4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
28 /* Portions Copyright 2010 Robert Milkowski */
30 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
47 #include <sys/wmsum.h>
50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51 * calls that change the file system. Each itx has enough information to
52 * be able to replay them after a system crash, power loss, or
53 * equivalent failure mode. These are stored in memory until either:
55 * 1. they are committed to the pool by the DMU transaction group
56 * (txg), at which point they can be discarded; or
57 * 2. they are committed to the on-disk ZIL for the dataset being
58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
61 * In the event of a crash or power loss, the itxs contained by each
62 * dataset's on-disk ZIL will be replayed when that dataset is first
63 * instantiated (e.g. if the dataset is a normal filesystem, when it is
66 * As hinted at above, there is one ZIL per dataset (both the in-memory
67 * representation, and the on-disk representation). The on-disk format
68 * consists of 3 parts:
70 * - a single, per-dataset, ZIL header; which points to a chain of
71 * - zero or more ZIL blocks; each of which contains
72 * - zero or more ZIL records
74 * A ZIL record holds the information necessary to replay a single
75 * system call transaction. A ZIL block can hold many ZIL records, and
76 * the blocks are chained together, similarly to a singly linked list.
78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79 * block in the chain, and the ZIL header points to the first block in
82 * Note, there is not a fixed place in the pool to hold these ZIL
83 * blocks; they are dynamically allocated and freed as needed from the
84 * blocks available on the pool, though they can be preferentially
85 * allocated from a dedicated "log" vdev.
89 * This controls the amount of time that a ZIL block (lwb) will remain
90 * "open" when it isn't "full", and it has a thread waiting for it to be
91 * committed to stable storage. Please refer to the zil_commit_waiter()
92 * function (and the comments within it) for more details.
94 static uint_t zfs_commit_timeout_pct
= 10;
97 * See zil.h for more information about these fields.
99 static zil_kstat_values_t zil_stats
= {
100 { "zil_commit_count", KSTAT_DATA_UINT64
},
101 { "zil_commit_writer_count", KSTAT_DATA_UINT64
},
102 { "zil_commit_error_count", KSTAT_DATA_UINT64
},
103 { "zil_commit_stall_count", KSTAT_DATA_UINT64
},
104 { "zil_commit_suspend_count", KSTAT_DATA_UINT64
},
105 { "zil_itx_count", KSTAT_DATA_UINT64
},
106 { "zil_itx_indirect_count", KSTAT_DATA_UINT64
},
107 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64
},
108 { "zil_itx_copied_count", KSTAT_DATA_UINT64
},
109 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64
},
110 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64
},
111 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64
},
112 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64
},
113 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64
},
114 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64
},
115 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64
},
116 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64
},
117 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64
},
118 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64
},
119 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64
},
122 static zil_sums_t zil_sums_global
;
123 static kstat_t
*zil_kstats_global
;
126 * Disable intent logging replay. This global ZIL switch affects all pools.
128 int zil_replay_disable
= 0;
131 * Disable the flush commands that are normally sent to the disk(s) by the ZIL
132 * after an LWB write has completed. Setting this will cause ZIL corruption on
133 * power loss if a volatile out-of-order write cache is enabled.
135 static int zil_nocacheflush
= 0;
138 * Limit SLOG write size per commit executed with synchronous priority.
139 * Any writes above that will be executed with lower (asynchronous) priority
140 * to limit potential SLOG device abuse by single active ZIL writer.
142 static uint64_t zil_slog_bulk
= 64 * 1024 * 1024;
144 static kmem_cache_t
*zil_lwb_cache
;
145 static kmem_cache_t
*zil_zcw_cache
;
147 static void zil_lwb_commit(zilog_t
*zilog
, lwb_t
*lwb
, itx_t
*itx
);
148 static itx_t
*zil_itx_clone(itx_t
*oitx
);
149 static uint64_t zil_max_waste_space(zilog_t
*zilog
);
152 zil_bp_compare(const void *x1
, const void *x2
)
154 const dva_t
*dva1
= &((zil_bp_node_t
*)x1
)->zn_dva
;
155 const dva_t
*dva2
= &((zil_bp_node_t
*)x2
)->zn_dva
;
157 int cmp
= TREE_CMP(DVA_GET_VDEV(dva1
), DVA_GET_VDEV(dva2
));
161 return (TREE_CMP(DVA_GET_OFFSET(dva1
), DVA_GET_OFFSET(dva2
)));
165 zil_bp_tree_init(zilog_t
*zilog
)
167 avl_create(&zilog
->zl_bp_tree
, zil_bp_compare
,
168 sizeof (zil_bp_node_t
), offsetof(zil_bp_node_t
, zn_node
));
172 zil_bp_tree_fini(zilog_t
*zilog
)
174 avl_tree_t
*t
= &zilog
->zl_bp_tree
;
178 while ((zn
= avl_destroy_nodes(t
, &cookie
)) != NULL
)
179 kmem_free(zn
, sizeof (zil_bp_node_t
));
185 zil_bp_tree_add(zilog_t
*zilog
, const blkptr_t
*bp
)
187 avl_tree_t
*t
= &zilog
->zl_bp_tree
;
192 if (BP_IS_EMBEDDED(bp
))
195 dva
= BP_IDENTITY(bp
);
197 if (avl_find(t
, dva
, &where
) != NULL
)
198 return (SET_ERROR(EEXIST
));
200 zn
= kmem_alloc(sizeof (zil_bp_node_t
), KM_SLEEP
);
202 avl_insert(t
, zn
, where
);
207 static zil_header_t
*
208 zil_header_in_syncing_context(zilog_t
*zilog
)
210 return ((zil_header_t
*)zilog
->zl_header
);
214 zil_init_log_chain(zilog_t
*zilog
, blkptr_t
*bp
)
216 zio_cksum_t
*zc
= &bp
->blk_cksum
;
218 (void) random_get_pseudo_bytes((void *)&zc
->zc_word
[ZIL_ZC_GUID_0
],
219 sizeof (zc
->zc_word
[ZIL_ZC_GUID_0
]));
220 (void) random_get_pseudo_bytes((void *)&zc
->zc_word
[ZIL_ZC_GUID_1
],
221 sizeof (zc
->zc_word
[ZIL_ZC_GUID_1
]));
222 zc
->zc_word
[ZIL_ZC_OBJSET
] = dmu_objset_id(zilog
->zl_os
);
223 zc
->zc_word
[ZIL_ZC_SEQ
] = 1ULL;
227 zil_kstats_global_update(kstat_t
*ksp
, int rw
)
229 zil_kstat_values_t
*zs
= ksp
->ks_data
;
230 ASSERT3P(&zil_stats
, ==, zs
);
232 if (rw
== KSTAT_WRITE
) {
233 return (SET_ERROR(EACCES
));
236 zil_kstat_values_update(zs
, &zil_sums_global
);
242 * Read a log block and make sure it's valid.
245 zil_read_log_block(zilog_t
*zilog
, boolean_t decrypt
, const blkptr_t
*bp
,
246 blkptr_t
*nbp
, char **begin
, char **end
, arc_buf_t
**abuf
)
248 zio_flag_t zio_flags
= ZIO_FLAG_CANFAIL
;
249 arc_flags_t aflags
= ARC_FLAG_WAIT
;
253 if (zilog
->zl_header
->zh_claim_txg
== 0)
254 zio_flags
|= ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_SCRUB
;
256 if (!(zilog
->zl_header
->zh_flags
& ZIL_CLAIM_LR_SEQ_VALID
))
257 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
260 zio_flags
|= ZIO_FLAG_RAW
;
262 SET_BOOKMARK(&zb
, bp
->blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
263 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
, bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
265 error
= arc_read(NULL
, zilog
->zl_spa
, bp
, arc_getbuf_func
,
266 abuf
, ZIO_PRIORITY_SYNC_READ
, zio_flags
, &aflags
, &zb
);
269 zio_cksum_t cksum
= bp
->blk_cksum
;
272 * Validate the checksummed log block.
274 * Sequence numbers should be... sequential. The checksum
275 * verifier for the next block should be bp's checksum plus 1.
277 * Also check the log chain linkage and size used.
279 cksum
.zc_word
[ZIL_ZC_SEQ
]++;
281 uint64_t size
= BP_GET_LSIZE(bp
);
282 if (BP_GET_CHECKSUM(bp
) == ZIO_CHECKSUM_ZILOG2
) {
283 zil_chain_t
*zilc
= (*abuf
)->b_data
;
284 char *lr
= (char *)(zilc
+ 1);
286 if (memcmp(&cksum
, &zilc
->zc_next_blk
.blk_cksum
,
288 zilc
->zc_nused
< sizeof (*zilc
) ||
289 zilc
->zc_nused
> size
) {
290 error
= SET_ERROR(ECKSUM
);
293 *end
= lr
+ zilc
->zc_nused
- sizeof (*zilc
);
294 *nbp
= zilc
->zc_next_blk
;
297 char *lr
= (*abuf
)->b_data
;
298 zil_chain_t
*zilc
= (zil_chain_t
*)(lr
+ size
) - 1;
300 if (memcmp(&cksum
, &zilc
->zc_next_blk
.blk_cksum
,
302 (zilc
->zc_nused
> (size
- sizeof (*zilc
)))) {
303 error
= SET_ERROR(ECKSUM
);
306 *end
= lr
+ zilc
->zc_nused
;
307 *nbp
= zilc
->zc_next_blk
;
316 * Read a TX_WRITE log data block.
319 zil_read_log_data(zilog_t
*zilog
, const lr_write_t
*lr
, void *wbuf
)
321 zio_flag_t zio_flags
= ZIO_FLAG_CANFAIL
;
322 const blkptr_t
*bp
= &lr
->lr_blkptr
;
323 arc_flags_t aflags
= ARC_FLAG_WAIT
;
324 arc_buf_t
*abuf
= NULL
;
328 if (BP_IS_HOLE(bp
)) {
330 memset(wbuf
, 0, MAX(BP_GET_LSIZE(bp
), lr
->lr_length
));
334 if (zilog
->zl_header
->zh_claim_txg
== 0)
335 zio_flags
|= ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_SCRUB
;
338 * If we are not using the resulting data, we are just checking that
339 * it hasn't been corrupted so we don't need to waste CPU time
340 * decompressing and decrypting it.
343 zio_flags
|= ZIO_FLAG_RAW
;
345 ASSERT3U(BP_GET_LSIZE(bp
), !=, 0);
346 SET_BOOKMARK(&zb
, dmu_objset_id(zilog
->zl_os
), lr
->lr_foid
,
347 ZB_ZIL_LEVEL
, lr
->lr_offset
/ BP_GET_LSIZE(bp
));
349 error
= arc_read(NULL
, zilog
->zl_spa
, bp
, arc_getbuf_func
, &abuf
,
350 ZIO_PRIORITY_SYNC_READ
, zio_flags
, &aflags
, &zb
);
354 memcpy(wbuf
, abuf
->b_data
, arc_buf_size(abuf
));
355 arc_buf_destroy(abuf
, &abuf
);
362 zil_sums_init(zil_sums_t
*zs
)
364 wmsum_init(&zs
->zil_commit_count
, 0);
365 wmsum_init(&zs
->zil_commit_writer_count
, 0);
366 wmsum_init(&zs
->zil_commit_error_count
, 0);
367 wmsum_init(&zs
->zil_commit_stall_count
, 0);
368 wmsum_init(&zs
->zil_commit_suspend_count
, 0);
369 wmsum_init(&zs
->zil_itx_count
, 0);
370 wmsum_init(&zs
->zil_itx_indirect_count
, 0);
371 wmsum_init(&zs
->zil_itx_indirect_bytes
, 0);
372 wmsum_init(&zs
->zil_itx_copied_count
, 0);
373 wmsum_init(&zs
->zil_itx_copied_bytes
, 0);
374 wmsum_init(&zs
->zil_itx_needcopy_count
, 0);
375 wmsum_init(&zs
->zil_itx_needcopy_bytes
, 0);
376 wmsum_init(&zs
->zil_itx_metaslab_normal_count
, 0);
377 wmsum_init(&zs
->zil_itx_metaslab_normal_bytes
, 0);
378 wmsum_init(&zs
->zil_itx_metaslab_normal_write
, 0);
379 wmsum_init(&zs
->zil_itx_metaslab_normal_alloc
, 0);
380 wmsum_init(&zs
->zil_itx_metaslab_slog_count
, 0);
381 wmsum_init(&zs
->zil_itx_metaslab_slog_bytes
, 0);
382 wmsum_init(&zs
->zil_itx_metaslab_slog_write
, 0);
383 wmsum_init(&zs
->zil_itx_metaslab_slog_alloc
, 0);
387 zil_sums_fini(zil_sums_t
*zs
)
389 wmsum_fini(&zs
->zil_commit_count
);
390 wmsum_fini(&zs
->zil_commit_writer_count
);
391 wmsum_fini(&zs
->zil_commit_error_count
);
392 wmsum_fini(&zs
->zil_commit_stall_count
);
393 wmsum_fini(&zs
->zil_commit_suspend_count
);
394 wmsum_fini(&zs
->zil_itx_count
);
395 wmsum_fini(&zs
->zil_itx_indirect_count
);
396 wmsum_fini(&zs
->zil_itx_indirect_bytes
);
397 wmsum_fini(&zs
->zil_itx_copied_count
);
398 wmsum_fini(&zs
->zil_itx_copied_bytes
);
399 wmsum_fini(&zs
->zil_itx_needcopy_count
);
400 wmsum_fini(&zs
->zil_itx_needcopy_bytes
);
401 wmsum_fini(&zs
->zil_itx_metaslab_normal_count
);
402 wmsum_fini(&zs
->zil_itx_metaslab_normal_bytes
);
403 wmsum_fini(&zs
->zil_itx_metaslab_normal_write
);
404 wmsum_fini(&zs
->zil_itx_metaslab_normal_alloc
);
405 wmsum_fini(&zs
->zil_itx_metaslab_slog_count
);
406 wmsum_fini(&zs
->zil_itx_metaslab_slog_bytes
);
407 wmsum_fini(&zs
->zil_itx_metaslab_slog_write
);
408 wmsum_fini(&zs
->zil_itx_metaslab_slog_alloc
);
412 zil_kstat_values_update(zil_kstat_values_t
*zs
, zil_sums_t
*zil_sums
)
414 zs
->zil_commit_count
.value
.ui64
=
415 wmsum_value(&zil_sums
->zil_commit_count
);
416 zs
->zil_commit_writer_count
.value
.ui64
=
417 wmsum_value(&zil_sums
->zil_commit_writer_count
);
418 zs
->zil_commit_error_count
.value
.ui64
=
419 wmsum_value(&zil_sums
->zil_commit_error_count
);
420 zs
->zil_commit_stall_count
.value
.ui64
=
421 wmsum_value(&zil_sums
->zil_commit_stall_count
);
422 zs
->zil_commit_suspend_count
.value
.ui64
=
423 wmsum_value(&zil_sums
->zil_commit_suspend_count
);
424 zs
->zil_itx_count
.value
.ui64
=
425 wmsum_value(&zil_sums
->zil_itx_count
);
426 zs
->zil_itx_indirect_count
.value
.ui64
=
427 wmsum_value(&zil_sums
->zil_itx_indirect_count
);
428 zs
->zil_itx_indirect_bytes
.value
.ui64
=
429 wmsum_value(&zil_sums
->zil_itx_indirect_bytes
);
430 zs
->zil_itx_copied_count
.value
.ui64
=
431 wmsum_value(&zil_sums
->zil_itx_copied_count
);
432 zs
->zil_itx_copied_bytes
.value
.ui64
=
433 wmsum_value(&zil_sums
->zil_itx_copied_bytes
);
434 zs
->zil_itx_needcopy_count
.value
.ui64
=
435 wmsum_value(&zil_sums
->zil_itx_needcopy_count
);
436 zs
->zil_itx_needcopy_bytes
.value
.ui64
=
437 wmsum_value(&zil_sums
->zil_itx_needcopy_bytes
);
438 zs
->zil_itx_metaslab_normal_count
.value
.ui64
=
439 wmsum_value(&zil_sums
->zil_itx_metaslab_normal_count
);
440 zs
->zil_itx_metaslab_normal_bytes
.value
.ui64
=
441 wmsum_value(&zil_sums
->zil_itx_metaslab_normal_bytes
);
442 zs
->zil_itx_metaslab_normal_write
.value
.ui64
=
443 wmsum_value(&zil_sums
->zil_itx_metaslab_normal_write
);
444 zs
->zil_itx_metaslab_normal_alloc
.value
.ui64
=
445 wmsum_value(&zil_sums
->zil_itx_metaslab_normal_alloc
);
446 zs
->zil_itx_metaslab_slog_count
.value
.ui64
=
447 wmsum_value(&zil_sums
->zil_itx_metaslab_slog_count
);
448 zs
->zil_itx_metaslab_slog_bytes
.value
.ui64
=
449 wmsum_value(&zil_sums
->zil_itx_metaslab_slog_bytes
);
450 zs
->zil_itx_metaslab_slog_write
.value
.ui64
=
451 wmsum_value(&zil_sums
->zil_itx_metaslab_slog_write
);
452 zs
->zil_itx_metaslab_slog_alloc
.value
.ui64
=
453 wmsum_value(&zil_sums
->zil_itx_metaslab_slog_alloc
);
457 * Parse the intent log, and call parse_func for each valid record within.
460 zil_parse(zilog_t
*zilog
, zil_parse_blk_func_t
*parse_blk_func
,
461 zil_parse_lr_func_t
*parse_lr_func
, void *arg
, uint64_t txg
,
464 const zil_header_t
*zh
= zilog
->zl_header
;
465 boolean_t claimed
= !!zh
->zh_claim_txg
;
466 uint64_t claim_blk_seq
= claimed
? zh
->zh_claim_blk_seq
: UINT64_MAX
;
467 uint64_t claim_lr_seq
= claimed
? zh
->zh_claim_lr_seq
: UINT64_MAX
;
468 uint64_t max_blk_seq
= 0;
469 uint64_t max_lr_seq
= 0;
470 uint64_t blk_count
= 0;
471 uint64_t lr_count
= 0;
472 blkptr_t blk
, next_blk
= {{{{0}}}};
476 * Old logs didn't record the maximum zh_claim_lr_seq.
478 if (!(zh
->zh_flags
& ZIL_CLAIM_LR_SEQ_VALID
))
479 claim_lr_seq
= UINT64_MAX
;
482 * Starting at the block pointed to by zh_log we read the log chain.
483 * For each block in the chain we strongly check that block to
484 * ensure its validity. We stop when an invalid block is found.
485 * For each block pointer in the chain we call parse_blk_func().
486 * For each record in each valid block we call parse_lr_func().
487 * If the log has been claimed, stop if we encounter a sequence
488 * number greater than the highest claimed sequence number.
490 zil_bp_tree_init(zilog
);
492 for (blk
= zh
->zh_log
; !BP_IS_HOLE(&blk
); blk
= next_blk
) {
493 uint64_t blk_seq
= blk
.blk_cksum
.zc_word
[ZIL_ZC_SEQ
];
496 arc_buf_t
*abuf
= NULL
;
498 if (blk_seq
> claim_blk_seq
)
501 error
= parse_blk_func(zilog
, &blk
, arg
, txg
);
504 ASSERT3U(max_blk_seq
, <, blk_seq
);
505 max_blk_seq
= blk_seq
;
508 if (max_lr_seq
== claim_lr_seq
&& max_blk_seq
== claim_blk_seq
)
511 error
= zil_read_log_block(zilog
, decrypt
, &blk
, &next_blk
,
515 arc_buf_destroy(abuf
, &abuf
);
517 char name
[ZFS_MAX_DATASET_NAME_LEN
];
519 dmu_objset_name(zilog
->zl_os
, name
);
521 cmn_err(CE_WARN
, "ZFS read log block error %d, "
522 "dataset %s, seq 0x%llx\n", error
, name
,
523 (u_longlong_t
)blk_seq
);
528 for (; lrp
< end
; lrp
+= reclen
) {
529 lr_t
*lr
= (lr_t
*)lrp
;
532 * Are the remaining bytes large enough to hold an
535 if ((char *)(lr
+ 1) > end
) {
536 cmn_err(CE_WARN
, "zil_parse: lr_t overrun");
537 error
= SET_ERROR(ECKSUM
);
538 arc_buf_destroy(abuf
, &abuf
);
541 reclen
= lr
->lrc_reclen
;
542 if (reclen
< sizeof (lr_t
) || reclen
> end
- lrp
) {
544 "zil_parse: lr_t has an invalid reclen");
545 error
= SET_ERROR(ECKSUM
);
546 arc_buf_destroy(abuf
, &abuf
);
550 if (lr
->lrc_seq
> claim_lr_seq
) {
551 arc_buf_destroy(abuf
, &abuf
);
555 error
= parse_lr_func(zilog
, lr
, arg
, txg
);
557 arc_buf_destroy(abuf
, &abuf
);
560 ASSERT3U(max_lr_seq
, <, lr
->lrc_seq
);
561 max_lr_seq
= lr
->lrc_seq
;
564 arc_buf_destroy(abuf
, &abuf
);
567 zilog
->zl_parse_error
= error
;
568 zilog
->zl_parse_blk_seq
= max_blk_seq
;
569 zilog
->zl_parse_lr_seq
= max_lr_seq
;
570 zilog
->zl_parse_blk_count
= blk_count
;
571 zilog
->zl_parse_lr_count
= lr_count
;
573 zil_bp_tree_fini(zilog
);
579 zil_clear_log_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *tx
,
583 ASSERT(!BP_IS_HOLE(bp
));
586 * As we call this function from the context of a rewind to a
587 * checkpoint, each ZIL block whose txg is later than the txg
588 * that we rewind to is invalid. Thus, we return -1 so
589 * zil_parse() doesn't attempt to read it.
591 if (BP_GET_LOGICAL_BIRTH(bp
) >= first_txg
)
594 if (zil_bp_tree_add(zilog
, bp
) != 0)
597 zio_free(zilog
->zl_spa
, first_txg
, bp
);
602 zil_noop_log_record(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
,
605 (void) zilog
, (void) lrc
, (void) tx
, (void) first_txg
;
610 zil_claim_log_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *tx
,
614 * Claim log block if not already committed and not already claimed.
615 * If tx == NULL, just verify that the block is claimable.
617 if (BP_IS_HOLE(bp
) || BP_GET_LOGICAL_BIRTH(bp
) < first_txg
||
618 zil_bp_tree_add(zilog
, bp
) != 0)
621 return (zio_wait(zio_claim(NULL
, zilog
->zl_spa
,
622 tx
== NULL
? 0 : first_txg
, bp
, spa_claim_notify
, NULL
,
623 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_SCRUB
)));
627 zil_claim_write(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
, uint64_t first_txg
)
629 lr_write_t
*lr
= (lr_write_t
*)lrc
;
632 ASSERT3U(lrc
->lrc_reclen
, >=, sizeof (*lr
));
635 * If the block is not readable, don't claim it. This can happen
636 * in normal operation when a log block is written to disk before
637 * some of the dmu_sync() blocks it points to. In this case, the
638 * transaction cannot have been committed to anyone (we would have
639 * waited for all writes to be stable first), so it is semantically
640 * correct to declare this the end of the log.
642 if (BP_GET_LOGICAL_BIRTH(&lr
->lr_blkptr
) >= first_txg
) {
643 error
= zil_read_log_data(zilog
, lr
, NULL
);
648 return (zil_claim_log_block(zilog
, &lr
->lr_blkptr
, tx
, first_txg
));
652 zil_claim_clone_range(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
,
655 const lr_clone_range_t
*lr
= (const lr_clone_range_t
*)lrc
;
657 spa_t
*spa
= zilog
->zl_spa
;
660 ASSERT3U(lrc
->lrc_reclen
, >=, sizeof (*lr
));
661 ASSERT3U(lrc
->lrc_reclen
, >=, offsetof(lr_clone_range_t
,
662 lr_bps
[lr
->lr_nbps
]));
669 * XXX: Do we need to byteswap lr?
672 for (ii
= 0; ii
< lr
->lr_nbps
; ii
++) {
673 bp
= &lr
->lr_bps
[ii
];
676 * When data is embedded into the BP there is no need to create
677 * BRT entry as there is no data block. Just copy the BP as it
680 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
))
684 * We can not handle block pointers from the future, since they
685 * are not yet allocated. It should not normally happen, but
686 * just in case lets be safe and just stop here now instead of
687 * corrupting the pool.
689 if (BP_GET_BIRTH(bp
) >= first_txg
)
690 return (SET_ERROR(ENOENT
));
693 * Assert the block is really allocated before we reference it.
695 metaslab_check_free(spa
, bp
);
698 for (ii
= 0; ii
< lr
->lr_nbps
; ii
++) {
699 bp
= &lr
->lr_bps
[ii
];
700 if (!BP_IS_HOLE(bp
) && !BP_IS_EMBEDDED(bp
))
701 brt_pending_add(spa
, bp
, tx
);
708 zil_claim_log_record(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
,
712 switch (lrc
->lrc_txtype
) {
714 return (zil_claim_write(zilog
, lrc
, tx
, first_txg
));
716 return (zil_claim_clone_range(zilog
, lrc
, tx
, first_txg
));
723 zil_free_log_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *tx
,
728 zio_free(zilog
->zl_spa
, dmu_tx_get_txg(tx
), bp
);
734 zil_free_write(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
, uint64_t claim_txg
)
736 lr_write_t
*lr
= (lr_write_t
*)lrc
;
737 blkptr_t
*bp
= &lr
->lr_blkptr
;
739 ASSERT3U(lrc
->lrc_reclen
, >=, sizeof (*lr
));
742 * If we previously claimed it, we need to free it.
744 if (BP_GET_LOGICAL_BIRTH(bp
) >= claim_txg
&&
745 zil_bp_tree_add(zilog
, bp
) == 0 && !BP_IS_HOLE(bp
)) {
746 zio_free(zilog
->zl_spa
, dmu_tx_get_txg(tx
), bp
);
753 zil_free_clone_range(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
)
755 const lr_clone_range_t
*lr
= (const lr_clone_range_t
*)lrc
;
760 ASSERT3U(lrc
->lrc_reclen
, >=, sizeof (*lr
));
761 ASSERT3U(lrc
->lrc_reclen
, >=, offsetof(lr_clone_range_t
,
762 lr_bps
[lr
->lr_nbps
]));
770 for (ii
= 0; ii
< lr
->lr_nbps
; ii
++) {
771 bp
= &lr
->lr_bps
[ii
];
773 if (!BP_IS_HOLE(bp
)) {
774 zio_free(spa
, dmu_tx_get_txg(tx
), bp
);
782 zil_free_log_record(zilog_t
*zilog
, const lr_t
*lrc
, void *tx
,
786 if (claim_txg
== 0) {
790 switch (lrc
->lrc_txtype
) {
792 return (zil_free_write(zilog
, lrc
, tx
, claim_txg
));
794 return (zil_free_clone_range(zilog
, lrc
, tx
));
801 zil_lwb_vdev_compare(const void *x1
, const void *x2
)
803 const uint64_t v1
= ((zil_vdev_node_t
*)x1
)->zv_vdev
;
804 const uint64_t v2
= ((zil_vdev_node_t
*)x2
)->zv_vdev
;
806 return (TREE_CMP(v1
, v2
));
810 * Allocate a new lwb. We may already have a block pointer for it, in which
811 * case we get size and version from there. Or we may not yet, in which case
812 * we choose them here and later make the block allocation match.
815 zil_alloc_lwb(zilog_t
*zilog
, int sz
, blkptr_t
*bp
, boolean_t slog
,
816 uint64_t txg
, lwb_state_t state
)
820 lwb
= kmem_cache_alloc(zil_lwb_cache
, KM_SLEEP
);
821 lwb
->lwb_zilog
= zilog
;
824 lwb
->lwb_slim
= (BP_GET_CHECKSUM(bp
) == ZIO_CHECKSUM_ZILOG2
);
825 sz
= BP_GET_LSIZE(bp
);
827 BP_ZERO(&lwb
->lwb_blk
);
828 lwb
->lwb_slim
= (spa_version(zilog
->zl_spa
) >=
829 SPA_VERSION_SLIM_ZIL
);
831 lwb
->lwb_slog
= slog
;
835 lwb
->lwb_nused
= lwb
->lwb_nfilled
= sizeof (zil_chain_t
);
837 lwb
->lwb_nmax
= sz
- sizeof (zil_chain_t
);
838 lwb
->lwb_nused
= lwb
->lwb_nfilled
= 0;
841 lwb
->lwb_state
= state
;
842 lwb
->lwb_buf
= zio_buf_alloc(sz
);
843 lwb
->lwb_child_zio
= NULL
;
844 lwb
->lwb_write_zio
= NULL
;
845 lwb
->lwb_root_zio
= NULL
;
846 lwb
->lwb_issued_timestamp
= 0;
847 lwb
->lwb_issued_txg
= 0;
848 lwb
->lwb_alloc_txg
= txg
;
849 lwb
->lwb_max_txg
= 0;
851 mutex_enter(&zilog
->zl_lock
);
852 list_insert_tail(&zilog
->zl_lwb_list
, lwb
);
853 if (state
!= LWB_STATE_NEW
)
854 zilog
->zl_last_lwb_opened
= lwb
;
855 mutex_exit(&zilog
->zl_lock
);
861 zil_free_lwb(zilog_t
*zilog
, lwb_t
*lwb
)
863 ASSERT(MUTEX_HELD(&zilog
->zl_lock
));
864 ASSERT(lwb
->lwb_state
== LWB_STATE_NEW
||
865 lwb
->lwb_state
== LWB_STATE_FLUSH_DONE
);
866 ASSERT3P(lwb
->lwb_child_zio
, ==, NULL
);
867 ASSERT3P(lwb
->lwb_write_zio
, ==, NULL
);
868 ASSERT3P(lwb
->lwb_root_zio
, ==, NULL
);
869 ASSERT3U(lwb
->lwb_alloc_txg
, <=, spa_syncing_txg(zilog
->zl_spa
));
870 ASSERT3U(lwb
->lwb_max_txg
, <=, spa_syncing_txg(zilog
->zl_spa
));
871 VERIFY(list_is_empty(&lwb
->lwb_itxs
));
872 VERIFY(list_is_empty(&lwb
->lwb_waiters
));
873 ASSERT(avl_is_empty(&lwb
->lwb_vdev_tree
));
874 ASSERT(!MUTEX_HELD(&lwb
->lwb_vdev_lock
));
877 * Clear the zilog's field to indicate this lwb is no longer
878 * valid, and prevent use-after-free errors.
880 if (zilog
->zl_last_lwb_opened
== lwb
)
881 zilog
->zl_last_lwb_opened
= NULL
;
883 kmem_cache_free(zil_lwb_cache
, lwb
);
887 * Called when we create in-memory log transactions so that we know
888 * to cleanup the itxs at the end of spa_sync().
891 zilog_dirty(zilog_t
*zilog
, uint64_t txg
)
893 dsl_pool_t
*dp
= zilog
->zl_dmu_pool
;
894 dsl_dataset_t
*ds
= dmu_objset_ds(zilog
->zl_os
);
896 ASSERT(spa_writeable(zilog
->zl_spa
));
898 if (ds
->ds_is_snapshot
)
899 panic("dirtying snapshot!");
901 if (txg_list_add(&dp
->dp_dirty_zilogs
, zilog
, txg
)) {
902 /* up the hold count until we can be written out */
903 dmu_buf_add_ref(ds
->ds_dbuf
, zilog
);
905 zilog
->zl_dirty_max_txg
= MAX(txg
, zilog
->zl_dirty_max_txg
);
910 * Determine if the zil is dirty in the specified txg. Callers wanting to
911 * ensure that the dirty state does not change must hold the itxg_lock for
912 * the specified txg. Holding the lock will ensure that the zil cannot be
913 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
916 static boolean_t __maybe_unused
917 zilog_is_dirty_in_txg(zilog_t
*zilog
, uint64_t txg
)
919 dsl_pool_t
*dp
= zilog
->zl_dmu_pool
;
921 if (txg_list_member(&dp
->dp_dirty_zilogs
, zilog
, txg
& TXG_MASK
))
927 * Determine if the zil is dirty. The zil is considered dirty if it has
928 * any pending itx records that have not been cleaned by zil_clean().
931 zilog_is_dirty(zilog_t
*zilog
)
933 dsl_pool_t
*dp
= zilog
->zl_dmu_pool
;
935 for (int t
= 0; t
< TXG_SIZE
; t
++) {
936 if (txg_list_member(&dp
->dp_dirty_zilogs
, zilog
, t
))
943 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
944 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
945 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
949 zil_commit_activate_saxattr_feature(zilog_t
*zilog
)
951 dsl_dataset_t
*ds
= dmu_objset_ds(zilog
->zl_os
);
955 if (spa_feature_is_enabled(zilog
->zl_spa
, SPA_FEATURE_ZILSAXATTR
) &&
956 dmu_objset_type(zilog
->zl_os
) != DMU_OST_ZVOL
&&
957 !dsl_dataset_feature_is_active(ds
, SPA_FEATURE_ZILSAXATTR
)) {
958 tx
= dmu_tx_create(zilog
->zl_os
);
959 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
960 dsl_dataset_dirty(ds
, tx
);
961 txg
= dmu_tx_get_txg(tx
);
963 mutex_enter(&ds
->ds_lock
);
964 ds
->ds_feature_activation
[SPA_FEATURE_ZILSAXATTR
] =
966 mutex_exit(&ds
->ds_lock
);
968 txg_wait_synced(zilog
->zl_dmu_pool
, txg
);
973 * Create an on-disk intent log.
976 zil_create(zilog_t
*zilog
)
978 const zil_header_t
*zh
= zilog
->zl_header
;
984 boolean_t slog
= FALSE
;
985 dsl_dataset_t
*ds
= dmu_objset_ds(zilog
->zl_os
);
989 * Wait for any previous destroy to complete.
991 txg_wait_synced(zilog
->zl_dmu_pool
, zilog
->zl_destroy_txg
);
993 ASSERT(zh
->zh_claim_txg
== 0);
994 ASSERT(zh
->zh_replay_seq
== 0);
999 * Allocate an initial log block if:
1000 * - there isn't one already
1001 * - the existing block is the wrong endianness
1003 if (BP_IS_HOLE(&blk
) || BP_SHOULD_BYTESWAP(&blk
)) {
1004 tx
= dmu_tx_create(zilog
->zl_os
);
1005 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
1006 dsl_dataset_dirty(dmu_objset_ds(zilog
->zl_os
), tx
);
1007 txg
= dmu_tx_get_txg(tx
);
1009 if (!BP_IS_HOLE(&blk
)) {
1010 zio_free(zilog
->zl_spa
, txg
, &blk
);
1014 error
= zio_alloc_zil(zilog
->zl_spa
, zilog
->zl_os
, txg
, &blk
,
1015 ZIL_MIN_BLKSZ
, &slog
);
1017 zil_init_log_chain(zilog
, &blk
);
1021 * Allocate a log write block (lwb) for the first log block.
1024 lwb
= zil_alloc_lwb(zilog
, 0, &blk
, slog
, txg
, LWB_STATE_NEW
);
1027 * If we just allocated the first log block, commit our transaction
1028 * and wait for zil_sync() to stuff the block pointer into zh_log.
1029 * (zh is part of the MOS, so we cannot modify it in open context.)
1033 * If "zilsaxattr" feature is enabled on zpool, then activate
1034 * it now when we're creating the ZIL chain. We can't wait with
1035 * this until we write the first xattr log record because we
1036 * need to wait for the feature activation to sync out.
1038 if (spa_feature_is_enabled(zilog
->zl_spa
,
1039 SPA_FEATURE_ZILSAXATTR
) && dmu_objset_type(zilog
->zl_os
) !=
1041 mutex_enter(&ds
->ds_lock
);
1042 ds
->ds_feature_activation
[SPA_FEATURE_ZILSAXATTR
] =
1044 mutex_exit(&ds
->ds_lock
);
1048 txg_wait_synced(zilog
->zl_dmu_pool
, txg
);
1051 * This branch covers the case where we enable the feature on a
1052 * zpool that has existing ZIL headers.
1054 zil_commit_activate_saxattr_feature(zilog
);
1056 IMPLY(spa_feature_is_enabled(zilog
->zl_spa
, SPA_FEATURE_ZILSAXATTR
) &&
1057 dmu_objset_type(zilog
->zl_os
) != DMU_OST_ZVOL
,
1058 dsl_dataset_feature_is_active(ds
, SPA_FEATURE_ZILSAXATTR
));
1060 ASSERT(error
!= 0 || memcmp(&blk
, &zh
->zh_log
, sizeof (blk
)) == 0);
1061 IMPLY(error
== 0, lwb
!= NULL
);
1067 * In one tx, free all log blocks and clear the log header. If keep_first
1068 * is set, then we're replaying a log with no content. We want to keep the
1069 * first block, however, so that the first synchronous transaction doesn't
1070 * require a txg_wait_synced() in zil_create(). We don't need to
1071 * txg_wait_synced() here either when keep_first is set, because both
1072 * zil_create() and zil_destroy() will wait for any in-progress destroys
1074 * Return B_TRUE if there were any entries to replay.
1077 zil_destroy(zilog_t
*zilog
, boolean_t keep_first
)
1079 const zil_header_t
*zh
= zilog
->zl_header
;
1085 * Wait for any previous destroy to complete.
1087 txg_wait_synced(zilog
->zl_dmu_pool
, zilog
->zl_destroy_txg
);
1089 zilog
->zl_old_header
= *zh
; /* debugging aid */
1091 if (BP_IS_HOLE(&zh
->zh_log
))
1094 tx
= dmu_tx_create(zilog
->zl_os
);
1095 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
1096 dsl_dataset_dirty(dmu_objset_ds(zilog
->zl_os
), tx
);
1097 txg
= dmu_tx_get_txg(tx
);
1099 mutex_enter(&zilog
->zl_lock
);
1101 ASSERT3U(zilog
->zl_destroy_txg
, <, txg
);
1102 zilog
->zl_destroy_txg
= txg
;
1103 zilog
->zl_keep_first
= keep_first
;
1105 if (!list_is_empty(&zilog
->zl_lwb_list
)) {
1106 ASSERT(zh
->zh_claim_txg
== 0);
1107 VERIFY(!keep_first
);
1108 while ((lwb
= list_remove_head(&zilog
->zl_lwb_list
)) != NULL
) {
1109 if (lwb
->lwb_buf
!= NULL
)
1110 zio_buf_free(lwb
->lwb_buf
, lwb
->lwb_sz
);
1111 if (!BP_IS_HOLE(&lwb
->lwb_blk
))
1112 zio_free(zilog
->zl_spa
, txg
, &lwb
->lwb_blk
);
1113 zil_free_lwb(zilog
, lwb
);
1115 } else if (!keep_first
) {
1116 zil_destroy_sync(zilog
, tx
);
1118 mutex_exit(&zilog
->zl_lock
);
1126 zil_destroy_sync(zilog_t
*zilog
, dmu_tx_t
*tx
)
1128 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
1129 (void) zil_parse(zilog
, zil_free_log_block
,
1130 zil_free_log_record
, tx
, zilog
->zl_header
->zh_claim_txg
, B_FALSE
);
1134 zil_claim(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *txarg
)
1136 dmu_tx_t
*tx
= txarg
;
1143 error
= dmu_objset_own_obj(dp
, ds
->ds_object
,
1144 DMU_OST_ANY
, B_FALSE
, B_FALSE
, FTAG
, &os
);
1147 * EBUSY indicates that the objset is inconsistent, in which
1148 * case it can not have a ZIL.
1150 if (error
!= EBUSY
) {
1151 cmn_err(CE_WARN
, "can't open objset for %llu, error %u",
1152 (unsigned long long)ds
->ds_object
, error
);
1158 zilog
= dmu_objset_zil(os
);
1159 zh
= zil_header_in_syncing_context(zilog
);
1160 ASSERT3U(tx
->tx_txg
, ==, spa_first_txg(zilog
->zl_spa
));
1161 first_txg
= spa_min_claim_txg(zilog
->zl_spa
);
1164 * If the spa_log_state is not set to be cleared, check whether
1165 * the current uberblock is a checkpoint one and if the current
1166 * header has been claimed before moving on.
1168 * If the current uberblock is a checkpointed uberblock then
1169 * one of the following scenarios took place:
1171 * 1] We are currently rewinding to the checkpoint of the pool.
1172 * 2] We crashed in the middle of a checkpoint rewind but we
1173 * did manage to write the checkpointed uberblock to the
1174 * vdev labels, so when we tried to import the pool again
1175 * the checkpointed uberblock was selected from the import
1178 * In both cases we want to zero out all the ZIL blocks, except
1179 * the ones that have been claimed at the time of the checkpoint
1180 * (their zh_claim_txg != 0). The reason is that these blocks
1181 * may be corrupted since we may have reused their locations on
1182 * disk after we took the checkpoint.
1184 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1185 * when we first figure out whether the current uberblock is
1186 * checkpointed or not. Unfortunately, that would discard all
1187 * the logs, including the ones that are claimed, and we would
1190 if (spa_get_log_state(zilog
->zl_spa
) == SPA_LOG_CLEAR
||
1191 (zilog
->zl_spa
->spa_uberblock
.ub_checkpoint_txg
!= 0 &&
1192 zh
->zh_claim_txg
== 0)) {
1193 if (!BP_IS_HOLE(&zh
->zh_log
)) {
1194 (void) zil_parse(zilog
, zil_clear_log_block
,
1195 zil_noop_log_record
, tx
, first_txg
, B_FALSE
);
1197 BP_ZERO(&zh
->zh_log
);
1198 if (os
->os_encrypted
)
1199 os
->os_next_write_raw
[tx
->tx_txg
& TXG_MASK
] = B_TRUE
;
1200 dsl_dataset_dirty(dmu_objset_ds(os
), tx
);
1201 dmu_objset_disown(os
, B_FALSE
, FTAG
);
1206 * If we are not rewinding and opening the pool normally, then
1207 * the min_claim_txg should be equal to the first txg of the pool.
1209 ASSERT3U(first_txg
, ==, spa_first_txg(zilog
->zl_spa
));
1212 * Claim all log blocks if we haven't already done so, and remember
1213 * the highest claimed sequence number. This ensures that if we can
1214 * read only part of the log now (e.g. due to a missing device),
1215 * but we can read the entire log later, we will not try to replay
1216 * or destroy beyond the last block we successfully claimed.
1218 ASSERT3U(zh
->zh_claim_txg
, <=, first_txg
);
1219 if (zh
->zh_claim_txg
== 0 && !BP_IS_HOLE(&zh
->zh_log
)) {
1220 (void) zil_parse(zilog
, zil_claim_log_block
,
1221 zil_claim_log_record
, tx
, first_txg
, B_FALSE
);
1222 zh
->zh_claim_txg
= first_txg
;
1223 zh
->zh_claim_blk_seq
= zilog
->zl_parse_blk_seq
;
1224 zh
->zh_claim_lr_seq
= zilog
->zl_parse_lr_seq
;
1225 if (zilog
->zl_parse_lr_count
|| zilog
->zl_parse_blk_count
> 1)
1226 zh
->zh_flags
|= ZIL_REPLAY_NEEDED
;
1227 zh
->zh_flags
|= ZIL_CLAIM_LR_SEQ_VALID
;
1228 if (os
->os_encrypted
)
1229 os
->os_next_write_raw
[tx
->tx_txg
& TXG_MASK
] = B_TRUE
;
1230 dsl_dataset_dirty(dmu_objset_ds(os
), tx
);
1233 ASSERT3U(first_txg
, ==, (spa_last_synced_txg(zilog
->zl_spa
) + 1));
1234 dmu_objset_disown(os
, B_FALSE
, FTAG
);
1239 * Check the log by walking the log chain.
1240 * Checksum errors are ok as they indicate the end of the chain.
1241 * Any other error (no device or read failure) returns an error.
1244 zil_check_log_chain(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *tx
)
1254 error
= dmu_objset_from_ds(ds
, &os
);
1256 cmn_err(CE_WARN
, "can't open objset %llu, error %d",
1257 (unsigned long long)ds
->ds_object
, error
);
1261 zilog
= dmu_objset_zil(os
);
1262 bp
= (blkptr_t
*)&zilog
->zl_header
->zh_log
;
1264 if (!BP_IS_HOLE(bp
)) {
1266 boolean_t valid
= B_TRUE
;
1269 * Check the first block and determine if it's on a log device
1270 * which may have been removed or faulted prior to loading this
1271 * pool. If so, there's no point in checking the rest of the
1272 * log as its content should have already been synced to the
1275 spa_config_enter(os
->os_spa
, SCL_STATE
, FTAG
, RW_READER
);
1276 vd
= vdev_lookup_top(os
->os_spa
, DVA_GET_VDEV(&bp
->blk_dva
[0]));
1277 if (vd
->vdev_islog
&& vdev_is_dead(vd
))
1278 valid
= vdev_log_state_valid(vd
);
1279 spa_config_exit(os
->os_spa
, SCL_STATE
, FTAG
);
1285 * Check whether the current uberblock is checkpointed (e.g.
1286 * we are rewinding) and whether the current header has been
1287 * claimed or not. If it hasn't then skip verifying it. We
1288 * do this because its ZIL blocks may be part of the pool's
1289 * state before the rewind, which is no longer valid.
1291 zil_header_t
*zh
= zil_header_in_syncing_context(zilog
);
1292 if (zilog
->zl_spa
->spa_uberblock
.ub_checkpoint_txg
!= 0 &&
1293 zh
->zh_claim_txg
== 0)
1298 * Because tx == NULL, zil_claim_log_block() will not actually claim
1299 * any blocks, but just determine whether it is possible to do so.
1300 * In addition to checking the log chain, zil_claim_log_block()
1301 * will invoke zio_claim() with a done func of spa_claim_notify(),
1302 * which will update spa_max_claim_txg. See spa_load() for details.
1304 error
= zil_parse(zilog
, zil_claim_log_block
, zil_claim_log_record
, tx
,
1305 zilog
->zl_header
->zh_claim_txg
? -1ULL :
1306 spa_min_claim_txg(os
->os_spa
), B_FALSE
);
1308 return ((error
== ECKSUM
|| error
== ENOENT
) ? 0 : error
);
1312 * When an itx is "skipped", this function is used to properly mark the
1313 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1314 * be skipped (and not committed to an lwb) for a variety of reasons,
1315 * one of them being that the itx was committed via spa_sync(), prior to
1316 * it being committed to an lwb; this can happen if a thread calling
1317 * zil_commit() is racing with spa_sync().
1320 zil_commit_waiter_skip(zil_commit_waiter_t
*zcw
)
1322 mutex_enter(&zcw
->zcw_lock
);
1323 ASSERT3B(zcw
->zcw_done
, ==, B_FALSE
);
1324 zcw
->zcw_done
= B_TRUE
;
1325 cv_broadcast(&zcw
->zcw_cv
);
1326 mutex_exit(&zcw
->zcw_lock
);
1330 * This function is used when the given waiter is to be linked into an
1331 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1332 * At this point, the waiter will no longer be referenced by the itx,
1333 * and instead, will be referenced by the lwb.
1336 zil_commit_waiter_link_lwb(zil_commit_waiter_t
*zcw
, lwb_t
*lwb
)
1339 * The lwb_waiters field of the lwb is protected by the zilog's
1340 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1341 * zl_issuer_lock also protects leaving the open state.
1342 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1343 * flush_done, which transition is protected by zl_lock.
1345 ASSERT(MUTEX_HELD(&lwb
->lwb_zilog
->zl_issuer_lock
));
1346 IMPLY(lwb
->lwb_state
!= LWB_STATE_OPENED
,
1347 MUTEX_HELD(&lwb
->lwb_zilog
->zl_lock
));
1348 ASSERT3S(lwb
->lwb_state
, !=, LWB_STATE_NEW
);
1349 ASSERT3S(lwb
->lwb_state
, !=, LWB_STATE_FLUSH_DONE
);
1351 ASSERT(!list_link_active(&zcw
->zcw_node
));
1352 list_insert_tail(&lwb
->lwb_waiters
, zcw
);
1353 ASSERT3P(zcw
->zcw_lwb
, ==, NULL
);
1358 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1359 * block, and the given waiter must be linked to the "nolwb waiters"
1360 * list inside of zil_process_commit_list().
1363 zil_commit_waiter_link_nolwb(zil_commit_waiter_t
*zcw
, list_t
*nolwb
)
1365 ASSERT(!list_link_active(&zcw
->zcw_node
));
1366 list_insert_tail(nolwb
, zcw
);
1367 ASSERT3P(zcw
->zcw_lwb
, ==, NULL
);
1371 zil_lwb_add_block(lwb_t
*lwb
, const blkptr_t
*bp
)
1373 avl_tree_t
*t
= &lwb
->lwb_vdev_tree
;
1375 zil_vdev_node_t
*zv
, zvsearch
;
1376 int ndvas
= BP_GET_NDVAS(bp
);
1379 ASSERT3S(lwb
->lwb_state
, !=, LWB_STATE_WRITE_DONE
);
1380 ASSERT3S(lwb
->lwb_state
, !=, LWB_STATE_FLUSH_DONE
);
1382 if (zil_nocacheflush
)
1385 mutex_enter(&lwb
->lwb_vdev_lock
);
1386 for (i
= 0; i
< ndvas
; i
++) {
1387 zvsearch
.zv_vdev
= DVA_GET_VDEV(&bp
->blk_dva
[i
]);
1388 if (avl_find(t
, &zvsearch
, &where
) == NULL
) {
1389 zv
= kmem_alloc(sizeof (*zv
), KM_SLEEP
);
1390 zv
->zv_vdev
= zvsearch
.zv_vdev
;
1391 avl_insert(t
, zv
, where
);
1394 mutex_exit(&lwb
->lwb_vdev_lock
);
1398 zil_lwb_flush_defer(lwb_t
*lwb
, lwb_t
*nlwb
)
1400 avl_tree_t
*src
= &lwb
->lwb_vdev_tree
;
1401 avl_tree_t
*dst
= &nlwb
->lwb_vdev_tree
;
1402 void *cookie
= NULL
;
1403 zil_vdev_node_t
*zv
;
1405 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_WRITE_DONE
);
1406 ASSERT3S(nlwb
->lwb_state
, !=, LWB_STATE_WRITE_DONE
);
1407 ASSERT3S(nlwb
->lwb_state
, !=, LWB_STATE_FLUSH_DONE
);
1410 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1411 * not need the protection of lwb_vdev_lock (it will only be modified
1412 * while holding zilog->zl_lock) as its writes and those of its
1413 * children have all completed. The younger 'nlwb' may be waiting on
1414 * future writes to additional vdevs.
1416 mutex_enter(&nlwb
->lwb_vdev_lock
);
1418 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1419 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1421 while ((zv
= avl_destroy_nodes(src
, &cookie
)) != NULL
) {
1424 if (avl_find(dst
, zv
, &where
) == NULL
) {
1425 avl_insert(dst
, zv
, where
);
1427 kmem_free(zv
, sizeof (*zv
));
1430 mutex_exit(&nlwb
->lwb_vdev_lock
);
1434 zil_lwb_add_txg(lwb_t
*lwb
, uint64_t txg
)
1436 lwb
->lwb_max_txg
= MAX(lwb
->lwb_max_txg
, txg
);
1440 * This function is a called after all vdevs associated with a given lwb write
1441 * have completed their flush command; or as soon as the lwb write completes,
1442 * if "zil_nocacheflush" is set. Further, all "previous" lwb's will have
1443 * completed before this function is called; i.e. this function is called for
1444 * all previous lwbs before it's called for "this" lwb (enforced via zio the
1445 * dependencies configured in zil_lwb_set_zio_dependency()).
1447 * The intention is for this function to be called as soon as the contents of
1448 * an lwb are considered "stable" on disk, and will survive any sudden loss of
1449 * power. At this point, any threads waiting for the lwb to reach this state
1450 * are signalled, and the "waiter" structures are marked "done".
1453 zil_lwb_flush_vdevs_done(zio_t
*zio
)
1455 lwb_t
*lwb
= zio
->io_private
;
1456 zilog_t
*zilog
= lwb
->lwb_zilog
;
1457 zil_commit_waiter_t
*zcw
;
1460 spa_config_exit(zilog
->zl_spa
, SCL_STATE
, lwb
);
1462 hrtime_t t
= gethrtime() - lwb
->lwb_issued_timestamp
;
1464 mutex_enter(&zilog
->zl_lock
);
1466 zilog
->zl_last_lwb_latency
= (zilog
->zl_last_lwb_latency
* 7 + t
) / 8;
1468 lwb
->lwb_root_zio
= NULL
;
1470 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_WRITE_DONE
);
1471 lwb
->lwb_state
= LWB_STATE_FLUSH_DONE
;
1473 if (zilog
->zl_last_lwb_opened
== lwb
) {
1475 * Remember the highest committed log sequence number
1476 * for ztest. We only update this value when all the log
1477 * writes succeeded, because ztest wants to ASSERT that
1478 * it got the whole log chain.
1480 zilog
->zl_commit_lr_seq
= zilog
->zl_lr_seq
;
1483 while ((itx
= list_remove_head(&lwb
->lwb_itxs
)) != NULL
)
1484 zil_itx_destroy(itx
);
1486 while ((zcw
= list_remove_head(&lwb
->lwb_waiters
)) != NULL
) {
1487 mutex_enter(&zcw
->zcw_lock
);
1489 ASSERT3P(zcw
->zcw_lwb
, ==, lwb
);
1490 zcw
->zcw_lwb
= NULL
;
1492 * We expect any ZIO errors from child ZIOs to have been
1493 * propagated "up" to this specific LWB's root ZIO, in
1494 * order for this error handling to work correctly. This
1495 * includes ZIO errors from either this LWB's write or
1496 * flush, as well as any errors from other dependent LWBs
1497 * (e.g. a root LWB ZIO that might be a child of this LWB).
1499 * With that said, it's important to note that LWB flush
1500 * errors are not propagated up to the LWB root ZIO.
1501 * This is incorrect behavior, and results in VDEV flush
1502 * errors not being handled correctly here. See the
1503 * comment above the call to "zio_flush" for details.
1506 zcw
->zcw_zio_error
= zio
->io_error
;
1508 ASSERT3B(zcw
->zcw_done
, ==, B_FALSE
);
1509 zcw
->zcw_done
= B_TRUE
;
1510 cv_broadcast(&zcw
->zcw_cv
);
1512 mutex_exit(&zcw
->zcw_lock
);
1515 uint64_t txg
= lwb
->lwb_issued_txg
;
1517 /* Once we drop the lock, lwb may be freed by zil_sync(). */
1518 mutex_exit(&zilog
->zl_lock
);
1520 mutex_enter(&zilog
->zl_lwb_io_lock
);
1521 ASSERT3U(zilog
->zl_lwb_inflight
[txg
& TXG_MASK
], >, 0);
1522 zilog
->zl_lwb_inflight
[txg
& TXG_MASK
]--;
1523 if (zilog
->zl_lwb_inflight
[txg
& TXG_MASK
] == 0)
1524 cv_broadcast(&zilog
->zl_lwb_io_cv
);
1525 mutex_exit(&zilog
->zl_lwb_io_lock
);
1529 * Wait for the completion of all issued write/flush of that txg provided.
1530 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1533 zil_lwb_flush_wait_all(zilog_t
*zilog
, uint64_t txg
)
1535 ASSERT3U(txg
, ==, spa_syncing_txg(zilog
->zl_spa
));
1537 mutex_enter(&zilog
->zl_lwb_io_lock
);
1538 while (zilog
->zl_lwb_inflight
[txg
& TXG_MASK
] > 0)
1539 cv_wait(&zilog
->zl_lwb_io_cv
, &zilog
->zl_lwb_io_lock
);
1540 mutex_exit(&zilog
->zl_lwb_io_lock
);
1543 mutex_enter(&zilog
->zl_lock
);
1544 mutex_enter(&zilog
->zl_lwb_io_lock
);
1545 lwb_t
*lwb
= list_head(&zilog
->zl_lwb_list
);
1546 while (lwb
!= NULL
) {
1547 if (lwb
->lwb_issued_txg
<= txg
) {
1548 ASSERT(lwb
->lwb_state
!= LWB_STATE_ISSUED
);
1549 ASSERT(lwb
->lwb_state
!= LWB_STATE_WRITE_DONE
);
1550 IMPLY(lwb
->lwb_issued_txg
> 0,
1551 lwb
->lwb_state
== LWB_STATE_FLUSH_DONE
);
1553 IMPLY(lwb
->lwb_state
== LWB_STATE_WRITE_DONE
||
1554 lwb
->lwb_state
== LWB_STATE_FLUSH_DONE
,
1555 lwb
->lwb_buf
== NULL
);
1556 lwb
= list_next(&zilog
->zl_lwb_list
, lwb
);
1558 mutex_exit(&zilog
->zl_lwb_io_lock
);
1559 mutex_exit(&zilog
->zl_lock
);
1564 * This is called when an lwb's write zio completes. The callback's purpose is
1565 * to issue the flush commands for the vdevs in the lwb's lwb_vdev_tree. The
1566 * tree will contain the vdevs involved in writing out this specific lwb's
1567 * data, and in the case that cache flushes have been deferred, vdevs involved
1568 * in writing the data for previous lwbs. The writes corresponding to all the
1569 * vdevs in the lwb_vdev_tree will have completed by the time this is called,
1570 * due to the zio dependencies configured in zil_lwb_set_zio_dependency(),
1571 * which takes deferred flushes into account. The lwb will be "done" once
1572 * zil_lwb_flush_vdevs_done() is called, which occurs in the zio completion
1573 * callback for the lwb's root zio.
1576 zil_lwb_write_done(zio_t
*zio
)
1578 lwb_t
*lwb
= zio
->io_private
;
1579 spa_t
*spa
= zio
->io_spa
;
1580 zilog_t
*zilog
= lwb
->lwb_zilog
;
1581 avl_tree_t
*t
= &lwb
->lwb_vdev_tree
;
1582 void *cookie
= NULL
;
1583 zil_vdev_node_t
*zv
;
1586 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), !=, 0);
1588 abd_free(zio
->io_abd
);
1589 zio_buf_free(lwb
->lwb_buf
, lwb
->lwb_sz
);
1590 lwb
->lwb_buf
= NULL
;
1592 mutex_enter(&zilog
->zl_lock
);
1593 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_ISSUED
);
1594 lwb
->lwb_state
= LWB_STATE_WRITE_DONE
;
1595 lwb
->lwb_child_zio
= NULL
;
1596 lwb
->lwb_write_zio
= NULL
;
1599 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1600 * called for it yet, and when it will be, it won't be able to make
1601 * its write ZIO a parent this ZIO. In such case we can not defer
1602 * our flushes or below may be a race between the done callbacks.
1604 nlwb
= list_next(&zilog
->zl_lwb_list
, lwb
);
1605 if (nlwb
&& nlwb
->lwb_state
!= LWB_STATE_ISSUED
)
1607 mutex_exit(&zilog
->zl_lock
);
1609 if (avl_numnodes(t
) == 0)
1613 * If there was an IO error, we're not going to call zio_flush()
1614 * on these vdevs, so we simply empty the tree and free the
1615 * nodes. We avoid calling zio_flush() since there isn't any
1616 * good reason for doing so, after the lwb block failed to be
1619 * Additionally, we don't perform any further error handling at
1620 * this point (e.g. setting "zcw_zio_error" appropriately), as
1621 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1622 * we expect any error seen here, to have been propagated to
1625 if (zio
->io_error
!= 0) {
1626 while ((zv
= avl_destroy_nodes(t
, &cookie
)) != NULL
)
1627 kmem_free(zv
, sizeof (*zv
));
1632 * If this lwb does not have any threads waiting for it to complete, we
1633 * want to defer issuing the flush command to the vdevs written to by
1634 * "this" lwb, and instead rely on the "next" lwb to handle the flush
1635 * command for those vdevs. Thus, we merge the vdev tree of "this" lwb
1636 * with the vdev tree of the "next" lwb in the list, and assume the
1637 * "next" lwb will handle flushing the vdevs (or deferring the flush(s)
1640 * This is a useful performance optimization, especially for workloads
1641 * with lots of async write activity and few sync write and/or fsync
1642 * activity, as it has the potential to coalesce multiple flush
1643 * commands to a vdev into one.
1645 if (list_is_empty(&lwb
->lwb_waiters
) && nlwb
!= NULL
) {
1646 zil_lwb_flush_defer(lwb
, nlwb
);
1647 ASSERT(avl_is_empty(&lwb
->lwb_vdev_tree
));
1651 while ((zv
= avl_destroy_nodes(t
, &cookie
)) != NULL
) {
1652 vdev_t
*vd
= vdev_lookup_top(spa
, zv
->zv_vdev
);
1655 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1656 * always used within "zio_flush". This means,
1657 * any errors when flushing the vdev(s), will
1658 * (unfortunately) not be handled correctly,
1659 * since these "zio_flush" errors will not be
1660 * propagated up to "zil_lwb_flush_vdevs_done".
1662 zio_flush(lwb
->lwb_root_zio
, vd
);
1664 kmem_free(zv
, sizeof (*zv
));
1669 * Build the zio dependency chain, which is used to preserve the ordering of
1670 * lwb completions that is required by the semantics of the ZIL. Each new lwb
1671 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1672 * cannot complete until the previous lwb's zio completes.
1674 * This is required by the semantics of zil_commit(): the commit waiters
1675 * attached to the lwbs will be woken in the lwb zio's completion callback,
1676 * so this zio dependency graph ensures the waiters are woken in the correct
1677 * order (the same order the lwbs were created).
1680 zil_lwb_set_zio_dependency(zilog_t
*zilog
, lwb_t
*lwb
)
1682 ASSERT(MUTEX_HELD(&zilog
->zl_lock
));
1684 lwb_t
*prev_lwb
= list_prev(&zilog
->zl_lwb_list
, lwb
);
1685 if (prev_lwb
== NULL
||
1686 prev_lwb
->lwb_state
== LWB_STATE_FLUSH_DONE
)
1690 * If the previous lwb's write hasn't already completed, we also want
1691 * to order the completion of the lwb write zios (above, we only order
1692 * the completion of the lwb root zios). This is required because of
1693 * how we can defer the flush commands for each lwb.
1695 * When the flush commands are deferred, the previous lwb will rely on
1696 * this lwb to flush the vdevs written to by that previous lwb. Thus,
1697 * we need to ensure this lwb doesn't issue the flush until after the
1698 * previous lwb's write completes. We ensure this ordering by setting
1699 * the zio parent/child relationship here.
1701 * Without this relationship on the lwb's write zio, it's possible for
1702 * this lwb's write to complete prior to the previous lwb's write
1703 * completing; and thus, the vdevs for the previous lwb would be
1704 * flushed prior to that lwb's data being written to those vdevs (the
1705 * vdevs are flushed in the lwb write zio's completion handler,
1706 * zil_lwb_write_done()).
1708 if (prev_lwb
->lwb_state
== LWB_STATE_ISSUED
) {
1709 ASSERT3P(prev_lwb
->lwb_write_zio
, !=, NULL
);
1710 zio_add_child(lwb
->lwb_write_zio
, prev_lwb
->lwb_write_zio
);
1712 ASSERT3S(prev_lwb
->lwb_state
, ==, LWB_STATE_WRITE_DONE
);
1715 ASSERT3P(prev_lwb
->lwb_root_zio
, !=, NULL
);
1716 zio_add_child(lwb
->lwb_root_zio
, prev_lwb
->lwb_root_zio
);
1721 * This function's purpose is to "open" an lwb such that it is ready to
1722 * accept new itxs being committed to it. This function is idempotent; if
1723 * the passed in lwb has already been opened, it is essentially a no-op.
1726 zil_lwb_write_open(zilog_t
*zilog
, lwb_t
*lwb
)
1728 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
1730 if (lwb
->lwb_state
!= LWB_STATE_NEW
) {
1731 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_OPENED
);
1735 mutex_enter(&zilog
->zl_lock
);
1736 lwb
->lwb_state
= LWB_STATE_OPENED
;
1737 zilog
->zl_last_lwb_opened
= lwb
;
1738 mutex_exit(&zilog
->zl_lock
);
1742 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1743 * initialized. Otherwise this should not be used directly; see
1744 * zl_max_block_size instead.
1746 static uint_t zil_maxblocksize
= SPA_OLD_MAXBLOCKSIZE
;
1749 * Plan splitting of the provided burst size between several blocks.
1752 zil_lwb_plan(zilog_t
*zilog
, uint64_t size
, uint_t
*minsize
)
1754 uint_t md
= zilog
->zl_max_block_size
- sizeof (zil_chain_t
);
1758 * Small bursts are written as-is in one block.
1762 } else if (size
> 8 * md
) {
1764 * Big bursts use maximum blocks. The first block size
1765 * is hard to predict, but it does not really matter.
1772 * Medium bursts try to divide evenly to better utilize several SLOG
1773 * VDEVs. The first block size we predict assuming the worst case of
1774 * maxing out others. Fall back to using maximum blocks if due to
1775 * large records or wasted space we can not predict anything better.
1778 uint_t n
= DIV_ROUND_UP(s
, md
- sizeof (lr_write_t
));
1779 uint_t chunk
= DIV_ROUND_UP(s
, n
);
1780 uint_t waste
= zil_max_waste_space(zilog
);
1781 waste
= MAX(waste
, zilog
->zl_cur_max
);
1782 if (chunk
<= md
- waste
) {
1783 *minsize
= MAX(s
- (md
- waste
) * (n
- 1), waste
);
1792 * Try to predict next block size based on previous history. Make prediction
1793 * sufficient for 7 of 8 previous bursts. Don't try to save if the saving is
1794 * less then 50%, extra writes may cost more, but we don't want single spike
1795 * to badly affect our predictions.
1798 zil_lwb_predict(zilog_t
*zilog
)
1802 /* If we are in the middle of a burst, take it into account also. */
1803 if (zilog
->zl_cur_size
> 0) {
1804 o
= zil_lwb_plan(zilog
, zilog
->zl_cur_size
, &m
);
1810 /* Find minimum optimal size. We don't need to go below that. */
1811 for (int i
= 0; i
< ZIL_BURSTS
; i
++)
1812 o
= MIN(o
, zilog
->zl_prev_opt
[i
]);
1814 /* Find two biggest minimal first block sizes above the optimal. */
1815 uint_t m1
= MAX(m
, o
), m2
= o
;
1816 for (int i
= 0; i
< ZIL_BURSTS
; i
++) {
1817 m
= zilog
->zl_prev_min
[i
];
1821 } else if (m
> m2
) {
1827 * If second minimum size gives 50% saving -- use it. It may cost us
1828 * one additional write later, but the space saving is just too big.
1830 return ((m1
< m2
* 2) ? m1
: m2
);
1834 * Close the log block for being issued and allocate the next one.
1835 * Has to be called under zl_issuer_lock to chain more lwbs.
1838 zil_lwb_write_close(zilog_t
*zilog
, lwb_t
*lwb
, lwb_state_t state
)
1840 uint64_t blksz
, plan
, plan2
;
1842 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
1843 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_OPENED
);
1844 lwb
->lwb_state
= LWB_STATE_CLOSED
;
1847 * If there was an allocation failure then returned NULL will trigger
1848 * zil_commit_writer_stall() at the caller. This is inherently racy,
1849 * since allocation may not have happened yet.
1851 if (lwb
->lwb_error
!= 0)
1855 * Log blocks are pre-allocated. Here we select the size of the next
1856 * block, based on what's left of this burst and the previous history.
1857 * While we try to only write used part of the block, we can't just
1858 * always allocate the maximum block size because we can exhaust all
1859 * available pool log space, so we try to be reasonable.
1861 if (zilog
->zl_cur_left
> 0) {
1863 * We are in the middle of a burst and know how much is left.
1864 * But if workload is multi-threaded there may be more soon.
1865 * Try to predict what can it be and plan for the worst case.
1868 plan
= zil_lwb_plan(zilog
, zilog
->zl_cur_left
, &m
);
1869 if (zilog
->zl_parallel
) {
1870 plan2
= zil_lwb_plan(zilog
, zilog
->zl_cur_left
+
1871 zil_lwb_predict(zilog
), &m
);
1877 * The previous burst is done and we can only predict what
1880 plan
= zil_lwb_predict(zilog
);
1882 blksz
= plan
+ sizeof (zil_chain_t
);
1883 blksz
= P2ROUNDUP_TYPED(blksz
, ZIL_MIN_BLKSZ
, uint64_t);
1884 blksz
= MIN(blksz
, zilog
->zl_max_block_size
);
1885 DTRACE_PROBE3(zil__block__size
, zilog_t
*, zilog
, uint64_t, blksz
,
1888 return (zil_alloc_lwb(zilog
, blksz
, NULL
, 0, 0, state
));
1892 * Finalize previously closed block and issue the write zio.
1895 zil_lwb_write_issue(zilog_t
*zilog
, lwb_t
*lwb
)
1897 spa_t
*spa
= zilog
->zl_spa
;
1900 zbookmark_phys_t zb
;
1901 zio_priority_t prio
;
1904 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_CLOSED
);
1906 /* Actually fill the lwb with the data. */
1907 for (itx_t
*itx
= list_head(&lwb
->lwb_itxs
); itx
;
1908 itx
= list_next(&lwb
->lwb_itxs
, itx
))
1909 zil_lwb_commit(zilog
, lwb
, itx
);
1910 lwb
->lwb_nused
= lwb
->lwb_nfilled
;
1911 ASSERT3U(lwb
->lwb_nused
, <=, lwb
->lwb_nmax
);
1913 lwb
->lwb_root_zio
= zio_root(spa
, zil_lwb_flush_vdevs_done
, lwb
,
1917 * The lwb is now ready to be issued, but it can be only if it already
1918 * got its block pointer allocated or the allocation has failed.
1919 * Otherwise leave it as-is, relying on some other thread to issue it
1920 * after allocating its block pointer via calling zil_lwb_write_issue()
1921 * for the previous lwb(s) in the chain.
1923 mutex_enter(&zilog
->zl_lock
);
1924 lwb
->lwb_state
= LWB_STATE_READY
;
1925 if (BP_IS_HOLE(&lwb
->lwb_blk
) && lwb
->lwb_error
== 0) {
1926 mutex_exit(&zilog
->zl_lock
);
1929 mutex_exit(&zilog
->zl_lock
);
1933 zilc
= (zil_chain_t
*)lwb
->lwb_buf
;
1935 zilc
= (zil_chain_t
*)(lwb
->lwb_buf
+ lwb
->lwb_nmax
);
1936 int wsz
= lwb
->lwb_sz
;
1937 if (lwb
->lwb_error
== 0) {
1938 abd_t
*lwb_abd
= abd_get_from_buf(lwb
->lwb_buf
, lwb
->lwb_sz
);
1939 if (!lwb
->lwb_slog
|| zilog
->zl_cur_size
<= zil_slog_bulk
)
1940 prio
= ZIO_PRIORITY_SYNC_WRITE
;
1942 prio
= ZIO_PRIORITY_ASYNC_WRITE
;
1943 SET_BOOKMARK(&zb
, lwb
->lwb_blk
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1944 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
,
1945 lwb
->lwb_blk
.blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
1946 lwb
->lwb_write_zio
= zio_rewrite(lwb
->lwb_root_zio
, spa
, 0,
1947 &lwb
->lwb_blk
, lwb_abd
, lwb
->lwb_sz
, zil_lwb_write_done
,
1948 lwb
, prio
, ZIO_FLAG_CANFAIL
, &zb
);
1949 zil_lwb_add_block(lwb
, &lwb
->lwb_blk
);
1951 if (lwb
->lwb_slim
) {
1952 /* For Slim ZIL only write what is used. */
1953 wsz
= P2ROUNDUP_TYPED(lwb
->lwb_nused
, ZIL_MIN_BLKSZ
,
1955 ASSERT3S(wsz
, <=, lwb
->lwb_sz
);
1956 zio_shrink(lwb
->lwb_write_zio
, wsz
);
1957 wsz
= lwb
->lwb_write_zio
->io_size
;
1959 memset(lwb
->lwb_buf
+ lwb
->lwb_nused
, 0, wsz
- lwb
->lwb_nused
);
1961 zilc
->zc_nused
= lwb
->lwb_nused
;
1962 zilc
->zc_eck
.zec_cksum
= lwb
->lwb_blk
.blk_cksum
;
1965 * We can't write the lwb if there was an allocation failure,
1966 * so create a null zio instead just to maintain dependencies.
1968 lwb
->lwb_write_zio
= zio_null(lwb
->lwb_root_zio
, spa
, NULL
,
1969 zil_lwb_write_done
, lwb
, ZIO_FLAG_CANFAIL
);
1970 lwb
->lwb_write_zio
->io_error
= lwb
->lwb_error
;
1972 if (lwb
->lwb_child_zio
)
1973 zio_add_child(lwb
->lwb_write_zio
, lwb
->lwb_child_zio
);
1976 * Open transaction to allocate the next block pointer.
1978 dmu_tx_t
*tx
= dmu_tx_create(zilog
->zl_os
);
1979 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
| TXG_NOTHROTTLE
));
1980 dsl_dataset_dirty(dmu_objset_ds(zilog
->zl_os
), tx
);
1981 uint64_t txg
= dmu_tx_get_txg(tx
);
1984 * Allocate next the block pointer unless we are already in error.
1986 lwb_t
*nlwb
= list_next(&zilog
->zl_lwb_list
, lwb
);
1987 blkptr_t
*bp
= &zilc
->zc_next_blk
;
1989 error
= lwb
->lwb_error
;
1991 error
= zio_alloc_zil(spa
, zilog
->zl_os
, txg
, bp
, nlwb
->lwb_sz
,
1995 ASSERT3U(BP_GET_LOGICAL_BIRTH(bp
), ==, txg
);
1996 BP_SET_CHECKSUM(bp
, nlwb
->lwb_slim
? ZIO_CHECKSUM_ZILOG2
:
1997 ZIO_CHECKSUM_ZILOG
);
1998 bp
->blk_cksum
= lwb
->lwb_blk
.blk_cksum
;
1999 bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]++;
2003 * Reduce TXG open time by incrementing inflight counter and committing
2004 * the transaciton. zil_sync() will wait for it to return to zero.
2006 mutex_enter(&zilog
->zl_lwb_io_lock
);
2007 lwb
->lwb_issued_txg
= txg
;
2008 zilog
->zl_lwb_inflight
[txg
& TXG_MASK
]++;
2009 zilog
->zl_lwb_max_issued_txg
= MAX(txg
, zilog
->zl_lwb_max_issued_txg
);
2010 mutex_exit(&zilog
->zl_lwb_io_lock
);
2013 spa_config_enter(spa
, SCL_STATE
, lwb
, RW_READER
);
2016 * We've completed all potentially blocking operations. Update the
2017 * nlwb and allow it proceed without possible lock order reversals.
2019 mutex_enter(&zilog
->zl_lock
);
2020 zil_lwb_set_zio_dependency(zilog
, lwb
);
2021 lwb
->lwb_state
= LWB_STATE_ISSUED
;
2024 nlwb
->lwb_blk
= *bp
;
2025 nlwb
->lwb_error
= error
;
2026 nlwb
->lwb_slog
= slog
;
2027 nlwb
->lwb_alloc_txg
= txg
;
2028 if (nlwb
->lwb_state
!= LWB_STATE_READY
)
2031 mutex_exit(&zilog
->zl_lock
);
2033 if (lwb
->lwb_slog
) {
2034 ZIL_STAT_BUMP(zilog
, zil_itx_metaslab_slog_count
);
2035 ZIL_STAT_INCR(zilog
, zil_itx_metaslab_slog_bytes
,
2037 ZIL_STAT_INCR(zilog
, zil_itx_metaslab_slog_write
,
2039 ZIL_STAT_INCR(zilog
, zil_itx_metaslab_slog_alloc
,
2040 BP_GET_LSIZE(&lwb
->lwb_blk
));
2042 ZIL_STAT_BUMP(zilog
, zil_itx_metaslab_normal_count
);
2043 ZIL_STAT_INCR(zilog
, zil_itx_metaslab_normal_bytes
,
2045 ZIL_STAT_INCR(zilog
, zil_itx_metaslab_normal_write
,
2047 ZIL_STAT_INCR(zilog
, zil_itx_metaslab_normal_alloc
,
2048 BP_GET_LSIZE(&lwb
->lwb_blk
));
2050 lwb
->lwb_issued_timestamp
= gethrtime();
2051 if (lwb
->lwb_child_zio
)
2052 zio_nowait(lwb
->lwb_child_zio
);
2053 zio_nowait(lwb
->lwb_write_zio
);
2054 zio_nowait(lwb
->lwb_root_zio
);
2057 * If nlwb was ready when we gave it the block pointer,
2058 * it is on us to issue it and possibly following ones.
2066 * Maximum amount of data that can be put into single log block.
2069 zil_max_log_data(zilog_t
*zilog
, size_t hdrsize
)
2071 return (zilog
->zl_max_block_size
- sizeof (zil_chain_t
) - hdrsize
);
2075 * Maximum amount of log space we agree to waste to reduce number of
2076 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2078 static inline uint64_t
2079 zil_max_waste_space(zilog_t
*zilog
)
2081 return (zil_max_log_data(zilog
, sizeof (lr_write_t
)) / 16);
2085 * Maximum amount of write data for WR_COPIED. For correctness, consumers
2086 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2087 * maximum sized log block, because each WR_COPIED record must fit in a
2088 * single log block. Below that it is a tradeoff of additional memory copy
2089 * and possibly worse log space efficiency vs additional range lock/unlock.
2091 static uint_t zil_maxcopied
= 7680;
2094 zil_max_copied_data(zilog_t
*zilog
)
2096 uint64_t max_data
= zil_max_log_data(zilog
, sizeof (lr_write_t
));
2097 return (MIN(max_data
, zil_maxcopied
));
2101 zil_itx_record_size(itx_t
*itx
)
2103 lr_t
*lr
= &itx
->itx_lr
;
2105 if (lr
->lrc_txtype
== TX_COMMIT
)
2107 ASSERT3U(lr
->lrc_reclen
, >=, sizeof (lr_t
));
2108 return (lr
->lrc_reclen
);
2112 zil_itx_data_size(itx_t
*itx
)
2114 lr_t
*lr
= &itx
->itx_lr
;
2115 lr_write_t
*lrw
= (lr_write_t
*)lr
;
2117 if (lr
->lrc_txtype
== TX_WRITE
&& itx
->itx_wr_state
== WR_NEED_COPY
) {
2118 ASSERT3U(lr
->lrc_reclen
, ==, sizeof (lr_write_t
));
2119 return (P2ROUNDUP_TYPED(lrw
->lr_length
, sizeof (uint64_t),
2126 zil_itx_full_size(itx_t
*itx
)
2128 lr_t
*lr
= &itx
->itx_lr
;
2130 if (lr
->lrc_txtype
== TX_COMMIT
)
2132 ASSERT3U(lr
->lrc_reclen
, >=, sizeof (lr_t
));
2133 return (lr
->lrc_reclen
+ zil_itx_data_size(itx
));
2137 * Estimate space needed in the lwb for the itx. Allocate more lwbs or
2138 * split the itx as needed, but don't touch the actual transaction data.
2139 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2140 * to chain more lwbs.
2143 zil_lwb_assign(zilog_t
*zilog
, lwb_t
*lwb
, itx_t
*itx
, list_t
*ilwbs
)
2148 uint64_t dlen
, dnow
, lwb_sp
, reclen
, max_log_data
;
2150 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
2151 ASSERT3P(lwb
, !=, NULL
);
2152 ASSERT3P(lwb
->lwb_buf
, !=, NULL
);
2154 zil_lwb_write_open(zilog
, lwb
);
2157 lrw
= (lr_write_t
*)lr
;
2160 * A commit itx doesn't represent any on-disk state; instead
2161 * it's simply used as a place holder on the commit list, and
2162 * provides a mechanism for attaching a "commit waiter" onto the
2163 * correct lwb (such that the waiter can be signalled upon
2164 * completion of that lwb). Thus, we don't process this itx's
2165 * log record if it's a commit itx (these itx's don't have log
2166 * records), and instead link the itx's waiter onto the lwb's
2169 * For more details, see the comment above zil_commit().
2171 if (lr
->lrc_txtype
== TX_COMMIT
) {
2172 zil_commit_waiter_link_lwb(itx
->itx_private
, lwb
);
2173 list_insert_tail(&lwb
->lwb_itxs
, itx
);
2177 reclen
= lr
->lrc_reclen
;
2178 ASSERT3U(reclen
, >=, sizeof (lr_t
));
2179 ASSERT3U(reclen
, <=, zil_max_log_data(zilog
, 0));
2180 dlen
= zil_itx_data_size(itx
);
2184 * If this record won't fit in the current log block, start a new one.
2185 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2187 lwb_sp
= lwb
->lwb_nmax
- lwb
->lwb_nused
;
2188 max_log_data
= zil_max_log_data(zilog
, sizeof (lr_write_t
));
2189 if (reclen
> lwb_sp
|| (reclen
+ dlen
> lwb_sp
&&
2190 lwb_sp
< zil_max_waste_space(zilog
) &&
2191 (dlen
% max_log_data
== 0 ||
2192 lwb_sp
< reclen
+ dlen
% max_log_data
))) {
2193 list_insert_tail(ilwbs
, lwb
);
2194 lwb
= zil_lwb_write_close(zilog
, lwb
, LWB_STATE_OPENED
);
2197 lwb_sp
= lwb
->lwb_nmax
- lwb
->lwb_nused
;
2201 * There must be enough space in the log block to hold reclen.
2202 * For WR_COPIED, we need to fit the whole record in one block,
2203 * and reclen is the write record header size + the data size.
2204 * For WR_NEED_COPY, we can create multiple records, splitting
2205 * the data into multiple blocks, so we only need to fit one
2206 * word of data per block; in this case reclen is just the header
2209 ASSERT3U(reclen
+ MIN(dlen
, sizeof (uint64_t)), <=, lwb_sp
);
2211 dnow
= MIN(dlen
, lwb_sp
- reclen
);
2213 ASSERT3U(lr
->lrc_txtype
, ==, TX_WRITE
);
2214 ASSERT3U(itx
->itx_wr_state
, ==, WR_NEED_COPY
);
2215 citx
= zil_itx_clone(itx
);
2216 clr
= &citx
->itx_lr
;
2217 lr_write_t
*clrw
= (lr_write_t
*)clr
;
2218 clrw
->lr_length
= dnow
;
2219 lrw
->lr_offset
+= dnow
;
2220 lrw
->lr_length
-= dnow
;
2221 zilog
->zl_cur_left
-= dnow
;
2228 * We're actually making an entry, so update lrc_seq to be the
2229 * log record sequence number. Note that this is generally not
2230 * equal to the itx sequence number because not all transactions
2231 * are synchronous, and sometimes spa_sync() gets there first.
2233 clr
->lrc_seq
= ++zilog
->zl_lr_seq
;
2235 lwb
->lwb_nused
+= reclen
+ dnow
;
2236 ASSERT3U(lwb
->lwb_nused
, <=, lwb
->lwb_nmax
);
2237 ASSERT0(P2PHASE(lwb
->lwb_nused
, sizeof (uint64_t)));
2239 zil_lwb_add_txg(lwb
, lr
->lrc_txg
);
2240 list_insert_tail(&lwb
->lwb_itxs
, citx
);
2246 if (lr
->lrc_txtype
== TX_WRITE
&&
2247 lr
->lrc_txg
> spa_freeze_txg(zilog
->zl_spa
))
2248 txg_wait_synced(zilog
->zl_dmu_pool
, lr
->lrc_txg
);
2254 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2255 * Does not require locking.
2258 zil_lwb_commit(zilog_t
*zilog
, lwb_t
*lwb
, itx_t
*itx
)
2261 lr_write_t
*lrw
, *lrwb
;
2263 uint64_t dlen
, reclen
;
2266 lrw
= (lr_write_t
*)lr
;
2268 if (lr
->lrc_txtype
== TX_COMMIT
)
2271 reclen
= lr
->lrc_reclen
;
2272 dlen
= zil_itx_data_size(itx
);
2273 ASSERT3U(reclen
+ dlen
, <=, lwb
->lwb_nused
- lwb
->lwb_nfilled
);
2275 lr_buf
= lwb
->lwb_buf
+ lwb
->lwb_nfilled
;
2276 memcpy(lr_buf
, lr
, reclen
);
2277 lrb
= (lr_t
*)lr_buf
; /* Like lr, but inside lwb. */
2278 lrwb
= (lr_write_t
*)lrb
; /* Like lrw, but inside lwb. */
2280 ZIL_STAT_BUMP(zilog
, zil_itx_count
);
2283 * If it's a write, fetch the data or get its blkptr as appropriate.
2285 if (lr
->lrc_txtype
== TX_WRITE
) {
2286 if (itx
->itx_wr_state
== WR_COPIED
) {
2287 ZIL_STAT_BUMP(zilog
, zil_itx_copied_count
);
2288 ZIL_STAT_INCR(zilog
, zil_itx_copied_bytes
,
2294 if (itx
->itx_wr_state
== WR_NEED_COPY
) {
2295 dbuf
= lr_buf
+ reclen
;
2296 lrb
->lrc_reclen
+= dlen
;
2297 ZIL_STAT_BUMP(zilog
, zil_itx_needcopy_count
);
2298 ZIL_STAT_INCR(zilog
, zil_itx_needcopy_bytes
,
2301 ASSERT3S(itx
->itx_wr_state
, ==, WR_INDIRECT
);
2303 ZIL_STAT_BUMP(zilog
, zil_itx_indirect_count
);
2304 ZIL_STAT_INCR(zilog
, zil_itx_indirect_bytes
,
2306 if (lwb
->lwb_child_zio
== NULL
) {
2307 lwb
->lwb_child_zio
= zio_null(NULL
,
2308 zilog
->zl_spa
, NULL
, NULL
, NULL
,
2314 * The "lwb_child_zio" we pass in will become a child of
2315 * "lwb_write_zio", when one is created, so one will be
2316 * a parent of any zio's created by the "zl_get_data".
2317 * This way "lwb_write_zio" will first wait for children
2318 * block pointers before own writing, and then for their
2319 * writing completion before the vdev cache flushing.
2321 error
= zilog
->zl_get_data(itx
->itx_private
,
2322 itx
->itx_gen
, lrwb
, dbuf
, lwb
,
2323 lwb
->lwb_child_zio
);
2324 if (dbuf
!= NULL
&& error
== 0) {
2325 /* Zero any padding bytes in the last block. */
2326 memset((char *)dbuf
+ lrwb
->lr_length
, 0,
2327 dlen
- lrwb
->lr_length
);
2331 * Typically, the only return values we should see from
2332 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2333 * EALREADY. However, it is also possible to see other
2334 * error values such as ENOSPC or EINVAL from
2335 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2336 * ENXIO as well as a multitude of others from the
2337 * block layer through dmu_buf_hold() -> dbuf_read()
2338 * -> zio_wait(), as well as through dmu_read() ->
2339 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2340 * zio_wait(). When these errors happen, we can assume
2341 * that neither an immediate write nor an indirect
2342 * write occurred, so we need to fall back to
2343 * txg_wait_synced(). This is unusual, so we print to
2344 * dmesg whenever one of these errors occurs.
2350 cmn_err(CE_WARN
, "zil_lwb_commit() received "
2351 "unexpected error %d from ->zl_get_data()"
2352 ". Falling back to txg_wait_synced().",
2356 txg_wait_synced(zilog
->zl_dmu_pool
,
2369 lwb
->lwb_nfilled
+= reclen
+ dlen
;
2370 ASSERT3S(lwb
->lwb_nfilled
, <=, lwb
->lwb_nused
);
2371 ASSERT0(P2PHASE(lwb
->lwb_nfilled
, sizeof (uint64_t)));
2375 zil_itx_create(uint64_t txtype
, size_t olrsize
)
2377 size_t itxsize
, lrsize
;
2380 ASSERT3U(olrsize
, >=, sizeof (lr_t
));
2381 lrsize
= P2ROUNDUP_TYPED(olrsize
, sizeof (uint64_t), size_t);
2382 ASSERT3U(lrsize
, >=, olrsize
);
2383 itxsize
= offsetof(itx_t
, itx_lr
) + lrsize
;
2385 itx
= zio_data_buf_alloc(itxsize
);
2386 itx
->itx_lr
.lrc_txtype
= txtype
;
2387 itx
->itx_lr
.lrc_reclen
= lrsize
;
2388 itx
->itx_lr
.lrc_seq
= 0; /* defensive */
2389 memset((char *)&itx
->itx_lr
+ olrsize
, 0, lrsize
- olrsize
);
2390 itx
->itx_sync
= B_TRUE
; /* default is synchronous */
2391 itx
->itx_callback
= NULL
;
2392 itx
->itx_callback_data
= NULL
;
2393 itx
->itx_size
= itxsize
;
2399 zil_itx_clone(itx_t
*oitx
)
2401 ASSERT3U(oitx
->itx_size
, >=, sizeof (itx_t
));
2402 ASSERT3U(oitx
->itx_size
, ==,
2403 offsetof(itx_t
, itx_lr
) + oitx
->itx_lr
.lrc_reclen
);
2405 itx_t
*itx
= zio_data_buf_alloc(oitx
->itx_size
);
2406 memcpy(itx
, oitx
, oitx
->itx_size
);
2407 itx
->itx_callback
= NULL
;
2408 itx
->itx_callback_data
= NULL
;
2413 zil_itx_destroy(itx_t
*itx
)
2415 ASSERT3U(itx
->itx_size
, >=, sizeof (itx_t
));
2416 ASSERT3U(itx
->itx_lr
.lrc_reclen
, ==,
2417 itx
->itx_size
- offsetof(itx_t
, itx_lr
));
2418 IMPLY(itx
->itx_lr
.lrc_txtype
== TX_COMMIT
, itx
->itx_callback
== NULL
);
2419 IMPLY(itx
->itx_callback
!= NULL
, itx
->itx_lr
.lrc_txtype
!= TX_COMMIT
);
2421 if (itx
->itx_callback
!= NULL
)
2422 itx
->itx_callback(itx
->itx_callback_data
);
2424 zio_data_buf_free(itx
, itx
->itx_size
);
2428 * Free up the sync and async itxs. The itxs_t has already been detached
2429 * so no locks are needed.
2432 zil_itxg_clean(void *arg
)
2439 itx_async_node_t
*ian
;
2441 list
= &itxs
->i_sync_list
;
2442 while ((itx
= list_remove_head(list
)) != NULL
) {
2444 * In the general case, commit itxs will not be found
2445 * here, as they'll be committed to an lwb via
2446 * zil_lwb_assign(), and free'd in that function. Having
2447 * said that, it is still possible for commit itxs to be
2448 * found here, due to the following race:
2450 * - a thread calls zil_commit() which assigns the
2451 * commit itx to a per-txg i_sync_list
2452 * - zil_itxg_clean() is called (e.g. via spa_sync())
2453 * while the waiter is still on the i_sync_list
2455 * There's nothing to prevent syncing the txg while the
2456 * waiter is on the i_sync_list. This normally doesn't
2457 * happen because spa_sync() is slower than zil_commit(),
2458 * but if zil_commit() calls txg_wait_synced() (e.g.
2459 * because zil_create() or zil_commit_writer_stall() is
2460 * called) we will hit this case.
2462 if (itx
->itx_lr
.lrc_txtype
== TX_COMMIT
)
2463 zil_commit_waiter_skip(itx
->itx_private
);
2465 zil_itx_destroy(itx
);
2469 t
= &itxs
->i_async_tree
;
2470 while ((ian
= avl_destroy_nodes(t
, &cookie
)) != NULL
) {
2471 list
= &ian
->ia_list
;
2472 while ((itx
= list_remove_head(list
)) != NULL
) {
2473 /* commit itxs should never be on the async lists. */
2474 ASSERT3U(itx
->itx_lr
.lrc_txtype
, !=, TX_COMMIT
);
2475 zil_itx_destroy(itx
);
2478 kmem_free(ian
, sizeof (itx_async_node_t
));
2482 kmem_free(itxs
, sizeof (itxs_t
));
2486 zil_aitx_compare(const void *x1
, const void *x2
)
2488 const uint64_t o1
= ((itx_async_node_t
*)x1
)->ia_foid
;
2489 const uint64_t o2
= ((itx_async_node_t
*)x2
)->ia_foid
;
2491 return (TREE_CMP(o1
, o2
));
2495 * Remove all async itx with the given oid.
2498 zil_remove_async(zilog_t
*zilog
, uint64_t oid
)
2501 itx_async_node_t
*ian
, ian_search
;
2508 list_create(&clean_list
, sizeof (itx_t
), offsetof(itx_t
, itx_node
));
2510 if (spa_freeze_txg(zilog
->zl_spa
) != UINT64_MAX
) /* ziltest support */
2513 otxg
= spa_last_synced_txg(zilog
->zl_spa
) + 1;
2515 for (txg
= otxg
; txg
< (otxg
+ TXG_CONCURRENT_STATES
); txg
++) {
2516 itxg_t
*itxg
= &zilog
->zl_itxg
[txg
& TXG_MASK
];
2518 mutex_enter(&itxg
->itxg_lock
);
2519 if (itxg
->itxg_txg
!= txg
) {
2520 mutex_exit(&itxg
->itxg_lock
);
2525 * Locate the object node and append its list.
2527 t
= &itxg
->itxg_itxs
->i_async_tree
;
2528 ian_search
.ia_foid
= oid
;
2529 ian
= avl_find(t
, &ian_search
, &where
);
2531 list_move_tail(&clean_list
, &ian
->ia_list
);
2532 mutex_exit(&itxg
->itxg_lock
);
2534 while ((itx
= list_remove_head(&clean_list
)) != NULL
) {
2535 /* commit itxs should never be on the async lists. */
2536 ASSERT3U(itx
->itx_lr
.lrc_txtype
, !=, TX_COMMIT
);
2537 zil_itx_destroy(itx
);
2539 list_destroy(&clean_list
);
2543 zil_itx_assign(zilog_t
*zilog
, itx_t
*itx
, dmu_tx_t
*tx
)
2547 itxs_t
*itxs
, *clean
= NULL
;
2550 * Ensure the data of a renamed file is committed before the rename.
2552 if ((itx
->itx_lr
.lrc_txtype
& ~TX_CI
) == TX_RENAME
)
2553 zil_async_to_sync(zilog
, itx
->itx_oid
);
2555 if (spa_freeze_txg(zilog
->zl_spa
) != UINT64_MAX
)
2558 txg
= dmu_tx_get_txg(tx
);
2560 itxg
= &zilog
->zl_itxg
[txg
& TXG_MASK
];
2561 mutex_enter(&itxg
->itxg_lock
);
2562 itxs
= itxg
->itxg_itxs
;
2563 if (itxg
->itxg_txg
!= txg
) {
2566 * The zil_clean callback hasn't got around to cleaning
2567 * this itxg. Save the itxs for release below.
2568 * This should be rare.
2570 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2571 "txg %llu", (u_longlong_t
)itxg
->itxg_txg
);
2572 clean
= itxg
->itxg_itxs
;
2574 itxg
->itxg_txg
= txg
;
2575 itxs
= itxg
->itxg_itxs
= kmem_zalloc(sizeof (itxs_t
),
2578 list_create(&itxs
->i_sync_list
, sizeof (itx_t
),
2579 offsetof(itx_t
, itx_node
));
2580 avl_create(&itxs
->i_async_tree
, zil_aitx_compare
,
2581 sizeof (itx_async_node_t
),
2582 offsetof(itx_async_node_t
, ia_node
));
2584 if (itx
->itx_sync
) {
2585 list_insert_tail(&itxs
->i_sync_list
, itx
);
2587 avl_tree_t
*t
= &itxs
->i_async_tree
;
2589 LR_FOID_GET_OBJ(((lr_ooo_t
*)&itx
->itx_lr
)->lr_foid
);
2590 itx_async_node_t
*ian
;
2593 ian
= avl_find(t
, &foid
, &where
);
2595 ian
= kmem_alloc(sizeof (itx_async_node_t
),
2597 list_create(&ian
->ia_list
, sizeof (itx_t
),
2598 offsetof(itx_t
, itx_node
));
2599 ian
->ia_foid
= foid
;
2600 avl_insert(t
, ian
, where
);
2602 list_insert_tail(&ian
->ia_list
, itx
);
2605 itx
->itx_lr
.lrc_txg
= dmu_tx_get_txg(tx
);
2608 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2609 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2610 * need to be careful to always dirty the ZIL using the "real"
2611 * TXG (not itxg_txg) even when the SPA is frozen.
2613 zilog_dirty(zilog
, dmu_tx_get_txg(tx
));
2614 mutex_exit(&itxg
->itxg_lock
);
2616 /* Release the old itxs now we've dropped the lock */
2618 zil_itxg_clean(clean
);
2622 * If there are any in-memory intent log transactions which have now been
2623 * synced then start up a taskq to free them. We should only do this after we
2624 * have written out the uberblocks (i.e. txg has been committed) so that
2625 * don't inadvertently clean out in-memory log records that would be required
2629 zil_clean(zilog_t
*zilog
, uint64_t synced_txg
)
2631 itxg_t
*itxg
= &zilog
->zl_itxg
[synced_txg
& TXG_MASK
];
2634 ASSERT3U(synced_txg
, <, ZILTEST_TXG
);
2636 mutex_enter(&itxg
->itxg_lock
);
2637 if (itxg
->itxg_itxs
== NULL
|| itxg
->itxg_txg
== ZILTEST_TXG
) {
2638 mutex_exit(&itxg
->itxg_lock
);
2641 ASSERT3U(itxg
->itxg_txg
, <=, synced_txg
);
2642 ASSERT3U(itxg
->itxg_txg
, !=, 0);
2643 clean_me
= itxg
->itxg_itxs
;
2644 itxg
->itxg_itxs
= NULL
;
2646 mutex_exit(&itxg
->itxg_lock
);
2648 * Preferably start a task queue to free up the old itxs but
2649 * if taskq_dispatch can't allocate resources to do that then
2650 * free it in-line. This should be rare. Note, using TQ_SLEEP
2651 * created a bad performance problem.
2653 ASSERT3P(zilog
->zl_dmu_pool
, !=, NULL
);
2654 ASSERT3P(zilog
->zl_dmu_pool
->dp_zil_clean_taskq
, !=, NULL
);
2655 taskqid_t id
= taskq_dispatch(zilog
->zl_dmu_pool
->dp_zil_clean_taskq
,
2656 zil_itxg_clean
, clean_me
, TQ_NOSLEEP
);
2657 if (id
== TASKQID_INVALID
)
2658 zil_itxg_clean(clean_me
);
2662 * This function will traverse the queue of itxs that need to be
2663 * committed, and move them onto the ZIL's zl_itx_commit_list.
2666 zil_get_commit_list(zilog_t
*zilog
)
2668 uint64_t otxg
, txg
, wtxg
= 0;
2669 list_t
*commit_list
= &zilog
->zl_itx_commit_list
;
2671 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
2673 if (spa_freeze_txg(zilog
->zl_spa
) != UINT64_MAX
) /* ziltest support */
2676 otxg
= spa_last_synced_txg(zilog
->zl_spa
) + 1;
2679 * This is inherently racy, since there is nothing to prevent
2680 * the last synced txg from changing. That's okay since we'll
2681 * only commit things in the future.
2683 for (txg
= otxg
; txg
< (otxg
+ TXG_CONCURRENT_STATES
); txg
++) {
2684 itxg_t
*itxg
= &zilog
->zl_itxg
[txg
& TXG_MASK
];
2686 mutex_enter(&itxg
->itxg_lock
);
2687 if (itxg
->itxg_txg
!= txg
) {
2688 mutex_exit(&itxg
->itxg_lock
);
2693 * If we're adding itx records to the zl_itx_commit_list,
2694 * then the zil better be dirty in this "txg". We can assert
2695 * that here since we're holding the itxg_lock which will
2696 * prevent spa_sync from cleaning it. Once we add the itxs
2697 * to the zl_itx_commit_list we must commit it to disk even
2698 * if it's unnecessary (i.e. the txg was synced).
2700 ASSERT(zilog_is_dirty_in_txg(zilog
, txg
) ||
2701 spa_freeze_txg(zilog
->zl_spa
) != UINT64_MAX
);
2702 list_t
*sync_list
= &itxg
->itxg_itxs
->i_sync_list
;
2704 if (unlikely(zilog
->zl_suspend
> 0)) {
2706 * ZIL was just suspended, but we lost the race.
2707 * Allow all earlier itxs to be committed, but ask
2708 * caller to do txg_wait_synced(txg) for any new.
2710 if (!list_is_empty(sync_list
))
2711 wtxg
= MAX(wtxg
, txg
);
2713 itx
= list_head(sync_list
);
2714 list_move_tail(commit_list
, sync_list
);
2717 mutex_exit(&itxg
->itxg_lock
);
2719 while (itx
!= NULL
) {
2720 uint64_t s
= zil_itx_full_size(itx
);
2721 zilog
->zl_cur_size
+= s
;
2722 zilog
->zl_cur_left
+= s
;
2723 s
= zil_itx_record_size(itx
);
2724 zilog
->zl_cur_max
= MAX(zilog
->zl_cur_max
, s
);
2725 itx
= list_next(commit_list
, itx
);
2732 * Move the async itxs for a specified object to commit into sync lists.
2735 zil_async_to_sync(zilog_t
*zilog
, uint64_t foid
)
2738 itx_async_node_t
*ian
, ian_search
;
2742 if (spa_freeze_txg(zilog
->zl_spa
) != UINT64_MAX
) /* ziltest support */
2745 otxg
= spa_last_synced_txg(zilog
->zl_spa
) + 1;
2748 * This is inherently racy, since there is nothing to prevent
2749 * the last synced txg from changing.
2751 for (txg
= otxg
; txg
< (otxg
+ TXG_CONCURRENT_STATES
); txg
++) {
2752 itxg_t
*itxg
= &zilog
->zl_itxg
[txg
& TXG_MASK
];
2754 mutex_enter(&itxg
->itxg_lock
);
2755 if (itxg
->itxg_txg
!= txg
) {
2756 mutex_exit(&itxg
->itxg_lock
);
2761 * If a foid is specified then find that node and append its
2762 * list. Otherwise walk the tree appending all the lists
2763 * to the sync list. We add to the end rather than the
2764 * beginning to ensure the create has happened.
2766 t
= &itxg
->itxg_itxs
->i_async_tree
;
2768 ian_search
.ia_foid
= foid
;
2769 ian
= avl_find(t
, &ian_search
, &where
);
2771 list_move_tail(&itxg
->itxg_itxs
->i_sync_list
,
2775 void *cookie
= NULL
;
2777 while ((ian
= avl_destroy_nodes(t
, &cookie
)) != NULL
) {
2778 list_move_tail(&itxg
->itxg_itxs
->i_sync_list
,
2780 list_destroy(&ian
->ia_list
);
2781 kmem_free(ian
, sizeof (itx_async_node_t
));
2784 mutex_exit(&itxg
->itxg_lock
);
2789 * This function will prune commit itxs that are at the head of the
2790 * commit list (it won't prune past the first non-commit itx), and
2791 * either: a) attach them to the last lwb that's still pending
2792 * completion, or b) skip them altogether.
2794 * This is used as a performance optimization to prevent commit itxs
2795 * from generating new lwbs when it's unnecessary to do so.
2798 zil_prune_commit_list(zilog_t
*zilog
)
2802 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
2804 while ((itx
= list_head(&zilog
->zl_itx_commit_list
)) != NULL
) {
2805 lr_t
*lrc
= &itx
->itx_lr
;
2806 if (lrc
->lrc_txtype
!= TX_COMMIT
)
2809 mutex_enter(&zilog
->zl_lock
);
2811 lwb_t
*last_lwb
= zilog
->zl_last_lwb_opened
;
2812 if (last_lwb
== NULL
||
2813 last_lwb
->lwb_state
== LWB_STATE_FLUSH_DONE
) {
2815 * All of the itxs this waiter was waiting on
2816 * must have already completed (or there were
2817 * never any itx's for it to wait on), so it's
2818 * safe to skip this waiter and mark it done.
2820 zil_commit_waiter_skip(itx
->itx_private
);
2822 zil_commit_waiter_link_lwb(itx
->itx_private
, last_lwb
);
2825 mutex_exit(&zilog
->zl_lock
);
2827 list_remove(&zilog
->zl_itx_commit_list
, itx
);
2828 zil_itx_destroy(itx
);
2831 IMPLY(itx
!= NULL
, itx
->itx_lr
.lrc_txtype
!= TX_COMMIT
);
2835 zil_commit_writer_stall(zilog_t
*zilog
)
2838 * When zio_alloc_zil() fails to allocate the next lwb block on
2839 * disk, we must call txg_wait_synced() to ensure all of the
2840 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2841 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2842 * to zil_process_commit_list()) will have to call zil_create(),
2843 * and start a new ZIL chain.
2845 * Since zil_alloc_zil() failed, the lwb that was previously
2846 * issued does not have a pointer to the "next" lwb on disk.
2847 * Thus, if another ZIL writer thread was to allocate the "next"
2848 * on-disk lwb, that block could be leaked in the event of a
2849 * crash (because the previous lwb on-disk would not point to
2852 * We must hold the zilog's zl_issuer_lock while we do this, to
2853 * ensure no new threads enter zil_process_commit_list() until
2854 * all lwb's in the zl_lwb_list have been synced and freed
2855 * (which is achieved via the txg_wait_synced() call).
2857 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
2858 ZIL_STAT_BUMP(zilog
, zil_commit_stall_count
);
2859 txg_wait_synced(zilog
->zl_dmu_pool
, 0);
2860 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
2864 zil_burst_done(zilog_t
*zilog
)
2866 if (!list_is_empty(&zilog
->zl_itx_commit_list
) ||
2867 zilog
->zl_cur_size
== 0)
2870 if (zilog
->zl_parallel
)
2871 zilog
->zl_parallel
--;
2873 uint_t r
= (zilog
->zl_prev_rotor
+ 1) & (ZIL_BURSTS
- 1);
2874 zilog
->zl_prev_rotor
= r
;
2875 zilog
->zl_prev_opt
[r
] = zil_lwb_plan(zilog
, zilog
->zl_cur_size
,
2876 &zilog
->zl_prev_min
[r
]);
2878 zilog
->zl_cur_size
= 0;
2879 zilog
->zl_cur_max
= 0;
2880 zilog
->zl_cur_left
= 0;
2884 * This function will traverse the commit list, creating new lwbs as
2885 * needed, and committing the itxs from the commit list to these newly
2886 * created lwbs. Additionally, as a new lwb is created, the previous
2887 * lwb will be issued to the zio layer to be written to disk.
2890 zil_process_commit_list(zilog_t
*zilog
, zil_commit_waiter_t
*zcw
, list_t
*ilwbs
)
2892 spa_t
*spa
= zilog
->zl_spa
;
2894 list_t nolwb_waiters
;
2898 ASSERT(MUTEX_HELD(&zilog
->zl_issuer_lock
));
2901 * Return if there's nothing to commit before we dirty the fs by
2902 * calling zil_create().
2904 if (list_is_empty(&zilog
->zl_itx_commit_list
))
2907 list_create(&nolwb_itxs
, sizeof (itx_t
), offsetof(itx_t
, itx_node
));
2908 list_create(&nolwb_waiters
, sizeof (zil_commit_waiter_t
),
2909 offsetof(zil_commit_waiter_t
, zcw_node
));
2911 lwb
= list_tail(&zilog
->zl_lwb_list
);
2913 lwb
= zil_create(zilog
);
2916 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2917 * have already been created (zl_lwb_list not empty).
2919 zil_commit_activate_saxattr_feature(zilog
);
2920 ASSERT(lwb
->lwb_state
== LWB_STATE_NEW
||
2921 lwb
->lwb_state
== LWB_STATE_OPENED
);
2924 * If the lwb is still opened, it means the workload is really
2925 * multi-threaded and we won the chance of write aggregation.
2926 * If it is not opened yet, but previous lwb is still not
2927 * flushed, it still means the workload is multi-threaded, but
2928 * there was too much time between the commits to aggregate, so
2929 * we try aggregation next times, but without too much hopes.
2931 if (lwb
->lwb_state
== LWB_STATE_OPENED
) {
2932 zilog
->zl_parallel
= ZIL_BURSTS
;
2933 } else if ((plwb
= list_prev(&zilog
->zl_lwb_list
, lwb
))
2934 != NULL
&& plwb
->lwb_state
!= LWB_STATE_FLUSH_DONE
) {
2935 zilog
->zl_parallel
= MAX(zilog
->zl_parallel
,
2940 while ((itx
= list_remove_head(&zilog
->zl_itx_commit_list
)) != NULL
) {
2941 lr_t
*lrc
= &itx
->itx_lr
;
2942 uint64_t txg
= lrc
->lrc_txg
;
2944 ASSERT3U(txg
, !=, 0);
2946 if (lrc
->lrc_txtype
== TX_COMMIT
) {
2947 DTRACE_PROBE2(zil__process__commit__itx
,
2948 zilog_t
*, zilog
, itx_t
*, itx
);
2950 DTRACE_PROBE2(zil__process__normal__itx
,
2951 zilog_t
*, zilog
, itx_t
*, itx
);
2954 boolean_t synced
= txg
<= spa_last_synced_txg(spa
);
2955 boolean_t frozen
= txg
> spa_freeze_txg(spa
);
2958 * If the txg of this itx has already been synced out, then
2959 * we don't need to commit this itx to an lwb. This is
2960 * because the data of this itx will have already been
2961 * written to the main pool. This is inherently racy, and
2962 * it's still ok to commit an itx whose txg has already
2963 * been synced; this will result in a write that's
2964 * unnecessary, but will do no harm.
2966 * With that said, we always want to commit TX_COMMIT itxs
2967 * to an lwb, regardless of whether or not that itx's txg
2968 * has been synced out. We do this to ensure any OPENED lwb
2969 * will always have at least one zil_commit_waiter_t linked
2972 * As a counter-example, if we skipped TX_COMMIT itx's
2973 * whose txg had already been synced, the following
2974 * situation could occur if we happened to be racing with
2977 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2978 * itx's txg is 10 and the last synced txg is 9.
2979 * 2. spa_sync finishes syncing out txg 10.
2980 * 3. We move to the next itx in the list, it's a TX_COMMIT
2981 * whose txg is 10, so we skip it rather than committing
2982 * it to the lwb used in (1).
2984 * If the itx that is skipped in (3) is the last TX_COMMIT
2985 * itx in the commit list, than it's possible for the lwb
2986 * used in (1) to remain in the OPENED state indefinitely.
2988 * To prevent the above scenario from occurring, ensuring
2989 * that once an lwb is OPENED it will transition to ISSUED
2990 * and eventually DONE, we always commit TX_COMMIT itx's to
2991 * an lwb here, even if that itx's txg has already been
2994 * Finally, if the pool is frozen, we _always_ commit the
2995 * itx. The point of freezing the pool is to prevent data
2996 * from being written to the main pool via spa_sync, and
2997 * instead rely solely on the ZIL to persistently store the
2998 * data; i.e. when the pool is frozen, the last synced txg
2999 * value can't be trusted.
3001 if (frozen
|| !synced
|| lrc
->lrc_txtype
== TX_COMMIT
) {
3003 lwb
= zil_lwb_assign(zilog
, lwb
, itx
, ilwbs
);
3005 list_insert_tail(&nolwb_itxs
, itx
);
3006 } else if ((zcw
->zcw_lwb
!= NULL
&&
3007 zcw
->zcw_lwb
!= lwb
) || zcw
->zcw_done
) {
3009 * Our lwb is done, leave the rest of
3010 * itx list to somebody else who care.
3012 zilog
->zl_parallel
= ZIL_BURSTS
;
3013 zilog
->zl_cur_left
-=
3014 zil_itx_full_size(itx
);
3018 if (lrc
->lrc_txtype
== TX_COMMIT
) {
3019 zil_commit_waiter_link_nolwb(
3020 itx
->itx_private
, &nolwb_waiters
);
3022 list_insert_tail(&nolwb_itxs
, itx
);
3024 zilog
->zl_cur_left
-= zil_itx_full_size(itx
);
3026 ASSERT3S(lrc
->lrc_txtype
, !=, TX_COMMIT
);
3027 zilog
->zl_cur_left
-= zil_itx_full_size(itx
);
3028 zil_itx_destroy(itx
);
3034 * This indicates zio_alloc_zil() failed to allocate the
3035 * "next" lwb on-disk. When this happens, we must stall
3036 * the ZIL write pipeline; see the comment within
3037 * zil_commit_writer_stall() for more details.
3039 while ((lwb
= list_remove_head(ilwbs
)) != NULL
)
3040 zil_lwb_write_issue(zilog
, lwb
);
3041 zil_commit_writer_stall(zilog
);
3044 * Additionally, we have to signal and mark the "nolwb"
3045 * waiters as "done" here, since without an lwb, we
3046 * can't do this via zil_lwb_flush_vdevs_done() like
3049 zil_commit_waiter_t
*zcw
;
3050 while ((zcw
= list_remove_head(&nolwb_waiters
)) != NULL
)
3051 zil_commit_waiter_skip(zcw
);
3054 * And finally, we have to destroy the itx's that
3055 * couldn't be committed to an lwb; this will also call
3056 * the itx's callback if one exists for the itx.
3058 while ((itx
= list_remove_head(&nolwb_itxs
)) != NULL
)
3059 zil_itx_destroy(itx
);
3061 ASSERT(list_is_empty(&nolwb_waiters
));
3062 ASSERT3P(lwb
, !=, NULL
);
3063 ASSERT(lwb
->lwb_state
== LWB_STATE_NEW
||
3064 lwb
->lwb_state
== LWB_STATE_OPENED
);
3067 * At this point, the ZIL block pointed at by the "lwb"
3068 * variable is in "new" or "opened" state.
3070 * If it's "new", then no itxs have been committed to it, so
3071 * there's no point in issuing its zio (i.e. it's "empty").
3073 * If it's "opened", then it contains one or more itxs that
3074 * eventually need to be committed to stable storage. In
3075 * this case we intentionally do not issue the lwb's zio
3076 * to disk yet, and instead rely on one of the following
3077 * two mechanisms for issuing the zio:
3079 * 1. Ideally, there will be more ZIL activity occurring on
3080 * the system, such that this function will be immediately
3081 * called again by different thread and this lwb will be
3082 * closed by zil_lwb_assign(). This way, the lwb will be
3083 * "full" when it is issued to disk, and we'll make use of
3084 * the lwb's size the best we can.
3086 * 2. If there isn't sufficient ZIL activity occurring on
3087 * the system, zil_commit_waiter() will close it and issue
3088 * the zio. If this occurs, the lwb is not guaranteed
3089 * to be "full" by the time its zio is issued, and means
3090 * the size of the lwb was "too large" given the amount
3091 * of ZIL activity occurring on the system at that time.
3093 * We do this for a couple of reasons:
3095 * 1. To try and reduce the number of IOPs needed to
3096 * write the same number of itxs. If an lwb has space
3097 * available in its buffer for more itxs, and more itxs
3098 * will be committed relatively soon (relative to the
3099 * latency of performing a write), then it's beneficial
3100 * to wait for these "next" itxs. This way, more itxs
3101 * can be committed to stable storage with fewer writes.
3103 * 2. To try and use the largest lwb block size that the
3104 * incoming rate of itxs can support. Again, this is to
3105 * try and pack as many itxs into as few lwbs as
3106 * possible, without significantly impacting the latency
3107 * of each individual itx.
3109 if (lwb
->lwb_state
== LWB_STATE_OPENED
&& !zilog
->zl_parallel
) {
3110 zil_burst_done(zilog
);
3111 list_insert_tail(ilwbs
, lwb
);
3112 lwb
= zil_lwb_write_close(zilog
, lwb
, LWB_STATE_NEW
);
3114 while ((lwb
= list_remove_head(ilwbs
)) != NULL
)
3115 zil_lwb_write_issue(zilog
, lwb
);
3116 zil_commit_writer_stall(zilog
);
3123 * This function is responsible for ensuring the passed in commit waiter
3124 * (and associated commit itx) is committed to an lwb. If the waiter is
3125 * not already committed to an lwb, all itxs in the zilog's queue of
3126 * itxs will be processed. The assumption is the passed in waiter's
3127 * commit itx will found in the queue just like the other non-commit
3128 * itxs, such that when the entire queue is processed, the waiter will
3129 * have been committed to an lwb.
3131 * The lwb associated with the passed in waiter is not guaranteed to
3132 * have been issued by the time this function completes. If the lwb is
3133 * not issued, we rely on future calls to zil_commit_writer() to issue
3134 * the lwb, or the timeout mechanism found in zil_commit_waiter().
3137 zil_commit_writer(zilog_t
*zilog
, zil_commit_waiter_t
*zcw
)
3143 ASSERT(!MUTEX_HELD(&zilog
->zl_lock
));
3144 ASSERT(spa_writeable(zilog
->zl_spa
));
3146 list_create(&ilwbs
, sizeof (lwb_t
), offsetof(lwb_t
, lwb_issue_node
));
3147 mutex_enter(&zilog
->zl_issuer_lock
);
3149 if (zcw
->zcw_lwb
!= NULL
|| zcw
->zcw_done
) {
3151 * It's possible that, while we were waiting to acquire
3152 * the "zl_issuer_lock", another thread committed this
3153 * waiter to an lwb. If that occurs, we bail out early,
3154 * without processing any of the zilog's queue of itxs.
3156 * On certain workloads and system configurations, the
3157 * "zl_issuer_lock" can become highly contended. In an
3158 * attempt to reduce this contention, we immediately drop
3159 * the lock if the waiter has already been processed.
3161 * We've measured this optimization to reduce CPU spent
3162 * contending on this lock by up to 5%, using a system
3163 * with 32 CPUs, low latency storage (~50 usec writes),
3164 * and 1024 threads performing sync writes.
3169 ZIL_STAT_BUMP(zilog
, zil_commit_writer_count
);
3171 wtxg
= zil_get_commit_list(zilog
);
3172 zil_prune_commit_list(zilog
);
3173 zil_process_commit_list(zilog
, zcw
, &ilwbs
);
3176 mutex_exit(&zilog
->zl_issuer_lock
);
3177 while ((lwb
= list_remove_head(&ilwbs
)) != NULL
)
3178 zil_lwb_write_issue(zilog
, lwb
);
3179 list_destroy(&ilwbs
);
3184 zil_commit_waiter_timeout(zilog_t
*zilog
, zil_commit_waiter_t
*zcw
)
3186 ASSERT(!MUTEX_HELD(&zilog
->zl_issuer_lock
));
3187 ASSERT(MUTEX_HELD(&zcw
->zcw_lock
));
3188 ASSERT3B(zcw
->zcw_done
, ==, B_FALSE
);
3190 lwb_t
*lwb
= zcw
->zcw_lwb
;
3191 ASSERT3P(lwb
, !=, NULL
);
3192 ASSERT3S(lwb
->lwb_state
, !=, LWB_STATE_NEW
);
3195 * If the lwb has already been issued by another thread, we can
3196 * immediately return since there's no work to be done (the
3197 * point of this function is to issue the lwb). Additionally, we
3198 * do this prior to acquiring the zl_issuer_lock, to avoid
3199 * acquiring it when it's not necessary to do so.
3201 if (lwb
->lwb_state
!= LWB_STATE_OPENED
)
3205 * In order to call zil_lwb_write_close() we must hold the
3206 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3207 * since we're already holding the commit waiter's "zcw_lock",
3208 * and those two locks are acquired in the opposite order
3211 mutex_exit(&zcw
->zcw_lock
);
3212 mutex_enter(&zilog
->zl_issuer_lock
);
3213 mutex_enter(&zcw
->zcw_lock
);
3216 * Since we just dropped and re-acquired the commit waiter's
3217 * lock, we have to re-check to see if the waiter was marked
3218 * "done" during that process. If the waiter was marked "done",
3219 * the "lwb" pointer is no longer valid (it can be free'd after
3220 * the waiter is marked "done"), so without this check we could
3221 * wind up with a use-after-free error below.
3223 if (zcw
->zcw_done
) {
3224 mutex_exit(&zilog
->zl_issuer_lock
);
3228 ASSERT3P(lwb
, ==, zcw
->zcw_lwb
);
3231 * We've already checked this above, but since we hadn't acquired
3232 * the zilog's zl_issuer_lock, we have to perform this check a
3233 * second time while holding the lock.
3235 * We don't need to hold the zl_lock since the lwb cannot transition
3236 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3237 * _can_ transition from CLOSED to DONE, but it's OK to race with
3238 * that transition since we treat the lwb the same, whether it's in
3239 * the CLOSED, ISSUED or DONE states.
3241 * The important thing, is we treat the lwb differently depending on
3242 * if it's OPENED or CLOSED, and block any other threads that might
3243 * attempt to close/issue this lwb. For that reason we hold the
3244 * zl_issuer_lock when checking the lwb_state; we must not call
3245 * zil_lwb_write_close() if the lwb had already been closed/issued.
3247 * See the comment above the lwb_state_t structure definition for
3248 * more details on the lwb states, and locking requirements.
3250 if (lwb
->lwb_state
!= LWB_STATE_OPENED
) {
3251 mutex_exit(&zilog
->zl_issuer_lock
);
3256 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3257 * is still open. But we have to drop it to avoid a deadlock in case
3258 * callback of zio issued by zil_lwb_write_issue() try to get it,
3259 * while zil_lwb_write_issue() is blocked on attempt to issue next
3260 * lwb it found in LWB_STATE_READY state.
3262 mutex_exit(&zcw
->zcw_lock
);
3265 * As described in the comments above zil_commit_waiter() and
3266 * zil_process_commit_list(), we need to issue this lwb's zio
3267 * since we've reached the commit waiter's timeout and it still
3268 * hasn't been issued.
3270 zil_burst_done(zilog
);
3271 lwb_t
*nlwb
= zil_lwb_write_close(zilog
, lwb
, LWB_STATE_NEW
);
3273 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_CLOSED
);
3277 * When zil_lwb_write_close() returns NULL, this
3278 * indicates zio_alloc_zil() failed to allocate the
3279 * "next" lwb on-disk. When this occurs, the ZIL write
3280 * pipeline must be stalled; see the comment within the
3281 * zil_commit_writer_stall() function for more details.
3283 zil_lwb_write_issue(zilog
, lwb
);
3284 zil_commit_writer_stall(zilog
);
3285 mutex_exit(&zilog
->zl_issuer_lock
);
3287 mutex_exit(&zilog
->zl_issuer_lock
);
3288 zil_lwb_write_issue(zilog
, lwb
);
3290 mutex_enter(&zcw
->zcw_lock
);
3294 * This function is responsible for performing the following two tasks:
3296 * 1. its primary responsibility is to block until the given "commit
3297 * waiter" is considered "done".
3299 * 2. its secondary responsibility is to issue the zio for the lwb that
3300 * the given "commit waiter" is waiting on, if this function has
3301 * waited "long enough" and the lwb is still in the "open" state.
3303 * Given a sufficient amount of itxs being generated and written using
3304 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3305 * function. If this does not occur, this secondary responsibility will
3306 * ensure the lwb is issued even if there is not other synchronous
3307 * activity on the system.
3309 * For more details, see zil_process_commit_list(); more specifically,
3310 * the comment at the bottom of that function.
3313 zil_commit_waiter(zilog_t
*zilog
, zil_commit_waiter_t
*zcw
)
3315 ASSERT(!MUTEX_HELD(&zilog
->zl_lock
));
3316 ASSERT(!MUTEX_HELD(&zilog
->zl_issuer_lock
));
3317 ASSERT(spa_writeable(zilog
->zl_spa
));
3319 mutex_enter(&zcw
->zcw_lock
);
3322 * The timeout is scaled based on the lwb latency to avoid
3323 * significantly impacting the latency of each individual itx.
3324 * For more details, see the comment at the bottom of the
3325 * zil_process_commit_list() function.
3327 int pct
= MAX(zfs_commit_timeout_pct
, 1);
3328 hrtime_t sleep
= (zilog
->zl_last_lwb_latency
* pct
) / 100;
3329 hrtime_t wakeup
= gethrtime() + sleep
;
3330 boolean_t timedout
= B_FALSE
;
3332 while (!zcw
->zcw_done
) {
3333 ASSERT(MUTEX_HELD(&zcw
->zcw_lock
));
3335 lwb_t
*lwb
= zcw
->zcw_lwb
;
3338 * Usually, the waiter will have a non-NULL lwb field here,
3339 * but it's possible for it to be NULL as a result of
3340 * zil_commit() racing with spa_sync().
3342 * When zil_clean() is called, it's possible for the itxg
3343 * list (which may be cleaned via a taskq) to contain
3344 * commit itxs. When this occurs, the commit waiters linked
3345 * off of these commit itxs will not be committed to an
3346 * lwb. Additionally, these commit waiters will not be
3347 * marked done until zil_commit_waiter_skip() is called via
3350 * Thus, it's possible for this commit waiter (i.e. the
3351 * "zcw" variable) to be found in this "in between" state;
3352 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3353 * been skipped, so it's "zcw_done" field is still B_FALSE.
3355 IMPLY(lwb
!= NULL
, lwb
->lwb_state
!= LWB_STATE_NEW
);
3357 if (lwb
!= NULL
&& lwb
->lwb_state
== LWB_STATE_OPENED
) {
3358 ASSERT3B(timedout
, ==, B_FALSE
);
3361 * If the lwb hasn't been issued yet, then we
3362 * need to wait with a timeout, in case this
3363 * function needs to issue the lwb after the
3364 * timeout is reached; responsibility (2) from
3365 * the comment above this function.
3367 int rc
= cv_timedwait_hires(&zcw
->zcw_cv
,
3368 &zcw
->zcw_lock
, wakeup
, USEC2NSEC(1),
3369 CALLOUT_FLAG_ABSOLUTE
);
3371 if (rc
!= -1 || zcw
->zcw_done
)
3375 zil_commit_waiter_timeout(zilog
, zcw
);
3377 if (!zcw
->zcw_done
) {
3379 * If the commit waiter has already been
3380 * marked "done", it's possible for the
3381 * waiter's lwb structure to have already
3382 * been freed. Thus, we can only reliably
3383 * make these assertions if the waiter
3386 ASSERT3P(lwb
, ==, zcw
->zcw_lwb
);
3387 ASSERT3S(lwb
->lwb_state
, !=, LWB_STATE_OPENED
);
3391 * If the lwb isn't open, then it must have already
3392 * been issued. In that case, there's no need to
3393 * use a timeout when waiting for the lwb to
3396 * Additionally, if the lwb is NULL, the waiter
3397 * will soon be signaled and marked done via
3398 * zil_clean() and zil_itxg_clean(), so no timeout
3403 lwb
->lwb_state
== LWB_STATE_CLOSED
||
3404 lwb
->lwb_state
== LWB_STATE_READY
||
3405 lwb
->lwb_state
== LWB_STATE_ISSUED
||
3406 lwb
->lwb_state
== LWB_STATE_WRITE_DONE
||
3407 lwb
->lwb_state
== LWB_STATE_FLUSH_DONE
);
3408 cv_wait(&zcw
->zcw_cv
, &zcw
->zcw_lock
);
3412 mutex_exit(&zcw
->zcw_lock
);
3415 static zil_commit_waiter_t
*
3416 zil_alloc_commit_waiter(void)
3418 zil_commit_waiter_t
*zcw
= kmem_cache_alloc(zil_zcw_cache
, KM_SLEEP
);
3420 cv_init(&zcw
->zcw_cv
, NULL
, CV_DEFAULT
, NULL
);
3421 mutex_init(&zcw
->zcw_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
3422 list_link_init(&zcw
->zcw_node
);
3423 zcw
->zcw_lwb
= NULL
;
3424 zcw
->zcw_done
= B_FALSE
;
3425 zcw
->zcw_zio_error
= 0;
3431 zil_free_commit_waiter(zil_commit_waiter_t
*zcw
)
3433 ASSERT(!list_link_active(&zcw
->zcw_node
));
3434 ASSERT3P(zcw
->zcw_lwb
, ==, NULL
);
3435 ASSERT3B(zcw
->zcw_done
, ==, B_TRUE
);
3436 mutex_destroy(&zcw
->zcw_lock
);
3437 cv_destroy(&zcw
->zcw_cv
);
3438 kmem_cache_free(zil_zcw_cache
, zcw
);
3442 * This function is used to create a TX_COMMIT itx and assign it. This
3443 * way, it will be linked into the ZIL's list of synchronous itxs, and
3444 * then later committed to an lwb (or skipped) when
3445 * zil_process_commit_list() is called.
3448 zil_commit_itx_assign(zilog_t
*zilog
, zil_commit_waiter_t
*zcw
)
3450 dmu_tx_t
*tx
= dmu_tx_create(zilog
->zl_os
);
3453 * Since we are not going to create any new dirty data, and we
3454 * can even help with clearing the existing dirty data, we
3455 * should not be subject to the dirty data based delays. We
3456 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3458 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
| TXG_NOTHROTTLE
));
3460 itx_t
*itx
= zil_itx_create(TX_COMMIT
, sizeof (lr_t
));
3461 itx
->itx_sync
= B_TRUE
;
3462 itx
->itx_private
= zcw
;
3464 zil_itx_assign(zilog
, itx
, tx
);
3470 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3472 * When writing ZIL transactions to the on-disk representation of the
3473 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3474 * itxs can be committed to a single lwb. Once a lwb is written and
3475 * committed to stable storage (i.e. the lwb is written, and vdevs have
3476 * been flushed), each itx that was committed to that lwb is also
3477 * considered to be committed to stable storage.
3479 * When an itx is committed to an lwb, the log record (lr_t) contained
3480 * by the itx is copied into the lwb's zio buffer, and once this buffer
3481 * is written to disk, it becomes an on-disk ZIL block.
3483 * As itxs are generated, they're inserted into the ZIL's queue of
3484 * uncommitted itxs. The semantics of zil_commit() are such that it will
3485 * block until all itxs that were in the queue when it was called, are
3486 * committed to stable storage.
3488 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3489 * itxs, for all objects in the dataset, will be committed to stable
3490 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3491 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3492 * that correspond to the foid passed in, will be committed to stable
3493 * storage prior to zil_commit() returning.
3495 * Generally speaking, when zil_commit() is called, the consumer doesn't
3496 * actually care about _all_ of the uncommitted itxs. Instead, they're
3497 * simply trying to waiting for a specific itx to be committed to disk,
3498 * but the interface(s) for interacting with the ZIL don't allow such
3499 * fine-grained communication. A better interface would allow a consumer
3500 * to create and assign an itx, and then pass a reference to this itx to
3501 * zil_commit(); such that zil_commit() would return as soon as that
3502 * specific itx was committed to disk (instead of waiting for _all_
3503 * itxs to be committed).
3505 * When a thread calls zil_commit() a special "commit itx" will be
3506 * generated, along with a corresponding "waiter" for this commit itx.
3507 * zil_commit() will wait on this waiter's CV, such that when the waiter
3508 * is marked done, and signaled, zil_commit() will return.
3510 * This commit itx is inserted into the queue of uncommitted itxs. This
3511 * provides an easy mechanism for determining which itxs were in the
3512 * queue prior to zil_commit() having been called, and which itxs were
3513 * added after zil_commit() was called.
3515 * The commit itx is special; it doesn't have any on-disk representation.
3516 * When a commit itx is "committed" to an lwb, the waiter associated
3517 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3518 * completes, each waiter on the lwb's list is marked done and signaled
3519 * -- allowing the thread waiting on the waiter to return from zil_commit().
3521 * It's important to point out a few critical factors that allow us
3522 * to make use of the commit itxs, commit waiters, per-lwb lists of
3523 * commit waiters, and zio completion callbacks like we're doing:
3525 * 1. The list of waiters for each lwb is traversed, and each commit
3526 * waiter is marked "done" and signaled, in the zio completion
3527 * callback of the lwb's zio[*].
3529 * * Actually, the waiters are signaled in the zio completion
3530 * callback of the root zio for the flush commands that are sent to
3531 * the vdevs upon completion of the lwb zio.
3533 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3534 * itxs, the order in which they are inserted is preserved[*]; as
3535 * itxs are added to the queue, they are added to the tail of
3536 * in-memory linked lists.
3538 * When committing the itxs to lwbs (to be written to disk), they
3539 * are committed in the same order in which the itxs were added to
3540 * the uncommitted queue's linked list(s); i.e. the linked list of
3541 * itxs to commit is traversed from head to tail, and each itx is
3542 * committed to an lwb in that order.
3546 * - the order of "sync" itxs is preserved w.r.t. other
3547 * "sync" itxs, regardless of the corresponding objects.
3548 * - the order of "async" itxs is preserved w.r.t. other
3549 * "async" itxs corresponding to the same object.
3550 * - the order of "async" itxs is *not* preserved w.r.t. other
3551 * "async" itxs corresponding to different objects.
3552 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3553 * versa) is *not* preserved, even for itxs that correspond
3554 * to the same object.
3556 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3557 * zil_get_commit_list(), and zil_process_commit_list().
3559 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3560 * lwb cannot be considered committed to stable storage, until its
3561 * "previous" lwb is also committed to stable storage. This fact,
3562 * coupled with the fact described above, means that itxs are
3563 * committed in (roughly) the order in which they were generated.
3564 * This is essential because itxs are dependent on prior itxs.
3565 * Thus, we *must not* deem an itx as being committed to stable
3566 * storage, until *all* prior itxs have also been committed to
3569 * To enforce this ordering of lwb zio's, while still leveraging as
3570 * much of the underlying storage performance as possible, we rely
3571 * on two fundamental concepts:
3573 * 1. The creation and issuance of lwb zio's is protected by
3574 * the zilog's "zl_issuer_lock", which ensures only a single
3575 * thread is creating and/or issuing lwb's at a time
3576 * 2. The "previous" lwb is a child of the "current" lwb
3577 * (leveraging the zio parent-child dependency graph)
3579 * By relying on this parent-child zio relationship, we can have
3580 * many lwb zio's concurrently issued to the underlying storage,
3581 * but the order in which they complete will be the same order in
3582 * which they were created.
3585 zil_commit(zilog_t
*zilog
, uint64_t foid
)
3588 * We should never attempt to call zil_commit on a snapshot for
3589 * a couple of reasons:
3591 * 1. A snapshot may never be modified, thus it cannot have any
3592 * in-flight itxs that would have modified the dataset.
3594 * 2. By design, when zil_commit() is called, a commit itx will
3595 * be assigned to this zilog; as a result, the zilog will be
3596 * dirtied. We must not dirty the zilog of a snapshot; there's
3597 * checks in the code that enforce this invariant, and will
3598 * cause a panic if it's not upheld.
3600 ASSERT3B(dmu_objset_is_snapshot(zilog
->zl_os
), ==, B_FALSE
);
3602 if (zilog
->zl_sync
== ZFS_SYNC_DISABLED
)
3605 if (!spa_writeable(zilog
->zl_spa
)) {
3607 * If the SPA is not writable, there should never be any
3608 * pending itxs waiting to be committed to disk. If that
3609 * weren't true, we'd skip writing those itxs out, and
3610 * would break the semantics of zil_commit(); thus, we're
3611 * verifying that truth before we return to the caller.
3613 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
3614 ASSERT3P(zilog
->zl_last_lwb_opened
, ==, NULL
);
3615 for (int i
= 0; i
< TXG_SIZE
; i
++)
3616 ASSERT3P(zilog
->zl_itxg
[i
].itxg_itxs
, ==, NULL
);
3621 * If the ZIL is suspended, we don't want to dirty it by calling
3622 * zil_commit_itx_assign() below, nor can we write out
3623 * lwbs like would be done in zil_commit_write(). Thus, we
3624 * simply rely on txg_wait_synced() to maintain the necessary
3625 * semantics, and avoid calling those functions altogether.
3627 if (zilog
->zl_suspend
> 0) {
3628 ZIL_STAT_BUMP(zilog
, zil_commit_suspend_count
);
3629 txg_wait_synced(zilog
->zl_dmu_pool
, 0);
3633 zil_commit_impl(zilog
, foid
);
3637 zil_commit_impl(zilog_t
*zilog
, uint64_t foid
)
3639 ZIL_STAT_BUMP(zilog
, zil_commit_count
);
3642 * Move the "async" itxs for the specified foid to the "sync"
3643 * queues, such that they will be later committed (or skipped)
3644 * to an lwb when zil_process_commit_list() is called.
3646 * Since these "async" itxs must be committed prior to this
3647 * call to zil_commit returning, we must perform this operation
3648 * before we call zil_commit_itx_assign().
3650 zil_async_to_sync(zilog
, foid
);
3653 * We allocate a new "waiter" structure which will initially be
3654 * linked to the commit itx using the itx's "itx_private" field.
3655 * Since the commit itx doesn't represent any on-disk state,
3656 * when it's committed to an lwb, rather than copying the its
3657 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3658 * added to the lwb's list of waiters. Then, when the lwb is
3659 * committed to stable storage, each waiter in the lwb's list of
3660 * waiters will be marked "done", and signalled.
3662 * We must create the waiter and assign the commit itx prior to
3663 * calling zil_commit_writer(), or else our specific commit itx
3664 * is not guaranteed to be committed to an lwb prior to calling
3665 * zil_commit_waiter().
3667 zil_commit_waiter_t
*zcw
= zil_alloc_commit_waiter();
3668 zil_commit_itx_assign(zilog
, zcw
);
3670 uint64_t wtxg
= zil_commit_writer(zilog
, zcw
);
3671 zil_commit_waiter(zilog
, zcw
);
3673 if (zcw
->zcw_zio_error
!= 0) {
3675 * If there was an error writing out the ZIL blocks that
3676 * this thread is waiting on, then we fallback to
3677 * relying on spa_sync() to write out the data this
3678 * thread is waiting on. Obviously this has performance
3679 * implications, but the expectation is for this to be
3680 * an exceptional case, and shouldn't occur often.
3682 ZIL_STAT_BUMP(zilog
, zil_commit_error_count
);
3683 DTRACE_PROBE2(zil__commit__io__error
,
3684 zilog_t
*, zilog
, zil_commit_waiter_t
*, zcw
);
3685 txg_wait_synced(zilog
->zl_dmu_pool
, 0);
3686 } else if (wtxg
!= 0) {
3687 ZIL_STAT_BUMP(zilog
, zil_commit_suspend_count
);
3688 txg_wait_synced(zilog
->zl_dmu_pool
, wtxg
);
3691 zil_free_commit_waiter(zcw
);
3695 * Called in syncing context to free committed log blocks and update log header.
3698 zil_sync(zilog_t
*zilog
, dmu_tx_t
*tx
)
3700 zil_header_t
*zh
= zil_header_in_syncing_context(zilog
);
3701 uint64_t txg
= dmu_tx_get_txg(tx
);
3702 spa_t
*spa
= zilog
->zl_spa
;
3703 uint64_t *replayed_seq
= &zilog
->zl_replayed_seq
[txg
& TXG_MASK
];
3707 * We don't zero out zl_destroy_txg, so make sure we don't try
3708 * to destroy it twice.
3710 if (spa_sync_pass(spa
) != 1)
3713 zil_lwb_flush_wait_all(zilog
, txg
);
3715 mutex_enter(&zilog
->zl_lock
);
3717 ASSERT(zilog
->zl_stop_sync
== 0);
3719 if (*replayed_seq
!= 0) {
3720 ASSERT(zh
->zh_replay_seq
< *replayed_seq
);
3721 zh
->zh_replay_seq
= *replayed_seq
;
3725 if (zilog
->zl_destroy_txg
== txg
) {
3726 blkptr_t blk
= zh
->zh_log
;
3727 dsl_dataset_t
*ds
= dmu_objset_ds(zilog
->zl_os
);
3729 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
3731 memset(zh
, 0, sizeof (zil_header_t
));
3732 memset(zilog
->zl_replayed_seq
, 0,
3733 sizeof (zilog
->zl_replayed_seq
));
3735 if (zilog
->zl_keep_first
) {
3737 * If this block was part of log chain that couldn't
3738 * be claimed because a device was missing during
3739 * zil_claim(), but that device later returns,
3740 * then this block could erroneously appear valid.
3741 * To guard against this, assign a new GUID to the new
3742 * log chain so it doesn't matter what blk points to.
3744 zil_init_log_chain(zilog
, &blk
);
3748 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3749 * records. So, deactivate the feature for this dataset.
3750 * We activate it again when we start a new ZIL chain.
3752 if (dsl_dataset_feature_is_active(ds
,
3753 SPA_FEATURE_ZILSAXATTR
))
3754 dsl_dataset_deactivate_feature(ds
,
3755 SPA_FEATURE_ZILSAXATTR
, tx
);
3759 while ((lwb
= list_head(&zilog
->zl_lwb_list
)) != NULL
) {
3760 zh
->zh_log
= lwb
->lwb_blk
;
3761 if (lwb
->lwb_state
!= LWB_STATE_FLUSH_DONE
||
3762 lwb
->lwb_alloc_txg
> txg
|| lwb
->lwb_max_txg
> txg
)
3764 list_remove(&zilog
->zl_lwb_list
, lwb
);
3765 if (!BP_IS_HOLE(&lwb
->lwb_blk
))
3766 zio_free(spa
, txg
, &lwb
->lwb_blk
);
3767 zil_free_lwb(zilog
, lwb
);
3770 * If we don't have anything left in the lwb list then
3771 * we've had an allocation failure and we need to zero
3772 * out the zil_header blkptr so that we don't end
3773 * up freeing the same block twice.
3775 if (list_is_empty(&zilog
->zl_lwb_list
))
3776 BP_ZERO(&zh
->zh_log
);
3779 mutex_exit(&zilog
->zl_lock
);
3783 zil_lwb_cons(void *vbuf
, void *unused
, int kmflag
)
3785 (void) unused
, (void) kmflag
;
3787 list_create(&lwb
->lwb_itxs
, sizeof (itx_t
), offsetof(itx_t
, itx_node
));
3788 list_create(&lwb
->lwb_waiters
, sizeof (zil_commit_waiter_t
),
3789 offsetof(zil_commit_waiter_t
, zcw_node
));
3790 avl_create(&lwb
->lwb_vdev_tree
, zil_lwb_vdev_compare
,
3791 sizeof (zil_vdev_node_t
), offsetof(zil_vdev_node_t
, zv_node
));
3792 mutex_init(&lwb
->lwb_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
3797 zil_lwb_dest(void *vbuf
, void *unused
)
3801 mutex_destroy(&lwb
->lwb_vdev_lock
);
3802 avl_destroy(&lwb
->lwb_vdev_tree
);
3803 list_destroy(&lwb
->lwb_waiters
);
3804 list_destroy(&lwb
->lwb_itxs
);
3810 zil_lwb_cache
= kmem_cache_create("zil_lwb_cache",
3811 sizeof (lwb_t
), 0, zil_lwb_cons
, zil_lwb_dest
, NULL
, NULL
, NULL
, 0);
3813 zil_zcw_cache
= kmem_cache_create("zil_zcw_cache",
3814 sizeof (zil_commit_waiter_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
3816 zil_sums_init(&zil_sums_global
);
3817 zil_kstats_global
= kstat_create("zfs", 0, "zil", "misc",
3818 KSTAT_TYPE_NAMED
, sizeof (zil_stats
) / sizeof (kstat_named_t
),
3819 KSTAT_FLAG_VIRTUAL
);
3821 if (zil_kstats_global
!= NULL
) {
3822 zil_kstats_global
->ks_data
= &zil_stats
;
3823 zil_kstats_global
->ks_update
= zil_kstats_global_update
;
3824 zil_kstats_global
->ks_private
= NULL
;
3825 kstat_install(zil_kstats_global
);
3832 kmem_cache_destroy(zil_zcw_cache
);
3833 kmem_cache_destroy(zil_lwb_cache
);
3835 if (zil_kstats_global
!= NULL
) {
3836 kstat_delete(zil_kstats_global
);
3837 zil_kstats_global
= NULL
;
3840 zil_sums_fini(&zil_sums_global
);
3844 zil_set_sync(zilog_t
*zilog
, uint64_t sync
)
3846 zilog
->zl_sync
= sync
;
3850 zil_set_logbias(zilog_t
*zilog
, uint64_t logbias
)
3852 zilog
->zl_logbias
= logbias
;
3856 zil_alloc(objset_t
*os
, zil_header_t
*zh_phys
)
3860 zilog
= kmem_zalloc(sizeof (zilog_t
), KM_SLEEP
);
3862 zilog
->zl_header
= zh_phys
;
3864 zilog
->zl_spa
= dmu_objset_spa(os
);
3865 zilog
->zl_dmu_pool
= dmu_objset_pool(os
);
3866 zilog
->zl_destroy_txg
= TXG_INITIAL
- 1;
3867 zilog
->zl_logbias
= dmu_objset_logbias(os
);
3868 zilog
->zl_sync
= dmu_objset_syncprop(os
);
3869 zilog
->zl_dirty_max_txg
= 0;
3870 zilog
->zl_last_lwb_opened
= NULL
;
3871 zilog
->zl_last_lwb_latency
= 0;
3872 zilog
->zl_max_block_size
= MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize
,
3873 ZIL_MIN_BLKSZ
, uint64_t), ZIL_MIN_BLKSZ
),
3874 spa_maxblocksize(dmu_objset_spa(os
)));
3876 mutex_init(&zilog
->zl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
3877 mutex_init(&zilog
->zl_issuer_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
3878 mutex_init(&zilog
->zl_lwb_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
3880 for (int i
= 0; i
< TXG_SIZE
; i
++) {
3881 mutex_init(&zilog
->zl_itxg
[i
].itxg_lock
, NULL
,
3882 MUTEX_DEFAULT
, NULL
);
3885 list_create(&zilog
->zl_lwb_list
, sizeof (lwb_t
),
3886 offsetof(lwb_t
, lwb_node
));
3888 list_create(&zilog
->zl_itx_commit_list
, sizeof (itx_t
),
3889 offsetof(itx_t
, itx_node
));
3891 cv_init(&zilog
->zl_cv_suspend
, NULL
, CV_DEFAULT
, NULL
);
3892 cv_init(&zilog
->zl_lwb_io_cv
, NULL
, CV_DEFAULT
, NULL
);
3894 for (int i
= 0; i
< ZIL_BURSTS
; i
++) {
3895 zilog
->zl_prev_opt
[i
] = zilog
->zl_max_block_size
-
3896 sizeof (zil_chain_t
);
3903 zil_free(zilog_t
*zilog
)
3907 zilog
->zl_stop_sync
= 1;
3909 ASSERT0(zilog
->zl_suspend
);
3910 ASSERT0(zilog
->zl_suspending
);
3912 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
3913 list_destroy(&zilog
->zl_lwb_list
);
3915 ASSERT(list_is_empty(&zilog
->zl_itx_commit_list
));
3916 list_destroy(&zilog
->zl_itx_commit_list
);
3918 for (i
= 0; i
< TXG_SIZE
; i
++) {
3920 * It's possible for an itx to be generated that doesn't dirty
3921 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3922 * callback to remove the entry. We remove those here.
3924 * Also free up the ziltest itxs.
3926 if (zilog
->zl_itxg
[i
].itxg_itxs
)
3927 zil_itxg_clean(zilog
->zl_itxg
[i
].itxg_itxs
);
3928 mutex_destroy(&zilog
->zl_itxg
[i
].itxg_lock
);
3931 mutex_destroy(&zilog
->zl_issuer_lock
);
3932 mutex_destroy(&zilog
->zl_lock
);
3933 mutex_destroy(&zilog
->zl_lwb_io_lock
);
3935 cv_destroy(&zilog
->zl_cv_suspend
);
3936 cv_destroy(&zilog
->zl_lwb_io_cv
);
3938 kmem_free(zilog
, sizeof (zilog_t
));
3942 * Open an intent log.
3945 zil_open(objset_t
*os
, zil_get_data_t
*get_data
, zil_sums_t
*zil_sums
)
3947 zilog_t
*zilog
= dmu_objset_zil(os
);
3949 ASSERT3P(zilog
->zl_get_data
, ==, NULL
);
3950 ASSERT3P(zilog
->zl_last_lwb_opened
, ==, NULL
);
3951 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
3953 zilog
->zl_get_data
= get_data
;
3954 zilog
->zl_sums
= zil_sums
;
3960 * Close an intent log.
3963 zil_close(zilog_t
*zilog
)
3968 if (!dmu_objset_is_snapshot(zilog
->zl_os
)) {
3969 zil_commit(zilog
, 0);
3971 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
3972 ASSERT0(zilog
->zl_dirty_max_txg
);
3973 ASSERT3B(zilog_is_dirty(zilog
), ==, B_FALSE
);
3976 mutex_enter(&zilog
->zl_lock
);
3977 txg
= zilog
->zl_dirty_max_txg
;
3978 lwb
= list_tail(&zilog
->zl_lwb_list
);
3980 txg
= MAX(txg
, lwb
->lwb_alloc_txg
);
3981 txg
= MAX(txg
, lwb
->lwb_max_txg
);
3983 mutex_exit(&zilog
->zl_lock
);
3986 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3987 * on the time when the dmu_tx transaction is assigned in
3988 * zil_lwb_write_issue().
3990 mutex_enter(&zilog
->zl_lwb_io_lock
);
3991 txg
= MAX(zilog
->zl_lwb_max_issued_txg
, txg
);
3992 mutex_exit(&zilog
->zl_lwb_io_lock
);
3995 * We need to use txg_wait_synced() to wait until that txg is synced.
3996 * zil_sync() will guarantee all lwbs up to that txg have been
3997 * written out, flushed, and cleaned.
4000 txg_wait_synced(zilog
->zl_dmu_pool
, txg
);
4002 if (zilog_is_dirty(zilog
))
4003 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog
,
4005 if (txg
< spa_freeze_txg(zilog
->zl_spa
))
4006 VERIFY(!zilog_is_dirty(zilog
));
4008 zilog
->zl_get_data
= NULL
;
4011 * We should have only one lwb left on the list; remove it now.
4013 mutex_enter(&zilog
->zl_lock
);
4014 lwb
= list_remove_head(&zilog
->zl_lwb_list
);
4016 ASSERT(list_is_empty(&zilog
->zl_lwb_list
));
4017 ASSERT3S(lwb
->lwb_state
, ==, LWB_STATE_NEW
);
4018 zio_buf_free(lwb
->lwb_buf
, lwb
->lwb_sz
);
4019 zil_free_lwb(zilog
, lwb
);
4021 mutex_exit(&zilog
->zl_lock
);
4024 static const char *suspend_tag
= "zil suspending";
4027 * Suspend an intent log. While in suspended mode, we still honor
4028 * synchronous semantics, but we rely on txg_wait_synced() to do it.
4029 * On old version pools, we suspend the log briefly when taking a
4030 * snapshot so that it will have an empty intent log.
4032 * Long holds are not really intended to be used the way we do here --
4033 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
4034 * could fail. Therefore we take pains to only put a long hold if it is
4035 * actually necessary. Fortunately, it will only be necessary if the
4036 * objset is currently mounted (or the ZVOL equivalent). In that case it
4037 * will already have a long hold, so we are not really making things any worse.
4039 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4040 * zvol_state_t), and use their mechanism to prevent their hold from being
4041 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
4044 * if cookiep == NULL, this does both the suspend & resume.
4045 * Otherwise, it returns with the dataset "long held", and the cookie
4046 * should be passed into zil_resume().
4049 zil_suspend(const char *osname
, void **cookiep
)
4053 const zil_header_t
*zh
;
4056 error
= dmu_objset_hold(osname
, suspend_tag
, &os
);
4059 zilog
= dmu_objset_zil(os
);
4061 mutex_enter(&zilog
->zl_lock
);
4062 zh
= zilog
->zl_header
;
4064 if (zh
->zh_flags
& ZIL_REPLAY_NEEDED
) { /* unplayed log */
4065 mutex_exit(&zilog
->zl_lock
);
4066 dmu_objset_rele(os
, suspend_tag
);
4067 return (SET_ERROR(EBUSY
));
4071 * Don't put a long hold in the cases where we can avoid it. This
4072 * is when there is no cookie so we are doing a suspend & resume
4073 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4074 * for the suspend because it's already suspended, or there's no ZIL.
4076 if (cookiep
== NULL
&& !zilog
->zl_suspending
&&
4077 (zilog
->zl_suspend
> 0 || BP_IS_HOLE(&zh
->zh_log
))) {
4078 mutex_exit(&zilog
->zl_lock
);
4079 dmu_objset_rele(os
, suspend_tag
);
4083 dsl_dataset_long_hold(dmu_objset_ds(os
), suspend_tag
);
4084 dsl_pool_rele(dmu_objset_pool(os
), suspend_tag
);
4086 zilog
->zl_suspend
++;
4088 if (zilog
->zl_suspend
> 1) {
4090 * Someone else is already suspending it.
4091 * Just wait for them to finish.
4094 while (zilog
->zl_suspending
)
4095 cv_wait(&zilog
->zl_cv_suspend
, &zilog
->zl_lock
);
4096 mutex_exit(&zilog
->zl_lock
);
4098 if (cookiep
== NULL
)
4106 * If there is no pointer to an on-disk block, this ZIL must not
4107 * be active (e.g. filesystem not mounted), so there's nothing
4110 if (BP_IS_HOLE(&zh
->zh_log
)) {
4111 ASSERT(cookiep
!= NULL
); /* fast path already handled */
4114 mutex_exit(&zilog
->zl_lock
);
4119 * The ZIL has work to do. Ensure that the associated encryption
4120 * key will remain mapped while we are committing the log by
4121 * grabbing a reference to it. If the key isn't loaded we have no
4122 * choice but to return an error until the wrapping key is loaded.
4124 if (os
->os_encrypted
&&
4125 dsl_dataset_create_key_mapping(dmu_objset_ds(os
)) != 0) {
4126 zilog
->zl_suspend
--;
4127 mutex_exit(&zilog
->zl_lock
);
4128 dsl_dataset_long_rele(dmu_objset_ds(os
), suspend_tag
);
4129 dsl_dataset_rele(dmu_objset_ds(os
), suspend_tag
);
4130 return (SET_ERROR(EACCES
));
4133 zilog
->zl_suspending
= B_TRUE
;
4134 mutex_exit(&zilog
->zl_lock
);
4137 * We need to use zil_commit_impl to ensure we wait for all
4138 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4139 * to disk before proceeding. If we used zil_commit instead, it
4140 * would just call txg_wait_synced(), because zl_suspend is set.
4141 * txg_wait_synced() doesn't wait for these lwb's to be
4142 * LWB_STATE_FLUSH_DONE before returning.
4144 zil_commit_impl(zilog
, 0);
4147 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4148 * use txg_wait_synced() to ensure the data from the zilog has
4149 * migrated to the main pool before calling zil_destroy().
4151 txg_wait_synced(zilog
->zl_dmu_pool
, 0);
4153 zil_destroy(zilog
, B_FALSE
);
4155 mutex_enter(&zilog
->zl_lock
);
4156 zilog
->zl_suspending
= B_FALSE
;
4157 cv_broadcast(&zilog
->zl_cv_suspend
);
4158 mutex_exit(&zilog
->zl_lock
);
4160 if (os
->os_encrypted
)
4161 dsl_dataset_remove_key_mapping(dmu_objset_ds(os
));
4163 if (cookiep
== NULL
)
4171 zil_resume(void *cookie
)
4173 objset_t
*os
= cookie
;
4174 zilog_t
*zilog
= dmu_objset_zil(os
);
4176 mutex_enter(&zilog
->zl_lock
);
4177 ASSERT(zilog
->zl_suspend
!= 0);
4178 zilog
->zl_suspend
--;
4179 mutex_exit(&zilog
->zl_lock
);
4180 dsl_dataset_long_rele(dmu_objset_ds(os
), suspend_tag
);
4181 dsl_dataset_rele(dmu_objset_ds(os
), suspend_tag
);
4184 typedef struct zil_replay_arg
{
4185 zil_replay_func_t
*const *zr_replay
;
4187 boolean_t zr_byteswap
;
4192 zil_replay_error(zilog_t
*zilog
, const lr_t
*lr
, int error
)
4194 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4196 zilog
->zl_replaying_seq
--; /* didn't actually replay this one */
4198 dmu_objset_name(zilog
->zl_os
, name
);
4200 cmn_err(CE_WARN
, "ZFS replay transaction error %d, "
4201 "dataset %s, seq 0x%llx, txtype %llu %s\n", error
, name
,
4202 (u_longlong_t
)lr
->lrc_seq
,
4203 (u_longlong_t
)(lr
->lrc_txtype
& ~TX_CI
),
4204 (lr
->lrc_txtype
& TX_CI
) ? "CI" : "");
4210 zil_replay_log_record(zilog_t
*zilog
, const lr_t
*lr
, void *zra
,
4213 zil_replay_arg_t
*zr
= zra
;
4214 const zil_header_t
*zh
= zilog
->zl_header
;
4215 uint64_t reclen
= lr
->lrc_reclen
;
4216 uint64_t txtype
= lr
->lrc_txtype
;
4219 zilog
->zl_replaying_seq
= lr
->lrc_seq
;
4221 if (lr
->lrc_seq
<= zh
->zh_replay_seq
) /* already replayed */
4224 if (lr
->lrc_txg
< claim_txg
) /* already committed */
4227 /* Strip case-insensitive bit, still present in log record */
4230 if (txtype
== 0 || txtype
>= TX_MAX_TYPE
)
4231 return (zil_replay_error(zilog
, lr
, EINVAL
));
4234 * If this record type can be logged out of order, the object
4235 * (lr_foid) may no longer exist. That's legitimate, not an error.
4237 if (TX_OOO(txtype
)) {
4238 error
= dmu_object_info(zilog
->zl_os
,
4239 LR_FOID_GET_OBJ(((lr_ooo_t
*)lr
)->lr_foid
), NULL
);
4240 if (error
== ENOENT
|| error
== EEXIST
)
4245 * Make a copy of the data so we can revise and extend it.
4247 memcpy(zr
->zr_lr
, lr
, reclen
);
4250 * If this is a TX_WRITE with a blkptr, suck in the data.
4252 if (txtype
== TX_WRITE
&& reclen
== sizeof (lr_write_t
)) {
4253 error
= zil_read_log_data(zilog
, (lr_write_t
*)lr
,
4254 zr
->zr_lr
+ reclen
);
4256 return (zil_replay_error(zilog
, lr
, error
));
4260 * The log block containing this lr may have been byteswapped
4261 * so that we can easily examine common fields like lrc_txtype.
4262 * However, the log is a mix of different record types, and only the
4263 * replay vectors know how to byteswap their records. Therefore, if
4264 * the lr was byteswapped, undo it before invoking the replay vector.
4266 if (zr
->zr_byteswap
)
4267 byteswap_uint64_array(zr
->zr_lr
, reclen
);
4270 * We must now do two things atomically: replay this log record,
4271 * and update the log header sequence number to reflect the fact that
4272 * we did so. At the end of each replay function the sequence number
4273 * is updated if we are in replay mode.
4275 error
= zr
->zr_replay
[txtype
](zr
->zr_arg
, zr
->zr_lr
, zr
->zr_byteswap
);
4278 * The DMU's dnode layer doesn't see removes until the txg
4279 * commits, so a subsequent claim can spuriously fail with
4280 * EEXIST. So if we receive any error we try syncing out
4281 * any removes then retry the transaction. Note that we
4282 * specify B_FALSE for byteswap now, so we don't do it twice.
4284 txg_wait_synced(spa_get_dsl(zilog
->zl_spa
), 0);
4285 error
= zr
->zr_replay
[txtype
](zr
->zr_arg
, zr
->zr_lr
, B_FALSE
);
4287 return (zil_replay_error(zilog
, lr
, error
));
4293 zil_incr_blks(zilog_t
*zilog
, const blkptr_t
*bp
, void *arg
, uint64_t claim_txg
)
4295 (void) bp
, (void) arg
, (void) claim_txg
;
4297 zilog
->zl_replay_blks
++;
4303 * If this dataset has a non-empty intent log, replay it and destroy it.
4304 * Return B_TRUE if there were any entries to replay.
4307 zil_replay(objset_t
*os
, void *arg
,
4308 zil_replay_func_t
*const replay_func
[TX_MAX_TYPE
])
4310 zilog_t
*zilog
= dmu_objset_zil(os
);
4311 const zil_header_t
*zh
= zilog
->zl_header
;
4312 zil_replay_arg_t zr
;
4314 if ((zh
->zh_flags
& ZIL_REPLAY_NEEDED
) == 0) {
4315 return (zil_destroy(zilog
, B_TRUE
));
4318 zr
.zr_replay
= replay_func
;
4320 zr
.zr_byteswap
= BP_SHOULD_BYTESWAP(&zh
->zh_log
);
4321 zr
.zr_lr
= vmem_alloc(2 * SPA_MAXBLOCKSIZE
, KM_SLEEP
);
4324 * Wait for in-progress removes to sync before starting replay.
4326 txg_wait_synced(zilog
->zl_dmu_pool
, 0);
4328 zilog
->zl_replay
= B_TRUE
;
4329 zilog
->zl_replay_time
= ddi_get_lbolt();
4330 ASSERT(zilog
->zl_replay_blks
== 0);
4331 (void) zil_parse(zilog
, zil_incr_blks
, zil_replay_log_record
, &zr
,
4332 zh
->zh_claim_txg
, B_TRUE
);
4333 vmem_free(zr
.zr_lr
, 2 * SPA_MAXBLOCKSIZE
);
4335 zil_destroy(zilog
, B_FALSE
);
4336 txg_wait_synced(zilog
->zl_dmu_pool
, zilog
->zl_destroy_txg
);
4337 zilog
->zl_replay
= B_FALSE
;
4343 zil_replaying(zilog_t
*zilog
, dmu_tx_t
*tx
)
4345 if (zilog
->zl_sync
== ZFS_SYNC_DISABLED
)
4348 if (zilog
->zl_replay
) {
4349 dsl_dataset_dirty(dmu_objset_ds(zilog
->zl_os
), tx
);
4350 zilog
->zl_replayed_seq
[dmu_tx_get_txg(tx
) & TXG_MASK
] =
4351 zilog
->zl_replaying_seq
;
4359 zil_reset(const char *osname
, void *arg
)
4363 int error
= zil_suspend(osname
, NULL
);
4364 /* EACCES means crypto key not loaded */
4365 if ((error
== EACCES
) || (error
== EBUSY
))
4366 return (SET_ERROR(error
));
4368 return (SET_ERROR(EEXIST
));
4372 EXPORT_SYMBOL(zil_alloc
);
4373 EXPORT_SYMBOL(zil_free
);
4374 EXPORT_SYMBOL(zil_open
);
4375 EXPORT_SYMBOL(zil_close
);
4376 EXPORT_SYMBOL(zil_replay
);
4377 EXPORT_SYMBOL(zil_replaying
);
4378 EXPORT_SYMBOL(zil_destroy
);
4379 EXPORT_SYMBOL(zil_destroy_sync
);
4380 EXPORT_SYMBOL(zil_itx_create
);
4381 EXPORT_SYMBOL(zil_itx_destroy
);
4382 EXPORT_SYMBOL(zil_itx_assign
);
4383 EXPORT_SYMBOL(zil_commit
);
4384 EXPORT_SYMBOL(zil_claim
);
4385 EXPORT_SYMBOL(zil_check_log_chain
);
4386 EXPORT_SYMBOL(zil_sync
);
4387 EXPORT_SYMBOL(zil_clean
);
4388 EXPORT_SYMBOL(zil_suspend
);
4389 EXPORT_SYMBOL(zil_resume
);
4390 EXPORT_SYMBOL(zil_lwb_add_block
);
4391 EXPORT_SYMBOL(zil_bp_tree_add
);
4392 EXPORT_SYMBOL(zil_set_sync
);
4393 EXPORT_SYMBOL(zil_set_logbias
);
4394 EXPORT_SYMBOL(zil_sums_init
);
4395 EXPORT_SYMBOL(zil_sums_fini
);
4396 EXPORT_SYMBOL(zil_kstat_values_update
);
4398 ZFS_MODULE_PARAM(zfs
, zfs_
, commit_timeout_pct
, UINT
, ZMOD_RW
,
4399 "ZIL block open timeout percentage");
4401 ZFS_MODULE_PARAM(zfs_zil
, zil_
, replay_disable
, INT
, ZMOD_RW
,
4402 "Disable intent logging replay");
4404 ZFS_MODULE_PARAM(zfs_zil
, zil_
, nocacheflush
, INT
, ZMOD_RW
,
4405 "Disable ZIL cache flushes");
4407 ZFS_MODULE_PARAM(zfs_zil
, zil_
, slog_bulk
, U64
, ZMOD_RW
,
4408 "Limit in bytes slog sync writes per commit");
4410 ZFS_MODULE_PARAM(zfs_zil
, zil_
, maxblocksize
, UINT
, ZMOD_RW
,
4411 "Limit in bytes of ZIL log block size");
4413 ZFS_MODULE_PARAM(zfs_zil
, zil_
, maxcopied
, UINT
, ZMOD_RW
,
4414 "Limit in bytes WR_COPIED size");