Workaround issue of Linux vdev_disk.c, (#16678)
[zfs.git] / module / zfs / dmu_zfetch.c
blobed50f1889b59d4b33f0d2a7668dd9a5b2088c3df
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
30 #include <sys/zfs_context.h>
31 #include <sys/arc_impl.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_zfetch.h>
35 #include <sys/dmu.h>
36 #include <sys/dbuf.h>
37 #include <sys/kstat.h>
38 #include <sys/wmsum.h>
41 * This tunable disables predictive prefetch. Note that it leaves "prescient"
42 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
43 * prescient prefetch never issues i/os that end up not being needed,
44 * so it can't hurt performance.
47 static int zfs_prefetch_disable = B_FALSE;
49 /* max # of streams per zfetch */
50 static unsigned int zfetch_max_streams = 8;
51 /* min time before stream reclaim */
52 static unsigned int zfetch_min_sec_reap = 1;
53 /* max time before stream delete */
54 static unsigned int zfetch_max_sec_reap = 2;
55 #ifdef _ILP32
56 /* min bytes to prefetch per stream (default 2MB) */
57 static unsigned int zfetch_min_distance = 2 * 1024 * 1024;
58 /* max bytes to prefetch per stream (default 8MB) */
59 unsigned int zfetch_max_distance = 8 * 1024 * 1024;
60 #else
61 /* min bytes to prefetch per stream (default 4MB) */
62 static unsigned int zfetch_min_distance = 4 * 1024 * 1024;
63 /* max bytes to prefetch per stream (default 64MB) */
64 unsigned int zfetch_max_distance = 64 * 1024 * 1024;
65 #endif
66 /* max bytes to prefetch indirects for per stream (default 64MB) */
67 unsigned int zfetch_max_idistance = 64 * 1024 * 1024;
68 /* max request reorder distance within a stream (default 16MB) */
69 unsigned int zfetch_max_reorder = 16 * 1024 * 1024;
70 /* Max log2 fraction of holes in a stream */
71 unsigned int zfetch_hole_shift = 2;
73 typedef struct zfetch_stats {
74 kstat_named_t zfetchstat_hits;
75 kstat_named_t zfetchstat_future;
76 kstat_named_t zfetchstat_stride;
77 kstat_named_t zfetchstat_past;
78 kstat_named_t zfetchstat_misses;
79 kstat_named_t zfetchstat_max_streams;
80 kstat_named_t zfetchstat_io_issued;
81 kstat_named_t zfetchstat_io_active;
82 } zfetch_stats_t;
84 static zfetch_stats_t zfetch_stats = {
85 { "hits", KSTAT_DATA_UINT64 },
86 { "future", KSTAT_DATA_UINT64 },
87 { "stride", KSTAT_DATA_UINT64 },
88 { "past", KSTAT_DATA_UINT64 },
89 { "misses", KSTAT_DATA_UINT64 },
90 { "max_streams", KSTAT_DATA_UINT64 },
91 { "io_issued", KSTAT_DATA_UINT64 },
92 { "io_active", KSTAT_DATA_UINT64 },
95 struct {
96 wmsum_t zfetchstat_hits;
97 wmsum_t zfetchstat_future;
98 wmsum_t zfetchstat_stride;
99 wmsum_t zfetchstat_past;
100 wmsum_t zfetchstat_misses;
101 wmsum_t zfetchstat_max_streams;
102 wmsum_t zfetchstat_io_issued;
103 aggsum_t zfetchstat_io_active;
104 } zfetch_sums;
106 #define ZFETCHSTAT_BUMP(stat) \
107 wmsum_add(&zfetch_sums.stat, 1)
108 #define ZFETCHSTAT_ADD(stat, val) \
109 wmsum_add(&zfetch_sums.stat, val)
112 static kstat_t *zfetch_ksp;
114 static int
115 zfetch_kstats_update(kstat_t *ksp, int rw)
117 zfetch_stats_t *zs = ksp->ks_data;
119 if (rw == KSTAT_WRITE)
120 return (EACCES);
121 zs->zfetchstat_hits.value.ui64 =
122 wmsum_value(&zfetch_sums.zfetchstat_hits);
123 zs->zfetchstat_future.value.ui64 =
124 wmsum_value(&zfetch_sums.zfetchstat_future);
125 zs->zfetchstat_stride.value.ui64 =
126 wmsum_value(&zfetch_sums.zfetchstat_stride);
127 zs->zfetchstat_past.value.ui64 =
128 wmsum_value(&zfetch_sums.zfetchstat_past);
129 zs->zfetchstat_misses.value.ui64 =
130 wmsum_value(&zfetch_sums.zfetchstat_misses);
131 zs->zfetchstat_max_streams.value.ui64 =
132 wmsum_value(&zfetch_sums.zfetchstat_max_streams);
133 zs->zfetchstat_io_issued.value.ui64 =
134 wmsum_value(&zfetch_sums.zfetchstat_io_issued);
135 zs->zfetchstat_io_active.value.ui64 =
136 aggsum_value(&zfetch_sums.zfetchstat_io_active);
137 return (0);
140 void
141 zfetch_init(void)
143 wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
144 wmsum_init(&zfetch_sums.zfetchstat_future, 0);
145 wmsum_init(&zfetch_sums.zfetchstat_stride, 0);
146 wmsum_init(&zfetch_sums.zfetchstat_past, 0);
147 wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
148 wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
149 wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
150 aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
152 zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
153 KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
154 KSTAT_FLAG_VIRTUAL);
156 if (zfetch_ksp != NULL) {
157 zfetch_ksp->ks_data = &zfetch_stats;
158 zfetch_ksp->ks_update = zfetch_kstats_update;
159 kstat_install(zfetch_ksp);
163 void
164 zfetch_fini(void)
166 if (zfetch_ksp != NULL) {
167 kstat_delete(zfetch_ksp);
168 zfetch_ksp = NULL;
171 wmsum_fini(&zfetch_sums.zfetchstat_hits);
172 wmsum_fini(&zfetch_sums.zfetchstat_future);
173 wmsum_fini(&zfetch_sums.zfetchstat_stride);
174 wmsum_fini(&zfetch_sums.zfetchstat_past);
175 wmsum_fini(&zfetch_sums.zfetchstat_misses);
176 wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
177 wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
178 ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
179 aggsum_fini(&zfetch_sums.zfetchstat_io_active);
183 * This takes a pointer to a zfetch structure and a dnode. It performs the
184 * necessary setup for the zfetch structure, grokking data from the
185 * associated dnode.
187 void
188 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
190 if (zf == NULL)
191 return;
192 zf->zf_dnode = dno;
193 zf->zf_numstreams = 0;
195 list_create(&zf->zf_stream, sizeof (zstream_t),
196 offsetof(zstream_t, zs_node));
198 mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
201 static void
202 dmu_zfetch_stream_fini(zstream_t *zs)
204 ASSERT(!list_link_active(&zs->zs_node));
205 zfs_refcount_destroy(&zs->zs_callers);
206 zfs_refcount_destroy(&zs->zs_refs);
207 kmem_free(zs, sizeof (*zs));
210 static void
211 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
213 ASSERT(MUTEX_HELD(&zf->zf_lock));
214 list_remove(&zf->zf_stream, zs);
215 zf->zf_numstreams--;
216 membar_producer();
217 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
218 dmu_zfetch_stream_fini(zs);
222 * Clean-up state associated with a zfetch structure (e.g. destroy the
223 * streams). This doesn't free the zfetch_t itself, that's left to the caller.
225 void
226 dmu_zfetch_fini(zfetch_t *zf)
228 zstream_t *zs;
230 mutex_enter(&zf->zf_lock);
231 while ((zs = list_head(&zf->zf_stream)) != NULL)
232 dmu_zfetch_stream_remove(zf, zs);
233 mutex_exit(&zf->zf_lock);
234 list_destroy(&zf->zf_stream);
235 mutex_destroy(&zf->zf_lock);
237 zf->zf_dnode = NULL;
241 * If there aren't too many active streams already, create one more.
242 * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
243 * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
244 * The "blkid" argument is the next block that we expect this stream to access.
246 static void
247 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
249 zstream_t *zs, *zs_next, *zs_old = NULL;
250 uint_t now = gethrestime_sec(), t;
252 ASSERT(MUTEX_HELD(&zf->zf_lock));
255 * Delete too old streams, reusing the first found one.
257 t = now - zfetch_max_sec_reap;
258 for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
259 zs_next = list_next(&zf->zf_stream, zs);
261 * Skip if still active. 1 -- zf_stream reference.
263 if ((int)(zs->zs_atime - t) >= 0)
264 continue;
265 if (zfs_refcount_count(&zs->zs_refs) != 1)
266 continue;
267 if (zs_old)
268 dmu_zfetch_stream_remove(zf, zs);
269 else
270 zs_old = zs;
272 if (zs_old) {
273 zs = zs_old;
274 list_remove(&zf->zf_stream, zs);
275 goto reuse;
279 * The maximum number of streams is normally zfetch_max_streams,
280 * but for small files we lower it such that it's at least possible
281 * for all the streams to be non-overlapping.
283 uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
284 (zf->zf_dnode->dn_maxblkid << zf->zf_dnode->dn_datablkshift) /
285 zfetch_max_distance));
286 if (zf->zf_numstreams >= max_streams) {
287 t = now - zfetch_min_sec_reap;
288 for (zs = list_head(&zf->zf_stream); zs != NULL;
289 zs = list_next(&zf->zf_stream, zs)) {
290 if ((int)(zs->zs_atime - t) >= 0)
291 continue;
292 if (zfs_refcount_count(&zs->zs_refs) != 1)
293 continue;
294 if (zs_old == NULL ||
295 (int)(zs_old->zs_atime - zs->zs_atime) >= 0)
296 zs_old = zs;
298 if (zs_old) {
299 zs = zs_old;
300 list_remove(&zf->zf_stream, zs);
301 goto reuse;
303 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
304 return;
307 zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
308 zfs_refcount_create(&zs->zs_callers);
309 zfs_refcount_create(&zs->zs_refs);
310 /* One reference for zf_stream. */
311 zfs_refcount_add(&zs->zs_refs, NULL);
312 zf->zf_numstreams++;
314 reuse:
315 list_insert_head(&zf->zf_stream, zs);
316 zs->zs_blkid = blkid;
317 /* Allow immediate stream reuse until first hit. */
318 zs->zs_atime = now - zfetch_min_sec_reap;
319 memset(zs->zs_ranges, 0, sizeof (zs->zs_ranges));
320 zs->zs_pf_dist = 0;
321 zs->zs_ipf_dist = 0;
322 zs->zs_pf_start = blkid;
323 zs->zs_pf_end = blkid;
324 zs->zs_ipf_start = blkid;
325 zs->zs_ipf_end = blkid;
326 zs->zs_missed = B_FALSE;
327 zs->zs_more = B_FALSE;
330 static void
331 dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
333 zstream_t *zs = arg;
335 if (io_issued && level == 0 && blkid < zs->zs_blkid)
336 zs->zs_more = B_TRUE;
337 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
338 dmu_zfetch_stream_fini(zs);
339 aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
343 * Process stream hit access for nblks blocks starting at zs_blkid. Return
344 * number of blocks to proceed for after aggregation with future ranges.
346 static uint64_t
347 dmu_zfetch_hit(zstream_t *zs, uint64_t nblks)
349 uint_t i, j;
351 /* Optimize sequential accesses (no future ranges). */
352 if (zs->zs_ranges[0].start == 0)
353 goto done;
355 /* Look for intersections with further ranges. */
356 for (i = 0; i < ZFETCH_RANGES; i++) {
357 zsrange_t *r = &zs->zs_ranges[i];
358 if (r->start == 0 || r->start > nblks)
359 break;
360 if (r->end >= nblks) {
361 nblks = r->end;
362 i++;
363 break;
367 /* Delete all found intersecting ranges, updates remaining. */
368 for (j = 0; i < ZFETCH_RANGES; i++, j++) {
369 if (zs->zs_ranges[i].start == 0)
370 break;
371 ASSERT3U(zs->zs_ranges[i].start, >, nblks);
372 ASSERT3U(zs->zs_ranges[i].end, >, nblks);
373 zs->zs_ranges[j].start = zs->zs_ranges[i].start - nblks;
374 zs->zs_ranges[j].end = zs->zs_ranges[i].end - nblks;
376 if (j < ZFETCH_RANGES) {
377 zs->zs_ranges[j].start = 0;
378 zs->zs_ranges[j].end = 0;
381 done:
382 zs->zs_blkid += nblks;
383 return (nblks);
387 * Process future stream access for nblks blocks starting at blkid. Return
388 * number of blocks to proceed for if future ranges reach fill threshold.
390 static uint64_t
391 dmu_zfetch_future(zstream_t *zs, uint64_t blkid, uint64_t nblks)
393 ASSERT3U(blkid, >, zs->zs_blkid);
394 blkid -= zs->zs_blkid;
395 ASSERT3U(blkid + nblks, <=, UINT16_MAX);
397 /* Search for first and last intersection or insert point. */
398 uint_t f = ZFETCH_RANGES, l = 0, i;
399 for (i = 0; i < ZFETCH_RANGES; i++) {
400 zsrange_t *r = &zs->zs_ranges[i];
401 if (r->start == 0 || r->start > blkid + nblks)
402 break;
403 if (r->end < blkid)
404 continue;
405 if (f > i)
406 f = i;
407 if (l < i)
408 l = i;
410 if (f <= l) {
411 /* Got some intersecting range, expand it if needed. */
412 if (zs->zs_ranges[f].start > blkid)
413 zs->zs_ranges[f].start = blkid;
414 zs->zs_ranges[f].end = MAX(zs->zs_ranges[l].end, blkid + nblks);
415 if (f < l) {
416 /* Got more than one intersection, remove others. */
417 for (f++, l++; l < ZFETCH_RANGES; f++, l++) {
418 zs->zs_ranges[f].start = zs->zs_ranges[l].start;
419 zs->zs_ranges[f].end = zs->zs_ranges[l].end;
421 zs->zs_ranges[f].start = 0;
422 zs->zs_ranges[f].end = 0;
424 } else if (i < ZFETCH_RANGES) {
425 /* Got no intersecting ranges, insert new one. */
426 for (l = ZFETCH_RANGES - 1; l > i; l--) {
427 zs->zs_ranges[l].start = zs->zs_ranges[l - 1].start;
428 zs->zs_ranges[l].end = zs->zs_ranges[l - 1].end;
430 zs->zs_ranges[i].start = blkid;
431 zs->zs_ranges[i].end = blkid + nblks;
432 } else {
433 /* No space left to insert. Drop the range. */
434 return (0);
437 /* Check if with the new access addition we reached fill threshold. */
438 if (zfetch_hole_shift >= 16)
439 return (0);
440 uint_t hole = 0;
441 for (i = f = l = 0; i < ZFETCH_RANGES; i++) {
442 zsrange_t *r = &zs->zs_ranges[i];
443 if (r->start == 0)
444 break;
445 hole += r->start - f;
446 f = r->end;
447 if (hole <= r->end >> zfetch_hole_shift)
448 l = r->end;
450 if (l > 0)
451 return (dmu_zfetch_hit(zs, l));
453 return (0);
457 * This is the predictive prefetch entry point. dmu_zfetch_prepare()
458 * associates dnode access specified with blkid and nblks arguments with
459 * prefetch stream, predicts further accesses based on that stats and returns
460 * the stream pointer on success. That pointer must later be passed to
461 * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
462 * release it. dmu_zfetch() is a wrapper for simple cases when window between
463 * prediction and prefetch initiation is not needed.
464 * fetch_data argument specifies whether actual data blocks should be fetched:
465 * FALSE -- prefetch only indirect blocks for predicted data blocks;
466 * TRUE -- prefetch predicted data blocks plus following indirect blocks.
468 zstream_t *
469 dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
470 boolean_t fetch_data, boolean_t have_lock)
472 zstream_t *zs;
473 spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
474 zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
476 if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
477 return (NULL);
479 if (os_prefetch == ZFS_PREFETCH_METADATA)
480 fetch_data = B_FALSE;
483 * If we haven't yet loaded the indirect vdevs' mappings, we
484 * can only read from blocks that we carefully ensure are on
485 * concrete vdevs (or previously-loaded indirect vdevs). So we
486 * can't allow the predictive prefetcher to attempt reads of other
487 * blocks (e.g. of the MOS's dnode object).
489 if (!spa_indirect_vdevs_loaded(spa))
490 return (NULL);
493 * As a fast path for small (single-block) files, ignore access
494 * to the first block.
496 if (!have_lock && blkid == 0)
497 return (NULL);
499 if (!have_lock)
500 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
503 * A fast path for small files for which no prefetch will
504 * happen.
506 uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
507 if (maxblkid < 2) {
508 if (!have_lock)
509 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
510 return (NULL);
512 mutex_enter(&zf->zf_lock);
515 * Find perfect prefetch stream. Depending on whether the accesses
516 * are block-aligned, first block of the new access may either follow
517 * the last block of the previous access, or be equal to it.
519 unsigned int dbs = zf->zf_dnode->dn_datablkshift;
520 uint64_t end_blkid = blkid + nblks;
521 for (zs = list_head(&zf->zf_stream); zs != NULL;
522 zs = list_next(&zf->zf_stream, zs)) {
523 if (blkid == zs->zs_blkid) {
524 goto hit;
525 } else if (blkid + 1 == zs->zs_blkid) {
526 blkid++;
527 nblks--;
528 goto hit;
533 * Find close enough prefetch stream. Access crossing stream position
534 * is a hit in its new part. Access ahead of stream position considered
535 * a hit for metadata prefetch, since we do not care about fill percent,
536 * or stored for future otherwise. Access behind stream position is
537 * silently ignored, since we already skipped it reaching fill percent.
539 uint_t max_reorder = MIN((zfetch_max_reorder >> dbs) + 1, UINT16_MAX);
540 uint_t t = gethrestime_sec() - zfetch_max_sec_reap;
541 for (zs = list_head(&zf->zf_stream); zs != NULL;
542 zs = list_next(&zf->zf_stream, zs)) {
543 if (blkid > zs->zs_blkid) {
544 if (end_blkid <= zs->zs_blkid + max_reorder) {
545 if (!fetch_data) {
546 nblks = dmu_zfetch_hit(zs,
547 end_blkid - zs->zs_blkid);
548 ZFETCHSTAT_BUMP(zfetchstat_stride);
549 goto future;
551 nblks = dmu_zfetch_future(zs, blkid, nblks);
552 if (nblks > 0)
553 ZFETCHSTAT_BUMP(zfetchstat_stride);
554 else
555 ZFETCHSTAT_BUMP(zfetchstat_future);
556 goto future;
558 } else if (end_blkid >= zs->zs_blkid) {
559 nblks -= zs->zs_blkid - blkid;
560 blkid += zs->zs_blkid - blkid;
561 goto hit;
562 } else if (end_blkid + max_reorder > zs->zs_blkid &&
563 (int)(zs->zs_atime - t) >= 0) {
564 ZFETCHSTAT_BUMP(zfetchstat_past);
565 zs->zs_atime = gethrestime_sec();
566 goto out;
571 * This access is not part of any existing stream. Create a new
572 * stream for it unless we are at the end of file.
574 if (end_blkid < maxblkid)
575 dmu_zfetch_stream_create(zf, end_blkid);
576 mutex_exit(&zf->zf_lock);
577 if (!have_lock)
578 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
579 ZFETCHSTAT_BUMP(zfetchstat_misses);
580 return (NULL);
582 hit:
583 nblks = dmu_zfetch_hit(zs, nblks);
584 ZFETCHSTAT_BUMP(zfetchstat_hits);
586 future:
587 zs->zs_atime = gethrestime_sec();
589 /* Exit if we already prefetched for this position before. */
590 if (nblks == 0)
591 goto out;
593 /* If the file is ending, remove the stream. */
594 end_blkid = zs->zs_blkid;
595 if (end_blkid >= maxblkid) {
596 dmu_zfetch_stream_remove(zf, zs);
597 out:
598 mutex_exit(&zf->zf_lock);
599 if (!have_lock)
600 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
601 return (NULL);
605 * This access was to a block that we issued a prefetch for on
606 * behalf of this stream. Calculate further prefetch distances.
608 * Start prefetch from the demand access size (nblks). Double the
609 * distance every access up to zfetch_min_distance. After that only
610 * if needed increase the distance by 1/8 up to zfetch_max_distance.
612 * Don't double the distance beyond single block if we have more
613 * than ~6% of ARC held by active prefetches. It should help with
614 * getting out of RAM on some badly mispredicted read patterns.
616 unsigned int nbytes = nblks << dbs;
617 unsigned int pf_nblks;
618 if (fetch_data) {
619 if (unlikely(zs->zs_pf_dist < nbytes))
620 zs->zs_pf_dist = nbytes;
621 else if (zs->zs_pf_dist < zfetch_min_distance &&
622 (zs->zs_pf_dist < (1 << dbs) ||
623 aggsum_compare(&zfetch_sums.zfetchstat_io_active,
624 arc_c_max >> (4 + dbs)) < 0))
625 zs->zs_pf_dist *= 2;
626 else if (zs->zs_more)
627 zs->zs_pf_dist += zs->zs_pf_dist / 8;
628 zs->zs_more = B_FALSE;
629 if (zs->zs_pf_dist > zfetch_max_distance)
630 zs->zs_pf_dist = zfetch_max_distance;
631 pf_nblks = zs->zs_pf_dist >> dbs;
632 } else {
633 pf_nblks = 0;
635 if (zs->zs_pf_start < end_blkid)
636 zs->zs_pf_start = end_blkid;
637 if (zs->zs_pf_end < end_blkid + pf_nblks)
638 zs->zs_pf_end = end_blkid + pf_nblks;
641 * Do the same for indirects, starting where we will stop reading
642 * data blocks (and the indirects that point to them).
644 if (unlikely(zs->zs_ipf_dist < nbytes))
645 zs->zs_ipf_dist = nbytes;
646 else
647 zs->zs_ipf_dist *= 2;
648 if (zs->zs_ipf_dist > zfetch_max_idistance)
649 zs->zs_ipf_dist = zfetch_max_idistance;
650 pf_nblks = zs->zs_ipf_dist >> dbs;
651 if (zs->zs_ipf_start < zs->zs_pf_end)
652 zs->zs_ipf_start = zs->zs_pf_end;
653 if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
654 zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
656 zfs_refcount_add(&zs->zs_refs, NULL);
657 /* Count concurrent callers. */
658 zfs_refcount_add(&zs->zs_callers, NULL);
659 mutex_exit(&zf->zf_lock);
661 if (!have_lock)
662 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
663 return (zs);
666 void
667 dmu_zfetch_run(zfetch_t *zf, zstream_t *zs, boolean_t missed,
668 boolean_t have_lock)
670 int64_t pf_start, pf_end, ipf_start, ipf_end;
671 int epbs, issued;
673 if (missed)
674 zs->zs_missed = missed;
677 * Postpone the prefetch if there are more concurrent callers.
678 * It happens when multiple requests are waiting for the same
679 * indirect block. The last one will run the prefetch for all.
681 if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
682 /* Drop reference taken in dmu_zfetch_prepare(). */
683 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
684 dmu_zfetch_stream_fini(zs);
685 return;
688 mutex_enter(&zf->zf_lock);
689 if (zs->zs_missed) {
690 pf_start = zs->zs_pf_start;
691 pf_end = zs->zs_pf_start = zs->zs_pf_end;
692 } else {
693 pf_start = pf_end = 0;
695 ipf_start = zs->zs_ipf_start;
696 ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
697 mutex_exit(&zf->zf_lock);
698 ASSERT3S(pf_start, <=, pf_end);
699 ASSERT3S(ipf_start, <=, ipf_end);
701 epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
702 ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
703 ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
704 ASSERT3S(ipf_start, <=, ipf_end);
705 issued = pf_end - pf_start + ipf_end - ipf_start;
706 if (issued > 1) {
707 /* More references on top of taken in dmu_zfetch_prepare(). */
708 zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
709 } else if (issued == 0) {
710 /* Some other thread has done our work, so drop the ref. */
711 if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
712 dmu_zfetch_stream_fini(zs);
713 return;
715 aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
717 if (!have_lock)
718 rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
720 issued = 0;
721 for (int64_t blk = pf_start; blk < pf_end; blk++) {
722 issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
723 ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
725 for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
726 issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
727 ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
730 if (!have_lock)
731 rw_exit(&zf->zf_dnode->dn_struct_rwlock);
733 if (issued)
734 ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
737 void
738 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
739 boolean_t missed, boolean_t have_lock)
741 zstream_t *zs;
743 zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
744 if (zs)
745 dmu_zfetch_run(zf, zs, missed, have_lock);
748 ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
749 "Disable all ZFS prefetching");
751 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
752 "Max number of streams per zfetch");
754 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
755 "Min time before stream reclaim");
757 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
758 "Max time before stream delete");
760 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
761 "Min bytes to prefetch per stream");
763 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
764 "Max bytes to prefetch per stream");
766 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
767 "Max bytes to prefetch indirects for per stream");
769 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_reorder, UINT, ZMOD_RW,
770 "Max request reorder distance within a stream");
772 ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, hole_shift, UINT, ZMOD_RW,
773 "Max log2 fraction of holes in a stream");