Reduce dirty records memory usage
[zfs.git] / module / zfs / brt.c
blobea8c0735c4b7645b8b12dc24f2f08b35791f4ac1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/brt.h>
31 #include <sys/brt_impl.h>
32 #include <sys/ddt.h>
33 #include <sys/bitmap.h>
34 #include <sys/zap.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc.h>
37 #include <sys/dsl_pool.h>
38 #include <sys/dsl_scan.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/kstat.h>
41 #include <sys/wmsum.h>
44 * Block Cloning design.
46 * Block Cloning allows to manually clone a file (or a subset of its blocks)
47 * into another (or the same) file by just creating additional references to
48 * the data blocks without copying the data itself. Those references are kept
49 * in the Block Reference Tables (BRTs).
51 * In many ways this is similar to the existing deduplication, but there are
52 * some important differences:
54 * - Deduplication is automatic and Block Cloning is not - one has to use a
55 * dedicated system call(s) to clone the given file/blocks.
56 * - Deduplication keeps all data blocks in its table, even those referenced
57 * just once. Block Cloning creates an entry in its tables only when there
58 * are at least two references to the given data block. If the block was
59 * never explicitly cloned or the second to last reference was dropped,
60 * there will be neither space nor performance overhead.
61 * - Deduplication needs data to work - one needs to pass real data to the
62 * write(2) syscall, so hash can be calculated. Block Cloning doesn't require
63 * data, just block pointers to the data, so it is extremely fast, as we pay
64 * neither the cost of reading the data, nor the cost of writing the data -
65 * we operate exclusively on metadata.
66 * - If the D (dedup) bit is not set in the block pointer, it means that
67 * the block is not in the dedup table (DDT) and we won't consult the DDT
68 * when we need to free the block. Block Cloning must be consulted on every
69 * free, because we cannot modify the source BP (eg. by setting something
70 * similar to the D bit), thus we have no hint if the block is in the
71 * Block Reference Table (BRT), so we need to look into the BRT. There is
72 * an optimization in place that allows us to eliminate the majority of BRT
73 * lookups which is described below in the "Minimizing free penalty" section.
74 * - The BRT entry is much smaller than the DDT entry - for BRT we only store
75 * 64bit offset and 64bit reference counter.
76 * - Dedup keys are cryptographic hashes, so two blocks that are close to each
77 * other on disk are most likely in totally different parts of the DDT.
78 * The BRT entry keys are offsets into a single top-level VDEV, so data blocks
79 * from one file should have BRT entries close to each other.
80 * - Scrub will only do a single pass over a block that is referenced multiple
81 * times in the DDT. Unfortunately it is not currently (if at all) possible
82 * with Block Cloning and block referenced multiple times will be scrubbed
83 * multiple times. The new, sorted scrub should be able to eliminate
84 * duplicated reads given enough memory.
85 * - Deduplication requires cryptographically strong hash as a checksum or
86 * additional data verification. Block Cloning works with any checksum
87 * algorithm or even with checksumming disabled.
89 * As mentioned above, the BRT entries are much smaller than the DDT entries.
90 * To uniquely identify a block we just need its vdev id and offset. We also
91 * need to maintain a reference counter. The vdev id will often repeat, as there
92 * is a small number of top-level VDEVs and a large number of blocks stored in
93 * each VDEV. We take advantage of that to reduce the BRT entry size further by
94 * maintaining one BRT for each top-level VDEV, so we can then have only offset
95 * and counter as the BRT entry.
97 * Minimizing free penalty.
99 * Block Cloning allows creating additional references to any existing block.
100 * When we free a block there is no hint in the block pointer whether the block
101 * was cloned or not, so on each free we have to check if there is a
102 * corresponding entry in the BRT or not. If there is, we need to decrease
103 * the reference counter. Doing BRT lookup on every free can potentially be
104 * expensive by requiring additional I/Os if the BRT doesn't fit into memory.
105 * This is the main problem with deduplication, so we've learned our lesson and
106 * try not to repeat the same mistake here. How do we do that? We divide each
107 * top-level VDEV into 16MB regions. For each region we maintain a counter that
108 * is a sum of all the BRT entries that have offsets within the region. This
109 * creates the entries count array of 16bit numbers for each top-level VDEV.
110 * The entries count array is always kept in memory and updated on disk in the
111 * same transaction group as the BRT updates to keep everything in-sync. We can
112 * keep the array in memory, because it is very small. With 16MB regions and
113 * 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
114 * the region size even further in the future). Now, when we want to free
115 * a block, we first consult the array. If the counter for the whole region is
116 * zero, there is no need to look for the BRT entry, as there isn't one for
117 * sure. If the counter for the region is greater than zero, only then we will
118 * do a BRT lookup and if an entry is found we will decrease the reference
119 * counter in the BRT entry and in the entry counters array.
121 * The entry counters array is small, but can potentially be larger for very
122 * large VDEVs or smaller regions. In this case we don't want to rewrite entire
123 * array on every change. We then divide the array into 32kB block and keep
124 * a bitmap of dirty blocks within a transaction group. When we sync the
125 * transaction group we can only update the parts of the entry counters array
126 * that were modified. Note: Keeping track of the dirty parts of the entry
127 * counters array is implemented, but updating only parts of the array on disk
128 * is not yet implemented - for now we will update entire array if there was
129 * any change.
131 * The implementation tries to be economic: if BRT is not used, or no longer
132 * used, there will be no entries in the MOS and no additional memory used (eg.
133 * the entry counters array is only allocated if needed).
135 * Interaction between Deduplication and Block Cloning.
137 * If both functionalities are in use, we could end up with a block that is
138 * referenced multiple times in both DDT and BRT. When we free one of the
139 * references we couldn't tell where it belongs, so we would have to decide
140 * what table takes the precedence: do we first clear DDT references or BRT
141 * references? To avoid this dilemma BRT cooperates with DDT - if a given block
142 * is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
143 * lookup DDT entry instead and increase the counter there. No BRT entry
144 * will be created for a block which has the D (dedup) bit set.
145 * BRT may be more efficient for manual deduplication, but if the block is
146 * already in the DDT, then creating additional BRT entry would be less
147 * efficient. This clever idea was proposed by Allan Jude.
149 * Block Cloning across datasets.
151 * Block Cloning is not limited to cloning blocks within the same dataset.
152 * It is possible (and very useful) to clone blocks between different datasets.
153 * One use case is recovering files from snapshots. By cloning the files into
154 * dataset we need no additional storage. Without Block Cloning we would need
155 * additional space for those files.
156 * Another interesting use case is moving the files between datasets
157 * (copying the file content to the new dataset and removing the source file).
158 * In that case Block Cloning will only be used briefly, because the BRT entries
159 * will be removed when the source is removed.
160 * Block Cloning across encrypted datasets is supported as long as both
161 * datasets share the same master key (e.g. snapshots and clones)
163 * Block Cloning flow through ZFS layers.
165 * Note: Block Cloning can be used both for cloning file system blocks and ZVOL
166 * blocks. As of this writing no interface is implemented that allows for block
167 * cloning within a ZVOL.
168 * FreeBSD and Linux provides copy_file_range(2) system call and we will use it
169 * for blocking cloning.
171 * ssize_t
172 * copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
173 * size_t len, unsigned int flags);
175 * Even though offsets and length represent bytes, they have to be
176 * block-aligned or we will return an error so the upper layer can
177 * fallback to the generic mechanism that will just copy the data.
178 * Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
179 * This function was implemented based on zfs_write(), but instead of writing
180 * the given data we first read block pointers using the new dmu_read_l0_bps()
181 * function from the source file. Once we have BPs from the source file we call
182 * the dmu_brt_clone() function on the destination file. This function
183 * allocates BPs for us. We iterate over all source BPs. If the given BP is
184 * a hole or an embedded block, we just copy BP as-is. If it points to a real
185 * data we place this BP on a BRT pending list using the brt_pending_add()
186 * function.
188 * We use this pending list to keep track of all BPs that got new references
189 * within this transaction group.
191 * Some special cases to consider and how we address them:
192 * - The block we want to clone may have been created within the same
193 * transaction group that we are trying to clone. Such block has no BP
194 * allocated yet, so cannot be immediately cloned. We return EAGAIN.
195 * - The block we want to clone may have been modified within the same
196 * transaction group. We return EAGAIN.
197 * - A block may be cloned multiple times during one transaction group (that's
198 * why pending list is actually a tree and not an append-only list - this
199 * way we can figure out faster if this block is cloned for the first time
200 * in this txg or consecutive time).
201 * - A block may be cloned and freed within the same transaction group
202 * (see dbuf_undirty()).
203 * - A block may be cloned and within the same transaction group the clone
204 * can be cloned again (see dmu_read_l0_bps()).
205 * - A file might have been deleted, but the caller still has a file descriptor
206 * open to this file and clones it.
208 * When we free a block we have an additional step in the ZIO pipeline where we
209 * call the zio_brt_free() function. We then call the brt_entry_decref()
210 * that loads the corresponding BRT entry (if one exists) and decreases
211 * reference counter. If this is not the last reference we will stop ZIO
212 * pipeline here. If this is the last reference or the block is not in the
213 * BRT, we continue the pipeline and free the block as usual.
215 * At the beginning of spa_sync() where there can be no more block cloning,
216 * but before issuing frees we call brt_pending_apply(). This function applies
217 * all the new clones to the BRT table - we load BRT entries and update
218 * reference counters. To sync new BRT entries to disk, we use brt_sync()
219 * function. This function will sync all dirty per-top-level-vdev BRTs,
220 * the entry counters arrays, etc.
222 * Block Cloning and ZIL.
224 * Every clone operation is divided into chunks (similar to write) and each
225 * chunk is cloned in a separate transaction. The chunk size is determined by
226 * how many BPs we can fit into a single ZIL entry.
227 * Replaying clone operation is different from the regular clone operation,
228 * as when we log clone operations we cannot use the source object - it may
229 * reside on a different dataset, so we log BPs we want to clone.
230 * The ZIL is replayed when we mount the given dataset, not when the pool is
231 * imported. Taking this into account it is possible that the pool is imported
232 * without mounting datasets and the source dataset is destroyed before the
233 * destination dataset is mounted and its ZIL replayed.
234 * To address this situation we leverage zil_claim() mechanism where ZFS will
235 * parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
236 * entries, we will bump reference counters for their BPs in the BRT. Then
237 * on mount and ZIL replay we bump the reference counters once more, while the
238 * first references are dropped during ZIL destroy by zil_free_clone_range().
239 * It is possible that after zil_claim() we never mount the destination, so
240 * we never replay its ZIL and just destroy it. In this case the only taken
241 * references will be dropped by zil_free_clone_range(), since the cloning is
242 * not going to ever take place.
245 static kmem_cache_t *brt_entry_cache;
246 static kmem_cache_t *brt_pending_entry_cache;
249 * Enable/disable prefetching of BRT entries that we are going to modify.
251 static int brt_zap_prefetch = 1;
253 #ifdef ZFS_DEBUG
254 #define BRT_DEBUG(...) do { \
255 if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
256 __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
258 } while (0)
259 #else
260 #define BRT_DEBUG(...) do { } while (0)
261 #endif
263 static int brt_zap_default_bs = 12;
264 static int brt_zap_default_ibs = 12;
266 static kstat_t *brt_ksp;
268 typedef struct brt_stats {
269 kstat_named_t brt_addref_entry_in_memory;
270 kstat_named_t brt_addref_entry_not_on_disk;
271 kstat_named_t brt_addref_entry_on_disk;
272 kstat_named_t brt_addref_entry_read_lost_race;
273 kstat_named_t brt_decref_entry_in_memory;
274 kstat_named_t brt_decref_entry_loaded_from_disk;
275 kstat_named_t brt_decref_entry_not_in_memory;
276 kstat_named_t brt_decref_entry_not_on_disk;
277 kstat_named_t brt_decref_entry_read_lost_race;
278 kstat_named_t brt_decref_entry_still_referenced;
279 kstat_named_t brt_decref_free_data_later;
280 kstat_named_t brt_decref_free_data_now;
281 kstat_named_t brt_decref_no_entry;
282 } brt_stats_t;
284 static brt_stats_t brt_stats = {
285 { "addref_entry_in_memory", KSTAT_DATA_UINT64 },
286 { "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
287 { "addref_entry_on_disk", KSTAT_DATA_UINT64 },
288 { "addref_entry_read_lost_race", KSTAT_DATA_UINT64 },
289 { "decref_entry_in_memory", KSTAT_DATA_UINT64 },
290 { "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
291 { "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
292 { "decref_entry_not_on_disk", KSTAT_DATA_UINT64 },
293 { "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
294 { "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
295 { "decref_free_data_later", KSTAT_DATA_UINT64 },
296 { "decref_free_data_now", KSTAT_DATA_UINT64 },
297 { "decref_no_entry", KSTAT_DATA_UINT64 }
300 struct {
301 wmsum_t brt_addref_entry_in_memory;
302 wmsum_t brt_addref_entry_not_on_disk;
303 wmsum_t brt_addref_entry_on_disk;
304 wmsum_t brt_addref_entry_read_lost_race;
305 wmsum_t brt_decref_entry_in_memory;
306 wmsum_t brt_decref_entry_loaded_from_disk;
307 wmsum_t brt_decref_entry_not_in_memory;
308 wmsum_t brt_decref_entry_not_on_disk;
309 wmsum_t brt_decref_entry_read_lost_race;
310 wmsum_t brt_decref_entry_still_referenced;
311 wmsum_t brt_decref_free_data_later;
312 wmsum_t brt_decref_free_data_now;
313 wmsum_t brt_decref_no_entry;
314 } brt_sums;
316 #define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
318 static int brt_entry_compare(const void *x1, const void *x2);
319 static int brt_pending_entry_compare(const void *x1, const void *x2);
321 static void
322 brt_rlock(brt_t *brt)
324 rw_enter(&brt->brt_lock, RW_READER);
327 static void
328 brt_wlock(brt_t *brt)
330 rw_enter(&brt->brt_lock, RW_WRITER);
333 static void
334 brt_unlock(brt_t *brt)
336 rw_exit(&brt->brt_lock);
339 static uint16_t
340 brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
343 ASSERT3U(idx, <, brtvd->bv_size);
345 if (unlikely(brtvd->bv_need_byteswap)) {
346 return (BSWAP_16(brtvd->bv_entcount[idx]));
347 } else {
348 return (brtvd->bv_entcount[idx]);
352 static void
353 brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
356 ASSERT3U(idx, <, brtvd->bv_size);
358 if (unlikely(brtvd->bv_need_byteswap)) {
359 brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
360 } else {
361 brtvd->bv_entcount[idx] = entcnt;
365 static void
366 brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
368 uint16_t entcnt;
370 ASSERT3U(idx, <, brtvd->bv_size);
372 entcnt = brt_vdev_entcount_get(brtvd, idx);
373 ASSERT(entcnt < UINT16_MAX);
375 brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
378 static void
379 brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
381 uint16_t entcnt;
383 ASSERT3U(idx, <, brtvd->bv_size);
385 entcnt = brt_vdev_entcount_get(brtvd, idx);
386 ASSERT(entcnt > 0);
388 brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
391 #ifdef ZFS_DEBUG
392 static void
393 brt_vdev_dump(brt_vdev_t *brtvd)
395 uint64_t idx;
397 zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
398 "size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu\n",
399 (u_longlong_t)brtvd->bv_vdevid,
400 brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
401 (u_longlong_t)brtvd->bv_size,
402 (u_longlong_t)brtvd->bv_totalcount,
403 (u_longlong_t)brtvd->bv_nblocks,
404 (size_t)BT_SIZEOFMAP(brtvd->bv_nblocks));
405 if (brtvd->bv_totalcount > 0) {
406 zfs_dbgmsg(" entcounts:");
407 for (idx = 0; idx < brtvd->bv_size; idx++) {
408 uint16_t entcnt = brt_vdev_entcount_get(brtvd, idx);
409 if (entcnt > 0) {
410 zfs_dbgmsg(" [%04llu] %hu",
411 (u_longlong_t)idx, entcnt);
415 if (brtvd->bv_entcount_dirty) {
416 char *bitmap;
418 bitmap = kmem_alloc(brtvd->bv_nblocks + 1, KM_SLEEP);
419 for (idx = 0; idx < brtvd->bv_nblocks; idx++) {
420 bitmap[idx] =
421 BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
423 bitmap[idx] = '\0';
424 zfs_dbgmsg(" dirty: %s", bitmap);
425 kmem_free(bitmap, brtvd->bv_nblocks + 1);
428 #endif
430 static brt_vdev_t *
431 brt_vdev(brt_t *brt, uint64_t vdevid)
433 brt_vdev_t *brtvd;
435 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
437 if (vdevid < brt->brt_nvdevs) {
438 brtvd = &brt->brt_vdevs[vdevid];
439 } else {
440 brtvd = NULL;
443 return (brtvd);
446 static void
447 brt_vdev_create(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
449 char name[64];
451 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
452 ASSERT0(brtvd->bv_mos_brtvdev);
453 ASSERT0(brtvd->bv_mos_entries);
454 ASSERT(brtvd->bv_entcount != NULL);
455 ASSERT(brtvd->bv_size > 0);
456 ASSERT(brtvd->bv_bitmap != NULL);
457 ASSERT(brtvd->bv_nblocks > 0);
459 brtvd->bv_mos_entries = zap_create_flags(brt->brt_mos, 0,
460 ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
461 brt_zap_default_bs, brt_zap_default_ibs, DMU_OT_NONE, 0, tx);
462 VERIFY(brtvd->bv_mos_entries != 0);
463 BRT_DEBUG("MOS entries created, object=%llu",
464 (u_longlong_t)brtvd->bv_mos_entries);
467 * We allocate DMU buffer to store the bv_entcount[] array.
468 * We will keep array size (bv_size) and cummulative count for all
469 * bv_entcount[]s (bv_totalcount) in the bonus buffer.
471 brtvd->bv_mos_brtvdev = dmu_object_alloc(brt->brt_mos,
472 DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
473 DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
474 VERIFY(brtvd->bv_mos_brtvdev != 0);
475 BRT_DEBUG("MOS BRT VDEV created, object=%llu",
476 (u_longlong_t)brtvd->bv_mos_brtvdev);
478 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
479 (u_longlong_t)brtvd->bv_vdevid);
480 VERIFY0(zap_add(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
481 sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
482 BRT_DEBUG("Pool directory object created, object=%s", name);
484 spa_feature_incr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
487 static void
488 brt_vdev_realloc(brt_t *brt, brt_vdev_t *brtvd)
490 vdev_t *vd;
491 uint16_t *entcount;
492 ulong_t *bitmap;
493 uint64_t nblocks, size;
495 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
497 spa_config_enter(brt->brt_spa, SCL_VDEV, FTAG, RW_READER);
498 vd = vdev_lookup_top(brt->brt_spa, brtvd->bv_vdevid);
499 size = (vdev_get_min_asize(vd) - 1) / brt->brt_rangesize + 1;
500 spa_config_exit(brt->brt_spa, SCL_VDEV, FTAG);
502 entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
503 nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
504 bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
506 if (!brtvd->bv_initiated) {
507 ASSERT0(brtvd->bv_size);
508 ASSERT(brtvd->bv_entcount == NULL);
509 ASSERT(brtvd->bv_bitmap == NULL);
510 ASSERT0(brtvd->bv_nblocks);
512 avl_create(&brtvd->bv_tree, brt_entry_compare,
513 sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
514 } else {
515 ASSERT(brtvd->bv_size > 0);
516 ASSERT(brtvd->bv_entcount != NULL);
517 ASSERT(brtvd->bv_bitmap != NULL);
518 ASSERT(brtvd->bv_nblocks > 0);
520 * TODO: Allow vdev shrinking. We only need to implement
521 * shrinking the on-disk BRT VDEV object.
522 * dmu_free_range(brt->brt_mos, brtvd->bv_mos_brtvdev, offset,
523 * size, tx);
525 ASSERT3U(brtvd->bv_size, <=, size);
527 memcpy(entcount, brtvd->bv_entcount,
528 sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
529 memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
530 BT_SIZEOFMAP(brtvd->bv_nblocks)));
531 vmem_free(brtvd->bv_entcount,
532 sizeof (entcount[0]) * brtvd->bv_size);
533 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
536 brtvd->bv_size = size;
537 brtvd->bv_entcount = entcount;
538 brtvd->bv_bitmap = bitmap;
539 brtvd->bv_nblocks = nblocks;
540 if (!brtvd->bv_initiated) {
541 brtvd->bv_need_byteswap = FALSE;
542 brtvd->bv_initiated = TRUE;
543 BRT_DEBUG("BRT VDEV %llu initiated.",
544 (u_longlong_t)brtvd->bv_vdevid);
548 static void
549 brt_vdev_load(brt_t *brt, brt_vdev_t *brtvd)
551 char name[64];
552 dmu_buf_t *db;
553 brt_vdev_phys_t *bvphys;
554 int error;
556 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
557 (u_longlong_t)brtvd->bv_vdevid);
558 error = zap_lookup(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
559 sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev);
560 if (error != 0)
561 return;
562 ASSERT(brtvd->bv_mos_brtvdev != 0);
564 error = dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db);
565 ASSERT0(error);
566 if (error != 0)
567 return;
569 bvphys = db->db_data;
570 if (brt->brt_rangesize == 0) {
571 brt->brt_rangesize = bvphys->bvp_rangesize;
572 } else {
573 ASSERT3U(brt->brt_rangesize, ==, bvphys->bvp_rangesize);
576 ASSERT(!brtvd->bv_initiated);
577 brt_vdev_realloc(brt, brtvd);
579 /* TODO: We don't support VDEV shrinking. */
580 ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
583 * If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
585 error = dmu_read(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
586 MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
587 brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
588 ASSERT0(error);
590 brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
591 ASSERT(brtvd->bv_mos_entries != 0);
592 brtvd->bv_need_byteswap =
593 (bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
594 brtvd->bv_totalcount = bvphys->bvp_totalcount;
595 brtvd->bv_usedspace = bvphys->bvp_usedspace;
596 brtvd->bv_savedspace = bvphys->bvp_savedspace;
597 brt->brt_usedspace += brtvd->bv_usedspace;
598 brt->brt_savedspace += brtvd->bv_savedspace;
600 dmu_buf_rele(db, FTAG);
602 BRT_DEBUG("MOS BRT VDEV %s loaded: mos_brtvdev=%llu, mos_entries=%llu",
603 name, (u_longlong_t)brtvd->bv_mos_brtvdev,
604 (u_longlong_t)brtvd->bv_mos_entries);
607 static void
608 brt_vdev_dealloc(brt_t *brt, brt_vdev_t *brtvd)
611 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
612 ASSERT(brtvd->bv_initiated);
614 vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
615 brtvd->bv_entcount = NULL;
616 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
617 brtvd->bv_bitmap = NULL;
618 ASSERT0(avl_numnodes(&brtvd->bv_tree));
619 avl_destroy(&brtvd->bv_tree);
621 brtvd->bv_size = 0;
622 brtvd->bv_nblocks = 0;
624 brtvd->bv_initiated = FALSE;
625 BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
628 static void
629 brt_vdev_destroy(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
631 char name[64];
632 uint64_t count;
633 dmu_buf_t *db;
634 brt_vdev_phys_t *bvphys;
636 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
637 ASSERT(brtvd->bv_mos_brtvdev != 0);
638 ASSERT(brtvd->bv_mos_entries != 0);
640 VERIFY0(zap_count(brt->brt_mos, brtvd->bv_mos_entries, &count));
641 VERIFY0(count);
642 VERIFY0(zap_destroy(brt->brt_mos, brtvd->bv_mos_entries, tx));
643 BRT_DEBUG("MOS entries destroyed, object=%llu",
644 (u_longlong_t)brtvd->bv_mos_entries);
645 brtvd->bv_mos_entries = 0;
647 VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
648 bvphys = db->db_data;
649 ASSERT0(bvphys->bvp_totalcount);
650 ASSERT0(bvphys->bvp_usedspace);
651 ASSERT0(bvphys->bvp_savedspace);
652 dmu_buf_rele(db, FTAG);
654 VERIFY0(dmu_object_free(brt->brt_mos, brtvd->bv_mos_brtvdev, tx));
655 BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
656 (u_longlong_t)brtvd->bv_mos_brtvdev);
657 brtvd->bv_mos_brtvdev = 0;
659 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
660 (u_longlong_t)brtvd->bv_vdevid);
661 VERIFY0(zap_remove(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, tx));
662 BRT_DEBUG("Pool directory object removed, object=%s", name);
664 brt_vdev_dealloc(brt, brtvd);
666 spa_feature_decr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
669 static void
670 brt_vdevs_expand(brt_t *brt, uint64_t nvdevs)
672 brt_vdev_t *brtvd, *vdevs;
673 uint64_t vdevid;
675 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
676 ASSERT3U(nvdevs, >, brt->brt_nvdevs);
678 vdevs = kmem_zalloc(sizeof (vdevs[0]) * nvdevs, KM_SLEEP);
679 if (brt->brt_nvdevs > 0) {
680 ASSERT(brt->brt_vdevs != NULL);
682 memcpy(vdevs, brt->brt_vdevs,
683 sizeof (brt_vdev_t) * brt->brt_nvdevs);
684 kmem_free(brt->brt_vdevs,
685 sizeof (brt_vdev_t) * brt->brt_nvdevs);
687 for (vdevid = brt->brt_nvdevs; vdevid < nvdevs; vdevid++) {
688 brtvd = &vdevs[vdevid];
690 brtvd->bv_vdevid = vdevid;
691 brtvd->bv_initiated = FALSE;
694 BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
695 (u_longlong_t)brt->brt_nvdevs, (u_longlong_t)nvdevs);
697 brt->brt_vdevs = vdevs;
698 brt->brt_nvdevs = nvdevs;
701 static boolean_t
702 brt_vdev_lookup(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre)
704 uint64_t idx;
706 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
708 idx = bre->bre_offset / brt->brt_rangesize;
709 if (brtvd->bv_entcount != NULL && idx < brtvd->bv_size) {
710 /* VDEV wasn't expanded. */
711 return (brt_vdev_entcount_get(brtvd, idx) > 0);
714 return (FALSE);
717 static void
718 brt_vdev_addref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
719 uint64_t dsize)
721 uint64_t idx;
723 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
724 ASSERT(brtvd != NULL);
725 ASSERT(brtvd->bv_entcount != NULL);
727 brt->brt_savedspace += dsize;
728 brtvd->bv_savedspace += dsize;
729 brtvd->bv_meta_dirty = TRUE;
731 if (bre->bre_refcount > 1) {
732 return;
735 brt->brt_usedspace += dsize;
736 brtvd->bv_usedspace += dsize;
738 idx = bre->bre_offset / brt->brt_rangesize;
739 if (idx >= brtvd->bv_size) {
740 /* VDEV has been expanded. */
741 brt_vdev_realloc(brt, brtvd);
744 ASSERT3U(idx, <, brtvd->bv_size);
746 brtvd->bv_totalcount++;
747 brt_vdev_entcount_inc(brtvd, idx);
748 brtvd->bv_entcount_dirty = TRUE;
749 idx = idx / BRT_BLOCKSIZE / 8;
750 BT_SET(brtvd->bv_bitmap, idx);
752 #ifdef ZFS_DEBUG
753 if (zfs_flags & ZFS_DEBUG_BRT)
754 brt_vdev_dump(brtvd);
755 #endif
758 static void
759 brt_vdev_decref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
760 uint64_t dsize)
762 uint64_t idx;
764 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
765 ASSERT(brtvd != NULL);
766 ASSERT(brtvd->bv_entcount != NULL);
768 brt->brt_savedspace -= dsize;
769 brtvd->bv_savedspace -= dsize;
770 brtvd->bv_meta_dirty = TRUE;
772 if (bre->bre_refcount > 0) {
773 return;
776 brt->brt_usedspace -= dsize;
777 brtvd->bv_usedspace -= dsize;
779 idx = bre->bre_offset / brt->brt_rangesize;
780 ASSERT3U(idx, <, brtvd->bv_size);
782 ASSERT(brtvd->bv_totalcount > 0);
783 brtvd->bv_totalcount--;
784 brt_vdev_entcount_dec(brtvd, idx);
785 brtvd->bv_entcount_dirty = TRUE;
786 idx = idx / BRT_BLOCKSIZE / 8;
787 BT_SET(brtvd->bv_bitmap, idx);
789 #ifdef ZFS_DEBUG
790 if (zfs_flags & ZFS_DEBUG_BRT)
791 brt_vdev_dump(brtvd);
792 #endif
795 static void
796 brt_vdev_sync(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
798 dmu_buf_t *db;
799 brt_vdev_phys_t *bvphys;
801 ASSERT(brtvd->bv_meta_dirty);
802 ASSERT(brtvd->bv_mos_brtvdev != 0);
803 ASSERT(dmu_tx_is_syncing(tx));
805 VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
807 if (brtvd->bv_entcount_dirty) {
809 * TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
811 dmu_write(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
812 brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
813 brtvd->bv_entcount, tx);
814 memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(brtvd->bv_nblocks));
815 brtvd->bv_entcount_dirty = FALSE;
818 dmu_buf_will_dirty(db, tx);
819 bvphys = db->db_data;
820 bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
821 bvphys->bvp_size = brtvd->bv_size;
822 if (brtvd->bv_need_byteswap) {
823 bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
824 } else {
825 bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
827 bvphys->bvp_totalcount = brtvd->bv_totalcount;
828 bvphys->bvp_rangesize = brt->brt_rangesize;
829 bvphys->bvp_usedspace = brtvd->bv_usedspace;
830 bvphys->bvp_savedspace = brtvd->bv_savedspace;
831 dmu_buf_rele(db, FTAG);
833 brtvd->bv_meta_dirty = FALSE;
836 static void
837 brt_vdevs_alloc(brt_t *brt, boolean_t load)
839 brt_vdev_t *brtvd;
840 uint64_t vdevid;
842 brt_wlock(brt);
844 brt_vdevs_expand(brt, brt->brt_spa->spa_root_vdev->vdev_children);
846 if (load) {
847 for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
848 brtvd = &brt->brt_vdevs[vdevid];
849 ASSERT(brtvd->bv_entcount == NULL);
851 brt_vdev_load(brt, brtvd);
855 if (brt->brt_rangesize == 0) {
856 brt->brt_rangesize = BRT_RANGESIZE;
859 brt_unlock(brt);
862 static void
863 brt_vdevs_free(brt_t *brt)
865 brt_vdev_t *brtvd;
866 uint64_t vdevid;
868 brt_wlock(brt);
870 for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
871 brtvd = &brt->brt_vdevs[vdevid];
872 if (brtvd->bv_initiated)
873 brt_vdev_dealloc(brt, brtvd);
875 kmem_free(brt->brt_vdevs, sizeof (brt_vdev_t) * brt->brt_nvdevs);
877 brt_unlock(brt);
880 static void
881 brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
884 bre->bre_offset = DVA_GET_OFFSET(&bp->blk_dva[0]);
885 bre->bre_refcount = 0;
887 *vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
890 static int
891 brt_entry_compare(const void *x1, const void *x2)
893 const brt_entry_t *bre1 = x1;
894 const brt_entry_t *bre2 = x2;
896 return (TREE_CMP(bre1->bre_offset, bre2->bre_offset));
899 static int
900 brt_entry_lookup(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre)
902 uint64_t mos_entries;
903 int error;
905 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
907 if (!brt_vdev_lookup(brt, brtvd, bre))
908 return (SET_ERROR(ENOENT));
911 * Remember mos_entries object number. After we reacquire the BRT lock,
912 * the brtvd pointer may be invalid.
914 mos_entries = brtvd->bv_mos_entries;
915 if (mos_entries == 0)
916 return (SET_ERROR(ENOENT));
918 brt_unlock(brt);
920 error = zap_lookup_uint64(brt->brt_mos, mos_entries, &bre->bre_offset,
921 BRT_KEY_WORDS, 1, sizeof (bre->bre_refcount), &bre->bre_refcount);
923 brt_wlock(brt);
925 return (error);
928 static void
929 brt_entry_prefetch(brt_t *brt, uint64_t vdevid, brt_entry_t *bre)
931 brt_vdev_t *brtvd;
932 uint64_t mos_entries = 0;
934 brt_rlock(brt);
935 brtvd = brt_vdev(brt, vdevid);
936 if (brtvd != NULL)
937 mos_entries = brtvd->bv_mos_entries;
938 brt_unlock(brt);
940 if (mos_entries == 0)
941 return;
943 (void) zap_prefetch_uint64(brt->brt_mos, mos_entries,
944 (uint64_t *)&bre->bre_offset, BRT_KEY_WORDS);
948 * Return TRUE if we _can_ have BRT entry for this bp. It might be false
949 * positive, but gives us quick answer if we should look into BRT, which
950 * may require reads and thus will be more expensive.
952 boolean_t
953 brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
955 brt_t *brt = spa->spa_brt;
956 brt_vdev_t *brtvd;
957 brt_entry_t bre_search;
958 boolean_t mayexists = FALSE;
959 uint64_t vdevid;
961 brt_entry_fill(bp, &bre_search, &vdevid);
963 brt_rlock(brt);
965 brtvd = brt_vdev(brt, vdevid);
966 if (brtvd != NULL && brtvd->bv_initiated) {
967 if (!avl_is_empty(&brtvd->bv_tree) ||
968 brt_vdev_lookup(brt, brtvd, &bre_search)) {
969 mayexists = TRUE;
973 brt_unlock(brt);
975 return (mayexists);
978 uint64_t
979 brt_get_dspace(spa_t *spa)
981 brt_t *brt = spa->spa_brt;
983 if (brt == NULL)
984 return (0);
986 return (brt->brt_savedspace);
989 uint64_t
990 brt_get_used(spa_t *spa)
992 brt_t *brt = spa->spa_brt;
994 if (brt == NULL)
995 return (0);
997 return (brt->brt_usedspace);
1000 uint64_t
1001 brt_get_saved(spa_t *spa)
1003 brt_t *brt = spa->spa_brt;
1005 if (brt == NULL)
1006 return (0);
1008 return (brt->brt_savedspace);
1011 uint64_t
1012 brt_get_ratio(spa_t *spa)
1014 brt_t *brt = spa->spa_brt;
1016 if (brt->brt_usedspace == 0)
1017 return (100);
1019 return ((brt->brt_usedspace + brt->brt_savedspace) * 100 /
1020 brt->brt_usedspace);
1023 static int
1024 brt_kstats_update(kstat_t *ksp, int rw)
1026 brt_stats_t *bs = ksp->ks_data;
1028 if (rw == KSTAT_WRITE)
1029 return (EACCES);
1031 bs->brt_addref_entry_in_memory.value.ui64 =
1032 wmsum_value(&brt_sums.brt_addref_entry_in_memory);
1033 bs->brt_addref_entry_not_on_disk.value.ui64 =
1034 wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
1035 bs->brt_addref_entry_on_disk.value.ui64 =
1036 wmsum_value(&brt_sums.brt_addref_entry_on_disk);
1037 bs->brt_addref_entry_read_lost_race.value.ui64 =
1038 wmsum_value(&brt_sums.brt_addref_entry_read_lost_race);
1039 bs->brt_decref_entry_in_memory.value.ui64 =
1040 wmsum_value(&brt_sums.brt_decref_entry_in_memory);
1041 bs->brt_decref_entry_loaded_from_disk.value.ui64 =
1042 wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
1043 bs->brt_decref_entry_not_in_memory.value.ui64 =
1044 wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
1045 bs->brt_decref_entry_not_on_disk.value.ui64 =
1046 wmsum_value(&brt_sums.brt_decref_entry_not_on_disk);
1047 bs->brt_decref_entry_read_lost_race.value.ui64 =
1048 wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
1049 bs->brt_decref_entry_still_referenced.value.ui64 =
1050 wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
1051 bs->brt_decref_free_data_later.value.ui64 =
1052 wmsum_value(&brt_sums.brt_decref_free_data_later);
1053 bs->brt_decref_free_data_now.value.ui64 =
1054 wmsum_value(&brt_sums.brt_decref_free_data_now);
1055 bs->brt_decref_no_entry.value.ui64 =
1056 wmsum_value(&brt_sums.brt_decref_no_entry);
1058 return (0);
1061 static void
1062 brt_stat_init(void)
1065 wmsum_init(&brt_sums.brt_addref_entry_in_memory, 0);
1066 wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
1067 wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
1068 wmsum_init(&brt_sums.brt_addref_entry_read_lost_race, 0);
1069 wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
1070 wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
1071 wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
1072 wmsum_init(&brt_sums.brt_decref_entry_not_on_disk, 0);
1073 wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
1074 wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
1075 wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
1076 wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
1077 wmsum_init(&brt_sums.brt_decref_no_entry, 0);
1079 brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
1080 sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1081 if (brt_ksp != NULL) {
1082 brt_ksp->ks_data = &brt_stats;
1083 brt_ksp->ks_update = brt_kstats_update;
1084 kstat_install(brt_ksp);
1088 static void
1089 brt_stat_fini(void)
1091 if (brt_ksp != NULL) {
1092 kstat_delete(brt_ksp);
1093 brt_ksp = NULL;
1096 wmsum_fini(&brt_sums.brt_addref_entry_in_memory);
1097 wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
1098 wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
1099 wmsum_fini(&brt_sums.brt_addref_entry_read_lost_race);
1100 wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
1101 wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
1102 wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
1103 wmsum_fini(&brt_sums.brt_decref_entry_not_on_disk);
1104 wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
1105 wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
1106 wmsum_fini(&brt_sums.brt_decref_free_data_later);
1107 wmsum_fini(&brt_sums.brt_decref_free_data_now);
1108 wmsum_fini(&brt_sums.brt_decref_no_entry);
1111 void
1112 brt_init(void)
1114 brt_entry_cache = kmem_cache_create("brt_entry_cache",
1115 sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1116 brt_pending_entry_cache = kmem_cache_create("brt_pending_entry_cache",
1117 sizeof (brt_pending_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1119 brt_stat_init();
1122 void
1123 brt_fini(void)
1125 brt_stat_fini();
1127 kmem_cache_destroy(brt_entry_cache);
1128 kmem_cache_destroy(brt_pending_entry_cache);
1131 static brt_entry_t *
1132 brt_entry_alloc(const brt_entry_t *bre_init)
1134 brt_entry_t *bre;
1136 bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1137 bre->bre_offset = bre_init->bre_offset;
1138 bre->bre_refcount = bre_init->bre_refcount;
1140 return (bre);
1143 static void
1144 brt_entry_free(brt_entry_t *bre)
1147 kmem_cache_free(brt_entry_cache, bre);
1150 static void
1151 brt_entry_addref(brt_t *brt, const blkptr_t *bp)
1153 brt_vdev_t *brtvd;
1154 brt_entry_t *bre, *racebre;
1155 brt_entry_t bre_search;
1156 avl_index_t where;
1157 uint64_t vdevid;
1158 int error;
1160 ASSERT(!RW_WRITE_HELD(&brt->brt_lock));
1162 brt_entry_fill(bp, &bre_search, &vdevid);
1164 brt_wlock(brt);
1166 brtvd = brt_vdev(brt, vdevid);
1167 if (brtvd == NULL) {
1168 ASSERT3U(vdevid, >=, brt->brt_nvdevs);
1170 /* New VDEV was added. */
1171 brt_vdevs_expand(brt, vdevid + 1);
1172 brtvd = brt_vdev(brt, vdevid);
1174 ASSERT(brtvd != NULL);
1175 if (!brtvd->bv_initiated)
1176 brt_vdev_realloc(brt, brtvd);
1178 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1179 if (bre != NULL) {
1180 BRTSTAT_BUMP(brt_addref_entry_in_memory);
1181 } else {
1183 * brt_entry_lookup() may drop the BRT (read) lock and
1184 * reacquire it (write).
1186 error = brt_entry_lookup(brt, brtvd, &bre_search);
1187 /* bre_search now contains correct bre_refcount */
1188 ASSERT(error == 0 || error == ENOENT);
1189 if (error == 0)
1190 BRTSTAT_BUMP(brt_addref_entry_on_disk);
1191 else
1192 BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
1194 * When the BRT lock was dropped, brt_vdevs[] may have been
1195 * expanded and reallocated, we need to update brtvd's pointer.
1197 brtvd = brt_vdev(brt, vdevid);
1198 ASSERT(brtvd != NULL);
1200 racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1201 if (racebre == NULL) {
1202 bre = brt_entry_alloc(&bre_search);
1203 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
1204 avl_insert(&brtvd->bv_tree, bre, where);
1205 brt->brt_nentries++;
1206 } else {
1208 * The entry was added when the BRT lock was dropped in
1209 * brt_entry_lookup().
1211 BRTSTAT_BUMP(brt_addref_entry_read_lost_race);
1212 bre = racebre;
1215 bre->bre_refcount++;
1216 brt_vdev_addref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
1218 brt_unlock(brt);
1221 /* Return TRUE if block should be freed immediately. */
1222 boolean_t
1223 brt_entry_decref(spa_t *spa, const blkptr_t *bp)
1225 brt_t *brt = spa->spa_brt;
1226 brt_vdev_t *brtvd;
1227 brt_entry_t *bre, *racebre;
1228 brt_entry_t bre_search;
1229 avl_index_t where;
1230 uint64_t vdevid;
1231 int error;
1233 brt_entry_fill(bp, &bre_search, &vdevid);
1235 brt_wlock(brt);
1237 brtvd = brt_vdev(brt, vdevid);
1238 ASSERT(brtvd != NULL);
1240 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1241 if (bre != NULL) {
1242 BRTSTAT_BUMP(brt_decref_entry_in_memory);
1243 goto out;
1244 } else {
1245 BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
1249 * brt_entry_lookup() may drop the BRT lock and reacquire it.
1251 error = brt_entry_lookup(brt, brtvd, &bre_search);
1252 /* bre_search now contains correct bre_refcount */
1253 ASSERT(error == 0 || error == ENOENT);
1255 * When the BRT lock was dropped, brt_vdevs[] may have been expanded
1256 * and reallocated, we need to update brtvd's pointer.
1258 brtvd = brt_vdev(brt, vdevid);
1259 ASSERT(brtvd != NULL);
1261 if (error == ENOENT) {
1262 BRTSTAT_BUMP(brt_decref_entry_not_on_disk);
1263 bre = NULL;
1264 goto out;
1267 racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1268 if (racebre != NULL) {
1270 * The entry was added when the BRT lock was dropped in
1271 * brt_entry_lookup().
1273 BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
1274 bre = racebre;
1275 goto out;
1278 BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
1279 bre = brt_entry_alloc(&bre_search);
1280 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
1281 avl_insert(&brtvd->bv_tree, bre, where);
1282 brt->brt_nentries++;
1284 out:
1285 if (bre == NULL) {
1287 * This is a free of a regular (not cloned) block.
1289 brt_unlock(brt);
1290 BRTSTAT_BUMP(brt_decref_no_entry);
1291 return (B_TRUE);
1293 if (bre->bre_refcount == 0) {
1294 brt_unlock(brt);
1295 BRTSTAT_BUMP(brt_decref_free_data_now);
1296 return (B_TRUE);
1299 ASSERT(bre->bre_refcount > 0);
1300 bre->bre_refcount--;
1301 if (bre->bre_refcount == 0)
1302 BRTSTAT_BUMP(brt_decref_free_data_later);
1303 else
1304 BRTSTAT_BUMP(brt_decref_entry_still_referenced);
1305 brt_vdev_decref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
1307 brt_unlock(brt);
1309 return (B_FALSE);
1312 uint64_t
1313 brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
1315 brt_t *brt = spa->spa_brt;
1316 brt_vdev_t *brtvd;
1317 brt_entry_t bre_search, *bre;
1318 uint64_t vdevid, refcnt;
1319 int error;
1321 brt_entry_fill(bp, &bre_search, &vdevid);
1323 brt_rlock(brt);
1325 brtvd = brt_vdev(brt, vdevid);
1326 ASSERT(brtvd != NULL);
1328 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1329 if (bre == NULL) {
1330 error = brt_entry_lookup(brt, brtvd, &bre_search);
1331 ASSERT(error == 0 || error == ENOENT);
1332 if (error == ENOENT)
1333 refcnt = 0;
1334 else
1335 refcnt = bre_search.bre_refcount;
1336 } else
1337 refcnt = bre->bre_refcount;
1339 brt_unlock(brt);
1340 return (refcnt);
1343 static void
1344 brt_prefetch(brt_t *brt, const blkptr_t *bp)
1346 brt_entry_t bre;
1347 uint64_t vdevid;
1349 ASSERT(bp != NULL);
1351 if (!brt_zap_prefetch)
1352 return;
1354 brt_entry_fill(bp, &bre, &vdevid);
1356 brt_entry_prefetch(brt, vdevid, &bre);
1359 static int
1360 brt_pending_entry_compare(const void *x1, const void *x2)
1362 const brt_pending_entry_t *bpe1 = x1, *bpe2 = x2;
1363 const blkptr_t *bp1 = &bpe1->bpe_bp, *bp2 = &bpe2->bpe_bp;
1364 int cmp;
1366 cmp = TREE_CMP(DVA_GET_VDEV(&bp1->blk_dva[0]),
1367 DVA_GET_VDEV(&bp2->blk_dva[0]));
1368 if (cmp == 0) {
1369 cmp = TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
1370 DVA_GET_OFFSET(&bp2->blk_dva[0]));
1371 if (unlikely(cmp == 0)) {
1372 cmp = TREE_CMP(BP_GET_BIRTH(bp1), BP_GET_BIRTH(bp2));
1376 return (cmp);
1379 void
1380 brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1382 brt_t *brt;
1383 avl_tree_t *pending_tree;
1384 kmutex_t *pending_lock;
1385 brt_pending_entry_t *bpe, *newbpe;
1386 avl_index_t where;
1387 uint64_t txg;
1389 brt = spa->spa_brt;
1390 txg = dmu_tx_get_txg(tx);
1391 ASSERT3U(txg, !=, 0);
1392 pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
1393 pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
1395 newbpe = kmem_cache_alloc(brt_pending_entry_cache, KM_SLEEP);
1396 newbpe->bpe_bp = *bp;
1397 newbpe->bpe_count = 1;
1399 mutex_enter(pending_lock);
1401 bpe = avl_find(pending_tree, newbpe, &where);
1402 if (bpe == NULL) {
1403 avl_insert(pending_tree, newbpe, where);
1404 newbpe = NULL;
1405 } else {
1406 bpe->bpe_count++;
1409 mutex_exit(pending_lock);
1411 if (newbpe != NULL) {
1412 ASSERT(bpe != NULL);
1413 ASSERT(bpe != newbpe);
1414 kmem_cache_free(brt_pending_entry_cache, newbpe);
1415 } else {
1416 ASSERT(bpe == NULL);
1418 /* Prefetch BRT entry for the syncing context. */
1419 brt_prefetch(brt, bp);
1423 void
1424 brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1426 brt_t *brt;
1427 avl_tree_t *pending_tree;
1428 kmutex_t *pending_lock;
1429 brt_pending_entry_t *bpe, bpe_search;
1430 uint64_t txg;
1432 brt = spa->spa_brt;
1433 txg = dmu_tx_get_txg(tx);
1434 ASSERT3U(txg, !=, 0);
1435 pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
1436 pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
1438 bpe_search.bpe_bp = *bp;
1440 mutex_enter(pending_lock);
1442 bpe = avl_find(pending_tree, &bpe_search, NULL);
1443 /* I believe we should always find bpe when this function is called. */
1444 if (bpe != NULL) {
1445 ASSERT(bpe->bpe_count > 0);
1447 bpe->bpe_count--;
1448 if (bpe->bpe_count == 0) {
1449 avl_remove(pending_tree, bpe);
1450 kmem_cache_free(brt_pending_entry_cache, bpe);
1454 mutex_exit(pending_lock);
1457 void
1458 brt_pending_apply(spa_t *spa, uint64_t txg)
1460 brt_t *brt = spa->spa_brt;
1461 brt_pending_entry_t *bpe;
1462 avl_tree_t *pending_tree;
1463 void *c;
1465 ASSERT3U(txg, !=, 0);
1468 * We are in syncing context, so no other brt_pending_tree accesses
1469 * are possible for the TXG. Don't need to acquire brt_pending_lock.
1471 pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
1473 c = NULL;
1474 while ((bpe = avl_destroy_nodes(pending_tree, &c)) != NULL) {
1475 boolean_t added_to_ddt;
1477 for (int i = 0; i < bpe->bpe_count; i++) {
1479 * If the block has DEDUP bit set, it means that it
1480 * already exists in the DEDUP table, so we can just
1481 * use that instead of creating new entry in
1482 * the BRT table.
1484 if (BP_GET_DEDUP(&bpe->bpe_bp)) {
1485 added_to_ddt = ddt_addref(spa, &bpe->bpe_bp);
1486 } else {
1487 added_to_ddt = B_FALSE;
1489 if (!added_to_ddt)
1490 brt_entry_addref(brt, &bpe->bpe_bp);
1493 kmem_cache_free(brt_pending_entry_cache, bpe);
1497 static void
1498 brt_sync_entry(dnode_t *dn, brt_entry_t *bre, dmu_tx_t *tx)
1500 if (bre->bre_refcount == 0) {
1501 int error = zap_remove_uint64_by_dnode(dn, &bre->bre_offset,
1502 BRT_KEY_WORDS, tx);
1503 VERIFY(error == 0 || error == ENOENT);
1504 } else {
1505 VERIFY0(zap_update_uint64_by_dnode(dn, &bre->bre_offset,
1506 BRT_KEY_WORDS, 1, sizeof (bre->bre_refcount),
1507 &bre->bre_refcount, tx));
1511 static void
1512 brt_sync_table(brt_t *brt, dmu_tx_t *tx)
1514 brt_vdev_t *brtvd;
1515 brt_entry_t *bre;
1516 dnode_t *dn;
1517 uint64_t vdevid;
1518 void *c;
1520 brt_wlock(brt);
1522 for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
1523 brtvd = &brt->brt_vdevs[vdevid];
1525 if (!brtvd->bv_initiated)
1526 continue;
1528 if (!brtvd->bv_meta_dirty) {
1529 ASSERT(!brtvd->bv_entcount_dirty);
1530 ASSERT0(avl_numnodes(&brtvd->bv_tree));
1531 continue;
1534 ASSERT(!brtvd->bv_entcount_dirty ||
1535 avl_numnodes(&brtvd->bv_tree) != 0);
1537 if (brtvd->bv_mos_brtvdev == 0)
1538 brt_vdev_create(brt, brtvd, tx);
1540 VERIFY0(dnode_hold(brt->brt_mos, brtvd->bv_mos_entries,
1541 FTAG, &dn));
1543 c = NULL;
1544 while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
1545 brt_sync_entry(dn, bre, tx);
1546 brt_entry_free(bre);
1547 ASSERT(brt->brt_nentries > 0);
1548 brt->brt_nentries--;
1551 dnode_rele(dn, FTAG);
1553 brt_vdev_sync(brt, brtvd, tx);
1555 if (brtvd->bv_totalcount == 0)
1556 brt_vdev_destroy(brt, brtvd, tx);
1559 ASSERT0(brt->brt_nentries);
1561 brt_unlock(brt);
1564 void
1565 brt_sync(spa_t *spa, uint64_t txg)
1567 dmu_tx_t *tx;
1568 brt_t *brt;
1570 ASSERT(spa_syncing_txg(spa) == txg);
1572 brt = spa->spa_brt;
1573 brt_rlock(brt);
1574 if (brt->brt_nentries == 0) {
1575 /* No changes. */
1576 brt_unlock(brt);
1577 return;
1579 brt_unlock(brt);
1581 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1583 brt_sync_table(brt, tx);
1585 dmu_tx_commit(tx);
1588 static void
1589 brt_table_alloc(brt_t *brt)
1592 for (int i = 0; i < TXG_SIZE; i++) {
1593 avl_create(&brt->brt_pending_tree[i],
1594 brt_pending_entry_compare,
1595 sizeof (brt_pending_entry_t),
1596 offsetof(brt_pending_entry_t, bpe_node));
1597 mutex_init(&brt->brt_pending_lock[i], NULL, MUTEX_DEFAULT,
1598 NULL);
1602 static void
1603 brt_table_free(brt_t *brt)
1606 for (int i = 0; i < TXG_SIZE; i++) {
1607 ASSERT(avl_is_empty(&brt->brt_pending_tree[i]));
1609 avl_destroy(&brt->brt_pending_tree[i]);
1610 mutex_destroy(&brt->brt_pending_lock[i]);
1614 static void
1615 brt_alloc(spa_t *spa)
1617 brt_t *brt;
1619 ASSERT(spa->spa_brt == NULL);
1621 brt = kmem_zalloc(sizeof (*brt), KM_SLEEP);
1622 rw_init(&brt->brt_lock, NULL, RW_DEFAULT, NULL);
1623 brt->brt_spa = spa;
1624 brt->brt_rangesize = 0;
1625 brt->brt_nentries = 0;
1626 brt->brt_vdevs = NULL;
1627 brt->brt_nvdevs = 0;
1628 brt_table_alloc(brt);
1630 spa->spa_brt = brt;
1633 void
1634 brt_create(spa_t *spa)
1637 brt_alloc(spa);
1638 brt_vdevs_alloc(spa->spa_brt, B_FALSE);
1642 brt_load(spa_t *spa)
1645 brt_alloc(spa);
1646 brt_vdevs_alloc(spa->spa_brt, B_TRUE);
1648 return (0);
1651 void
1652 brt_unload(spa_t *spa)
1654 brt_t *brt = spa->spa_brt;
1656 if (brt == NULL)
1657 return;
1659 brt_vdevs_free(brt);
1660 brt_table_free(brt);
1661 rw_destroy(&brt->brt_lock);
1662 kmem_free(brt, sizeof (*brt));
1663 spa->spa_brt = NULL;
1666 /* BEGIN CSTYLED */
1667 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_prefetch, INT, ZMOD_RW,
1668 "Enable prefetching of BRT ZAP entries");
1669 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_bs, UINT, ZMOD_RW,
1670 "BRT ZAP leaf blockshift");
1671 ZFS_MODULE_PARAM(zfs_brt, , brt_zap_default_ibs, UINT, ZMOD_RW,
1672 "BRT ZAP indirect blockshift");
1673 /* END CSTYLED */