(stderr
, "dmu_object_next() = %d\n", error
);
4261 ASSERT3U(object_count
, ==, usedobjs
);
4263 if (leaked_objects
!= 0) {
4264 (void) printf("%d potentially leaked objects detected\n",
4271 dump_uberblock(uberblock_t
*ub
, const char *header
, const char *footer
)
4273 time_t timestamp
= ub
->ub_timestamp
;
4275 (void) printf("%s", header
? header
: "");
4276 (void) printf("\tmagic = %016llx\n", (u_longlong_t
)ub
->ub_magic
);
4277 (void) printf("\tversion = %llu\n", (u_longlong_t
)ub
->ub_version
);
4278 (void) printf("\ttxg = %llu\n", (u_longlong_t
)ub
->ub_txg
);
4279 (void) printf("\tguid_sum = %llu\n", (u_longlong_t
)ub
->ub_guid_sum
);
4280 (void) printf("\ttimestamp = %llu UTC = %s",
4281 (u_longlong_t
)ub
->ub_timestamp
, ctime(×tamp
));
4283 char blkbuf
[BP_SPRINTF_LEN
];
4284 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ub
->ub_rootbp
);
4285 (void) printf("\tbp = %s\n", blkbuf
);
4287 (void) printf("\tmmp_magic = %016llx\n",
4288 (u_longlong_t
)ub
->ub_mmp_magic
);
4289 if (MMP_VALID(ub
)) {
4290 (void) printf("\tmmp_delay = %0llu\n",
4291 (u_longlong_t
)ub
->ub_mmp_delay
);
4292 if (MMP_SEQ_VALID(ub
))
4293 (void) printf("\tmmp_seq = %u\n",
4294 (unsigned int) MMP_SEQ(ub
));
4295 if (MMP_FAIL_INT_VALID(ub
))
4296 (void) printf("\tmmp_fail = %u\n",
4297 (unsigned int) MMP_FAIL_INT(ub
));
4298 if (MMP_INTERVAL_VALID(ub
))
4299 (void) printf("\tmmp_write = %u\n",
4300 (unsigned int) MMP_INTERVAL(ub
));
4301 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4302 (void) printf("\tmmp_valid = %x\n",
4303 (unsigned int) ub
->ub_mmp_config
& 0xFF);
4306 if (dump_opt
['u'] >= 4) {
4307 char blkbuf
[BP_SPRINTF_LEN
];
4308 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ub
->ub_rootbp
);
4309 (void) printf("\trootbp = %s\n", blkbuf
);
4311 (void) printf("\tcheckpoint_txg = %llu\n",
4312 (u_longlong_t
)ub
->ub_checkpoint_txg
);
4314 (void) printf("\traidz_reflow state=%u off=%llu\n",
4315 (int)RRSS_GET_STATE(ub
),
4316 (u_longlong_t
)RRSS_GET_OFFSET(ub
));
4318 (void) printf("%s", footer
? footer
: "");
4322 dump_config(spa_t
*spa
)
4329 error
= dmu_bonus_hold(spa
->spa_meta_objset
,
4330 spa
->spa_config_object
, FTAG
, &db
);
4333 nvsize
= *(uint64_t *)db
->db_data
;
4334 dmu_buf_rele(db
, FTAG
);
4336 (void) printf("\nMOS Configuration:\n");
4337 dump_packed_nvlist(spa
->spa_meta_objset
,
4338 spa
->spa_config_object
, (void *)&nvsize
, 1);
4340 (void) fprintf(stderr
, "dmu_bonus_hold(%llu) failed, errno %d",
4341 (u_longlong_t
)spa
->spa_config_object
, error
);
4346 dump_cachefile(const char *cachefile
)
4349 struct stat64 statbuf
;
4353 if ((fd
= open64(cachefile
, O_RDONLY
)) < 0) {
4354 (void) printf("cannot open '%s': %s\n", cachefile
,
4359 if (fstat64(fd
, &statbuf
) != 0) {
4360 (void) printf("failed to stat '%s': %s\n", cachefile
,
4365 if ((buf
= malloc(statbuf
.st_size
)) == NULL
) {
4366 (void) fprintf(stderr
, "failed to allocate %llu bytes\n",
4367 (u_longlong_t
)statbuf
.st_size
);
4371 if (read(fd
, buf
, statbuf
.st_size
) != statbuf
.st_size
) {
4372 (void) fprintf(stderr
, "failed to read %llu bytes\n",
4373 (u_longlong_t
)statbuf
.st_size
);
4379 if (nvlist_unpack(buf
, statbuf
.st_size
, &config
, 0) != 0) {
4380 (void) fprintf(stderr
, "failed to unpack nvlist\n");
4386 dump_nvlist(config
, 0);
4388 nvlist_free(config
);
4392 * ZFS label nvlist stats
4394 typedef struct zdb_nvl_stats
{
4397 size_t zns_leaf_largest
;
4398 size_t zns_leaf_total
;
4399 nvlist_t
*zns_string
;
4400 nvlist_t
*zns_uint64
;
4401 nvlist_t
*zns_boolean
;
4405 collect_nvlist_stats(nvlist_t
*nvl
, zdb_nvl_stats_t
*stats
)
4407 nvlist_t
*list
, **array
;
4408 nvpair_t
*nvp
= NULL
;
4412 stats
->zns_list_count
++;
4414 while ((nvp
= nvlist_next_nvpair(nvl
, nvp
)) != NULL
) {
4415 name
= nvpair_name(nvp
);
4417 switch (nvpair_type(nvp
)) {
4418 case DATA_TYPE_STRING
:
4419 fnvlist_add_string(stats
->zns_string
, name
,
4420 fnvpair_value_string(nvp
));
4422 case DATA_TYPE_UINT64
:
4423 fnvlist_add_uint64(stats
->zns_uint64
, name
,
4424 fnvpair_value_uint64(nvp
));
4426 case DATA_TYPE_BOOLEAN
:
4427 fnvlist_add_boolean(stats
->zns_boolean
, name
);
4429 case DATA_TYPE_NVLIST
:
4430 if (nvpair_value_nvlist(nvp
, &list
) == 0)
4431 collect_nvlist_stats(list
, stats
);
4433 case DATA_TYPE_NVLIST_ARRAY
:
4434 if (nvpair_value_nvlist_array(nvp
, &array
, &items
) != 0)
4437 for (i
= 0; i
< items
; i
++) {
4438 collect_nvlist_stats(array
[i
], stats
);
4440 /* collect stats on leaf vdev */
4441 if (strcmp(name
, "children") == 0) {
4444 (void) nvlist_size(array
[i
], &size
,
4446 stats
->zns_leaf_total
+= size
;
4447 if (size
> stats
->zns_leaf_largest
)
4448 stats
->zns_leaf_largest
= size
;
4449 stats
->zns_leaf_count
++;
4454 (void) printf("skip type %d!\n", (int)nvpair_type(nvp
));
4460 dump_nvlist_stats(nvlist_t
*nvl
, size_t cap
)
4462 zdb_nvl_stats_t stats
= { 0 };
4463 size_t size
, sum
= 0, total
;
4466 /* requires nvlist with non-unique names for stat collection */
4467 VERIFY0(nvlist_alloc(&stats
.zns_string
, 0, 0));
4468 VERIFY0(nvlist_alloc(&stats
.zns_uint64
, 0, 0));
4469 VERIFY0(nvlist_alloc(&stats
.zns_boolean
, 0, 0));
4470 VERIFY0(nvlist_size(stats
.zns_boolean
, &noise
, NV_ENCODE_XDR
));
4472 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4474 VERIFY0(nvlist_size(nvl
, &total
, NV_ENCODE_XDR
));
4475 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4476 (int)total
, (int)(cap
- total
), 100.0 * total
/ cap
);
4478 collect_nvlist_stats(nvl
, &stats
);
4480 VERIFY0(nvlist_size(stats
.zns_uint64
, &size
, NV_ENCODE_XDR
));
4483 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4484 (int)fnvlist_num_pairs(stats
.zns_uint64
),
4485 (int)size
, 100.0 * size
/ total
);
4487 VERIFY0(nvlist_size(stats
.zns_string
, &size
, NV_ENCODE_XDR
));
4490 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4491 (int)fnvlist_num_pairs(stats
.zns_string
),
4492 (int)size
, 100.0 * size
/ total
);
4494 VERIFY0(nvlist_size(stats
.zns_boolean
, &size
, NV_ENCODE_XDR
));
4497 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4498 (int)fnvlist_num_pairs(stats
.zns_boolean
),
4499 (int)size
, 100.0 * size
/ total
);
4501 size
= total
- sum
; /* treat remainder as nvlist overhead */
4502 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4503 stats
.zns_list_count
, (int)size
, 100.0 * size
/ total
);
4505 if (stats
.zns_leaf_count
> 0) {
4506 size_t average
= stats
.zns_leaf_total
/ stats
.zns_leaf_count
;
4508 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4509 stats
.zns_leaf_count
, (int)average
);
4510 (void) printf("%24d bytes largest\n",
4511 (int)stats
.zns_leaf_largest
);
4513 if (dump_opt
['l'] >= 3 && average
> 0)
4514 (void) printf(" space for %d additional leaf vdevs\n",
4515 (int)((cap
- total
) / average
));
4517 (void) printf("\n");
4519 nvlist_free(stats
.zns_string
);
4520 nvlist_free(stats
.zns_uint64
);
4521 nvlist_free(stats
.zns_boolean
);
4524 typedef struct cksum_record
{
4526 boolean_t labels
[VDEV_LABELS
];
4531 cksum_record_compare(const void *x1
, const void *x2
)
4533 const cksum_record_t
*l
= (cksum_record_t
*)x1
;
4534 const cksum_record_t
*r
= (cksum_record_t
*)x2
;
4535 int arraysize
= ARRAY_SIZE(l
->cksum
.zc_word
);
4538 for (int i
= 0; i
< arraysize
; i
++) {
4539 difference
= TREE_CMP(l
->cksum
.zc_word
[i
], r
->cksum
.zc_word
[i
]);
4544 return (difference
);
4547 static cksum_record_t
*
4548 cksum_record_alloc(zio_cksum_t
*cksum
, int l
)
4550 cksum_record_t
*rec
;
4552 rec
= umem_zalloc(sizeof (*rec
), UMEM_NOFAIL
);
4553 rec
->cksum
= *cksum
;
4554 rec
->labels
[l
] = B_TRUE
;
4559 static cksum_record_t
*
4560 cksum_record_lookup(avl_tree_t
*tree
, zio_cksum_t
*cksum
)
4562 cksum_record_t lookup
= { .cksum
= *cksum
};
4565 return (avl_find(tree
, &lookup
, &where
));
4568 static cksum_record_t
*
4569 cksum_record_insert(avl_tree_t
*tree
, zio_cksum_t
*cksum
, int l
)
4571 cksum_record_t
*rec
;
4573 rec
= cksum_record_lookup(tree
, cksum
);
4575 rec
->labels
[l
] = B_TRUE
;
4577 rec
= cksum_record_alloc(cksum
, l
);
4585 first_label(cksum_record_t
*rec
)
4587 for (int i
= 0; i
< VDEV_LABELS
; i
++)
4595 print_label_numbers(const char *prefix
, const cksum_record_t
*rec
)
4597 fputs(prefix
, stdout
);
4598 for (int i
= 0; i
< VDEV_LABELS
; i
++)
4599 if (rec
->labels
[i
] == B_TRUE
)
4604 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4606 typedef struct zdb_label
{
4608 uint64_t label_offset
;
4609 nvlist_t
*config_nv
;
4610 cksum_record_t
*config
;
4611 cksum_record_t
*uberblocks
[MAX_UBERBLOCK_COUNT
];
4612 boolean_t header_printed
;
4613 boolean_t read_failed
;
4614 boolean_t cksum_valid
;
4618 print_label_header(zdb_label_t
*label
, int l
)
4624 if (label
->header_printed
== B_TRUE
)
4627 (void) printf("------------------------------------\n");
4628 (void) printf("LABEL %d %s\n", l
,
4629 label
->cksum_valid
? "" : "(Bad label cksum)");
4630 (void) printf("------------------------------------\n");
4632 label
->header_printed
= B_TRUE
;
4636 print_l2arc_header(void)
4638 (void) printf("------------------------------------\n");
4639 (void) printf("L2ARC device header\n");
4640 (void) printf("------------------------------------\n");
4644 print_l2arc_log_blocks(void)
4646 (void) printf("------------------------------------\n");
4647 (void) printf("L2ARC device log blocks\n");
4648 (void) printf("------------------------------------\n");
4652 dump_l2arc_log_entries(uint64_t log_entries
,
4653 l2arc_log_ent_phys_t
*le
, uint64_t i
)
4655 for (int j
= 0; j
< log_entries
; j
++) {
4656 dva_t dva
= le
[j
].le_dva
;
4657 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4658 "vdev: %llu, offset: %llu\n",
4659 (u_longlong_t
)i
, j
+ 1,
4660 (u_longlong_t
)DVA_GET_ASIZE(&dva
),
4661 (u_longlong_t
)DVA_GET_VDEV(&dva
),
4662 (u_longlong_t
)DVA_GET_OFFSET(&dva
));
4663 (void) printf("|\t\t\t\tbirth: %llu\n",
4664 (u_longlong_t
)le
[j
].le_birth
);
4665 (void) printf("|\t\t\t\tlsize: %llu\n",
4666 (u_longlong_t
)L2BLK_GET_LSIZE((&le
[j
])->le_prop
));
4667 (void) printf("|\t\t\t\tpsize: %llu\n",
4668 (u_longlong_t
)L2BLK_GET_PSIZE((&le
[j
])->le_prop
));
4669 (void) printf("|\t\t\t\tcompr: %llu\n",
4670 (u_longlong_t
)L2BLK_GET_COMPRESS((&le
[j
])->le_prop
));
4671 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4672 (u_longlong_t
)(&le
[j
])->le_complevel
);
4673 (void) printf("|\t\t\t\ttype: %llu\n",
4674 (u_longlong_t
)L2BLK_GET_TYPE((&le
[j
])->le_prop
));
4675 (void) printf("|\t\t\t\tprotected: %llu\n",
4676 (u_longlong_t
)L2BLK_GET_PROTECTED((&le
[j
])->le_prop
));
4677 (void) printf("|\t\t\t\tprefetch: %llu\n",
4678 (u_longlong_t
)L2BLK_GET_PREFETCH((&le
[j
])->le_prop
));
4679 (void) printf("|\t\t\t\taddress: %llu\n",
4680 (u_longlong_t
)le
[j
].le_daddr
);
4681 (void) printf("|\t\t\t\tARC state: %llu\n",
4682 (u_longlong_t
)L2BLK_GET_STATE((&le
[j
])->le_prop
));
4683 (void) printf("|\n");
4685 (void) printf("\n");
4689 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t
*lbps
)
4691 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t
)lbps
->lbp_daddr
);
4692 (void) printf("|\t\tpayload_asize: %llu\n",
4693 (u_longlong_t
)lbps
->lbp_payload_asize
);
4694 (void) printf("|\t\tpayload_start: %llu\n",
4695 (u_longlong_t
)lbps
->lbp_payload_start
);
4696 (void) printf("|\t\tlsize: %llu\n",
4697 (u_longlong_t
)L2BLK_GET_LSIZE(lbps
->lbp_prop
));
4698 (void) printf("|\t\tasize: %llu\n",
4699 (u_longlong_t
)L2BLK_GET_PSIZE(lbps
->lbp_prop
));
4700 (void) printf("|\t\tcompralgo: %llu\n",
4701 (u_longlong_t
)L2BLK_GET_COMPRESS(lbps
->lbp_prop
));
4702 (void) printf("|\t\tcksumalgo: %llu\n",
4703 (u_longlong_t
)L2BLK_GET_CHECKSUM(lbps
->lbp_prop
));
4704 (void) printf("|\n\n");
4708 dump_l2arc_log_blocks(int fd
, const l2arc_dev_hdr_phys_t
*l2dhdr
,
4709 l2arc_dev_hdr_phys_t
*rebuild
)
4711 l2arc_log_blk_phys_t this_lb
;
4713 l2arc_log_blkptr_t lbps
[2];
4719 print_l2arc_log_blocks();
4720 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
4722 dev
.l2ad_evict
= l2dhdr
->dh_evict
;
4723 dev
.l2ad_start
= l2dhdr
->dh_start
;
4724 dev
.l2ad_end
= l2dhdr
->dh_end
;
4726 if (l2dhdr
->dh_start_lbps
[0].lbp_daddr
== 0) {
4727 /* no log blocks to read */
4728 if (!dump_opt
['q']) {
4729 (void) printf("No log blocks to read\n");
4730 (void) printf("\n");
4734 dev
.l2ad_hand
= lbps
[0].lbp_daddr
+
4735 L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
4738 dev
.l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
4741 if (!l2arc_log_blkptr_valid(&dev
, &lbps
[0]))
4744 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4745 asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
4746 if (pread64(fd
, &this_lb
, asize
, lbps
[0].lbp_daddr
) != asize
) {
4747 if (!dump_opt
['q']) {
4748 (void) printf("Error while reading next log "
4754 fletcher_4_native_varsize(&this_lb
, asize
, &cksum
);
4755 if (!ZIO_CHECKSUM_EQUAL(cksum
, lbps
[0].lbp_cksum
)) {
4757 if (!dump_opt
['q']) {
4758 (void) printf("Invalid cksum\n");
4759 dump_l2arc_log_blkptr(&lbps
[0]);
4764 switch (L2BLK_GET_COMPRESS((&lbps
[0])->lbp_prop
)) {
4765 case ZIO_COMPRESS_OFF
:
4768 abd_t
*abd
= abd_alloc_linear(asize
, B_TRUE
);
4769 abd_copy_from_buf_off(abd
, &this_lb
, 0, asize
);
4771 abd_get_from_buf_struct(&dabd
, &this_lb
,
4773 int err
= zio_decompress_data(L2BLK_GET_COMPRESS(
4774 (&lbps
[0])->lbp_prop
), abd
, &dabd
,
4775 asize
, sizeof (this_lb
), NULL
);
4779 (void) printf("L2ARC block decompression "
4787 if (this_lb
.lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
4788 byteswap_uint64_array(&this_lb
, sizeof (this_lb
));
4789 if (this_lb
.lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
4791 (void) printf("Invalid log block magic\n\n");
4795 rebuild
->dh_lb_count
++;
4796 rebuild
->dh_lb_asize
+= asize
;
4797 if (dump_opt
['l'] > 1 && !dump_opt
['q']) {
4798 (void) printf("lb[%4llu]\tmagic: %llu\n",
4799 (u_longlong_t
)rebuild
->dh_lb_count
,
4800 (u_longlong_t
)this_lb
.lb_magic
);
4801 dump_l2arc_log_blkptr(&lbps
[0]);
4804 if (dump_opt
['l'] > 2 && !dump_opt
['q'])
4805 dump_l2arc_log_entries(l2dhdr
->dh_log_entries
,
4807 rebuild
->dh_lb_count
);
4809 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
4810 lbps
[0].lbp_payload_start
, dev
.l2ad_evict
) &&
4815 lbps
[1] = this_lb
.lb_prev_lbp
;
4818 if (!dump_opt
['q']) {
4819 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4820 (u_longlong_t
)rebuild
->dh_lb_count
);
4821 (void) printf("\t\t %d with invalid cksum\n", failed
);
4822 (void) printf("log_blk_asize:\t %llu\n\n",
4823 (u_longlong_t
)rebuild
->dh_lb_asize
);
4828 dump_l2arc_header(int fd
)
4830 l2arc_dev_hdr_phys_t l2dhdr
= {0}, rebuild
= {0};
4831 int error
= B_FALSE
;
4833 if (pread64(fd
, &l2dhdr
, sizeof (l2dhdr
),
4834 VDEV_LABEL_START_SIZE
) != sizeof (l2dhdr
)) {
4837 if (l2dhdr
.dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
4838 byteswap_uint64_array(&l2dhdr
, sizeof (l2dhdr
));
4840 if (l2dhdr
.dh_magic
!= L2ARC_DEV_HDR_MAGIC
)
4845 (void) printf("L2ARC device header not found\n\n");
4846 /* Do not return an error here for backward compatibility */
4848 } else if (!dump_opt
['q']) {
4849 print_l2arc_header();
4851 (void) printf(" magic: %llu\n",
4852 (u_longlong_t
)l2dhdr
.dh_magic
);
4853 (void) printf(" version: %llu\n",
4854 (u_longlong_t
)l2dhdr
.dh_version
);
4855 (void) printf(" pool_guid: %llu\n",
4856 (u_longlong_t
)l2dhdr
.dh_spa_guid
);
4857 (void) printf(" flags: %llu\n",
4858 (u_longlong_t
)l2dhdr
.dh_flags
);
4859 (void) printf(" start_lbps[0]: %llu\n",
4861 l2dhdr
.dh_start_lbps
[0].lbp_daddr
);
4862 (void) printf(" start_lbps[1]: %llu\n",
4864 l2dhdr
.dh_start_lbps
[1].lbp_daddr
);
4865 (void) printf(" log_blk_ent: %llu\n",
4866 (u_longlong_t
)l2dhdr
.dh_log_entries
);
4867 (void) printf(" start: %llu\n",
4868 (u_longlong_t
)l2dhdr
.dh_start
);
4869 (void) printf(" end: %llu\n",
4870 (u_longlong_t
)l2dhdr
.dh_end
);
4871 (void) printf(" evict: %llu\n",
4872 (u_longlong_t
)l2dhdr
.dh_evict
);
4873 (void) printf(" lb_asize_refcount: %llu\n",
4874 (u_longlong_t
)l2dhdr
.dh_lb_asize
);
4875 (void) printf(" lb_count_refcount: %llu\n",
4876 (u_longlong_t
)l2dhdr
.dh_lb_count
);
4877 (void) printf(" trim_action_time: %llu\n",
4878 (u_longlong_t
)l2dhdr
.dh_trim_action_time
);
4879 (void) printf(" trim_state: %llu\n\n",
4880 (u_longlong_t
)l2dhdr
.dh_trim_state
);
4883 dump_l2arc_log_blocks(fd
, &l2dhdr
, &rebuild
);
4885 * The total aligned size of log blocks and the number of log blocks
4886 * reported in the header of the device may be less than what zdb
4887 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4888 * This happens because dump_l2arc_log_blocks() lacks the memory
4889 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4890 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4891 * and dh_lb_count will be lower to begin with than what exists on the
4892 * device. This is normal and zdb should not exit with an error. The
4893 * opposite case should never happen though, the values reported in the
4894 * header should never be higher than what dump_l2arc_log_blocks() and
4895 * l2arc_rebuild() report. If this happens there is a leak in the
4896 * accounting of log blocks.
4898 if (l2dhdr
.dh_lb_asize
> rebuild
.dh_lb_asize
||
4899 l2dhdr
.dh_lb_count
> rebuild
.dh_lb_count
)
4906 dump_config_from_label(zdb_label_t
*label
, size_t buflen
, int l
)
4911 if ((dump_opt
['l'] < 3) && (first_label(label
->config
) != l
))
4914 print_label_header(label
, l
);
4915 dump_nvlist(label
->config_nv
, 4);
4916 print_label_numbers(" labels = ", label
->config
);
4918 if (dump_opt
['l'] >= 2)
4919 dump_nvlist_stats(label
->config_nv
, buflen
);
4922 #define ZDB_MAX_UB_HEADER_SIZE 32
4925 dump_label_uberblocks(zdb_label_t
*label
, uint64_t ashift
, int label_num
)
4929 char header
[ZDB_MAX_UB_HEADER_SIZE
];
4931 vd
.vdev_ashift
= ashift
;
4934 for (int i
= 0; i
< VDEV_UBERBLOCK_COUNT(&vd
); i
++) {
4935 uint64_t uoff
= VDEV_UBERBLOCK_OFFSET(&vd
, i
);
4936 uberblock_t
*ub
= (void *)((char *)&label
->label
+ uoff
);
4937 cksum_record_t
*rec
= label
->uberblocks
[i
];
4940 if (dump_opt
['u'] >= 2) {
4941 print_label_header(label
, label_num
);
4942 (void) printf(" Uberblock[%d] invalid\n", i
);
4947 if ((dump_opt
['u'] < 3) && (first_label(rec
) != label_num
))
4950 if ((dump_opt
['u'] < 4) &&
4951 (ub
->ub_mmp_magic
== MMP_MAGIC
) && ub
->ub_mmp_delay
&&
4952 (i
>= VDEV_UBERBLOCK_COUNT(&vd
) - MMP_BLOCKS_PER_LABEL
))
4955 print_label_header(label
, label_num
);
4956 (void) snprintf(header
, ZDB_MAX_UB_HEADER_SIZE
,
4957 " Uberblock[%d]\n", i
);
4958 dump_uberblock(ub
, header
, "");
4959 print_label_numbers(" labels = ", rec
);
4963 static char curpath
[PATH_MAX
];
4966 * Iterate through the path components, recursively passing
4967 * current one's obj and remaining path until we find the obj
4971 dump_path_impl(objset_t
*os
, uint64_t obj
, char *name
, uint64_t *retobj
)
4974 boolean_t header
= B_TRUE
;
4978 dmu_object_info_t doi
;
4980 if ((s
= strchr(name
, '/')) != NULL
)
4982 err
= zap_lookup(os
, obj
, name
, 8, 1, &child_obj
);
4984 (void) strlcat(curpath
, name
, sizeof (curpath
));
4987 (void) fprintf(stderr
, "failed to lookup %s: %s\n",
4988 curpath
, strerror(err
));
4992 child_obj
= ZFS_DIRENT_OBJ(child_obj
);
4993 err
= sa_buf_hold(os
, child_obj
, FTAG
, &db
);
4995 (void) fprintf(stderr
,
4996 "failed to get SA dbuf for obj %llu: %s\n",
4997 (u_longlong_t
)child_obj
, strerror(err
));
5000 dmu_object_info_from_db(db
, &doi
);
5001 sa_buf_rele(db
, FTAG
);
5003 if (doi
.doi_bonus_type
!= DMU_OT_SA
&&
5004 doi
.doi_bonus_type
!= DMU_OT_ZNODE
) {
5005 (void) fprintf(stderr
, "invalid bonus type %d for obj %llu\n",
5006 doi
.doi_bonus_type
, (u_longlong_t
)child_obj
);
5010 if (dump_opt
['v'] > 6) {
5011 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
5012 (u_longlong_t
)child_obj
, curpath
, doi
.doi_type
,
5013 doi
.doi_bonus_type
);
5016 (void) strlcat(curpath
, "/", sizeof (curpath
));
5018 switch (doi
.doi_type
) {
5019 case DMU_OT_DIRECTORY_CONTENTS
:
5020 if (s
!= NULL
&& *(s
+ 1) != '\0')
5021 return (dump_path_impl(os
, child_obj
, s
+ 1, retobj
));
5023 case DMU_OT_PLAIN_FILE_CONTENTS
:
5024 if (retobj
!= NULL
) {
5025 *retobj
= child_obj
;
5027 dump_object(os
, child_obj
, dump_opt
['v'], &header
,
5032 (void) fprintf(stderr
, "object %llu has non-file/directory "
5033 "type %d\n", (u_longlong_t
)obj
, doi
.doi_type
);
5041 * Dump the blocks for the object specified by path inside the dataset.
5044 dump_path(char *ds
, char *path
, uint64_t *retobj
)
5050 err
= open_objset(ds
, FTAG
, &os
);
5054 err
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_ROOT_OBJ
, 8, 1, &root_obj
);
5056 (void) fprintf(stderr
, "can't lookup root znode: %s\n",
5058 close_objset(os
, FTAG
);
5062 (void) snprintf(curpath
, sizeof (curpath
), "dataset=%s path=/", ds
);
5064 err
= dump_path_impl(os
, root_obj
, path
, retobj
);
5066 close_objset(os
, FTAG
);
5071 dump_backup_bytes(objset_t
*os
, void *buf
, int len
, void *arg
)
5073 const char *p
= (const char *)buf
;
5079 /* Write the data out, handling short writes and signals. */
5080 while ((nwritten
= write(STDOUT_FILENO
, p
, len
)) < len
) {
5094 dump_backup(const char *pool
, uint64_t objset_id
, const char *flagstr
)
5096 boolean_t embed
= B_FALSE
;
5097 boolean_t large_block
= B_FALSE
;
5098 boolean_t compress
= B_FALSE
;
5099 boolean_t raw
= B_FALSE
;
5102 for (c
= flagstr
; c
!= NULL
&& *c
!= '\0'; c
++) {
5108 large_block
= B_TRUE
;
5117 fprintf(stderr
, "dump_backup: invalid flag "
5123 if (isatty(STDOUT_FILENO
)) {
5124 fprintf(stderr
, "dump_backup: stream cannot be written "
5130 dmu_send_outparams_t out
= {
5131 .dso_outfunc
= dump_backup_bytes
,
5132 .dso_dryrun
= B_FALSE
,
5135 int err
= dmu_send_obj(pool
, objset_id
, /* fromsnap */0, embed
,
5136 large_block
, compress
, raw
, /* saved */ B_FALSE
, STDOUT_FILENO
,
5139 fprintf(stderr
, "dump_backup: dmu_send_obj: %s\n",
5146 zdb_copy_object(objset_t
*os
, uint64_t srcobj
, char *destfile
)
5149 uint64_t size
, readsize
, oursize
, offset
;
5153 (void) printf("Copying object %" PRIu64
" to file %s\n", srcobj
,
5156 VERIFY3P(os
, ==, sa_os
);
5157 if ((err
= sa_handle_get(os
, srcobj
, NULL
, SA_HDL_PRIVATE
, &hdl
))) {
5158 (void) printf("Failed to get handle for SA znode\n");
5161 if ((err
= sa_lookup(hdl
, sa_attr_table
[ZPL_SIZE
], &size
, 8))) {
5162 (void) sa_handle_destroy(hdl
);
5165 (void) sa_handle_destroy(hdl
);
5167 (void) printf("Object %" PRIu64
" is %" PRIu64
" bytes\n", srcobj
,
5173 int fd
= open(destfile
, O_WRONLY
| O_CREAT
| O_TRUNC
, 0644);
5177 * We cap the size at 1 mebibyte here to prevent
5178 * allocation failures and nigh-infinite printing if the
5179 * object is extremely large.
5181 oursize
= MIN(size
, 1 << 20);
5183 char *buf
= kmem_alloc(oursize
, KM_NOSLEEP
);
5189 while (offset
< size
) {
5190 readsize
= MIN(size
- offset
, 1 << 20);
5191 err
= dmu_read(os
, srcobj
, offset
, readsize
, buf
, 0);
5193 (void) printf("got error %u from dmu_read\n", err
);
5194 kmem_free(buf
, oursize
);
5198 if (dump_opt
['v'] > 3) {
5199 (void) printf("Read offset=%" PRIu64
" size=%" PRIu64
5200 " error=%d\n", offset
, readsize
, err
);
5203 writesize
= write(fd
, buf
, readsize
);
5204 if (writesize
< 0) {
5207 } else if (writesize
!= readsize
) {
5208 /* Incomplete write */
5209 (void) fprintf(stderr
, "Short write, only wrote %llu of"
5210 " %" PRIu64
" bytes, exiting...\n",
5211 (u_longlong_t
)writesize
, readsize
);
5221 kmem_free(buf
, oursize
);
5227 label_cksum_valid(vdev_label_t
*label
, uint64_t offset
)
5229 zio_checksum_info_t
*ci
= &zio_checksum_table
[ZIO_CHECKSUM_LABEL
];
5230 zio_cksum_t expected_cksum
;
5231 zio_cksum_t actual_cksum
;
5232 zio_cksum_t verifier
;
5236 void *data
= (char *)label
+ offsetof(vdev_label_t
, vl_vdev_phys
);
5237 eck
= (zio_eck_t
*)((char *)(data
) + VDEV_PHYS_SIZE
) - 1;
5239 offset
+= offsetof(vdev_label_t
, vl_vdev_phys
);
5240 ZIO_SET_CHECKSUM(&verifier
, offset
, 0, 0, 0);
5242 byteswap
= (eck
->zec_magic
== BSWAP_64(ZEC_MAGIC
));
5244 byteswap_uint64_array(&verifier
, sizeof (zio_cksum_t
));
5246 expected_cksum
= eck
->zec_cksum
;
5247 eck
->zec_cksum
= verifier
;
5249 abd_t
*abd
= abd_get_from_buf(data
, VDEV_PHYS_SIZE
);
5250 ci
->ci_func
[byteswap
](abd
, VDEV_PHYS_SIZE
, NULL
, &actual_cksum
);
5254 byteswap_uint64_array(&expected_cksum
, sizeof (zio_cksum_t
));
5256 if (ZIO_CHECKSUM_EQUAL(actual_cksum
, expected_cksum
))
5263 dump_label(const char *dev
)
5265 char path
[MAXPATHLEN
];
5266 zdb_label_t labels
[VDEV_LABELS
] = {{{{0}}}};
5267 uint64_t psize
, ashift
, l2cache
;
5268 struct stat64 statbuf
;
5269 boolean_t config_found
= B_FALSE
;
5270 boolean_t error
= B_FALSE
;
5271 boolean_t read_l2arc_header
= B_FALSE
;
5272 avl_tree_t config_tree
;
5273 avl_tree_t uberblock_tree
;
5274 void *node
, *cookie
;
5278 * Check if we were given absolute path and use it as is.
5279 * Otherwise if the provided vdev name doesn't point to a file,
5280 * try prepending expected disk paths and partition numbers.
5282 (void) strlcpy(path
, dev
, sizeof (path
));
5283 if (dev
[0] != '/' && stat64(path
, &statbuf
) != 0) {
5286 error
= zfs_resolve_shortname(dev
, path
, MAXPATHLEN
);
5287 if (error
== 0 && zfs_dev_is_whole_disk(path
)) {
5288 if (zfs_append_partition(path
, MAXPATHLEN
) == -1)
5292 if (error
|| (stat64(path
, &statbuf
) != 0)) {
5293 (void) printf("failed to find device %s, try "
5294 "specifying absolute path instead\n", dev
);
5299 if ((fd
= open64(path
, O_RDONLY
)) < 0) {
5300 (void) printf("cannot open '%s': %s\n", path
, strerror(errno
));
5304 if (fstat64_blk(fd
, &statbuf
) != 0) {
5305 (void) printf("failed to stat '%s': %s\n", path
,
5311 if (S_ISBLK(statbuf
.st_mode
) && zfs_dev_flush(fd
) != 0)
5312 (void) printf("failed to invalidate cache '%s' : %s\n", path
,
5315 avl_create(&config_tree
, cksum_record_compare
,
5316 sizeof (cksum_record_t
), offsetof(cksum_record_t
, link
));
5317 avl_create(&uberblock_tree
, cksum_record_compare
,
5318 sizeof (cksum_record_t
), offsetof(cksum_record_t
, link
));
5320 psize
= statbuf
.st_size
;
5321 psize
= P2ALIGN_TYPED(psize
, sizeof (vdev_label_t
), uint64_t);
5322 ashift
= SPA_MINBLOCKSHIFT
;
5325 * 1. Read the label from disk
5326 * 2. Verify label cksum
5327 * 3. Unpack the configuration and insert in config tree.
5328 * 4. Traverse all uberblocks and insert in uberblock tree.
5330 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
5331 zdb_label_t
*label
= &labels
[l
];
5332 char *buf
= label
->label
.vl_vdev_phys
.vp_nvlist
;
5333 size_t buflen
= sizeof (label
->label
.vl_vdev_phys
.vp_nvlist
);
5335 cksum_record_t
*rec
;
5339 label
->label_offset
= vdev_label_offset(psize
, l
, 0);
5341 if (pread64(fd
, &label
->label
, sizeof (label
->label
),
5342 label
->label_offset
) != sizeof (label
->label
)) {
5344 (void) printf("failed to read label %d\n", l
);
5345 label
->read_failed
= B_TRUE
;
5350 label
->read_failed
= B_FALSE
;
5351 label
->cksum_valid
= label_cksum_valid(&label
->label
,
5352 label
->label_offset
);
5354 if (nvlist_unpack(buf
, buflen
, &config
, 0) == 0) {
5355 nvlist_t
*vdev_tree
= NULL
;
5358 if ((nvlist_lookup_nvlist(config
,
5359 ZPOOL_CONFIG_VDEV_TREE
, &vdev_tree
) != 0) ||
5360 (nvlist_lookup_uint64(vdev_tree
,
5361 ZPOOL_CONFIG_ASHIFT
, &ashift
) != 0))
5362 ashift
= SPA_MINBLOCKSHIFT
;
5364 if (nvlist_size(config
, &size
, NV_ENCODE_XDR
) != 0)
5367 /* If the device is a cache device read the header. */
5368 if (!read_l2arc_header
) {
5369 if (nvlist_lookup_uint64(config
,
5370 ZPOOL_CONFIG_POOL_STATE
, &l2cache
) == 0 &&
5371 l2cache
== POOL_STATE_L2CACHE
) {
5372 read_l2arc_header
= B_TRUE
;
5376 fletcher_4_native_varsize(buf
, size
, &cksum
);
5377 rec
= cksum_record_insert(&config_tree
, &cksum
, l
);
5379 label
->config
= rec
;
5380 label
->config_nv
= config
;
5381 config_found
= B_TRUE
;
5386 vd
.vdev_ashift
= ashift
;
5389 for (int i
= 0; i
< VDEV_UBERBLOCK_COUNT(&vd
); i
++) {
5390 uint64_t uoff
= VDEV_UBERBLOCK_OFFSET(&vd
, i
);
5391 uberblock_t
*ub
= (void *)((char *)label
+ uoff
);
5393 if (uberblock_verify(ub
))
5396 fletcher_4_native_varsize(ub
, sizeof (*ub
), &cksum
);
5397 rec
= cksum_record_insert(&uberblock_tree
, &cksum
, l
);
5399 label
->uberblocks
[i
] = rec
;
5404 * Dump the label and uberblocks.
5406 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
5407 zdb_label_t
*label
= &labels
[l
];
5408 size_t buflen
= sizeof (label
->label
.vl_vdev_phys
.vp_nvlist
);
5410 if (label
->read_failed
== B_TRUE
)
5413 if (label
->config_nv
) {
5414 dump_config_from_label(label
, buflen
, l
);
5417 (void) printf("failed to unpack label %d\n", l
);
5421 dump_label_uberblocks(label
, ashift
, l
);
5423 nvlist_free(label
->config_nv
);
5427 * Dump the L2ARC header, if existent.
5429 if (read_l2arc_header
)
5430 error
|= dump_l2arc_header(fd
);
5433 while ((node
= avl_destroy_nodes(&config_tree
, &cookie
)) != NULL
)
5434 umem_free(node
, sizeof (cksum_record_t
));
5437 while ((node
= avl_destroy_nodes(&uberblock_tree
, &cookie
)) != NULL
)
5438 umem_free(node
, sizeof (cksum_record_t
));
5440 avl_destroy(&config_tree
);
5441 avl_destroy(&uberblock_tree
);
5445 return (config_found
== B_FALSE
? 2 :
5446 (error
== B_TRUE
? 1 : 0));
5449 static uint64_t dataset_feature_count
[SPA_FEATURES
];
5450 static uint64_t global_feature_count
[SPA_FEATURES
];
5451 static uint64_t remap_deadlist_count
= 0;
5454 dump_one_objset(const char *dsname
, void *arg
)
5461 error
= open_objset(dsname
, FTAG
, &os
);
5465 for (f
= 0; f
< SPA_FEATURES
; f
++) {
5466 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os
), f
))
5468 ASSERT(spa_feature_table
[f
].fi_flags
&
5469 ZFEATURE_FLAG_PER_DATASET
);
5470 dataset_feature_count
[f
]++;
5473 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os
))) {
5474 remap_deadlist_count
++;
5477 for (dsl_bookmark_node_t
*dbn
=
5478 avl_first(&dmu_objset_ds(os
)->ds_bookmarks
); dbn
!= NULL
;
5479 dbn
= AVL_NEXT(&dmu_objset_ds(os
)->ds_bookmarks
, dbn
)) {
5480 mos_obj_refd(dbn
->dbn_phys
.zbm_redaction_obj
);
5481 if (dbn
->dbn_phys
.zbm_redaction_obj
!= 0) {
5482 global_feature_count
[
5483 SPA_FEATURE_REDACTION_BOOKMARKS
]++;
5484 objset_t
*mos
= os
->os_spa
->spa_meta_objset
;
5486 VERIFY0(dnode_hold(mos
,
5487 dbn
->dbn_phys
.zbm_redaction_obj
, FTAG
, &rl
));
5488 if (rl
->dn_have_spill
) {
5489 global_feature_count
[
5490 SPA_FEATURE_REDACTION_LIST_SPILL
]++;
5493 if (dbn
->dbn_phys
.zbm_flags
& ZBM_FLAG_HAS_FBN
)
5494 global_feature_count
[SPA_FEATURE_BOOKMARK_WRITTEN
]++;
5497 if (dsl_deadlist_is_open(&dmu_objset_ds(os
)->ds_dir
->dd_livelist
) &&
5498 !dmu_objset_is_snapshot(os
)) {
5499 global_feature_count
[SPA_FEATURE_LIVELIST
]++;
5503 close_objset(os
, FTAG
);
5504 fuid_table_destroy();
5511 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5512 typedef struct zdb_blkstats
{
5518 uint64_t zb_ditto_samevdev
;
5519 uint64_t zb_ditto_same_ms
;
5520 uint64_t zb_psize_histogram
[PSIZE_HISTO_SIZE
];
5524 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5526 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5527 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5528 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5529 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5531 static const char *zdb_ot_extname
[] = {
5538 #define ZB_TOTAL DN_MAX_LEVELS
5539 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5541 typedef struct zdb_brt_entry
{
5543 uint64_t zbre_refcount
;
5544 avl_node_t zbre_node
;
5547 typedef struct zdb_cb
{
5548 zdb_blkstats_t zcb_type
[ZB_TOTAL
+ 1][ZDB_OT_TOTAL
+ 1];
5549 uint64_t zcb_removing_size
;
5550 uint64_t zcb_checkpoint_size
;
5551 uint64_t zcb_dedup_asize
;
5552 uint64_t zcb_dedup_blocks
;
5553 uint64_t zcb_clone_asize
;
5554 uint64_t zcb_clone_blocks
;
5555 uint64_t zcb_psize_count
[SPA_MAX_FOR_16M
];
5556 uint64_t zcb_lsize_count
[SPA_MAX_FOR_16M
];
5557 uint64_t zcb_asize_count
[SPA_MAX_FOR_16M
];
5558 uint64_t zcb_psize_len
[SPA_MAX_FOR_16M
];
5559 uint64_t zcb_lsize_len
[SPA_MAX_FOR_16M
];
5560 uint64_t zcb_asize_len
[SPA_MAX_FOR_16M
];
5561 uint64_t zcb_psize_total
;
5562 uint64_t zcb_lsize_total
;
5563 uint64_t zcb_asize_total
;
5564 uint64_t zcb_embedded_blocks
[NUM_BP_EMBEDDED_TYPES
];
5565 uint64_t zcb_embedded_histogram
[NUM_BP_EMBEDDED_TYPES
]
5566 [BPE_PAYLOAD_SIZE
+ 1];
5568 hrtime_t zcb_lastprint
;
5569 uint64_t zcb_totalasize
;
5570 uint64_t zcb_errors
[256];
5574 uint32_t **zcb_vd_obsolete_counts
;
5576 boolean_t zcb_brt_is_active
;
5579 /* test if two DVA offsets from same vdev are within the same metaslab */
5581 same_metaslab(spa_t
*spa
, uint64_t vdev
, uint64_t off1
, uint64_t off2
)
5583 vdev_t
*vd
= vdev_lookup_top(spa
, vdev
);
5584 uint64_t ms_shift
= vd
->vdev_ms_shift
;
5586 return ((off1
>> ms_shift
) == (off2
>> ms_shift
));
5590 * Used to simplify reporting of the histogram data.
5592 typedef struct one_histo
{
5596 uint64_t cumulative
;
5600 * The number of separate histograms processed for psize, lsize and asize.
5605 * This routine will create a fixed column size output of three different
5606 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5607 * the count, length and cumulative length of the psize, lsize and
5610 * All three types of blocks are listed on a single line
5612 * By default the table is printed in nicenumber format (e.g. 123K) but
5613 * if the '-P' parameter is specified then the full raw number (parseable)
5617 dump_size_histograms(zdb_cb_t
*zcb
)
5620 * A temporary buffer that allows us to convert a number into
5621 * a string using zdb_nicenumber to allow either raw or human
5622 * readable numbers to be output.
5627 * Define titles which are used in the headers of the tables
5628 * printed by this routine.
5630 const char blocksize_title1
[] = "block";
5631 const char blocksize_title2
[] = "size";
5632 const char count_title
[] = "Count";
5633 const char length_title
[] = "Size";
5634 const char cumulative_title
[] = "Cum.";
5637 * Setup the histogram arrays (psize, lsize, and asize).
5639 one_histo_t parm_histo
[NUM_HISTO
];
5641 parm_histo
[0].name
= "psize";
5642 parm_histo
[0].count
= zcb
->zcb_psize_count
;
5643 parm_histo
[0].len
= zcb
->zcb_psize_len
;
5644 parm_histo
[0].cumulative
= 0;
5646 parm_histo
[1].name
= "lsize";
5647 parm_histo
[1].count
= zcb
->zcb_lsize_count
;
5648 parm_histo
[1].len
= zcb
->zcb_lsize_len
;
5649 parm_histo
[1].cumulative
= 0;
5651 parm_histo
[2].name
= "asize";
5652 parm_histo
[2].count
= zcb
->zcb_asize_count
;
5653 parm_histo
[2].len
= zcb
->zcb_asize_len
;
5654 parm_histo
[2].cumulative
= 0;
5657 (void) printf("\nBlock Size Histogram\n");
5659 * Print the first line titles
5662 (void) printf("\n%s\t", blocksize_title1
);
5664 (void) printf("\n%7s ", blocksize_title1
);
5666 for (int j
= 0; j
< NUM_HISTO
; j
++) {
5667 if (dump_opt
['P']) {
5668 if (j
< NUM_HISTO
- 1) {
5669 (void) printf("%s\t\t\t", parm_histo
[j
].name
);
5671 /* Don't print trailing spaces */
5672 (void) printf(" %s", parm_histo
[j
].name
);
5675 if (j
< NUM_HISTO
- 1) {
5676 /* Left aligned strings in the output */
5677 (void) printf("%-7s ",
5678 parm_histo
[j
].name
);
5680 /* Don't print trailing spaces */
5681 (void) printf("%s", parm_histo
[j
].name
);
5685 (void) printf("\n");
5688 * Print the second line titles
5690 if (dump_opt
['P']) {
5691 (void) printf("%s\t", blocksize_title2
);
5693 (void) printf("%7s ", blocksize_title2
);
5696 for (int i
= 0; i
< NUM_HISTO
; i
++) {
5697 if (dump_opt
['P']) {
5698 (void) printf("%s\t%s\t%s\t",
5699 count_title
, length_title
, cumulative_title
);
5701 (void) printf("%7s%7s%7s",
5702 count_title
, length_title
, cumulative_title
);
5705 (void) printf("\n");
5710 for (int i
= SPA_MINBLOCKSHIFT
; i
< SPA_MAX_FOR_16M
; i
++) {
5713 * Print the first column showing the blocksize
5715 zdb_nicenum((1ULL << i
), numbuf
, sizeof (numbuf
));
5717 if (dump_opt
['P']) {
5718 printf("%s", numbuf
);
5720 printf("%7s:", numbuf
);
5724 * Print the remaining set of 3 columns per size:
5725 * for psize, lsize and asize
5727 for (int j
= 0; j
< NUM_HISTO
; j
++) {
5728 parm_histo
[j
].cumulative
+= parm_histo
[j
].len
[i
];
5730 zdb_nicenum(parm_histo
[j
].count
[i
],
5731 numbuf
, sizeof (numbuf
));
5733 (void) printf("\t%s", numbuf
);
5735 (void) printf("%7s", numbuf
);
5737 zdb_nicenum(parm_histo
[j
].len
[i
],
5738 numbuf
, sizeof (numbuf
));
5740 (void) printf("\t%s", numbuf
);
5742 (void) printf("%7s", numbuf
);
5744 zdb_nicenum(parm_histo
[j
].cumulative
,
5745 numbuf
, sizeof (numbuf
));
5747 (void) printf("\t%s", numbuf
);
5749 (void) printf("%7s", numbuf
);
5751 (void) printf("\n");
5756 zdb_count_block(zdb_cb_t
*zcb
, zilog_t
*zilog
, const blkptr_t
*bp
,
5757 dmu_object_type_t type
)
5761 ASSERT(type
< ZDB_OT_TOTAL
);
5763 if (zilog
&& zil_bp_tree_add(zilog
, bp
) != 0)
5767 * This flag controls if we will issue a claim for the block while
5768 * counting it, to ensure that all blocks are referenced in space maps.
5769 * We don't issue claims if we're not doing leak tracking, because it's
5770 * expensive if the user isn't interested. We also don't claim the
5771 * second or later occurences of cloned or dedup'd blocks, because we
5772 * already claimed them the first time.
5774 boolean_t do_claim
= !dump_opt
['L'];
5776 spa_config_enter(zcb
->zcb_spa
, SCL_CONFIG
, FTAG
, RW_READER
);
5779 if (BP_GET_DEDUP(bp
)) {
5781 * Dedup'd blocks are special. We need to count them, so we can
5782 * later uncount them when reporting leaked space, and we must
5783 * only claim them once.
5785 * We use the existing dedup system to track what we've seen.
5786 * The first time we see a block, we do a ddt_lookup() to see
5787 * if it exists in the DDT. If we're doing leak tracking, we
5788 * claim the block at this time.
5790 * Each time we see a block, we reduce the refcount in the
5791 * entry by one, and add to the size and count of dedup'd
5792 * blocks to report at the end.
5795 ddt_t
*ddt
= ddt_select(zcb
->zcb_spa
, bp
);
5800 * Find the block. This will create the entry in memory, but
5801 * we'll know if that happened by its refcount.
5803 ddt_entry_t
*dde
= ddt_lookup(ddt
, bp
);
5806 * ddt_lookup() can return NULL if this block didn't exist
5807 * in the DDT and creating it would take the DDT over its
5808 * quota. Since we got the block from disk, it must exist in
5809 * the DDT, so this can't happen. However, when unique entries
5810 * are pruned, the dedup bit can be set with no corresponding
5818 /* Get the phys for this variant */
5819 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
5822 * This entry may have multiple sets of DVAs. We must claim
5823 * each set the first time we see them in a real block on disk,
5824 * or count them on subsequent occurences. We don't have a
5825 * convenient way to track the first time we see each variant,
5826 * so we repurpose dde_io as a set of "seen" flag bits. We can
5827 * do this safely in zdb because it never writes, so it will
5828 * never have a writing zio for this block in that pointer.
5830 boolean_t seen
= !!(((uintptr_t)dde
->dde_io
) & (1 << v
));
5833 (void *)(((uintptr_t)dde
->dde_io
) | (1 << v
));
5835 /* Consume a reference for this block. */
5836 if (ddt_phys_total_refcnt(ddt
, dde
->dde_phys
) > 0)
5837 ddt_phys_decref(dde
->dde_phys
, v
);
5840 * If this entry has a single flat phys, it may have been
5841 * extended with additional DVAs at some time in its life.
5842 * This block might be from before it was fully extended, and
5843 * so have fewer DVAs.
5845 * If this is the first time we've seen this block, and we
5846 * claimed it as-is, then we would miss the claim on some
5847 * number of DVAs, which would then be seen as leaked.
5849 * In all cases, if we've had fewer DVAs, then the asize would
5850 * be too small, and would lead to the pool apparently using
5851 * more space than allocated.
5853 * To handle this, we copy the canonical set of DVAs from the
5854 * entry back to the block pointer before we claim it.
5856 if (v
== DDT_PHYS_FLAT
) {
5857 ASSERT3U(BP_GET_BIRTH(bp
), ==,
5858 ddt_phys_birth(dde
->dde_phys
, v
));
5860 ddt_bp_fill(dde
->dde_phys
, v
, &tempbp
,
5867 * The second or later time we see this block,
5868 * it's a duplicate and we count it.
5870 zcb
->zcb_dedup_asize
+= BP_GET_ASIZE(bp
);
5871 zcb
->zcb_dedup_blocks
++;
5873 /* Already claimed, don't do it again. */
5878 } else if (zcb
->zcb_brt_is_active
&&
5879 brt_maybe_exists(zcb
->zcb_spa
, bp
)) {
5881 * Cloned blocks are special. We need to count them, so we can
5882 * later uncount them when reporting leaked space, and we must
5883 * only claim them once.
5885 * To do this, we keep our own in-memory BRT. For each block
5886 * we haven't seen before, we look it up in the real BRT and
5887 * if its there, we note it and its refcount then proceed as
5888 * normal. If we see the block again, we count it as a clone
5889 * and then give it no further consideration.
5891 zdb_brt_entry_t zbre_search
, *zbre
;
5894 zbre_search
.zbre_dva
= bp
->blk_dva
[0];
5895 zbre
= avl_find(&zcb
->zcb_brt
, &zbre_search
, &where
);
5897 /* Not seen before; track it */
5899 brt_entry_get_refcount(zcb
->zcb_spa
, bp
);
5901 zbre
= umem_zalloc(sizeof (zdb_brt_entry_t
),
5903 zbre
->zbre_dva
= bp
->blk_dva
[0];
5904 zbre
->zbre_refcount
= refcnt
;
5905 avl_insert(&zcb
->zcb_brt
, zbre
, where
);
5909 * Second or later occurrence, count it and take a
5912 zcb
->zcb_clone_asize
+= BP_GET_ASIZE(bp
);
5913 zcb
->zcb_clone_blocks
++;
5915 zbre
->zbre_refcount
--;
5916 if (zbre
->zbre_refcount
== 0) {
5917 avl_remove(&zcb
->zcb_brt
, zbre
);
5918 umem_free(zbre
, sizeof (zdb_brt_entry_t
));
5921 /* Already claimed, don't do it again. */
5927 for (i
= 0; i
< 4; i
++) {
5928 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : ZB_TOTAL
;
5929 int t
= (i
& 1) ? type
: ZDB_OT_TOTAL
;
5931 zdb_blkstats_t
*zb
= &zcb
->zcb_type
[l
][t
];
5933 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
5934 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
5935 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
5939 * The histogram is only big enough to record blocks up to
5940 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5943 unsigned idx
= BP_GET_PSIZE(bp
) >> SPA_MINBLOCKSHIFT
;
5944 idx
= MIN(idx
, SPA_OLD_MAXBLOCKSIZE
/ SPA_MINBLOCKSIZE
+ 1);
5945 zb
->zb_psize_histogram
[idx
]++;
5947 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
5949 switch (BP_GET_NDVAS(bp
)) {
5951 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5952 DVA_GET_VDEV(&bp
->blk_dva
[1])) {
5953 zb
->zb_ditto_samevdev
++;
5955 if (same_metaslab(zcb
->zcb_spa
,
5956 DVA_GET_VDEV(&bp
->blk_dva
[0]),
5957 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
5958 DVA_GET_OFFSET(&bp
->blk_dva
[1])))
5959 zb
->zb_ditto_same_ms
++;
5963 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5964 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
5965 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5966 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
5967 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
5968 DVA_GET_VDEV(&bp
->blk_dva
[2]));
5970 zb
->zb_ditto_samevdev
++;
5972 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5973 DVA_GET_VDEV(&bp
->blk_dva
[1]) &&
5974 same_metaslab(zcb
->zcb_spa
,
5975 DVA_GET_VDEV(&bp
->blk_dva
[0]),
5976 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
5977 DVA_GET_OFFSET(&bp
->blk_dva
[1])))
5978 zb
->zb_ditto_same_ms
++;
5979 else if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
5980 DVA_GET_VDEV(&bp
->blk_dva
[2]) &&
5981 same_metaslab(zcb
->zcb_spa
,
5982 DVA_GET_VDEV(&bp
->blk_dva
[0]),
5983 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
5984 DVA_GET_OFFSET(&bp
->blk_dva
[2])))
5985 zb
->zb_ditto_same_ms
++;
5986 else if (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
5987 DVA_GET_VDEV(&bp
->blk_dva
[2]) &&
5988 same_metaslab(zcb
->zcb_spa
,
5989 DVA_GET_VDEV(&bp
->blk_dva
[1]),
5990 DVA_GET_OFFSET(&bp
->blk_dva
[1]),
5991 DVA_GET_OFFSET(&bp
->blk_dva
[2])))
5992 zb
->zb_ditto_same_ms
++;
5998 spa_config_exit(zcb
->zcb_spa
, SCL_CONFIG
, FTAG
);
6000 if (BP_IS_EMBEDDED(bp
)) {
6001 zcb
->zcb_embedded_blocks
[BPE_GET_ETYPE(bp
)]++;
6002 zcb
->zcb_embedded_histogram
[BPE_GET_ETYPE(bp
)]
6003 [BPE_GET_PSIZE(bp
)]++;
6007 * The binning histogram bins by powers of two up to
6008 * SPA_MAXBLOCKSIZE rather than creating bins for
6009 * every possible blocksize found in the pool.
6011 int bin
= highbit64(BP_GET_PSIZE(bp
)) - 1;
6013 zcb
->zcb_psize_count
[bin
]++;
6014 zcb
->zcb_psize_len
[bin
] += BP_GET_PSIZE(bp
);
6015 zcb
->zcb_psize_total
+= BP_GET_PSIZE(bp
);
6017 bin
= highbit64(BP_GET_LSIZE(bp
)) - 1;
6019 zcb
->zcb_lsize_count
[bin
]++;
6020 zcb
->zcb_lsize_len
[bin
] += BP_GET_LSIZE(bp
);
6021 zcb
->zcb_lsize_total
+= BP_GET_LSIZE(bp
);
6023 bin
= highbit64(BP_GET_ASIZE(bp
)) - 1;
6025 zcb
->zcb_asize_count
[bin
]++;
6026 zcb
->zcb_asize_len
[bin
] += BP_GET_ASIZE(bp
);
6027 zcb
->zcb_asize_total
+= BP_GET_ASIZE(bp
);
6032 VERIFY0(zio_wait(zio_claim(NULL
, zcb
->zcb_spa
,
6033 spa_min_claim_txg(zcb
->zcb_spa
), bp
, NULL
, NULL
,
6034 ZIO_FLAG_CANFAIL
)));
6038 zdb_blkptr_done(zio_t
*zio
)
6040 spa_t
*spa
= zio
->io_spa
;
6041 blkptr_t
*bp
= zio
->io_bp
;
6042 int ioerr
= zio
->io_error
;
6043 zdb_cb_t
*zcb
= zio
->io_private
;
6044 zbookmark_phys_t
*zb
= &zio
->io_bookmark
;
6046 mutex_enter(&spa
->spa_scrub_lock
);
6047 spa
->spa_load_verify_bytes
-= BP_GET_PSIZE(bp
);
6048 cv_broadcast(&spa
->spa_scrub_io_cv
);
6050 if (ioerr
&& !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
6051 char blkbuf
[BP_SPRINTF_LEN
];
6053 zcb
->zcb_haderrors
= 1;
6054 zcb
->zcb_errors
[ioerr
]++;
6056 if (dump_opt
['b'] >= 2)
6057 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6061 (void) printf("zdb_blkptr_cb: "
6062 "Got error %d reading "
6063 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6065 (u_longlong_t
)zb
->zb_objset
,
6066 (u_longlong_t
)zb
->zb_object
,
6067 (u_longlong_t
)zb
->zb_level
,
6068 (u_longlong_t
)zb
->zb_blkid
,
6071 mutex_exit(&spa
->spa_scrub_lock
);
6073 abd_free(zio
->io_abd
);
6077 zdb_blkptr_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
6078 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
6080 zdb_cb_t
*zcb
= arg
;
6081 dmu_object_type_t type
;
6082 boolean_t is_metadata
;
6084 if (zb
->zb_level
== ZB_DNODE_LEVEL
)
6087 if (dump_opt
['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp
) > 0) {
6088 char blkbuf
[BP_SPRINTF_LEN
];
6089 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6090 (void) printf("objset %llu object %llu "
6091 "level %lld offset 0x%llx %s\n",
6092 (u_longlong_t
)zb
->zb_objset
,
6093 (u_longlong_t
)zb
->zb_object
,
6094 (longlong_t
)zb
->zb_level
,
6095 (u_longlong_t
)blkid2offset(dnp
, bp
, zb
),
6099 if (BP_IS_HOLE(bp
) || BP_IS_REDACTED(bp
))
6102 type
= BP_GET_TYPE(bp
);
6104 zdb_count_block(zcb
, zilog
, bp
,
6105 (type
& DMU_OT_NEWTYPE
) ? ZDB_OT_OTHER
: type
);
6107 is_metadata
= (BP_GET_LEVEL(bp
) != 0 || DMU_OT_IS_METADATA(type
));
6109 if (!BP_IS_EMBEDDED(bp
) &&
6110 (dump_opt
['c'] > 1 || (dump_opt
['c'] && is_metadata
))) {
6111 size_t size
= BP_GET_PSIZE(bp
);
6112 abd_t
*abd
= abd_alloc(size
, B_FALSE
);
6113 int flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCRUB
| ZIO_FLAG_RAW
;
6115 /* If it's an intent log block, failure is expected. */
6116 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
6117 flags
|= ZIO_FLAG_SPECULATIVE
;
6119 mutex_enter(&spa
->spa_scrub_lock
);
6120 while (spa
->spa_load_verify_bytes
> max_inflight_bytes
)
6121 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
6122 spa
->spa_load_verify_bytes
+= size
;
6123 mutex_exit(&spa
->spa_scrub_lock
);
6125 zio_nowait(zio_read(NULL
, spa
, bp
, abd
, size
,
6126 zdb_blkptr_done
, zcb
, ZIO_PRIORITY_ASYNC_READ
, flags
, zb
));
6129 zcb
->zcb_readfails
= 0;
6131 /* only call gethrtime() every 100 blocks */
6138 if (dump_opt
['b'] < 5 && gethrtime() > zcb
->zcb_lastprint
+ NANOSEC
) {
6139 uint64_t now
= gethrtime();
6141 uint64_t bytes
= zcb
->zcb_type
[ZB_TOTAL
][ZDB_OT_TOTAL
].zb_asize
;
6142 uint64_t kb_per_sec
=
6143 1 + bytes
/ (1 + ((now
- zcb
->zcb_start
) / 1000 / 1000));
6144 uint64_t sec_remaining
=
6145 (zcb
->zcb_totalasize
- bytes
) / 1024 / kb_per_sec
;
6147 /* make sure nicenum has enough space */
6148 _Static_assert(sizeof (buf
) >= NN_NUMBUF_SZ
, "buf truncated");
6150 zfs_nicebytes(bytes
, buf
, sizeof (buf
));
6151 (void) fprintf(stderr
,
6152 "\r%5s completed (%4"PRIu64
"MB/s) "
6153 "estimated time remaining: "
6154 "%"PRIu64
"hr %02"PRIu64
"min %02"PRIu64
"sec ",
6155 buf
, kb_per_sec
/ 1024,
6156 sec_remaining
/ 60 / 60,
6157 sec_remaining
/ 60 % 60,
6158 sec_remaining
% 60);
6160 zcb
->zcb_lastprint
= now
;
6167 zdb_leak(void *arg
, uint64_t start
, uint64_t size
)
6171 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6172 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)start
, (u_longlong_t
)size
);
6175 static metaslab_ops_t zdb_metaslab_ops
= {
6180 load_unflushed_svr_segs_cb(spa_t
*spa
, space_map_entry_t
*sme
,
6181 uint64_t txg
, void *arg
)
6183 spa_vdev_removal_t
*svr
= arg
;
6185 uint64_t offset
= sme
->sme_offset
;
6186 uint64_t size
= sme
->sme_run
;
6188 /* skip vdevs we don't care about */
6189 if (sme
->sme_vdev
!= svr
->svr_vdev_id
)
6192 vdev_t
*vd
= vdev_lookup_top(spa
, sme
->sme_vdev
);
6193 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6194 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6196 if (txg
< metaslab_unflushed_txg(ms
))
6199 if (sme
->sme_type
== SM_ALLOC
)
6200 range_tree_add(svr
->svr_allocd_segs
, offset
, size
);
6202 range_tree_remove(svr
->svr_allocd_segs
, offset
, size
);
6208 claim_segment_impl_cb(uint64_t inner_offset
, vdev_t
*vd
, uint64_t offset
,
6209 uint64_t size
, void *arg
)
6211 (void) inner_offset
, (void) arg
;
6214 * This callback was called through a remap from
6215 * a device being removed. Therefore, the vdev that
6216 * this callback is applied to is a concrete
6219 ASSERT(vdev_is_concrete(vd
));
6221 VERIFY0(metaslab_claim_impl(vd
, offset
, size
,
6222 spa_min_claim_txg(vd
->vdev_spa
)));
6226 claim_segment_cb(void *arg
, uint64_t offset
, uint64_t size
)
6230 vdev_indirect_ops
.vdev_op_remap(vd
, offset
, size
,
6231 claim_segment_impl_cb
, NULL
);
6235 * After accounting for all allocated blocks that are directly referenced,
6236 * we might have missed a reference to a block from a partially complete
6237 * (and thus unused) indirect mapping object. We perform a secondary pass
6238 * through the metaslabs we have already mapped and claim the destination
6242 zdb_claim_removing(spa_t
*spa
, zdb_cb_t
*zcb
)
6247 if (spa
->spa_vdev_removal
== NULL
)
6250 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
6252 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
6253 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
6254 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6256 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
6258 range_tree_t
*allocs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
6259 for (uint64_t msi
= 0; msi
< vd
->vdev_ms_count
; msi
++) {
6260 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
6262 ASSERT0(range_tree_space(allocs
));
6263 if (msp
->ms_sm
!= NULL
)
6264 VERIFY0(space_map_load(msp
->ms_sm
, allocs
, SM_ALLOC
));
6265 range_tree_vacate(allocs
, range_tree_add
, svr
->svr_allocd_segs
);
6267 range_tree_destroy(allocs
);
6269 iterate_through_spacemap_logs(spa
, load_unflushed_svr_segs_cb
, svr
);
6272 * Clear everything past what has been synced,
6273 * because we have not allocated mappings for
6276 range_tree_clear(svr
->svr_allocd_segs
,
6277 vdev_indirect_mapping_max_offset(vim
),
6278 vd
->vdev_asize
- vdev_indirect_mapping_max_offset(vim
));
6280 zcb
->zcb_removing_size
+= range_tree_space(svr
->svr_allocd_segs
);
6281 range_tree_vacate(svr
->svr_allocd_segs
, claim_segment_cb
, vd
);
6283 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
6287 increment_indirect_mapping_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
6291 zdb_cb_t
*zcb
= arg
;
6292 spa_t
*spa
= zcb
->zcb_spa
;
6294 const dva_t
*dva
= &bp
->blk_dva
[0];
6297 ASSERT(!dump_opt
['L']);
6298 ASSERT3U(BP_GET_NDVAS(bp
), ==, 1);
6300 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6301 vd
= vdev_lookup_top(zcb
->zcb_spa
, DVA_GET_VDEV(dva
));
6302 ASSERT3P(vd
, !=, NULL
);
6303 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6305 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
6306 ASSERT3P(zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
], !=, NULL
);
6308 vdev_indirect_mapping_increment_obsolete_count(
6309 vd
->vdev_indirect_mapping
,
6310 DVA_GET_OFFSET(dva
), DVA_GET_ASIZE(dva
),
6311 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
]);
6317 zdb_load_obsolete_counts(vdev_t
*vd
)
6319 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6320 spa_t
*spa
= vd
->vdev_spa
;
6321 spa_condensing_indirect_phys_t
*scip
=
6322 &spa
->spa_condensing_indirect_phys
;
6323 uint64_t obsolete_sm_object
;
6326 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
6327 EQUIV(obsolete_sm_object
!= 0, vd
->vdev_obsolete_sm
!= NULL
);
6328 counts
= vdev_indirect_mapping_load_obsolete_counts(vim
);
6329 if (vd
->vdev_obsolete_sm
!= NULL
) {
6330 vdev_indirect_mapping_load_obsolete_spacemap(vim
, counts
,
6331 vd
->vdev_obsolete_sm
);
6333 if (scip
->scip_vdev
== vd
->vdev_id
&&
6334 scip
->scip_prev_obsolete_sm_object
!= 0) {
6335 space_map_t
*prev_obsolete_sm
= NULL
;
6336 VERIFY0(space_map_open(&prev_obsolete_sm
, spa
->spa_meta_objset
,
6337 scip
->scip_prev_obsolete_sm_object
, 0, vd
->vdev_asize
, 0));
6338 vdev_indirect_mapping_load_obsolete_spacemap(vim
, counts
,
6340 space_map_close(prev_obsolete_sm
);
6345 typedef struct checkpoint_sm_exclude_entry_arg
{
6347 uint64_t cseea_checkpoint_size
;
6348 } checkpoint_sm_exclude_entry_arg_t
;
6351 checkpoint_sm_exclude_entry_cb(space_map_entry_t
*sme
, void *arg
)
6353 checkpoint_sm_exclude_entry_arg_t
*cseea
= arg
;
6354 vdev_t
*vd
= cseea
->cseea_vd
;
6355 metaslab_t
*ms
= vd
->vdev_ms
[sme
->sme_offset
>> vd
->vdev_ms_shift
];
6356 uint64_t end
= sme
->sme_offset
+ sme
->sme_run
;
6358 ASSERT(sme
->sme_type
== SM_FREE
);
6361 * Since the vdev_checkpoint_sm exists in the vdev level
6362 * and the ms_sm space maps exist in the metaslab level,
6363 * an entry in the checkpoint space map could theoretically
6364 * cross the boundaries of the metaslab that it belongs.
6366 * In reality, because of the way that we populate and
6367 * manipulate the checkpoint's space maps currently,
6368 * there shouldn't be any entries that cross metaslabs.
6369 * Hence the assertion below.
6371 * That said, there is no fundamental requirement that
6372 * the checkpoint's space map entries should not cross
6373 * metaslab boundaries. So if needed we could add code
6374 * that handles metaslab-crossing segments in the future.
6376 VERIFY3U(sme
->sme_offset
, >=, ms
->ms_start
);
6377 VERIFY3U(end
, <=, ms
->ms_start
+ ms
->ms_size
);
6380 * By removing the entry from the allocated segments we
6381 * also verify that the entry is there to begin with.
6383 mutex_enter(&ms
->ms_lock
);
6384 range_tree_remove(ms
->ms_allocatable
, sme
->sme_offset
, sme
->sme_run
);
6385 mutex_exit(&ms
->ms_lock
);
6387 cseea
->cseea_checkpoint_size
+= sme
->sme_run
;
6392 zdb_leak_init_vdev_exclude_checkpoint(vdev_t
*vd
, zdb_cb_t
*zcb
)
6394 spa_t
*spa
= vd
->vdev_spa
;
6395 space_map_t
*checkpoint_sm
= NULL
;
6396 uint64_t checkpoint_sm_obj
;
6399 * If there is no vdev_top_zap, we are in a pool whose
6400 * version predates the pool checkpoint feature.
6402 if (vd
->vdev_top_zap
== 0)
6406 * If there is no reference of the vdev_checkpoint_sm in
6407 * the vdev_top_zap, then one of the following scenarios
6410 * 1] There is no checkpoint
6411 * 2] There is a checkpoint, but no checkpointed blocks
6412 * have been freed yet
6413 * 3] The current vdev is indirect
6415 * In these cases we return immediately.
6417 if (zap_contains(spa_meta_objset(spa
), vd
->vdev_top_zap
,
6418 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
6421 VERIFY0(zap_lookup(spa_meta_objset(spa
), vd
->vdev_top_zap
,
6422 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
, sizeof (uint64_t), 1,
6423 &checkpoint_sm_obj
));
6425 checkpoint_sm_exclude_entry_arg_t cseea
;
6426 cseea
.cseea_vd
= vd
;
6427 cseea
.cseea_checkpoint_size
= 0;
6429 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(spa
),
6430 checkpoint_sm_obj
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
6432 VERIFY0(space_map_iterate(checkpoint_sm
,
6433 space_map_length(checkpoint_sm
),
6434 checkpoint_sm_exclude_entry_cb
, &cseea
));
6435 space_map_close(checkpoint_sm
);
6437 zcb
->zcb_checkpoint_size
+= cseea
.cseea_checkpoint_size
;
6441 zdb_leak_init_exclude_checkpoint(spa_t
*spa
, zdb_cb_t
*zcb
)
6443 ASSERT(!dump_opt
['L']);
6445 vdev_t
*rvd
= spa
->spa_root_vdev
;
6446 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
6447 ASSERT3U(c
, ==, rvd
->vdev_child
[c
]->vdev_id
);
6448 zdb_leak_init_vdev_exclude_checkpoint(rvd
->vdev_child
[c
], zcb
);
6453 count_unflushed_space_cb(spa_t
*spa
, space_map_entry_t
*sme
,
6454 uint64_t txg
, void *arg
)
6456 int64_t *ualloc_space
= arg
;
6458 uint64_t offset
= sme
->sme_offset
;
6459 uint64_t vdev_id
= sme
->sme_vdev
;
6461 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
6462 if (!vdev_is_concrete(vd
))
6465 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6466 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6468 if (txg
< metaslab_unflushed_txg(ms
))
6471 if (sme
->sme_type
== SM_ALLOC
)
6472 *ualloc_space
+= sme
->sme_run
;
6474 *ualloc_space
-= sme
->sme_run
;
6480 get_unflushed_alloc_space(spa_t
*spa
)
6485 int64_t ualloc_space
= 0;
6486 iterate_through_spacemap_logs(spa
, count_unflushed_space_cb
,
6488 return (ualloc_space
);
6492 load_unflushed_cb(spa_t
*spa
, space_map_entry_t
*sme
, uint64_t txg
, void *arg
)
6494 maptype_t
*uic_maptype
= arg
;
6496 uint64_t offset
= sme
->sme_offset
;
6497 uint64_t size
= sme
->sme_run
;
6498 uint64_t vdev_id
= sme
->sme_vdev
;
6500 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
6502 /* skip indirect vdevs */
6503 if (!vdev_is_concrete(vd
))
6506 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6508 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6509 ASSERT(*uic_maptype
== SM_ALLOC
|| *uic_maptype
== SM_FREE
);
6511 if (txg
< metaslab_unflushed_txg(ms
))
6514 if (*uic_maptype
== sme
->sme_type
)
6515 range_tree_add(ms
->ms_allocatable
, offset
, size
);
6517 range_tree_remove(ms
->ms_allocatable
, offset
, size
);
6523 load_unflushed_to_ms_allocatables(spa_t
*spa
, maptype_t maptype
)
6525 iterate_through_spacemap_logs(spa
, load_unflushed_cb
, &maptype
);
6529 load_concrete_ms_allocatable_trees(spa_t
*spa
, maptype_t maptype
)
6531 vdev_t
*rvd
= spa
->spa_root_vdev
;
6532 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
6533 vdev_t
*vd
= rvd
->vdev_child
[i
];
6535 ASSERT3U(i
, ==, vd
->vdev_id
);
6537 if (vd
->vdev_ops
== &vdev_indirect_ops
)
6540 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6541 metaslab_t
*msp
= vd
->vdev_ms
[m
];
6543 (void) fprintf(stderr
,
6544 "\rloading concrete vdev %llu, "
6545 "metaslab %llu of %llu ...",
6546 (longlong_t
)vd
->vdev_id
,
6547 (longlong_t
)msp
->ms_id
,
6548 (longlong_t
)vd
->vdev_ms_count
);
6550 mutex_enter(&msp
->ms_lock
);
6551 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
6554 * We don't want to spend the CPU manipulating the
6555 * size-ordered tree, so clear the range_tree ops.
6557 msp
->ms_allocatable
->rt_ops
= NULL
;
6559 if (msp
->ms_sm
!= NULL
) {
6560 VERIFY0(space_map_load(msp
->ms_sm
,
6561 msp
->ms_allocatable
, maptype
));
6563 if (!msp
->ms_loaded
)
6564 msp
->ms_loaded
= B_TRUE
;
6565 mutex_exit(&msp
->ms_lock
);
6569 load_unflushed_to_ms_allocatables(spa
, maptype
);
6573 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6574 * index in vim_entries that has the first entry in this metaslab.
6575 * On return, it will be set to the first entry after this metaslab.
6578 load_indirect_ms_allocatable_tree(vdev_t
*vd
, metaslab_t
*msp
,
6581 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6583 mutex_enter(&msp
->ms_lock
);
6584 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
6587 * We don't want to spend the CPU manipulating the
6588 * size-ordered tree, so clear the range_tree ops.
6590 msp
->ms_allocatable
->rt_ops
= NULL
;
6592 for (; *vim_idxp
< vdev_indirect_mapping_num_entries(vim
);
6594 vdev_indirect_mapping_entry_phys_t
*vimep
=
6595 &vim
->vim_entries
[*vim_idxp
];
6596 uint64_t ent_offset
= DVA_MAPPING_GET_SRC_OFFSET(vimep
);
6597 uint64_t ent_len
= DVA_GET_ASIZE(&vimep
->vimep_dst
);
6598 ASSERT3U(ent_offset
, >=, msp
->ms_start
);
6599 if (ent_offset
>= msp
->ms_start
+ msp
->ms_size
)
6603 * Mappings do not cross metaslab boundaries,
6604 * because we create them by walking the metaslabs.
6606 ASSERT3U(ent_offset
+ ent_len
, <=,
6607 msp
->ms_start
+ msp
->ms_size
);
6608 range_tree_add(msp
->ms_allocatable
, ent_offset
, ent_len
);
6611 if (!msp
->ms_loaded
)
6612 msp
->ms_loaded
= B_TRUE
;
6613 mutex_exit(&msp
->ms_lock
);
6617 zdb_leak_init_prepare_indirect_vdevs(spa_t
*spa
, zdb_cb_t
*zcb
)
6619 ASSERT(!dump_opt
['L']);
6621 vdev_t
*rvd
= spa
->spa_root_vdev
;
6622 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
6623 vdev_t
*vd
= rvd
->vdev_child
[c
];
6625 ASSERT3U(c
, ==, vd
->vdev_id
);
6627 if (vd
->vdev_ops
!= &vdev_indirect_ops
)
6631 * Note: we don't check for mapping leaks on
6632 * removing vdevs because their ms_allocatable's
6633 * are used to look for leaks in allocated space.
6635 zcb
->zcb_vd_obsolete_counts
[c
] = zdb_load_obsolete_counts(vd
);
6638 * Normally, indirect vdevs don't have any
6639 * metaslabs. We want to set them up for
6642 vdev_metaslab_group_create(vd
);
6643 VERIFY0(vdev_metaslab_init(vd
, 0));
6645 vdev_indirect_mapping_t
*vim __maybe_unused
=
6646 vd
->vdev_indirect_mapping
;
6647 uint64_t vim_idx
= 0;
6648 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6650 (void) fprintf(stderr
,
6651 "\rloading indirect vdev %llu, "
6652 "metaslab %llu of %llu ...",
6653 (longlong_t
)vd
->vdev_id
,
6654 (longlong_t
)vd
->vdev_ms
[m
]->ms_id
,
6655 (longlong_t
)vd
->vdev_ms_count
);
6657 load_indirect_ms_allocatable_tree(vd
, vd
->vdev_ms
[m
],
6660 ASSERT3U(vim_idx
, ==, vdev_indirect_mapping_num_entries(vim
));
6665 zdb_leak_init(spa_t
*spa
, zdb_cb_t
*zcb
)
6672 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
6673 vdev_t
*rvd
= spa
->spa_root_vdev
;
6676 * We are going to be changing the meaning of the metaslab's
6677 * ms_allocatable. Ensure that the allocator doesn't try to
6680 spa
->spa_normal_class
->mc_ops
= &zdb_metaslab_ops
;
6681 spa
->spa_log_class
->mc_ops
= &zdb_metaslab_ops
;
6682 spa
->spa_embedded_log_class
->mc_ops
= &zdb_metaslab_ops
;
6684 zcb
->zcb_vd_obsolete_counts
=
6685 umem_zalloc(rvd
->vdev_children
* sizeof (uint32_t *),
6689 * For leak detection, we overload the ms_allocatable trees
6690 * to contain allocated segments instead of free segments.
6691 * As a result, we can't use the normal metaslab_load/unload
6694 zdb_leak_init_prepare_indirect_vdevs(spa
, zcb
);
6695 load_concrete_ms_allocatable_trees(spa
, SM_ALLOC
);
6698 * On load_concrete_ms_allocatable_trees() we loaded all the
6699 * allocated entries from the ms_sm to the ms_allocatable for
6700 * each metaslab. If the pool has a checkpoint or is in the
6701 * middle of discarding a checkpoint, some of these blocks
6702 * may have been freed but their ms_sm may not have been
6703 * updated because they are referenced by the checkpoint. In
6704 * order to avoid false-positives during leak-detection, we
6705 * go through the vdev's checkpoint space map and exclude all
6706 * its entries from their relevant ms_allocatable.
6708 * We also aggregate the space held by the checkpoint and add
6709 * it to zcb_checkpoint_size.
6711 * Note that at this point we are also verifying that all the
6712 * entries on the checkpoint_sm are marked as allocated in
6713 * the ms_sm of their relevant metaslab.
6714 * [see comment in checkpoint_sm_exclude_entry_cb()]
6716 zdb_leak_init_exclude_checkpoint(spa
, zcb
);
6717 ASSERT3U(zcb
->zcb_checkpoint_size
, ==, spa_get_checkpoint_space(spa
));
6719 /* for cleaner progress output */
6720 (void) fprintf(stderr
, "\n");
6722 if (bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
6723 ASSERT(spa_feature_is_enabled(spa
,
6724 SPA_FEATURE_DEVICE_REMOVAL
));
6725 (void) bpobj_iterate_nofree(&dp
->dp_obsolete_bpobj
,
6726 increment_indirect_mapping_cb
, zcb
, NULL
);
6731 zdb_check_for_obsolete_leaks(vdev_t
*vd
, zdb_cb_t
*zcb
)
6733 boolean_t leaks
= B_FALSE
;
6734 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6735 uint64_t total_leaked
= 0;
6736 boolean_t are_precise
= B_FALSE
;
6738 ASSERT(vim
!= NULL
);
6740 for (uint64_t i
= 0; i
< vdev_indirect_mapping_num_entries(vim
); i
++) {
6741 vdev_indirect_mapping_entry_phys_t
*vimep
=
6742 &vim
->vim_entries
[i
];
6743 uint64_t obsolete_bytes
= 0;
6744 uint64_t offset
= DVA_MAPPING_GET_SRC_OFFSET(vimep
);
6745 metaslab_t
*msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6748 * This is not very efficient but it's easy to
6749 * verify correctness.
6751 for (uint64_t inner_offset
= 0;
6752 inner_offset
< DVA_GET_ASIZE(&vimep
->vimep_dst
);
6753 inner_offset
+= 1ULL << vd
->vdev_ashift
) {
6754 if (range_tree_contains(msp
->ms_allocatable
,
6755 offset
+ inner_offset
, 1ULL << vd
->vdev_ashift
)) {
6756 obsolete_bytes
+= 1ULL << vd
->vdev_ashift
;
6760 int64_t bytes_leaked
= obsolete_bytes
-
6761 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
][i
];
6762 ASSERT3U(DVA_GET_ASIZE(&vimep
->vimep_dst
), >=,
6763 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
][i
]);
6765 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
6766 if (bytes_leaked
!= 0 && (are_precise
|| dump_opt
['d'] >= 5)) {
6767 (void) printf("obsolete indirect mapping count "
6768 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6769 (u_longlong_t
)vd
->vdev_id
,
6770 (u_longlong_t
)DVA_MAPPING_GET_SRC_OFFSET(vimep
),
6771 (u_longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
6772 (u_longlong_t
)bytes_leaked
);
6774 total_leaked
+= ABS(bytes_leaked
);
6777 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
6778 if (!are_precise
&& total_leaked
> 0) {
6779 int pct_leaked
= total_leaked
* 100 /
6780 vdev_indirect_mapping_bytes_mapped(vim
);
6781 (void) printf("cannot verify obsolete indirect mapping "
6782 "counts of vdev %llu because precise feature was not "
6783 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6785 (u_longlong_t
)vd
->vdev_id
, pct_leaked
,
6786 (u_longlong_t
)total_leaked
);
6787 } else if (total_leaked
> 0) {
6788 (void) printf("obsolete indirect mapping count mismatch "
6789 "for vdev %llu -- %llx total bytes mismatched\n",
6790 (u_longlong_t
)vd
->vdev_id
,
6791 (u_longlong_t
)total_leaked
);
6795 vdev_indirect_mapping_free_obsolete_counts(vim
,
6796 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
]);
6797 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
] = NULL
;
6803 zdb_leak_fini(spa_t
*spa
, zdb_cb_t
*zcb
)
6808 boolean_t leaks
= B_FALSE
;
6809 vdev_t
*rvd
= spa
->spa_root_vdev
;
6810 for (unsigned c
= 0; c
< rvd
->vdev_children
; c
++) {
6811 vdev_t
*vd
= rvd
->vdev_child
[c
];
6813 if (zcb
->zcb_vd_obsolete_counts
[c
] != NULL
) {
6814 leaks
|= zdb_check_for_obsolete_leaks(vd
, zcb
);
6817 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6818 metaslab_t
*msp
= vd
->vdev_ms
[m
];
6819 ASSERT3P(msp
->ms_group
, ==, (msp
->ms_group
->mg_class
==
6820 spa_embedded_log_class(spa
)) ?
6821 vd
->vdev_log_mg
: vd
->vdev_mg
);
6824 * ms_allocatable has been overloaded
6825 * to contain allocated segments. Now that
6826 * we finished traversing all blocks, any
6827 * block that remains in the ms_allocatable
6828 * represents an allocated block that we
6829 * did not claim during the traversal.
6830 * Claimed blocks would have been removed
6831 * from the ms_allocatable. For indirect
6832 * vdevs, space remaining in the tree
6833 * represents parts of the mapping that are
6834 * not referenced, which is not a bug.
6836 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
6837 range_tree_vacate(msp
->ms_allocatable
,
6840 range_tree_vacate(msp
->ms_allocatable
,
6843 if (msp
->ms_loaded
) {
6844 msp
->ms_loaded
= B_FALSE
;
6849 umem_free(zcb
->zcb_vd_obsolete_counts
,
6850 rvd
->vdev_children
* sizeof (uint32_t *));
6851 zcb
->zcb_vd_obsolete_counts
= NULL
;
6857 count_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
6860 zdb_cb_t
*zcb
= arg
;
6862 if (dump_opt
['b'] >= 5) {
6863 char blkbuf
[BP_SPRINTF_LEN
];
6864 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6865 (void) printf("[%s] %s\n",
6866 "deferred free", blkbuf
);
6868 zdb_count_block(zcb
, NULL
, bp
, ZDB_OT_DEFERRED
);
6873 * Iterate over livelists which have been destroyed by the user but
6874 * are still present in the MOS, waiting to be freed
6877 iterate_deleted_livelists(spa_t
*spa
, ll_iter_t func
, void *arg
)
6879 objset_t
*mos
= spa
->spa_meta_objset
;
6881 int err
= zap_lookup(mos
, DMU_POOL_DIRECTORY_OBJECT
,
6882 DMU_POOL_DELETED_CLONES
, sizeof (uint64_t), 1, &zap_obj
);
6888 zap_attribute_t
*attrp
= zap_attribute_alloc();
6890 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6892 for (zap_cursor_init(&zc
, mos
, zap_obj
);
6893 zap_cursor_retrieve(&zc
, attrp
) == 0;
6894 (void) zap_cursor_advance(&zc
)) {
6895 dsl_deadlist_open(&ll
, mos
, attrp
->za_first_integer
);
6897 dsl_deadlist_close(&ll
);
6899 zap_cursor_fini(&zc
);
6900 zap_attribute_free(attrp
);
6904 bpobj_count_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
6908 return (count_block_cb(arg
, bp
, tx
));
6912 livelist_entry_count_blocks_cb(void *args
, dsl_deadlist_entry_t
*dle
)
6914 zdb_cb_t
*zbc
= args
;
6916 bplist_create(&blks
);
6917 /* determine which blocks have been alloc'd but not freed */
6918 VERIFY0(dsl_process_sub_livelist(&dle
->dle_bpobj
, &blks
, NULL
, NULL
));
6919 /* count those blocks */
6920 (void) bplist_iterate(&blks
, count_block_cb
, zbc
, NULL
);
6921 bplist_destroy(&blks
);
6926 livelist_count_blocks(dsl_deadlist_t
*ll
, void *arg
)
6928 dsl_deadlist_iterate(ll
, livelist_entry_count_blocks_cb
, arg
);
6932 * Count the blocks in the livelists that have been destroyed by the user
6933 * but haven't yet been freed.
6936 deleted_livelists_count_blocks(spa_t
*spa
, zdb_cb_t
*zbc
)
6938 iterate_deleted_livelists(spa
, livelist_count_blocks
, zbc
);
6942 dump_livelist_cb(dsl_deadlist_t
*ll
, void *arg
)
6944 ASSERT3P(arg
, ==, NULL
);
6945 global_feature_count
[SPA_FEATURE_LIVELIST
]++;
6946 dump_blkptr_list(ll
, "Deleted Livelist");
6947 dsl_deadlist_iterate(ll
, sublivelist_verify_lightweight
, NULL
);
6951 * Print out, register object references to, and increment feature counts for
6952 * livelists that have been destroyed by the user but haven't yet been freed.
6955 deleted_livelists_dump_mos(spa_t
*spa
)
6958 objset_t
*mos
= spa
->spa_meta_objset
;
6959 int err
= zap_lookup(mos
, DMU_POOL_DIRECTORY_OBJECT
,
6960 DMU_POOL_DELETED_CLONES
, sizeof (uint64_t), 1, &zap_obj
);
6963 mos_obj_refd(zap_obj
);
6964 iterate_deleted_livelists(spa
, dump_livelist_cb
, NULL
);
6968 zdb_brt_entry_compare(const void *zcn1
, const void *zcn2
)
6970 const dva_t
*dva1
= &((const zdb_brt_entry_t
*)zcn1
)->zbre_dva
;
6971 const dva_t
*dva2
= &((const zdb_brt_entry_t
*)zcn2
)->zbre_dva
;
6974 cmp
= TREE_CMP(DVA_GET_VDEV(dva1
), DVA_GET_VDEV(dva2
));
6976 cmp
= TREE_CMP(DVA_GET_OFFSET(dva1
), DVA_GET_OFFSET(dva2
));
6982 dump_block_stats(spa_t
*spa
)
6985 zdb_blkstats_t
*zb
, *tzb
;
6986 uint64_t norm_alloc
, norm_space
, total_alloc
, total_found
;
6987 int flags
= TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
|
6988 TRAVERSE_NO_DECRYPT
| TRAVERSE_HARD
;
6989 boolean_t leaks
= B_FALSE
;
6991 bp_embedded_type_t i
;
6993 ddt_prefetch_all(spa
);
6995 zcb
= umem_zalloc(sizeof (zdb_cb_t
), UMEM_NOFAIL
);
6997 if (spa_feature_is_active(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
6998 avl_create(&zcb
->zcb_brt
, zdb_brt_entry_compare
,
6999 sizeof (zdb_brt_entry_t
),
7000 offsetof(zdb_brt_entry_t
, zbre_node
));
7001 zcb
->zcb_brt_is_active
= B_TRUE
;
7004 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7005 (dump_opt
['c'] || !dump_opt
['L']) ? "to verify " : "",
7006 (dump_opt
['c'] == 1) ? "metadata " : "",
7007 dump_opt
['c'] ? "checksums " : "",
7008 (dump_opt
['c'] && !dump_opt
['L']) ? "and verify " : "",
7009 !dump_opt
['L'] ? "nothing leaked " : "");
7012 * When leak detection is enabled we load all space maps as SM_ALLOC
7013 * maps, then traverse the pool claiming each block we discover. If
7014 * the pool is perfectly consistent, the segment trees will be empty
7015 * when we're done. Anything left over is a leak; any block we can't
7016 * claim (because it's not part of any space map) is a double
7017 * allocation, reference to a freed block, or an unclaimed log block.
7019 * When leak detection is disabled (-L option) we still traverse the
7020 * pool claiming each block we discover, but we skip opening any space
7023 zdb_leak_init(spa
, zcb
);
7026 * If there's a deferred-free bplist, process that first.
7028 (void) bpobj_iterate_nofree(&spa
->spa_deferred_bpobj
,
7029 bpobj_count_block_cb
, zcb
, NULL
);
7031 if (spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
7032 (void) bpobj_iterate_nofree(&spa
->spa_dsl_pool
->dp_free_bpobj
,
7033 bpobj_count_block_cb
, zcb
, NULL
);
7036 zdb_claim_removing(spa
, zcb
);
7038 if (spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
7039 VERIFY3U(0, ==, bptree_iterate(spa
->spa_meta_objset
,
7040 spa
->spa_dsl_pool
->dp_bptree_obj
, B_FALSE
, count_block_cb
,
7044 deleted_livelists_count_blocks(spa
, zcb
);
7046 if (dump_opt
['c'] > 1)
7047 flags
|= TRAVERSE_PREFETCH_DATA
;
7049 zcb
->zcb_totalasize
= metaslab_class_get_alloc(spa_normal_class(spa
));
7050 zcb
->zcb_totalasize
+= metaslab_class_get_alloc(spa_special_class(spa
));
7051 zcb
->zcb_totalasize
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
7052 zcb
->zcb_totalasize
+=
7053 metaslab_class_get_alloc(spa_embedded_log_class(spa
));
7054 zcb
->zcb_start
= zcb
->zcb_lastprint
= gethrtime();
7055 err
= traverse_pool(spa
, 0, flags
, zdb_blkptr_cb
, zcb
);
7058 * If we've traversed the data blocks then we need to wait for those
7059 * I/Os to complete. We leverage "The Godfather" zio to wait on
7060 * all async I/Os to complete.
7062 if (dump_opt
['c']) {
7063 for (c
= 0; c
< max_ncpus
; c
++) {
7064 (void) zio_wait(spa
->spa_async_zio_root
[c
]);
7065 spa
->spa_async_zio_root
[c
] = zio_root(spa
, NULL
, NULL
,
7066 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
7067 ZIO_FLAG_GODFATHER
);
7070 ASSERT0(spa
->spa_load_verify_bytes
);
7073 * Done after zio_wait() since zcb_haderrors is modified in
7076 zcb
->zcb_haderrors
|= err
;
7078 if (zcb
->zcb_haderrors
) {
7079 (void) printf("\nError counts:\n\n");
7080 (void) printf("\t%5s %s\n", "errno", "count");
7081 for (e
= 0; e
< 256; e
++) {
7082 if (zcb
->zcb_errors
[e
] != 0) {
7083 (void) printf("\t%5d %llu\n",
7084 e
, (u_longlong_t
)zcb
->zcb_errors
[e
]);
7090 * Report any leaked segments.
7092 leaks
|= zdb_leak_fini(spa
, zcb
);
7094 tzb
= &zcb
->zcb_type
[ZB_TOTAL
][ZDB_OT_TOTAL
];
7096 norm_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
7097 norm_space
= metaslab_class_get_space(spa_normal_class(spa
));
7099 total_alloc
= norm_alloc
+
7100 metaslab_class_get_alloc(spa_log_class(spa
)) +
7101 metaslab_class_get_alloc(spa_embedded_log_class(spa
)) +
7102 metaslab_class_get_alloc(spa_special_class(spa
)) +
7103 metaslab_class_get_alloc(spa_dedup_class(spa
)) +
7104 get_unflushed_alloc_space(spa
);
7106 tzb
->zb_asize
- zcb
->zcb_dedup_asize
- zcb
->zcb_clone_asize
+
7107 zcb
->zcb_removing_size
+ zcb
->zcb_checkpoint_size
;
7109 if (total_found
== total_alloc
&& !dump_opt
['L']) {
7110 (void) printf("\n\tNo leaks (block sum matches space"
7111 " maps exactly)\n");
7112 } else if (!dump_opt
['L']) {
7113 (void) printf("block traversal size %llu != alloc %llu "
7115 (u_longlong_t
)total_found
,
7116 (u_longlong_t
)total_alloc
,
7117 (dump_opt
['L']) ? "unreachable" : "leaked",
7118 (longlong_t
)(total_alloc
- total_found
));
7121 if (tzb
->zb_count
== 0) {
7122 umem_free(zcb
, sizeof (zdb_cb_t
));
7126 (void) printf("\n");
7127 (void) printf("\t%-16s %14llu\n", "bp count:",
7128 (u_longlong_t
)tzb
->zb_count
);
7129 (void) printf("\t%-16s %14llu\n", "ganged count:",
7130 (longlong_t
)tzb
->zb_gangs
);
7131 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7132 (u_longlong_t
)tzb
->zb_lsize
,
7133 (u_longlong_t
)(tzb
->zb_lsize
/ tzb
->zb_count
));
7134 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7135 "bp physical:", (u_longlong_t
)tzb
->zb_psize
,
7136 (u_longlong_t
)(tzb
->zb_psize
/ tzb
->zb_count
),
7137 (double)tzb
->zb_lsize
/ tzb
->zb_psize
);
7138 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7139 "bp allocated:", (u_longlong_t
)tzb
->zb_asize
,
7140 (u_longlong_t
)(tzb
->zb_asize
/ tzb
->zb_count
),
7141 (double)tzb
->zb_lsize
/ tzb
->zb_asize
);
7142 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7143 "bp deduped:", (u_longlong_t
)zcb
->zcb_dedup_asize
,
7144 (u_longlong_t
)zcb
->zcb_dedup_blocks
,
7145 (double)zcb
->zcb_dedup_asize
/ tzb
->zb_asize
+ 1.0);
7146 (void) printf("\t%-16s %14llu count: %6llu\n",
7147 "bp cloned:", (u_longlong_t
)zcb
->zcb_clone_asize
,
7148 (u_longlong_t
)zcb
->zcb_clone_blocks
);
7149 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7150 (u_longlong_t
)norm_alloc
, 100.0 * norm_alloc
/ norm_space
);
7152 if (spa_special_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7153 uint64_t alloc
= metaslab_class_get_alloc(
7154 spa_special_class(spa
));
7155 uint64_t space
= metaslab_class_get_space(
7156 spa_special_class(spa
));
7158 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7159 "Special class", (u_longlong_t
)alloc
,
7160 100.0 * alloc
/ space
);
7163 if (spa_dedup_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7164 uint64_t alloc
= metaslab_class_get_alloc(
7165 spa_dedup_class(spa
));
7166 uint64_t space
= metaslab_class_get_space(
7167 spa_dedup_class(spa
));
7169 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7170 "Dedup class", (u_longlong_t
)alloc
,
7171 100.0 * alloc
/ space
);
7174 if (spa_embedded_log_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7175 uint64_t alloc
= metaslab_class_get_alloc(
7176 spa_embedded_log_class(spa
));
7177 uint64_t space
= metaslab_class_get_space(
7178 spa_embedded_log_class(spa
));
7180 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7181 "Embedded log class", (u_longlong_t
)alloc
,
7182 100.0 * alloc
/ space
);
7185 for (i
= 0; i
< NUM_BP_EMBEDDED_TYPES
; i
++) {
7186 if (zcb
->zcb_embedded_blocks
[i
] == 0)
7188 (void) printf("\n");
7189 (void) printf("\tadditional, non-pointer bps of type %u: "
7191 i
, (u_longlong_t
)zcb
->zcb_embedded_blocks
[i
]);
7193 if (dump_opt
['b'] >= 3) {
7194 (void) printf("\t number of (compressed) bytes: "
7196 dump_histogram(zcb
->zcb_embedded_histogram
[i
],
7197 sizeof (zcb
->zcb_embedded_histogram
[i
]) /
7198 sizeof (zcb
->zcb_embedded_histogram
[i
][0]), 0);
7202 if (tzb
->zb_ditto_samevdev
!= 0) {
7203 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7204 (longlong_t
)tzb
->zb_ditto_samevdev
);
7206 if (tzb
->zb_ditto_same_ms
!= 0) {
7207 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7208 (longlong_t
)tzb
->zb_ditto_same_ms
);
7211 for (uint64_t v
= 0; v
< spa
->spa_root_vdev
->vdev_children
; v
++) {
7212 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[v
];
7213 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
7220 zdb_nicenum(vdev_indirect_mapping_num_entries(vim
),
7221 mem
, vdev_indirect_mapping_size(vim
));
7223 (void) printf("\tindirect vdev id %llu has %llu segments "
7225 (longlong_t
)vd
->vdev_id
,
7226 (longlong_t
)vdev_indirect_mapping_num_entries(vim
), mem
);
7229 if (dump_opt
['b'] >= 2) {
7231 char csize
[32], lsize
[32], psize
[32], asize
[32];
7232 char avg
[32], gang
[32];
7233 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7234 "\t avg\t comp\t%%Total\tType\n");
7236 zfs_blkstat_t
*mdstats
= umem_zalloc(sizeof (zfs_blkstat_t
),
7239 for (t
= 0; t
<= ZDB_OT_TOTAL
; t
++) {
7240 const char *typename
;
7242 /* make sure nicenum has enough space */
7243 _Static_assert(sizeof (csize
) >= NN_NUMBUF_SZ
,
7245 _Static_assert(sizeof (lsize
) >= NN_NUMBUF_SZ
,
7247 _Static_assert(sizeof (psize
) >= NN_NUMBUF_SZ
,
7249 _Static_assert(sizeof (asize
) >= NN_NUMBUF_SZ
,
7251 _Static_assert(sizeof (avg
) >= NN_NUMBUF_SZ
,
7253 _Static_assert(sizeof (gang
) >= NN_NUMBUF_SZ
,
7256 if (t
< DMU_OT_NUMTYPES
)
7257 typename
= dmu_ot
[t
].ot_name
;
7259 typename
= zdb_ot_extname
[t
- DMU_OT_NUMTYPES
];
7261 if (zcb
->zcb_type
[ZB_TOTAL
][t
].zb_asize
== 0) {
7262 (void) printf("%6s\t%5s\t%5s\t%5s"
7263 "\t%5s\t%5s\t%6s\t%s\n",
7275 for (l
= ZB_TOTAL
- 1; l
>= -1; l
--) {
7276 level
= (l
== -1 ? ZB_TOTAL
: l
);
7277 zb
= &zcb
->zcb_type
[level
][t
];
7279 if (zb
->zb_asize
== 0)
7282 if (level
!= ZB_TOTAL
&& t
< DMU_OT_NUMTYPES
&&
7283 (level
> 0 || DMU_OT_IS_METADATA(t
))) {
7284 mdstats
->zb_count
+= zb
->zb_count
;
7285 mdstats
->zb_lsize
+= zb
->zb_lsize
;
7286 mdstats
->zb_psize
+= zb
->zb_psize
;
7287 mdstats
->zb_asize
+= zb
->zb_asize
;
7288 mdstats
->zb_gangs
+= zb
->zb_gangs
;
7291 if (dump_opt
['b'] < 3 && level
!= ZB_TOTAL
)
7294 if (level
== 0 && zb
->zb_asize
==
7295 zcb
->zcb_type
[ZB_TOTAL
][t
].zb_asize
)
7298 zdb_nicenum(zb
->zb_count
, csize
,
7300 zdb_nicenum(zb
->zb_lsize
, lsize
,
7302 zdb_nicenum(zb
->zb_psize
, psize
,
7304 zdb_nicenum(zb
->zb_asize
, asize
,
7306 zdb_nicenum(zb
->zb_asize
/ zb
->zb_count
, avg
,
7308 zdb_nicenum(zb
->zb_gangs
, gang
, sizeof (gang
));
7310 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7312 csize
, lsize
, psize
, asize
, avg
,
7313 (double)zb
->zb_lsize
/ zb
->zb_psize
,
7314 100.0 * zb
->zb_asize
/ tzb
->zb_asize
);
7316 if (level
== ZB_TOTAL
)
7317 (void) printf("%s\n", typename
);
7319 (void) printf(" L%d %s\n",
7322 if (dump_opt
['b'] >= 3 && zb
->zb_gangs
> 0) {
7323 (void) printf("\t number of ganged "
7324 "blocks: %s\n", gang
);
7327 if (dump_opt
['b'] >= 4) {
7328 (void) printf("psize "
7329 "(in 512-byte sectors): "
7330 "number of blocks\n");
7331 dump_histogram(zb
->zb_psize_histogram
,
7332 PSIZE_HISTO_SIZE
, 0);
7336 zdb_nicenum(mdstats
->zb_count
, csize
,
7338 zdb_nicenum(mdstats
->zb_lsize
, lsize
,
7340 zdb_nicenum(mdstats
->zb_psize
, psize
,
7342 zdb_nicenum(mdstats
->zb_asize
, asize
,
7344 zdb_nicenum(mdstats
->zb_asize
/ mdstats
->zb_count
, avg
,
7346 zdb_nicenum(mdstats
->zb_gangs
, gang
, sizeof (gang
));
7348 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7350 csize
, lsize
, psize
, asize
, avg
,
7351 (double)mdstats
->zb_lsize
/ mdstats
->zb_psize
,
7352 100.0 * mdstats
->zb_asize
/ tzb
->zb_asize
);
7353 (void) printf("%s\n", "Metadata Total");
7355 /* Output a table summarizing block sizes in the pool */
7356 if (dump_opt
['b'] >= 2) {
7357 dump_size_histograms(zcb
);
7360 umem_free(mdstats
, sizeof (zfs_blkstat_t
));
7363 (void) printf("\n");
7366 umem_free(zcb
, sizeof (zdb_cb_t
));
7370 if (zcb
->zcb_haderrors
) {
7371 umem_free(zcb
, sizeof (zdb_cb_t
));
7375 umem_free(zcb
, sizeof (zdb_cb_t
));
7379 typedef struct zdb_ddt_entry
{
7380 /* key must be first for ddt_key_compare */
7382 uint64_t zdde_ref_blocks
;
7383 uint64_t zdde_ref_lsize
;
7384 uint64_t zdde_ref_psize
;
7385 uint64_t zdde_ref_dsize
;
7386 avl_node_t zdde_node
;
7390 zdb_ddt_add_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
7391 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
7393 (void) zilog
, (void) dnp
;
7394 avl_tree_t
*t
= arg
;
7396 zdb_ddt_entry_t
*zdde
, zdde_search
;
7398 if (zb
->zb_level
== ZB_DNODE_LEVEL
|| BP_IS_HOLE(bp
) ||
7402 if (dump_opt
['S'] > 1 && zb
->zb_level
== ZB_ROOT_LEVEL
) {
7403 (void) printf("traversing objset %llu, %llu objects, "
7404 "%lu blocks so far\n",
7405 (u_longlong_t
)zb
->zb_objset
,
7406 (u_longlong_t
)BP_GET_FILL(bp
),
7410 if (BP_IS_HOLE(bp
) || BP_GET_CHECKSUM(bp
) == ZIO_CHECKSUM_OFF
||
7411 BP_GET_LEVEL(bp
) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)))
7414 ddt_key_fill(&zdde_search
.zdde_key
, bp
);
7416 zdde
= avl_find(t
, &zdde_search
, &where
);
7419 zdde
= umem_zalloc(sizeof (*zdde
), UMEM_NOFAIL
);
7420 zdde
->zdde_key
= zdde_search
.zdde_key
;
7421 avl_insert(t
, zdde
, where
);
7424 zdde
->zdde_ref_blocks
+= 1;
7425 zdde
->zdde_ref_lsize
+= BP_GET_LSIZE(bp
);
7426 zdde
->zdde_ref_psize
+= BP_GET_PSIZE(bp
);
7427 zdde
->zdde_ref_dsize
+= bp_get_dsize_sync(spa
, bp
);
7433 dump_simulated_ddt(spa_t
*spa
)
7436 void *cookie
= NULL
;
7437 zdb_ddt_entry_t
*zdde
;
7438 ddt_histogram_t ddh_total
= {{{0}}};
7439 ddt_stat_t dds_total
= {0};
7441 avl_create(&t
, ddt_key_compare
,
7442 sizeof (zdb_ddt_entry_t
), offsetof(zdb_ddt_entry_t
, zdde_node
));
7444 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
7446 (void) traverse_pool(spa
, 0, TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
|
7447 TRAVERSE_NO_DECRYPT
, zdb_ddt_add_cb
, &t
);
7449 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
7451 while ((zdde
= avl_destroy_nodes(&t
, &cookie
)) != NULL
) {
7452 uint64_t refcnt
= zdde
->zdde_ref_blocks
;
7453 ASSERT(refcnt
!= 0);
7455 ddt_stat_t
*dds
= &ddh_total
.ddh_stat
[highbit64(refcnt
) - 1];
7457 dds
->dds_blocks
+= zdde
->zdde_ref_blocks
/ refcnt
;
7458 dds
->dds_lsize
+= zdde
->zdde_ref_lsize
/ refcnt
;
7459 dds
->dds_psize
+= zdde
->zdde_ref_psize
/ refcnt
;
7460 dds
->dds_dsize
+= zdde
->zdde_ref_dsize
/ refcnt
;
7462 dds
->dds_ref_blocks
+= zdde
->zdde_ref_blocks
;
7463 dds
->dds_ref_lsize
+= zdde
->zdde_ref_lsize
;
7464 dds
->dds_ref_psize
+= zdde
->zdde_ref_psize
;
7465 dds
->dds_ref_dsize
+= zdde
->zdde_ref_dsize
;
7467 umem_free(zdde
, sizeof (*zdde
));
7472 ddt_histogram_total(&dds_total
, &ddh_total
);
7474 (void) printf("Simulated DDT histogram:\n");
7476 zpool_dump_ddt(&dds_total
, &ddh_total
);
7478 dump_dedup_ratio(&dds_total
);
7482 verify_device_removal_feature_counts(spa_t
*spa
)
7484 uint64_t dr_feature_refcount
= 0;
7485 uint64_t oc_feature_refcount
= 0;
7486 uint64_t indirect_vdev_count
= 0;
7487 uint64_t precise_vdev_count
= 0;
7488 uint64_t obsolete_counts_object_count
= 0;
7489 uint64_t obsolete_sm_count
= 0;
7490 uint64_t obsolete_counts_count
= 0;
7491 uint64_t scip_count
= 0;
7492 uint64_t obsolete_bpobj_count
= 0;
7495 spa_condensing_indirect_phys_t
*scip
=
7496 &spa
->spa_condensing_indirect_phys
;
7497 if (scip
->scip_next_mapping_object
!= 0) {
7498 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[scip
->scip_vdev
];
7499 ASSERT(scip
->scip_prev_obsolete_sm_object
!= 0);
7500 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7502 (void) printf("Condensing indirect vdev %llu: new mapping "
7503 "object %llu, prev obsolete sm %llu\n",
7504 (u_longlong_t
)scip
->scip_vdev
,
7505 (u_longlong_t
)scip
->scip_next_mapping_object
,
7506 (u_longlong_t
)scip
->scip_prev_obsolete_sm_object
);
7507 if (scip
->scip_prev_obsolete_sm_object
!= 0) {
7508 space_map_t
*prev_obsolete_sm
= NULL
;
7509 VERIFY0(space_map_open(&prev_obsolete_sm
,
7510 spa
->spa_meta_objset
,
7511 scip
->scip_prev_obsolete_sm_object
,
7512 0, vd
->vdev_asize
, 0));
7513 dump_spacemap(spa
->spa_meta_objset
, prev_obsolete_sm
);
7514 (void) printf("\n");
7515 space_map_close(prev_obsolete_sm
);
7521 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
7522 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
7523 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
7525 if (vic
->vic_mapping_object
!= 0) {
7526 ASSERT(vd
->vdev_ops
== &vdev_indirect_ops
||
7528 indirect_vdev_count
++;
7530 if (vd
->vdev_indirect_mapping
->vim_havecounts
) {
7531 obsolete_counts_count
++;
7535 boolean_t are_precise
;
7536 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
7538 ASSERT(vic
->vic_mapping_object
!= 0);
7539 precise_vdev_count
++;
7542 uint64_t obsolete_sm_object
;
7543 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
7544 if (obsolete_sm_object
!= 0) {
7545 ASSERT(vic
->vic_mapping_object
!= 0);
7546 obsolete_sm_count
++;
7550 (void) feature_get_refcount(spa
,
7551 &spa_feature_table
[SPA_FEATURE_DEVICE_REMOVAL
],
7552 &dr_feature_refcount
);
7553 (void) feature_get_refcount(spa
,
7554 &spa_feature_table
[SPA_FEATURE_OBSOLETE_COUNTS
],
7555 &oc_feature_refcount
);
7557 if (dr_feature_refcount
!= indirect_vdev_count
) {
7559 (void) printf("Number of indirect vdevs (%llu) " \
7560 "does not match feature count (%llu)\n",
7561 (u_longlong_t
)indirect_vdev_count
,
7562 (u_longlong_t
)dr_feature_refcount
);
7564 (void) printf("Verified device_removal feature refcount " \
7565 "of %llu is correct\n",
7566 (u_longlong_t
)dr_feature_refcount
);
7569 if (zap_contains(spa_meta_objset(spa
), DMU_POOL_DIRECTORY_OBJECT
,
7570 DMU_POOL_OBSOLETE_BPOBJ
) == 0) {
7571 obsolete_bpobj_count
++;
7575 obsolete_counts_object_count
= precise_vdev_count
;
7576 obsolete_counts_object_count
+= obsolete_sm_count
;
7577 obsolete_counts_object_count
+= obsolete_counts_count
;
7578 obsolete_counts_object_count
+= scip_count
;
7579 obsolete_counts_object_count
+= obsolete_bpobj_count
;
7580 obsolete_counts_object_count
+= remap_deadlist_count
;
7582 if (oc_feature_refcount
!= obsolete_counts_object_count
) {
7584 (void) printf("Number of obsolete counts objects (%llu) " \
7585 "does not match feature count (%llu)\n",
7586 (u_longlong_t
)obsolete_counts_object_count
,
7587 (u_longlong_t
)oc_feature_refcount
);
7588 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7589 "ob:%llu rd:%llu\n",
7590 (u_longlong_t
)precise_vdev_count
,
7591 (u_longlong_t
)obsolete_sm_count
,
7592 (u_longlong_t
)obsolete_counts_count
,
7593 (u_longlong_t
)scip_count
,
7594 (u_longlong_t
)obsolete_bpobj_count
,
7595 (u_longlong_t
)remap_deadlist_count
);
7597 (void) printf("Verified indirect_refcount feature refcount " \
7598 "of %llu is correct\n",
7599 (u_longlong_t
)oc_feature_refcount
);
7605 zdb_set_skip_mmp(char *target
)
7610 * Disable the activity check to allow examination of
7613 mutex_enter(&spa_namespace_lock
);
7614 if ((spa
= spa_lookup(target
)) != NULL
) {
7615 spa
->spa_import_flags
|= ZFS_IMPORT_SKIP_MMP
;
7617 mutex_exit(&spa_namespace_lock
);
7620 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7622 * Import the checkpointed state of the pool specified by the target
7623 * parameter as readonly. The function also accepts a pool config
7624 * as an optional parameter, else it attempts to infer the config by
7625 * the name of the target pool.
7627 * Note that the checkpointed state's pool name will be the name of
7628 * the original pool with the above suffix appended to it. In addition,
7629 * if the target is not a pool name (e.g. a path to a dataset) then
7630 * the new_path parameter is populated with the updated path to
7631 * reflect the fact that we are looking into the checkpointed state.
7633 * The function returns a newly-allocated copy of the name of the
7634 * pool containing the checkpointed state. When this copy is no
7635 * longer needed it should be freed with free(3C). Same thing
7636 * applies to the new_path parameter if allocated.
7639 import_checkpointed_state(char *target
, nvlist_t
*cfg
, char **new_path
)
7642 char *poolname
, *bogus_name
= NULL
;
7643 boolean_t freecfg
= B_FALSE
;
7645 /* If the target is not a pool, the extract the pool name */
7646 char *path_start
= strchr(target
, '/');
7647 if (path_start
!= NULL
) {
7648 size_t poolname_len
= path_start
- target
;
7649 poolname
= strndup(target
, poolname_len
);
7655 zdb_set_skip_mmp(poolname
);
7656 error
= spa_get_stats(poolname
, &cfg
, NULL
, 0);
7658 fatal("Tried to read config of pool \"%s\" but "
7659 "spa_get_stats() failed with error %d\n",
7665 if (asprintf(&bogus_name
, "%s%s", poolname
, BOGUS_SUFFIX
) == -1) {
7666 if (target
!= poolname
)
7670 fnvlist_add_string(cfg
, ZPOOL_CONFIG_POOL_NAME
, bogus_name
);
7672 error
= spa_import(bogus_name
, cfg
, NULL
,
7673 ZFS_IMPORT_MISSING_LOG
| ZFS_IMPORT_CHECKPOINT
|
7674 ZFS_IMPORT_SKIP_MMP
);
7678 fatal("Tried to import pool \"%s\" but spa_import() failed "
7679 "with error %d\n", bogus_name
, error
);
7682 if (new_path
!= NULL
&& path_start
!= NULL
) {
7683 if (asprintf(new_path
, "%s%s", bogus_name
, path_start
) == -1) {
7685 if (path_start
!= NULL
)
7691 if (target
!= poolname
)
7694 return (bogus_name
);
7697 typedef struct verify_checkpoint_sm_entry_cb_arg
{
7700 /* the following fields are only used for printing progress */
7701 uint64_t vcsec_entryid
;
7702 uint64_t vcsec_num_entries
;
7703 } verify_checkpoint_sm_entry_cb_arg_t
;
7705 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7708 verify_checkpoint_sm_entry_cb(space_map_entry_t
*sme
, void *arg
)
7710 verify_checkpoint_sm_entry_cb_arg_t
*vcsec
= arg
;
7711 vdev_t
*vd
= vcsec
->vcsec_vd
;
7712 metaslab_t
*ms
= vd
->vdev_ms
[sme
->sme_offset
>> vd
->vdev_ms_shift
];
7713 uint64_t end
= sme
->sme_offset
+ sme
->sme_run
;
7715 ASSERT(sme
->sme_type
== SM_FREE
);
7717 if ((vcsec
->vcsec_entryid
% ENTRIES_PER_PROGRESS_UPDATE
) == 0) {
7718 (void) fprintf(stderr
,
7719 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7720 (longlong_t
)vd
->vdev_id
,
7721 (longlong_t
)vcsec
->vcsec_entryid
,
7722 (longlong_t
)vcsec
->vcsec_num_entries
);
7724 vcsec
->vcsec_entryid
++;
7727 * See comment in checkpoint_sm_exclude_entry_cb()
7729 VERIFY3U(sme
->sme_offset
, >=, ms
->ms_start
);
7730 VERIFY3U(end
, <=, ms
->ms_start
+ ms
->ms_size
);
7733 * The entries in the vdev_checkpoint_sm should be marked as
7734 * allocated in the checkpointed state of the pool, therefore
7735 * their respective ms_allocateable trees should not contain them.
7737 mutex_enter(&ms
->ms_lock
);
7738 range_tree_verify_not_present(ms
->ms_allocatable
,
7739 sme
->sme_offset
, sme
->sme_run
);
7740 mutex_exit(&ms
->ms_lock
);
7746 * Verify that all segments in the vdev_checkpoint_sm are allocated
7747 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7750 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7751 * each vdev in the current state of the pool to the metaslab space maps
7752 * (ms_sm) of the checkpointed state of the pool.
7754 * Note that the function changes the state of the ms_allocatable
7755 * trees of the current spa_t. The entries of these ms_allocatable
7756 * trees are cleared out and then repopulated from with the free
7757 * entries of their respective ms_sm space maps.
7760 verify_checkpoint_vdev_spacemaps(spa_t
*checkpoint
, spa_t
*current
)
7762 vdev_t
*ckpoint_rvd
= checkpoint
->spa_root_vdev
;
7763 vdev_t
*current_rvd
= current
->spa_root_vdev
;
7765 load_concrete_ms_allocatable_trees(checkpoint
, SM_FREE
);
7767 for (uint64_t c
= 0; c
< ckpoint_rvd
->vdev_children
; c
++) {
7768 vdev_t
*ckpoint_vd
= ckpoint_rvd
->vdev_child
[c
];
7769 vdev_t
*current_vd
= current_rvd
->vdev_child
[c
];
7771 space_map_t
*checkpoint_sm
= NULL
;
7772 uint64_t checkpoint_sm_obj
;
7774 if (ckpoint_vd
->vdev_ops
== &vdev_indirect_ops
) {
7776 * Since we don't allow device removal in a pool
7777 * that has a checkpoint, we expect that all removed
7778 * vdevs were removed from the pool before the
7781 ASSERT3P(current_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7786 * If the checkpoint space map doesn't exist, then nothing
7787 * here is checkpointed so there's nothing to verify.
7789 if (current_vd
->vdev_top_zap
== 0 ||
7790 zap_contains(spa_meta_objset(current
),
7791 current_vd
->vdev_top_zap
,
7792 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
7795 VERIFY0(zap_lookup(spa_meta_objset(current
),
7796 current_vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
7797 sizeof (uint64_t), 1, &checkpoint_sm_obj
));
7799 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(current
),
7800 checkpoint_sm_obj
, 0, current_vd
->vdev_asize
,
7801 current_vd
->vdev_ashift
));
7803 verify_checkpoint_sm_entry_cb_arg_t vcsec
;
7804 vcsec
.vcsec_vd
= ckpoint_vd
;
7805 vcsec
.vcsec_entryid
= 0;
7806 vcsec
.vcsec_num_entries
=
7807 space_map_length(checkpoint_sm
) / sizeof (uint64_t);
7808 VERIFY0(space_map_iterate(checkpoint_sm
,
7809 space_map_length(checkpoint_sm
),
7810 verify_checkpoint_sm_entry_cb
, &vcsec
));
7811 if (dump_opt
['m'] > 3)
7812 dump_spacemap(current
->spa_meta_objset
, checkpoint_sm
);
7813 space_map_close(checkpoint_sm
);
7817 * If we've added vdevs since we took the checkpoint, ensure
7818 * that their checkpoint space maps are empty.
7820 if (ckpoint_rvd
->vdev_children
< current_rvd
->vdev_children
) {
7821 for (uint64_t c
= ckpoint_rvd
->vdev_children
;
7822 c
< current_rvd
->vdev_children
; c
++) {
7823 vdev_t
*current_vd
= current_rvd
->vdev_child
[c
];
7824 VERIFY3P(current_vd
->vdev_checkpoint_sm
, ==, NULL
);
7828 /* for cleaner progress output */
7829 (void) fprintf(stderr
, "\n");
7833 * Verifies that all space that's allocated in the checkpoint is
7834 * still allocated in the current version, by checking that everything
7835 * in checkpoint's ms_allocatable (which is actually allocated, not
7836 * allocatable/free) is not present in current's ms_allocatable.
7838 * Note that the function changes the state of the ms_allocatable
7839 * trees of both spas when called. The entries of all ms_allocatable
7840 * trees are cleared out and then repopulated from their respective
7841 * ms_sm space maps. In the checkpointed state we load the allocated
7842 * entries, and in the current state we load the free entries.
7845 verify_checkpoint_ms_spacemaps(spa_t
*checkpoint
, spa_t
*current
)
7847 vdev_t
*ckpoint_rvd
= checkpoint
->spa_root_vdev
;
7848 vdev_t
*current_rvd
= current
->spa_root_vdev
;
7850 load_concrete_ms_allocatable_trees(checkpoint
, SM_ALLOC
);
7851 load_concrete_ms_allocatable_trees(current
, SM_FREE
);
7853 for (uint64_t i
= 0; i
< ckpoint_rvd
->vdev_children
; i
++) {
7854 vdev_t
*ckpoint_vd
= ckpoint_rvd
->vdev_child
[i
];
7855 vdev_t
*current_vd
= current_rvd
->vdev_child
[i
];
7857 if (ckpoint_vd
->vdev_ops
== &vdev_indirect_ops
) {
7859 * See comment in verify_checkpoint_vdev_spacemaps()
7861 ASSERT3P(current_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7865 for (uint64_t m
= 0; m
< ckpoint_vd
->vdev_ms_count
; m
++) {
7866 metaslab_t
*ckpoint_msp
= ckpoint_vd
->vdev_ms
[m
];
7867 metaslab_t
*current_msp
= current_vd
->vdev_ms
[m
];
7869 (void) fprintf(stderr
,
7870 "\rverifying vdev %llu of %llu, "
7871 "metaslab %llu of %llu ...",
7872 (longlong_t
)current_vd
->vdev_id
,
7873 (longlong_t
)current_rvd
->vdev_children
,
7874 (longlong_t
)current_vd
->vdev_ms
[m
]->ms_id
,
7875 (longlong_t
)current_vd
->vdev_ms_count
);
7878 * We walk through the ms_allocatable trees that
7879 * are loaded with the allocated blocks from the
7880 * ms_sm spacemaps of the checkpoint. For each
7881 * one of these ranges we ensure that none of them
7882 * exists in the ms_allocatable trees of the
7883 * current state which are loaded with the ranges
7884 * that are currently free.
7886 * This way we ensure that none of the blocks that
7887 * are part of the checkpoint were freed by mistake.
7889 range_tree_walk(ckpoint_msp
->ms_allocatable
,
7890 (range_tree_func_t
*)range_tree_verify_not_present
,
7891 current_msp
->ms_allocatable
);
7895 /* for cleaner progress output */
7896 (void) fprintf(stderr
, "\n");
7900 verify_checkpoint_blocks(spa_t
*spa
)
7902 ASSERT(!dump_opt
['L']);
7904 spa_t
*checkpoint_spa
;
7905 char *checkpoint_pool
;
7909 * We import the checkpointed state of the pool (under a different
7910 * name) so we can do verification on it against the current state
7913 checkpoint_pool
= import_checkpointed_state(spa
->spa_name
, NULL
,
7915 ASSERT(strcmp(spa
->spa_name
, checkpoint_pool
) != 0);
7917 error
= spa_open(checkpoint_pool
, &checkpoint_spa
, FTAG
);
7919 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7920 "error %d\n", checkpoint_pool
, error
);
7924 * Ensure that ranges in the checkpoint space maps of each vdev
7925 * are allocated according to the checkpointed state's metaslab
7928 verify_checkpoint_vdev_spacemaps(checkpoint_spa
, spa
);
7931 * Ensure that allocated ranges in the checkpoint's metaslab
7932 * space maps remain allocated in the metaslab space maps of
7933 * the current state.
7935 verify_checkpoint_ms_spacemaps(checkpoint_spa
, spa
);
7938 * Once we are done, we get rid of the checkpointed state.
7940 spa_close(checkpoint_spa
, FTAG
);
7941 free(checkpoint_pool
);
7945 dump_leftover_checkpoint_blocks(spa_t
*spa
)
7947 vdev_t
*rvd
= spa
->spa_root_vdev
;
7949 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
7950 vdev_t
*vd
= rvd
->vdev_child
[i
];
7952 space_map_t
*checkpoint_sm
= NULL
;
7953 uint64_t checkpoint_sm_obj
;
7955 if (vd
->vdev_top_zap
== 0)
7958 if (zap_contains(spa_meta_objset(spa
), vd
->vdev_top_zap
,
7959 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
7962 VERIFY0(zap_lookup(spa_meta_objset(spa
), vd
->vdev_top_zap
,
7963 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
7964 sizeof (uint64_t), 1, &checkpoint_sm_obj
));
7966 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(spa
),
7967 checkpoint_sm_obj
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
7968 dump_spacemap(spa
->spa_meta_objset
, checkpoint_sm
);
7969 space_map_close(checkpoint_sm
);
7974 verify_checkpoint(spa_t
*spa
)
7976 uberblock_t checkpoint
;
7979 if (!spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
))
7982 error
= zap_lookup(spa
->spa_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
7983 DMU_POOL_ZPOOL_CHECKPOINT
, sizeof (uint64_t),
7984 sizeof (uberblock_t
) / sizeof (uint64_t), &checkpoint
);
7986 if (error
== ENOENT
&& !dump_opt
['L']) {
7988 * If the feature is active but the uberblock is missing
7989 * then we must be in the middle of discarding the
7992 (void) printf("\nPartially discarded checkpoint "
7994 if (dump_opt
['m'] > 3)
7995 dump_leftover_checkpoint_blocks(spa
);
7997 } else if (error
!= 0) {
7998 (void) printf("lookup error %d when looking for "
7999 "checkpointed uberblock in MOS\n", error
);
8002 dump_uberblock(&checkpoint
, "\nCheckpointed uberblock found:\n", "\n");
8004 if (checkpoint
.ub_checkpoint_txg
== 0) {
8005 (void) printf("\nub_checkpoint_txg not set in checkpointed "
8010 if (error
== 0 && !dump_opt
['L'])
8011 verify_checkpoint_blocks(spa
);
8017 mos_leaks_cb(void *arg
, uint64_t start
, uint64_t size
)
8020 for (uint64_t i
= start
; i
< size
; i
++) {
8021 (void) printf("MOS object %llu referenced but not allocated\n",
8027 mos_obj_refd(uint64_t obj
)
8029 if (obj
!= 0 && mos_refd_objs
!= NULL
)
8030 range_tree_add(mos_refd_objs
, obj
, 1);
8034 * Call on a MOS object that may already have been referenced.
8037 mos_obj_refd_multiple(uint64_t obj
)
8039 if (obj
!= 0 && mos_refd_objs
!= NULL
&&
8040 !range_tree_contains(mos_refd_objs
, obj
, 1))
8041 range_tree_add(mos_refd_objs
, obj
, 1);
8045 mos_leak_vdev_top_zap(vdev_t
*vd
)
8047 uint64_t ms_flush_data_obj
;
8048 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
),
8049 vd
->vdev_top_zap
, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
,
8050 sizeof (ms_flush_data_obj
), 1, &ms_flush_data_obj
);
8051 if (error
== ENOENT
)
8055 mos_obj_refd(ms_flush_data_obj
);
8059 mos_leak_vdev(vdev_t
*vd
)
8061 mos_obj_refd(vd
->vdev_dtl_object
);
8062 mos_obj_refd(vd
->vdev_ms_array
);
8063 mos_obj_refd(vd
->vdev_indirect_config
.vic_births_object
);
8064 mos_obj_refd(vd
->vdev_indirect_config
.vic_mapping_object
);
8065 mos_obj_refd(vd
->vdev_leaf_zap
);
8066 if (vd
->vdev_checkpoint_sm
!= NULL
)
8067 mos_obj_refd(vd
->vdev_checkpoint_sm
->sm_object
);
8068 if (vd
->vdev_indirect_mapping
!= NULL
) {
8069 mos_obj_refd(vd
->vdev_indirect_mapping
->
8070 vim_phys
->vimp_counts_object
);
8072 if (vd
->vdev_obsolete_sm
!= NULL
)
8073 mos_obj_refd(vd
->vdev_obsolete_sm
->sm_object
);
8075 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
8076 metaslab_t
*ms
= vd
->vdev_ms
[m
];
8077 mos_obj_refd(space_map_object(ms
->ms_sm
));
8080 if (vd
->vdev_root_zap
!= 0)
8081 mos_obj_refd(vd
->vdev_root_zap
);
8083 if (vd
->vdev_top_zap
!= 0) {
8084 mos_obj_refd(vd
->vdev_top_zap
);
8085 mos_leak_vdev_top_zap(vd
);
8088 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++) {
8089 mos_leak_vdev(vd
->vdev_child
[c
]);
8094 mos_leak_log_spacemaps(spa_t
*spa
)
8096 uint64_t spacemap_zap
;
8097 int error
= zap_lookup(spa_meta_objset(spa
),
8098 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_LOG_SPACEMAP_ZAP
,
8099 sizeof (spacemap_zap
), 1, &spacemap_zap
);
8100 if (error
== ENOENT
)
8104 mos_obj_refd(spacemap_zap
);
8105 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
8106 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
))
8107 mos_obj_refd(sls
->sls_sm_obj
);
8111 errorlog_count_refd(objset_t
*mos
, uint64_t errlog
)
8114 zap_attribute_t
*za
= zap_attribute_alloc();
8115 for (zap_cursor_init(&zc
, mos
, errlog
);
8116 zap_cursor_retrieve(&zc
, za
) == 0;
8117 zap_cursor_advance(&zc
)) {
8118 mos_obj_refd(za
->za_first_integer
);
8120 zap_cursor_fini(&zc
);
8121 zap_attribute_free(za
);
8125 dump_mos_leaks(spa_t
*spa
)
8128 objset_t
*mos
= spa
->spa_meta_objset
;
8129 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
8131 /* Visit and mark all referenced objects in the MOS */
8133 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT
);
8134 mos_obj_refd(spa
->spa_pool_props_object
);
8135 mos_obj_refd(spa
->spa_config_object
);
8136 mos_obj_refd(spa
->spa_ddt_stat_object
);
8137 mos_obj_refd(spa
->spa_feat_desc_obj
);
8138 mos_obj_refd(spa
->spa_feat_enabled_txg_obj
);
8139 mos_obj_refd(spa
->spa_feat_for_read_obj
);
8140 mos_obj_refd(spa
->spa_feat_for_write_obj
);
8141 mos_obj_refd(spa
->spa_history
);
8142 mos_obj_refd(spa
->spa_errlog_last
);
8143 mos_obj_refd(spa
->spa_errlog_scrub
);
8145 if (spa_feature_is_enabled(spa
, SPA_FEATURE_HEAD_ERRLOG
)) {
8146 errorlog_count_refd(mos
, spa
->spa_errlog_last
);
8147 errorlog_count_refd(mos
, spa
->spa_errlog_scrub
);
8150 mos_obj_refd(spa
->spa_all_vdev_zaps
);
8151 mos_obj_refd(spa
->spa_dsl_pool
->dp_bptree_obj
);
8152 mos_obj_refd(spa
->spa_dsl_pool
->dp_tmp_userrefs_obj
);
8153 mos_obj_refd(spa
->spa_dsl_pool
->dp_scan
->scn_phys
.scn_queue_obj
);
8154 bpobj_count_refd(&spa
->spa_deferred_bpobj
);
8155 mos_obj_refd(dp
->dp_empty_bpobj
);
8156 bpobj_count_refd(&dp
->dp_obsolete_bpobj
);
8157 bpobj_count_refd(&dp
->dp_free_bpobj
);
8158 mos_obj_refd(spa
->spa_l2cache
.sav_object
);
8159 mos_obj_refd(spa
->spa_spares
.sav_object
);
8161 if (spa
->spa_syncing_log_sm
!= NULL
)
8162 mos_obj_refd(spa
->spa_syncing_log_sm
->sm_object
);
8163 mos_leak_log_spacemaps(spa
);
8165 mos_obj_refd(spa
->spa_condensing_indirect_phys
.
8166 scip_next_mapping_object
);
8167 mos_obj_refd(spa
->spa_condensing_indirect_phys
.
8168 scip_prev_obsolete_sm_object
);
8169 if (spa
->spa_condensing_indirect_phys
.scip_next_mapping_object
!= 0) {
8170 vdev_indirect_mapping_t
*vim
=
8171 vdev_indirect_mapping_open(mos
,
8172 spa
->spa_condensing_indirect_phys
.scip_next_mapping_object
);
8173 mos_obj_refd(vim
->vim_phys
->vimp_counts_object
);
8174 vdev_indirect_mapping_close(vim
);
8176 deleted_livelists_dump_mos(spa
);
8178 if (dp
->dp_origin_snap
!= NULL
) {
8181 dsl_pool_config_enter(dp
, FTAG
);
8182 VERIFY0(dsl_dataset_hold_obj(dp
,
8183 dsl_dataset_phys(dp
->dp_origin_snap
)->ds_next_snap_obj
,
8185 count_ds_mos_objects(ds
);
8186 dump_blkptr_list(&ds
->ds_deadlist
, "Deadlist");
8187 dsl_dataset_rele(ds
, FTAG
);
8188 dsl_pool_config_exit(dp
, FTAG
);
8190 count_ds_mos_objects(dp
->dp_origin_snap
);
8191 dump_blkptr_list(&dp
->dp_origin_snap
->ds_deadlist
, "Deadlist");
8193 count_dir_mos_objects(dp
->dp_mos_dir
);
8194 if (dp
->dp_free_dir
!= NULL
)
8195 count_dir_mos_objects(dp
->dp_free_dir
);
8196 if (dp
->dp_leak_dir
!= NULL
)
8197 count_dir_mos_objects(dp
->dp_leak_dir
);
8199 mos_leak_vdev(spa
->spa_root_vdev
);
8201 for (uint64_t c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
8202 ddt_t
*ddt
= spa
->spa_ddt
[c
];
8203 if (!ddt
|| ddt
->ddt_version
== DDT_VERSION_UNCONFIGURED
)
8206 /* DDT store objects */
8207 for (ddt_type_t type
= 0; type
< DDT_TYPES
; type
++) {
8208 for (ddt_class_t
class = 0; class < DDT_CLASSES
;
8210 mos_obj_refd(ddt
->ddt_object
[type
][class]);
8215 if (ddt
->ddt_version
== DDT_VERSION_FDT
)
8216 mos_obj_refd(ddt
->ddt_dir_object
);
8218 /* FDT log objects */
8219 if (ddt
->ddt_flags
& DDT_FLAG_LOG
) {
8220 mos_obj_refd(ddt
->ddt_log
[0].ddl_object
);
8221 mos_obj_refd(ddt
->ddt_log
[1].ddl_object
);
8225 for (uint64_t vdevid
= 0; vdevid
< spa
->spa_brt_nvdevs
; vdevid
++) {
8226 brt_vdev_t
*brtvd
= spa
->spa_brt_vdevs
[vdevid
];
8227 if (brtvd
->bv_initiated
) {
8228 mos_obj_refd(brtvd
->bv_mos_brtvdev
);
8229 mos_obj_refd(brtvd
->bv_mos_entries
);
8234 * Visit all allocated objects and make sure they are referenced.
8236 uint64_t object
= 0;
8237 while (dmu_object_next(mos
, &object
, B_FALSE
, 0) == 0) {
8238 if (range_tree_contains(mos_refd_objs
, object
, 1)) {
8239 range_tree_remove(mos_refd_objs
, object
, 1);
8241 dmu_object_info_t doi
;
8243 VERIFY0(dmu_object_info(mos
, object
, &doi
));
8244 if (doi
.doi_type
& DMU_OT_NEWTYPE
) {
8245 dmu_object_byteswap_t bswap
=
8246 DMU_OT_BYTESWAP(doi
.doi_type
);
8247 name
= dmu_ot_byteswap
[bswap
].ob_name
;
8249 name
= dmu_ot
[doi
.doi_type
].ot_name
;
8252 (void) printf("MOS object %llu (%s) leaked\n",
8253 (u_longlong_t
)object
, name
);
8257 (void) range_tree_walk(mos_refd_objs
, mos_leaks_cb
, NULL
);
8258 if (!range_tree_is_empty(mos_refd_objs
))
8260 range_tree_vacate(mos_refd_objs
, NULL
, NULL
);
8261 range_tree_destroy(mos_refd_objs
);
8265 typedef struct log_sm_obsolete_stats_arg
{
8266 uint64_t lsos_current_txg
;
8268 uint64_t lsos_total_entries
;
8269 uint64_t lsos_valid_entries
;
8271 uint64_t lsos_sm_entries
;
8272 uint64_t lsos_valid_sm_entries
;
8273 } log_sm_obsolete_stats_arg_t
;
8276 log_spacemap_obsolete_stats_cb(spa_t
*spa
, space_map_entry_t
*sme
,
8277 uint64_t txg
, void *arg
)
8279 log_sm_obsolete_stats_arg_t
*lsos
= arg
;
8281 uint64_t offset
= sme
->sme_offset
;
8282 uint64_t vdev_id
= sme
->sme_vdev
;
8284 if (lsos
->lsos_current_txg
== 0) {
8285 /* this is the first log */
8286 lsos
->lsos_current_txg
= txg
;
8287 } else if (lsos
->lsos_current_txg
< txg
) {
8288 /* we just changed log - print stats and reset */
8289 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8290 (u_longlong_t
)lsos
->lsos_valid_sm_entries
,
8291 (u_longlong_t
)lsos
->lsos_sm_entries
,
8292 (u_longlong_t
)lsos
->lsos_current_txg
);
8293 lsos
->lsos_valid_sm_entries
= 0;
8294 lsos
->lsos_sm_entries
= 0;
8295 lsos
->lsos_current_txg
= txg
;
8297 ASSERT3U(lsos
->lsos_current_txg
, ==, txg
);
8299 lsos
->lsos_sm_entries
++;
8300 lsos
->lsos_total_entries
++;
8302 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
8303 if (!vdev_is_concrete(vd
))
8306 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
8307 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
8309 if (txg
< metaslab_unflushed_txg(ms
))
8311 lsos
->lsos_valid_sm_entries
++;
8312 lsos
->lsos_valid_entries
++;
8317 dump_log_spacemap_obsolete_stats(spa_t
*spa
)
8319 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
8322 log_sm_obsolete_stats_arg_t lsos
= {0};
8324 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8326 iterate_through_spacemap_logs(spa
,
8327 log_spacemap_obsolete_stats_cb
, &lsos
);
8329 /* print stats for latest log */
8330 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8331 (u_longlong_t
)lsos
.lsos_valid_sm_entries
,
8332 (u_longlong_t
)lsos
.lsos_sm_entries
,
8333 (u_longlong_t
)lsos
.lsos_current_txg
);
8335 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8336 (u_longlong_t
)lsos
.lsos_valid_entries
,
8337 (u_longlong_t
)lsos
.lsos_total_entries
);
8341 dump_zpool(spa_t
*spa
)
8343 dsl_pool_t
*dp
= spa_get_dsl(spa
);
8346 if (dump_opt
['y']) {
8347 livelist_metaslab_validate(spa
);
8350 if (dump_opt
['S']) {
8351 dump_simulated_ddt(spa
);
8355 if (!dump_opt
['e'] && dump_opt
['C'] > 1) {
8356 (void) printf("\nCached configuration:\n");
8357 dump_nvlist(spa
->spa_config
, 8);
8364 dump_uberblock(&spa
->spa_uberblock
, "\nUberblock:\n", "\n");
8372 if (dump_opt
['d'] > 2 || dump_opt
['m'])
8373 dump_metaslabs(spa
);
8375 dump_metaslab_groups(spa
, dump_opt
['M'] > 1);
8376 if (dump_opt
['d'] > 2 || dump_opt
['m']) {
8377 dump_log_spacemaps(spa
);
8378 dump_log_spacemap_obsolete_stats(spa
);
8381 if (dump_opt
['d'] || dump_opt
['i']) {
8383 mos_refd_objs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0,
8385 dump_objset(dp
->dp_meta_objset
);
8387 if (dump_opt
['d'] >= 3) {
8388 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
8389 dump_full_bpobj(&spa
->spa_deferred_bpobj
,
8390 "Deferred frees", 0);
8391 if (spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
8392 dump_full_bpobj(&dp
->dp_free_bpobj
,
8393 "Pool snapshot frees", 0);
8395 if (bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
8396 ASSERT(spa_feature_is_enabled(spa
,
8397 SPA_FEATURE_DEVICE_REMOVAL
));
8398 dump_full_bpobj(&dp
->dp_obsolete_bpobj
,
8399 "Pool obsolete blocks", 0);
8402 if (spa_feature_is_active(spa
,
8403 SPA_FEATURE_ASYNC_DESTROY
)) {
8404 dump_bptree(spa
->spa_meta_objset
,
8406 "Pool dataset frees");
8408 dump_dtl(spa
->spa_root_vdev
, 0);
8411 for (spa_feature_t f
= 0; f
< SPA_FEATURES
; f
++)
8412 global_feature_count
[f
] = UINT64_MAX
;
8413 global_feature_count
[SPA_FEATURE_REDACTION_BOOKMARKS
] = 0;
8414 global_feature_count
[SPA_FEATURE_REDACTION_LIST_SPILL
] = 0;
8415 global_feature_count
[SPA_FEATURE_BOOKMARK_WRITTEN
] = 0;
8416 global_feature_count
[SPA_FEATURE_LIVELIST
] = 0;
8418 (void) dmu_objset_find(spa_name(spa
), dump_one_objset
,
8419 NULL
, DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
8421 if (rc
== 0 && !dump_opt
['L'])
8422 rc
= dump_mos_leaks(spa
);
8424 for (f
= 0; f
< SPA_FEATURES
; f
++) {
8428 if (!(spa_feature_table
[f
].fi_flags
&
8429 ZFEATURE_FLAG_PER_DATASET
)) {
8430 if (global_feature_count
[f
] == UINT64_MAX
)
8432 if (!spa_feature_is_enabled(spa
, f
)) {
8433 ASSERT0(global_feature_count
[f
]);
8436 arr
= global_feature_count
;
8438 if (!spa_feature_is_enabled(spa
, f
)) {
8439 ASSERT0(dataset_feature_count
[f
]);
8442 arr
= dataset_feature_count
;
8444 if (feature_get_refcount(spa
, &spa_feature_table
[f
],
8445 &refcount
) == ENOTSUP
)
8447 if (arr
[f
] != refcount
) {
8448 (void) printf("%s feature refcount mismatch: "
8449 "%lld consumers != %lld refcount\n",
8450 spa_feature_table
[f
].fi_uname
,
8451 (longlong_t
)arr
[f
], (longlong_t
)refcount
);
8454 (void) printf("Verified %s feature refcount "
8455 "of %llu is correct\n",
8456 spa_feature_table
[f
].fi_uname
,
8457 (longlong_t
)refcount
);
8462 rc
= verify_device_removal_feature_counts(spa
);
8465 if (rc
== 0 && (dump_opt
['b'] || dump_opt
['c']))
8466 rc
= dump_block_stats(spa
);
8469 rc
= verify_spacemap_refcounts(spa
);
8472 show_pool_stats(spa
);
8478 rc
= verify_checkpoint(spa
);
8481 dump_debug_buffer();
8486 #define ZDB_FLAG_CHECKSUM 0x0001
8487 #define ZDB_FLAG_DECOMPRESS 0x0002
8488 #define ZDB_FLAG_BSWAP 0x0004
8489 #define ZDB_FLAG_GBH 0x0008
8490 #define ZDB_FLAG_INDIRECT 0x0010
8491 #define ZDB_FLAG_RAW 0x0020
8492 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8493 #define ZDB_FLAG_VERBOSE 0x0080
8495 static int flagbits
[256];
8496 static char flagbitstr
[16];
8499 zdb_print_blkptr(const blkptr_t
*bp
, int flags
)
8501 char blkbuf
[BP_SPRINTF_LEN
];
8503 if (flags
& ZDB_FLAG_BSWAP
)
8504 byteswap_uint64_array((void *)bp
, sizeof (blkptr_t
));
8506 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
8507 (void) printf("%s\n", blkbuf
);
8511 zdb_dump_indirect(blkptr_t
*bp
, int nbps
, int flags
)
8515 for (i
= 0; i
< nbps
; i
++)
8516 zdb_print_blkptr(&bp
[i
], flags
);
8520 zdb_dump_gbh(void *buf
, int flags
)
8522 zdb_dump_indirect((blkptr_t
*)buf
, SPA_GBH_NBLKPTRS
, flags
);
8526 zdb_dump_block_raw(void *buf
, uint64_t size
, int flags
)
8528 if (flags
& ZDB_FLAG_BSWAP
)
8529 byteswap_uint64_array(buf
, size
);
8530 VERIFY(write(fileno(stdout
), buf
, size
) == size
);
8534 zdb_dump_block(char *label
, void *buf
, uint64_t size
, int flags
)
8536 uint64_t *d
= (uint64_t *)buf
;
8537 unsigned nwords
= size
/ sizeof (uint64_t);
8538 int do_bswap
= !!(flags
& ZDB_FLAG_BSWAP
);
8545 hdr
= " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8547 hdr
= " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8549 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label
, "", hdr
);
8551 #ifdef _ZFS_LITTLE_ENDIAN
8552 /* correct the endianness */
8553 do_bswap
= !do_bswap
;
8555 for (i
= 0; i
< nwords
; i
+= 2) {
8556 (void) printf("%06llx: %016llx %016llx ",
8557 (u_longlong_t
)(i
* sizeof (uint64_t)),
8558 (u_longlong_t
)(do_bswap
? BSWAP_64(d
[i
]) : d
[i
]),
8559 (u_longlong_t
)(do_bswap
? BSWAP_64(d
[i
+ 1]) : d
[i
+ 1]));
8562 for (j
= 0; j
< 2 * sizeof (uint64_t); j
++)
8563 (void) printf("%c", isprint(c
[j
]) ? c
[j
] : '.');
8564 (void) printf("\n");
8569 * There are two acceptable formats:
8570 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8571 * child[.child]* - For example: 0.1.1
8573 * The second form can be used to specify arbitrary vdevs anywhere
8574 * in the hierarchy. For example, in a pool with a mirror of
8575 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8578 zdb_vdev_lookup(vdev_t
*vdev
, const char *path
)
8586 /* First, assume the x.x.x.x format */
8587 i
= strtoul(path
, &s
, 10);
8588 if (s
== path
|| (s
&& *s
!= '.' && *s
!= '\0'))
8590 if (i
>= vdev
->vdev_children
)
8593 vdev
= vdev
->vdev_child
[i
];
8594 if (s
&& *s
== '\0')
8596 return (zdb_vdev_lookup(vdev
, s
+1));
8599 for (i
= 0; i
< vdev
->vdev_children
; i
++) {
8600 vdev_t
*vc
= vdev
->vdev_child
[i
];
8602 if (vc
->vdev_path
== NULL
) {
8603 vc
= zdb_vdev_lookup(vc
, path
);
8610 p
= strrchr(vc
->vdev_path
, '/');
8611 p
= p
? p
+ 1 : vc
->vdev_path
;
8612 q
= &vc
->vdev_path
[strlen(vc
->vdev_path
) - 2];
8614 if (strcmp(vc
->vdev_path
, path
) == 0)
8616 if (strcmp(p
, path
) == 0)
8618 if (strcmp(q
, "s0") == 0 && strncmp(p
, path
, q
- p
) == 0)
8626 name_from_objset_id(spa_t
*spa
, uint64_t objset_id
, char *outstr
)
8630 dsl_pool_config_enter(spa
->spa_dsl_pool
, FTAG
);
8631 int error
= dsl_dataset_hold_obj(spa
->spa_dsl_pool
, objset_id
,
8634 (void) fprintf(stderr
, "failed to hold objset %llu: %s\n",
8635 (u_longlong_t
)objset_id
, strerror(error
));
8636 dsl_pool_config_exit(spa
->spa_dsl_pool
, FTAG
);
8639 dsl_dataset_name(ds
, outstr
);
8640 dsl_dataset_rele(ds
, NULL
);
8641 dsl_pool_config_exit(spa
->spa_dsl_pool
, FTAG
);
8646 zdb_parse_block_sizes(char *sizes
, uint64_t *lsize
, uint64_t *psize
)
8648 char *s0
, *s1
, *tmp
= NULL
;
8653 s0
= strtok_r(sizes
, "/", &tmp
);
8656 s1
= strtok_r(NULL
, "/", &tmp
);
8657 *lsize
= strtoull(s0
, NULL
, 16);
8658 *psize
= s1
? strtoull(s1
, NULL
, 16) : *lsize
;
8659 return (*lsize
>= *psize
&& *psize
> 0);
8662 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8665 try_decompress_block(abd_t
*pabd
, uint64_t lsize
, uint64_t psize
,
8666 int flags
, int cfunc
, void *lbuf
, void *lbuf2
)
8668 if (flags
& ZDB_FLAG_VERBOSE
) {
8669 (void) fprintf(stderr
,
8670 "Trying %05llx -> %05llx (%s)\n",
8671 (u_longlong_t
)psize
,
8672 (u_longlong_t
)lsize
,
8673 zio_compress_table
[cfunc
].ci_name
);
8677 * We set lbuf to all zeros and lbuf2 to all
8678 * ones, then decompress to both buffers and
8679 * compare their contents. This way we can
8680 * know if decompression filled exactly to
8681 * lsize or if it left some bytes unwritten.
8684 memset(lbuf
, 0x00, lsize
);
8685 memset(lbuf2
, 0xff, lsize
);
8688 abd_get_from_buf_struct(&labd
, lbuf
, lsize
);
8689 abd_get_from_buf_struct(&labd2
, lbuf2
, lsize
);
8691 boolean_t ret
= B_FALSE
;
8692 if (zio_decompress_data(cfunc
, pabd
,
8693 &labd
, psize
, lsize
, NULL
) == 0 &&
8694 zio_decompress_data(cfunc
, pabd
,
8695 &labd2
, psize
, lsize
, NULL
) == 0 &&
8696 memcmp(lbuf
, lbuf2
, lsize
) == 0)
8706 zdb_decompress_block(abd_t
*pabd
, void *buf
, void *lbuf
, uint64_t lsize
,
8707 uint64_t psize
, int flags
)
8710 uint64_t orig_lsize
= lsize
;
8711 boolean_t tryzle
= ((getenv("ZDB_NO_ZLE") == NULL
));
8712 boolean_t found
= B_FALSE
;
8714 * We don't know how the data was compressed, so just try
8715 * every decompress function at every inflated blocksize.
8717 void *lbuf2
= umem_alloc(SPA_MAXBLOCKSIZE
, UMEM_NOFAIL
);
8718 int cfuncs
[ZIO_COMPRESS_FUNCTIONS
] = { 0 };
8719 int *cfuncp
= cfuncs
;
8720 uint64_t maxlsize
= SPA_MAXBLOCKSIZE
;
8721 uint64_t mask
= ZIO_COMPRESS_MASK(ON
) | ZIO_COMPRESS_MASK(OFF
) |
8722 ZIO_COMPRESS_MASK(INHERIT
) | ZIO_COMPRESS_MASK(EMPTY
) |
8723 ZIO_COMPRESS_MASK(ZLE
);
8724 *cfuncp
++ = ZIO_COMPRESS_LZ4
;
8725 *cfuncp
++ = ZIO_COMPRESS_LZJB
;
8726 mask
|= ZIO_COMPRESS_MASK(LZ4
) | ZIO_COMPRESS_MASK(LZJB
);
8728 * Every gzip level has the same decompressor, no need to
8729 * run it 9 times per bruteforce attempt.
8731 mask
|= ZIO_COMPRESS_MASK(GZIP_2
) | ZIO_COMPRESS_MASK(GZIP_3
);
8732 mask
|= ZIO_COMPRESS_MASK(GZIP_4
) | ZIO_COMPRESS_MASK(GZIP_5
);
8733 mask
|= ZIO_COMPRESS_MASK(GZIP_6
) | ZIO_COMPRESS_MASK(GZIP_7
);
8734 mask
|= ZIO_COMPRESS_MASK(GZIP_8
) | ZIO_COMPRESS_MASK(GZIP_9
);
8735 for (int c
= 0; c
< ZIO_COMPRESS_FUNCTIONS
; c
++)
8736 if (((1ULL << c
) & mask
) == 0)
8740 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8741 * could take a while and we should let the user know
8742 * we are not stuck. On the other hand, printing progress
8743 * info gets old after a while. User can specify 'v' flag
8744 * to see the progression.
8747 lsize
+= SPA_MINBLOCKSIZE
;
8751 for (; lsize
<= maxlsize
; lsize
+= SPA_MINBLOCKSIZE
) {
8752 for (cfuncp
= cfuncs
; *cfuncp
; cfuncp
++) {
8753 if (try_decompress_block(pabd
, lsize
, psize
, flags
,
8754 *cfuncp
, lbuf
, lbuf2
)) {
8762 if (!found
&& tryzle
) {
8763 for (lsize
= orig_lsize
; lsize
<= maxlsize
;
8764 lsize
+= SPA_MINBLOCKSIZE
) {
8765 if (try_decompress_block(pabd
, lsize
, psize
, flags
,
8766 ZIO_COMPRESS_ZLE
, lbuf
, lbuf2
)) {
8767 *cfuncp
= ZIO_COMPRESS_ZLE
;
8773 umem_free(lbuf2
, SPA_MAXBLOCKSIZE
);
8775 if (*cfuncp
== ZIO_COMPRESS_ZLE
) {
8776 printf("\nZLE decompression was selected. If you "
8777 "suspect the results are wrong,\ntry avoiding ZLE "
8778 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8781 return (lsize
> maxlsize
? -1 : lsize
);
8785 * Read a block from a pool and print it out. The syntax of the
8786 * block descriptor is:
8788 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8790 * pool - The name of the pool you wish to read from
8791 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8792 * offset - offset, in hex, in bytes
8793 * size - Amount of data to read, in hex, in bytes
8794 * flags - A string of characters specifying options
8795 * b: Decode a blkptr at given offset within block
8796 * c: Calculate and display checksums
8797 * d: Decompress data before dumping
8798 * e: Byteswap data before dumping
8799 * g: Display data as a gang block header
8800 * i: Display as an indirect block
8801 * r: Dump raw data to stdout
8806 zdb_read_block(char *thing
, spa_t
*spa
)
8808 blkptr_t blk
, *bp
= &blk
;
8809 dva_t
*dva
= bp
->blk_dva
;
8811 uint64_t offset
= 0, psize
= 0, lsize
= 0, blkptr_offset
= 0;
8816 char *s
, *p
, *dup
, *flagstr
, *sizes
, *tmp
= NULL
;
8817 const char *vdev
, *errmsg
= NULL
;
8819 boolean_t borrowed
= B_FALSE
, found
= B_FALSE
;
8821 dup
= strdup(thing
);
8822 s
= strtok_r(dup
, ":", &tmp
);
8824 s
= strtok_r(NULL
, ":", &tmp
);
8825 offset
= strtoull(s
? s
: "", NULL
, 16);
8826 sizes
= strtok_r(NULL
, ":", &tmp
);
8827 s
= strtok_r(NULL
, ":", &tmp
);
8828 flagstr
= strdup(s
?: "");
8830 if (!zdb_parse_block_sizes(sizes
, &lsize
, &psize
))
8831 errmsg
= "invalid size(s)";
8832 if (!IS_P2ALIGNED(psize
, DEV_BSIZE
) || !IS_P2ALIGNED(lsize
, DEV_BSIZE
))
8833 errmsg
= "size must be a multiple of sector size";
8834 if (!IS_P2ALIGNED(offset
, DEV_BSIZE
))
8835 errmsg
= "offset must be a multiple of sector size";
8837 (void) printf("Invalid block specifier: %s - %s\n",
8843 for (s
= strtok_r(flagstr
, ":", &tmp
);
8845 s
= strtok_r(NULL
, ":", &tmp
)) {
8846 len
= strlen(flagstr
);
8847 for (i
= 0; i
< len
; i
++) {
8848 int bit
= flagbits
[(uchar_t
)flagstr
[i
]];
8851 (void) printf("***Ignoring flag: %c\n",
8852 (uchar_t
)flagstr
[i
]);
8858 p
= &flagstr
[i
+ 1];
8859 if (*p
!= ':' && *p
!= '\0') {
8860 int j
= 0, nextbit
= flagbits
[(uchar_t
)*p
];
8861 char *end
, offstr
[8] = { 0 };
8862 if ((bit
== ZDB_FLAG_PRINT_BLKPTR
) &&
8864 /* look ahead to isolate the offset */
8865 while (nextbit
== 0 &&
8866 strchr(flagbitstr
, *p
) == NULL
) {
8869 if (i
+ j
> strlen(flagstr
))
8872 nextbit
= flagbits
[(uchar_t
)*p
];
8874 blkptr_offset
= strtoull(offstr
, &end
,
8877 } else if (nextbit
== 0) {
8878 (void) printf("***Ignoring flag arg:"
8879 " '%c'\n", (uchar_t
)*p
);
8884 if (blkptr_offset
% sizeof (blkptr_t
)) {
8885 printf("Block pointer offset 0x%llx "
8886 "must be divisible by 0x%x\n",
8887 (longlong_t
)blkptr_offset
, (int)sizeof (blkptr_t
));
8890 if (found
== B_FALSE
&& strlen(flagstr
) > 0) {
8891 printf("Invalid flag arg: '%s'\n", flagstr
);
8895 vd
= zdb_vdev_lookup(spa
->spa_root_vdev
, vdev
);
8897 (void) printf("***Invalid vdev: %s\n", vdev
);
8901 (void) fprintf(stderr
, "Found vdev: %s\n",
8904 (void) fprintf(stderr
, "Found vdev type: %s\n",
8905 vd
->vdev_ops
->vdev_op_type
);
8908 pabd
= abd_alloc_for_io(SPA_MAXBLOCKSIZE
, B_FALSE
);
8909 lbuf
= umem_alloc(SPA_MAXBLOCKSIZE
, UMEM_NOFAIL
);
8913 DVA_SET_VDEV(&dva
[0], vd
->vdev_id
);
8914 DVA_SET_OFFSET(&dva
[0], offset
);
8915 DVA_SET_GANG(&dva
[0], !!(flags
& ZDB_FLAG_GBH
));
8916 DVA_SET_ASIZE(&dva
[0], vdev_psize_to_asize(vd
, psize
));
8918 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
8920 BP_SET_LSIZE(bp
, lsize
);
8921 BP_SET_PSIZE(bp
, psize
);
8922 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
8923 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
8924 BP_SET_TYPE(bp
, DMU_OT_NONE
);
8925 BP_SET_LEVEL(bp
, 0);
8926 BP_SET_DEDUP(bp
, 0);
8927 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
8929 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
8930 zio
= zio_root(spa
, NULL
, NULL
, 0);
8932 if (vd
== vd
->vdev_top
) {
8934 * Treat this as a normal block read.
8936 zio_nowait(zio_read(zio
, spa
, bp
, pabd
, psize
, NULL
, NULL
,
8937 ZIO_PRIORITY_SYNC_READ
,
8938 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
, NULL
));
8941 * Treat this as a vdev child I/O.
8943 zio_nowait(zio_vdev_child_io(zio
, bp
, vd
, offset
, pabd
,
8944 psize
, ZIO_TYPE_READ
, ZIO_PRIORITY_SYNC_READ
,
8945 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
8946 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
| ZIO_FLAG_OPTIONAL
,
8950 error
= zio_wait(zio
);
8951 spa_config_exit(spa
, SCL_STATE
, FTAG
);
8954 (void) printf("Read of %s failed, error: %d\n", thing
, error
);
8958 uint64_t orig_lsize
= lsize
;
8960 if (flags
& ZDB_FLAG_DECOMPRESS
) {
8961 lsize
= zdb_decompress_block(pabd
, buf
, lbuf
,
8962 lsize
, psize
, flags
);
8964 (void) printf("Decompress of %s failed\n", thing
);
8968 buf
= abd_borrow_buf_copy(pabd
, lsize
);
8972 * Try to detect invalid block pointer. If invalid, try
8975 if ((flags
& ZDB_FLAG_PRINT_BLKPTR
|| flags
& ZDB_FLAG_INDIRECT
) &&
8976 !(flags
& ZDB_FLAG_DECOMPRESS
)) {
8977 const blkptr_t
*b
= (const blkptr_t
*)(void *)
8978 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
);
8979 if (zfs_blkptr_verify(spa
, b
,
8980 BLK_CONFIG_NEEDED
, BLK_VERIFY_ONLY
) == B_FALSE
) {
8981 abd_return_buf_copy(pabd
, buf
, lsize
);
8984 lsize
= zdb_decompress_block(pabd
, buf
,
8985 lbuf
, lsize
, psize
, flags
);
8986 b
= (const blkptr_t
*)(void *)
8987 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
);
8988 if (lsize
== -1 || zfs_blkptr_verify(spa
, b
,
8989 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
) == B_FALSE
) {
8990 printf("invalid block pointer at this DVA\n");
8996 if (flags
& ZDB_FLAG_PRINT_BLKPTR
)
8997 zdb_print_blkptr((blkptr_t
*)(void *)
8998 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
), flags
);
8999 else if (flags
& ZDB_FLAG_RAW
)
9000 zdb_dump_block_raw(buf
, lsize
, flags
);
9001 else if (flags
& ZDB_FLAG_INDIRECT
)
9002 zdb_dump_indirect((blkptr_t
*)buf
,
9003 orig_lsize
/ sizeof (blkptr_t
), flags
);
9004 else if (flags
& ZDB_FLAG_GBH
)
9005 zdb_dump_gbh(buf
, flags
);
9007 zdb_dump_block(thing
, buf
, lsize
, flags
);
9010 * If :c was specified, iterate through the checksum table to
9011 * calculate and display each checksum for our specified
9014 if ((flags
& ZDB_FLAG_CHECKSUM
) && !(flags
& ZDB_FLAG_RAW
) &&
9015 !(flags
& ZDB_FLAG_GBH
)) {
9017 (void) printf("\n");
9018 for (enum zio_checksum ck
= ZIO_CHECKSUM_LABEL
;
9019 ck
< ZIO_CHECKSUM_FUNCTIONS
; ck
++) {
9021 if ((zio_checksum_table
[ck
].ci_flags
&
9022 ZCHECKSUM_FLAG_EMBEDDED
) ||
9023 ck
== ZIO_CHECKSUM_NOPARITY
) {
9026 BP_SET_CHECKSUM(bp
, ck
);
9027 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
9028 czio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
9029 if (vd
== vd
->vdev_top
) {
9030 zio_nowait(zio_read(czio
, spa
, bp
, pabd
, psize
,
9032 ZIO_PRIORITY_SYNC_READ
,
9033 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
|
9034 ZIO_FLAG_DONT_RETRY
, NULL
));
9036 zio_nowait(zio_vdev_child_io(czio
, bp
, vd
,
9037 offset
, pabd
, psize
, ZIO_TYPE_READ
,
9038 ZIO_PRIORITY_SYNC_READ
,
9039 ZIO_FLAG_DONT_PROPAGATE
|
9040 ZIO_FLAG_DONT_RETRY
|
9041 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
|
9042 ZIO_FLAG_SPECULATIVE
|
9043 ZIO_FLAG_OPTIONAL
, NULL
, NULL
));
9045 error
= zio_wait(czio
);
9046 if (error
== 0 || error
== ECKSUM
) {
9047 zio_t
*ck_zio
= zio_null(NULL
, spa
, NULL
,
9050 DVA_GET_OFFSET(&bp
->blk_dva
[0]);
9052 zio_checksum_compute(ck_zio
, ck
, pabd
, lsize
);
9055 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9056 zio_checksum_table
[ck
].ci_name
,
9057 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
9058 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
9059 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
9060 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
9063 printf("error %d reading block\n", error
);
9065 spa_config_exit(spa
, SCL_STATE
, FTAG
);
9070 abd_return_buf_copy(pabd
, buf
, lsize
);
9074 umem_free(lbuf
, SPA_MAXBLOCKSIZE
);
9081 zdb_embedded_block(char *thing
)
9083 blkptr_t bp
= {{{{0}}}};
9084 unsigned long long *words
= (void *)&bp
;
9088 err
= sscanf(thing
, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9089 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9090 words
+ 0, words
+ 1, words
+ 2, words
+ 3,
9091 words
+ 4, words
+ 5, words
+ 6, words
+ 7,
9092 words
+ 8, words
+ 9, words
+ 10, words
+ 11,
9093 words
+ 12, words
+ 13, words
+ 14, words
+ 15);
9095 (void) fprintf(stderr
, "invalid input format\n");
9098 ASSERT3U(BPE_GET_LSIZE(&bp
), <=, SPA_MAXBLOCKSIZE
);
9099 buf
= malloc(SPA_MAXBLOCKSIZE
);
9101 (void) fprintf(stderr
, "out of memory\n");
9104 err
= decode_embedded_bp(&bp
, buf
, BPE_GET_LSIZE(&bp
));
9106 (void) fprintf(stderr
, "decode failed: %u\n", err
);
9109 zdb_dump_block_raw(buf
, BPE_GET_LSIZE(&bp
), 0);
9113 /* check for valid hex or decimal numeric string */
9115 zdb_numeric(char *str
)
9122 if (strncmp(str
, "0x", 2) == 0 || strncmp(str
, "0X", 2) == 0)
9124 for (; i
< len
; i
++) {
9125 if (!isxdigit(str
[i
]))
9132 dummy_get_file_info(dmu_object_type_t bonustype
, const void *data
,
9133 zfs_file_info_t
*zoi
)
9135 (void) data
, (void) zoi
;
9137 if (bonustype
!= DMU_OT_ZNODE
&& bonustype
!= DMU_OT_SA
)
9140 (void) fprintf(stderr
, "dummy_get_file_info: not implemented");
9145 main(int argc
, char **argv
)
9151 char **searchdirs
= NULL
;
9153 char *target
, *target_pool
, dsname
[ZFS_MAX_DATASET_NAME_LEN
];
9154 nvlist_t
*policy
= NULL
;
9155 uint64_t max_txg
= UINT64_MAX
;
9156 int64_t objset_id
= -1;
9158 int flags
= ZFS_IMPORT_MISSING_LOG
;
9159 int rewind
= ZPOOL_NEVER_REWIND
;
9160 char *spa_config_path_env
, *objset_str
;
9161 boolean_t target_is_spa
= B_TRUE
, dataset_lookup
= B_FALSE
;
9162 nvlist_t
*cfg
= NULL
;
9163 struct sigaction action
;
9164 boolean_t force_import
= B_FALSE
;
9165 boolean_t config_path_console
= B_FALSE
;
9166 char pbuf
[MAXPATHLEN
];
9168 dprintf_setup(&argc
, argv
);
9171 * Set up signal handlers, so if we crash due to bad on-disk data we
9172 * can get more info. Unlike ztest, we don't bail out if we can't set
9173 * up signal handlers, because zdb is very useful without them.
9175 action
.sa_handler
= sig_handler
;
9176 sigemptyset(&action
.sa_mask
);
9177 action
.sa_flags
= 0;
9178 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
9179 (void) fprintf(stderr
, "zdb: cannot catch SIGSEGV: %s\n",
9182 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
9183 (void) fprintf(stderr
, "zdb: cannot catch SIGABRT: %s\n",
9188 * If there is an environment variable SPA_CONFIG_PATH it overrides
9189 * default spa_config_path setting. If -U flag is specified it will
9190 * override this environment variable settings once again.
9192 spa_config_path_env
= getenv("SPA_CONFIG_PATH");
9193 if (spa_config_path_env
!= NULL
)
9194 spa_config_path
= spa_config_path_env
;
9197 * For performance reasons, we set this tunable down. We do so before
9198 * the arg parsing section so that the user can override this value if
9201 zfs_btree_verify_intensity
= 3;
9203 struct option long_options
[] = {
9204 {"ignore-assertions", no_argument
, NULL
, 'A'},
9205 {"block-stats", no_argument
, NULL
, 'b'},
9206 {"backup", no_argument
, NULL
, 'B'},
9207 {"checksum", no_argument
, NULL
, 'c'},
9208 {"config", no_argument
, NULL
, 'C'},
9209 {"datasets", no_argument
, NULL
, 'd'},
9210 {"dedup-stats", no_argument
, NULL
, 'D'},
9211 {"exported", no_argument
, NULL
, 'e'},
9212 {"embedded-block-pointer", no_argument
, NULL
, 'E'},
9213 {"automatic-rewind", no_argument
, NULL
, 'F'},
9214 {"dump-debug-msg", no_argument
, NULL
, 'G'},
9215 {"history", no_argument
, NULL
, 'h'},
9216 {"intent-logs", no_argument
, NULL
, 'i'},
9217 {"inflight", required_argument
, NULL
, 'I'},
9218 {"checkpointed-state", no_argument
, NULL
, 'k'},
9219 {"key", required_argument
, NULL
, 'K'},
9220 {"label", no_argument
, NULL
, 'l'},
9221 {"disable-leak-tracking", no_argument
, NULL
, 'L'},
9222 {"metaslabs", no_argument
, NULL
, 'm'},
9223 {"metaslab-groups", no_argument
, NULL
, 'M'},
9224 {"numeric", no_argument
, NULL
, 'N'},
9225 {"option", required_argument
, NULL
, 'o'},
9226 {"object-lookups", no_argument
, NULL
, 'O'},
9227 {"path", required_argument
, NULL
, 'p'},
9228 {"parseable", no_argument
, NULL
, 'P'},
9229 {"skip-label", no_argument
, NULL
, 'q'},
9230 {"copy-object", no_argument
, NULL
, 'r'},
9231 {"read-block", no_argument
, NULL
, 'R'},
9232 {"io-stats", no_argument
, NULL
, 's'},
9233 {"simulate-dedup", no_argument
, NULL
, 'S'},
9234 {"txg", required_argument
, NULL
, 't'},
9235 {"brt-stats", no_argument
, NULL
, 'T'},
9236 {"uberblock", no_argument
, NULL
, 'u'},
9237 {"cachefile", required_argument
, NULL
, 'U'},
9238 {"verbose", no_argument
, NULL
, 'v'},
9239 {"verbatim", no_argument
, NULL
, 'V'},
9240 {"dump-blocks", required_argument
, NULL
, 'x'},
9241 {"extreme-rewind", no_argument
, NULL
, 'X'},
9242 {"all-reconstruction", no_argument
, NULL
, 'Y'},
9243 {"livelist", no_argument
, NULL
, 'y'},
9244 {"zstd-headers", no_argument
, NULL
, 'Z'},
9248 while ((c
= getopt_long(argc
, argv
,
9249 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9250 long_options
, NULL
)) != -1) {
9289 zfs_reconstruct_indirect_combinations_max
= INT_MAX
;
9290 zfs_deadman_enabled
= 0;
9292 /* NB: Sort single match options below. */
9294 max_inflight_bytes
= strtoull(optarg
, NULL
, 0);
9295 if (max_inflight_bytes
== 0) {
9296 (void) fprintf(stderr
, "maximum number "
9297 "of inflight bytes must be greater "
9304 key_material
= strdup(optarg
);
9305 /* redact key material in process table */
9306 while (*optarg
!= '\0') { *optarg
++ = '*'; }
9309 error
= set_global_var(optarg
);
9314 if (searchdirs
== NULL
) {
9315 searchdirs
= umem_alloc(sizeof (char *),
9318 char **tmp
= umem_alloc((nsearch
+ 1) *
9319 sizeof (char *), UMEM_NOFAIL
);
9320 memcpy(tmp
, searchdirs
, nsearch
*
9322 umem_free(searchdirs
,
9323 nsearch
* sizeof (char *));
9326 searchdirs
[nsearch
++] = optarg
;
9329 max_txg
= strtoull(optarg
, NULL
, 0);
9330 if (max_txg
< TXG_INITIAL
) {
9331 (void) fprintf(stderr
, "incorrect txg "
9332 "specified: %s\n", optarg
);
9337 config_path_console
= B_TRUE
;
9338 spa_config_path
= optarg
;
9339 if (spa_config_path
[0] != '/') {
9340 (void) fprintf(stderr
,
9341 "cachefile must be an absolute path "
9342 "(i.e. start with a slash)\n");
9350 flags
= ZFS_IMPORT_VERBATIM
;
9353 vn_dumpdir
= optarg
;
9361 if (!dump_opt
['e'] && searchdirs
!= NULL
) {
9362 (void) fprintf(stderr
, "-p option requires use of -e\n");
9367 * ZDB does not typically re-read blocks; therefore limit the ARC
9368 * to 256 MB, which can be used entirely for metadata.
9370 zfs_arc_min
= 2ULL << SPA_MAXBLOCKSHIFT
;
9371 zfs_arc_max
= 256 * 1024 * 1024;
9375 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9376 * "zdb -b" uses traversal prefetch which uses async reads.
9377 * For good performance, let several of them be active at once.
9379 zfs_vdev_async_read_max_active
= 10;
9382 * Disable reference tracking for better performance.
9384 reference_tracking_enable
= B_FALSE
;
9387 * Do not fail spa_load when spa_load_verify fails. This is needed
9388 * to load non-idle pools.
9390 spa_load_verify_dryrun
= B_TRUE
;
9393 * ZDB should have ability to read spacemaps.
9395 spa_mode_readable_spacemaps
= B_TRUE
;
9398 verbose
= MAX(verbose
, 1);
9400 for (c
= 0; c
< 256; c
++) {
9401 if (dump_all
&& strchr("ABeEFkKlLNOPrRSXy", c
) == NULL
)
9404 dump_opt
[c
] += verbose
;
9407 libspl_set_assert_ok((dump_opt
['A'] == 1) || (dump_opt
['A'] > 2));
9408 zfs_recover
= (dump_opt
['A'] > 1);
9412 if (argc
< 2 && dump_opt
['R'])
9418 * Automate cachefile
9420 if (!spa_config_path_env
&& !config_path_console
&& target
&&
9421 libzfs_core_init() == 0) {
9422 char *pname
= strdup(target
);
9424 nvlist_t
*pnvl
= NULL
;
9425 nvlist_t
*vnvl
= NULL
;
9427 if (strpbrk(pname
, "/@") != NULL
)
9428 *strpbrk(pname
, "/@") = '\0';
9430 if (pname
&& lzc_get_props(pname
, &pnvl
) == 0) {
9431 if (nvlist_lookup_nvlist(pnvl
, "cachefile",
9433 value
= fnvlist_lookup_string(vnvl
,
9438 strlcpy(pbuf
, value
, sizeof (pbuf
));
9439 if (pbuf
[0] != '\0') {
9440 if (pbuf
[0] == '/') {
9441 if (access(pbuf
, F_OK
) == 0)
9442 spa_config_path
= pbuf
;
9444 force_import
= B_TRUE
;
9445 } else if ((strcmp(pbuf
, "-") == 0 &&
9446 access(ZPOOL_CACHE
, F_OK
) != 0) ||
9447 strcmp(pbuf
, "none") == 0) {
9448 force_import
= B_TRUE
;
9459 dmu_objset_register_type(DMU_OST_ZFS
, dummy_get_file_info
);
9460 kernel_init(SPA_MODE_READ
);
9461 kernel_init_done
= B_TRUE
;
9463 if (dump_opt
['E']) {
9466 zdb_embedded_block(argv
[0]);
9472 if (!dump_opt
['e'] && dump_opt
['C']) {
9473 dump_cachefile(spa_config_path
);
9480 if (dump_opt
['l']) {
9481 error
= dump_label(argv
[0]);
9485 if (dump_opt
['X'] || dump_opt
['F'])
9486 rewind
= ZPOOL_DO_REWIND
|
9487 (dump_opt
['X'] ? ZPOOL_EXTREME_REWIND
: 0);
9490 if (dump_opt
['N'] && dump_opt
['d'] == 0)
9491 dump_opt
['d'] = dump_opt
['N'];
9493 if (nvlist_alloc(&policy
, NV_UNIQUE_NAME_TYPE
, 0) != 0 ||
9494 nvlist_add_uint64(policy
, ZPOOL_LOAD_REQUEST_TXG
, max_txg
) != 0 ||
9495 nvlist_add_uint32(policy
, ZPOOL_LOAD_REWIND_POLICY
, rewind
) != 0)
9496 fatal("internal error: %s", strerror(ENOMEM
));
9500 if (strpbrk(target
, "/@") != NULL
) {
9503 target_pool
= strdup(target
);
9504 *strpbrk(target_pool
, "/@") = '\0';
9506 target_is_spa
= B_FALSE
;
9507 targetlen
= strlen(target
);
9508 if (targetlen
&& target
[targetlen
- 1] == '/')
9509 target
[targetlen
- 1] = '\0';
9512 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9513 * To disambiguate tank/100, consider the 100 as objsetID
9514 * if -N was given, otherwise 100 is an objsetID iff
9515 * tank/100 as a named dataset fails on lookup.
9517 objset_str
= strchr(target
, '/');
9518 if (objset_str
&& strlen(objset_str
) > 1 &&
9519 zdb_numeric(objset_str
+ 1)) {
9523 objset_id
= strtoull(objset_str
, &endptr
, 0);
9524 /* dataset 0 is the same as opening the pool */
9525 if (errno
== 0 && endptr
!= objset_str
&&
9528 dataset_lookup
= B_TRUE
;
9530 /* normal dataset name not an objset ID */
9531 if (endptr
== objset_str
) {
9534 } else if (objset_str
&& !zdb_numeric(objset_str
+ 1) &&
9536 printf("Supply a numeric objset ID with -N\n");
9541 target_pool
= target
;
9544 if (dump_opt
['e'] || force_import
) {
9545 importargs_t args
= { 0 };
9548 * If path is not provided, search in /dev
9550 if (searchdirs
== NULL
) {
9551 searchdirs
= umem_alloc(sizeof (char *), UMEM_NOFAIL
);
9552 searchdirs
[nsearch
++] = (char *)ZFS_DEVDIR
;
9555 args
.paths
= nsearch
;
9556 args
.path
= searchdirs
;
9557 args
.can_be_active
= B_TRUE
;
9559 libpc_handle_t lpch
= {
9560 .lpc_lib_handle
= NULL
,
9561 .lpc_ops
= &libzpool_config_ops
,
9562 .lpc_printerr
= B_TRUE
9564 error
= zpool_find_config(&lpch
, target_pool
, &cfg
, &args
);
9568 if (nvlist_add_nvlist(cfg
,
9569 ZPOOL_LOAD_POLICY
, policy
) != 0) {
9570 fatal("can't open '%s': %s",
9571 target
, strerror(ENOMEM
));
9574 if (dump_opt
['C'] > 1) {
9575 (void) printf("\nConfiguration for import:\n");
9576 dump_nvlist(cfg
, 8);
9580 * Disable the activity check to allow examination of
9583 error
= spa_import(target_pool
, cfg
, NULL
,
9584 flags
| ZFS_IMPORT_SKIP_MMP
);
9588 if (searchdirs
!= NULL
) {
9589 umem_free(searchdirs
, nsearch
* sizeof (char *));
9594 * We need to make sure to process -O option or call
9595 * dump_path after the -e option has been processed,
9596 * which imports the pool to the namespace if it's
9597 * not in the cachefile.
9599 if (dump_opt
['O']) {
9602 dump_opt
['v'] = verbose
+ 3;
9603 error
= dump_path(argv
[0], argv
[1], NULL
);
9607 if (dump_opt
['r']) {
9608 target_is_spa
= B_FALSE
;
9611 dump_opt
['v'] = verbose
;
9612 error
= dump_path(argv
[0], argv
[1], &object
);
9614 fatal("internal error: %s", strerror(error
));
9618 * import_checkpointed_state makes the assumption that the
9619 * target pool that we pass it is already part of the spa
9620 * namespace. Because of that we need to make sure to call
9621 * it always after the -e option has been processed, which
9622 * imports the pool to the namespace if it's not in the
9625 char *checkpoint_pool
= NULL
;
9626 char *checkpoint_target
= NULL
;
9627 if (dump_opt
['k']) {
9628 checkpoint_pool
= import_checkpointed_state(target
, cfg
,
9629 &checkpoint_target
);
9631 if (checkpoint_target
!= NULL
)
9632 target
= checkpoint_target
;
9640 if (target_pool
!= target
)
9644 if (dump_opt
['k'] && (target_is_spa
|| dump_opt
['R'])) {
9645 ASSERT(checkpoint_pool
!= NULL
);
9646 ASSERT(checkpoint_target
== NULL
);
9648 error
= spa_open(checkpoint_pool
, &spa
, FTAG
);
9650 fatal("Tried to open pool \"%s\" but "
9651 "spa_open() failed with error %d\n",
9652 checkpoint_pool
, error
);
9655 } else if (target_is_spa
|| dump_opt
['R'] || dump_opt
['B'] ||
9657 zdb_set_skip_mmp(target
);
9658 error
= spa_open_rewind(target
, &spa
, FTAG
, policy
,
9662 * If we're missing the log device then
9663 * try opening the pool after clearing the
9666 mutex_enter(&spa_namespace_lock
);
9667 if ((spa
= spa_lookup(target
)) != NULL
&&
9668 spa
->spa_log_state
== SPA_LOG_MISSING
) {
9669 spa
->spa_log_state
= SPA_LOG_CLEAR
;
9672 mutex_exit(&spa_namespace_lock
);
9675 error
= spa_open_rewind(target
, &spa
,
9676 FTAG
, policy
, NULL
);
9679 } else if (strpbrk(target
, "#") != NULL
) {
9681 error
= dsl_pool_hold(target
, FTAG
, &dp
);
9683 fatal("can't dump '%s': %s", target
,
9686 error
= dump_bookmark(dp
, target
, B_TRUE
, verbose
> 1);
9687 dsl_pool_rele(dp
, FTAG
);
9689 fatal("can't dump '%s': %s", target
,
9694 target_pool
= strdup(target
);
9695 if (strpbrk(target
, "/@") != NULL
)
9696 *strpbrk(target_pool
, "/@") = '\0';
9698 zdb_set_skip_mmp(target
);
9700 * If -N was supplied, the user has indicated that
9701 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9702 * we first assume that the dataset string is the
9703 * dataset name. If dmu_objset_hold fails with the
9704 * dataset string, and we have an objset_id, retry the
9705 * lookup with the objsetID.
9707 boolean_t retry
= B_TRUE
;
9709 if (dataset_lookup
== B_TRUE
) {
9711 * Use the supplied id to get the name
9714 error
= spa_open(target_pool
, &spa
, FTAG
);
9716 error
= name_from_objset_id(spa
,
9718 spa_close(spa
, FTAG
);
9724 if (objset_id
> 0 && retry
) {
9725 int err
= dmu_objset_hold(target
, FTAG
,
9728 dataset_lookup
= B_TRUE
;
9732 dmu_objset_rele(os
, FTAG
);
9735 error
= open_objset(target
, FTAG
, &os
);
9738 spa
= dmu_objset_spa(os
);
9742 nvlist_free(policy
);
9745 fatal("can't open '%s': %s", target
, strerror(error
));
9748 * Set the pool failure mode to panic in order to prevent the pool
9749 * from suspending. A suspended I/O will have no way to resume and
9750 * can prevent the zdb(8) command from terminating as expected.
9753 spa
->spa_failmode
= ZIO_FAILURE_MODE_PANIC
;
9757 if (dump_opt
['r']) {
9758 error
= zdb_copy_object(os
, object
, argv
[1]);
9759 } else if (!dump_opt
['R']) {
9760 flagbits
['d'] = ZOR_FLAG_DIRECTORY
;
9761 flagbits
['f'] = ZOR_FLAG_PLAIN_FILE
;
9762 flagbits
['m'] = ZOR_FLAG_SPACE_MAP
;
9763 flagbits
['z'] = ZOR_FLAG_ZAP
;
9764 flagbits
['A'] = ZOR_FLAG_ALL_TYPES
;
9766 if (argc
> 0 && dump_opt
['d']) {
9767 zopt_object_args
= argc
;
9768 zopt_object_ranges
= calloc(zopt_object_args
,
9769 sizeof (zopt_object_range_t
));
9770 for (unsigned i
= 0; i
< zopt_object_args
; i
++) {
9772 const char *msg
= NULL
;
9774 err
= parse_object_range(argv
[i
],
9775 &zopt_object_ranges
[i
], &msg
);
9777 fatal("Bad object or range: '%s': %s\n",
9778 argv
[i
], msg
?: "");
9780 } else if (argc
> 0 && dump_opt
['m']) {
9781 zopt_metaslab_args
= argc
;
9782 zopt_metaslab
= calloc(zopt_metaslab_args
,
9784 for (unsigned i
= 0; i
< zopt_metaslab_args
; i
++) {
9786 zopt_metaslab
[i
] = strtoull(argv
[i
], NULL
, 0);
9787 if (zopt_metaslab
[i
] == 0 && errno
!= 0)
9788 fatal("bad number %s: %s", argv
[i
],
9792 if (dump_opt
['B']) {
9793 dump_backup(target
, objset_id
,
9794 argc
> 0 ? argv
[0] : NULL
);
9795 } else if (os
!= NULL
) {
9797 } else if (zopt_object_args
> 0 && !dump_opt
['m']) {
9798 dump_objset(spa
->spa_meta_objset
);
9803 flagbits
['b'] = ZDB_FLAG_PRINT_BLKPTR
;
9804 flagbits
['c'] = ZDB_FLAG_CHECKSUM
;
9805 flagbits
['d'] = ZDB_FLAG_DECOMPRESS
;
9806 flagbits
['e'] = ZDB_FLAG_BSWAP
;
9807 flagbits
['g'] = ZDB_FLAG_GBH
;
9808 flagbits
['i'] = ZDB_FLAG_INDIRECT
;
9809 flagbits
['r'] = ZDB_FLAG_RAW
;
9810 flagbits
['v'] = ZDB_FLAG_VERBOSE
;
9812 for (int i
= 0; i
< argc
; i
++)
9813 zdb_read_block(argv
[i
], spa
);
9816 if (dump_opt
['k']) {
9817 free(checkpoint_pool
);
9819 free(checkpoint_target
);
9824 zdb_ddt_cleanup(spa
);
9827 close_objset(os
, FTAG
);
9828 } else if (spa
!= NULL
) {
9829 spa_close(spa
, FTAG
);
9832 fuid_table_destroy();
9834 dump_debug_buffer();
9836 if (kernel_init_done
)