4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 * Copyright (c) 2018 by Delphix. All rights reserved.
21 #include <sys/dsl_crypt.h>
22 #include <sys/dsl_pool.h>
25 #include <sys/dsl_dir.h>
26 #include <sys/dsl_prop.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu_objset.h>
32 * This file's primary purpose is for managing master encryption keys in
33 * memory and on disk. For more info on how these keys are used, see the
34 * block comment in zio_crypt.c.
36 * All master keys are stored encrypted on disk in the form of the DSL
37 * Crypto Key ZAP object. The binary key data in this object is always
38 * randomly generated and is encrypted with the user's wrapping key. This
39 * layer of indirection allows the user to change their key without
40 * needing to re-encrypt the entire dataset. The ZAP also holds on to the
41 * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
42 * safely decrypt the master key. For more info on the user's key see the
43 * block comment in libzfs_crypto.c
45 * In-memory encryption keys are managed through the spa_keystore. The
46 * keystore consists of 3 AVL trees, which are as follows:
48 * The Wrapping Key Tree:
49 * The wrapping key (wkey) tree stores the user's keys that are fed into the
50 * kernel through 'zfs load-key' and related commands. Datasets inherit their
51 * parent's wkey by default, so these structures are refcounted. The wrapping
52 * keys remain in memory until they are explicitly unloaded (with
53 * "zfs unload-key"). Unloading is only possible when no datasets are using
56 * The DSL Crypto Key Tree:
57 * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
58 * master keys. They are used by the functions in zio_crypt.c to perform
59 * encryption, decryption, and authentication. Snapshots and clones of a given
60 * dataset will share a DSL Crypto Key, so they are also refcounted. Once the
61 * refcount on a key hits zero, it is immediately zeroed out and freed.
63 * The Crypto Key Mapping Tree:
64 * The zio layer needs to lookup master keys by their dataset object id. Since
65 * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
66 * dsl_key_mapping_t's which essentially just map the dataset object id to its
67 * appropriate DSL Crypto Key. The management for creating and destroying these
68 * mappings hooks into the code for owning and disowning datasets. Usually,
69 * there will only be one active dataset owner, but there are times
70 * (particularly during dataset creation and destruction) when this may not be
71 * true or the dataset may not be initialized enough to own. As a result, this
72 * object is also refcounted.
76 * This tunable allows datasets to be raw received even if the stream does
77 * not include IVset guids or if the guids don't match. This is used as part
78 * of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
80 int zfs_disable_ivset_guid_check
= 0;
83 dsl_wrapping_key_hold(dsl_wrapping_key_t
*wkey
, const void *tag
)
85 (void) zfs_refcount_add(&wkey
->wk_refcnt
, tag
);
89 dsl_wrapping_key_rele(dsl_wrapping_key_t
*wkey
, const void *tag
)
91 (void) zfs_refcount_remove(&wkey
->wk_refcnt
, tag
);
95 dsl_wrapping_key_free(dsl_wrapping_key_t
*wkey
)
97 ASSERT0(zfs_refcount_count(&wkey
->wk_refcnt
));
99 if (wkey
->wk_key
.ck_data
) {
100 memset(wkey
->wk_key
.ck_data
, 0,
101 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
102 kmem_free(wkey
->wk_key
.ck_data
,
103 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
106 zfs_refcount_destroy(&wkey
->wk_refcnt
);
107 kmem_free(wkey
, sizeof (dsl_wrapping_key_t
));
111 dsl_wrapping_key_create(uint8_t *wkeydata
, zfs_keyformat_t keyformat
,
112 uint64_t salt
, uint64_t iters
, dsl_wrapping_key_t
**wkey_out
)
114 dsl_wrapping_key_t
*wkey
;
116 /* allocate the wrapping key */
117 wkey
= kmem_alloc(sizeof (dsl_wrapping_key_t
), KM_SLEEP
);
119 /* allocate and initialize the underlying crypto key */
120 wkey
->wk_key
.ck_data
= kmem_alloc(WRAPPING_KEY_LEN
, KM_SLEEP
);
122 wkey
->wk_key
.ck_length
= CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN
);
123 memcpy(wkey
->wk_key
.ck_data
, wkeydata
, WRAPPING_KEY_LEN
);
125 /* initialize the rest of the struct */
126 zfs_refcount_create(&wkey
->wk_refcnt
);
127 wkey
->wk_keyformat
= keyformat
;
128 wkey
->wk_salt
= salt
;
129 wkey
->wk_iters
= iters
;
135 dsl_crypto_params_create_nvlist(dcp_cmd_t cmd
, nvlist_t
*props
,
136 nvlist_t
*crypto_args
, dsl_crypto_params_t
**dcp_out
)
139 uint64_t crypt
= ZIO_CRYPT_INHERIT
;
140 uint64_t keyformat
= ZFS_KEYFORMAT_NONE
;
141 uint64_t salt
= 0, iters
= 0;
142 dsl_crypto_params_t
*dcp
= NULL
;
143 dsl_wrapping_key_t
*wkey
= NULL
;
144 uint8_t *wkeydata
= NULL
;
145 uint_t wkeydata_len
= 0;
146 const char *keylocation
= NULL
;
148 dcp
= kmem_zalloc(sizeof (dsl_crypto_params_t
), KM_SLEEP
);
151 /* get relevant arguments from the nvlists */
153 (void) nvlist_lookup_uint64(props
,
154 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), &crypt
);
155 (void) nvlist_lookup_uint64(props
,
156 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), &keyformat
);
157 (void) nvlist_lookup_string(props
,
158 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), &keylocation
);
159 (void) nvlist_lookup_uint64(props
,
160 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), &salt
);
161 (void) nvlist_lookup_uint64(props
,
162 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), &iters
);
164 dcp
->cp_crypt
= crypt
;
167 if (crypto_args
!= NULL
) {
168 (void) nvlist_lookup_uint8_array(crypto_args
, "wkeydata",
169 &wkeydata
, &wkeydata_len
);
172 /* check for valid command */
173 if (dcp
->cp_cmd
>= DCP_CMD_MAX
) {
174 ret
= SET_ERROR(EINVAL
);
180 /* check for valid crypt */
181 if (dcp
->cp_crypt
>= ZIO_CRYPT_FUNCTIONS
) {
182 ret
= SET_ERROR(EINVAL
);
185 dcp
->cp_crypt
= crypt
;
188 /* check for valid keyformat */
189 if (keyformat
>= ZFS_KEYFORMAT_FORMATS
) {
190 ret
= SET_ERROR(EINVAL
);
194 /* check for a valid keylocation (of any kind) and copy it in */
195 if (keylocation
!= NULL
) {
196 if (!zfs_prop_valid_keylocation(keylocation
, B_FALSE
)) {
197 ret
= SET_ERROR(EINVAL
);
201 dcp
->cp_keylocation
= spa_strdup(keylocation
);
204 /* check wrapping key length, if given */
205 if (wkeydata
!= NULL
&& wkeydata_len
!= WRAPPING_KEY_LEN
) {
206 ret
= SET_ERROR(EINVAL
);
210 /* if the user asked for the default crypt, determine that now */
211 if (dcp
->cp_crypt
== ZIO_CRYPT_ON
)
212 dcp
->cp_crypt
= ZIO_CRYPT_ON_VALUE
;
214 /* create the wrapping key from the raw data */
215 if (wkeydata
!= NULL
) {
216 /* create the wrapping key with the verified parameters */
217 dsl_wrapping_key_create(wkeydata
, keyformat
, salt
,
223 * Remove the encryption properties from the nvlist since they are not
224 * maintained through the DSL.
226 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_ENCRYPTION
));
227 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
228 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
229 (void) nvlist_remove_all(props
,
230 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
237 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
243 dsl_crypto_params_free(dsl_crypto_params_t
*dcp
, boolean_t unload
)
248 if (dcp
->cp_keylocation
!= NULL
)
249 spa_strfree(dcp
->cp_keylocation
);
250 if (unload
&& dcp
->cp_wkey
!= NULL
)
251 dsl_wrapping_key_free(dcp
->cp_wkey
);
253 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
257 spa_crypto_key_compare(const void *a
, const void *b
)
259 const dsl_crypto_key_t
*dcka
= a
;
260 const dsl_crypto_key_t
*dckb
= b
;
262 if (dcka
->dck_obj
< dckb
->dck_obj
)
264 if (dcka
->dck_obj
> dckb
->dck_obj
)
270 * this compares a crypto key based on zk_guid. See comment on
271 * spa_crypto_key_compare for more information.
274 dmu_objset_crypto_key_equal(objset_t
*osa
, objset_t
*osb
)
276 dsl_crypto_key_t
*dcka
= NULL
;
277 dsl_crypto_key_t
*dckb
= NULL
;
282 spa
= dmu_objset_spa(osa
);
283 if (spa
!= dmu_objset_spa(osb
))
285 obja
= dmu_objset_ds(osa
)->ds_object
;
286 objb
= dmu_objset_ds(osb
)->ds_object
;
288 if (spa_keystore_lookup_key(spa
, obja
, FTAG
, &dcka
) != 0)
290 if (spa_keystore_lookup_key(spa
, objb
, FTAG
, &dckb
) != 0) {
291 spa_keystore_dsl_key_rele(spa
, dcka
, FTAG
);
295 equal
= (dcka
->dck_key
.zk_guid
== dckb
->dck_key
.zk_guid
);
297 spa_keystore_dsl_key_rele(spa
, dcka
, FTAG
);
298 spa_keystore_dsl_key_rele(spa
, dckb
, FTAG
);
304 spa_key_mapping_compare(const void *a
, const void *b
)
306 const dsl_key_mapping_t
*kma
= a
;
307 const dsl_key_mapping_t
*kmb
= b
;
309 if (kma
->km_dsobj
< kmb
->km_dsobj
)
311 if (kma
->km_dsobj
> kmb
->km_dsobj
)
317 spa_wkey_compare(const void *a
, const void *b
)
319 const dsl_wrapping_key_t
*wka
= a
;
320 const dsl_wrapping_key_t
*wkb
= b
;
322 if (wka
->wk_ddobj
< wkb
->wk_ddobj
)
324 if (wka
->wk_ddobj
> wkb
->wk_ddobj
)
330 spa_keystore_init(spa_keystore_t
*sk
)
332 rw_init(&sk
->sk_dk_lock
, NULL
, RW_DEFAULT
, NULL
);
333 rw_init(&sk
->sk_km_lock
, NULL
, RW_DEFAULT
, NULL
);
334 rw_init(&sk
->sk_wkeys_lock
, NULL
, RW_DEFAULT
, NULL
);
335 avl_create(&sk
->sk_dsl_keys
, spa_crypto_key_compare
,
336 sizeof (dsl_crypto_key_t
),
337 offsetof(dsl_crypto_key_t
, dck_avl_link
));
338 avl_create(&sk
->sk_key_mappings
, spa_key_mapping_compare
,
339 sizeof (dsl_key_mapping_t
),
340 offsetof(dsl_key_mapping_t
, km_avl_link
));
341 avl_create(&sk
->sk_wkeys
, spa_wkey_compare
, sizeof (dsl_wrapping_key_t
),
342 offsetof(dsl_wrapping_key_t
, wk_avl_link
));
346 spa_keystore_fini(spa_keystore_t
*sk
)
348 dsl_wrapping_key_t
*wkey
;
351 ASSERT(avl_is_empty(&sk
->sk_dsl_keys
));
352 ASSERT(avl_is_empty(&sk
->sk_key_mappings
));
354 while ((wkey
= avl_destroy_nodes(&sk
->sk_wkeys
, &cookie
)) != NULL
)
355 dsl_wrapping_key_free(wkey
);
357 avl_destroy(&sk
->sk_wkeys
);
358 avl_destroy(&sk
->sk_key_mappings
);
359 avl_destroy(&sk
->sk_dsl_keys
);
360 rw_destroy(&sk
->sk_wkeys_lock
);
361 rw_destroy(&sk
->sk_km_lock
);
362 rw_destroy(&sk
->sk_dk_lock
);
366 dsl_dir_get_encryption_root_ddobj(dsl_dir_t
*dd
, uint64_t *rddobj
)
368 if (dd
->dd_crypto_obj
== 0)
369 return (SET_ERROR(ENOENT
));
371 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
372 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1, rddobj
));
376 dsl_dir_get_encryption_version(dsl_dir_t
*dd
, uint64_t *version
)
380 if (dd
->dd_crypto_obj
== 0)
381 return (SET_ERROR(ENOENT
));
383 /* version 0 is implied by ENOENT */
384 (void) zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
385 DSL_CRYPTO_KEY_VERSION
, 8, 1, version
);
391 dsl_dir_incompatible_encryption_version(dsl_dir_t
*dd
)
394 uint64_t version
= 0;
396 ret
= dsl_dir_get_encryption_version(dd
, &version
);
400 return (version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
);
404 spa_keystore_wkey_hold_ddobj_impl(spa_t
*spa
, uint64_t ddobj
,
405 const void *tag
, dsl_wrapping_key_t
**wkey_out
)
408 dsl_wrapping_key_t search_wkey
;
409 dsl_wrapping_key_t
*found_wkey
;
411 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_wkeys_lock
));
413 /* init the search wrapping key */
414 search_wkey
.wk_ddobj
= ddobj
;
416 /* lookup the wrapping key */
417 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &search_wkey
, NULL
);
419 ret
= SET_ERROR(ENOENT
);
423 /* increment the refcount */
424 dsl_wrapping_key_hold(found_wkey
, tag
);
426 *wkey_out
= found_wkey
;
435 spa_keystore_wkey_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, const void *tag
,
436 dsl_wrapping_key_t
**wkey_out
)
439 dsl_wrapping_key_t
*wkey
;
441 boolean_t locked
= B_FALSE
;
443 if (!RW_WRITE_HELD(&spa
->spa_keystore
.sk_wkeys_lock
)) {
444 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_READER
);
448 /* get the ddobj that the keylocation property was inherited from */
449 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
453 /* lookup the wkey in the avl tree */
454 ret
= spa_keystore_wkey_hold_ddobj_impl(spa
, rddobj
, tag
, &wkey
);
458 /* unlock the wkey tree if we locked it */
460 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
467 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
474 dsl_crypto_can_set_keylocation(const char *dsname
, const char *keylocation
)
477 dsl_dir_t
*dd
= NULL
;
478 dsl_pool_t
*dp
= NULL
;
481 /* hold the dsl dir */
482 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
486 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
492 /* if dd is not encrypted, the value may only be "none" */
493 if (dd
->dd_crypto_obj
== 0) {
494 if (strcmp(keylocation
, "none") != 0) {
495 ret
= SET_ERROR(EACCES
);
503 /* check for a valid keylocation for encrypted datasets */
504 if (!zfs_prop_valid_keylocation(keylocation
, B_TRUE
)) {
505 ret
= SET_ERROR(EINVAL
);
509 /* check that this is an encryption root */
510 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
514 if (rddobj
!= dd
->dd_object
) {
515 ret
= SET_ERROR(EACCES
);
519 dsl_dir_rele(dd
, FTAG
);
520 dsl_pool_rele(dp
, FTAG
);
526 dsl_dir_rele(dd
, FTAG
);
528 dsl_pool_rele(dp
, FTAG
);
534 dsl_crypto_key_free(dsl_crypto_key_t
*dck
)
536 ASSERT(zfs_refcount_count(&dck
->dck_holds
) == 0);
538 /* destroy the zio_crypt_key_t */
539 zio_crypt_key_destroy(&dck
->dck_key
);
541 /* free the refcount, wrapping key, and lock */
542 zfs_refcount_destroy(&dck
->dck_holds
);
544 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
547 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
551 dsl_crypto_key_rele(dsl_crypto_key_t
*dck
, const void *tag
)
553 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0)
554 dsl_crypto_key_free(dck
);
558 dsl_crypto_key_open(objset_t
*mos
, dsl_wrapping_key_t
*wkey
,
559 uint64_t dckobj
, const void *tag
, dsl_crypto_key_t
**dck_out
)
562 uint64_t crypt
= 0, guid
= 0, version
= 0;
563 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
564 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
565 uint8_t iv
[WRAPPING_IV_LEN
];
566 uint8_t mac
[WRAPPING_MAC_LEN
];
567 dsl_crypto_key_t
*dck
;
569 /* allocate and initialize the key */
570 dck
= kmem_zalloc(sizeof (dsl_crypto_key_t
), KM_SLEEP
);
572 /* fetch all of the values we need from the ZAP */
573 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
578 /* handle a future crypto suite that we don't support */
579 if (crypt
>= ZIO_CRYPT_FUNCTIONS
) {
580 ret
= (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP
));
584 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &guid
);
588 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
589 MASTER_KEY_MAX_LEN
, raw_keydata
);
593 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
594 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
598 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
603 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
608 /* the initial on-disk format for encryption did not have a version */
609 (void) zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
612 * Unwrap the keys. If there is an error return EACCES to indicate
613 * an authentication failure.
615 ret
= zio_crypt_key_unwrap(&wkey
->wk_key
, crypt
, version
, guid
,
616 raw_keydata
, raw_hmac_keydata
, iv
, mac
, &dck
->dck_key
);
618 ret
= SET_ERROR(EACCES
);
622 /* finish initializing the dsl_crypto_key_t */
623 zfs_refcount_create(&dck
->dck_holds
);
624 dsl_wrapping_key_hold(wkey
, dck
);
625 dck
->dck_wkey
= wkey
;
626 dck
->dck_obj
= dckobj
;
627 zfs_refcount_add(&dck
->dck_holds
, tag
);
634 memset(dck
, 0, sizeof (dsl_crypto_key_t
));
635 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
643 spa_keystore_dsl_key_hold_impl(spa_t
*spa
, uint64_t dckobj
, const void *tag
,
644 dsl_crypto_key_t
**dck_out
)
647 dsl_crypto_key_t search_dck
;
648 dsl_crypto_key_t
*found_dck
;
650 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_dk_lock
));
652 /* init the search key */
653 search_dck
.dck_obj
= dckobj
;
655 /* find the matching key in the keystore */
656 found_dck
= avl_find(&spa
->spa_keystore
.sk_dsl_keys
, &search_dck
, NULL
);
658 ret
= SET_ERROR(ENOENT
);
662 /* increment the refcount */
663 zfs_refcount_add(&found_dck
->dck_holds
, tag
);
665 *dck_out
= found_dck
;
674 spa_keystore_dsl_key_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, const void *tag
,
675 dsl_crypto_key_t
**dck_out
)
679 dsl_crypto_key_t
*dck_io
= NULL
, *dck_ks
= NULL
;
680 dsl_wrapping_key_t
*wkey
= NULL
;
681 uint64_t dckobj
= dd
->dd_crypto_obj
;
683 /* Lookup the key in the tree of currently loaded keys */
684 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_READER
);
685 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
686 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
692 /* Lookup the wrapping key from the keystore */
693 ret
= spa_keystore_wkey_hold_dd(spa
, dd
, FTAG
, &wkey
);
696 return (SET_ERROR(EACCES
));
699 /* Read the key from disk */
700 ret
= dsl_crypto_key_open(spa
->spa_meta_objset
, wkey
, dckobj
,
703 dsl_wrapping_key_rele(wkey
, FTAG
);
709 * Add the key to the keystore. It may already exist if it was
710 * added while performing the read from disk. In this case discard
711 * it and return the key from the keystore.
713 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
714 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
716 avl_find(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, &where
);
717 avl_insert(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, where
);
720 dsl_crypto_key_rele(dck_io
, tag
);
724 /* Release the wrapping key (the dsl key now has a reference to it) */
725 dsl_wrapping_key_rele(wkey
, FTAG
);
726 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
732 spa_keystore_dsl_key_rele(spa_t
*spa
, dsl_crypto_key_t
*dck
, const void *tag
)
734 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
736 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0) {
737 avl_remove(&spa
->spa_keystore
.sk_dsl_keys
, dck
);
738 dsl_crypto_key_free(dck
);
741 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
745 spa_keystore_load_wkey_impl(spa_t
*spa
, dsl_wrapping_key_t
*wkey
)
749 dsl_wrapping_key_t
*found_wkey
;
751 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
753 /* insert the wrapping key into the keystore */
754 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
755 if (found_wkey
!= NULL
) {
756 ret
= SET_ERROR(EEXIST
);
759 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
761 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
766 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
771 spa_keystore_load_wkey(const char *dsname
, dsl_crypto_params_t
*dcp
,
775 dsl_dir_t
*dd
= NULL
;
776 dsl_crypto_key_t
*dck
= NULL
;
777 dsl_wrapping_key_t
*wkey
= dcp
->cp_wkey
;
778 dsl_pool_t
*dp
= NULL
;
779 uint64_t rddobj
, keyformat
, salt
, iters
;
782 * We don't validate the wrapping key's keyformat, salt, or iters
783 * since they will never be needed after the DCK has been wrapped.
785 if (dcp
->cp_wkey
== NULL
||
786 dcp
->cp_cmd
!= DCP_CMD_NONE
||
787 dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
788 dcp
->cp_keylocation
!= NULL
)
789 return (SET_ERROR(EINVAL
));
791 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
795 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
796 ret
= SET_ERROR(ENOTSUP
);
800 /* hold the dsl dir */
801 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
807 /* confirm that dd is the encryption root */
808 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
809 if (ret
!= 0 || rddobj
!= dd
->dd_object
) {
810 ret
= SET_ERROR(EINVAL
);
814 /* initialize the wkey's ddobj */
815 wkey
->wk_ddobj
= dd
->dd_object
;
817 /* verify that the wkey is correct by opening its dsl key */
818 ret
= dsl_crypto_key_open(dp
->dp_meta_objset
, wkey
,
819 dd
->dd_crypto_obj
, FTAG
, &dck
);
823 /* initialize the wkey encryption parameters from the DSL Crypto Key */
824 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
825 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &keyformat
);
829 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
830 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
834 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
835 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
839 ASSERT3U(keyformat
, <, ZFS_KEYFORMAT_FORMATS
);
840 ASSERT3U(keyformat
, !=, ZFS_KEYFORMAT_NONE
);
841 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, iters
!= 0);
842 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, salt
!= 0);
843 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, iters
== 0);
844 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, salt
== 0);
846 wkey
->wk_keyformat
= keyformat
;
847 wkey
->wk_salt
= salt
;
848 wkey
->wk_iters
= iters
;
851 * At this point we have verified the wkey and confirmed that it can
852 * be used to decrypt a DSL Crypto Key. We can simply cleanup and
853 * return if this is all the user wanted to do.
858 /* insert the wrapping key into the keystore */
859 ret
= spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
);
863 dsl_crypto_key_rele(dck
, FTAG
);
864 dsl_dir_rele(dd
, FTAG
);
865 dsl_pool_rele(dp
, FTAG
);
867 /* create any zvols under this ds */
868 zvol_create_minors_recursive(dsname
);
874 dsl_crypto_key_rele(dck
, FTAG
);
876 dsl_dir_rele(dd
, FTAG
);
878 dsl_pool_rele(dp
, FTAG
);
884 spa_keystore_unload_wkey_impl(spa_t
*spa
, uint64_t ddobj
)
887 dsl_wrapping_key_t search_wkey
;
888 dsl_wrapping_key_t
*found_wkey
;
890 /* init the search wrapping key */
891 search_wkey
.wk_ddobj
= ddobj
;
893 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
895 /* remove the wrapping key from the keystore */
896 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
,
899 ret
= SET_ERROR(EACCES
);
901 } else if (zfs_refcount_count(&found_wkey
->wk_refcnt
) != 0) {
902 ret
= SET_ERROR(EBUSY
);
905 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
907 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
909 /* free the wrapping key */
910 dsl_wrapping_key_free(found_wkey
);
915 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
920 spa_keystore_unload_wkey(const char *dsname
)
923 dsl_dir_t
*dd
= NULL
;
924 dsl_pool_t
*dp
= NULL
;
927 ret
= spa_open(dsname
, &spa
, FTAG
);
932 * Wait for any outstanding txg IO to complete, releasing any
933 * remaining references on the wkey.
935 if (spa_mode(spa
) != SPA_MODE_READ
)
936 txg_wait_synced(spa
->spa_dsl_pool
, 0);
938 spa_close(spa
, FTAG
);
940 /* hold the dsl dir */
941 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
945 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
946 ret
= (SET_ERROR(ENOTSUP
));
950 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
956 /* unload the wkey */
957 ret
= spa_keystore_unload_wkey_impl(dp
->dp_spa
, dd
->dd_object
);
961 dsl_dir_rele(dd
, FTAG
);
962 dsl_pool_rele(dp
, FTAG
);
964 /* remove any zvols under this ds */
965 zvol_remove_minors(dp
->dp_spa
, dsname
, B_TRUE
);
971 dsl_dir_rele(dd
, FTAG
);
973 dsl_pool_rele(dp
, FTAG
);
979 key_mapping_add_ref(dsl_key_mapping_t
*km
, const void *tag
)
981 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
982 zfs_refcount_add(&km
->km_refcnt
, tag
);
986 * The locking here is a little tricky to ensure we don't cause unnecessary
987 * performance problems. We want to release a key mapping whenever someone
988 * decrements the refcount to 0, but freeing the mapping requires removing
989 * it from the spa_keystore, which requires holding sk_km_lock as a writer.
990 * Most of the time we don't want to hold this lock as a writer, since the
991 * same lock is held as a reader for each IO that needs to encrypt / decrypt
992 * data for any dataset and in practice we will only actually free the
993 * mapping after unmounting a dataset.
996 key_mapping_rele(spa_t
*spa
, dsl_key_mapping_t
*km
, const void *tag
)
998 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
1000 if (zfs_refcount_remove(&km
->km_refcnt
, tag
) != 0)
1004 * We think we are going to need to free the mapping. Add a
1005 * reference to prevent most other releasers from thinking
1006 * this might be their responsibility. This is inherently
1007 * racy, so we will confirm that we are legitimately the
1008 * last holder once we have the sk_km_lock as a writer.
1010 zfs_refcount_add(&km
->km_refcnt
, FTAG
);
1012 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
1013 if (zfs_refcount_remove(&km
->km_refcnt
, FTAG
) != 0) {
1014 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1018 avl_remove(&spa
->spa_keystore
.sk_key_mappings
, km
);
1019 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1021 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
1022 zfs_refcount_destroy(&km
->km_refcnt
);
1023 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1027 spa_keystore_create_mapping(spa_t
*spa
, dsl_dataset_t
*ds
, const void *tag
,
1028 dsl_key_mapping_t
**km_out
)
1032 dsl_key_mapping_t
*km
, *found_km
;
1033 boolean_t should_free
= B_FALSE
;
1035 /* Allocate and initialize the mapping */
1036 km
= kmem_zalloc(sizeof (dsl_key_mapping_t
), KM_SLEEP
);
1037 zfs_refcount_create(&km
->km_refcnt
);
1039 ret
= spa_keystore_dsl_key_hold_dd(spa
, ds
->ds_dir
, km
, &km
->km_key
);
1041 zfs_refcount_destroy(&km
->km_refcnt
);
1042 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1049 km
->km_dsobj
= ds
->ds_object
;
1051 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
1054 * If a mapping already exists, simply increment its refcount and
1055 * cleanup the one we made. We want to allocate / free outside of
1056 * the lock because this lock is also used by the zio layer to lookup
1057 * key mappings. Otherwise, use the one we created. Normally, there will
1058 * only be one active reference at a time (the objset owner), but there
1059 * are times when there could be multiple async users.
1061 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, km
, &where
);
1062 if (found_km
!= NULL
) {
1063 should_free
= B_TRUE
;
1064 zfs_refcount_add(&found_km
->km_refcnt
, tag
);
1068 zfs_refcount_add(&km
->km_refcnt
, tag
);
1069 avl_insert(&spa
->spa_keystore
.sk_key_mappings
, km
, where
);
1074 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1077 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
1078 zfs_refcount_destroy(&km
->km_refcnt
);
1079 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1086 spa_keystore_remove_mapping(spa_t
*spa
, uint64_t dsobj
, const void *tag
)
1089 dsl_key_mapping_t search_km
;
1090 dsl_key_mapping_t
*found_km
;
1092 /* init the search key mapping */
1093 search_km
.km_dsobj
= dsobj
;
1095 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1097 /* find the matching mapping */
1098 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
,
1100 if (found_km
== NULL
) {
1101 ret
= SET_ERROR(ENOENT
);
1105 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1107 key_mapping_rele(spa
, found_km
, tag
);
1112 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1117 * This function is primarily used by the zio and arc layer to lookup
1118 * DSL Crypto Keys for encryption. Callers must release the key with
1119 * spa_keystore_dsl_key_rele(). The function may also be called with
1120 * dck_out == NULL and tag == NULL to simply check that a key exists
1121 * without getting a reference to it.
1124 spa_keystore_lookup_key(spa_t
*spa
, uint64_t dsobj
, const void *tag
,
1125 dsl_crypto_key_t
**dck_out
)
1128 dsl_key_mapping_t search_km
;
1129 dsl_key_mapping_t
*found_km
;
1131 ASSERT((tag
!= NULL
&& dck_out
!= NULL
) ||
1132 (tag
== NULL
&& dck_out
== NULL
));
1134 /* init the search key mapping */
1135 search_km
.km_dsobj
= dsobj
;
1137 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1139 /* remove the mapping from the tree */
1140 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, &search_km
,
1142 if (found_km
== NULL
) {
1143 ret
= SET_ERROR(ENOENT
);
1147 if (found_km
&& tag
)
1148 zfs_refcount_add(&found_km
->km_key
->dck_holds
, tag
);
1150 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1152 if (dck_out
!= NULL
)
1153 *dck_out
= found_km
->km_key
;
1157 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1159 if (dck_out
!= NULL
)
1165 dmu_objset_check_wkey_loaded(dsl_dir_t
*dd
)
1168 dsl_wrapping_key_t
*wkey
= NULL
;
1170 ret
= spa_keystore_wkey_hold_dd(dd
->dd_pool
->dp_spa
, dd
, FTAG
,
1173 return (SET_ERROR(EACCES
));
1175 dsl_wrapping_key_rele(wkey
, FTAG
);
1181 dsl_dataset_get_keystatus(dsl_dir_t
*dd
)
1183 /* check if this dd has a has a dsl key */
1184 if (dd
->dd_crypto_obj
== 0)
1185 return (ZFS_KEYSTATUS_NONE
);
1187 return (dmu_objset_check_wkey_loaded(dd
) == 0 ?
1188 ZFS_KEYSTATUS_AVAILABLE
: ZFS_KEYSTATUS_UNAVAILABLE
);
1192 dsl_dir_get_crypt(dsl_dir_t
*dd
, uint64_t *crypt
)
1194 if (dd
->dd_crypto_obj
== 0) {
1195 *crypt
= ZIO_CRYPT_OFF
;
1199 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
1200 DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1, crypt
));
1204 dsl_crypto_key_sync_impl(objset_t
*mos
, uint64_t dckobj
, uint64_t crypt
,
1205 uint64_t root_ddobj
, uint64_t guid
, uint8_t *iv
, uint8_t *mac
,
1206 uint8_t *keydata
, uint8_t *hmac_keydata
, uint64_t keyformat
,
1207 uint64_t salt
, uint64_t iters
, dmu_tx_t
*tx
)
1209 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
1211 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1213 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1,
1215 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
1217 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
1219 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
1220 MASTER_KEY_MAX_LEN
, keydata
, tx
));
1221 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
1222 SHA512_HMAC_KEYLEN
, hmac_keydata
, tx
));
1223 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
1224 8, 1, &keyformat
, tx
));
1225 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
1227 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
1232 dsl_crypto_key_sync(dsl_crypto_key_t
*dck
, dmu_tx_t
*tx
)
1234 zio_crypt_key_t
*key
= &dck
->dck_key
;
1235 dsl_wrapping_key_t
*wkey
= dck
->dck_wkey
;
1236 uint8_t keydata
[MASTER_KEY_MAX_LEN
];
1237 uint8_t hmac_keydata
[SHA512_HMAC_KEYLEN
];
1238 uint8_t iv
[WRAPPING_IV_LEN
];
1239 uint8_t mac
[WRAPPING_MAC_LEN
];
1241 ASSERT(dmu_tx_is_syncing(tx
));
1242 ASSERT3U(key
->zk_crypt
, <, ZIO_CRYPT_FUNCTIONS
);
1244 /* encrypt and store the keys along with the IV and MAC */
1245 VERIFY0(zio_crypt_key_wrap(&dck
->dck_wkey
->wk_key
, key
, iv
, mac
,
1246 keydata
, hmac_keydata
));
1248 /* update the ZAP with the obtained values */
1249 dsl_crypto_key_sync_impl(tx
->tx_pool
->dp_meta_objset
, dck
->dck_obj
,
1250 key
->zk_crypt
, wkey
->wk_ddobj
, key
->zk_guid
, iv
, mac
, keydata
,
1251 hmac_keydata
, wkey
->wk_keyformat
, wkey
->wk_salt
, wkey
->wk_iters
,
1255 typedef struct spa_keystore_change_key_args
{
1256 const char *skcka_dsname
;
1257 dsl_crypto_params_t
*skcka_cp
;
1258 } spa_keystore_change_key_args_t
;
1261 spa_keystore_change_key_check(void *arg
, dmu_tx_t
*tx
)
1264 dsl_dir_t
*dd
= NULL
;
1265 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1266 spa_keystore_change_key_args_t
*skcka
= arg
;
1267 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1270 /* check for the encryption feature */
1271 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
1272 ret
= SET_ERROR(ENOTSUP
);
1276 /* check for valid key change command */
1277 if (dcp
->cp_cmd
!= DCP_CMD_NEW_KEY
&&
1278 dcp
->cp_cmd
!= DCP_CMD_INHERIT
&&
1279 dcp
->cp_cmd
!= DCP_CMD_FORCE_NEW_KEY
&&
1280 dcp
->cp_cmd
!= DCP_CMD_FORCE_INHERIT
) {
1281 ret
= SET_ERROR(EINVAL
);
1286 ret
= dsl_dir_hold(dp
, skcka
->skcka_dsname
, FTAG
, &dd
, NULL
);
1292 /* verify that the dataset is encrypted */
1293 if (dd
->dd_crypto_obj
== 0) {
1294 ret
= SET_ERROR(EINVAL
);
1298 /* clones must always use their origin's key */
1299 if (dsl_dir_is_clone(dd
)) {
1300 ret
= SET_ERROR(EINVAL
);
1304 /* lookup the ddobj we are inheriting the keylocation from */
1305 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
1309 /* Handle inheritance */
1310 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
||
1311 dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
) {
1312 /* no other encryption params should be given */
1313 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1314 dcp
->cp_keylocation
!= NULL
||
1315 dcp
->cp_wkey
!= NULL
) {
1316 ret
= SET_ERROR(EINVAL
);
1320 /* check that this is an encryption root */
1321 if (dd
->dd_object
!= rddobj
) {
1322 ret
= SET_ERROR(EINVAL
);
1326 /* check that the parent is encrypted */
1327 if (dd
->dd_parent
->dd_crypto_obj
== 0) {
1328 ret
= SET_ERROR(EINVAL
);
1332 /* if we are rewrapping check that both keys are loaded */
1333 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1334 ret
= dmu_objset_check_wkey_loaded(dd
);
1338 ret
= dmu_objset_check_wkey_loaded(dd
->dd_parent
);
1343 dsl_dir_rele(dd
, FTAG
);
1347 /* handle forcing an encryption root without rewrapping */
1348 if (dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1349 /* no other encryption params should be given */
1350 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1351 dcp
->cp_keylocation
!= NULL
||
1352 dcp
->cp_wkey
!= NULL
) {
1353 ret
= SET_ERROR(EINVAL
);
1357 /* check that this is not an encryption root */
1358 if (dd
->dd_object
== rddobj
) {
1359 ret
= SET_ERROR(EINVAL
);
1363 dsl_dir_rele(dd
, FTAG
);
1367 /* crypt cannot be changed after creation */
1368 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
) {
1369 ret
= SET_ERROR(EINVAL
);
1373 /* we are not inheritting our parent's wkey so we need one ourselves */
1374 if (dcp
->cp_wkey
== NULL
) {
1375 ret
= SET_ERROR(EINVAL
);
1379 /* check for a valid keyformat for the new wrapping key */
1380 if (dcp
->cp_wkey
->wk_keyformat
>= ZFS_KEYFORMAT_FORMATS
||
1381 dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_NONE
) {
1382 ret
= SET_ERROR(EINVAL
);
1387 * If this dataset is not currently an encryption root we need a new
1388 * keylocation for this dataset's new wrapping key. Otherwise we can
1389 * just keep the one we already had.
1391 if (dd
->dd_object
!= rddobj
&& dcp
->cp_keylocation
== NULL
) {
1392 ret
= SET_ERROR(EINVAL
);
1396 /* check that the keylocation is valid if it is not NULL */
1397 if (dcp
->cp_keylocation
!= NULL
&&
1398 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
)) {
1399 ret
= SET_ERROR(EINVAL
);
1403 /* passphrases require pbkdf2 salt and iters */
1404 if (dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_PASSPHRASE
) {
1405 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1406 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
) {
1407 ret
= SET_ERROR(EINVAL
);
1411 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0) {
1412 ret
= SET_ERROR(EINVAL
);
1417 /* make sure the dd's wkey is loaded */
1418 ret
= dmu_objset_check_wkey_loaded(dd
);
1422 dsl_dir_rele(dd
, FTAG
);
1428 dsl_dir_rele(dd
, FTAG
);
1434 * This function deals with the intricacies of updating wrapping
1435 * key references and encryption roots recursively in the event
1436 * of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1437 * parameter should always be set to B_FALSE when called
1441 spa_keystore_change_key_sync_impl(uint64_t rddobj
, uint64_t ddobj
,
1442 uint64_t new_rddobj
, dsl_wrapping_key_t
*wkey
, boolean_t skip
,
1447 zap_attribute_t
*za
;
1448 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1449 dsl_dir_t
*dd
= NULL
;
1450 dsl_crypto_key_t
*dck
= NULL
;
1451 uint64_t curr_rddobj
;
1453 ASSERT(RW_WRITE_HELD(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
));
1456 VERIFY0(dsl_dir_hold_obj(dp
, ddobj
, NULL
, FTAG
, &dd
));
1458 /* ignore special dsl dirs */
1459 if (dd
->dd_myname
[0] == '$' || dd
->dd_myname
[0] == '%') {
1460 dsl_dir_rele(dd
, FTAG
);
1464 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1465 VERIFY(ret
== 0 || ret
== ENOENT
);
1468 * Stop recursing if this dsl dir didn't inherit from the root
1469 * or if this dd is a clone.
1471 if (ret
== ENOENT
||
1472 (!skip
&& (curr_rddobj
!= rddobj
|| dsl_dir_is_clone(dd
)))) {
1473 dsl_dir_rele(dd
, FTAG
);
1478 * If we don't have a wrapping key just update the dck to reflect the
1479 * new encryption root. Otherwise rewrap the entire dck and re-sync it
1480 * to disk. If skip is set, we don't do any of this work.
1484 VERIFY0(zap_update(dp
->dp_meta_objset
,
1486 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1489 VERIFY0(spa_keystore_dsl_key_hold_dd(dp
->dp_spa
, dd
,
1491 dsl_wrapping_key_hold(wkey
, dck
);
1492 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
1493 dck
->dck_wkey
= wkey
;
1494 dsl_crypto_key_sync(dck
, tx
);
1495 spa_keystore_dsl_key_rele(dp
->dp_spa
, dck
, FTAG
);
1499 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
1500 za
= zap_attribute_alloc();
1502 /* Recurse into all child dsl dirs. */
1503 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1504 dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
1505 zap_cursor_retrieve(zc
, za
) == 0;
1506 zap_cursor_advance(zc
)) {
1507 spa_keystore_change_key_sync_impl(rddobj
,
1508 za
->za_first_integer
, new_rddobj
, wkey
, B_FALSE
, tx
);
1510 zap_cursor_fini(zc
);
1513 * Recurse into all dsl dirs of clones. We utilize the skip parameter
1514 * here so that we don't attempt to process the clones directly. This
1515 * is because the clone and its origin share the same dck, which has
1516 * already been updated.
1518 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1519 dsl_dir_phys(dd
)->dd_clones
);
1520 zap_cursor_retrieve(zc
, za
) == 0;
1521 zap_cursor_advance(zc
)) {
1522 dsl_dataset_t
*clone
;
1524 VERIFY0(dsl_dataset_hold_obj(dp
, za
->za_first_integer
,
1526 spa_keystore_change_key_sync_impl(rddobj
,
1527 clone
->ds_dir
->dd_object
, new_rddobj
, wkey
, B_TRUE
, tx
);
1528 dsl_dataset_rele(clone
, FTAG
);
1530 zap_cursor_fini(zc
);
1532 zap_attribute_free(za
);
1533 kmem_free(zc
, sizeof (zap_cursor_t
));
1535 dsl_dir_rele(dd
, FTAG
);
1539 spa_keystore_change_key_sync(void *arg
, dmu_tx_t
*tx
)
1543 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1544 spa_t
*spa
= dp
->dp_spa
;
1545 spa_keystore_change_key_args_t
*skcka
= arg
;
1546 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1547 dsl_wrapping_key_t
*wkey
= NULL
, *found_wkey
;
1548 dsl_wrapping_key_t wkey_search
;
1549 const char *keylocation
= dcp
->cp_keylocation
;
1550 uint64_t rddobj
, new_rddobj
;
1552 /* create and initialize the wrapping key */
1553 VERIFY0(dsl_dataset_hold(dp
, skcka
->skcka_dsname
, FTAG
, &ds
));
1554 ASSERT(!ds
->ds_is_snapshot
);
1556 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
||
1557 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1559 * We are changing to a new wkey. Set additional properties
1560 * which can be sent along with this ioctl. Note that this
1561 * command can set keylocation even if it can't normally be
1562 * set via 'zfs set' due to a non-local keylocation.
1564 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1565 wkey
= dcp
->cp_wkey
;
1566 wkey
->wk_ddobj
= ds
->ds_dir
->dd_object
;
1568 keylocation
= "prompt";
1571 if (keylocation
!= NULL
) {
1572 dsl_prop_set_sync_impl(ds
,
1573 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1574 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
1578 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
));
1579 new_rddobj
= ds
->ds_dir
->dd_object
;
1582 * We are inheritting the parent's wkey. Unset any local
1583 * keylocation and grab a reference to the wkey.
1585 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1586 VERIFY0(spa_keystore_wkey_hold_dd(spa
,
1587 ds
->ds_dir
->dd_parent
, FTAG
, &wkey
));
1590 dsl_prop_set_sync_impl(ds
,
1591 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), ZPROP_SRC_NONE
,
1594 rddobj
= ds
->ds_dir
->dd_object
;
1595 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
->dd_parent
,
1600 ASSERT(dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
||
1601 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
);
1604 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1606 /* recurse through all children and rewrap their keys */
1607 spa_keystore_change_key_sync_impl(rddobj
, ds
->ds_dir
->dd_object
,
1608 new_rddobj
, wkey
, B_FALSE
, tx
);
1611 * All references to the old wkey should be released now (if it
1612 * existed). Replace the wrapping key.
1614 wkey_search
.wk_ddobj
= ds
->ds_dir
->dd_object
;
1615 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &wkey_search
, NULL
);
1616 if (found_wkey
!= NULL
) {
1617 ASSERT0(zfs_refcount_count(&found_wkey
->wk_refcnt
));
1618 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
1619 dsl_wrapping_key_free(found_wkey
);
1622 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1623 avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
1624 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
1625 } else if (wkey
!= NULL
) {
1626 dsl_wrapping_key_rele(wkey
, FTAG
);
1629 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
1631 dsl_dataset_rele(ds
, FTAG
);
1635 spa_keystore_change_key(const char *dsname
, dsl_crypto_params_t
*dcp
)
1637 spa_keystore_change_key_args_t skcka
;
1639 /* initialize the args struct */
1640 skcka
.skcka_dsname
= dsname
;
1641 skcka
.skcka_cp
= dcp
;
1644 * Perform the actual work in syncing context. The blocks modified
1645 * here could be calculated but it would require holding the pool
1646 * lock and traversing all of the datasets that will have their keys
1649 return (dsl_sync_task(dsname
, spa_keystore_change_key_check
,
1650 spa_keystore_change_key_sync
, &skcka
, 15,
1651 ZFS_SPACE_CHECK_RESERVED
));
1655 dsl_dir_rename_crypt_check(dsl_dir_t
*dd
, dsl_dir_t
*newparent
)
1658 uint64_t curr_rddobj
, parent_rddobj
;
1660 if (dd
->dd_crypto_obj
== 0)
1663 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1668 * if this is not an encryption root, we must make sure we are not
1669 * moving dd to a new encryption root
1671 if (dd
->dd_object
!= curr_rddobj
) {
1672 ret
= dsl_dir_get_encryption_root_ddobj(newparent
,
1677 if (parent_rddobj
!= curr_rddobj
) {
1678 ret
= SET_ERROR(EACCES
);
1690 * Check to make sure that a promote from targetdd to origindd will not require
1694 dsl_dataset_promote_crypt_check(dsl_dir_t
*target
, dsl_dir_t
*origin
)
1697 uint64_t rddobj
, op_rddobj
, tp_rddobj
;
1699 /* If the dataset is not encrypted we don't need to check anything */
1700 if (origin
->dd_crypto_obj
== 0)
1704 * If we are not changing the first origin snapshot in a chain
1705 * the encryption root won't change either.
1707 if (dsl_dir_is_clone(origin
))
1711 * If the origin is the encryption root we will update
1712 * the DSL Crypto Key to point to the target instead.
1714 ret
= dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
);
1718 if (rddobj
== origin
->dd_object
)
1722 * The origin is inheriting its encryption root from its parent.
1723 * Check that the parent of the target has the same encryption root.
1725 ret
= dsl_dir_get_encryption_root_ddobj(origin
->dd_parent
, &op_rddobj
);
1727 return (SET_ERROR(EACCES
));
1731 ret
= dsl_dir_get_encryption_root_ddobj(target
->dd_parent
, &tp_rddobj
);
1733 return (SET_ERROR(EACCES
));
1737 if (op_rddobj
!= tp_rddobj
)
1738 return (SET_ERROR(EACCES
));
1744 dsl_dataset_promote_crypt_sync(dsl_dir_t
*target
, dsl_dir_t
*origin
,
1748 dsl_pool_t
*dp
= target
->dd_pool
;
1749 dsl_dataset_t
*targetds
;
1750 dsl_dataset_t
*originds
;
1753 if (origin
->dd_crypto_obj
== 0)
1755 if (dsl_dir_is_clone(origin
))
1758 VERIFY0(dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
));
1760 if (rddobj
!= origin
->dd_object
)
1764 * If the target is being promoted to the encryption root update the
1765 * DSL Crypto Key and keylocation to reflect that. We also need to
1766 * update the DSL Crypto Keys of all children inheritting their
1767 * encryption root to point to the new target. Otherwise, the check
1768 * function ensured that the encryption root will not change.
1770 keylocation
= kmem_alloc(ZAP_MAXVALUELEN
, KM_SLEEP
);
1772 VERIFY0(dsl_dataset_hold_obj(dp
,
1773 dsl_dir_phys(target
)->dd_head_dataset_obj
, FTAG
, &targetds
));
1774 VERIFY0(dsl_dataset_hold_obj(dp
,
1775 dsl_dir_phys(origin
)->dd_head_dataset_obj
, FTAG
, &originds
));
1777 VERIFY0(dsl_prop_get_dd(origin
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1778 1, ZAP_MAXVALUELEN
, keylocation
, NULL
, B_FALSE
));
1779 dsl_prop_set_sync_impl(targetds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1780 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1, keylocation
, tx
);
1781 dsl_prop_set_sync_impl(originds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1782 ZPROP_SRC_NONE
, 0, 0, NULL
, tx
);
1784 rw_enter(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1785 spa_keystore_change_key_sync_impl(rddobj
, origin
->dd_object
,
1786 target
->dd_object
, NULL
, B_FALSE
, tx
);
1787 rw_exit(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
);
1789 dsl_dataset_rele(targetds
, FTAG
);
1790 dsl_dataset_rele(originds
, FTAG
);
1791 kmem_free(keylocation
, ZAP_MAXVALUELEN
);
1795 dmu_objset_create_crypt_check(dsl_dir_t
*parentdd
, dsl_crypto_params_t
*dcp
,
1796 boolean_t
*will_encrypt
)
1799 uint64_t pcrypt
, crypt
;
1800 dsl_crypto_params_t dummy_dcp
= { 0 };
1802 if (will_encrypt
!= NULL
)
1803 *will_encrypt
= B_FALSE
;
1808 if (dcp
->cp_cmd
!= DCP_CMD_NONE
)
1809 return (SET_ERROR(EINVAL
));
1811 if (parentdd
!= NULL
) {
1812 ret
= dsl_dir_get_crypt(parentdd
, &pcrypt
);
1816 pcrypt
= ZIO_CRYPT_OFF
;
1819 crypt
= (dcp
->cp_crypt
== ZIO_CRYPT_INHERIT
) ? pcrypt
: dcp
->cp_crypt
;
1821 ASSERT3U(pcrypt
, !=, ZIO_CRYPT_INHERIT
);
1822 ASSERT3U(crypt
, !=, ZIO_CRYPT_INHERIT
);
1824 /* check for valid dcp with no encryption (inherited or local) */
1825 if (crypt
== ZIO_CRYPT_OFF
) {
1826 /* Must not specify encryption params */
1827 if (dcp
->cp_wkey
!= NULL
||
1828 (dcp
->cp_keylocation
!= NULL
&&
1829 strcmp(dcp
->cp_keylocation
, "none") != 0))
1830 return (SET_ERROR(EINVAL
));
1835 if (will_encrypt
!= NULL
)
1836 *will_encrypt
= B_TRUE
;
1839 * We will now definitely be encrypting. Check the feature flag. When
1840 * creating the pool the caller will check this for us since we won't
1841 * technically have the feature activated yet.
1843 if (parentdd
!= NULL
&&
1844 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1845 SPA_FEATURE_ENCRYPTION
)) {
1846 return (SET_ERROR(EOPNOTSUPP
));
1849 /* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1850 if (parentdd
!= NULL
&&
1851 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1852 SPA_FEATURE_BOOKMARK_V2
)) {
1853 return (SET_ERROR(EOPNOTSUPP
));
1856 /* handle inheritance */
1857 if (dcp
->cp_wkey
== NULL
) {
1858 ASSERT3P(parentdd
, !=, NULL
);
1860 /* key must be fully unspecified */
1861 if (dcp
->cp_keylocation
!= NULL
)
1862 return (SET_ERROR(EINVAL
));
1864 /* parent must have a key to inherit */
1865 if (pcrypt
== ZIO_CRYPT_OFF
)
1866 return (SET_ERROR(EINVAL
));
1868 /* check for parent key */
1869 ret
= dmu_objset_check_wkey_loaded(parentdd
);
1876 /* At this point we should have a fully specified key. Check location */
1877 if (dcp
->cp_keylocation
== NULL
||
1878 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
))
1879 return (SET_ERROR(EINVAL
));
1881 /* Must have fully specified keyformat */
1882 switch (dcp
->cp_wkey
->wk_keyformat
) {
1883 case ZFS_KEYFORMAT_HEX
:
1884 case ZFS_KEYFORMAT_RAW
:
1885 /* requires no pbkdf2 iters and salt */
1886 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0)
1887 return (SET_ERROR(EINVAL
));
1889 case ZFS_KEYFORMAT_PASSPHRASE
:
1890 /* requires pbkdf2 iters and salt */
1891 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1892 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
)
1893 return (SET_ERROR(EINVAL
));
1895 case ZFS_KEYFORMAT_NONE
:
1897 /* keyformat must be specified and valid */
1898 return (SET_ERROR(EINVAL
));
1905 dsl_dataset_create_crypt_sync(uint64_t dsobj
, dsl_dir_t
*dd
,
1906 dsl_dataset_t
*origin
, dsl_crypto_params_t
*dcp
, dmu_tx_t
*tx
)
1908 dsl_pool_t
*dp
= dd
->dd_pool
;
1910 dsl_wrapping_key_t
*wkey
;
1912 /* clones always use their origin's wrapping key */
1913 if (dsl_dir_is_clone(dd
)) {
1914 ASSERT3P(dcp
, ==, NULL
);
1917 * If this is an encrypted clone we just need to clone the
1918 * dck into dd. Zapify the dd so we can do that.
1920 if (origin
->ds_dir
->dd_crypto_obj
!= 0) {
1921 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1922 dsl_dir_zapify(dd
, tx
);
1925 dsl_crypto_key_clone_sync(origin
->ds_dir
, tx
);
1926 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1927 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1,
1928 &dd
->dd_crypto_obj
, tx
));
1935 * A NULL dcp at this point indicates this is the origin dataset
1936 * which does not have an objset to encrypt. Raw receives will handle
1937 * encryption separately later. In both cases we can simply return.
1939 if (dcp
== NULL
|| dcp
->cp_cmd
== DCP_CMD_RAW_RECV
)
1942 crypt
= dcp
->cp_crypt
;
1943 wkey
= dcp
->cp_wkey
;
1945 /* figure out the effective crypt */
1946 if (crypt
== ZIO_CRYPT_INHERIT
&& dd
->dd_parent
!= NULL
)
1947 VERIFY0(dsl_dir_get_crypt(dd
->dd_parent
, &crypt
));
1949 /* if we aren't doing encryption just return */
1950 if (crypt
== ZIO_CRYPT_OFF
|| crypt
== ZIO_CRYPT_INHERIT
)
1953 /* zapify the dd so that we can add the crypto key obj to it */
1954 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1955 dsl_dir_zapify(dd
, tx
);
1957 /* use the new key if given or inherit from the parent */
1959 VERIFY0(spa_keystore_wkey_hold_dd(dp
->dp_spa
,
1960 dd
->dd_parent
, FTAG
, &wkey
));
1962 wkey
->wk_ddobj
= dd
->dd_object
;
1965 ASSERT3P(wkey
, !=, NULL
);
1967 /* Create or clone the DSL crypto key and activate the feature */
1968 dd
->dd_crypto_obj
= dsl_crypto_key_create_sync(crypt
, wkey
, tx
);
1969 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1970 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1, &dd
->dd_crypto_obj
,
1972 dsl_dataset_activate_feature(dsobj
, SPA_FEATURE_ENCRYPTION
,
1973 (void *)B_TRUE
, tx
);
1976 * If we inherited the wrapping key we release our reference now.
1977 * Otherwise, this is a new key and we need to load it into the
1980 if (dcp
->cp_wkey
== NULL
) {
1981 dsl_wrapping_key_rele(wkey
, FTAG
);
1983 VERIFY0(spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
));
1987 typedef struct dsl_crypto_recv_key_arg
{
1988 uint64_t dcrka_dsobj
;
1989 uint64_t dcrka_fromobj
;
1990 dmu_objset_type_t dcrka_ostype
;
1991 nvlist_t
*dcrka_nvl
;
1992 boolean_t dcrka_do_key
;
1993 } dsl_crypto_recv_key_arg_t
;
1996 dsl_crypto_recv_raw_objset_check(dsl_dataset_t
*ds
, dsl_dataset_t
*fromds
,
1997 dmu_objset_type_t ostype
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2002 uint8_t *buf
= NULL
;
2004 uint64_t intval
, nlevels
, blksz
, ibs
;
2005 uint64_t nblkptr
, maxblkid
;
2007 if (ostype
!= DMU_OST_ZFS
&& ostype
!= DMU_OST_ZVOL
)
2008 return (SET_ERROR(EINVAL
));
2010 /* raw receives also need info about the structure of the metadnode */
2011 ret
= nvlist_lookup_uint64(nvl
, "mdn_compress", &intval
);
2012 if (ret
!= 0 || intval
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
)
2013 return (SET_ERROR(EINVAL
));
2015 ret
= nvlist_lookup_uint64(nvl
, "mdn_checksum", &intval
);
2016 if (ret
!= 0 || intval
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
)
2017 return (SET_ERROR(EINVAL
));
2019 ret
= nvlist_lookup_uint64(nvl
, "mdn_nlevels", &nlevels
);
2020 if (ret
!= 0 || nlevels
> DN_MAX_LEVELS
)
2021 return (SET_ERROR(EINVAL
));
2023 ret
= nvlist_lookup_uint64(nvl
, "mdn_blksz", &blksz
);
2024 if (ret
!= 0 || blksz
< SPA_MINBLOCKSIZE
)
2025 return (SET_ERROR(EINVAL
));
2026 else if (blksz
> spa_maxblocksize(tx
->tx_pool
->dp_spa
))
2027 return (SET_ERROR(ENOTSUP
));
2029 ret
= nvlist_lookup_uint64(nvl
, "mdn_indblkshift", &ibs
);
2030 if (ret
!= 0 || ibs
< DN_MIN_INDBLKSHIFT
|| ibs
> DN_MAX_INDBLKSHIFT
)
2031 return (SET_ERROR(ENOTSUP
));
2033 ret
= nvlist_lookup_uint64(nvl
, "mdn_nblkptr", &nblkptr
);
2034 if (ret
!= 0 || nblkptr
!= DN_MAX_NBLKPTR
)
2035 return (SET_ERROR(ENOTSUP
));
2037 ret
= nvlist_lookup_uint64(nvl
, "mdn_maxblkid", &maxblkid
);
2039 return (SET_ERROR(EINVAL
));
2041 ret
= nvlist_lookup_uint8_array(nvl
, "portable_mac", &buf
, &len
);
2042 if (ret
!= 0 || len
!= ZIO_OBJSET_MAC_LEN
)
2043 return (SET_ERROR(EINVAL
));
2045 ret
= dmu_objset_from_ds(ds
, &os
);
2049 mdn
= DMU_META_DNODE(os
);
2052 * If we already created the objset, make sure its unchangeable
2053 * properties match the ones received in the nvlist.
2055 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2056 if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds
)) &&
2057 (mdn
->dn_nlevels
!= nlevels
|| mdn
->dn_datablksz
!= blksz
||
2058 mdn
->dn_indblkshift
!= ibs
|| mdn
->dn_nblkptr
!= nblkptr
)) {
2059 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2060 return (SET_ERROR(EINVAL
));
2062 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2065 * Check that the ivset guid of the fromds matches the one from the
2066 * send stream. Older versions of the encryption code did not have
2067 * an ivset guid on the from dataset and did not send one in the
2068 * stream. For these streams we provide the
2069 * zfs_disable_ivset_guid_check tunable to allow these datasets to
2070 * be received with a generated ivset guid.
2072 if (fromds
!= NULL
&& !zfs_disable_ivset_guid_check
) {
2073 uint64_t from_ivset_guid
= 0;
2076 (void) nvlist_lookup_uint64(nvl
, "from_ivset_guid", &intval
);
2077 (void) zap_lookup(tx
->tx_pool
->dp_meta_objset
,
2078 fromds
->ds_object
, DS_FIELD_IVSET_GUID
,
2079 sizeof (from_ivset_guid
), 1, &from_ivset_guid
);
2081 if (intval
== 0 || from_ivset_guid
== 0)
2082 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING
));
2084 if (intval
!= from_ivset_guid
)
2085 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH
));
2092 dsl_crypto_recv_raw_objset_sync(dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2093 nvlist_t
*nvl
, dmu_tx_t
*tx
)
2095 dsl_pool_t
*dp
= tx
->tx_pool
;
2099 uint8_t *portable_mac
;
2101 uint64_t compress
, checksum
, nlevels
, blksz
, ibs
, maxblkid
;
2102 boolean_t newds
= B_FALSE
;
2104 VERIFY0(dmu_objset_from_ds(ds
, &os
));
2105 mdn
= DMU_META_DNODE(os
);
2108 * Fetch the values we need from the nvlist. "to_ivset_guid" must
2109 * be set on the snapshot, which doesn't exist yet. The receive
2110 * code will take care of this for us later.
2112 compress
= fnvlist_lookup_uint64(nvl
, "mdn_compress");
2113 checksum
= fnvlist_lookup_uint64(nvl
, "mdn_checksum");
2114 nlevels
= fnvlist_lookup_uint64(nvl
, "mdn_nlevels");
2115 blksz
= fnvlist_lookup_uint64(nvl
, "mdn_blksz");
2116 ibs
= fnvlist_lookup_uint64(nvl
, "mdn_indblkshift");
2117 maxblkid
= fnvlist_lookup_uint64(nvl
, "mdn_maxblkid");
2118 VERIFY0(nvlist_lookup_uint8_array(nvl
, "portable_mac", &portable_mac
,
2121 /* if we haven't created an objset for the ds yet, do that now */
2122 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2123 if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds
))) {
2124 (void) dmu_objset_create_impl_dnstats(dp
->dp_spa
, ds
,
2125 dsl_dataset_get_blkptr(ds
), ostype
, nlevels
, blksz
,
2129 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2132 * Set the portable MAC. The local MAC will always be zero since the
2133 * incoming data will all be portable and user accounting will be
2134 * deferred until the next mount. Afterwards, flag the os to be
2135 * written out raw next time.
2137 arc_release(os
->os_phys_buf
, &os
->os_phys_buf
);
2138 memcpy(os
->os_phys
->os_portable_mac
, portable_mac
, ZIO_OBJSET_MAC_LEN
);
2139 memset(os
->os_phys
->os_local_mac
, 0, ZIO_OBJSET_MAC_LEN
);
2140 os
->os_flags
&= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE
;
2141 os
->os_next_write_raw
[tx
->tx_txg
& TXG_MASK
] = B_TRUE
;
2143 /* set metadnode compression and checksum */
2144 mdn
->dn_compress
= compress
;
2145 mdn
->dn_checksum
= checksum
;
2147 rw_enter(&mdn
->dn_struct_rwlock
, RW_WRITER
);
2148 dnode_new_blkid(mdn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
2149 rw_exit(&mdn
->dn_struct_rwlock
);
2152 * We can't normally dirty the dataset in syncing context unless
2153 * we are creating a new dataset. In this case, we perform a
2154 * pseudo txg sync here instead.
2157 dsl_dataset_dirty(ds
, tx
);
2159 zio
= zio_root(dp
->dp_spa
, NULL
, NULL
, ZIO_FLAG_MUSTSUCCEED
);
2160 dsl_dataset_sync(ds
, zio
, tx
);
2161 VERIFY0(zio_wait(zio
));
2162 dsl_dataset_sync_done(ds
, tx
);
2167 dsl_crypto_recv_raw_key_check(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2170 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2171 uint8_t *buf
= NULL
;
2173 uint64_t intval
, key_guid
, version
;
2174 boolean_t is_passphrase
= B_FALSE
;
2176 ASSERT(dsl_dataset_phys(ds
)->ds_flags
& DS_FLAG_INCONSISTENT
);
2179 * Read and check all the encryption values from the nvlist. We need
2180 * all of the fields of a DSL Crypto Key, as well as a fully specified
2183 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, &intval
);
2184 if (ret
!= 0 || intval
<= ZIO_CRYPT_OFF
)
2185 return (SET_ERROR(EINVAL
));
2188 * Flag a future crypto suite that we don't support differently, so
2189 * we can return a more useful error to the user.
2191 if (intval
>= ZIO_CRYPT_FUNCTIONS
)
2192 return (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP
));
2194 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, &intval
);
2196 return (SET_ERROR(EINVAL
));
2199 * If this is an incremental receive make sure the given key guid
2200 * matches the one we already have.
2202 if (ds
->ds_dir
->dd_crypto_obj
!= 0) {
2203 ret
= zap_lookup(mos
, ds
->ds_dir
->dd_crypto_obj
,
2204 DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2207 if (intval
!= key_guid
)
2208 return (SET_ERROR(EACCES
));
2211 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2213 if (ret
!= 0 || len
!= MASTER_KEY_MAX_LEN
)
2214 return (SET_ERROR(EINVAL
));
2216 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2218 if (ret
!= 0 || len
!= SHA512_HMAC_KEYLEN
)
2219 return (SET_ERROR(EINVAL
));
2221 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &buf
, &len
);
2222 if (ret
!= 0 || len
!= WRAPPING_IV_LEN
)
2223 return (SET_ERROR(EINVAL
));
2225 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &buf
, &len
);
2226 if (ret
!= 0 || len
!= WRAPPING_MAC_LEN
)
2227 return (SET_ERROR(EINVAL
));
2230 * We don't support receiving old on-disk formats. The version 0
2231 * implementation protected several fields in an objset that were
2232 * not always portable during a raw receive. As a result, we call
2233 * the old version an on-disk errata #3.
2235 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, &version
);
2236 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
)
2237 return (SET_ERROR(ENOTSUP
));
2239 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
2241 if (ret
!= 0 || intval
>= ZFS_KEYFORMAT_FORMATS
||
2242 intval
== ZFS_KEYFORMAT_NONE
)
2243 return (SET_ERROR(EINVAL
));
2245 is_passphrase
= (intval
== ZFS_KEYFORMAT_PASSPHRASE
);
2248 * for raw receives we allow any number of pbkdf2iters since there
2249 * won't be a chance for the user to change it.
2251 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
2253 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2254 return (SET_ERROR(EINVAL
));
2256 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
2258 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2259 return (SET_ERROR(EINVAL
));
2265 dsl_crypto_recv_raw_key_sync(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2267 dsl_pool_t
*dp
= tx
->tx_pool
;
2268 objset_t
*mos
= dp
->dp_meta_objset
;
2269 dsl_dir_t
*dd
= ds
->ds_dir
;
2271 uint64_t rddobj
, one
= 1;
2272 uint8_t *keydata
, *hmac_keydata
, *iv
, *mac
;
2273 uint64_t crypt
, key_guid
, keyformat
, iters
, salt
;
2274 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2275 const char *keylocation
= "prompt";
2277 /* lookup the values we need to create the DSL Crypto Key */
2278 crypt
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
);
2279 key_guid
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
);
2280 keyformat
= fnvlist_lookup_uint64(nvl
,
2281 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
2282 iters
= fnvlist_lookup_uint64(nvl
,
2283 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
2284 salt
= fnvlist_lookup_uint64(nvl
,
2285 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
2286 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2288 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2289 &hmac_keydata
, &len
));
2290 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &iv
, &len
));
2291 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &mac
, &len
));
2293 /* if this is a new dataset setup the DSL Crypto Key. */
2294 if (dd
->dd_crypto_obj
== 0) {
2295 /* zapify the dsl dir so we can add the key object to it */
2296 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
2297 dsl_dir_zapify(dd
, tx
);
2299 /* create the DSL Crypto Key on disk and activate the feature */
2300 dd
->dd_crypto_obj
= zap_create(mos
,
2301 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2302 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2303 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_REFCOUNT
,
2304 sizeof (uint64_t), 1, &one
, tx
));
2305 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2306 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_VERSION
,
2307 sizeof (uint64_t), 1, &version
, tx
));
2309 dsl_dataset_activate_feature(ds
->ds_object
,
2310 SPA_FEATURE_ENCRYPTION
, (void *)B_TRUE
, tx
);
2311 ds
->ds_feature
[SPA_FEATURE_ENCRYPTION
] = (void *)B_TRUE
;
2313 /* save the dd_crypto_obj on disk */
2314 VERIFY0(zap_add(mos
, dd
->dd_object
, DD_FIELD_CRYPTO_KEY_OBJ
,
2315 sizeof (uint64_t), 1, &dd
->dd_crypto_obj
, tx
));
2318 * Set the keylocation to prompt by default. If keylocation
2319 * has been provided via the properties, this will be overridden
2322 dsl_prop_set_sync_impl(ds
,
2323 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
2324 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
2327 rddobj
= dd
->dd_object
;
2329 VERIFY0(dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
));
2332 /* sync the key data to the ZAP object on disk */
2333 dsl_crypto_key_sync_impl(mos
, dd
->dd_crypto_obj
, crypt
,
2334 rddobj
, key_guid
, iv
, mac
, keydata
, hmac_keydata
, keyformat
, salt
,
2339 dsl_crypto_recv_key_check(void *arg
, dmu_tx_t
*tx
)
2342 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2343 dsl_dataset_t
*ds
= NULL
, *fromds
= NULL
;
2345 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2350 if (dcrka
->dcrka_fromobj
!= 0) {
2351 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_fromobj
,
2357 ret
= dsl_crypto_recv_raw_objset_check(ds
, fromds
,
2358 dcrka
->dcrka_ostype
, dcrka
->dcrka_nvl
, tx
);
2363 * We run this check even if we won't be doing this part of
2364 * the receive now so that we don't make the user wait until
2365 * the receive finishes to fail.
2367 ret
= dsl_crypto_recv_raw_key_check(ds
, dcrka
->dcrka_nvl
, tx
);
2373 dsl_dataset_rele(ds
, FTAG
);
2375 dsl_dataset_rele(fromds
, FTAG
);
2380 dsl_crypto_recv_key_sync(void *arg
, dmu_tx_t
*tx
)
2382 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2385 VERIFY0(dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2387 dsl_crypto_recv_raw_objset_sync(ds
, dcrka
->dcrka_ostype
,
2388 dcrka
->dcrka_nvl
, tx
);
2389 if (dcrka
->dcrka_do_key
)
2390 dsl_crypto_recv_raw_key_sync(ds
, dcrka
->dcrka_nvl
, tx
);
2391 dsl_dataset_rele(ds
, FTAG
);
2395 * This function is used to sync an nvlist representing a DSL Crypto Key and
2396 * the associated encryption parameters. The key will be written exactly as is
2397 * without wrapping it.
2400 dsl_crypto_recv_raw(const char *poolname
, uint64_t dsobj
, uint64_t fromobj
,
2401 dmu_objset_type_t ostype
, nvlist_t
*nvl
, boolean_t do_key
)
2403 dsl_crypto_recv_key_arg_t dcrka
;
2405 dcrka
.dcrka_dsobj
= dsobj
;
2406 dcrka
.dcrka_fromobj
= fromobj
;
2407 dcrka
.dcrka_ostype
= ostype
;
2408 dcrka
.dcrka_nvl
= nvl
;
2409 dcrka
.dcrka_do_key
= do_key
;
2411 return (dsl_sync_task(poolname
, dsl_crypto_recv_key_check
,
2412 dsl_crypto_recv_key_sync
, &dcrka
, 1, ZFS_SPACE_CHECK_NORMAL
));
2416 dsl_crypto_populate_key_nvlist(objset_t
*os
, uint64_t from_ivset_guid
,
2420 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
2423 nvlist_t
*nvl
= NULL
;
2424 uint64_t dckobj
= ds
->ds_dir
->dd_crypto_obj
;
2425 dsl_dir_t
*rdd
= NULL
;
2426 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2427 objset_t
*mos
= dp
->dp_meta_objset
;
2428 uint64_t crypt
= 0, key_guid
= 0, format
= 0;
2429 uint64_t iters
= 0, salt
= 0, version
= 0;
2430 uint64_t to_ivset_guid
= 0;
2431 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
2432 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
2433 uint8_t iv
[WRAPPING_IV_LEN
];
2434 uint8_t mac
[WRAPPING_MAC_LEN
];
2436 ASSERT(dckobj
!= 0);
2438 mdn
= DMU_META_DNODE(os
);
2440 nvl
= fnvlist_alloc();
2442 /* lookup values from the DSL Crypto Key */
2443 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
2448 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2452 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
2453 MASTER_KEY_MAX_LEN
, raw_keydata
);
2457 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
2458 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
2462 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
2467 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
2472 /* see zfs_disable_ivset_guid_check tunable for errata info */
2473 ret
= zap_lookup(mos
, ds
->ds_object
, DS_FIELD_IVSET_GUID
, 8, 1,
2476 ASSERT3U(dp
->dp_spa
->spa_errata
, !=, 0);
2479 * We don't support raw sends of legacy on-disk formats. See the
2480 * comment in dsl_crypto_recv_key_check() for details.
2482 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
2483 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
) {
2484 dp
->dp_spa
->spa_errata
= ZPOOL_ERRATA_ZOL_6845_ENCRYPTION
;
2485 ret
= SET_ERROR(ENOTSUP
);
2490 * Lookup wrapping key properties. An early version of the code did
2491 * not correctly add these values to the wrapping key or the DSL
2492 * Crypto Key on disk for non encryption roots, so to be safe we
2493 * always take the slightly circuitous route of looking it up from
2494 * the encryption root's key.
2496 ret
= dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
);
2500 dsl_pool_config_enter(dp
, FTAG
);
2502 ret
= dsl_dir_hold_obj(dp
, rddobj
, NULL
, FTAG
, &rdd
);
2506 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2507 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &format
);
2511 if (format
== ZFS_KEYFORMAT_PASSPHRASE
) {
2512 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2513 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
2517 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2518 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
2523 dsl_dir_rele(rdd
, FTAG
);
2524 dsl_pool_config_exit(dp
, FTAG
);
2526 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, crypt
);
2527 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, key_guid
);
2528 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, version
);
2529 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2530 raw_keydata
, MASTER_KEY_MAX_LEN
));
2531 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2532 raw_hmac_keydata
, SHA512_HMAC_KEYLEN
));
2533 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, iv
,
2535 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, mac
,
2537 VERIFY0(nvlist_add_uint8_array(nvl
, "portable_mac",
2538 os
->os_phys
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
));
2539 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), format
);
2540 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), iters
);
2541 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), salt
);
2542 fnvlist_add_uint64(nvl
, "mdn_checksum", mdn
->dn_checksum
);
2543 fnvlist_add_uint64(nvl
, "mdn_compress", mdn
->dn_compress
);
2544 fnvlist_add_uint64(nvl
, "mdn_nlevels", mdn
->dn_nlevels
);
2545 fnvlist_add_uint64(nvl
, "mdn_blksz", mdn
->dn_datablksz
);
2546 fnvlist_add_uint64(nvl
, "mdn_indblkshift", mdn
->dn_indblkshift
);
2547 fnvlist_add_uint64(nvl
, "mdn_nblkptr", mdn
->dn_nblkptr
);
2548 fnvlist_add_uint64(nvl
, "mdn_maxblkid", mdn
->dn_maxblkid
);
2549 fnvlist_add_uint64(nvl
, "to_ivset_guid", to_ivset_guid
);
2550 fnvlist_add_uint64(nvl
, "from_ivset_guid", from_ivset_guid
);
2556 dsl_pool_config_exit(dp
, FTAG
);
2559 dsl_dir_rele(rdd
, FTAG
);
2567 dsl_crypto_key_create_sync(uint64_t crypt
, dsl_wrapping_key_t
*wkey
,
2570 dsl_crypto_key_t dck
;
2571 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2572 uint64_t one
= 1ULL;
2574 ASSERT(dmu_tx_is_syncing(tx
));
2575 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
2576 ASSERT3U(crypt
, >, ZIO_CRYPT_OFF
);
2578 /* create the DSL Crypto Key ZAP object */
2579 dck
.dck_obj
= zap_create(tx
->tx_pool
->dp_meta_objset
,
2580 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2582 /* fill in the key (on the stack) and sync it to disk */
2583 dck
.dck_wkey
= wkey
;
2584 VERIFY0(zio_crypt_key_init(crypt
, &dck
.dck_key
));
2586 dsl_crypto_key_sync(&dck
, tx
);
2587 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2588 DSL_CRYPTO_KEY_REFCOUNT
, sizeof (uint64_t), 1, &one
, tx
));
2589 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2590 DSL_CRYPTO_KEY_VERSION
, sizeof (uint64_t), 1, &version
, tx
));
2592 zio_crypt_key_destroy(&dck
.dck_key
);
2593 memset(&dck
.dck_key
, 0, sizeof (zio_crypt_key_t
));
2595 return (dck
.dck_obj
);
2599 dsl_crypto_key_clone_sync(dsl_dir_t
*origindd
, dmu_tx_t
*tx
)
2601 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2603 ASSERT(dmu_tx_is_syncing(tx
));
2605 VERIFY0(zap_increment(mos
, origindd
->dd_crypto_obj
,
2606 DSL_CRYPTO_KEY_REFCOUNT
, 1, tx
));
2608 return (origindd
->dd_crypto_obj
);
2612 dsl_crypto_key_destroy_sync(uint64_t dckobj
, dmu_tx_t
*tx
)
2614 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2617 /* Decrement the refcount, destroy if this is the last reference */
2618 VERIFY0(zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2619 sizeof (uint64_t), 1, &refcnt
));
2622 VERIFY0(zap_increment(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2625 VERIFY0(zap_destroy(mos
, dckobj
, tx
));
2630 dsl_dataset_crypt_stats(dsl_dataset_t
*ds
, nvlist_t
*nv
)
2633 dsl_dir_t
*dd
= ds
->ds_dir
;
2634 dsl_dir_t
*enc_root
;
2635 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
2637 if (dd
->dd_crypto_obj
== 0)
2640 intval
= dsl_dataset_get_keystatus(dd
);
2641 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYSTATUS
, intval
);
2643 if (dsl_dir_get_crypt(dd
, &intval
) == 0)
2644 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_ENCRYPTION
, intval
);
2645 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2646 DSL_CRYPTO_KEY_GUID
, 8, 1, &intval
) == 0) {
2647 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEY_GUID
, intval
);
2649 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2650 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &intval
) == 0) {
2651 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYFORMAT
, intval
);
2653 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2654 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &intval
) == 0) {
2655 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_SALT
, intval
);
2657 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2658 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &intval
) == 0) {
2659 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_ITERS
, intval
);
2661 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, ds
->ds_object
,
2662 DS_FIELD_IVSET_GUID
, 8, 1, &intval
) == 0) {
2663 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_IVSET_GUID
, intval
);
2666 if (dsl_dir_get_encryption_root_ddobj(dd
, &intval
) == 0) {
2667 if (dsl_dir_hold_obj(dd
->dd_pool
, intval
, NULL
, FTAG
,
2669 dsl_dir_name(enc_root
, buf
);
2670 dsl_dir_rele(enc_root
, FTAG
);
2671 dsl_prop_nvlist_add_string(nv
,
2672 ZFS_PROP_ENCRYPTION_ROOT
, buf
);
2678 spa_crypt_get_salt(spa_t
*spa
, uint64_t dsobj
, uint8_t *salt
)
2681 dsl_crypto_key_t
*dck
= NULL
;
2683 /* look up the key from the spa's keystore */
2684 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2688 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2692 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2697 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2702 * Objset blocks are a special case for MAC generation. These blocks have 2
2703 * 256-bit MACs which are embedded within the block itself, rather than a
2704 * single 128 bit MAC. As a result, this function handles encoding and decoding
2705 * the MACs on its own, unlike other functions in this file.
2708 spa_do_crypt_objset_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
,
2709 abd_t
*abd
, uint_t datalen
, boolean_t byteswap
)
2712 dsl_crypto_key_t
*dck
= NULL
;
2713 void *buf
= abd_borrow_buf_copy(abd
, datalen
);
2714 objset_phys_t
*osp
= buf
;
2715 uint8_t portable_mac
[ZIO_OBJSET_MAC_LEN
];
2716 uint8_t local_mac
[ZIO_OBJSET_MAC_LEN
];
2717 const uint8_t zeroed_mac
[ZIO_OBJSET_MAC_LEN
] = {0};
2719 /* look up the key from the spa's keystore */
2720 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2724 /* calculate both HMACs */
2725 ret
= zio_crypt_do_objset_hmacs(&dck
->dck_key
, buf
, datalen
,
2726 byteswap
, portable_mac
, local_mac
);
2730 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2732 /* if we are generating encode the HMACs in the objset_phys_t */
2734 memcpy(osp
->os_portable_mac
, portable_mac
, ZIO_OBJSET_MAC_LEN
);
2735 memcpy(osp
->os_local_mac
, local_mac
, ZIO_OBJSET_MAC_LEN
);
2736 abd_return_buf_copy(abd
, buf
, datalen
);
2740 if (memcmp(portable_mac
, osp
->os_portable_mac
,
2741 ZIO_OBJSET_MAC_LEN
) != 0 ||
2742 memcmp(local_mac
, osp
->os_local_mac
, ZIO_OBJSET_MAC_LEN
) != 0) {
2744 * If the MAC is zeroed out, we failed to decrypt it.
2745 * This should only arise, at least on Linux,
2746 * if we hit edge case handling for useraccounting, since we
2747 * shouldn't get here without bailing out on error earlier
2750 * So if we're in that case, we can just fall through and
2751 * special-casing noticing that it's zero will handle it
2752 * elsewhere, since we can just regenerate it.
2754 if (memcmp(local_mac
, zeroed_mac
, ZIO_OBJSET_MAC_LEN
) != 0) {
2755 abd_return_buf(abd
, buf
, datalen
);
2756 return (SET_ERROR(ECKSUM
));
2760 abd_return_buf(abd
, buf
, datalen
);
2766 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2767 abd_return_buf(abd
, buf
, datalen
);
2772 spa_do_crypt_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
, abd_t
*abd
,
2773 uint_t datalen
, uint8_t *mac
)
2776 dsl_crypto_key_t
*dck
= NULL
;
2777 uint8_t *buf
= abd_borrow_buf_copy(abd
, datalen
);
2778 uint8_t digestbuf
[ZIO_DATA_MAC_LEN
];
2780 /* look up the key from the spa's keystore */
2781 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2785 /* perform the hmac */
2786 ret
= zio_crypt_do_hmac(&dck
->dck_key
, buf
, datalen
,
2787 digestbuf
, ZIO_DATA_MAC_LEN
);
2791 abd_return_buf(abd
, buf
, datalen
);
2792 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2795 * Truncate and fill in mac buffer if we were asked to generate a MAC.
2796 * Otherwise verify that the MAC matched what we expected.
2799 memcpy(mac
, digestbuf
, ZIO_DATA_MAC_LEN
);
2803 if (memcmp(digestbuf
, mac
, ZIO_DATA_MAC_LEN
) != 0)
2804 return (SET_ERROR(ECKSUM
));
2810 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2811 abd_return_buf(abd
, buf
, datalen
);
2816 * This function serves as a multiplexer for encryption and decryption of
2817 * all blocks (except the L2ARC). For encryption, it will populate the IV,
2818 * salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2819 * these fields to populate pabd (the plaintext).
2822 spa_do_crypt_abd(boolean_t encrypt
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2823 dmu_object_type_t ot
, boolean_t dedup
, boolean_t bswap
, uint8_t *salt
,
2824 uint8_t *iv
, uint8_t *mac
, uint_t datalen
, abd_t
*pabd
, abd_t
*cabd
,
2825 boolean_t
*no_crypt
)
2828 dsl_crypto_key_t
*dck
= NULL
;
2829 uint8_t *plainbuf
= NULL
, *cipherbuf
= NULL
;
2831 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
2833 /* look up the key from the spa's keystore */
2834 ret
= spa_keystore_lookup_key(spa
, zb
->zb_objset
, FTAG
, &dck
);
2836 ret
= SET_ERROR(EACCES
);
2841 plainbuf
= abd_borrow_buf_copy(pabd
, datalen
);
2842 cipherbuf
= abd_borrow_buf(cabd
, datalen
);
2844 plainbuf
= abd_borrow_buf(pabd
, datalen
);
2845 cipherbuf
= abd_borrow_buf_copy(cabd
, datalen
);
2849 * Both encryption and decryption functions need a salt for key
2850 * generation and an IV. When encrypting a non-dedup block, we
2851 * generate the salt and IV randomly to be stored by the caller. Dedup
2852 * blocks perform a (more expensive) HMAC of the plaintext to obtain
2853 * the salt and the IV. ZIL blocks have their salt and IV generated
2854 * at allocation time in zio_alloc_zil(). On decryption, we simply use
2855 * the provided values.
2857 if (encrypt
&& ot
!= DMU_OT_INTENT_LOG
&& !dedup
) {
2858 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2862 ret
= zio_crypt_generate_iv(iv
);
2865 } else if (encrypt
&& dedup
) {
2866 ret
= zio_crypt_generate_iv_salt_dedup(&dck
->dck_key
,
2867 plainbuf
, datalen
, iv
, salt
);
2872 /* call lower level function to perform encryption / decryption */
2873 ret
= zio_do_crypt_data(encrypt
, &dck
->dck_key
, ot
, bswap
, salt
, iv
,
2874 mac
, datalen
, plainbuf
, cipherbuf
, no_crypt
);
2877 * Handle injected decryption faults. Unfortunately, we cannot inject
2878 * faults for dnode blocks because we might trigger the panic in
2879 * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2880 * context is not prepared to handle malicious decryption failures.
2882 if (zio_injection_enabled
&& !encrypt
&& ot
!= DMU_OT_DNODE
&& ret
== 0)
2883 ret
= zio_handle_decrypt_injection(spa
, zb
, ot
, ECKSUM
);
2888 abd_return_buf(pabd
, plainbuf
, datalen
);
2889 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2891 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2892 abd_return_buf(cabd
, cipherbuf
, datalen
);
2895 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2901 /* zero out any state we might have changed while encrypting */
2902 memset(salt
, 0, ZIO_DATA_SALT_LEN
);
2903 memset(iv
, 0, ZIO_DATA_IV_LEN
);
2904 memset(mac
, 0, ZIO_DATA_MAC_LEN
);
2905 abd_return_buf(pabd
, plainbuf
, datalen
);
2906 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2908 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2909 abd_return_buf(cabd
, cipherbuf
, datalen
);
2912 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2917 ZFS_MODULE_PARAM(zfs
, zfs_
, disable_ivset_guid_check
, INT
, ZMOD_RW
,
2918 "Set to allow raw receives without IVset guids");