Reduce dirty records memory usage
[zfs.git] / module / zfs / ddt.c
blobe8b9fb498d4b4ea6acbbbc7f7bcfc6f926ee4745
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25 * Copyright (c) 2022 by Pawel Jakub Dawidek
26 * Copyright (c) 2019, 2023, Klara Inc.
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/ddt.h>
34 #include <sys/ddt_impl.h>
35 #include <sys/zap.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/arc.h>
38 #include <sys/dsl_pool.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dsl_scan.h>
41 #include <sys/abd.h>
42 #include <sys/zfeature.h>
45 * # DDT: Deduplication tables
47 * The dedup subsystem provides block-level deduplication. When enabled, blocks
48 * to be written will have the dedup (D) bit set, which causes them to be
49 * tracked in a "dedup table", or DDT. If a block has been seen before (exists
50 * in the DDT), instead of being written, it will instead be made to reference
51 * the existing on-disk data, and a refcount bumped in the DDT instead.
53 * ## Dedup tables and entries
55 * Conceptually, a DDT is a dictionary or map. Each entry has a "key"
56 * (ddt_key_t) made up a block's checksum and certian properties, and a "value"
57 * (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
58 * time and refcount. Together these are enough to track references to a
59 * specific block, to build a valid block pointer to reference that block (for
60 * freeing, scrubbing, etc), and to fill a new block pointer with the missing
61 * pieces to make it seem like it was written.
63 * There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
64 * Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
65 * object data formats, each with their own implementations) and "classes"
66 * (ddt_class_t, instance of a storage type object, for entries with a specific
67 * characteristic). An entry (key) will only ever exist on one of these objects
68 * at any given time, but may be moved from one to another if their type or
69 * class changes.
71 * The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
72 * is to be written, before DVAs have been allocated, ddt_lookup() is called to
73 * see if the block has been seen before. If its not found, the write proceeds
74 * as normal, and after it succeeds, a new entry is created. If it is found, we
75 * fill the BP with the DVAs from the entry, increment the refcount and cause
76 * the write IO to return immediately.
78 * Traditionally, each ddt_phys_t slot in the entry represents a separate dedup
79 * block for the same content/checksum. The slot is selected based on the
80 * zp_copies parameter the block is written with, that is, the number of DVAs
81 * in the block. The "ditto" slot (DDT_PHYS_DITTO) used to be used for
82 * now-removed "dedupditto" feature. These are no longer written, and will be
83 * freed if encountered on old pools.
85 * If the "fast_dedup" feature is enabled, new dedup tables will be created
86 * with the "flat phys" option. In this mode, there is only one ddt_phys_t
87 * slot. If a write is issued for an entry that exists, but has fewer DVAs,
88 * then only as many new DVAs are allocated and written to make up the
89 * shortfall. The existing entry is then extended (ddt_phys_extend()) with the
90 * new DVAs.
92 * ## Lifetime of an entry
94 * A DDT can be enormous, and typically is not held in memory all at once.
95 * Instead, the changes to an entry are tracked in memory, and written down to
96 * disk at the end of each txg.
98 * A "live" in-memory entry (ddt_entry_t) is a node on the live tree
99 * (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is
100 * required for IO, ddt_lookup() is called. If an entry already exists on
101 * ddt_tree, it is returned. Otherwise, a new one is created, and the
102 * type/class objects for the DDT are searched for that key. If its found, its
103 * value is copied into the live entry. If not, an empty entry is created.
105 * The live entry will be modified during the txg, usually by modifying the
106 * refcount, but sometimes by adding or updating DVAs. At the end of the txg
107 * (during spa_sync()), type and class are recalculated for entry (see
108 * ddt_sync_entry()), and the entry is written to the appropriate storage
109 * object and (if necessary), removed from an old one. ddt_tree is cleared and
110 * the next txg can start.
112 * ## Dedup quota
114 * A maximum size for all DDTs on the pool can be set with the
115 * dedup_table_quota property. This is determined in ddt_over_quota() and
116 * enforced during ddt_lookup(). If the pool is at or over its quota limit,
117 * ddt_lookup() will only return entries for existing blocks, as updates are
118 * still possible. New entries will not be created; instead, ddt_lookup() will
119 * return NULL. In response, the DDT write stage (zio_ddt_write()) will remove
120 * the D bit on the block and reissue the IO as a regular write. The block will
121 * not be deduplicated.
123 * Note that this is based on the on-disk size of the dedup store. Reclaiming
124 * this space after deleting entries relies on the ZAP "shrinking" behaviour,
125 * without which, no space would be recovered and the DDT would continue to be
126 * considered "over quota". See zap_shrink_enabled.
128 * ## Dedup table pruning
130 * As a complement to the dedup quota feature, ddtprune allows removal of older
131 * non-duplicate entries to make room for newer duplicate entries. The amount
132 * to prune can be based on a target percentage of the unique entries or based
133 * on the age (i.e., prune unique entry older than N days).
135 * ## Dedup log
137 * Historically, all entries modified on a txg were written back to dedup
138 * storage objects at the end of every txg. This could cause significant
139 * overheads, as each entry only takes up a tiny portion of a ZAP leaf node,
140 * and so required reading the whole node, updating the entry, and writing it
141 * back. On busy pools, this could add serious IO and memory overheads.
143 * To address this, the dedup log was added. If the "fast_dedup" feature is
144 * enabled, at the end of each txg, modified entries will be copied to an
145 * in-memory "log" object (ddt_log_t), and appended to an on-disk log. If the
146 * same block is requested again, the in-memory object will be checked first,
147 * and if its there, the entry inflated back onto the live tree without going
148 * to storage. The on-disk log is only read at pool import time, to reload the
149 * in-memory log.
151 * Each txg, some amount of the in-memory log will be flushed out to a DDT
152 * storage object (ie ZAP) as normal. OpenZFS will try hard to flush enough to
153 * keep up with the rate of change on dedup entries, but not so much that it
154 * would impact overall throughput, and not using too much memory. See the
155 * zfs_dedup_log_* tuneables in zfs(4) for more details.
157 * ## Repair IO
159 * If a read on a dedup block fails, but there are other copies of the block in
160 * the other ddt_phys_t slots, reads will be issued for those instead
161 * (zio_ddt_read_start()). If one of those succeeds, the read is returned to
162 * the caller, and a copy is stashed on the entry's dde_repair_abd.
164 * During the end-of-txg sync, any entries with a dde_repair_abd get a
165 * "rewrite" write issued for the original block pointer, with the data read
166 * from the alternate block. If the block is actually damaged, this will invoke
167 * the pool's "self-healing" mechanism, and repair the block.
169 * If the "fast_dedup" feature is enabled, the "flat phys" option will be in
170 * use, so there is only ever one ddt_phys_t slot. The repair process will
171 * still happen in this case, though it is unlikely to succeed as there will
172 * usually be no other equivalent blocks to fall back on (though there might
173 * be, if this was an early version of a dedup'd block that has since been
174 * extended).
176 * Note that this repair mechanism is in addition to and separate from the
177 * regular OpenZFS scrub and self-healing mechanisms.
179 * ## Scanning (scrub/resilver)
181 * If dedup is active, the scrub machinery will walk the dedup table first, and
182 * scrub all blocks with refcnt > 1 first. After that it will move on to the
183 * regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
184 * In this way, heavily deduplicated blocks are only scrubbed once. See the
185 * commentary on dsl_scan_ddt() for more details.
187 * Walking the DDT is done via ddt_walk(). The current position is stored in a
188 * ddt_bookmark_t, which represents a stable position in the storage object.
189 * This bookmark is stored by the scan machinery, and must reference the same
190 * position on the object even if the object changes, the pool is exported, or
191 * OpenZFS is upgraded.
193 * If the "fast_dedup" feature is enabled and the table has a log, the scan
194 * cannot begin until entries on the log are flushed, as the on-disk log has no
195 * concept of a "stable position". Instead, the log flushing process will enter
196 * a more aggressive mode, to flush out as much as is necesary as soon as
197 * possible, in order to begin the scan as soon as possible.
199 * ## Interaction with block cloning
201 * If block cloning and dedup are both enabled on a pool, BRT will look for the
202 * dedup bit on an incoming block pointer. If set, it will call into the DDT
203 * (ddt_addref()) to add a reference to the block, instead of adding a
204 * reference to the BRT. See brt_pending_apply().
208 * These are the only checksums valid for dedup. They must match the list
209 * from dedup_table in zfs_prop.c
211 #define DDT_CHECKSUM_VALID(c) \
212 (c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
213 c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
214 c == ZIO_CHECKSUM_BLAKE3)
216 static kmem_cache_t *ddt_cache;
218 static kmem_cache_t *ddt_entry_flat_cache;
219 static kmem_cache_t *ddt_entry_trad_cache;
221 #define DDT_ENTRY_FLAT_SIZE (sizeof (ddt_entry_t) + DDT_FLAT_PHYS_SIZE)
222 #define DDT_ENTRY_TRAD_SIZE (sizeof (ddt_entry_t) + DDT_TRAD_PHYS_SIZE)
224 #define DDT_ENTRY_SIZE(ddt) \
225 _DDT_PHYS_SWITCH(ddt, DDT_ENTRY_FLAT_SIZE, DDT_ENTRY_TRAD_SIZE)
228 * Enable/disable prefetching of dedup-ed blocks which are going to be freed.
230 int zfs_dedup_prefetch = 0;
233 * If the dedup class cannot satisfy a DDT allocation, treat as over quota
234 * for this many TXGs.
236 uint_t dedup_class_wait_txgs = 5;
239 * How many DDT prune entries to add to the DDT sync AVL tree.
240 * Note these addtional entries have a memory footprint of a
241 * ddt_entry_t (216 bytes).
243 static uint32_t zfs_ddt_prunes_per_txg = 50000;
246 * For testing, synthesize aged DDT entries
247 * (in global scope for ztest)
249 boolean_t ddt_prune_artificial_age = B_FALSE;
250 boolean_t ddt_dump_prune_histogram = B_FALSE;
253 * Don't do more than this many incremental flush passes per txg.
255 uint_t zfs_dedup_log_flush_passes_max = 8;
258 * Minimum time to flush per txg.
260 uint_t zfs_dedup_log_flush_min_time_ms = 1000;
263 * Minimum entries to flush per txg.
265 uint_t zfs_dedup_log_flush_entries_min = 1000;
268 * Number of txgs to average flow rates across.
270 uint_t zfs_dedup_log_flush_flow_rate_txgs = 10;
272 static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
273 &ddt_zap_ops,
276 static const char *const ddt_class_name[DDT_CLASSES] = {
277 "ditto",
278 "duplicate",
279 "unique",
283 * DDT feature flags automatically enabled for each on-disk version. Note that
284 * versions >0 cannot exist on disk without SPA_FEATURE_FAST_DEDUP enabled.
286 static const uint64_t ddt_version_flags[] = {
287 [DDT_VERSION_LEGACY] = 0,
288 [DDT_VERSION_FDT] = DDT_FLAG_FLAT | DDT_FLAG_LOG,
291 /* per-DDT kstats */
292 typedef struct {
293 /* total lookups and whether they returned new or existing entries */
294 kstat_named_t dds_lookup;
295 kstat_named_t dds_lookup_new;
296 kstat_named_t dds_lookup_existing;
298 /* entries found on live tree, and if we had to wait for load */
299 kstat_named_t dds_lookup_live_hit;
300 kstat_named_t dds_lookup_live_wait;
301 kstat_named_t dds_lookup_live_miss;
303 /* entries found on log trees */
304 kstat_named_t dds_lookup_log_hit;
305 kstat_named_t dds_lookup_log_active_hit;
306 kstat_named_t dds_lookup_log_flushing_hit;
307 kstat_named_t dds_lookup_log_miss;
309 /* entries found on store objects */
310 kstat_named_t dds_lookup_stored_hit;
311 kstat_named_t dds_lookup_stored_miss;
313 /* number of entries on log trees */
314 kstat_named_t dds_log_active_entries;
315 kstat_named_t dds_log_flushing_entries;
317 /* avg updated/flushed entries per txg */
318 kstat_named_t dds_log_ingest_rate;
319 kstat_named_t dds_log_flush_rate;
320 kstat_named_t dds_log_flush_time_rate;
321 } ddt_kstats_t;
323 static const ddt_kstats_t ddt_kstats_template = {
324 { "lookup", KSTAT_DATA_UINT64 },
325 { "lookup_new", KSTAT_DATA_UINT64 },
326 { "lookup_existing", KSTAT_DATA_UINT64 },
327 { "lookup_live_hit", KSTAT_DATA_UINT64 },
328 { "lookup_live_wait", KSTAT_DATA_UINT64 },
329 { "lookup_live_miss", KSTAT_DATA_UINT64 },
330 { "lookup_log_hit", KSTAT_DATA_UINT64 },
331 { "lookup_log_active_hit", KSTAT_DATA_UINT64 },
332 { "lookup_log_flushing_hit", KSTAT_DATA_UINT64 },
333 { "lookup_log_miss", KSTAT_DATA_UINT64 },
334 { "lookup_stored_hit", KSTAT_DATA_UINT64 },
335 { "lookup_stored_miss", KSTAT_DATA_UINT64 },
336 { "log_active_entries", KSTAT_DATA_UINT64 },
337 { "log_flushing_entries", KSTAT_DATA_UINT64 },
338 { "log_ingest_rate", KSTAT_DATA_UINT32 },
339 { "log_flush_rate", KSTAT_DATA_UINT32 },
340 { "log_flush_time_rate", KSTAT_DATA_UINT32 },
343 #ifdef _KERNEL
344 #define _DDT_KSTAT_STAT(ddt, stat) \
345 &((ddt_kstats_t *)(ddt)->ddt_ksp->ks_data)->stat.value.ui64
346 #define DDT_KSTAT_BUMP(ddt, stat) \
347 do { atomic_inc_64(_DDT_KSTAT_STAT(ddt, stat)); } while (0)
348 #define DDT_KSTAT_ADD(ddt, stat, val) \
349 do { atomic_add_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
350 #define DDT_KSTAT_SUB(ddt, stat, val) \
351 do { atomic_sub_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
352 #define DDT_KSTAT_SET(ddt, stat, val) \
353 do { atomic_store_64(_DDT_KSTAT_STAT(ddt, stat), val); } while (0)
354 #define DDT_KSTAT_ZERO(ddt, stat) DDT_KSTAT_SET(ddt, stat, 0)
355 #else
356 #define DDT_KSTAT_BUMP(ddt, stat) do {} while (0)
357 #define DDT_KSTAT_ADD(ddt, stat, val) do {} while (0)
358 #define DDT_KSTAT_SUB(ddt, stat, val) do {} while (0)
359 #define DDT_KSTAT_SET(ddt, stat, val) do {} while (0)
360 #define DDT_KSTAT_ZERO(ddt, stat) do {} while (0)
361 #endif /* _KERNEL */
364 static void
365 ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
366 dmu_tx_t *tx)
368 spa_t *spa = ddt->ddt_spa;
369 objset_t *os = ddt->ddt_os;
370 uint64_t *objectp = &ddt->ddt_object[type][class];
371 boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
372 ZCHECKSUM_FLAG_DEDUP;
373 char name[DDT_NAMELEN];
375 ASSERT3U(ddt->ddt_dir_object, >, 0);
377 ddt_object_name(ddt, type, class, name);
379 ASSERT3U(*objectp, ==, 0);
380 VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
381 ASSERT3U(*objectp, !=, 0);
383 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
385 VERIFY0(zap_add(os, ddt->ddt_dir_object, name, sizeof (uint64_t), 1,
386 objectp, tx));
388 VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
389 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
390 &ddt->ddt_histogram[type][class], tx));
393 static void
394 ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
395 dmu_tx_t *tx)
397 spa_t *spa = ddt->ddt_spa;
398 objset_t *os = ddt->ddt_os;
399 uint64_t *objectp = &ddt->ddt_object[type][class];
400 uint64_t count;
401 char name[DDT_NAMELEN];
403 ASSERT3U(ddt->ddt_dir_object, >, 0);
405 ddt_object_name(ddt, type, class, name);
407 ASSERT3U(*objectp, !=, 0);
408 ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
409 VERIFY0(ddt_object_count(ddt, type, class, &count));
410 VERIFY0(count);
411 VERIFY0(zap_remove(os, ddt->ddt_dir_object, name, tx));
412 VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
413 VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
414 memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));
416 *objectp = 0;
419 static int
420 ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
422 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
423 dmu_object_info_t doi;
424 uint64_t count;
425 char name[DDT_NAMELEN];
426 int error;
428 if (ddt->ddt_dir_object == 0) {
430 * If we're configured but the containing dir doesn't exist
431 * yet, then this object can't possibly exist either.
433 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
434 return (SET_ERROR(ENOENT));
437 ddt_object_name(ddt, type, class, name);
439 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object, name,
440 sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
441 if (error != 0)
442 return (error);
444 error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
445 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
446 &ddt->ddt_histogram[type][class]);
447 if (error != 0)
448 return (error);
451 * Seed the cached statistics.
453 error = ddt_object_info(ddt, type, class, &doi);
454 if (error)
455 return (error);
457 error = ddt_object_count(ddt, type, class, &count);
458 if (error)
459 return (error);
461 ddo->ddo_count = count;
462 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
463 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
465 return (0);
468 static void
469 ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
470 dmu_tx_t *tx)
472 ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
473 dmu_object_info_t doi;
474 uint64_t count;
475 char name[DDT_NAMELEN];
477 ddt_object_name(ddt, type, class, name);
479 VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
480 sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
481 &ddt->ddt_histogram[type][class], tx));
484 * Cache DDT statistics; this is the only time they'll change.
486 VERIFY0(ddt_object_info(ddt, type, class, &doi));
487 VERIFY0(ddt_object_count(ddt, type, class, &count));
489 ddo->ddo_count = count;
490 ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
491 ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
494 static boolean_t
495 ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
497 return (!!ddt->ddt_object[type][class]);
500 static int
501 ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
502 ddt_entry_t *dde)
504 if (!ddt_object_exists(ddt, type, class))
505 return (SET_ERROR(ENOENT));
507 return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
508 ddt->ddt_object[type][class], &dde->dde_key,
509 dde->dde_phys, DDT_PHYS_SIZE(ddt)));
512 static int
513 ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
514 const ddt_key_t *ddk)
516 if (!ddt_object_exists(ddt, type, class))
517 return (SET_ERROR(ENOENT));
519 return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
520 ddt->ddt_object[type][class], ddk));
523 static void
524 ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
525 const ddt_key_t *ddk)
527 if (!ddt_object_exists(ddt, type, class))
528 return;
530 ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
531 ddt->ddt_object[type][class], ddk);
534 static void
535 ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
537 if (!ddt_object_exists(ddt, type, class))
538 return;
540 ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os,
541 ddt->ddt_object[type][class]);
544 static int
545 ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
546 const ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
548 ASSERT(ddt_object_exists(ddt, type, class));
550 return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
551 ddt->ddt_object[type][class], &ddlwe->ddlwe_key,
552 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt), tx));
555 static int
556 ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
557 const ddt_key_t *ddk, dmu_tx_t *tx)
559 ASSERT(ddt_object_exists(ddt, type, class));
561 return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
562 ddt->ddt_object[type][class], ddk, tx));
566 ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
567 uint64_t *walk, ddt_lightweight_entry_t *ddlwe)
569 ASSERT(ddt_object_exists(ddt, type, class));
571 int error = ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
572 ddt->ddt_object[type][class], walk, &ddlwe->ddlwe_key,
573 &ddlwe->ddlwe_phys, DDT_PHYS_SIZE(ddt));
574 if (error == 0) {
575 ddlwe->ddlwe_type = type;
576 ddlwe->ddlwe_class = class;
577 return (0);
579 return (error);
583 ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
584 uint64_t *count)
586 ASSERT(ddt_object_exists(ddt, type, class));
588 return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
589 ddt->ddt_object[type][class], count));
593 ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
594 dmu_object_info_t *doi)
596 if (!ddt_object_exists(ddt, type, class))
597 return (SET_ERROR(ENOENT));
599 return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
600 doi));
603 void
604 ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
605 char *name)
607 (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
608 zio_checksum_table[ddt->ddt_checksum].ci_name,
609 ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
612 void
613 ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
614 blkptr_t *bp, uint64_t txg)
616 ASSERT3U(txg, !=, 0);
617 ASSERT3U(v, <, DDT_PHYS_NONE);
618 uint64_t phys_birth;
619 const dva_t *dvap;
621 if (v == DDT_PHYS_FLAT) {
622 phys_birth = ddp->ddp_flat.ddp_phys_birth;
623 dvap = ddp->ddp_flat.ddp_dva;
624 } else {
625 phys_birth = ddp->ddp_trad[v].ddp_phys_birth;
626 dvap = ddp->ddp_trad[v].ddp_dva;
629 for (int d = 0; d < SPA_DVAS_PER_BP; d++)
630 bp->blk_dva[d] = dvap[d];
631 BP_SET_BIRTH(bp, txg, phys_birth);
635 * The bp created via this function may be used for repairs and scrub, but it
636 * will be missing the salt / IV required to do a full decrypting read.
638 void
639 ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk,
640 const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp)
642 BP_ZERO(bp);
644 if (ddp != NULL)
645 ddt_bp_fill(ddp, v, bp, ddt_phys_birth(ddp, v));
647 bp->blk_cksum = ddk->ddk_cksum;
649 BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
650 BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
651 BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
652 BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
653 BP_SET_FILL(bp, 1);
654 BP_SET_CHECKSUM(bp, checksum);
655 BP_SET_TYPE(bp, DMU_OT_DEDUP);
656 BP_SET_LEVEL(bp, 0);
657 BP_SET_DEDUP(bp, 1);
658 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
661 void
662 ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
664 ddk->ddk_cksum = bp->blk_cksum;
665 ddk->ddk_prop = 0;
667 ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));
669 DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
670 DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
671 DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
672 DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
675 void
676 ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v, const blkptr_t *bp)
678 ASSERT3U(v, <, DDT_PHYS_NONE);
679 int bp_ndvas = BP_GET_NDVAS(bp);
680 int ddp_max_dvas = BP_IS_ENCRYPTED(bp) ?
681 SPA_DVAS_PER_BP - 1 : SPA_DVAS_PER_BP;
682 dva_t *dvas = (v == DDT_PHYS_FLAT) ?
683 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
685 int s = 0, d = 0;
686 while (s < bp_ndvas && d < ddp_max_dvas) {
687 if (DVA_IS_VALID(&dvas[d])) {
688 d++;
689 continue;
691 dvas[d] = bp->blk_dva[s];
692 s++; d++;
696 * If the caller offered us more DVAs than we can fit, something has
697 * gone wrong in their accounting. zio_ddt_write() should never ask for
698 * more than we need.
700 ASSERT3U(s, ==, bp_ndvas);
702 if (BP_IS_ENCRYPTED(bp))
703 dvas[2] = bp->blk_dva[2];
705 if (ddt_phys_birth(ddp, v) == 0) {
706 if (v == DDT_PHYS_FLAT)
707 ddp->ddp_flat.ddp_phys_birth = BP_GET_BIRTH(bp);
708 else
709 ddp->ddp_trad[v].ddp_phys_birth = BP_GET_BIRTH(bp);
713 void
714 ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src,
715 ddt_phys_variant_t v)
717 ASSERT3U(v, <, DDT_PHYS_NONE);
719 if (v == DDT_PHYS_FLAT)
720 dst->ddp_flat = src->ddp_flat;
721 else
722 dst->ddp_trad[v] = src->ddp_trad[v];
725 void
726 ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
728 ASSERT3U(v, <, DDT_PHYS_NONE);
730 if (v == DDT_PHYS_FLAT)
731 memset(&ddp->ddp_flat, 0, DDT_FLAT_PHYS_SIZE);
732 else
733 memset(&ddp->ddp_trad[v], 0, DDT_TRAD_PHYS_SIZE / DDT_PHYS_MAX);
736 static uint64_t
737 ddt_class_start(void)
739 uint64_t start = gethrestime_sec();
741 if (ddt_prune_artificial_age) {
743 * debug aide -- simulate a wider distribution
744 * so we don't have to wait for an aged DDT
745 * to test prune.
747 int range = 1 << 21;
748 int percent = random_in_range(100);
749 if (percent < 50) {
750 range = range >> 4;
751 } else if (percent > 75) {
752 range /= 2;
754 start -= random_in_range(range);
757 return (start);
760 void
761 ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
763 ASSERT3U(v, <, DDT_PHYS_NONE);
765 if (v == DDT_PHYS_FLAT)
766 ddp->ddp_flat.ddp_refcnt++;
767 else
768 ddp->ddp_trad[v].ddp_refcnt++;
771 uint64_t
772 ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
774 ASSERT3U(v, <, DDT_PHYS_NONE);
776 uint64_t *refcntp;
778 if (v == DDT_PHYS_FLAT)
779 refcntp = &ddp->ddp_flat.ddp_refcnt;
780 else
781 refcntp = &ddp->ddp_trad[v].ddp_refcnt;
783 ASSERT3U(*refcntp, >, 0);
784 (*refcntp)--;
785 return (*refcntp);
788 static void
789 ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_univ_phys_t *ddp,
790 ddt_phys_variant_t v, uint64_t txg)
792 blkptr_t blk;
794 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
797 * We clear the dedup bit so that zio_free() will actually free the
798 * space, rather than just decrementing the refcount in the DDT.
800 BP_SET_DEDUP(&blk, 0);
802 ddt_phys_clear(ddp, v);
803 zio_free(ddt->ddt_spa, txg, &blk);
806 uint64_t
807 ddt_phys_birth(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
809 ASSERT3U(v, <, DDT_PHYS_NONE);
811 if (v == DDT_PHYS_FLAT)
812 return (ddp->ddp_flat.ddp_phys_birth);
813 else
814 return (ddp->ddp_trad[v].ddp_phys_birth);
818 ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
819 boolean_t encrypted)
821 ASSERT3U(v, <, DDT_PHYS_NONE);
823 const dva_t *dvas = (v == DDT_PHYS_FLAT) ?
824 ddp->ddp_flat.ddp_dva : ddp->ddp_trad[v].ddp_dva;
826 return (DVA_IS_VALID(&dvas[0]) +
827 DVA_IS_VALID(&dvas[1]) +
828 DVA_IS_VALID(&dvas[2]) * !encrypted);
831 ddt_phys_variant_t
832 ddt_phys_select(const ddt_t *ddt, const ddt_entry_t *dde, const blkptr_t *bp)
834 if (dde == NULL)
835 return (DDT_PHYS_NONE);
837 const ddt_univ_phys_t *ddp = dde->dde_phys;
839 if (ddt->ddt_flags & DDT_FLAG_FLAT) {
840 if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_flat.ddp_dva[0]) &&
841 BP_GET_BIRTH(bp) == ddp->ddp_flat.ddp_phys_birth) {
842 return (DDT_PHYS_FLAT);
844 } else /* traditional phys */ {
845 for (int p = 0; p < DDT_PHYS_MAX; p++) {
846 if (DVA_EQUAL(BP_IDENTITY(bp),
847 &ddp->ddp_trad[p].ddp_dva[0]) &&
848 BP_GET_BIRTH(bp) ==
849 ddp->ddp_trad[p].ddp_phys_birth) {
850 return (p);
854 return (DDT_PHYS_NONE);
857 uint64_t
858 ddt_phys_refcnt(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v)
860 ASSERT3U(v, <, DDT_PHYS_NONE);
862 if (v == DDT_PHYS_FLAT)
863 return (ddp->ddp_flat.ddp_refcnt);
864 else
865 return (ddp->ddp_trad[v].ddp_refcnt);
868 uint64_t
869 ddt_phys_total_refcnt(const ddt_t *ddt, const ddt_univ_phys_t *ddp)
871 uint64_t refcnt = 0;
873 if (ddt->ddt_flags & DDT_FLAG_FLAT)
874 refcnt = ddp->ddp_flat.ddp_refcnt;
875 else
876 for (int v = DDT_PHYS_SINGLE; v <= DDT_PHYS_TRIPLE; v++)
877 refcnt += ddp->ddp_trad[v].ddp_refcnt;
879 return (refcnt);
882 ddt_t *
883 ddt_select(spa_t *spa, const blkptr_t *bp)
885 ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
886 return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
889 void
890 ddt_enter(ddt_t *ddt)
892 mutex_enter(&ddt->ddt_lock);
895 void
896 ddt_exit(ddt_t *ddt)
898 mutex_exit(&ddt->ddt_lock);
901 void
902 ddt_init(void)
904 ddt_cache = kmem_cache_create("ddt_cache",
905 sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
906 ddt_entry_flat_cache = kmem_cache_create("ddt_entry_flat_cache",
907 DDT_ENTRY_FLAT_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
908 ddt_entry_trad_cache = kmem_cache_create("ddt_entry_trad_cache",
909 DDT_ENTRY_TRAD_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
911 ddt_log_init();
914 void
915 ddt_fini(void)
917 ddt_log_fini();
919 kmem_cache_destroy(ddt_entry_trad_cache);
920 kmem_cache_destroy(ddt_entry_flat_cache);
921 kmem_cache_destroy(ddt_cache);
924 static ddt_entry_t *
925 ddt_alloc(const ddt_t *ddt, const ddt_key_t *ddk)
927 ddt_entry_t *dde;
929 if (ddt->ddt_flags & DDT_FLAG_FLAT) {
930 dde = kmem_cache_alloc(ddt_entry_flat_cache, KM_SLEEP);
931 memset(dde, 0, DDT_ENTRY_FLAT_SIZE);
932 } else {
933 dde = kmem_cache_alloc(ddt_entry_trad_cache, KM_SLEEP);
934 memset(dde, 0, DDT_ENTRY_TRAD_SIZE);
937 cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
939 dde->dde_key = *ddk;
941 return (dde);
944 void
945 ddt_alloc_entry_io(ddt_entry_t *dde)
947 if (dde->dde_io != NULL)
948 return;
950 dde->dde_io = kmem_zalloc(sizeof (ddt_entry_io_t), KM_SLEEP);
953 static void
954 ddt_free(const ddt_t *ddt, ddt_entry_t *dde)
956 if (dde->dde_io != NULL) {
957 for (int p = 0; p < DDT_NPHYS(ddt); p++)
958 ASSERT3P(dde->dde_io->dde_lead_zio[p], ==, NULL);
960 if (dde->dde_io->dde_repair_abd != NULL)
961 abd_free(dde->dde_io->dde_repair_abd);
963 kmem_free(dde->dde_io, sizeof (ddt_entry_io_t));
966 cv_destroy(&dde->dde_cv);
967 kmem_cache_free(ddt->ddt_flags & DDT_FLAG_FLAT ?
968 ddt_entry_flat_cache : ddt_entry_trad_cache, dde);
971 void
972 ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
974 ASSERT(MUTEX_HELD(&ddt->ddt_lock));
976 /* Entry is still in the log, so charge the entry back to it */
977 if (dde->dde_flags & DDE_FLAG_LOGGED) {
978 ddt_lightweight_entry_t ddlwe;
979 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
980 ddt_histogram_add_entry(ddt, &ddt->ddt_log_histogram, &ddlwe);
983 avl_remove(&ddt->ddt_tree, dde);
984 ddt_free(ddt, dde);
987 static boolean_t
988 ddt_special_over_quota(spa_t *spa, metaslab_class_t *mc)
990 if (mc != NULL && metaslab_class_get_space(mc) > 0) {
991 /* Over quota if allocating outside of this special class */
992 if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg +
993 dedup_class_wait_txgs) {
994 /* Waiting for some deferred frees to be processed */
995 return (B_TRUE);
999 * We're considered over quota when we hit 85% full, or for
1000 * larger drives, when there is less than 8GB free.
1002 uint64_t allocated = metaslab_class_get_alloc(mc);
1003 uint64_t capacity = metaslab_class_get_space(mc);
1004 uint64_t limit = MAX(capacity * 85 / 100,
1005 (capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0);
1007 return (allocated >= limit);
1009 return (B_FALSE);
1013 * Check if the DDT is over its quota. This can be due to a few conditions:
1014 * 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize
1015 * exceeds this limit
1017 * 2. 'dedup_table_quota' property is set to automatic and
1018 * a. the dedup or special allocation class could not satisfy a DDT
1019 * allocation in a recent transaction
1020 * b. the dedup or special allocation class has exceeded its 85% limit
1022 static boolean_t
1023 ddt_over_quota(spa_t *spa)
1025 if (spa->spa_dedup_table_quota == 0)
1026 return (B_FALSE);
1028 if (spa->spa_dedup_table_quota != UINT64_MAX)
1029 return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota);
1032 * For automatic quota, table size is limited by dedup or special class
1034 if (ddt_special_over_quota(spa, spa_dedup_class(spa)))
1035 return (B_TRUE);
1036 else if (spa_special_has_ddt(spa) &&
1037 ddt_special_over_quota(spa, spa_special_class(spa)))
1038 return (B_TRUE);
1040 return (B_FALSE);
1043 void
1044 ddt_prefetch_all(spa_t *spa)
1047 * Load all DDT entries for each type/class combination. This is
1048 * indended to perform a prefetch on all such blocks. For the same
1049 * reason that ddt_prefetch isn't locked, this is also not locked.
1051 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1052 ddt_t *ddt = spa->spa_ddt[c];
1053 if (!ddt)
1054 continue;
1056 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1057 for (ddt_class_t class = 0; class < DDT_CLASSES;
1058 class++) {
1059 ddt_object_prefetch_all(ddt, type, class);
1065 static int ddt_configure(ddt_t *ddt, boolean_t new);
1068 * If the BP passed to ddt_lookup has valid DVAs, then we need to compare them
1069 * to the ones in the entry. If they're different, then the passed-in BP is
1070 * from a previous generation of this entry (ie was previously pruned) and we
1071 * have to act like the entry doesn't exist at all.
1073 * This should only happen during a lookup to free the block (zio_ddt_free()).
1075 * XXX this is similar in spirit to ddt_phys_select(), maybe can combine
1076 * -- robn, 2024-02-09
1078 static boolean_t
1079 ddt_entry_lookup_is_valid(ddt_t *ddt, const blkptr_t *bp, ddt_entry_t *dde)
1081 /* If the BP has no DVAs, then this entry is good */
1082 uint_t ndvas = BP_GET_NDVAS(bp);
1083 if (ndvas == 0)
1084 return (B_TRUE);
1087 * Only checking the phys for the copies. For flat, there's only one;
1088 * for trad it'll be the one that has the matching set of DVAs.
1090 const dva_t *dvas = (ddt->ddt_flags & DDT_FLAG_FLAT) ?
1091 dde->dde_phys->ddp_flat.ddp_dva :
1092 dde->dde_phys->ddp_trad[ndvas].ddp_dva;
1095 * Compare entry DVAs with the BP. They should all be there, but
1096 * there's not really anything we can do if its only partial anyway,
1097 * that's an error somewhere else, maybe long ago.
1099 uint_t d;
1100 for (d = 0; d < ndvas; d++)
1101 if (!DVA_EQUAL(&dvas[d], &bp->blk_dva[d]))
1102 return (B_FALSE);
1103 ASSERT3U(d, ==, ndvas);
1105 return (B_TRUE);
1108 ddt_entry_t *
1109 ddt_lookup(ddt_t *ddt, const blkptr_t *bp)
1111 spa_t *spa = ddt->ddt_spa;
1112 ddt_key_t search;
1113 ddt_entry_t *dde;
1114 ddt_type_t type;
1115 ddt_class_t class;
1116 avl_index_t where;
1117 int error;
1119 ASSERT(MUTEX_HELD(&ddt->ddt_lock));
1121 if (ddt->ddt_version == DDT_VERSION_UNCONFIGURED) {
1123 * This is the first use of this DDT since the pool was
1124 * created; finish getting it ready for use.
1126 VERIFY0(ddt_configure(ddt, B_TRUE));
1127 ASSERT3U(ddt->ddt_version, !=, DDT_VERSION_UNCONFIGURED);
1130 DDT_KSTAT_BUMP(ddt, dds_lookup);
1132 ddt_key_fill(&search, bp);
1134 /* Find an existing live entry */
1135 dde = avl_find(&ddt->ddt_tree, &search, &where);
1136 if (dde != NULL) {
1137 /* If we went over quota, act like we didn't find it */
1138 if (dde->dde_flags & DDE_FLAG_OVERQUOTA)
1139 return (NULL);
1141 /* If it's already loaded, we can just return it. */
1142 DDT_KSTAT_BUMP(ddt, dds_lookup_live_hit);
1143 if (dde->dde_flags & DDE_FLAG_LOADED) {
1144 if (ddt_entry_lookup_is_valid(ddt, bp, dde))
1145 return (dde);
1146 return (NULL);
1149 /* Someone else is loading it, wait for it. */
1150 dde->dde_waiters++;
1151 DDT_KSTAT_BUMP(ddt, dds_lookup_live_wait);
1152 while (!(dde->dde_flags & DDE_FLAG_LOADED))
1153 cv_wait(&dde->dde_cv, &ddt->ddt_lock);
1154 dde->dde_waiters--;
1156 /* Loaded but over quota, forget we were ever here */
1157 if (dde->dde_flags & DDE_FLAG_OVERQUOTA) {
1158 if (dde->dde_waiters == 0) {
1159 avl_remove(&ddt->ddt_tree, dde);
1160 ddt_free(ddt, dde);
1162 return (NULL);
1165 DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1167 /* Make sure the loaded entry matches the BP */
1168 if (ddt_entry_lookup_is_valid(ddt, bp, dde))
1169 return (dde);
1170 return (NULL);
1171 } else
1172 DDT_KSTAT_BUMP(ddt, dds_lookup_live_miss);
1174 /* Time to make a new entry. */
1175 dde = ddt_alloc(ddt, &search);
1177 /* Record the time this class was created (used by ddt prune) */
1178 if (ddt->ddt_flags & DDT_FLAG_FLAT)
1179 dde->dde_phys->ddp_flat.ddp_class_start = ddt_class_start();
1181 avl_insert(&ddt->ddt_tree, dde, where);
1183 /* If its in the log tree, we can "load" it from there */
1184 if (ddt->ddt_flags & DDT_FLAG_LOG) {
1185 ddt_lightweight_entry_t ddlwe;
1187 if (ddt_log_find_key(ddt, &search, &ddlwe)) {
1189 * See if we have the key first, and if so, set up
1190 * the entry.
1192 dde->dde_type = ddlwe.ddlwe_type;
1193 dde->dde_class = ddlwe.ddlwe_class;
1194 memcpy(dde->dde_phys, &ddlwe.ddlwe_phys,
1195 DDT_PHYS_SIZE(ddt));
1196 /* Whatever we found isn't valid for this BP, eject */
1197 if (!ddt_entry_lookup_is_valid(ddt, bp, dde)) {
1198 avl_remove(&ddt->ddt_tree, dde);
1199 ddt_free(ddt, dde);
1200 return (NULL);
1203 /* Remove it and count it */
1204 if (ddt_log_remove_key(ddt,
1205 ddt->ddt_log_active, &search)) {
1206 DDT_KSTAT_BUMP(ddt, dds_lookup_log_active_hit);
1207 } else {
1208 VERIFY(ddt_log_remove_key(ddt,
1209 ddt->ddt_log_flushing, &search));
1210 DDT_KSTAT_BUMP(ddt,
1211 dds_lookup_log_flushing_hit);
1214 dde->dde_flags = DDE_FLAG_LOADED | DDE_FLAG_LOGGED;
1216 DDT_KSTAT_BUMP(ddt, dds_lookup_log_hit);
1217 DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1219 return (dde);
1222 DDT_KSTAT_BUMP(ddt, dds_lookup_log_miss);
1226 * ddt_tree is now stable, so unlock and let everyone else keep moving.
1227 * Anyone landing on this entry will find it without DDE_FLAG_LOADED,
1228 * and go to sleep waiting for it above.
1230 ddt_exit(ddt);
1232 /* Search all store objects for the entry. */
1233 error = ENOENT;
1234 for (type = 0; type < DDT_TYPES; type++) {
1235 for (class = 0; class < DDT_CLASSES; class++) {
1236 error = ddt_object_lookup(ddt, type, class, dde);
1237 if (error != ENOENT) {
1238 ASSERT0(error);
1239 break;
1242 if (error != ENOENT)
1243 break;
1246 ddt_enter(ddt);
1248 ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));
1250 dde->dde_type = type; /* will be DDT_TYPES if no entry found */
1251 dde->dde_class = class; /* will be DDT_CLASSES if no entry found */
1253 boolean_t valid = B_TRUE;
1255 if (dde->dde_type == DDT_TYPES &&
1256 dde->dde_class == DDT_CLASSES &&
1257 ddt_over_quota(spa)) {
1258 /* Over quota. If no one is waiting, clean up right now. */
1259 if (dde->dde_waiters == 0) {
1260 avl_remove(&ddt->ddt_tree, dde);
1261 ddt_free(ddt, dde);
1262 return (NULL);
1265 /* Flag cleanup required */
1266 dde->dde_flags |= DDE_FLAG_OVERQUOTA;
1267 } else if (error == 0) {
1269 * If what we loaded is no good for this BP and there's no one
1270 * waiting for it, we can just remove it and get out. If its no
1271 * good but there are waiters, we have to leave it, because we
1272 * don't know what they want. If its not needed we'll end up
1273 * taking an entry log/sync, but it can only happen if more
1274 * than one previous version of this block is being deleted at
1275 * the same time. This is extremely unlikely to happen and not
1276 * worth the effort to deal with without taking an entry
1277 * update.
1279 valid = ddt_entry_lookup_is_valid(ddt, bp, dde);
1280 if (!valid && dde->dde_waiters == 0) {
1281 avl_remove(&ddt->ddt_tree, dde);
1282 ddt_free(ddt, dde);
1283 return (NULL);
1286 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_hit);
1287 DDT_KSTAT_BUMP(ddt, dds_lookup_existing);
1290 * The histograms only track inactive (stored or logged) blocks.
1291 * We've just put an entry onto the live list, so we need to
1292 * remove its counts. When its synced back, it'll be re-added
1293 * to the right one.
1295 * We only do this when we successfully found it in the store.
1296 * error == ENOENT means this is a new entry, and so its already
1297 * not counted.
1299 ddt_histogram_t *ddh =
1300 &ddt->ddt_histogram[dde->dde_type][dde->dde_class];
1302 ddt_lightweight_entry_t ddlwe;
1303 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
1304 ddt_histogram_sub_entry(ddt, ddh, &ddlwe);
1305 } else {
1306 DDT_KSTAT_BUMP(ddt, dds_lookup_stored_miss);
1307 DDT_KSTAT_BUMP(ddt, dds_lookup_new);
1310 /* Entry loaded, everyone can proceed now */
1311 dde->dde_flags |= DDE_FLAG_LOADED;
1312 cv_broadcast(&dde->dde_cv);
1314 if ((dde->dde_flags & DDE_FLAG_OVERQUOTA) || !valid)
1315 return (NULL);
1317 return (dde);
1320 void
1321 ddt_prefetch(spa_t *spa, const blkptr_t *bp)
1323 ddt_t *ddt;
1324 ddt_key_t ddk;
1326 if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
1327 return;
1330 * We only remove the DDT once all tables are empty and only
1331 * prefetch dedup blocks when there are entries in the DDT.
1332 * Thus no locking is required as the DDT can't disappear on us.
1334 ddt = ddt_select(spa, bp);
1335 ddt_key_fill(&ddk, bp);
1337 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1338 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1339 ddt_object_prefetch(ddt, type, class, &ddk);
1345 * ddt_key_t comparison. Any struct wanting to make use of this function must
1346 * have the key as the first element. Casts it to N uint64_ts, and checks until
1347 * we find there's a difference. This is intended to match how ddt_zap.c drives
1348 * the ZAPs (first uint64_t as the key prehash), which will minimise the number
1349 * of ZAP blocks touched when flushing logged entries from an AVL walk. This is
1350 * not an invariant for this function though, should you wish to change it.
1353 ddt_key_compare(const void *x1, const void *x2)
1355 const uint64_t *k1 = (const uint64_t *)x1;
1356 const uint64_t *k2 = (const uint64_t *)x2;
1358 int cmp;
1359 for (int i = 0; i < (sizeof (ddt_key_t) / sizeof (uint64_t)); i++)
1360 if (likely((cmp = TREE_CMP(k1[i], k2[i])) != 0))
1361 return (cmp);
1363 return (0);
1366 /* Create the containing dir for this DDT and bump the feature count */
1367 static void
1368 ddt_create_dir(ddt_t *ddt, dmu_tx_t *tx)
1370 ASSERT3U(ddt->ddt_dir_object, ==, 0);
1371 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT);
1373 char name[DDT_NAMELEN];
1374 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1375 zio_checksum_table[ddt->ddt_checksum].ci_name);
1377 ddt->ddt_dir_object = zap_create_link(ddt->ddt_os,
1378 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, name, tx);
1380 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_VERSION,
1381 sizeof (uint64_t), 1, &ddt->ddt_version, tx));
1382 VERIFY0(zap_add(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS,
1383 sizeof (uint64_t), 1, &ddt->ddt_flags, tx));
1385 spa_feature_incr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx);
1388 /* Destroy the containing dir and deactivate the feature */
1389 static void
1390 ddt_destroy_dir(ddt_t *ddt, dmu_tx_t *tx)
1392 ASSERT3U(ddt->ddt_dir_object, !=, 0);
1393 ASSERT3U(ddt->ddt_dir_object, !=, DMU_POOL_DIRECTORY_OBJECT);
1394 ASSERT3U(ddt->ddt_version, ==, DDT_VERSION_FDT);
1396 char name[DDT_NAMELEN];
1397 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1398 zio_checksum_table[ddt->ddt_checksum].ci_name);
1400 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1401 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1402 ASSERT(!ddt_object_exists(ddt, type, class));
1406 ddt_log_destroy(ddt, tx);
1408 uint64_t count;
1409 ASSERT0(zap_count(ddt->ddt_os, ddt->ddt_dir_object, &count));
1410 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object,
1411 DDT_DIR_VERSION));
1412 ASSERT0(zap_contains(ddt->ddt_os, ddt->ddt_dir_object, DDT_DIR_FLAGS));
1413 ASSERT3U(count, ==, 2);
1415 VERIFY0(zap_remove(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
1416 VERIFY0(zap_destroy(ddt->ddt_os, ddt->ddt_dir_object, tx));
1418 ddt->ddt_dir_object = 0;
1420 spa_feature_decr(ddt->ddt_spa, SPA_FEATURE_FAST_DEDUP, tx);
1424 * Determine, flags and on-disk layout from what's already stored. If there's
1425 * nothing stored, then if new is false, returns ENOENT, and if true, selects
1426 * based on pool config.
1428 static int
1429 ddt_configure(ddt_t *ddt, boolean_t new)
1431 spa_t *spa = ddt->ddt_spa;
1432 char name[DDT_NAMELEN];
1433 int error;
1435 ASSERT3U(spa_load_state(spa), !=, SPA_LOAD_CREATE);
1437 boolean_t fdt_enabled =
1438 spa_feature_is_enabled(spa, SPA_FEATURE_FAST_DEDUP);
1439 boolean_t fdt_active =
1440 spa_feature_is_active(spa, SPA_FEATURE_FAST_DEDUP);
1443 * First, look for the global DDT stats object. If its not there, then
1444 * there's never been a DDT written before ever, and we know we're
1445 * starting from scratch.
1447 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
1449 &spa->spa_ddt_stat_object);
1450 if (error != 0) {
1451 if (error != ENOENT)
1452 return (error);
1453 goto not_found;
1456 if (fdt_active) {
1458 * Now look for a DDT directory. If it exists, then it has
1459 * everything we need.
1461 snprintf(name, DDT_NAMELEN, DMU_POOL_DDT_DIR,
1462 zio_checksum_table[ddt->ddt_checksum].ci_name);
1464 error = zap_lookup(spa->spa_meta_objset,
1465 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1,
1466 &ddt->ddt_dir_object);
1467 if (error == 0) {
1468 ASSERT3U(spa->spa_meta_objset, ==, ddt->ddt_os);
1470 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object,
1471 DDT_DIR_VERSION, sizeof (uint64_t), 1,
1472 &ddt->ddt_version);
1473 if (error != 0)
1474 return (error);
1476 error = zap_lookup(ddt->ddt_os, ddt->ddt_dir_object,
1477 DDT_DIR_FLAGS, sizeof (uint64_t), 1,
1478 &ddt->ddt_flags);
1479 if (error != 0)
1480 return (error);
1482 if (ddt->ddt_version != DDT_VERSION_FDT) {
1483 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s "
1484 "unknown version %llu", spa_name(spa),
1485 name, (u_longlong_t)ddt->ddt_version);
1486 return (SET_ERROR(EINVAL));
1489 if ((ddt->ddt_flags & ~DDT_FLAG_MASK) != 0) {
1490 zfs_dbgmsg("ddt_configure: spa=%s ddt_dir=%s "
1491 "version=%llu unknown flags %llx",
1492 spa_name(spa), name,
1493 (u_longlong_t)ddt->ddt_flags,
1494 (u_longlong_t)ddt->ddt_version);
1495 return (SET_ERROR(EINVAL));
1498 return (0);
1500 if (error != ENOENT)
1501 return (error);
1504 /* Any object in the root indicates a traditional setup. */
1505 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1506 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1507 ddt_object_name(ddt, type, class, name);
1508 uint64_t obj;
1509 error = zap_lookup(spa->spa_meta_objset,
1510 DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t),
1511 1, &obj);
1512 if (error == ENOENT)
1513 continue;
1514 if (error != 0)
1515 return (error);
1517 ddt->ddt_version = DDT_VERSION_LEGACY;
1518 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1519 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT;
1521 return (0);
1525 not_found:
1526 if (!new)
1527 return (SET_ERROR(ENOENT));
1529 /* Nothing on disk, so set up for the best version we can */
1530 if (fdt_enabled) {
1531 ddt->ddt_version = DDT_VERSION_FDT;
1532 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1533 ddt->ddt_dir_object = 0; /* create on first use */
1534 } else {
1535 ddt->ddt_version = DDT_VERSION_LEGACY;
1536 ddt->ddt_flags = ddt_version_flags[ddt->ddt_version];
1537 ddt->ddt_dir_object = DMU_POOL_DIRECTORY_OBJECT;
1540 return (0);
1543 static void
1544 ddt_table_alloc_kstats(ddt_t *ddt)
1546 char *mod = kmem_asprintf("zfs/%s", spa_name(ddt->ddt_spa));
1547 char *name = kmem_asprintf("ddt_stats_%s",
1548 zio_checksum_table[ddt->ddt_checksum].ci_name);
1550 ddt->ddt_ksp = kstat_create(mod, 0, name, "misc", KSTAT_TYPE_NAMED,
1551 sizeof (ddt_kstats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1552 if (ddt->ddt_ksp != NULL) {
1553 ddt_kstats_t *dds = kmem_alloc(sizeof (ddt_kstats_t), KM_SLEEP);
1554 memcpy(dds, &ddt_kstats_template, sizeof (ddt_kstats_t));
1555 ddt->ddt_ksp->ks_data = dds;
1556 kstat_install(ddt->ddt_ksp);
1559 kmem_strfree(name);
1560 kmem_strfree(mod);
1563 static ddt_t *
1564 ddt_table_alloc(spa_t *spa, enum zio_checksum c)
1566 ddt_t *ddt;
1568 ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
1569 memset(ddt, 0, sizeof (ddt_t));
1570 mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
1571 avl_create(&ddt->ddt_tree, ddt_key_compare,
1572 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
1573 avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
1574 sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
1576 ddt->ddt_checksum = c;
1577 ddt->ddt_spa = spa;
1578 ddt->ddt_os = spa->spa_meta_objset;
1579 ddt->ddt_version = DDT_VERSION_UNCONFIGURED;
1581 ddt_log_alloc(ddt);
1582 ddt_table_alloc_kstats(ddt);
1584 return (ddt);
1587 static void
1588 ddt_table_free(ddt_t *ddt)
1590 if (ddt->ddt_ksp != NULL) {
1591 kmem_free(ddt->ddt_ksp->ks_data, sizeof (ddt_kstats_t));
1592 ddt->ddt_ksp->ks_data = NULL;
1593 kstat_delete(ddt->ddt_ksp);
1596 ddt_log_free(ddt);
1597 ASSERT0(avl_numnodes(&ddt->ddt_tree));
1598 ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
1599 avl_destroy(&ddt->ddt_tree);
1600 avl_destroy(&ddt->ddt_repair_tree);
1601 mutex_destroy(&ddt->ddt_lock);
1602 kmem_cache_free(ddt_cache, ddt);
1605 void
1606 ddt_create(spa_t *spa)
1608 spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
1610 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1611 if (DDT_CHECKSUM_VALID(c))
1612 spa->spa_ddt[c] = ddt_table_alloc(spa, c);
1617 ddt_load(spa_t *spa)
1619 int error;
1621 ddt_create(spa);
1623 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1624 DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
1625 &spa->spa_ddt_stat_object);
1626 if (error)
1627 return (error == ENOENT ? 0 : error);
1629 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1630 if (!DDT_CHECKSUM_VALID(c))
1631 continue;
1633 ddt_t *ddt = spa->spa_ddt[c];
1634 error = ddt_configure(ddt, B_FALSE);
1635 if (error == ENOENT)
1636 continue;
1637 if (error != 0)
1638 return (error);
1640 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1641 for (ddt_class_t class = 0; class < DDT_CLASSES;
1642 class++) {
1643 error = ddt_object_load(ddt, type, class);
1644 if (error != 0 && error != ENOENT)
1645 return (error);
1649 error = ddt_log_load(ddt);
1650 if (error != 0 && error != ENOENT)
1651 return (error);
1653 DDT_KSTAT_SET(ddt, dds_log_active_entries,
1654 avl_numnodes(&ddt->ddt_log_active->ddl_tree));
1655 DDT_KSTAT_SET(ddt, dds_log_flushing_entries,
1656 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree));
1659 * Seed the cached histograms.
1661 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1662 sizeof (ddt->ddt_histogram));
1665 spa->spa_dedup_dspace = ~0ULL;
1666 spa->spa_dedup_dsize = ~0ULL;
1668 return (0);
1671 void
1672 ddt_unload(spa_t *spa)
1674 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
1675 if (spa->spa_ddt[c]) {
1676 ddt_table_free(spa->spa_ddt[c]);
1677 spa->spa_ddt[c] = NULL;
1682 boolean_t
1683 ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
1685 ddt_t *ddt;
1686 ddt_key_t ddk;
1688 if (!BP_GET_DEDUP(bp))
1689 return (B_FALSE);
1691 if (max_class == DDT_CLASS_UNIQUE)
1692 return (B_TRUE);
1694 ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
1696 ddt_key_fill(&ddk, bp);
1698 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1699 for (ddt_class_t class = 0; class <= max_class; class++) {
1700 if (ddt_object_contains(ddt, type, class, &ddk) == 0)
1701 return (B_TRUE);
1705 return (B_FALSE);
1708 ddt_entry_t *
1709 ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
1711 ddt_key_t ddk;
1712 ddt_entry_t *dde;
1714 ddt_key_fill(&ddk, bp);
1716 dde = ddt_alloc(ddt, &ddk);
1717 ddt_alloc_entry_io(dde);
1719 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1720 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1722 * We can only do repair if there are multiple copies
1723 * of the block. For anything in the UNIQUE class,
1724 * there's definitely only one copy, so don't even try.
1726 if (class != DDT_CLASS_UNIQUE &&
1727 ddt_object_lookup(ddt, type, class, dde) == 0)
1728 return (dde);
1732 memset(dde->dde_phys, 0, DDT_PHYS_SIZE(ddt));
1734 return (dde);
1737 void
1738 ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
1740 avl_index_t where;
1742 ddt_enter(ddt);
1744 if (dde->dde_io->dde_repair_abd != NULL &&
1745 spa_writeable(ddt->ddt_spa) &&
1746 avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
1747 avl_insert(&ddt->ddt_repair_tree, dde, where);
1748 else
1749 ddt_free(ddt, dde);
1751 ddt_exit(ddt);
1754 static void
1755 ddt_repair_entry_done(zio_t *zio)
1757 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1758 ddt_entry_t *rdde = zio->io_private;
1760 ddt_free(ddt, rdde);
1763 static void
1764 ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
1766 ddt_key_t *ddk = &dde->dde_key;
1767 ddt_key_t *rddk = &rdde->dde_key;
1768 zio_t *zio;
1769 blkptr_t blk;
1771 zio = zio_null(rio, rio->io_spa, NULL,
1772 ddt_repair_entry_done, rdde, rio->io_flags);
1774 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
1775 ddt_univ_phys_t *ddp = dde->dde_phys;
1776 ddt_univ_phys_t *rddp = rdde->dde_phys;
1777 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1778 uint64_t phys_birth = ddt_phys_birth(ddp, v);
1779 const dva_t *dvas, *rdvas;
1781 if (ddt->ddt_flags & DDT_FLAG_FLAT) {
1782 dvas = ddp->ddp_flat.ddp_dva;
1783 rdvas = rddp->ddp_flat.ddp_dva;
1784 } else {
1785 dvas = ddp->ddp_trad[p].ddp_dva;
1786 rdvas = rddp->ddp_trad[p].ddp_dva;
1789 if (phys_birth == 0 ||
1790 phys_birth != ddt_phys_birth(rddp, v) ||
1791 memcmp(dvas, rdvas, sizeof (dva_t) * SPA_DVAS_PER_BP))
1792 continue;
1794 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1795 zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
1796 rdde->dde_io->dde_repair_abd, DDK_GET_PSIZE(rddk),
1797 NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
1798 ZIO_DDT_CHILD_FLAGS(zio), NULL));
1801 zio_nowait(zio);
1804 static void
1805 ddt_repair_table(ddt_t *ddt, zio_t *rio)
1807 spa_t *spa = ddt->ddt_spa;
1808 ddt_entry_t *dde, *rdde_next, *rdde;
1809 avl_tree_t *t = &ddt->ddt_repair_tree;
1810 blkptr_t blk;
1812 if (spa_sync_pass(spa) > 1)
1813 return;
1815 ddt_enter(ddt);
1816 for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
1817 rdde_next = AVL_NEXT(t, rdde);
1818 avl_remove(&ddt->ddt_repair_tree, rdde);
1819 ddt_exit(ddt);
1820 ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL,
1821 DDT_PHYS_NONE, &blk);
1822 dde = ddt_repair_start(ddt, &blk);
1823 ddt_repair_entry(ddt, dde, rdde, rio);
1824 ddt_repair_done(ddt, dde);
1825 ddt_enter(ddt);
1827 ddt_exit(ddt);
1830 static void
1831 ddt_sync_update_stats(ddt_t *ddt, dmu_tx_t *tx)
1834 * Count all the entries stored for each type/class, and updates the
1835 * stats within (ddt_object_sync()). If there's no entries for the
1836 * type/class, the whole object is removed. If all objects for the DDT
1837 * are removed, its containing dir is removed, effectively resetting
1838 * the entire DDT to an empty slate.
1840 uint64_t count = 0;
1841 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
1842 uint64_t add, tcount = 0;
1843 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1844 if (ddt_object_exists(ddt, type, class)) {
1845 ddt_object_sync(ddt, type, class, tx);
1846 VERIFY0(ddt_object_count(ddt, type, class,
1847 &add));
1848 tcount += add;
1851 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
1852 if (tcount == 0 && ddt_object_exists(ddt, type, class))
1853 ddt_object_destroy(ddt, type, class, tx);
1855 count += tcount;
1858 if (ddt->ddt_flags & DDT_FLAG_LOG) {
1859 /* Include logged entries in the total count */
1860 count += avl_numnodes(&ddt->ddt_log_active->ddl_tree);
1861 count += avl_numnodes(&ddt->ddt_log_flushing->ddl_tree);
1864 if (count == 0) {
1866 * No entries left on the DDT, so reset the version for next
1867 * time. This allows us to handle the feature being changed
1868 * since the DDT was originally created. New entries should get
1869 * whatever the feature currently demands.
1871 if (ddt->ddt_version == DDT_VERSION_FDT)
1872 ddt_destroy_dir(ddt, tx);
1874 ddt->ddt_version = DDT_VERSION_UNCONFIGURED;
1875 ddt->ddt_flags = 0;
1878 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
1879 sizeof (ddt->ddt_histogram));
1880 ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
1881 ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
1884 static void
1885 ddt_sync_scan_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
1887 dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
1890 * Compute the target class, so we can decide whether or not to inform
1891 * the scrub traversal (below). Note that we don't store this in the
1892 * entry, as it might change multiple times before finally being
1893 * committed (if we're logging). Instead, we recompute it in
1894 * ddt_sync_entry().
1896 uint64_t refcnt = ddt_phys_total_refcnt(ddt, &ddlwe->ddlwe_phys);
1897 ddt_class_t nclass =
1898 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE;
1901 * If the class changes, the order that we scan this bp changes. If it
1902 * decreases, we could miss it, so scan it right now. (This covers both
1903 * class changing while we are doing ddt_walk(), and when we are
1904 * traversing.)
1906 * We also do this when the refcnt goes to zero, because that change is
1907 * only in the log so far; the blocks on disk won't be freed until
1908 * the log is flushed, and the refcnt might increase before that. If it
1909 * does, then we could miss it in the same way.
1911 if (refcnt == 0 || nclass < ddlwe->ddlwe_class)
1912 dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, ddt,
1913 ddlwe, tx);
1916 static void
1917 ddt_sync_flush_entry(ddt_t *ddt, ddt_lightweight_entry_t *ddlwe,
1918 ddt_type_t otype, ddt_class_t oclass, dmu_tx_t *tx)
1920 ddt_key_t *ddk = &ddlwe->ddlwe_key;
1921 ddt_type_t ntype = DDT_TYPE_DEFAULT;
1922 uint64_t refcnt = 0;
1925 * Compute the total refcnt. Along the way, issue frees for any DVAs
1926 * we no longer want.
1928 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
1929 ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1930 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1931 uint64_t phys_refcnt = ddt_phys_refcnt(ddp, v);
1933 if (ddt_phys_birth(ddp, v) == 0) {
1934 ASSERT0(phys_refcnt);
1935 continue;
1937 if (DDT_PHYS_IS_DITTO(ddt, p)) {
1939 * We don't want to keep any obsolete slots (eg ditto),
1940 * regardless of their refcount, but we don't want to
1941 * leak them either. So, free them.
1943 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg);
1944 continue;
1946 if (phys_refcnt == 0)
1947 /* No remaining references, free it! */
1948 ddt_phys_free(ddt, ddk, ddp, v, tx->tx_txg);
1949 refcnt += phys_refcnt;
1952 /* Select the best class for the entry. */
1953 ddt_class_t nclass =
1954 (refcnt > 1) ? DDT_CLASS_DUPLICATE : DDT_CLASS_UNIQUE;
1957 * If an existing entry changed type or class, or its refcount reached
1958 * zero, delete it from the DDT object
1960 if (otype != DDT_TYPES &&
1961 (otype != ntype || oclass != nclass || refcnt == 0)) {
1962 VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
1963 ASSERT(ddt_object_contains(ddt, otype, oclass, ddk) == ENOENT);
1967 * Add or update the entry
1969 if (refcnt != 0) {
1970 ddt_histogram_t *ddh =
1971 &ddt->ddt_histogram[ntype][nclass];
1973 ddt_histogram_add_entry(ddt, ddh, ddlwe);
1975 if (!ddt_object_exists(ddt, ntype, nclass))
1976 ddt_object_create(ddt, ntype, nclass, tx);
1977 VERIFY0(ddt_object_update(ddt, ntype, nclass, ddlwe, tx));
1981 /* Calculate an exponential weighted moving average, lower limited to zero */
1982 static inline int32_t
1983 _ewma(int32_t val, int32_t prev, uint32_t weight)
1985 ASSERT3U(val, >=, 0);
1986 ASSERT3U(prev, >=, 0);
1987 const int32_t new =
1988 MAX(0, prev + (val-prev) / (int32_t)MAX(weight, 1));
1989 ASSERT3U(new, >=, 0);
1990 return (new);
1993 /* Returns true if done for this txg */
1994 static boolean_t
1995 ddt_sync_flush_log_incremental(ddt_t *ddt, dmu_tx_t *tx)
1997 if (ddt->ddt_flush_pass == 0) {
1998 if (spa_sync_pass(ddt->ddt_spa) == 1) {
1999 /* First run this txg, get set up */
2000 ddt->ddt_flush_start = gethrtime();
2001 ddt->ddt_flush_count = 0;
2004 * How many entries we need to flush. We want to at
2005 * least match the ingest rate.
2007 ddt->ddt_flush_min = MAX(
2008 ddt->ddt_log_ingest_rate,
2009 zfs_dedup_log_flush_entries_min);
2012 * If we've been asked to flush everything in a hurry,
2013 * try to dump as much as possible on this txg. In
2014 * this case we're only limited by time, not amount.
2016 if (ddt->ddt_flush_force_txg > 0)
2017 ddt->ddt_flush_min =
2018 MAX(ddt->ddt_flush_min, avl_numnodes(
2019 &ddt->ddt_log_flushing->ddl_tree));
2020 } else {
2021 /* We already decided we're done for this txg */
2022 return (B_FALSE);
2024 } else if (ddt->ddt_flush_pass == spa_sync_pass(ddt->ddt_spa)) {
2026 * We already did some flushing on this pass, skip it. This
2027 * happens when dsl_process_async_destroys() runs during a scan
2028 * (on pass 1) and does an additional ddt_sync() to update
2029 * freed blocks.
2031 return (B_FALSE);
2034 if (spa_sync_pass(ddt->ddt_spa) >
2035 MAX(zfs_dedup_log_flush_passes_max, 1)) {
2036 /* Too many passes this txg, defer until next. */
2037 ddt->ddt_flush_pass = 0;
2038 return (B_TRUE);
2041 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) {
2042 /* Nothing to flush, done for this txg. */
2043 ddt->ddt_flush_pass = 0;
2044 return (B_TRUE);
2047 uint64_t target_time = txg_sync_waiting(ddt->ddt_spa->spa_dsl_pool) ?
2048 MIN(MSEC2NSEC(zfs_dedup_log_flush_min_time_ms),
2049 SEC2NSEC(zfs_txg_timeout)) : SEC2NSEC(zfs_txg_timeout);
2051 uint64_t elapsed_time = gethrtime() - ddt->ddt_flush_start;
2053 if (elapsed_time >= target_time) {
2054 /* Too long since we started, done for this txg. */
2055 ddt->ddt_flush_pass = 0;
2056 return (B_TRUE);
2059 ddt->ddt_flush_pass++;
2060 ASSERT3U(spa_sync_pass(ddt->ddt_spa), ==, ddt->ddt_flush_pass);
2063 * Estimate how much time we'll need to flush the remaining entries
2064 * based on how long it normally takes.
2066 uint32_t want_time;
2067 if (ddt->ddt_flush_pass == 1) {
2068 /* First pass, use the average time/entries */
2069 if (ddt->ddt_log_flush_rate == 0)
2070 /* Zero rate, just assume the whole time */
2071 want_time = target_time;
2072 else
2073 want_time = ddt->ddt_flush_min *
2074 ddt->ddt_log_flush_time_rate /
2075 ddt->ddt_log_flush_rate;
2076 } else {
2077 /* Later pass, calculate from this txg so far */
2078 want_time = ddt->ddt_flush_min *
2079 elapsed_time / ddt->ddt_flush_count;
2082 /* Figure out how much time we have left */
2083 uint32_t remain_time = target_time - elapsed_time;
2085 /* Smear the remaining entries over the remaining passes. */
2086 uint32_t nentries = ddt->ddt_flush_min /
2087 (MAX(1, zfs_dedup_log_flush_passes_max) + 1 - ddt->ddt_flush_pass);
2088 if (want_time > remain_time) {
2090 * We're behind; try to catch up a bit by doubling the amount
2091 * this pass. If we're behind that means we're in a later
2092 * pass and likely have most of the remaining time to
2093 * ourselves. If we're in the last couple of passes, then
2094 * doubling might just take us over the timeout, but probably
2095 * not be much, and it stops us falling behind. If we're
2096 * in the middle passes, there'll be more to do, but it
2097 * might just help us catch up a bit and we'll recalculate on
2098 * the next pass anyway.
2100 nentries = MIN(ddt->ddt_flush_min, nentries*2);
2103 ddt_lightweight_entry_t ddlwe;
2104 uint32_t count = 0;
2105 while (ddt_log_take_first(ddt, ddt->ddt_log_flushing, &ddlwe)) {
2106 ddt_sync_flush_entry(ddt, &ddlwe,
2107 ddlwe.ddlwe_type, ddlwe.ddlwe_class, tx);
2109 /* End this pass if we've synced as much as we need to. */
2110 if (++count >= nentries)
2111 break;
2113 ddt->ddt_flush_count += count;
2114 ddt->ddt_flush_min -= count;
2116 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree)) {
2117 /* We emptied it, so truncate on-disk */
2118 DDT_KSTAT_ZERO(ddt, dds_log_flushing_entries);
2119 ddt_log_truncate(ddt, tx);
2120 /* No more passes needed this txg */
2121 ddt->ddt_flush_pass = 0;
2122 } else {
2123 /* More to do next time, save checkpoint */
2124 DDT_KSTAT_SUB(ddt, dds_log_flushing_entries, count);
2125 ddt_log_checkpoint(ddt, &ddlwe, tx);
2128 ddt_sync_update_stats(ddt, tx);
2130 return (ddt->ddt_flush_pass == 0);
2133 static inline void
2134 ddt_flush_force_update_txg(ddt_t *ddt, uint64_t txg)
2137 * If we're not forcing flush, and not being asked to start, then
2138 * there's nothing more to do.
2140 if (txg == 0) {
2141 /* Update requested, are we currently forcing flush? */
2142 if (ddt->ddt_flush_force_txg == 0)
2143 return;
2144 txg = ddt->ddt_flush_force_txg;
2148 * If either of the logs have entries unflushed entries before
2149 * the wanted txg, set the force txg, otherwise clear it.
2152 if ((!avl_is_empty(&ddt->ddt_log_active->ddl_tree) &&
2153 ddt->ddt_log_active->ddl_first_txg <= txg) ||
2154 (!avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) &&
2155 ddt->ddt_log_flushing->ddl_first_txg <= txg)) {
2156 ddt->ddt_flush_force_txg = txg;
2157 return;
2161 * Nothing to flush behind the given txg, so we can clear force flush
2162 * state.
2164 ddt->ddt_flush_force_txg = 0;
2167 static void
2168 ddt_sync_flush_log(ddt_t *ddt, dmu_tx_t *tx)
2170 ASSERT(avl_is_empty(&ddt->ddt_tree));
2172 /* Don't do any flushing when the pool is ready to shut down */
2173 if (tx->tx_txg > spa_final_dirty_txg(ddt->ddt_spa))
2174 return;
2176 /* Try to flush some. */
2177 if (!ddt_sync_flush_log_incremental(ddt, tx))
2178 /* More to do next time */
2179 return;
2181 /* No more flushing this txg, so we can do end-of-txg housekeeping */
2183 if (avl_is_empty(&ddt->ddt_log_flushing->ddl_tree) &&
2184 !avl_is_empty(&ddt->ddt_log_active->ddl_tree)) {
2186 * No more to flush, and the active list has stuff, so
2187 * try to swap the logs for next time.
2189 if (ddt_log_swap(ddt, tx)) {
2190 DDT_KSTAT_ZERO(ddt, dds_log_active_entries);
2191 DDT_KSTAT_SET(ddt, dds_log_flushing_entries,
2192 avl_numnodes(&ddt->ddt_log_flushing->ddl_tree));
2196 /* If force flush is no longer necessary, turn it off. */
2197 ddt_flush_force_update_txg(ddt, 0);
2200 * Update flush rate. This is an exponential weighted moving average of
2201 * the number of entries flushed over recent txgs.
2203 ddt->ddt_log_flush_rate = _ewma(
2204 ddt->ddt_flush_count, ddt->ddt_log_flush_rate,
2205 zfs_dedup_log_flush_flow_rate_txgs);
2206 DDT_KSTAT_SET(ddt, dds_log_flush_rate, ddt->ddt_log_flush_rate);
2209 * Update flush time rate. This is an exponential weighted moving
2210 * average of the total time taken to flush over recent txgs.
2212 ddt->ddt_log_flush_time_rate = _ewma(
2213 ddt->ddt_log_flush_time_rate,
2214 ((int32_t)(NSEC2MSEC(gethrtime() - ddt->ddt_flush_start))),
2215 zfs_dedup_log_flush_flow_rate_txgs);
2216 DDT_KSTAT_SET(ddt, dds_log_flush_time_rate,
2217 ddt->ddt_log_flush_time_rate);
2220 static void
2221 ddt_sync_table_log(ddt_t *ddt, dmu_tx_t *tx)
2223 uint64_t count = avl_numnodes(&ddt->ddt_tree);
2225 if (count > 0) {
2226 ddt_log_update_t dlu = {0};
2227 ddt_log_begin(ddt, count, tx, &dlu);
2229 ddt_entry_t *dde;
2230 void *cookie = NULL;
2231 ddt_lightweight_entry_t ddlwe;
2232 while ((dde =
2233 avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
2234 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2235 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
2236 ddt_log_entry(ddt, &ddlwe, &dlu);
2237 ddt_sync_scan_entry(ddt, &ddlwe, tx);
2238 ddt_free(ddt, dde);
2241 ddt_log_commit(ddt, &dlu);
2243 DDT_KSTAT_SET(ddt, dds_log_active_entries,
2244 avl_numnodes(&ddt->ddt_log_active->ddl_tree));
2247 * Sync the stats for the store objects. Even though we haven't
2248 * modified anything on those objects, they're no longer the
2249 * source of truth for entries that are now in the log, and we
2250 * need the on-disk counts to reflect that, otherwise we'll
2251 * miscount later when importing.
2253 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
2254 for (ddt_class_t class = 0;
2255 class < DDT_CLASSES; class++) {
2256 if (ddt_object_exists(ddt, type, class))
2257 ddt_object_sync(ddt, type, class, tx);
2261 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
2262 sizeof (ddt->ddt_histogram));
2263 ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
2264 ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
2267 if (spa_sync_pass(ddt->ddt_spa) == 1) {
2269 * Update ingest rate. This is an exponential weighted moving
2270 * average of the number of entries changed over recent txgs.
2271 * The ramp-up cost shouldn't matter too much because the
2272 * flusher will be trying to take at least the minimum anyway.
2274 ddt->ddt_log_ingest_rate = _ewma(
2275 count, ddt->ddt_log_ingest_rate,
2276 zfs_dedup_log_flush_flow_rate_txgs);
2277 DDT_KSTAT_SET(ddt, dds_log_ingest_rate,
2278 ddt->ddt_log_ingest_rate);
2282 static void
2283 ddt_sync_table_flush(ddt_t *ddt, dmu_tx_t *tx)
2285 if (avl_numnodes(&ddt->ddt_tree) == 0)
2286 return;
2288 ddt_entry_t *dde;
2289 void *cookie = NULL;
2290 while ((dde = avl_destroy_nodes(
2291 &ddt->ddt_tree, &cookie)) != NULL) {
2292 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2294 ddt_lightweight_entry_t ddlwe;
2295 DDT_ENTRY_TO_LIGHTWEIGHT(ddt, dde, &ddlwe);
2296 ddt_sync_flush_entry(ddt, &ddlwe,
2297 dde->dde_type, dde->dde_class, tx);
2298 ddt_sync_scan_entry(ddt, &ddlwe, tx);
2299 ddt_free(ddt, dde);
2302 memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
2303 sizeof (ddt->ddt_histogram));
2304 ddt->ddt_spa->spa_dedup_dspace = ~0ULL;
2305 ddt->ddt_spa->spa_dedup_dsize = ~0ULL;
2306 ddt_sync_update_stats(ddt, tx);
2309 static void
2310 ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx)
2312 spa_t *spa = ddt->ddt_spa;
2314 if (ddt->ddt_version == UINT64_MAX)
2315 return;
2317 if (spa->spa_uberblock.ub_version < SPA_VERSION_DEDUP) {
2318 ASSERT0(avl_numnodes(&ddt->ddt_tree));
2319 return;
2322 if (spa->spa_ddt_stat_object == 0) {
2323 spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
2324 DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
2325 DMU_POOL_DDT_STATS, tx);
2328 if (ddt->ddt_version == DDT_VERSION_FDT && ddt->ddt_dir_object == 0)
2329 ddt_create_dir(ddt, tx);
2331 if (ddt->ddt_flags & DDT_FLAG_LOG)
2332 ddt_sync_table_log(ddt, tx);
2333 else
2334 ddt_sync_table_flush(ddt, tx);
2337 void
2338 ddt_sync(spa_t *spa, uint64_t txg)
2340 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2341 dmu_tx_t *tx;
2342 zio_t *rio;
2344 ASSERT3U(spa_syncing_txg(spa), ==, txg);
2346 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2348 rio = zio_root(spa, NULL, NULL,
2349 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
2352 * This function may cause an immediate scan of ddt blocks (see
2353 * the comment above dsl_scan_ddt() for details). We set the
2354 * scan's root zio here so that we can wait for any scan IOs in
2355 * addition to the regular ddt IOs.
2357 ASSERT3P(scn->scn_zio_root, ==, NULL);
2358 scn->scn_zio_root = rio;
2360 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2361 ddt_t *ddt = spa->spa_ddt[c];
2362 if (ddt == NULL)
2363 continue;
2364 ddt_sync_table(ddt, tx);
2365 if (ddt->ddt_flags & DDT_FLAG_LOG)
2366 ddt_sync_flush_log(ddt, tx);
2367 ddt_repair_table(ddt, rio);
2370 (void) zio_wait(rio);
2371 scn->scn_zio_root = NULL;
2373 dmu_tx_commit(tx);
2376 void
2377 ddt_walk_init(spa_t *spa, uint64_t txg)
2379 if (txg == 0)
2380 txg = spa_syncing_txg(spa);
2382 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2383 ddt_t *ddt = spa->spa_ddt[c];
2384 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG))
2385 continue;
2387 ddt_enter(ddt);
2388 ddt_flush_force_update_txg(ddt, txg);
2389 ddt_exit(ddt);
2393 boolean_t
2394 ddt_walk_ready(spa_t *spa)
2396 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2397 ddt_t *ddt = spa->spa_ddt[c];
2398 if (ddt == NULL || !(ddt->ddt_flags & DDT_FLAG_LOG))
2399 continue;
2401 if (ddt->ddt_flush_force_txg > 0)
2402 return (B_FALSE);
2405 return (B_TRUE);
2408 static int
2409 ddt_walk_impl(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe,
2410 uint64_t flags, boolean_t wait)
2412 do {
2413 do {
2414 do {
2415 ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
2416 if (ddt == NULL)
2417 continue;
2419 if (flags != 0 &&
2420 (ddt->ddt_flags & flags) != flags)
2421 continue;
2423 if (wait && ddt->ddt_flush_force_txg > 0)
2424 return (EAGAIN);
2426 int error = ENOENT;
2427 if (ddt_object_exists(ddt, ddb->ddb_type,
2428 ddb->ddb_class)) {
2429 error = ddt_object_walk(ddt,
2430 ddb->ddb_type, ddb->ddb_class,
2431 &ddb->ddb_cursor, ddlwe);
2433 if (error == 0)
2434 return (0);
2435 if (error != ENOENT)
2436 return (error);
2437 ddb->ddb_cursor = 0;
2438 } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
2439 ddb->ddb_checksum = 0;
2440 } while (++ddb->ddb_type < DDT_TYPES);
2441 ddb->ddb_type = 0;
2442 } while (++ddb->ddb_class < DDT_CLASSES);
2444 return (SET_ERROR(ENOENT));
2448 ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_lightweight_entry_t *ddlwe)
2450 return (ddt_walk_impl(spa, ddb, ddlwe, 0, B_TRUE));
2454 * This function is used by Block Cloning (brt.c) to increase reference
2455 * counter for the DDT entry if the block is already in DDT.
2457 * Return false if the block, despite having the D bit set, is not present
2458 * in the DDT. This is possible when the DDT has been pruned by an admin
2459 * or by the DDT quota mechanism.
2461 boolean_t
2462 ddt_addref(spa_t *spa, const blkptr_t *bp)
2464 ddt_t *ddt;
2465 ddt_entry_t *dde;
2466 boolean_t result;
2468 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2469 ddt = ddt_select(spa, bp);
2470 ddt_enter(ddt);
2472 dde = ddt_lookup(ddt, bp);
2474 /* Can be NULL if the entry for this block was pruned. */
2475 if (dde == NULL) {
2476 ddt_exit(ddt);
2477 spa_config_exit(spa, SCL_ZIO, FTAG);
2478 return (B_FALSE);
2481 if ((dde->dde_type < DDT_TYPES) || (dde->dde_flags & DDE_FLAG_LOGGED)) {
2483 * This entry was either synced to a store object (dde_type is
2484 * real) or was logged. It must be properly on disk at this
2485 * point, so we can just bump its refcount.
2487 int p = DDT_PHYS_FOR_COPIES(ddt, BP_GET_NDVAS(bp));
2488 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
2490 ddt_phys_addref(dde->dde_phys, v);
2491 result = B_TRUE;
2492 } else {
2494 * If the block has the DEDUP flag set it still might not
2495 * exist in the DEDUP table due to DDT pruning of entries
2496 * where refcnt=1.
2498 ddt_remove(ddt, dde);
2499 result = B_FALSE;
2502 ddt_exit(ddt);
2503 spa_config_exit(spa, SCL_ZIO, FTAG);
2505 return (result);
2508 typedef struct ddt_prune_entry {
2509 ddt_t *dpe_ddt;
2510 ddt_key_t dpe_key;
2511 list_node_t dpe_node;
2512 ddt_univ_phys_t dpe_phys[];
2513 } ddt_prune_entry_t;
2515 typedef struct ddt_prune_info {
2516 spa_t *dpi_spa;
2517 uint64_t dpi_txg_syncs;
2518 uint64_t dpi_pruned;
2519 list_t dpi_candidates;
2520 } ddt_prune_info_t;
2523 * Add prune candidates for ddt_sync during spa_sync
2525 static void
2526 prune_candidates_sync(void *arg, dmu_tx_t *tx)
2528 (void) tx;
2529 ddt_prune_info_t *dpi = arg;
2530 ddt_prune_entry_t *dpe;
2532 spa_config_enter(dpi->dpi_spa, SCL_ZIO, FTAG, RW_READER);
2534 /* Process the prune candidates collected so far */
2535 while ((dpe = list_remove_head(&dpi->dpi_candidates)) != NULL) {
2536 blkptr_t blk;
2537 ddt_t *ddt = dpe->dpe_ddt;
2539 ddt_enter(ddt);
2542 * If it's on the live list, then it was loaded for update
2543 * this txg and is no longer stale; skip it.
2545 if (avl_find(&ddt->ddt_tree, &dpe->dpe_key, NULL)) {
2546 ddt_exit(ddt);
2547 kmem_free(dpe, sizeof (*dpe));
2548 continue;
2551 ddt_bp_create(ddt->ddt_checksum, &dpe->dpe_key,
2552 dpe->dpe_phys, DDT_PHYS_FLAT, &blk);
2554 ddt_entry_t *dde = ddt_lookup(ddt, &blk);
2555 if (dde != NULL && !(dde->dde_flags & DDE_FLAG_LOGGED)) {
2556 ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
2558 * Zero the physical, so we don't try to free DVAs
2559 * at flush nor try to reuse this entry.
2561 ddt_phys_clear(dde->dde_phys, DDT_PHYS_FLAT);
2563 dpi->dpi_pruned++;
2566 ddt_exit(ddt);
2567 kmem_free(dpe, sizeof (*dpe));
2570 spa_config_exit(dpi->dpi_spa, SCL_ZIO, FTAG);
2571 dpi->dpi_txg_syncs++;
2575 * Prune candidates are collected in open context and processed
2576 * in sync context as part of ddt_sync_table().
2578 static void
2579 ddt_prune_entry(list_t *list, ddt_t *ddt, const ddt_key_t *ddk,
2580 const ddt_univ_phys_t *ddp)
2582 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT);
2584 size_t dpe_size = sizeof (ddt_prune_entry_t) + DDT_FLAT_PHYS_SIZE;
2585 ddt_prune_entry_t *dpe = kmem_alloc(dpe_size, KM_SLEEP);
2587 dpe->dpe_ddt = ddt;
2588 dpe->dpe_key = *ddk;
2589 memcpy(dpe->dpe_phys, ddp, DDT_FLAT_PHYS_SIZE);
2590 list_insert_head(list, dpe);
2594 * Interate over all the entries in the DDT unique class.
2595 * The walk will perform one of the following operations:
2596 * (a) build a histogram than can be used when pruning
2597 * (b) prune entries older than the cutoff
2599 * Also called by zdb(8) to dump the age histogram
2601 void
2602 ddt_prune_walk(spa_t *spa, uint64_t cutoff, ddt_age_histo_t *histogram)
2604 ddt_bookmark_t ddb = {
2605 .ddb_class = DDT_CLASS_UNIQUE,
2606 .ddb_type = 0,
2607 .ddb_checksum = 0,
2608 .ddb_cursor = 0
2610 ddt_lightweight_entry_t ddlwe = {0};
2611 int error;
2612 int valid = 0;
2613 int candidates = 0;
2614 uint64_t now = gethrestime_sec();
2615 ddt_prune_info_t dpi;
2616 boolean_t pruning = (cutoff != 0);
2618 if (pruning) {
2619 dpi.dpi_txg_syncs = 0;
2620 dpi.dpi_pruned = 0;
2621 dpi.dpi_spa = spa;
2622 list_create(&dpi.dpi_candidates, sizeof (ddt_prune_entry_t),
2623 offsetof(ddt_prune_entry_t, dpe_node));
2626 if (histogram != NULL)
2627 memset(histogram, 0, sizeof (ddt_age_histo_t));
2629 while ((error =
2630 ddt_walk_impl(spa, &ddb, &ddlwe, DDT_FLAG_FLAT, B_FALSE)) == 0) {
2631 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
2632 VERIFY(ddt);
2634 if (spa_shutting_down(spa) || issig())
2635 break;
2637 ASSERT(ddt->ddt_flags & DDT_FLAG_FLAT);
2638 ASSERT3U(ddlwe.ddlwe_phys.ddp_flat.ddp_refcnt, <=, 1);
2640 uint64_t class_start =
2641 ddlwe.ddlwe_phys.ddp_flat.ddp_class_start;
2644 * If this entry is on the log, then the stored entry is stale
2645 * and we should skip it.
2647 if (ddt_log_find_key(ddt, &ddlwe.ddlwe_key, NULL))
2648 continue;
2650 /* prune older entries */
2651 if (pruning && class_start < cutoff) {
2652 if (candidates++ >= zfs_ddt_prunes_per_txg) {
2653 /* sync prune candidates in batches */
2654 VERIFY0(dsl_sync_task(spa_name(spa),
2655 NULL, prune_candidates_sync,
2656 &dpi, 0, ZFS_SPACE_CHECK_NONE));
2657 candidates = 1;
2659 ddt_prune_entry(&dpi.dpi_candidates, ddt,
2660 &ddlwe.ddlwe_key, &ddlwe.ddlwe_phys);
2663 /* build a histogram */
2664 if (histogram != NULL) {
2665 uint64_t age = MAX(1, (now - class_start) / 3600);
2666 int bin = MIN(highbit64(age) - 1, HIST_BINS - 1);
2667 histogram->dah_entries++;
2668 histogram->dah_age_histo[bin]++;
2671 valid++;
2674 if (pruning && valid > 0) {
2675 if (!list_is_empty(&dpi.dpi_candidates)) {
2676 /* sync out final batch of prune candidates */
2677 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2678 prune_candidates_sync, &dpi, 0,
2679 ZFS_SPACE_CHECK_NONE));
2681 list_destroy(&dpi.dpi_candidates);
2683 zfs_dbgmsg("pruned %llu entries (%d%%) across %llu txg syncs",
2684 (u_longlong_t)dpi.dpi_pruned,
2685 (int)((dpi.dpi_pruned * 100) / valid),
2686 (u_longlong_t)dpi.dpi_txg_syncs);
2690 static uint64_t
2691 ddt_total_entries(spa_t *spa)
2693 ddt_object_t ddo;
2694 ddt_get_dedup_object_stats(spa, &ddo);
2696 return (ddo.ddo_count);
2700 ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit,
2701 uint64_t amount)
2703 uint64_t cutoff;
2704 uint64_t start_time = gethrtime();
2706 if (spa->spa_active_ddt_prune)
2707 return (SET_ERROR(EALREADY));
2708 if (ddt_total_entries(spa) == 0)
2709 return (0);
2711 spa->spa_active_ddt_prune = B_TRUE;
2713 zfs_dbgmsg("prune %llu %s", (u_longlong_t)amount,
2714 unit == ZPOOL_DDT_PRUNE_PERCENTAGE ? "%" : "seconds old or older");
2716 if (unit == ZPOOL_DDT_PRUNE_PERCENTAGE) {
2717 ddt_age_histo_t histogram;
2718 uint64_t oldest = 0;
2720 /* Make a pass over DDT to build a histogram */
2721 ddt_prune_walk(spa, 0, &histogram);
2723 int target = (histogram.dah_entries * amount) / 100;
2726 * Figure out our cutoff date
2727 * (i.e., which bins to prune from)
2729 for (int i = HIST_BINS - 1; i >= 0 && target > 0; i--) {
2730 if (histogram.dah_age_histo[i] != 0) {
2731 /* less than this bucket remaining */
2732 if (target < histogram.dah_age_histo[i]) {
2733 oldest = MAX(1, (1<<i) * 3600);
2734 target = 0;
2735 } else {
2736 target -= histogram.dah_age_histo[i];
2740 cutoff = gethrestime_sec() - oldest;
2742 if (ddt_dump_prune_histogram)
2743 ddt_dump_age_histogram(&histogram, cutoff);
2744 } else if (unit == ZPOOL_DDT_PRUNE_AGE) {
2745 cutoff = gethrestime_sec() - amount;
2746 } else {
2747 return (EINVAL);
2750 if (cutoff > 0 && !spa_shutting_down(spa) && !issig()) {
2751 /* Traverse DDT to prune entries older that our cuttoff */
2752 ddt_prune_walk(spa, cutoff, NULL);
2755 zfs_dbgmsg("%s: prune completed in %llu ms",
2756 spa_name(spa), (u_longlong_t)NSEC2MSEC(gethrtime() - start_time));
2758 spa->spa_active_ddt_prune = B_FALSE;
2759 return (0);
2762 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
2763 "Enable prefetching dedup-ed blks");
2765 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_passes_max, UINT, ZMOD_RW,
2766 "Max number of incremental dedup log flush passes per transaction");
2768 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_min_time_ms, UINT, ZMOD_RW,
2769 "Min time to spend on incremental dedup log flush each transaction");
2771 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_entries_min, UINT, ZMOD_RW,
2772 "Min number of log entries to flush each transaction");
2774 ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, log_flush_flow_rate_txgs, UINT, ZMOD_RW,
2775 "Number of txgs to average flow rates across");