4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
26 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
31 #include <sys/brt_impl.h>
33 #include <sys/bitmap.h>
35 #include <sys/dmu_tx.h>
37 #include <sys/dsl_pool.h>
38 #include <sys/dsl_scan.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/kstat.h>
41 #include <sys/wmsum.h>
44 * Block Cloning design.
46 * Block Cloning allows to manually clone a file (or a subset of its blocks)
47 * into another (or the same) file by just creating additional references to
48 * the data blocks without copying the data itself. Those references are kept
49 * in the Block Reference Tables (BRTs).
51 * In many ways this is similar to the existing deduplication, but there are
52 * some important differences:
54 * - Deduplication is automatic and Block Cloning is not - one has to use a
55 * dedicated system call(s) to clone the given file/blocks.
56 * - Deduplication keeps all data blocks in its table, even those referenced
57 * just once. Block Cloning creates an entry in its tables only when there
58 * are at least two references to the given data block. If the block was
59 * never explicitly cloned or the second to last reference was dropped,
60 * there will be neither space nor performance overhead.
61 * - Deduplication needs data to work - one needs to pass real data to the
62 * write(2) syscall, so hash can be calculated. Block Cloning doesn't require
63 * data, just block pointers to the data, so it is extremely fast, as we pay
64 * neither the cost of reading the data, nor the cost of writing the data -
65 * we operate exclusively on metadata.
66 * - If the D (dedup) bit is not set in the block pointer, it means that
67 * the block is not in the dedup table (DDT) and we won't consult the DDT
68 * when we need to free the block. Block Cloning must be consulted on every
69 * free, because we cannot modify the source BP (eg. by setting something
70 * similar to the D bit), thus we have no hint if the block is in the
71 * Block Reference Table (BRT), so we need to look into the BRT. There is
72 * an optimization in place that allows us to eliminate the majority of BRT
73 * lookups which is described below in the "Minimizing free penalty" section.
74 * - The BRT entry is much smaller than the DDT entry - for BRT we only store
75 * 64bit offset and 64bit reference counter.
76 * - Dedup keys are cryptographic hashes, so two blocks that are close to each
77 * other on disk are most likely in totally different parts of the DDT.
78 * The BRT entry keys are offsets into a single top-level VDEV, so data blocks
79 * from one file should have BRT entries close to each other.
80 * - Scrub will only do a single pass over a block that is referenced multiple
81 * times in the DDT. Unfortunately it is not currently (if at all) possible
82 * with Block Cloning and block referenced multiple times will be scrubbed
83 * multiple times. The new, sorted scrub should be able to eliminate
84 * duplicated reads given enough memory.
85 * - Deduplication requires cryptographically strong hash as a checksum or
86 * additional data verification. Block Cloning works with any checksum
87 * algorithm or even with checksumming disabled.
89 * As mentioned above, the BRT entries are much smaller than the DDT entries.
90 * To uniquely identify a block we just need its vdev id and offset. We also
91 * need to maintain a reference counter. The vdev id will often repeat, as there
92 * is a small number of top-level VDEVs and a large number of blocks stored in
93 * each VDEV. We take advantage of that to reduce the BRT entry size further by
94 * maintaining one BRT for each top-level VDEV, so we can then have only offset
95 * and counter as the BRT entry.
97 * Minimizing free penalty.
99 * Block Cloning allows creating additional references to any existing block.
100 * When we free a block there is no hint in the block pointer whether the block
101 * was cloned or not, so on each free we have to check if there is a
102 * corresponding entry in the BRT or not. If there is, we need to decrease
103 * the reference counter. Doing BRT lookup on every free can potentially be
104 * expensive by requiring additional I/Os if the BRT doesn't fit into memory.
105 * This is the main problem with deduplication, so we've learned our lesson and
106 * try not to repeat the same mistake here. How do we do that? We divide each
107 * top-level VDEV into 16MB regions. For each region we maintain a counter that
108 * is a sum of all the BRT entries that have offsets within the region. This
109 * creates the entries count array of 16bit numbers for each top-level VDEV.
110 * The entries count array is always kept in memory and updated on disk in the
111 * same transaction group as the BRT updates to keep everything in-sync. We can
112 * keep the array in memory, because it is very small. With 16MB regions and
113 * 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
114 * the region size even further in the future). Now, when we want to free
115 * a block, we first consult the array. If the counter for the whole region is
116 * zero, there is no need to look for the BRT entry, as there isn't one for
117 * sure. If the counter for the region is greater than zero, only then we will
118 * do a BRT lookup and if an entry is found we will decrease the reference
119 * counter in the BRT entry and in the entry counters array.
121 * The entry counters array is small, but can potentially be larger for very
122 * large VDEVs or smaller regions. In this case we don't want to rewrite entire
123 * array on every change. We then divide the array into 32kB block and keep
124 * a bitmap of dirty blocks within a transaction group. When we sync the
125 * transaction group we can only update the parts of the entry counters array
126 * that were modified. Note: Keeping track of the dirty parts of the entry
127 * counters array is implemented, but updating only parts of the array on disk
128 * is not yet implemented - for now we will update entire array if there was
131 * The implementation tries to be economic: if BRT is not used, or no longer
132 * used, there will be no entries in the MOS and no additional memory used (eg.
133 * the entry counters array is only allocated if needed).
135 * Interaction between Deduplication and Block Cloning.
137 * If both functionalities are in use, we could end up with a block that is
138 * referenced multiple times in both DDT and BRT. When we free one of the
139 * references we couldn't tell where it belongs, so we would have to decide
140 * what table takes the precedence: do we first clear DDT references or BRT
141 * references? To avoid this dilemma BRT cooperates with DDT - if a given block
142 * is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
143 * lookup DDT entry instead and increase the counter there. No BRT entry
144 * will be created for a block which has the D (dedup) bit set.
145 * BRT may be more efficient for manual deduplication, but if the block is
146 * already in the DDT, then creating additional BRT entry would be less
147 * efficient. This clever idea was proposed by Allan Jude.
149 * Block Cloning across datasets.
151 * Block Cloning is not limited to cloning blocks within the same dataset.
152 * It is possible (and very useful) to clone blocks between different datasets.
153 * One use case is recovering files from snapshots. By cloning the files into
154 * dataset we need no additional storage. Without Block Cloning we would need
155 * additional space for those files.
156 * Another interesting use case is moving the files between datasets
157 * (copying the file content to the new dataset and removing the source file).
158 * In that case Block Cloning will only be used briefly, because the BRT entries
159 * will be removed when the source is removed.
160 * Block Cloning across encrypted datasets is supported as long as both
161 * datasets share the same master key (e.g. snapshots and clones)
163 * Block Cloning flow through ZFS layers.
165 * Note: Block Cloning can be used both for cloning file system blocks and ZVOL
166 * blocks. As of this writing no interface is implemented that allows for block
167 * cloning within a ZVOL.
168 * FreeBSD and Linux provides copy_file_range(2) system call and we will use it
169 * for blocking cloning.
172 * copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
173 * size_t len, unsigned int flags);
175 * Even though offsets and length represent bytes, they have to be
176 * block-aligned or we will return an error so the upper layer can
177 * fallback to the generic mechanism that will just copy the data.
178 * Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
179 * This function was implemented based on zfs_write(), but instead of writing
180 * the given data we first read block pointers using the new dmu_read_l0_bps()
181 * function from the source file. Once we have BPs from the source file we call
182 * the dmu_brt_clone() function on the destination file. This function
183 * allocates BPs for us. We iterate over all source BPs. If the given BP is
184 * a hole or an embedded block, we just copy BP as-is. If it points to a real
185 * data we place this BP on a BRT pending list using the brt_pending_add()
188 * We use this pending list to keep track of all BPs that got new references
189 * within this transaction group.
191 * Some special cases to consider and how we address them:
192 * - The block we want to clone may have been created within the same
193 * transaction group that we are trying to clone. Such block has no BP
194 * allocated yet, so cannot be immediately cloned. We return EAGAIN.
195 * - The block we want to clone may have been modified within the same
196 * transaction group. We return EAGAIN.
197 * - A block may be cloned multiple times during one transaction group (that's
198 * why pending list is actually a tree and not an append-only list - this
199 * way we can figure out faster if this block is cloned for the first time
200 * in this txg or consecutive time).
201 * - A block may be cloned and freed within the same transaction group
202 * (see dbuf_undirty()).
203 * - A block may be cloned and within the same transaction group the clone
204 * can be cloned again (see dmu_read_l0_bps()).
205 * - A file might have been deleted, but the caller still has a file descriptor
206 * open to this file and clones it.
208 * When we free a block we have an additional step in the ZIO pipeline where we
209 * call the zio_brt_free() function. We then call the brt_entry_decref()
210 * that loads the corresponding BRT entry (if one exists) and decreases
211 * reference counter. If this is not the last reference we will stop ZIO
212 * pipeline here. If this is the last reference or the block is not in the
213 * BRT, we continue the pipeline and free the block as usual.
215 * At the beginning of spa_sync() where there can be no more block cloning,
216 * but before issuing frees we call brt_pending_apply(). This function applies
217 * all the new clones to the BRT table - we load BRT entries and update
218 * reference counters. To sync new BRT entries to disk, we use brt_sync()
219 * function. This function will sync all dirty per-top-level-vdev BRTs,
220 * the entry counters arrays, etc.
222 * Block Cloning and ZIL.
224 * Every clone operation is divided into chunks (similar to write) and each
225 * chunk is cloned in a separate transaction. The chunk size is determined by
226 * how many BPs we can fit into a single ZIL entry.
227 * Replaying clone operation is different from the regular clone operation,
228 * as when we log clone operations we cannot use the source object - it may
229 * reside on a different dataset, so we log BPs we want to clone.
230 * The ZIL is replayed when we mount the given dataset, not when the pool is
231 * imported. Taking this into account it is possible that the pool is imported
232 * without mounting datasets and the source dataset is destroyed before the
233 * destination dataset is mounted and its ZIL replayed.
234 * To address this situation we leverage zil_claim() mechanism where ZFS will
235 * parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
236 * entries, we will bump reference counters for their BPs in the BRT. Then
237 * on mount and ZIL replay we bump the reference counters once more, while the
238 * first references are dropped during ZIL destroy by zil_free_clone_range().
239 * It is possible that after zil_claim() we never mount the destination, so
240 * we never replay its ZIL and just destroy it. In this case the only taken
241 * references will be dropped by zil_free_clone_range(), since the cloning is
242 * not going to ever take place.
245 static kmem_cache_t
*brt_entry_cache
;
246 static kmem_cache_t
*brt_pending_entry_cache
;
249 * Enable/disable prefetching of BRT entries that we are going to modify.
251 static int brt_zap_prefetch
= 1;
254 #define BRT_DEBUG(...) do { \
255 if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
256 __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
260 #define BRT_DEBUG(...) do { } while (0)
263 static int brt_zap_default_bs
= 12;
264 static int brt_zap_default_ibs
= 12;
266 static kstat_t
*brt_ksp
;
268 typedef struct brt_stats
{
269 kstat_named_t brt_addref_entry_in_memory
;
270 kstat_named_t brt_addref_entry_not_on_disk
;
271 kstat_named_t brt_addref_entry_on_disk
;
272 kstat_named_t brt_addref_entry_read_lost_race
;
273 kstat_named_t brt_decref_entry_in_memory
;
274 kstat_named_t brt_decref_entry_loaded_from_disk
;
275 kstat_named_t brt_decref_entry_not_in_memory
;
276 kstat_named_t brt_decref_entry_not_on_disk
;
277 kstat_named_t brt_decref_entry_read_lost_race
;
278 kstat_named_t brt_decref_entry_still_referenced
;
279 kstat_named_t brt_decref_free_data_later
;
280 kstat_named_t brt_decref_free_data_now
;
281 kstat_named_t brt_decref_no_entry
;
284 static brt_stats_t brt_stats
= {
285 { "addref_entry_in_memory", KSTAT_DATA_UINT64
},
286 { "addref_entry_not_on_disk", KSTAT_DATA_UINT64
},
287 { "addref_entry_on_disk", KSTAT_DATA_UINT64
},
288 { "addref_entry_read_lost_race", KSTAT_DATA_UINT64
},
289 { "decref_entry_in_memory", KSTAT_DATA_UINT64
},
290 { "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64
},
291 { "decref_entry_not_in_memory", KSTAT_DATA_UINT64
},
292 { "decref_entry_not_on_disk", KSTAT_DATA_UINT64
},
293 { "decref_entry_read_lost_race", KSTAT_DATA_UINT64
},
294 { "decref_entry_still_referenced", KSTAT_DATA_UINT64
},
295 { "decref_free_data_later", KSTAT_DATA_UINT64
},
296 { "decref_free_data_now", KSTAT_DATA_UINT64
},
297 { "decref_no_entry", KSTAT_DATA_UINT64
}
301 wmsum_t brt_addref_entry_in_memory
;
302 wmsum_t brt_addref_entry_not_on_disk
;
303 wmsum_t brt_addref_entry_on_disk
;
304 wmsum_t brt_addref_entry_read_lost_race
;
305 wmsum_t brt_decref_entry_in_memory
;
306 wmsum_t brt_decref_entry_loaded_from_disk
;
307 wmsum_t brt_decref_entry_not_in_memory
;
308 wmsum_t brt_decref_entry_not_on_disk
;
309 wmsum_t brt_decref_entry_read_lost_race
;
310 wmsum_t brt_decref_entry_still_referenced
;
311 wmsum_t brt_decref_free_data_later
;
312 wmsum_t brt_decref_free_data_now
;
313 wmsum_t brt_decref_no_entry
;
316 #define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
318 static int brt_entry_compare(const void *x1
, const void *x2
);
319 static int brt_pending_entry_compare(const void *x1
, const void *x2
);
322 brt_rlock(brt_t
*brt
)
324 rw_enter(&brt
->brt_lock
, RW_READER
);
328 brt_wlock(brt_t
*brt
)
330 rw_enter(&brt
->brt_lock
, RW_WRITER
);
334 brt_unlock(brt_t
*brt
)
336 rw_exit(&brt
->brt_lock
);
340 brt_vdev_entcount_get(const brt_vdev_t
*brtvd
, uint64_t idx
)
343 ASSERT3U(idx
, <, brtvd
->bv_size
);
345 if (unlikely(brtvd
->bv_need_byteswap
)) {
346 return (BSWAP_16(brtvd
->bv_entcount
[idx
]));
348 return (brtvd
->bv_entcount
[idx
]);
353 brt_vdev_entcount_set(brt_vdev_t
*brtvd
, uint64_t idx
, uint16_t entcnt
)
356 ASSERT3U(idx
, <, brtvd
->bv_size
);
358 if (unlikely(brtvd
->bv_need_byteswap
)) {
359 brtvd
->bv_entcount
[idx
] = BSWAP_16(entcnt
);
361 brtvd
->bv_entcount
[idx
] = entcnt
;
366 brt_vdev_entcount_inc(brt_vdev_t
*brtvd
, uint64_t idx
)
370 ASSERT3U(idx
, <, brtvd
->bv_size
);
372 entcnt
= brt_vdev_entcount_get(brtvd
, idx
);
373 ASSERT(entcnt
< UINT16_MAX
);
375 brt_vdev_entcount_set(brtvd
, idx
, entcnt
+ 1);
379 brt_vdev_entcount_dec(brt_vdev_t
*brtvd
, uint64_t idx
)
383 ASSERT3U(idx
, <, brtvd
->bv_size
);
385 entcnt
= brt_vdev_entcount_get(brtvd
, idx
);
388 brt_vdev_entcount_set(brtvd
, idx
, entcnt
- 1);
393 brt_vdev_dump(brt_vdev_t
*brtvd
)
397 zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
398 "size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu\n",
399 (u_longlong_t
)brtvd
->bv_vdevid
,
400 brtvd
->bv_meta_dirty
, brtvd
->bv_entcount_dirty
,
401 (u_longlong_t
)brtvd
->bv_size
,
402 (u_longlong_t
)brtvd
->bv_totalcount
,
403 (u_longlong_t
)brtvd
->bv_nblocks
,
404 (size_t)BT_SIZEOFMAP(brtvd
->bv_nblocks
));
405 if (brtvd
->bv_totalcount
> 0) {
406 zfs_dbgmsg(" entcounts:");
407 for (idx
= 0; idx
< brtvd
->bv_size
; idx
++) {
408 uint16_t entcnt
= brt_vdev_entcount_get(brtvd
, idx
);
410 zfs_dbgmsg(" [%04llu] %hu",
411 (u_longlong_t
)idx
, entcnt
);
415 if (brtvd
->bv_entcount_dirty
) {
418 bitmap
= kmem_alloc(brtvd
->bv_nblocks
+ 1, KM_SLEEP
);
419 for (idx
= 0; idx
< brtvd
->bv_nblocks
; idx
++) {
421 BT_TEST(brtvd
->bv_bitmap
, idx
) ? 'x' : '.';
424 zfs_dbgmsg(" dirty: %s", bitmap
);
425 kmem_free(bitmap
, brtvd
->bv_nblocks
+ 1);
431 brt_vdev(brt_t
*brt
, uint64_t vdevid
)
435 ASSERT(RW_LOCK_HELD(&brt
->brt_lock
));
437 if (vdevid
< brt
->brt_nvdevs
) {
438 brtvd
= &brt
->brt_vdevs
[vdevid
];
447 brt_vdev_create(brt_t
*brt
, brt_vdev_t
*brtvd
, dmu_tx_t
*tx
)
451 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
452 ASSERT0(brtvd
->bv_mos_brtvdev
);
453 ASSERT0(brtvd
->bv_mos_entries
);
454 ASSERT(brtvd
->bv_entcount
!= NULL
);
455 ASSERT(brtvd
->bv_size
> 0);
456 ASSERT(brtvd
->bv_bitmap
!= NULL
);
457 ASSERT(brtvd
->bv_nblocks
> 0);
459 brtvd
->bv_mos_entries
= zap_create_flags(brt
->brt_mos
, 0,
460 ZAP_FLAG_HASH64
| ZAP_FLAG_UINT64_KEY
, DMU_OTN_ZAP_METADATA
,
461 brt_zap_default_bs
, brt_zap_default_ibs
, DMU_OT_NONE
, 0, tx
);
462 VERIFY(brtvd
->bv_mos_entries
!= 0);
463 BRT_DEBUG("MOS entries created, object=%llu",
464 (u_longlong_t
)brtvd
->bv_mos_entries
);
467 * We allocate DMU buffer to store the bv_entcount[] array.
468 * We will keep array size (bv_size) and cummulative count for all
469 * bv_entcount[]s (bv_totalcount) in the bonus buffer.
471 brtvd
->bv_mos_brtvdev
= dmu_object_alloc(brt
->brt_mos
,
472 DMU_OTN_UINT64_METADATA
, BRT_BLOCKSIZE
,
473 DMU_OTN_UINT64_METADATA
, sizeof (brt_vdev_phys_t
), tx
);
474 VERIFY(brtvd
->bv_mos_brtvdev
!= 0);
475 BRT_DEBUG("MOS BRT VDEV created, object=%llu",
476 (u_longlong_t
)brtvd
->bv_mos_brtvdev
);
478 snprintf(name
, sizeof (name
), "%s%llu", BRT_OBJECT_VDEV_PREFIX
,
479 (u_longlong_t
)brtvd
->bv_vdevid
);
480 VERIFY0(zap_add(brt
->brt_mos
, DMU_POOL_DIRECTORY_OBJECT
, name
,
481 sizeof (uint64_t), 1, &brtvd
->bv_mos_brtvdev
, tx
));
482 BRT_DEBUG("Pool directory object created, object=%s", name
);
484 spa_feature_incr(brt
->brt_spa
, SPA_FEATURE_BLOCK_CLONING
, tx
);
488 brt_vdev_realloc(brt_t
*brt
, brt_vdev_t
*brtvd
)
493 uint64_t nblocks
, size
;
495 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
497 spa_config_enter(brt
->brt_spa
, SCL_VDEV
, FTAG
, RW_READER
);
498 vd
= vdev_lookup_top(brt
->brt_spa
, brtvd
->bv_vdevid
);
499 size
= (vdev_get_min_asize(vd
) - 1) / brt
->brt_rangesize
+ 1;
500 spa_config_exit(brt
->brt_spa
, SCL_VDEV
, FTAG
);
502 entcount
= vmem_zalloc(sizeof (entcount
[0]) * size
, KM_SLEEP
);
503 nblocks
= BRT_RANGESIZE_TO_NBLOCKS(size
);
504 bitmap
= kmem_zalloc(BT_SIZEOFMAP(nblocks
), KM_SLEEP
);
506 if (!brtvd
->bv_initiated
) {
507 ASSERT0(brtvd
->bv_size
);
508 ASSERT(brtvd
->bv_entcount
== NULL
);
509 ASSERT(brtvd
->bv_bitmap
== NULL
);
510 ASSERT0(brtvd
->bv_nblocks
);
512 avl_create(&brtvd
->bv_tree
, brt_entry_compare
,
513 sizeof (brt_entry_t
), offsetof(brt_entry_t
, bre_node
));
515 ASSERT(brtvd
->bv_size
> 0);
516 ASSERT(brtvd
->bv_entcount
!= NULL
);
517 ASSERT(brtvd
->bv_bitmap
!= NULL
);
518 ASSERT(brtvd
->bv_nblocks
> 0);
520 * TODO: Allow vdev shrinking. We only need to implement
521 * shrinking the on-disk BRT VDEV object.
522 * dmu_free_range(brt->brt_mos, brtvd->bv_mos_brtvdev, offset,
525 ASSERT3U(brtvd
->bv_size
, <=, size
);
527 memcpy(entcount
, brtvd
->bv_entcount
,
528 sizeof (entcount
[0]) * MIN(size
, brtvd
->bv_size
));
529 memcpy(bitmap
, brtvd
->bv_bitmap
, MIN(BT_SIZEOFMAP(nblocks
),
530 BT_SIZEOFMAP(brtvd
->bv_nblocks
)));
531 vmem_free(brtvd
->bv_entcount
,
532 sizeof (entcount
[0]) * brtvd
->bv_size
);
533 kmem_free(brtvd
->bv_bitmap
, BT_SIZEOFMAP(brtvd
->bv_nblocks
));
536 brtvd
->bv_size
= size
;
537 brtvd
->bv_entcount
= entcount
;
538 brtvd
->bv_bitmap
= bitmap
;
539 brtvd
->bv_nblocks
= nblocks
;
540 if (!brtvd
->bv_initiated
) {
541 brtvd
->bv_need_byteswap
= FALSE
;
542 brtvd
->bv_initiated
= TRUE
;
543 BRT_DEBUG("BRT VDEV %llu initiated.",
544 (u_longlong_t
)brtvd
->bv_vdevid
);
549 brt_vdev_load(brt_t
*brt
, brt_vdev_t
*brtvd
)
553 brt_vdev_phys_t
*bvphys
;
556 snprintf(name
, sizeof (name
), "%s%llu", BRT_OBJECT_VDEV_PREFIX
,
557 (u_longlong_t
)brtvd
->bv_vdevid
);
558 error
= zap_lookup(brt
->brt_mos
, DMU_POOL_DIRECTORY_OBJECT
, name
,
559 sizeof (uint64_t), 1, &brtvd
->bv_mos_brtvdev
);
562 ASSERT(brtvd
->bv_mos_brtvdev
!= 0);
564 error
= dmu_bonus_hold(brt
->brt_mos
, brtvd
->bv_mos_brtvdev
, FTAG
, &db
);
569 bvphys
= db
->db_data
;
570 if (brt
->brt_rangesize
== 0) {
571 brt
->brt_rangesize
= bvphys
->bvp_rangesize
;
573 ASSERT3U(brt
->brt_rangesize
, ==, bvphys
->bvp_rangesize
);
576 ASSERT(!brtvd
->bv_initiated
);
577 brt_vdev_realloc(brt
, brtvd
);
579 /* TODO: We don't support VDEV shrinking. */
580 ASSERT3U(bvphys
->bvp_size
, <=, brtvd
->bv_size
);
583 * If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
585 error
= dmu_read(brt
->brt_mos
, brtvd
->bv_mos_brtvdev
, 0,
586 MIN(brtvd
->bv_size
, bvphys
->bvp_size
) * sizeof (uint16_t),
587 brtvd
->bv_entcount
, DMU_READ_NO_PREFETCH
);
590 brtvd
->bv_mos_entries
= bvphys
->bvp_mos_entries
;
591 ASSERT(brtvd
->bv_mos_entries
!= 0);
592 brtvd
->bv_need_byteswap
=
593 (bvphys
->bvp_byteorder
!= BRT_NATIVE_BYTEORDER
);
594 brtvd
->bv_totalcount
= bvphys
->bvp_totalcount
;
595 brtvd
->bv_usedspace
= bvphys
->bvp_usedspace
;
596 brtvd
->bv_savedspace
= bvphys
->bvp_savedspace
;
597 brt
->brt_usedspace
+= brtvd
->bv_usedspace
;
598 brt
->brt_savedspace
+= brtvd
->bv_savedspace
;
600 dmu_buf_rele(db
, FTAG
);
602 BRT_DEBUG("MOS BRT VDEV %s loaded: mos_brtvdev=%llu, mos_entries=%llu",
603 name
, (u_longlong_t
)brtvd
->bv_mos_brtvdev
,
604 (u_longlong_t
)brtvd
->bv_mos_entries
);
608 brt_vdev_dealloc(brt_t
*brt
, brt_vdev_t
*brtvd
)
611 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
612 ASSERT(brtvd
->bv_initiated
);
614 vmem_free(brtvd
->bv_entcount
, sizeof (uint16_t) * brtvd
->bv_size
);
615 brtvd
->bv_entcount
= NULL
;
616 kmem_free(brtvd
->bv_bitmap
, BT_SIZEOFMAP(brtvd
->bv_nblocks
));
617 brtvd
->bv_bitmap
= NULL
;
618 ASSERT0(avl_numnodes(&brtvd
->bv_tree
));
619 avl_destroy(&brtvd
->bv_tree
);
622 brtvd
->bv_nblocks
= 0;
624 brtvd
->bv_initiated
= FALSE
;
625 BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t
)brtvd
->bv_vdevid
);
629 brt_vdev_destroy(brt_t
*brt
, brt_vdev_t
*brtvd
, dmu_tx_t
*tx
)
634 brt_vdev_phys_t
*bvphys
;
636 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
637 ASSERT(brtvd
->bv_mos_brtvdev
!= 0);
638 ASSERT(brtvd
->bv_mos_entries
!= 0);
640 VERIFY0(zap_count(brt
->brt_mos
, brtvd
->bv_mos_entries
, &count
));
642 VERIFY0(zap_destroy(brt
->brt_mos
, brtvd
->bv_mos_entries
, tx
));
643 BRT_DEBUG("MOS entries destroyed, object=%llu",
644 (u_longlong_t
)brtvd
->bv_mos_entries
);
645 brtvd
->bv_mos_entries
= 0;
647 VERIFY0(dmu_bonus_hold(brt
->brt_mos
, brtvd
->bv_mos_brtvdev
, FTAG
, &db
));
648 bvphys
= db
->db_data
;
649 ASSERT0(bvphys
->bvp_totalcount
);
650 ASSERT0(bvphys
->bvp_usedspace
);
651 ASSERT0(bvphys
->bvp_savedspace
);
652 dmu_buf_rele(db
, FTAG
);
654 VERIFY0(dmu_object_free(brt
->brt_mos
, brtvd
->bv_mos_brtvdev
, tx
));
655 BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
656 (u_longlong_t
)brtvd
->bv_mos_brtvdev
);
657 brtvd
->bv_mos_brtvdev
= 0;
659 snprintf(name
, sizeof (name
), "%s%llu", BRT_OBJECT_VDEV_PREFIX
,
660 (u_longlong_t
)brtvd
->bv_vdevid
);
661 VERIFY0(zap_remove(brt
->brt_mos
, DMU_POOL_DIRECTORY_OBJECT
, name
, tx
));
662 BRT_DEBUG("Pool directory object removed, object=%s", name
);
664 brt_vdev_dealloc(brt
, brtvd
);
666 spa_feature_decr(brt
->brt_spa
, SPA_FEATURE_BLOCK_CLONING
, tx
);
670 brt_vdevs_expand(brt_t
*brt
, uint64_t nvdevs
)
672 brt_vdev_t
*brtvd
, *vdevs
;
675 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
676 ASSERT3U(nvdevs
, >, brt
->brt_nvdevs
);
678 vdevs
= kmem_zalloc(sizeof (vdevs
[0]) * nvdevs
, KM_SLEEP
);
679 if (brt
->brt_nvdevs
> 0) {
680 ASSERT(brt
->brt_vdevs
!= NULL
);
682 memcpy(vdevs
, brt
->brt_vdevs
,
683 sizeof (brt_vdev_t
) * brt
->brt_nvdevs
);
684 kmem_free(brt
->brt_vdevs
,
685 sizeof (brt_vdev_t
) * brt
->brt_nvdevs
);
687 for (vdevid
= brt
->brt_nvdevs
; vdevid
< nvdevs
; vdevid
++) {
688 brtvd
= &vdevs
[vdevid
];
690 brtvd
->bv_vdevid
= vdevid
;
691 brtvd
->bv_initiated
= FALSE
;
694 BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
695 (u_longlong_t
)brt
->brt_nvdevs
, (u_longlong_t
)nvdevs
);
697 brt
->brt_vdevs
= vdevs
;
698 brt
->brt_nvdevs
= nvdevs
;
702 brt_vdev_lookup(brt_t
*brt
, brt_vdev_t
*brtvd
, const brt_entry_t
*bre
)
706 ASSERT(RW_LOCK_HELD(&brt
->brt_lock
));
708 idx
= bre
->bre_offset
/ brt
->brt_rangesize
;
709 if (brtvd
->bv_entcount
!= NULL
&& idx
< brtvd
->bv_size
) {
710 /* VDEV wasn't expanded. */
711 return (brt_vdev_entcount_get(brtvd
, idx
) > 0);
718 brt_vdev_addref(brt_t
*brt
, brt_vdev_t
*brtvd
, const brt_entry_t
*bre
,
723 ASSERT(RW_LOCK_HELD(&brt
->brt_lock
));
724 ASSERT(brtvd
!= NULL
);
725 ASSERT(brtvd
->bv_entcount
!= NULL
);
727 brt
->brt_savedspace
+= dsize
;
728 brtvd
->bv_savedspace
+= dsize
;
729 brtvd
->bv_meta_dirty
= TRUE
;
731 if (bre
->bre_refcount
> 1) {
735 brt
->brt_usedspace
+= dsize
;
736 brtvd
->bv_usedspace
+= dsize
;
738 idx
= bre
->bre_offset
/ brt
->brt_rangesize
;
739 if (idx
>= brtvd
->bv_size
) {
740 /* VDEV has been expanded. */
741 brt_vdev_realloc(brt
, brtvd
);
744 ASSERT3U(idx
, <, brtvd
->bv_size
);
746 brtvd
->bv_totalcount
++;
747 brt_vdev_entcount_inc(brtvd
, idx
);
748 brtvd
->bv_entcount_dirty
= TRUE
;
749 idx
= idx
/ BRT_BLOCKSIZE
/ 8;
750 BT_SET(brtvd
->bv_bitmap
, idx
);
753 if (zfs_flags
& ZFS_DEBUG_BRT
)
754 brt_vdev_dump(brtvd
);
759 brt_vdev_decref(brt_t
*brt
, brt_vdev_t
*brtvd
, const brt_entry_t
*bre
,
764 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
765 ASSERT(brtvd
!= NULL
);
766 ASSERT(brtvd
->bv_entcount
!= NULL
);
768 brt
->brt_savedspace
-= dsize
;
769 brtvd
->bv_savedspace
-= dsize
;
770 brtvd
->bv_meta_dirty
= TRUE
;
772 if (bre
->bre_refcount
> 0) {
776 brt
->brt_usedspace
-= dsize
;
777 brtvd
->bv_usedspace
-= dsize
;
779 idx
= bre
->bre_offset
/ brt
->brt_rangesize
;
780 ASSERT3U(idx
, <, brtvd
->bv_size
);
782 ASSERT(brtvd
->bv_totalcount
> 0);
783 brtvd
->bv_totalcount
--;
784 brt_vdev_entcount_dec(brtvd
, idx
);
785 brtvd
->bv_entcount_dirty
= TRUE
;
786 idx
= idx
/ BRT_BLOCKSIZE
/ 8;
787 BT_SET(brtvd
->bv_bitmap
, idx
);
790 if (zfs_flags
& ZFS_DEBUG_BRT
)
791 brt_vdev_dump(brtvd
);
796 brt_vdev_sync(brt_t
*brt
, brt_vdev_t
*brtvd
, dmu_tx_t
*tx
)
799 brt_vdev_phys_t
*bvphys
;
801 ASSERT(brtvd
->bv_meta_dirty
);
802 ASSERT(brtvd
->bv_mos_brtvdev
!= 0);
803 ASSERT(dmu_tx_is_syncing(tx
));
805 VERIFY0(dmu_bonus_hold(brt
->brt_mos
, brtvd
->bv_mos_brtvdev
, FTAG
, &db
));
807 if (brtvd
->bv_entcount_dirty
) {
809 * TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
811 dmu_write(brt
->brt_mos
, brtvd
->bv_mos_brtvdev
, 0,
812 brtvd
->bv_size
* sizeof (brtvd
->bv_entcount
[0]),
813 brtvd
->bv_entcount
, tx
);
814 memset(brtvd
->bv_bitmap
, 0, BT_SIZEOFMAP(brtvd
->bv_nblocks
));
815 brtvd
->bv_entcount_dirty
= FALSE
;
818 dmu_buf_will_dirty(db
, tx
);
819 bvphys
= db
->db_data
;
820 bvphys
->bvp_mos_entries
= brtvd
->bv_mos_entries
;
821 bvphys
->bvp_size
= brtvd
->bv_size
;
822 if (brtvd
->bv_need_byteswap
) {
823 bvphys
->bvp_byteorder
= BRT_NON_NATIVE_BYTEORDER
;
825 bvphys
->bvp_byteorder
= BRT_NATIVE_BYTEORDER
;
827 bvphys
->bvp_totalcount
= brtvd
->bv_totalcount
;
828 bvphys
->bvp_rangesize
= brt
->brt_rangesize
;
829 bvphys
->bvp_usedspace
= brtvd
->bv_usedspace
;
830 bvphys
->bvp_savedspace
= brtvd
->bv_savedspace
;
831 dmu_buf_rele(db
, FTAG
);
833 brtvd
->bv_meta_dirty
= FALSE
;
837 brt_vdevs_alloc(brt_t
*brt
, boolean_t load
)
844 brt_vdevs_expand(brt
, brt
->brt_spa
->spa_root_vdev
->vdev_children
);
847 for (vdevid
= 0; vdevid
< brt
->brt_nvdevs
; vdevid
++) {
848 brtvd
= &brt
->brt_vdevs
[vdevid
];
849 ASSERT(brtvd
->bv_entcount
== NULL
);
851 brt_vdev_load(brt
, brtvd
);
855 if (brt
->brt_rangesize
== 0) {
856 brt
->brt_rangesize
= BRT_RANGESIZE
;
863 brt_vdevs_free(brt_t
*brt
)
870 for (vdevid
= 0; vdevid
< brt
->brt_nvdevs
; vdevid
++) {
871 brtvd
= &brt
->brt_vdevs
[vdevid
];
872 if (brtvd
->bv_initiated
)
873 brt_vdev_dealloc(brt
, brtvd
);
875 kmem_free(brt
->brt_vdevs
, sizeof (brt_vdev_t
) * brt
->brt_nvdevs
);
881 brt_entry_fill(const blkptr_t
*bp
, brt_entry_t
*bre
, uint64_t *vdevidp
)
884 bre
->bre_offset
= DVA_GET_OFFSET(&bp
->blk_dva
[0]);
885 bre
->bre_refcount
= 0;
887 *vdevidp
= DVA_GET_VDEV(&bp
->blk_dva
[0]);
891 brt_entry_compare(const void *x1
, const void *x2
)
893 const brt_entry_t
*bre1
= x1
;
894 const brt_entry_t
*bre2
= x2
;
896 return (TREE_CMP(bre1
->bre_offset
, bre2
->bre_offset
));
900 brt_entry_lookup(brt_t
*brt
, brt_vdev_t
*brtvd
, brt_entry_t
*bre
)
902 uint64_t mos_entries
;
905 ASSERT(RW_LOCK_HELD(&brt
->brt_lock
));
907 if (!brt_vdev_lookup(brt
, brtvd
, bre
))
908 return (SET_ERROR(ENOENT
));
911 * Remember mos_entries object number. After we reacquire the BRT lock,
912 * the brtvd pointer may be invalid.
914 mos_entries
= brtvd
->bv_mos_entries
;
915 if (mos_entries
== 0)
916 return (SET_ERROR(ENOENT
));
920 error
= zap_lookup_uint64(brt
->brt_mos
, mos_entries
, &bre
->bre_offset
,
921 BRT_KEY_WORDS
, 1, sizeof (bre
->bre_refcount
), &bre
->bre_refcount
);
929 brt_entry_prefetch(brt_t
*brt
, uint64_t vdevid
, brt_entry_t
*bre
)
932 uint64_t mos_entries
= 0;
935 brtvd
= brt_vdev(brt
, vdevid
);
937 mos_entries
= brtvd
->bv_mos_entries
;
940 if (mos_entries
== 0)
943 (void) zap_prefetch_uint64(brt
->brt_mos
, mos_entries
,
944 (uint64_t *)&bre
->bre_offset
, BRT_KEY_WORDS
);
948 * Return TRUE if we _can_ have BRT entry for this bp. It might be false
949 * positive, but gives us quick answer if we should look into BRT, which
950 * may require reads and thus will be more expensive.
953 brt_maybe_exists(spa_t
*spa
, const blkptr_t
*bp
)
955 brt_t
*brt
= spa
->spa_brt
;
957 brt_entry_t bre_search
;
958 boolean_t mayexists
= FALSE
;
961 brt_entry_fill(bp
, &bre_search
, &vdevid
);
965 brtvd
= brt_vdev(brt
, vdevid
);
966 if (brtvd
!= NULL
&& brtvd
->bv_initiated
) {
967 if (!avl_is_empty(&brtvd
->bv_tree
) ||
968 brt_vdev_lookup(brt
, brtvd
, &bre_search
)) {
979 brt_get_dspace(spa_t
*spa
)
981 brt_t
*brt
= spa
->spa_brt
;
986 return (brt
->brt_savedspace
);
990 brt_get_used(spa_t
*spa
)
992 brt_t
*brt
= spa
->spa_brt
;
997 return (brt
->brt_usedspace
);
1001 brt_get_saved(spa_t
*spa
)
1003 brt_t
*brt
= spa
->spa_brt
;
1008 return (brt
->brt_savedspace
);
1012 brt_get_ratio(spa_t
*spa
)
1014 brt_t
*brt
= spa
->spa_brt
;
1016 if (brt
->brt_usedspace
== 0)
1019 return ((brt
->brt_usedspace
+ brt
->brt_savedspace
) * 100 /
1020 brt
->brt_usedspace
);
1024 brt_kstats_update(kstat_t
*ksp
, int rw
)
1026 brt_stats_t
*bs
= ksp
->ks_data
;
1028 if (rw
== KSTAT_WRITE
)
1031 bs
->brt_addref_entry_in_memory
.value
.ui64
=
1032 wmsum_value(&brt_sums
.brt_addref_entry_in_memory
);
1033 bs
->brt_addref_entry_not_on_disk
.value
.ui64
=
1034 wmsum_value(&brt_sums
.brt_addref_entry_not_on_disk
);
1035 bs
->brt_addref_entry_on_disk
.value
.ui64
=
1036 wmsum_value(&brt_sums
.brt_addref_entry_on_disk
);
1037 bs
->brt_addref_entry_read_lost_race
.value
.ui64
=
1038 wmsum_value(&brt_sums
.brt_addref_entry_read_lost_race
);
1039 bs
->brt_decref_entry_in_memory
.value
.ui64
=
1040 wmsum_value(&brt_sums
.brt_decref_entry_in_memory
);
1041 bs
->brt_decref_entry_loaded_from_disk
.value
.ui64
=
1042 wmsum_value(&brt_sums
.brt_decref_entry_loaded_from_disk
);
1043 bs
->brt_decref_entry_not_in_memory
.value
.ui64
=
1044 wmsum_value(&brt_sums
.brt_decref_entry_not_in_memory
);
1045 bs
->brt_decref_entry_not_on_disk
.value
.ui64
=
1046 wmsum_value(&brt_sums
.brt_decref_entry_not_on_disk
);
1047 bs
->brt_decref_entry_read_lost_race
.value
.ui64
=
1048 wmsum_value(&brt_sums
.brt_decref_entry_read_lost_race
);
1049 bs
->brt_decref_entry_still_referenced
.value
.ui64
=
1050 wmsum_value(&brt_sums
.brt_decref_entry_still_referenced
);
1051 bs
->brt_decref_free_data_later
.value
.ui64
=
1052 wmsum_value(&brt_sums
.brt_decref_free_data_later
);
1053 bs
->brt_decref_free_data_now
.value
.ui64
=
1054 wmsum_value(&brt_sums
.brt_decref_free_data_now
);
1055 bs
->brt_decref_no_entry
.value
.ui64
=
1056 wmsum_value(&brt_sums
.brt_decref_no_entry
);
1065 wmsum_init(&brt_sums
.brt_addref_entry_in_memory
, 0);
1066 wmsum_init(&brt_sums
.brt_addref_entry_not_on_disk
, 0);
1067 wmsum_init(&brt_sums
.brt_addref_entry_on_disk
, 0);
1068 wmsum_init(&brt_sums
.brt_addref_entry_read_lost_race
, 0);
1069 wmsum_init(&brt_sums
.brt_decref_entry_in_memory
, 0);
1070 wmsum_init(&brt_sums
.brt_decref_entry_loaded_from_disk
, 0);
1071 wmsum_init(&brt_sums
.brt_decref_entry_not_in_memory
, 0);
1072 wmsum_init(&brt_sums
.brt_decref_entry_not_on_disk
, 0);
1073 wmsum_init(&brt_sums
.brt_decref_entry_read_lost_race
, 0);
1074 wmsum_init(&brt_sums
.brt_decref_entry_still_referenced
, 0);
1075 wmsum_init(&brt_sums
.brt_decref_free_data_later
, 0);
1076 wmsum_init(&brt_sums
.brt_decref_free_data_now
, 0);
1077 wmsum_init(&brt_sums
.brt_decref_no_entry
, 0);
1079 brt_ksp
= kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED
,
1080 sizeof (brt_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
1081 if (brt_ksp
!= NULL
) {
1082 brt_ksp
->ks_data
= &brt_stats
;
1083 brt_ksp
->ks_update
= brt_kstats_update
;
1084 kstat_install(brt_ksp
);
1091 if (brt_ksp
!= NULL
) {
1092 kstat_delete(brt_ksp
);
1096 wmsum_fini(&brt_sums
.brt_addref_entry_in_memory
);
1097 wmsum_fini(&brt_sums
.brt_addref_entry_not_on_disk
);
1098 wmsum_fini(&brt_sums
.brt_addref_entry_on_disk
);
1099 wmsum_fini(&brt_sums
.brt_addref_entry_read_lost_race
);
1100 wmsum_fini(&brt_sums
.brt_decref_entry_in_memory
);
1101 wmsum_fini(&brt_sums
.brt_decref_entry_loaded_from_disk
);
1102 wmsum_fini(&brt_sums
.brt_decref_entry_not_in_memory
);
1103 wmsum_fini(&brt_sums
.brt_decref_entry_not_on_disk
);
1104 wmsum_fini(&brt_sums
.brt_decref_entry_read_lost_race
);
1105 wmsum_fini(&brt_sums
.brt_decref_entry_still_referenced
);
1106 wmsum_fini(&brt_sums
.brt_decref_free_data_later
);
1107 wmsum_fini(&brt_sums
.brt_decref_free_data_now
);
1108 wmsum_fini(&brt_sums
.brt_decref_no_entry
);
1114 brt_entry_cache
= kmem_cache_create("brt_entry_cache",
1115 sizeof (brt_entry_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
1116 brt_pending_entry_cache
= kmem_cache_create("brt_pending_entry_cache",
1117 sizeof (brt_pending_entry_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
1127 kmem_cache_destroy(brt_entry_cache
);
1128 kmem_cache_destroy(brt_pending_entry_cache
);
1131 static brt_entry_t
*
1132 brt_entry_alloc(const brt_entry_t
*bre_init
)
1136 bre
= kmem_cache_alloc(brt_entry_cache
, KM_SLEEP
);
1137 bre
->bre_offset
= bre_init
->bre_offset
;
1138 bre
->bre_refcount
= bre_init
->bre_refcount
;
1144 brt_entry_free(brt_entry_t
*bre
)
1147 kmem_cache_free(brt_entry_cache
, bre
);
1151 brt_entry_addref(brt_t
*brt
, const blkptr_t
*bp
)
1154 brt_entry_t
*bre
, *racebre
;
1155 brt_entry_t bre_search
;
1160 ASSERT(!RW_WRITE_HELD(&brt
->brt_lock
));
1162 brt_entry_fill(bp
, &bre_search
, &vdevid
);
1166 brtvd
= brt_vdev(brt
, vdevid
);
1167 if (brtvd
== NULL
) {
1168 ASSERT3U(vdevid
, >=, brt
->brt_nvdevs
);
1170 /* New VDEV was added. */
1171 brt_vdevs_expand(brt
, vdevid
+ 1);
1172 brtvd
= brt_vdev(brt
, vdevid
);
1174 ASSERT(brtvd
!= NULL
);
1175 if (!brtvd
->bv_initiated
)
1176 brt_vdev_realloc(brt
, brtvd
);
1178 bre
= avl_find(&brtvd
->bv_tree
, &bre_search
, NULL
);
1180 BRTSTAT_BUMP(brt_addref_entry_in_memory
);
1183 * brt_entry_lookup() may drop the BRT (read) lock and
1184 * reacquire it (write).
1186 error
= brt_entry_lookup(brt
, brtvd
, &bre_search
);
1187 /* bre_search now contains correct bre_refcount */
1188 ASSERT(error
== 0 || error
== ENOENT
);
1190 BRTSTAT_BUMP(brt_addref_entry_on_disk
);
1192 BRTSTAT_BUMP(brt_addref_entry_not_on_disk
);
1194 * When the BRT lock was dropped, brt_vdevs[] may have been
1195 * expanded and reallocated, we need to update brtvd's pointer.
1197 brtvd
= brt_vdev(brt
, vdevid
);
1198 ASSERT(brtvd
!= NULL
);
1200 racebre
= avl_find(&brtvd
->bv_tree
, &bre_search
, &where
);
1201 if (racebre
== NULL
) {
1202 bre
= brt_entry_alloc(&bre_search
);
1203 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
1204 avl_insert(&brtvd
->bv_tree
, bre
, where
);
1205 brt
->brt_nentries
++;
1208 * The entry was added when the BRT lock was dropped in
1209 * brt_entry_lookup().
1211 BRTSTAT_BUMP(brt_addref_entry_read_lost_race
);
1215 bre
->bre_refcount
++;
1216 brt_vdev_addref(brt
, brtvd
, bre
, bp_get_dsize(brt
->brt_spa
, bp
));
1221 /* Return TRUE if block should be freed immediately. */
1223 brt_entry_decref(spa_t
*spa
, const blkptr_t
*bp
)
1225 brt_t
*brt
= spa
->spa_brt
;
1227 brt_entry_t
*bre
, *racebre
;
1228 brt_entry_t bre_search
;
1233 brt_entry_fill(bp
, &bre_search
, &vdevid
);
1237 brtvd
= brt_vdev(brt
, vdevid
);
1238 ASSERT(brtvd
!= NULL
);
1240 bre
= avl_find(&brtvd
->bv_tree
, &bre_search
, NULL
);
1242 BRTSTAT_BUMP(brt_decref_entry_in_memory
);
1245 BRTSTAT_BUMP(brt_decref_entry_not_in_memory
);
1249 * brt_entry_lookup() may drop the BRT lock and reacquire it.
1251 error
= brt_entry_lookup(brt
, brtvd
, &bre_search
);
1252 /* bre_search now contains correct bre_refcount */
1253 ASSERT(error
== 0 || error
== ENOENT
);
1255 * When the BRT lock was dropped, brt_vdevs[] may have been expanded
1256 * and reallocated, we need to update brtvd's pointer.
1258 brtvd
= brt_vdev(brt
, vdevid
);
1259 ASSERT(brtvd
!= NULL
);
1261 if (error
== ENOENT
) {
1262 BRTSTAT_BUMP(brt_decref_entry_not_on_disk
);
1267 racebre
= avl_find(&brtvd
->bv_tree
, &bre_search
, &where
);
1268 if (racebre
!= NULL
) {
1270 * The entry was added when the BRT lock was dropped in
1271 * brt_entry_lookup().
1273 BRTSTAT_BUMP(brt_decref_entry_read_lost_race
);
1278 BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk
);
1279 bre
= brt_entry_alloc(&bre_search
);
1280 ASSERT(RW_WRITE_HELD(&brt
->brt_lock
));
1281 avl_insert(&brtvd
->bv_tree
, bre
, where
);
1282 brt
->brt_nentries
++;
1287 * This is a free of a regular (not cloned) block.
1290 BRTSTAT_BUMP(brt_decref_no_entry
);
1293 if (bre
->bre_refcount
== 0) {
1295 BRTSTAT_BUMP(brt_decref_free_data_now
);
1299 ASSERT(bre
->bre_refcount
> 0);
1300 bre
->bre_refcount
--;
1301 if (bre
->bre_refcount
== 0)
1302 BRTSTAT_BUMP(brt_decref_free_data_later
);
1304 BRTSTAT_BUMP(brt_decref_entry_still_referenced
);
1305 brt_vdev_decref(brt
, brtvd
, bre
, bp_get_dsize(brt
->brt_spa
, bp
));
1313 brt_entry_get_refcount(spa_t
*spa
, const blkptr_t
*bp
)
1315 brt_t
*brt
= spa
->spa_brt
;
1317 brt_entry_t bre_search
, *bre
;
1318 uint64_t vdevid
, refcnt
;
1321 brt_entry_fill(bp
, &bre_search
, &vdevid
);
1325 brtvd
= brt_vdev(brt
, vdevid
);
1326 ASSERT(brtvd
!= NULL
);
1328 bre
= avl_find(&brtvd
->bv_tree
, &bre_search
, NULL
);
1330 error
= brt_entry_lookup(brt
, brtvd
, &bre_search
);
1331 ASSERT(error
== 0 || error
== ENOENT
);
1332 if (error
== ENOENT
)
1335 refcnt
= bre_search
.bre_refcount
;
1337 refcnt
= bre
->bre_refcount
;
1344 brt_prefetch(brt_t
*brt
, const blkptr_t
*bp
)
1351 if (!brt_zap_prefetch
)
1354 brt_entry_fill(bp
, &bre
, &vdevid
);
1356 brt_entry_prefetch(brt
, vdevid
, &bre
);
1360 brt_pending_entry_compare(const void *x1
, const void *x2
)
1362 const brt_pending_entry_t
*bpe1
= x1
, *bpe2
= x2
;
1363 const blkptr_t
*bp1
= &bpe1
->bpe_bp
, *bp2
= &bpe2
->bpe_bp
;
1366 cmp
= TREE_CMP(DVA_GET_VDEV(&bp1
->blk_dva
[0]),
1367 DVA_GET_VDEV(&bp2
->blk_dva
[0]));
1369 cmp
= TREE_CMP(DVA_GET_OFFSET(&bp1
->blk_dva
[0]),
1370 DVA_GET_OFFSET(&bp2
->blk_dva
[0]));
1371 if (unlikely(cmp
== 0)) {
1372 cmp
= TREE_CMP(BP_GET_BIRTH(bp1
), BP_GET_BIRTH(bp2
));
1380 brt_pending_add(spa_t
*spa
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
1383 avl_tree_t
*pending_tree
;
1384 kmutex_t
*pending_lock
;
1385 brt_pending_entry_t
*bpe
, *newbpe
;
1390 txg
= dmu_tx_get_txg(tx
);
1391 ASSERT3U(txg
, !=, 0);
1392 pending_tree
= &brt
->brt_pending_tree
[txg
& TXG_MASK
];
1393 pending_lock
= &brt
->brt_pending_lock
[txg
& TXG_MASK
];
1395 newbpe
= kmem_cache_alloc(brt_pending_entry_cache
, KM_SLEEP
);
1396 newbpe
->bpe_bp
= *bp
;
1397 newbpe
->bpe_count
= 1;
1399 mutex_enter(pending_lock
);
1401 bpe
= avl_find(pending_tree
, newbpe
, &where
);
1403 avl_insert(pending_tree
, newbpe
, where
);
1409 mutex_exit(pending_lock
);
1411 if (newbpe
!= NULL
) {
1412 ASSERT(bpe
!= NULL
);
1413 ASSERT(bpe
!= newbpe
);
1414 kmem_cache_free(brt_pending_entry_cache
, newbpe
);
1416 ASSERT(bpe
== NULL
);
1418 /* Prefetch BRT entry for the syncing context. */
1419 brt_prefetch(brt
, bp
);
1424 brt_pending_remove(spa_t
*spa
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
1427 avl_tree_t
*pending_tree
;
1428 kmutex_t
*pending_lock
;
1429 brt_pending_entry_t
*bpe
, bpe_search
;
1433 txg
= dmu_tx_get_txg(tx
);
1434 ASSERT3U(txg
, !=, 0);
1435 pending_tree
= &brt
->brt_pending_tree
[txg
& TXG_MASK
];
1436 pending_lock
= &brt
->brt_pending_lock
[txg
& TXG_MASK
];
1438 bpe_search
.bpe_bp
= *bp
;
1440 mutex_enter(pending_lock
);
1442 bpe
= avl_find(pending_tree
, &bpe_search
, NULL
);
1443 /* I believe we should always find bpe when this function is called. */
1445 ASSERT(bpe
->bpe_count
> 0);
1448 if (bpe
->bpe_count
== 0) {
1449 avl_remove(pending_tree
, bpe
);
1450 kmem_cache_free(brt_pending_entry_cache
, bpe
);
1454 mutex_exit(pending_lock
);
1458 brt_pending_apply(spa_t
*spa
, uint64_t txg
)
1460 brt_t
*brt
= spa
->spa_brt
;
1461 brt_pending_entry_t
*bpe
;
1462 avl_tree_t
*pending_tree
;
1465 ASSERT3U(txg
, !=, 0);
1468 * We are in syncing context, so no other brt_pending_tree accesses
1469 * are possible for the TXG. Don't need to acquire brt_pending_lock.
1471 pending_tree
= &brt
->brt_pending_tree
[txg
& TXG_MASK
];
1474 while ((bpe
= avl_destroy_nodes(pending_tree
, &c
)) != NULL
) {
1475 boolean_t added_to_ddt
;
1477 for (int i
= 0; i
< bpe
->bpe_count
; i
++) {
1479 * If the block has DEDUP bit set, it means that it
1480 * already exists in the DEDUP table, so we can just
1481 * use that instead of creating new entry in
1484 if (BP_GET_DEDUP(&bpe
->bpe_bp
)) {
1485 added_to_ddt
= ddt_addref(spa
, &bpe
->bpe_bp
);
1487 added_to_ddt
= B_FALSE
;
1490 brt_entry_addref(brt
, &bpe
->bpe_bp
);
1493 kmem_cache_free(brt_pending_entry_cache
, bpe
);
1498 brt_sync_entry(dnode_t
*dn
, brt_entry_t
*bre
, dmu_tx_t
*tx
)
1500 if (bre
->bre_refcount
== 0) {
1501 int error
= zap_remove_uint64_by_dnode(dn
, &bre
->bre_offset
,
1503 VERIFY(error
== 0 || error
== ENOENT
);
1505 VERIFY0(zap_update_uint64_by_dnode(dn
, &bre
->bre_offset
,
1506 BRT_KEY_WORDS
, 1, sizeof (bre
->bre_refcount
),
1507 &bre
->bre_refcount
, tx
));
1512 brt_sync_table(brt_t
*brt
, dmu_tx_t
*tx
)
1522 for (vdevid
= 0; vdevid
< brt
->brt_nvdevs
; vdevid
++) {
1523 brtvd
= &brt
->brt_vdevs
[vdevid
];
1525 if (!brtvd
->bv_initiated
)
1528 if (!brtvd
->bv_meta_dirty
) {
1529 ASSERT(!brtvd
->bv_entcount_dirty
);
1530 ASSERT0(avl_numnodes(&brtvd
->bv_tree
));
1534 ASSERT(!brtvd
->bv_entcount_dirty
||
1535 avl_numnodes(&brtvd
->bv_tree
) != 0);
1537 if (brtvd
->bv_mos_brtvdev
== 0)
1538 brt_vdev_create(brt
, brtvd
, tx
);
1540 VERIFY0(dnode_hold(brt
->brt_mos
, brtvd
->bv_mos_entries
,
1544 while ((bre
= avl_destroy_nodes(&brtvd
->bv_tree
, &c
)) != NULL
) {
1545 brt_sync_entry(dn
, bre
, tx
);
1546 brt_entry_free(bre
);
1547 ASSERT(brt
->brt_nentries
> 0);
1548 brt
->brt_nentries
--;
1551 dnode_rele(dn
, FTAG
);
1553 brt_vdev_sync(brt
, brtvd
, tx
);
1555 if (brtvd
->bv_totalcount
== 0)
1556 brt_vdev_destroy(brt
, brtvd
, tx
);
1559 ASSERT0(brt
->brt_nentries
);
1565 brt_sync(spa_t
*spa
, uint64_t txg
)
1570 ASSERT(spa_syncing_txg(spa
) == txg
);
1574 if (brt
->brt_nentries
== 0) {
1581 tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
1583 brt_sync_table(brt
, tx
);
1589 brt_table_alloc(brt_t
*brt
)
1592 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1593 avl_create(&brt
->brt_pending_tree
[i
],
1594 brt_pending_entry_compare
,
1595 sizeof (brt_pending_entry_t
),
1596 offsetof(brt_pending_entry_t
, bpe_node
));
1597 mutex_init(&brt
->brt_pending_lock
[i
], NULL
, MUTEX_DEFAULT
,
1603 brt_table_free(brt_t
*brt
)
1606 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1607 ASSERT(avl_is_empty(&brt
->brt_pending_tree
[i
]));
1609 avl_destroy(&brt
->brt_pending_tree
[i
]);
1610 mutex_destroy(&brt
->brt_pending_lock
[i
]);
1615 brt_alloc(spa_t
*spa
)
1619 ASSERT(spa
->spa_brt
== NULL
);
1621 brt
= kmem_zalloc(sizeof (*brt
), KM_SLEEP
);
1622 rw_init(&brt
->brt_lock
, NULL
, RW_DEFAULT
, NULL
);
1624 brt
->brt_rangesize
= 0;
1625 brt
->brt_nentries
= 0;
1626 brt
->brt_vdevs
= NULL
;
1627 brt
->brt_nvdevs
= 0;
1628 brt_table_alloc(brt
);
1634 brt_create(spa_t
*spa
)
1638 brt_vdevs_alloc(spa
->spa_brt
, B_FALSE
);
1642 brt_load(spa_t
*spa
)
1646 brt_vdevs_alloc(spa
->spa_brt
, B_TRUE
);
1652 brt_unload(spa_t
*spa
)
1654 brt_t
*brt
= spa
->spa_brt
;
1659 brt_vdevs_free(brt
);
1660 brt_table_free(brt
);
1661 rw_destroy(&brt
->brt_lock
);
1662 kmem_free(brt
, sizeof (*brt
));
1663 spa
->spa_brt
= NULL
;
1667 ZFS_MODULE_PARAM(zfs_brt
, , brt_zap_prefetch
, INT
, ZMOD_RW
,
1668 "Enable prefetching of BRT ZAP entries");
1669 ZFS_MODULE_PARAM(zfs_brt
, , brt_zap_default_bs
, UINT
, ZMOD_RW
,
1670 "BRT ZAP leaf blockshift");
1671 ZFS_MODULE_PARAM(zfs_brt
, , brt_zap_default_ibs
, UINT
, ZMOD_RW
,
1672 "BRT ZAP indirect blockshift");