Reduce dirty records memory usage
[zfs.git] / module / zfs / metaslab.c
blob3bd6e93e93a42e7c6e07941073f0284a1fa083e4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
43 #define GANG_ALLOCATION(flags) \
44 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
47 * Metaslab granularity, in bytes. This is roughly similar to what would be
48 * referred to as the "stripe size" in traditional RAID arrays. In normal
49 * operation, we will try to write this amount of data to each disk before
50 * moving on to the next top-level vdev.
52 static uint64_t metaslab_aliquot = 1024 * 1024;
55 * For testing, make some blocks above a certain size be gang blocks.
57 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
60 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
62 uint_t metaslab_force_ganging_pct = 3;
65 * In pools where the log space map feature is not enabled we touch
66 * multiple metaslabs (and their respective space maps) with each
67 * transaction group. Thus, we benefit from having a small space map
68 * block size since it allows us to issue more I/O operations scattered
69 * around the disk. So a sane default for the space map block size
70 * is 8~16K.
72 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
75 * When the log space map feature is enabled, we accumulate a lot of
76 * changes per metaslab that are flushed once in a while so we benefit
77 * from a bigger block size like 128K for the metaslab space maps.
79 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
82 * The in-core space map representation is more compact than its on-disk form.
83 * The zfs_condense_pct determines how much more compact the in-core
84 * space map representation must be before we compact it on-disk.
85 * Values should be greater than or equal to 100.
87 uint_t zfs_condense_pct = 200;
90 * Condensing a metaslab is not guaranteed to actually reduce the amount of
91 * space used on disk. In particular, a space map uses data in increments of
92 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
93 * same number of blocks after condensing. Since the goal of condensing is to
94 * reduce the number of IOPs required to read the space map, we only want to
95 * condense when we can be sure we will reduce the number of blocks used by the
96 * space map. Unfortunately, we cannot precisely compute whether or not this is
97 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
98 * we apply the following heuristic: do not condense a spacemap unless the
99 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
100 * blocks.
102 static const int zfs_metaslab_condense_block_threshold = 4;
105 * The zfs_mg_noalloc_threshold defines which metaslab groups should
106 * be eligible for allocation. The value is defined as a percentage of
107 * free space. Metaslab groups that have more free space than
108 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
109 * a metaslab group's free space is less than or equal to the
110 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
111 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
112 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
113 * groups are allowed to accept allocations. Gang blocks are always
114 * eligible to allocate on any metaslab group. The default value of 0 means
115 * no metaslab group will be excluded based on this criterion.
117 static uint_t zfs_mg_noalloc_threshold = 0;
120 * Metaslab groups are considered eligible for allocations if their
121 * fragmentation metric (measured as a percentage) is less than or
122 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
123 * exceeds this threshold then it will be skipped unless all metaslab
124 * groups within the metaslab class have also crossed this threshold.
126 * This tunable was introduced to avoid edge cases where we continue
127 * allocating from very fragmented disks in our pool while other, less
128 * fragmented disks, exists. On the other hand, if all disks in the
129 * pool are uniformly approaching the threshold, the threshold can
130 * be a speed bump in performance, where we keep switching the disks
131 * that we allocate from (e.g. we allocate some segments from disk A
132 * making it bypassing the threshold while freeing segments from disk
133 * B getting its fragmentation below the threshold).
135 * Empirically, we've seen that our vdev selection for allocations is
136 * good enough that fragmentation increases uniformly across all vdevs
137 * the majority of the time. Thus we set the threshold percentage high
138 * enough to avoid hitting the speed bump on pools that are being pushed
139 * to the edge.
141 static uint_t zfs_mg_fragmentation_threshold = 95;
144 * Allow metaslabs to keep their active state as long as their fragmentation
145 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
146 * active metaslab that exceeds this threshold will no longer keep its active
147 * status allowing better metaslabs to be selected.
149 static uint_t zfs_metaslab_fragmentation_threshold = 70;
152 * When set will load all metaslabs when pool is first opened.
154 int metaslab_debug_load = B_FALSE;
157 * When set will prevent metaslabs from being unloaded.
159 static int metaslab_debug_unload = B_FALSE;
162 * Minimum size which forces the dynamic allocator to change
163 * it's allocation strategy. Once the space map cannot satisfy
164 * an allocation of this size then it switches to using more
165 * aggressive strategy (i.e search by size rather than offset).
167 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
170 * The minimum free space, in percent, which must be available
171 * in a space map to continue allocations in a first-fit fashion.
172 * Once the space map's free space drops below this level we dynamically
173 * switch to using best-fit allocations.
175 uint_t metaslab_df_free_pct = 4;
178 * Maximum distance to search forward from the last offset. Without this
179 * limit, fragmented pools can see >100,000 iterations and
180 * metaslab_block_picker() becomes the performance limiting factor on
181 * high-performance storage.
183 * With the default setting of 16MB, we typically see less than 500
184 * iterations, even with very fragmented, ashift=9 pools. The maximum number
185 * of iterations possible is:
186 * metaslab_df_max_search / (2 * (1<<ashift))
187 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
188 * 2048 (with ashift=12).
190 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
193 * Forces the metaslab_block_picker function to search for at least this many
194 * segments forwards until giving up on finding a segment that the allocation
195 * will fit into.
197 static const uint32_t metaslab_min_search_count = 100;
200 * If we are not searching forward (due to metaslab_df_max_search,
201 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
202 * controls what segment is used. If it is set, we will use the largest free
203 * segment. If it is not set, we will use a segment of exactly the requested
204 * size (or larger).
206 static int metaslab_df_use_largest_segment = B_FALSE;
209 * These tunables control how long a metaslab will remain loaded after the
210 * last allocation from it. A metaslab can't be unloaded until at least
211 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
212 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
213 * unloaded sooner. These settings are intended to be generous -- to keep
214 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
216 static uint_t metaslab_unload_delay = 32;
217 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
220 * Max number of metaslabs per group to preload.
222 uint_t metaslab_preload_limit = 10;
225 * Enable/disable preloading of metaslab.
227 static int metaslab_preload_enabled = B_TRUE;
230 * Enable/disable fragmentation weighting on metaslabs.
232 static int metaslab_fragmentation_factor_enabled = B_TRUE;
235 * Enable/disable lba weighting (i.e. outer tracks are given preference).
237 static int metaslab_lba_weighting_enabled = B_TRUE;
240 * Enable/disable metaslab group biasing.
242 static int metaslab_bias_enabled = B_TRUE;
245 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
247 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
250 * Enable/disable segment-based metaslab selection.
252 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
255 * When using segment-based metaslab selection, we will continue
256 * allocating from the active metaslab until we have exhausted
257 * zfs_metaslab_switch_threshold of its buckets.
259 static int zfs_metaslab_switch_threshold = 2;
262 * Internal switch to enable/disable the metaslab allocation tracing
263 * facility.
265 static const boolean_t metaslab_trace_enabled = B_FALSE;
268 * Maximum entries that the metaslab allocation tracing facility will keep
269 * in a given list when running in non-debug mode. We limit the number
270 * of entries in non-debug mode to prevent us from using up too much memory.
271 * The limit should be sufficiently large that we don't expect any allocation
272 * to every exceed this value. In debug mode, the system will panic if this
273 * limit is ever reached allowing for further investigation.
275 static const uint64_t metaslab_trace_max_entries = 5000;
278 * Maximum number of metaslabs per group that can be disabled
279 * simultaneously.
281 static const int max_disabled_ms = 3;
284 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
285 * To avoid 64-bit overflow, don't set above UINT32_MAX.
287 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
290 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
291 * a metaslab would take it over this percentage, the oldest selected metaslab
292 * is automatically unloaded.
294 static uint_t zfs_metaslab_mem_limit = 25;
297 * Force the per-metaslab range trees to use 64-bit integers to store
298 * segments. Used for debugging purposes.
300 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
303 * By default we only store segments over a certain size in the size-sorted
304 * metaslab trees (ms_allocatable_by_size and
305 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
306 * improves load and unload times at the cost of causing us to use slightly
307 * larger segments than we would otherwise in some cases.
309 static const uint32_t metaslab_by_size_min_shift = 14;
312 * If not set, we will first try normal allocation. If that fails then
313 * we will do a gang allocation. If that fails then we will do a "try hard"
314 * gang allocation. If that fails then we will have a multi-layer gang
315 * block.
317 * If set, we will first try normal allocation. If that fails then
318 * we will do a "try hard" allocation. If that fails we will do a gang
319 * allocation. If that fails we will do a "try hard" gang allocation. If
320 * that fails then we will have a multi-layer gang block.
322 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
325 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
326 * metaslabs. This improves performance, especially when there are many
327 * metaslabs per vdev and the allocation can't actually be satisfied (so we
328 * would otherwise iterate all the metaslabs). If there is a metaslab with a
329 * worse weight but it can actually satisfy the allocation, we won't find it
330 * until trying hard. This may happen if the worse metaslab is not loaded
331 * (and the true weight is better than we have calculated), or due to weight
332 * bucketization. E.g. we are looking for a 60K segment, and the best
333 * metaslabs all have free segments in the 32-63K bucket, but the best
334 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
335 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
336 * bucket, and therefore a lower weight).
338 static uint_t zfs_metaslab_find_max_tries = 100;
340 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
341 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
342 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
343 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
345 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
346 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
347 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
348 static unsigned int metaslab_idx_func(multilist_t *, void *);
349 static void metaslab_evict(metaslab_t *, uint64_t);
350 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
351 kmem_cache_t *metaslab_alloc_trace_cache;
353 typedef struct metaslab_stats {
354 kstat_named_t metaslabstat_trace_over_limit;
355 kstat_named_t metaslabstat_reload_tree;
356 kstat_named_t metaslabstat_too_many_tries;
357 kstat_named_t metaslabstat_try_hard;
358 } metaslab_stats_t;
360 static metaslab_stats_t metaslab_stats = {
361 { "trace_over_limit", KSTAT_DATA_UINT64 },
362 { "reload_tree", KSTAT_DATA_UINT64 },
363 { "too_many_tries", KSTAT_DATA_UINT64 },
364 { "try_hard", KSTAT_DATA_UINT64 },
367 #define METASLABSTAT_BUMP(stat) \
368 atomic_inc_64(&metaslab_stats.stat.value.ui64);
371 static kstat_t *metaslab_ksp;
373 void
374 metaslab_stat_init(void)
376 ASSERT(metaslab_alloc_trace_cache == NULL);
377 metaslab_alloc_trace_cache = kmem_cache_create(
378 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
379 0, NULL, NULL, NULL, NULL, NULL, 0);
380 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
381 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
382 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
383 if (metaslab_ksp != NULL) {
384 metaslab_ksp->ks_data = &metaslab_stats;
385 kstat_install(metaslab_ksp);
389 void
390 metaslab_stat_fini(void)
392 if (metaslab_ksp != NULL) {
393 kstat_delete(metaslab_ksp);
394 metaslab_ksp = NULL;
397 kmem_cache_destroy(metaslab_alloc_trace_cache);
398 metaslab_alloc_trace_cache = NULL;
402 * ==========================================================================
403 * Metaslab classes
404 * ==========================================================================
406 metaslab_class_t *
407 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
409 metaslab_class_t *mc;
411 mc = kmem_zalloc(offsetof(metaslab_class_t,
412 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
414 mc->mc_spa = spa;
415 mc->mc_ops = ops;
416 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
417 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
418 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
419 for (int i = 0; i < spa->spa_alloc_count; i++) {
420 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
421 mca->mca_rotor = NULL;
422 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
425 return (mc);
428 void
429 metaslab_class_destroy(metaslab_class_t *mc)
431 spa_t *spa = mc->mc_spa;
433 ASSERT(mc->mc_alloc == 0);
434 ASSERT(mc->mc_deferred == 0);
435 ASSERT(mc->mc_space == 0);
436 ASSERT(mc->mc_dspace == 0);
438 for (int i = 0; i < spa->spa_alloc_count; i++) {
439 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
440 ASSERT(mca->mca_rotor == NULL);
441 zfs_refcount_destroy(&mca->mca_alloc_slots);
443 mutex_destroy(&mc->mc_lock);
444 multilist_destroy(&mc->mc_metaslab_txg_list);
445 kmem_free(mc, offsetof(metaslab_class_t,
446 mc_allocator[spa->spa_alloc_count]));
450 metaslab_class_validate(metaslab_class_t *mc)
452 metaslab_group_t *mg;
453 vdev_t *vd;
456 * Must hold one of the spa_config locks.
458 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
459 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
461 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
462 return (0);
464 do {
465 vd = mg->mg_vd;
466 ASSERT(vd->vdev_mg != NULL);
467 ASSERT3P(vd->vdev_top, ==, vd);
468 ASSERT3P(mg->mg_class, ==, mc);
469 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
470 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
472 return (0);
475 static void
476 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
477 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
479 atomic_add_64(&mc->mc_alloc, alloc_delta);
480 atomic_add_64(&mc->mc_deferred, defer_delta);
481 atomic_add_64(&mc->mc_space, space_delta);
482 atomic_add_64(&mc->mc_dspace, dspace_delta);
485 uint64_t
486 metaslab_class_get_alloc(metaslab_class_t *mc)
488 return (mc->mc_alloc);
491 uint64_t
492 metaslab_class_get_deferred(metaslab_class_t *mc)
494 return (mc->mc_deferred);
497 uint64_t
498 metaslab_class_get_space(metaslab_class_t *mc)
500 return (mc->mc_space);
503 uint64_t
504 metaslab_class_get_dspace(metaslab_class_t *mc)
506 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
509 void
510 metaslab_class_histogram_verify(metaslab_class_t *mc)
512 spa_t *spa = mc->mc_spa;
513 vdev_t *rvd = spa->spa_root_vdev;
514 uint64_t *mc_hist;
515 int i;
517 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
518 return;
520 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
521 KM_SLEEP);
523 mutex_enter(&mc->mc_lock);
524 for (int c = 0; c < rvd->vdev_children; c++) {
525 vdev_t *tvd = rvd->vdev_child[c];
526 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
529 * Skip any holes, uninitialized top-levels, or
530 * vdevs that are not in this metalab class.
532 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
533 mg->mg_class != mc) {
534 continue;
537 IMPLY(mg == mg->mg_vd->vdev_log_mg,
538 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
540 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
541 mc_hist[i] += mg->mg_histogram[i];
544 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
545 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
548 mutex_exit(&mc->mc_lock);
549 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
553 * Calculate the metaslab class's fragmentation metric. The metric
554 * is weighted based on the space contribution of each metaslab group.
555 * The return value will be a number between 0 and 100 (inclusive), or
556 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
557 * zfs_frag_table for more information about the metric.
559 uint64_t
560 metaslab_class_fragmentation(metaslab_class_t *mc)
562 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
563 uint64_t fragmentation = 0;
565 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
567 for (int c = 0; c < rvd->vdev_children; c++) {
568 vdev_t *tvd = rvd->vdev_child[c];
569 metaslab_group_t *mg = tvd->vdev_mg;
572 * Skip any holes, uninitialized top-levels,
573 * or vdevs that are not in this metalab class.
575 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
576 mg->mg_class != mc) {
577 continue;
581 * If a metaslab group does not contain a fragmentation
582 * metric then just bail out.
584 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
585 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
586 return (ZFS_FRAG_INVALID);
590 * Determine how much this metaslab_group is contributing
591 * to the overall pool fragmentation metric.
593 fragmentation += mg->mg_fragmentation *
594 metaslab_group_get_space(mg);
596 fragmentation /= metaslab_class_get_space(mc);
598 ASSERT3U(fragmentation, <=, 100);
599 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
600 return (fragmentation);
604 * Calculate the amount of expandable space that is available in
605 * this metaslab class. If a device is expanded then its expandable
606 * space will be the amount of allocatable space that is currently not
607 * part of this metaslab class.
609 uint64_t
610 metaslab_class_expandable_space(metaslab_class_t *mc)
612 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
613 uint64_t space = 0;
615 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
616 for (int c = 0; c < rvd->vdev_children; c++) {
617 vdev_t *tvd = rvd->vdev_child[c];
618 metaslab_group_t *mg = tvd->vdev_mg;
620 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
621 mg->mg_class != mc) {
622 continue;
626 * Calculate if we have enough space to add additional
627 * metaslabs. We report the expandable space in terms
628 * of the metaslab size since that's the unit of expansion.
630 space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
631 1ULL << tvd->vdev_ms_shift, uint64_t);
633 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
634 return (space);
637 void
638 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
640 multilist_t *ml = &mc->mc_metaslab_txg_list;
641 hrtime_t now = gethrtime();
642 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
643 multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
644 metaslab_t *msp = multilist_sublist_head(mls);
645 multilist_sublist_unlock(mls);
646 while (msp != NULL) {
647 mutex_enter(&msp->ms_lock);
650 * If the metaslab has been removed from the list
651 * (which could happen if we were at the memory limit
652 * and it was evicted during this loop), then we can't
653 * proceed and we should restart the sublist.
655 if (!multilist_link_active(&msp->ms_class_txg_node)) {
656 mutex_exit(&msp->ms_lock);
657 i--;
658 break;
660 mls = multilist_sublist_lock_idx(ml, i);
661 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
662 multilist_sublist_unlock(mls);
663 if (txg >
664 msp->ms_selected_txg + metaslab_unload_delay &&
665 now > msp->ms_selected_time +
666 MSEC2NSEC(metaslab_unload_delay_ms) &&
667 (msp->ms_allocator == -1 ||
668 !metaslab_preload_enabled)) {
669 metaslab_evict(msp, txg);
670 } else {
672 * Once we've hit a metaslab selected too
673 * recently to evict, we're done evicting for
674 * now.
676 mutex_exit(&msp->ms_lock);
677 break;
679 mutex_exit(&msp->ms_lock);
680 msp = next_msp;
685 static int
686 metaslab_compare(const void *x1, const void *x2)
688 const metaslab_t *m1 = (const metaslab_t *)x1;
689 const metaslab_t *m2 = (const metaslab_t *)x2;
691 int sort1 = 0;
692 int sort2 = 0;
693 if (m1->ms_allocator != -1 && m1->ms_primary)
694 sort1 = 1;
695 else if (m1->ms_allocator != -1 && !m1->ms_primary)
696 sort1 = 2;
697 if (m2->ms_allocator != -1 && m2->ms_primary)
698 sort2 = 1;
699 else if (m2->ms_allocator != -1 && !m2->ms_primary)
700 sort2 = 2;
703 * Sort inactive metaslabs first, then primaries, then secondaries. When
704 * selecting a metaslab to allocate from, an allocator first tries its
705 * primary, then secondary active metaslab. If it doesn't have active
706 * metaslabs, or can't allocate from them, it searches for an inactive
707 * metaslab to activate. If it can't find a suitable one, it will steal
708 * a primary or secondary metaslab from another allocator.
710 if (sort1 < sort2)
711 return (-1);
712 if (sort1 > sort2)
713 return (1);
715 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
716 if (likely(cmp))
717 return (cmp);
719 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
721 return (TREE_CMP(m1->ms_start, m2->ms_start));
725 * ==========================================================================
726 * Metaslab groups
727 * ==========================================================================
730 * Update the allocatable flag and the metaslab group's capacity.
731 * The allocatable flag is set to true if the capacity is below
732 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
733 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
734 * transitions from allocatable to non-allocatable or vice versa then the
735 * metaslab group's class is updated to reflect the transition.
737 static void
738 metaslab_group_alloc_update(metaslab_group_t *mg)
740 vdev_t *vd = mg->mg_vd;
741 metaslab_class_t *mc = mg->mg_class;
742 vdev_stat_t *vs = &vd->vdev_stat;
743 boolean_t was_allocatable;
744 boolean_t was_initialized;
746 ASSERT(vd == vd->vdev_top);
747 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
748 SCL_ALLOC);
750 mutex_enter(&mg->mg_lock);
751 was_allocatable = mg->mg_allocatable;
752 was_initialized = mg->mg_initialized;
754 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
755 (vs->vs_space + 1);
757 mutex_enter(&mc->mc_lock);
760 * If the metaslab group was just added then it won't
761 * have any space until we finish syncing out this txg.
762 * At that point we will consider it initialized and available
763 * for allocations. We also don't consider non-activated
764 * metaslab groups (e.g. vdevs that are in the middle of being removed)
765 * to be initialized, because they can't be used for allocation.
767 mg->mg_initialized = metaslab_group_initialized(mg);
768 if (!was_initialized && mg->mg_initialized) {
769 mc->mc_groups++;
770 } else if (was_initialized && !mg->mg_initialized) {
771 ASSERT3U(mc->mc_groups, >, 0);
772 mc->mc_groups--;
774 if (mg->mg_initialized)
775 mg->mg_no_free_space = B_FALSE;
778 * A metaslab group is considered allocatable if it has plenty
779 * of free space or is not heavily fragmented. We only take
780 * fragmentation into account if the metaslab group has a valid
781 * fragmentation metric (i.e. a value between 0 and 100).
783 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
784 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
785 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
786 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
789 * The mc_alloc_groups maintains a count of the number of
790 * groups in this metaslab class that are still above the
791 * zfs_mg_noalloc_threshold. This is used by the allocating
792 * threads to determine if they should avoid allocations to
793 * a given group. The allocator will avoid allocations to a group
794 * if that group has reached or is below the zfs_mg_noalloc_threshold
795 * and there are still other groups that are above the threshold.
796 * When a group transitions from allocatable to non-allocatable or
797 * vice versa we update the metaslab class to reflect that change.
798 * When the mc_alloc_groups value drops to 0 that means that all
799 * groups have reached the zfs_mg_noalloc_threshold making all groups
800 * eligible for allocations. This effectively means that all devices
801 * are balanced again.
803 if (was_allocatable && !mg->mg_allocatable)
804 mc->mc_alloc_groups--;
805 else if (!was_allocatable && mg->mg_allocatable)
806 mc->mc_alloc_groups++;
807 mutex_exit(&mc->mc_lock);
809 mutex_exit(&mg->mg_lock);
813 metaslab_sort_by_flushed(const void *va, const void *vb)
815 const metaslab_t *a = va;
816 const metaslab_t *b = vb;
818 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
819 if (likely(cmp))
820 return (cmp);
822 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
823 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
824 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
825 if (cmp)
826 return (cmp);
828 return (TREE_CMP(a->ms_id, b->ms_id));
831 metaslab_group_t *
832 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
834 metaslab_group_t *mg;
836 mg = kmem_zalloc(offsetof(metaslab_group_t,
837 mg_allocator[allocators]), KM_SLEEP);
838 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
839 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
840 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
841 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
842 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
843 mg->mg_vd = vd;
844 mg->mg_class = mc;
845 mg->mg_activation_count = 0;
846 mg->mg_initialized = B_FALSE;
847 mg->mg_no_free_space = B_TRUE;
848 mg->mg_allocators = allocators;
850 for (int i = 0; i < allocators; i++) {
851 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
852 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
855 return (mg);
858 void
859 metaslab_group_destroy(metaslab_group_t *mg)
861 ASSERT(mg->mg_prev == NULL);
862 ASSERT(mg->mg_next == NULL);
864 * We may have gone below zero with the activation count
865 * either because we never activated in the first place or
866 * because we're done, and possibly removing the vdev.
868 ASSERT(mg->mg_activation_count <= 0);
870 avl_destroy(&mg->mg_metaslab_tree);
871 mutex_destroy(&mg->mg_lock);
872 mutex_destroy(&mg->mg_ms_disabled_lock);
873 cv_destroy(&mg->mg_ms_disabled_cv);
875 for (int i = 0; i < mg->mg_allocators; i++) {
876 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
877 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
879 kmem_free(mg, offsetof(metaslab_group_t,
880 mg_allocator[mg->mg_allocators]));
883 void
884 metaslab_group_activate(metaslab_group_t *mg)
886 metaslab_class_t *mc = mg->mg_class;
887 spa_t *spa = mc->mc_spa;
888 metaslab_group_t *mgprev, *mgnext;
890 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
892 ASSERT(mg->mg_prev == NULL);
893 ASSERT(mg->mg_next == NULL);
894 ASSERT(mg->mg_activation_count <= 0);
896 if (++mg->mg_activation_count <= 0)
897 return;
899 mg->mg_aliquot = metaslab_aliquot * MAX(1,
900 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
901 metaslab_group_alloc_update(mg);
903 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
904 mg->mg_prev = mg;
905 mg->mg_next = mg;
906 } else {
907 mgnext = mgprev->mg_next;
908 mg->mg_prev = mgprev;
909 mg->mg_next = mgnext;
910 mgprev->mg_next = mg;
911 mgnext->mg_prev = mg;
913 for (int i = 0; i < spa->spa_alloc_count; i++) {
914 mc->mc_allocator[i].mca_rotor = mg;
915 mg = mg->mg_next;
920 * Passivate a metaslab group and remove it from the allocation rotor.
921 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
922 * a metaslab group. This function will momentarily drop spa_config_locks
923 * that are lower than the SCL_ALLOC lock (see comment below).
925 void
926 metaslab_group_passivate(metaslab_group_t *mg)
928 metaslab_class_t *mc = mg->mg_class;
929 spa_t *spa = mc->mc_spa;
930 metaslab_group_t *mgprev, *mgnext;
931 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
933 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
934 (SCL_ALLOC | SCL_ZIO));
936 if (--mg->mg_activation_count != 0) {
937 for (int i = 0; i < spa->spa_alloc_count; i++)
938 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
939 ASSERT(mg->mg_prev == NULL);
940 ASSERT(mg->mg_next == NULL);
941 ASSERT(mg->mg_activation_count < 0);
942 return;
946 * The spa_config_lock is an array of rwlocks, ordered as
947 * follows (from highest to lowest):
948 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
949 * SCL_ZIO > SCL_FREE > SCL_VDEV
950 * (For more information about the spa_config_lock see spa_misc.c)
951 * The higher the lock, the broader its coverage. When we passivate
952 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
953 * config locks. However, the metaslab group's taskq might be trying
954 * to preload metaslabs so we must drop the SCL_ZIO lock and any
955 * lower locks to allow the I/O to complete. At a minimum,
956 * we continue to hold the SCL_ALLOC lock, which prevents any future
957 * allocations from taking place and any changes to the vdev tree.
959 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
960 taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
961 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
962 metaslab_group_alloc_update(mg);
963 for (int i = 0; i < mg->mg_allocators; i++) {
964 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
965 metaslab_t *msp = mga->mga_primary;
966 if (msp != NULL) {
967 mutex_enter(&msp->ms_lock);
968 metaslab_passivate(msp,
969 metaslab_weight_from_range_tree(msp));
970 mutex_exit(&msp->ms_lock);
972 msp = mga->mga_secondary;
973 if (msp != NULL) {
974 mutex_enter(&msp->ms_lock);
975 metaslab_passivate(msp,
976 metaslab_weight_from_range_tree(msp));
977 mutex_exit(&msp->ms_lock);
981 mgprev = mg->mg_prev;
982 mgnext = mg->mg_next;
984 if (mg == mgnext) {
985 mgnext = NULL;
986 } else {
987 mgprev->mg_next = mgnext;
988 mgnext->mg_prev = mgprev;
990 for (int i = 0; i < spa->spa_alloc_count; i++) {
991 if (mc->mc_allocator[i].mca_rotor == mg)
992 mc->mc_allocator[i].mca_rotor = mgnext;
995 mg->mg_prev = NULL;
996 mg->mg_next = NULL;
999 boolean_t
1000 metaslab_group_initialized(metaslab_group_t *mg)
1002 vdev_t *vd = mg->mg_vd;
1003 vdev_stat_t *vs = &vd->vdev_stat;
1005 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1008 uint64_t
1009 metaslab_group_get_space(metaslab_group_t *mg)
1012 * Note that the number of nodes in mg_metaslab_tree may be one less
1013 * than vdev_ms_count, due to the embedded log metaslab.
1015 mutex_enter(&mg->mg_lock);
1016 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1017 mutex_exit(&mg->mg_lock);
1018 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1021 void
1022 metaslab_group_histogram_verify(metaslab_group_t *mg)
1024 uint64_t *mg_hist;
1025 avl_tree_t *t = &mg->mg_metaslab_tree;
1026 uint64_t ashift = mg->mg_vd->vdev_ashift;
1028 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1029 return;
1031 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1032 KM_SLEEP);
1034 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1035 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1037 mutex_enter(&mg->mg_lock);
1038 for (metaslab_t *msp = avl_first(t);
1039 msp != NULL; msp = AVL_NEXT(t, msp)) {
1040 VERIFY3P(msp->ms_group, ==, mg);
1041 /* skip if not active */
1042 if (msp->ms_sm == NULL)
1043 continue;
1045 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1046 mg_hist[i + ashift] +=
1047 msp->ms_sm->sm_phys->smp_histogram[i];
1051 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1052 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1054 mutex_exit(&mg->mg_lock);
1056 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1059 static void
1060 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1062 metaslab_class_t *mc = mg->mg_class;
1063 uint64_t ashift = mg->mg_vd->vdev_ashift;
1065 ASSERT(MUTEX_HELD(&msp->ms_lock));
1066 if (msp->ms_sm == NULL)
1067 return;
1069 mutex_enter(&mg->mg_lock);
1070 mutex_enter(&mc->mc_lock);
1071 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1072 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1073 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1074 mg->mg_histogram[i + ashift] +=
1075 msp->ms_sm->sm_phys->smp_histogram[i];
1076 mc->mc_histogram[i + ashift] +=
1077 msp->ms_sm->sm_phys->smp_histogram[i];
1079 mutex_exit(&mc->mc_lock);
1080 mutex_exit(&mg->mg_lock);
1083 void
1084 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1086 metaslab_class_t *mc = mg->mg_class;
1087 uint64_t ashift = mg->mg_vd->vdev_ashift;
1089 ASSERT(MUTEX_HELD(&msp->ms_lock));
1090 if (msp->ms_sm == NULL)
1091 return;
1093 mutex_enter(&mg->mg_lock);
1094 mutex_enter(&mc->mc_lock);
1095 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1096 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1097 msp->ms_sm->sm_phys->smp_histogram[i]);
1098 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1099 msp->ms_sm->sm_phys->smp_histogram[i]);
1100 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1101 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1103 mg->mg_histogram[i + ashift] -=
1104 msp->ms_sm->sm_phys->smp_histogram[i];
1105 mc->mc_histogram[i + ashift] -=
1106 msp->ms_sm->sm_phys->smp_histogram[i];
1108 mutex_exit(&mc->mc_lock);
1109 mutex_exit(&mg->mg_lock);
1112 static void
1113 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1115 ASSERT(msp->ms_group == NULL);
1116 mutex_enter(&mg->mg_lock);
1117 msp->ms_group = mg;
1118 msp->ms_weight = 0;
1119 avl_add(&mg->mg_metaslab_tree, msp);
1120 mutex_exit(&mg->mg_lock);
1122 mutex_enter(&msp->ms_lock);
1123 metaslab_group_histogram_add(mg, msp);
1124 mutex_exit(&msp->ms_lock);
1127 static void
1128 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1130 mutex_enter(&msp->ms_lock);
1131 metaslab_group_histogram_remove(mg, msp);
1132 mutex_exit(&msp->ms_lock);
1134 mutex_enter(&mg->mg_lock);
1135 ASSERT(msp->ms_group == mg);
1136 avl_remove(&mg->mg_metaslab_tree, msp);
1138 metaslab_class_t *mc = msp->ms_group->mg_class;
1139 multilist_sublist_t *mls =
1140 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1141 if (multilist_link_active(&msp->ms_class_txg_node))
1142 multilist_sublist_remove(mls, msp);
1143 multilist_sublist_unlock(mls);
1145 msp->ms_group = NULL;
1146 mutex_exit(&mg->mg_lock);
1149 static void
1150 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1152 ASSERT(MUTEX_HELD(&msp->ms_lock));
1153 ASSERT(MUTEX_HELD(&mg->mg_lock));
1154 ASSERT(msp->ms_group == mg);
1156 avl_remove(&mg->mg_metaslab_tree, msp);
1157 msp->ms_weight = weight;
1158 avl_add(&mg->mg_metaslab_tree, msp);
1162 static void
1163 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1166 * Although in principle the weight can be any value, in
1167 * practice we do not use values in the range [1, 511].
1169 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1170 ASSERT(MUTEX_HELD(&msp->ms_lock));
1172 mutex_enter(&mg->mg_lock);
1173 metaslab_group_sort_impl(mg, msp, weight);
1174 mutex_exit(&mg->mg_lock);
1178 * Calculate the fragmentation for a given metaslab group. We can use
1179 * a simple average here since all metaslabs within the group must have
1180 * the same size. The return value will be a value between 0 and 100
1181 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1182 * group have a fragmentation metric.
1184 uint64_t
1185 metaslab_group_fragmentation(metaslab_group_t *mg)
1187 vdev_t *vd = mg->mg_vd;
1188 uint64_t fragmentation = 0;
1189 uint64_t valid_ms = 0;
1191 for (int m = 0; m < vd->vdev_ms_count; m++) {
1192 metaslab_t *msp = vd->vdev_ms[m];
1194 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1195 continue;
1196 if (msp->ms_group != mg)
1197 continue;
1199 valid_ms++;
1200 fragmentation += msp->ms_fragmentation;
1203 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1204 return (ZFS_FRAG_INVALID);
1206 fragmentation /= valid_ms;
1207 ASSERT3U(fragmentation, <=, 100);
1208 return (fragmentation);
1212 * Determine if a given metaslab group should skip allocations. A metaslab
1213 * group should avoid allocations if its free capacity is less than the
1214 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1215 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1216 * that can still handle allocations. If the allocation throttle is enabled
1217 * then we skip allocations to devices that have reached their maximum
1218 * allocation queue depth unless the selected metaslab group is the only
1219 * eligible group remaining.
1221 static boolean_t
1222 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1223 int flags, uint64_t psize, int allocator, int d)
1225 spa_t *spa = mg->mg_vd->vdev_spa;
1226 metaslab_class_t *mc = mg->mg_class;
1229 * We can only consider skipping this metaslab group if it's
1230 * in the normal metaslab class and there are other metaslab
1231 * groups to select from. Otherwise, we always consider it eligible
1232 * for allocations.
1234 if ((mc != spa_normal_class(spa) &&
1235 mc != spa_special_class(spa) &&
1236 mc != spa_dedup_class(spa)) ||
1237 mc->mc_groups <= 1)
1238 return (B_TRUE);
1241 * If the metaslab group's mg_allocatable flag is set (see comments
1242 * in metaslab_group_alloc_update() for more information) and
1243 * the allocation throttle is disabled then allow allocations to this
1244 * device. However, if the allocation throttle is enabled then
1245 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1246 * to determine if we should allow allocations to this metaslab group.
1247 * If all metaslab groups are no longer considered allocatable
1248 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1249 * gang block size then we allow allocations on this metaslab group
1250 * regardless of the mg_allocatable or throttle settings.
1252 if (mg->mg_allocatable) {
1253 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1254 int64_t qdepth;
1255 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1257 if (!mc->mc_alloc_throttle_enabled)
1258 return (B_TRUE);
1261 * If this metaslab group does not have any free space, then
1262 * there is no point in looking further.
1264 if (mg->mg_no_free_space)
1265 return (B_FALSE);
1268 * Some allocations (e.g., those coming from device removal
1269 * where the * allocations are not even counted in the
1270 * metaslab * allocation queues) are allowed to bypass
1271 * the throttle.
1273 if (flags & METASLAB_DONT_THROTTLE)
1274 return (B_TRUE);
1277 * Relax allocation throttling for ditto blocks. Due to
1278 * random imbalances in allocation it tends to push copies
1279 * to one vdev, that looks a bit better at the moment.
1281 qmax = qmax * (4 + d) / 4;
1283 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1286 * If this metaslab group is below its qmax or it's
1287 * the only allocatable metaslab group, then attempt
1288 * to allocate from it.
1290 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1291 return (B_TRUE);
1292 ASSERT3U(mc->mc_alloc_groups, >, 1);
1295 * Since this metaslab group is at or over its qmax, we
1296 * need to determine if there are metaslab groups after this
1297 * one that might be able to handle this allocation. This is
1298 * racy since we can't hold the locks for all metaslab
1299 * groups at the same time when we make this check.
1301 for (metaslab_group_t *mgp = mg->mg_next;
1302 mgp != rotor; mgp = mgp->mg_next) {
1303 metaslab_group_allocator_t *mgap =
1304 &mgp->mg_allocator[allocator];
1305 qmax = mgap->mga_cur_max_alloc_queue_depth;
1306 qmax = qmax * (4 + d) / 4;
1307 qdepth =
1308 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1311 * If there is another metaslab group that
1312 * might be able to handle the allocation, then
1313 * we return false so that we skip this group.
1315 if (qdepth < qmax && !mgp->mg_no_free_space)
1316 return (B_FALSE);
1320 * We didn't find another group to handle the allocation
1321 * so we can't skip this metaslab group even though
1322 * we are at or over our qmax.
1324 return (B_TRUE);
1326 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1327 return (B_TRUE);
1329 return (B_FALSE);
1333 * ==========================================================================
1334 * Range tree callbacks
1335 * ==========================================================================
1339 * Comparison function for the private size-ordered tree using 32-bit
1340 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1342 __attribute__((always_inline)) inline
1343 static int
1344 metaslab_rangesize32_compare(const void *x1, const void *x2)
1346 const range_seg32_t *r1 = x1;
1347 const range_seg32_t *r2 = x2;
1349 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1350 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1352 int cmp = TREE_CMP(rs_size1, rs_size2);
1354 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1358 * Comparison function for the private size-ordered tree using 64-bit
1359 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1361 __attribute__((always_inline)) inline
1362 static int
1363 metaslab_rangesize64_compare(const void *x1, const void *x2)
1365 const range_seg64_t *r1 = x1;
1366 const range_seg64_t *r2 = x2;
1368 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1369 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1371 int cmp = TREE_CMP(rs_size1, rs_size2);
1373 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1376 typedef struct metaslab_rt_arg {
1377 zfs_btree_t *mra_bt;
1378 uint32_t mra_floor_shift;
1379 } metaslab_rt_arg_t;
1381 struct mssa_arg {
1382 range_tree_t *rt;
1383 metaslab_rt_arg_t *mra;
1386 static void
1387 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1389 struct mssa_arg *mssap = arg;
1390 range_tree_t *rt = mssap->rt;
1391 metaslab_rt_arg_t *mrap = mssap->mra;
1392 range_seg_max_t seg = {0};
1393 rs_set_start(&seg, rt, start);
1394 rs_set_end(&seg, rt, start + size);
1395 metaslab_rt_add(rt, &seg, mrap);
1398 static void
1399 metaslab_size_tree_full_load(range_tree_t *rt)
1401 metaslab_rt_arg_t *mrap = rt->rt_arg;
1402 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1403 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1404 mrap->mra_floor_shift = 0;
1405 struct mssa_arg arg = {0};
1406 arg.rt = rt;
1407 arg.mra = mrap;
1408 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1412 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1413 range_seg32_t, metaslab_rangesize32_compare)
1415 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1416 range_seg64_t, metaslab_rangesize64_compare)
1419 * Create any block allocator specific components. The current allocators
1420 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1422 static void
1423 metaslab_rt_create(range_tree_t *rt, void *arg)
1425 metaslab_rt_arg_t *mrap = arg;
1426 zfs_btree_t *size_tree = mrap->mra_bt;
1428 size_t size;
1429 int (*compare) (const void *, const void *);
1430 bt_find_in_buf_f bt_find;
1431 switch (rt->rt_type) {
1432 case RANGE_SEG32:
1433 size = sizeof (range_seg32_t);
1434 compare = metaslab_rangesize32_compare;
1435 bt_find = metaslab_rt_find_rangesize32_in_buf;
1436 break;
1437 case RANGE_SEG64:
1438 size = sizeof (range_seg64_t);
1439 compare = metaslab_rangesize64_compare;
1440 bt_find = metaslab_rt_find_rangesize64_in_buf;
1441 break;
1442 default:
1443 panic("Invalid range seg type %d", rt->rt_type);
1445 zfs_btree_create(size_tree, compare, bt_find, size);
1446 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1449 static void
1450 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1452 (void) rt;
1453 metaslab_rt_arg_t *mrap = arg;
1454 zfs_btree_t *size_tree = mrap->mra_bt;
1456 zfs_btree_destroy(size_tree);
1457 kmem_free(mrap, sizeof (*mrap));
1460 static void
1461 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1463 metaslab_rt_arg_t *mrap = arg;
1464 zfs_btree_t *size_tree = mrap->mra_bt;
1466 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1467 (1ULL << mrap->mra_floor_shift))
1468 return;
1470 zfs_btree_add(size_tree, rs);
1473 static void
1474 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1476 metaslab_rt_arg_t *mrap = arg;
1477 zfs_btree_t *size_tree = mrap->mra_bt;
1479 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1480 mrap->mra_floor_shift))
1481 return;
1483 zfs_btree_remove(size_tree, rs);
1486 static void
1487 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1489 metaslab_rt_arg_t *mrap = arg;
1490 zfs_btree_t *size_tree = mrap->mra_bt;
1491 zfs_btree_clear(size_tree);
1492 zfs_btree_destroy(size_tree);
1494 metaslab_rt_create(rt, arg);
1497 static const range_tree_ops_t metaslab_rt_ops = {
1498 .rtop_create = metaslab_rt_create,
1499 .rtop_destroy = metaslab_rt_destroy,
1500 .rtop_add = metaslab_rt_add,
1501 .rtop_remove = metaslab_rt_remove,
1502 .rtop_vacate = metaslab_rt_vacate
1506 * ==========================================================================
1507 * Common allocator routines
1508 * ==========================================================================
1512 * Return the maximum contiguous segment within the metaslab.
1514 uint64_t
1515 metaslab_largest_allocatable(metaslab_t *msp)
1517 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1518 range_seg_t *rs;
1520 if (t == NULL)
1521 return (0);
1522 if (zfs_btree_numnodes(t) == 0)
1523 metaslab_size_tree_full_load(msp->ms_allocatable);
1525 rs = zfs_btree_last(t, NULL);
1526 if (rs == NULL)
1527 return (0);
1529 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1530 msp->ms_allocatable));
1534 * Return the maximum contiguous segment within the unflushed frees of this
1535 * metaslab.
1537 static uint64_t
1538 metaslab_largest_unflushed_free(metaslab_t *msp)
1540 ASSERT(MUTEX_HELD(&msp->ms_lock));
1542 if (msp->ms_unflushed_frees == NULL)
1543 return (0);
1545 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1546 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1547 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1548 NULL);
1549 if (rs == NULL)
1550 return (0);
1553 * When a range is freed from the metaslab, that range is added to
1554 * both the unflushed frees and the deferred frees. While the block
1555 * will eventually be usable, if the metaslab were loaded the range
1556 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1557 * txgs had passed. As a result, when attempting to estimate an upper
1558 * bound for the largest currently-usable free segment in the
1559 * metaslab, we need to not consider any ranges currently in the defer
1560 * trees. This algorithm approximates the largest available chunk in
1561 * the largest range in the unflushed_frees tree by taking the first
1562 * chunk. While this may be a poor estimate, it should only remain so
1563 * briefly and should eventually self-correct as frees are no longer
1564 * deferred. Similar logic applies to the ms_freed tree. See
1565 * metaslab_load() for more details.
1567 * There are two primary sources of inaccuracy in this estimate. Both
1568 * are tolerated for performance reasons. The first source is that we
1569 * only check the largest segment for overlaps. Smaller segments may
1570 * have more favorable overlaps with the other trees, resulting in
1571 * larger usable chunks. Second, we only look at the first chunk in
1572 * the largest segment; there may be other usable chunks in the
1573 * largest segment, but we ignore them.
1575 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1576 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1577 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1578 uint64_t start = 0;
1579 uint64_t size = 0;
1580 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1581 rsize, &start, &size);
1582 if (found) {
1583 if (rstart == start)
1584 return (0);
1585 rsize = start - rstart;
1589 uint64_t start = 0;
1590 uint64_t size = 0;
1591 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1592 rsize, &start, &size);
1593 if (found)
1594 rsize = start - rstart;
1596 return (rsize);
1599 static range_seg_t *
1600 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1601 uint64_t size, zfs_btree_index_t *where)
1603 range_seg_t *rs;
1604 range_seg_max_t rsearch;
1606 rs_set_start(&rsearch, rt, start);
1607 rs_set_end(&rsearch, rt, start + size);
1609 rs = zfs_btree_find(t, &rsearch, where);
1610 if (rs == NULL) {
1611 rs = zfs_btree_next(t, where, where);
1614 return (rs);
1618 * This is a helper function that can be used by the allocator to find a
1619 * suitable block to allocate. This will search the specified B-tree looking
1620 * for a block that matches the specified criteria.
1622 static uint64_t
1623 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1624 uint64_t max_search)
1626 if (*cursor == 0)
1627 *cursor = rt->rt_start;
1628 zfs_btree_t *bt = &rt->rt_root;
1629 zfs_btree_index_t where;
1630 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1631 uint64_t first_found;
1632 int count_searched = 0;
1634 if (rs != NULL)
1635 first_found = rs_get_start(rs, rt);
1637 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1638 max_search || count_searched < metaslab_min_search_count)) {
1639 uint64_t offset = rs_get_start(rs, rt);
1640 if (offset + size <= rs_get_end(rs, rt)) {
1641 *cursor = offset + size;
1642 return (offset);
1644 rs = zfs_btree_next(bt, &where, &where);
1645 count_searched++;
1648 *cursor = 0;
1649 return (-1ULL);
1652 static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
1653 static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
1654 static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
1655 metaslab_ops_t *metaslab_allocator(spa_t *spa);
1657 static metaslab_ops_t metaslab_allocators[] = {
1658 { "dynamic", metaslab_df_alloc },
1659 { "cursor", metaslab_cf_alloc },
1660 { "new-dynamic", metaslab_ndf_alloc },
1663 static int
1664 spa_find_allocator_byname(const char *val)
1666 int a = ARRAY_SIZE(metaslab_allocators) - 1;
1667 if (strcmp("new-dynamic", val) == 0)
1668 return (-1); /* remove when ndf is working */
1669 for (; a >= 0; a--) {
1670 if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
1671 return (a);
1673 return (-1);
1676 void
1677 spa_set_allocator(spa_t *spa, const char *allocator)
1679 int a = spa_find_allocator_byname(allocator);
1680 if (a < 0) a = 0;
1681 spa->spa_active_allocator = a;
1682 zfs_dbgmsg("spa allocator: %s", metaslab_allocators[a].msop_name);
1686 spa_get_allocator(spa_t *spa)
1688 return (spa->spa_active_allocator);
1691 #if defined(_KERNEL)
1693 param_set_active_allocator_common(const char *val)
1695 char *p;
1697 if (val == NULL)
1698 return (SET_ERROR(EINVAL));
1700 if ((p = strchr(val, '\n')) != NULL)
1701 *p = '\0';
1703 int a = spa_find_allocator_byname(val);
1704 if (a < 0)
1705 return (SET_ERROR(EINVAL));
1707 zfs_active_allocator = metaslab_allocators[a].msop_name;
1708 return (0);
1710 #endif
1712 metaslab_ops_t *
1713 metaslab_allocator(spa_t *spa)
1715 int allocator = spa_get_allocator(spa);
1716 return (&metaslab_allocators[allocator]);
1720 * ==========================================================================
1721 * Dynamic Fit (df) block allocator
1723 * Search for a free chunk of at least this size, starting from the last
1724 * offset (for this alignment of block) looking for up to
1725 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1726 * found within 16MB, then return a free chunk of exactly the requested size (or
1727 * larger).
1729 * If it seems like searching from the last offset will be unproductive, skip
1730 * that and just return a free chunk of exactly the requested size (or larger).
1731 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1732 * mechanism is probably not very useful and may be removed in the future.
1734 * The behavior when not searching can be changed to return the largest free
1735 * chunk, instead of a free chunk of exactly the requested size, by setting
1736 * metaslab_df_use_largest_segment.
1737 * ==========================================================================
1739 static uint64_t
1740 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1743 * Find the largest power of 2 block size that evenly divides the
1744 * requested size. This is used to try to allocate blocks with similar
1745 * alignment from the same area of the metaslab (i.e. same cursor
1746 * bucket) but it does not guarantee that other allocations sizes
1747 * may exist in the same region.
1749 uint64_t align = size & -size;
1750 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1751 range_tree_t *rt = msp->ms_allocatable;
1752 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1753 uint64_t offset;
1755 ASSERT(MUTEX_HELD(&msp->ms_lock));
1758 * If we're running low on space, find a segment based on size,
1759 * rather than iterating based on offset.
1761 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1762 free_pct < metaslab_df_free_pct) {
1763 offset = -1;
1764 } else {
1765 offset = metaslab_block_picker(rt,
1766 cursor, size, metaslab_df_max_search);
1769 if (offset == -1) {
1770 range_seg_t *rs;
1771 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1772 metaslab_size_tree_full_load(msp->ms_allocatable);
1774 if (metaslab_df_use_largest_segment) {
1775 /* use largest free segment */
1776 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1777 } else {
1778 zfs_btree_index_t where;
1779 /* use segment of this size, or next largest */
1780 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1781 rt, msp->ms_start, size, &where);
1783 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1784 rt)) {
1785 offset = rs_get_start(rs, rt);
1786 *cursor = offset + size;
1790 return (offset);
1794 * ==========================================================================
1795 * Cursor fit block allocator -
1796 * Select the largest region in the metaslab, set the cursor to the beginning
1797 * of the range and the cursor_end to the end of the range. As allocations
1798 * are made advance the cursor. Continue allocating from the cursor until
1799 * the range is exhausted and then find a new range.
1800 * ==========================================================================
1802 static uint64_t
1803 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1805 range_tree_t *rt = msp->ms_allocatable;
1806 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1807 uint64_t *cursor = &msp->ms_lbas[0];
1808 uint64_t *cursor_end = &msp->ms_lbas[1];
1809 uint64_t offset = 0;
1811 ASSERT(MUTEX_HELD(&msp->ms_lock));
1813 ASSERT3U(*cursor_end, >=, *cursor);
1815 if ((*cursor + size) > *cursor_end) {
1816 range_seg_t *rs;
1818 if (zfs_btree_numnodes(t) == 0)
1819 metaslab_size_tree_full_load(msp->ms_allocatable);
1820 rs = zfs_btree_last(t, NULL);
1821 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1822 size)
1823 return (-1ULL);
1825 *cursor = rs_get_start(rs, rt);
1826 *cursor_end = rs_get_end(rs, rt);
1829 offset = *cursor;
1830 *cursor += size;
1832 return (offset);
1836 * ==========================================================================
1837 * New dynamic fit allocator -
1838 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1839 * contiguous blocks. If no region is found then just use the largest segment
1840 * that remains.
1841 * ==========================================================================
1845 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1846 * to request from the allocator.
1848 uint64_t metaslab_ndf_clump_shift = 4;
1850 static uint64_t
1851 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1853 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1854 range_tree_t *rt = msp->ms_allocatable;
1855 zfs_btree_index_t where;
1856 range_seg_t *rs;
1857 range_seg_max_t rsearch;
1858 uint64_t hbit = highbit64(size);
1859 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1860 uint64_t max_size = metaslab_largest_allocatable(msp);
1862 ASSERT(MUTEX_HELD(&msp->ms_lock));
1864 if (max_size < size)
1865 return (-1ULL);
1867 rs_set_start(&rsearch, rt, *cursor);
1868 rs_set_end(&rsearch, rt, *cursor + size);
1870 rs = zfs_btree_find(t, &rsearch, &where);
1871 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1872 t = &msp->ms_allocatable_by_size;
1874 rs_set_start(&rsearch, rt, 0);
1875 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1876 metaslab_ndf_clump_shift)));
1878 rs = zfs_btree_find(t, &rsearch, &where);
1879 if (rs == NULL)
1880 rs = zfs_btree_next(t, &where, &where);
1881 ASSERT(rs != NULL);
1884 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1885 *cursor = rs_get_start(rs, rt) + size;
1886 return (rs_get_start(rs, rt));
1888 return (-1ULL);
1892 * ==========================================================================
1893 * Metaslabs
1894 * ==========================================================================
1898 * Wait for any in-progress metaslab loads to complete.
1900 static void
1901 metaslab_load_wait(metaslab_t *msp)
1903 ASSERT(MUTEX_HELD(&msp->ms_lock));
1905 while (msp->ms_loading) {
1906 ASSERT(!msp->ms_loaded);
1907 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1912 * Wait for any in-progress flushing to complete.
1914 static void
1915 metaslab_flush_wait(metaslab_t *msp)
1917 ASSERT(MUTEX_HELD(&msp->ms_lock));
1919 while (msp->ms_flushing)
1920 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1923 static unsigned int
1924 metaslab_idx_func(multilist_t *ml, void *arg)
1926 metaslab_t *msp = arg;
1929 * ms_id values are allocated sequentially, so full 64bit
1930 * division would be a waste of time, so limit it to 32 bits.
1932 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1935 uint64_t
1936 metaslab_allocated_space(metaslab_t *msp)
1938 return (msp->ms_allocated_space);
1942 * Verify that the space accounting on disk matches the in-core range_trees.
1944 static void
1945 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1947 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1948 uint64_t allocating = 0;
1949 uint64_t sm_free_space, msp_free_space;
1951 ASSERT(MUTEX_HELD(&msp->ms_lock));
1952 ASSERT(!msp->ms_condensing);
1954 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1955 return;
1958 * We can only verify the metaslab space when we're called
1959 * from syncing context with a loaded metaslab that has an
1960 * allocated space map. Calling this in non-syncing context
1961 * does not provide a consistent view of the metaslab since
1962 * we're performing allocations in the future.
1964 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1965 !msp->ms_loaded)
1966 return;
1969 * Even though the smp_alloc field can get negative,
1970 * when it comes to a metaslab's space map, that should
1971 * never be the case.
1973 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1975 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1976 range_tree_space(msp->ms_unflushed_frees));
1978 ASSERT3U(metaslab_allocated_space(msp), ==,
1979 space_map_allocated(msp->ms_sm) +
1980 range_tree_space(msp->ms_unflushed_allocs) -
1981 range_tree_space(msp->ms_unflushed_frees));
1983 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1986 * Account for future allocations since we would have
1987 * already deducted that space from the ms_allocatable.
1989 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1990 allocating +=
1991 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1993 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1994 msp->ms_allocating_total);
1996 ASSERT3U(msp->ms_deferspace, ==,
1997 range_tree_space(msp->ms_defer[0]) +
1998 range_tree_space(msp->ms_defer[1]));
2000 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
2001 msp->ms_deferspace + range_tree_space(msp->ms_freed);
2003 VERIFY3U(sm_free_space, ==, msp_free_space);
2006 static void
2007 metaslab_aux_histograms_clear(metaslab_t *msp)
2010 * Auxiliary histograms are only cleared when resetting them,
2011 * which can only happen while the metaslab is loaded.
2013 ASSERT(msp->ms_loaded);
2015 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2016 for (int t = 0; t < TXG_DEFER_SIZE; t++)
2017 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
2020 static void
2021 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
2022 range_tree_t *rt)
2025 * This is modeled after space_map_histogram_add(), so refer to that
2026 * function for implementation details. We want this to work like
2027 * the space map histogram, and not the range tree histogram, as we
2028 * are essentially constructing a delta that will be later subtracted
2029 * from the space map histogram.
2031 int idx = 0;
2032 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
2033 ASSERT3U(i, >=, idx + shift);
2034 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2036 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2037 ASSERT3U(idx + shift, ==, i);
2038 idx++;
2039 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2045 * Called at every sync pass that the metaslab gets synced.
2047 * The reason is that we want our auxiliary histograms to be updated
2048 * wherever the metaslab's space map histogram is updated. This way
2049 * we stay consistent on which parts of the metaslab space map's
2050 * histogram are currently not available for allocations (e.g because
2051 * they are in the defer, freed, and freeing trees).
2053 static void
2054 metaslab_aux_histograms_update(metaslab_t *msp)
2056 space_map_t *sm = msp->ms_sm;
2057 ASSERT(sm != NULL);
2060 * This is similar to the metaslab's space map histogram updates
2061 * that take place in metaslab_sync(). The only difference is that
2062 * we only care about segments that haven't made it into the
2063 * ms_allocatable tree yet.
2065 if (msp->ms_loaded) {
2066 metaslab_aux_histograms_clear(msp);
2068 metaslab_aux_histogram_add(msp->ms_synchist,
2069 sm->sm_shift, msp->ms_freed);
2071 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2072 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2073 sm->sm_shift, msp->ms_defer[t]);
2077 metaslab_aux_histogram_add(msp->ms_synchist,
2078 sm->sm_shift, msp->ms_freeing);
2082 * Called every time we are done syncing (writing to) the metaslab,
2083 * i.e. at the end of each sync pass.
2084 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2086 static void
2087 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2089 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2090 space_map_t *sm = msp->ms_sm;
2092 if (sm == NULL) {
2094 * We came here from metaslab_init() when creating/opening a
2095 * pool, looking at a metaslab that hasn't had any allocations
2096 * yet.
2098 return;
2102 * This is similar to the actions that we take for the ms_freed
2103 * and ms_defer trees in metaslab_sync_done().
2105 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2106 if (defer_allowed) {
2107 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2108 sizeof (msp->ms_synchist));
2109 } else {
2110 memset(msp->ms_deferhist[hist_index], 0,
2111 sizeof (msp->ms_deferhist[hist_index]));
2113 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2117 * Ensure that the metaslab's weight and fragmentation are consistent
2118 * with the contents of the histogram (either the range tree's histogram
2119 * or the space map's depending whether the metaslab is loaded).
2121 static void
2122 metaslab_verify_weight_and_frag(metaslab_t *msp)
2124 ASSERT(MUTEX_HELD(&msp->ms_lock));
2126 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2127 return;
2130 * We can end up here from vdev_remove_complete(), in which case we
2131 * cannot do these assertions because we hold spa config locks and
2132 * thus we are not allowed to read from the DMU.
2134 * We check if the metaslab group has been removed and if that's
2135 * the case we return immediately as that would mean that we are
2136 * here from the aforementioned code path.
2138 if (msp->ms_group == NULL)
2139 return;
2142 * Devices being removed always return a weight of 0 and leave
2143 * fragmentation and ms_max_size as is - there is nothing for
2144 * us to verify here.
2146 vdev_t *vd = msp->ms_group->mg_vd;
2147 if (vd->vdev_removing)
2148 return;
2151 * If the metaslab is dirty it probably means that we've done
2152 * some allocations or frees that have changed our histograms
2153 * and thus the weight.
2155 for (int t = 0; t < TXG_SIZE; t++) {
2156 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2157 return;
2161 * This verification checks that our in-memory state is consistent
2162 * with what's on disk. If the pool is read-only then there aren't
2163 * any changes and we just have the initially-loaded state.
2165 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2166 return;
2168 /* some extra verification for in-core tree if you can */
2169 if (msp->ms_loaded) {
2170 range_tree_stat_verify(msp->ms_allocatable);
2171 VERIFY(space_map_histogram_verify(msp->ms_sm,
2172 msp->ms_allocatable));
2175 uint64_t weight = msp->ms_weight;
2176 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2177 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2178 uint64_t frag = msp->ms_fragmentation;
2179 uint64_t max_segsize = msp->ms_max_size;
2181 msp->ms_weight = 0;
2182 msp->ms_fragmentation = 0;
2185 * This function is used for verification purposes and thus should
2186 * not introduce any side-effects/mutations on the system's state.
2188 * Regardless of whether metaslab_weight() thinks this metaslab
2189 * should be active or not, we want to ensure that the actual weight
2190 * (and therefore the value of ms_weight) would be the same if it
2191 * was to be recalculated at this point.
2193 * In addition we set the nodirty flag so metaslab_weight() does
2194 * not dirty the metaslab for future TXGs (e.g. when trying to
2195 * force condensing to upgrade the metaslab spacemaps).
2197 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2199 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2202 * If the weight type changed then there is no point in doing
2203 * verification. Revert fields to their original values.
2205 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2206 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2207 msp->ms_fragmentation = frag;
2208 msp->ms_weight = weight;
2209 return;
2212 VERIFY3U(msp->ms_fragmentation, ==, frag);
2213 VERIFY3U(msp->ms_weight, ==, weight);
2217 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2218 * this class that was used longest ago, and attempt to unload it. We don't
2219 * want to spend too much time in this loop to prevent performance
2220 * degradation, and we expect that most of the time this operation will
2221 * succeed. Between that and the normal unloading processing during txg sync,
2222 * we expect this to keep the metaslab memory usage under control.
2224 static void
2225 metaslab_potentially_evict(metaslab_class_t *mc)
2227 #ifdef _KERNEL
2228 uint64_t allmem = arc_all_memory();
2229 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2230 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2231 uint_t tries = 0;
2232 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2233 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2234 tries++) {
2235 unsigned int idx = multilist_get_random_index(
2236 &mc->mc_metaslab_txg_list);
2237 multilist_sublist_t *mls =
2238 multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
2239 metaslab_t *msp = multilist_sublist_head(mls);
2240 multilist_sublist_unlock(mls);
2241 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2242 inuse * size) {
2243 VERIFY3P(mls, ==, multilist_sublist_lock_idx(
2244 &mc->mc_metaslab_txg_list, idx));
2245 ASSERT3U(idx, ==,
2246 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2248 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2249 multilist_sublist_unlock(mls);
2250 break;
2252 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2253 multilist_sublist_unlock(mls);
2255 * If the metaslab is currently loading there are two
2256 * cases. If it's the metaslab we're evicting, we
2257 * can't continue on or we'll panic when we attempt to
2258 * recursively lock the mutex. If it's another
2259 * metaslab that's loading, it can be safely skipped,
2260 * since we know it's very new and therefore not a
2261 * good eviction candidate. We check later once the
2262 * lock is held that the metaslab is fully loaded
2263 * before actually unloading it.
2265 if (msp->ms_loading) {
2266 msp = next_msp;
2267 inuse =
2268 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2269 continue;
2272 * We can't unload metaslabs with no spacemap because
2273 * they're not ready to be unloaded yet. We can't
2274 * unload metaslabs with outstanding allocations
2275 * because doing so could cause the metaslab's weight
2276 * to decrease while it's unloaded, which violates an
2277 * invariant that we use to prevent unnecessary
2278 * loading. We also don't unload metaslabs that are
2279 * currently active because they are high-weight
2280 * metaslabs that are likely to be used in the near
2281 * future.
2283 mutex_enter(&msp->ms_lock);
2284 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2285 msp->ms_allocating_total == 0) {
2286 metaslab_unload(msp);
2288 mutex_exit(&msp->ms_lock);
2289 msp = next_msp;
2290 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2293 #else
2294 (void) mc, (void) zfs_metaslab_mem_limit;
2295 #endif
2298 static int
2299 metaslab_load_impl(metaslab_t *msp)
2301 int error = 0;
2303 ASSERT(MUTEX_HELD(&msp->ms_lock));
2304 ASSERT(msp->ms_loading);
2305 ASSERT(!msp->ms_condensing);
2308 * We temporarily drop the lock to unblock other operations while we
2309 * are reading the space map. Therefore, metaslab_sync() and
2310 * metaslab_sync_done() can run at the same time as we do.
2312 * If we are using the log space maps, metaslab_sync() can't write to
2313 * the metaslab's space map while we are loading as we only write to
2314 * it when we are flushing the metaslab, and that can't happen while
2315 * we are loading it.
2317 * If we are not using log space maps though, metaslab_sync() can
2318 * append to the space map while we are loading. Therefore we load
2319 * only entries that existed when we started the load. Additionally,
2320 * metaslab_sync_done() has to wait for the load to complete because
2321 * there are potential races like metaslab_load() loading parts of the
2322 * space map that are currently being appended by metaslab_sync(). If
2323 * we didn't, the ms_allocatable would have entries that
2324 * metaslab_sync_done() would try to re-add later.
2326 * That's why before dropping the lock we remember the synced length
2327 * of the metaslab and read up to that point of the space map,
2328 * ignoring entries appended by metaslab_sync() that happen after we
2329 * drop the lock.
2331 uint64_t length = msp->ms_synced_length;
2332 mutex_exit(&msp->ms_lock);
2334 hrtime_t load_start = gethrtime();
2335 metaslab_rt_arg_t *mrap;
2336 if (msp->ms_allocatable->rt_arg == NULL) {
2337 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2338 } else {
2339 mrap = msp->ms_allocatable->rt_arg;
2340 msp->ms_allocatable->rt_ops = NULL;
2341 msp->ms_allocatable->rt_arg = NULL;
2343 mrap->mra_bt = &msp->ms_allocatable_by_size;
2344 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2346 if (msp->ms_sm != NULL) {
2347 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2348 SM_FREE, length);
2350 /* Now, populate the size-sorted tree. */
2351 metaslab_rt_create(msp->ms_allocatable, mrap);
2352 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2353 msp->ms_allocatable->rt_arg = mrap;
2355 struct mssa_arg arg = {0};
2356 arg.rt = msp->ms_allocatable;
2357 arg.mra = mrap;
2358 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2359 &arg);
2360 } else {
2362 * Add the size-sorted tree first, since we don't need to load
2363 * the metaslab from the spacemap.
2365 metaslab_rt_create(msp->ms_allocatable, mrap);
2366 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2367 msp->ms_allocatable->rt_arg = mrap;
2369 * The space map has not been allocated yet, so treat
2370 * all the space in the metaslab as free and add it to the
2371 * ms_allocatable tree.
2373 range_tree_add(msp->ms_allocatable,
2374 msp->ms_start, msp->ms_size);
2376 if (msp->ms_new) {
2378 * If the ms_sm doesn't exist, this means that this
2379 * metaslab hasn't gone through metaslab_sync() and
2380 * thus has never been dirtied. So we shouldn't
2381 * expect any unflushed allocs or frees from previous
2382 * TXGs.
2384 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2385 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2390 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2391 * changing the ms_sm (or log_sm) and the metaslab's range trees
2392 * while we are about to use them and populate the ms_allocatable.
2393 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2394 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2396 mutex_enter(&msp->ms_sync_lock);
2397 mutex_enter(&msp->ms_lock);
2399 ASSERT(!msp->ms_condensing);
2400 ASSERT(!msp->ms_flushing);
2402 if (error != 0) {
2403 mutex_exit(&msp->ms_sync_lock);
2404 return (error);
2407 ASSERT3P(msp->ms_group, !=, NULL);
2408 msp->ms_loaded = B_TRUE;
2411 * Apply all the unflushed changes to ms_allocatable right
2412 * away so any manipulations we do below have a clear view
2413 * of what is allocated and what is free.
2415 range_tree_walk(msp->ms_unflushed_allocs,
2416 range_tree_remove, msp->ms_allocatable);
2417 range_tree_walk(msp->ms_unflushed_frees,
2418 range_tree_add, msp->ms_allocatable);
2420 ASSERT3P(msp->ms_group, !=, NULL);
2421 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2422 if (spa_syncing_log_sm(spa) != NULL) {
2423 ASSERT(spa_feature_is_enabled(spa,
2424 SPA_FEATURE_LOG_SPACEMAP));
2427 * If we use a log space map we add all the segments
2428 * that are in ms_unflushed_frees so they are available
2429 * for allocation.
2431 * ms_allocatable needs to contain all free segments
2432 * that are ready for allocations (thus not segments
2433 * from ms_freeing, ms_freed, and the ms_defer trees).
2434 * But if we grab the lock in this code path at a sync
2435 * pass later that 1, then it also contains the
2436 * segments of ms_freed (they were added to it earlier
2437 * in this path through ms_unflushed_frees). So we
2438 * need to remove all the segments that exist in
2439 * ms_freed from ms_allocatable as they will be added
2440 * later in metaslab_sync_done().
2442 * When there's no log space map, the ms_allocatable
2443 * correctly doesn't contain any segments that exist
2444 * in ms_freed [see ms_synced_length].
2446 range_tree_walk(msp->ms_freed,
2447 range_tree_remove, msp->ms_allocatable);
2451 * If we are not using the log space map, ms_allocatable
2452 * contains the segments that exist in the ms_defer trees
2453 * [see ms_synced_length]. Thus we need to remove them
2454 * from ms_allocatable as they will be added again in
2455 * metaslab_sync_done().
2457 * If we are using the log space map, ms_allocatable still
2458 * contains the segments that exist in the ms_defer trees.
2459 * Not because it read them through the ms_sm though. But
2460 * because these segments are part of ms_unflushed_frees
2461 * whose segments we add to ms_allocatable earlier in this
2462 * code path.
2464 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2465 range_tree_walk(msp->ms_defer[t],
2466 range_tree_remove, msp->ms_allocatable);
2470 * Call metaslab_recalculate_weight_and_sort() now that the
2471 * metaslab is loaded so we get the metaslab's real weight.
2473 * Unless this metaslab was created with older software and
2474 * has not yet been converted to use segment-based weight, we
2475 * expect the new weight to be better or equal to the weight
2476 * that the metaslab had while it was not loaded. This is
2477 * because the old weight does not take into account the
2478 * consolidation of adjacent segments between TXGs. [see
2479 * comment for ms_synchist and ms_deferhist[] for more info]
2481 uint64_t weight = msp->ms_weight;
2482 uint64_t max_size = msp->ms_max_size;
2483 metaslab_recalculate_weight_and_sort(msp);
2484 if (!WEIGHT_IS_SPACEBASED(weight))
2485 ASSERT3U(weight, <=, msp->ms_weight);
2486 msp->ms_max_size = metaslab_largest_allocatable(msp);
2487 ASSERT3U(max_size, <=, msp->ms_max_size);
2488 hrtime_t load_end = gethrtime();
2489 msp->ms_load_time = load_end;
2490 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2491 "ms_id %llu, smp_length %llu, "
2492 "unflushed_allocs %llu, unflushed_frees %llu, "
2493 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2494 "loading_time %lld ms, ms_max_size %llu, "
2495 "max size error %lld, "
2496 "old_weight %llx, new_weight %llx",
2497 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2498 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2499 (u_longlong_t)msp->ms_id,
2500 (u_longlong_t)space_map_length(msp->ms_sm),
2501 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2502 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2503 (u_longlong_t)range_tree_space(msp->ms_freed),
2504 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2505 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2506 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2507 (longlong_t)((load_end - load_start) / 1000000),
2508 (u_longlong_t)msp->ms_max_size,
2509 (u_longlong_t)msp->ms_max_size - max_size,
2510 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2512 metaslab_verify_space(msp, spa_syncing_txg(spa));
2513 mutex_exit(&msp->ms_sync_lock);
2514 return (0);
2518 metaslab_load(metaslab_t *msp)
2520 ASSERT(MUTEX_HELD(&msp->ms_lock));
2523 * There may be another thread loading the same metaslab, if that's
2524 * the case just wait until the other thread is done and return.
2526 metaslab_load_wait(msp);
2527 if (msp->ms_loaded)
2528 return (0);
2529 VERIFY(!msp->ms_loading);
2530 ASSERT(!msp->ms_condensing);
2533 * We set the loading flag BEFORE potentially dropping the lock to
2534 * wait for an ongoing flush (see ms_flushing below). This way other
2535 * threads know that there is already a thread that is loading this
2536 * metaslab.
2538 msp->ms_loading = B_TRUE;
2541 * Wait for any in-progress flushing to finish as we drop the ms_lock
2542 * both here (during space_map_load()) and in metaslab_flush() (when
2543 * we flush our changes to the ms_sm).
2545 if (msp->ms_flushing)
2546 metaslab_flush_wait(msp);
2549 * In the possibility that we were waiting for the metaslab to be
2550 * flushed (where we temporarily dropped the ms_lock), ensure that
2551 * no one else loaded the metaslab somehow.
2553 ASSERT(!msp->ms_loaded);
2556 * If we're loading a metaslab in the normal class, consider evicting
2557 * another one to keep our memory usage under the limit defined by the
2558 * zfs_metaslab_mem_limit tunable.
2560 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2561 msp->ms_group->mg_class) {
2562 metaslab_potentially_evict(msp->ms_group->mg_class);
2565 int error = metaslab_load_impl(msp);
2567 ASSERT(MUTEX_HELD(&msp->ms_lock));
2568 msp->ms_loading = B_FALSE;
2569 cv_broadcast(&msp->ms_load_cv);
2571 return (error);
2574 void
2575 metaslab_unload(metaslab_t *msp)
2577 ASSERT(MUTEX_HELD(&msp->ms_lock));
2580 * This can happen if a metaslab is selected for eviction (in
2581 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2582 * metaslab_class_evict_old).
2584 if (!msp->ms_loaded)
2585 return;
2587 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2588 msp->ms_loaded = B_FALSE;
2589 msp->ms_unload_time = gethrtime();
2591 msp->ms_activation_weight = 0;
2592 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2594 if (msp->ms_group != NULL) {
2595 metaslab_class_t *mc = msp->ms_group->mg_class;
2596 multilist_sublist_t *mls =
2597 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2598 if (multilist_link_active(&msp->ms_class_txg_node))
2599 multilist_sublist_remove(mls, msp);
2600 multilist_sublist_unlock(mls);
2602 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2603 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2604 "ms_id %llu, weight %llx, "
2605 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2606 "loaded %llu ms ago, max_size %llu",
2607 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2608 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2609 (u_longlong_t)msp->ms_id,
2610 (u_longlong_t)msp->ms_weight,
2611 (u_longlong_t)msp->ms_selected_txg,
2612 (u_longlong_t)(msp->ms_unload_time -
2613 msp->ms_selected_time) / 1000 / 1000,
2614 (u_longlong_t)msp->ms_alloc_txg,
2615 (u_longlong_t)(msp->ms_unload_time -
2616 msp->ms_load_time) / 1000 / 1000,
2617 (u_longlong_t)msp->ms_max_size);
2621 * We explicitly recalculate the metaslab's weight based on its space
2622 * map (as it is now not loaded). We want unload metaslabs to always
2623 * have their weights calculated from the space map histograms, while
2624 * loaded ones have it calculated from their in-core range tree
2625 * [see metaslab_load()]. This way, the weight reflects the information
2626 * available in-core, whether it is loaded or not.
2628 * If ms_group == NULL means that we came here from metaslab_fini(),
2629 * at which point it doesn't make sense for us to do the recalculation
2630 * and the sorting.
2632 if (msp->ms_group != NULL)
2633 metaslab_recalculate_weight_and_sort(msp);
2637 * We want to optimize the memory use of the per-metaslab range
2638 * trees. To do this, we store the segments in the range trees in
2639 * units of sectors, zero-indexing from the start of the metaslab. If
2640 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2641 * the ranges using two uint32_ts, rather than two uint64_ts.
2643 range_seg_type_t
2644 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2645 uint64_t *start, uint64_t *shift)
2647 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2648 !zfs_metaslab_force_large_segs) {
2649 *shift = vdev->vdev_ashift;
2650 *start = msp->ms_start;
2651 return (RANGE_SEG32);
2652 } else {
2653 *shift = 0;
2654 *start = 0;
2655 return (RANGE_SEG64);
2659 void
2660 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2662 ASSERT(MUTEX_HELD(&msp->ms_lock));
2663 metaslab_class_t *mc = msp->ms_group->mg_class;
2664 multilist_sublist_t *mls =
2665 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2666 if (multilist_link_active(&msp->ms_class_txg_node))
2667 multilist_sublist_remove(mls, msp);
2668 msp->ms_selected_txg = txg;
2669 msp->ms_selected_time = gethrtime();
2670 multilist_sublist_insert_tail(mls, msp);
2671 multilist_sublist_unlock(mls);
2674 void
2675 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2676 int64_t defer_delta, int64_t space_delta)
2678 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2680 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2681 ASSERT(vd->vdev_ms_count != 0);
2683 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2684 vdev_deflated_space(vd, space_delta));
2688 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2689 uint64_t txg, metaslab_t **msp)
2691 vdev_t *vd = mg->mg_vd;
2692 spa_t *spa = vd->vdev_spa;
2693 objset_t *mos = spa->spa_meta_objset;
2694 metaslab_t *ms;
2695 int error;
2697 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2698 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2699 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2700 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2701 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2702 multilist_link_init(&ms->ms_class_txg_node);
2704 ms->ms_id = id;
2705 ms->ms_start = id << vd->vdev_ms_shift;
2706 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2707 ms->ms_allocator = -1;
2708 ms->ms_new = B_TRUE;
2710 vdev_ops_t *ops = vd->vdev_ops;
2711 if (ops->vdev_op_metaslab_init != NULL)
2712 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2715 * We only open space map objects that already exist. All others
2716 * will be opened when we finally allocate an object for it. For
2717 * readonly pools there is no need to open the space map object.
2719 * Note:
2720 * When called from vdev_expand(), we can't call into the DMU as
2721 * we are holding the spa_config_lock as a writer and we would
2722 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2723 * that case, the object parameter is zero though, so we won't
2724 * call into the DMU.
2726 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2727 !spa->spa_read_spacemaps)) {
2728 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2729 ms->ms_size, vd->vdev_ashift);
2731 if (error != 0) {
2732 kmem_free(ms, sizeof (metaslab_t));
2733 return (error);
2736 ASSERT(ms->ms_sm != NULL);
2737 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2740 uint64_t shift, start;
2741 range_seg_type_t type =
2742 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2744 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2745 for (int t = 0; t < TXG_SIZE; t++) {
2746 ms->ms_allocating[t] = range_tree_create(NULL, type,
2747 NULL, start, shift);
2749 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2750 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2751 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2752 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2753 start, shift);
2755 ms->ms_checkpointing =
2756 range_tree_create(NULL, type, NULL, start, shift);
2757 ms->ms_unflushed_allocs =
2758 range_tree_create(NULL, type, NULL, start, shift);
2760 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2761 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2762 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2763 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2764 type, mrap, start, shift);
2766 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2768 metaslab_group_add(mg, ms);
2769 metaslab_set_fragmentation(ms, B_FALSE);
2772 * If we're opening an existing pool (txg == 0) or creating
2773 * a new one (txg == TXG_INITIAL), all space is available now.
2774 * If we're adding space to an existing pool, the new space
2775 * does not become available until after this txg has synced.
2776 * The metaslab's weight will also be initialized when we sync
2777 * out this txg. This ensures that we don't attempt to allocate
2778 * from it before we have initialized it completely.
2780 if (txg <= TXG_INITIAL) {
2781 metaslab_sync_done(ms, 0);
2782 metaslab_space_update(vd, mg->mg_class,
2783 metaslab_allocated_space(ms), 0, 0);
2786 if (txg != 0) {
2787 vdev_dirty(vd, 0, NULL, txg);
2788 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2791 *msp = ms;
2793 return (0);
2796 static void
2797 metaslab_fini_flush_data(metaslab_t *msp)
2799 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2801 if (metaslab_unflushed_txg(msp) == 0) {
2802 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2803 ==, NULL);
2804 return;
2806 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2808 mutex_enter(&spa->spa_flushed_ms_lock);
2809 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2810 mutex_exit(&spa->spa_flushed_ms_lock);
2812 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2813 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2814 metaslab_unflushed_dirty(msp));
2817 uint64_t
2818 metaslab_unflushed_changes_memused(metaslab_t *ms)
2820 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2821 range_tree_numsegs(ms->ms_unflushed_frees)) *
2822 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2825 void
2826 metaslab_fini(metaslab_t *msp)
2828 metaslab_group_t *mg = msp->ms_group;
2829 vdev_t *vd = mg->mg_vd;
2830 spa_t *spa = vd->vdev_spa;
2832 metaslab_fini_flush_data(msp);
2834 metaslab_group_remove(mg, msp);
2836 mutex_enter(&msp->ms_lock);
2837 VERIFY(msp->ms_group == NULL);
2840 * If this metaslab hasn't been through metaslab_sync_done() yet its
2841 * space hasn't been accounted for in its vdev and doesn't need to be
2842 * subtracted.
2844 if (!msp->ms_new) {
2845 metaslab_space_update(vd, mg->mg_class,
2846 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2849 space_map_close(msp->ms_sm);
2850 msp->ms_sm = NULL;
2852 metaslab_unload(msp);
2854 range_tree_destroy(msp->ms_allocatable);
2855 range_tree_destroy(msp->ms_freeing);
2856 range_tree_destroy(msp->ms_freed);
2858 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2859 metaslab_unflushed_changes_memused(msp));
2860 spa->spa_unflushed_stats.sus_memused -=
2861 metaslab_unflushed_changes_memused(msp);
2862 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2863 range_tree_destroy(msp->ms_unflushed_allocs);
2864 range_tree_destroy(msp->ms_checkpointing);
2865 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2866 range_tree_destroy(msp->ms_unflushed_frees);
2868 for (int t = 0; t < TXG_SIZE; t++) {
2869 range_tree_destroy(msp->ms_allocating[t]);
2871 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2872 range_tree_destroy(msp->ms_defer[t]);
2874 ASSERT0(msp->ms_deferspace);
2876 for (int t = 0; t < TXG_SIZE; t++)
2877 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2879 range_tree_vacate(msp->ms_trim, NULL, NULL);
2880 range_tree_destroy(msp->ms_trim);
2882 mutex_exit(&msp->ms_lock);
2883 cv_destroy(&msp->ms_load_cv);
2884 cv_destroy(&msp->ms_flush_cv);
2885 mutex_destroy(&msp->ms_lock);
2886 mutex_destroy(&msp->ms_sync_lock);
2887 ASSERT3U(msp->ms_allocator, ==, -1);
2889 kmem_free(msp, sizeof (metaslab_t));
2892 #define FRAGMENTATION_TABLE_SIZE 17
2895 * This table defines a segment size based fragmentation metric that will
2896 * allow each metaslab to derive its own fragmentation value. This is done
2897 * by calculating the space in each bucket of the spacemap histogram and
2898 * multiplying that by the fragmentation metric in this table. Doing
2899 * this for all buckets and dividing it by the total amount of free
2900 * space in this metaslab (i.e. the total free space in all buckets) gives
2901 * us the fragmentation metric. This means that a high fragmentation metric
2902 * equates to most of the free space being comprised of small segments.
2903 * Conversely, if the metric is low, then most of the free space is in
2904 * large segments. A 10% change in fragmentation equates to approximately
2905 * double the number of segments.
2907 * This table defines 0% fragmented space using 16MB segments. Testing has
2908 * shown that segments that are greater than or equal to 16MB do not suffer
2909 * from drastic performance problems. Using this value, we derive the rest
2910 * of the table. Since the fragmentation value is never stored on disk, it
2911 * is possible to change these calculations in the future.
2913 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2914 100, /* 512B */
2915 100, /* 1K */
2916 98, /* 2K */
2917 95, /* 4K */
2918 90, /* 8K */
2919 80, /* 16K */
2920 70, /* 32K */
2921 60, /* 64K */
2922 50, /* 128K */
2923 40, /* 256K */
2924 30, /* 512K */
2925 20, /* 1M */
2926 15, /* 2M */
2927 10, /* 4M */
2928 5, /* 8M */
2929 0 /* 16M */
2933 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2934 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2935 * been upgraded and does not support this metric. Otherwise, the return
2936 * value should be in the range [0, 100].
2938 static void
2939 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2941 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2942 uint64_t fragmentation = 0;
2943 uint64_t total = 0;
2944 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2945 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2947 if (!feature_enabled) {
2948 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2949 return;
2953 * A null space map means that the entire metaslab is free
2954 * and thus is not fragmented.
2956 if (msp->ms_sm == NULL) {
2957 msp->ms_fragmentation = 0;
2958 return;
2962 * If this metaslab's space map has not been upgraded, flag it
2963 * so that we upgrade next time we encounter it.
2965 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2966 uint64_t txg = spa_syncing_txg(spa);
2967 vdev_t *vd = msp->ms_group->mg_vd;
2970 * If we've reached the final dirty txg, then we must
2971 * be shutting down the pool. We don't want to dirty
2972 * any data past this point so skip setting the condense
2973 * flag. We can retry this action the next time the pool
2974 * is imported. We also skip marking this metaslab for
2975 * condensing if the caller has explicitly set nodirty.
2977 if (!nodirty &&
2978 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2979 msp->ms_condense_wanted = B_TRUE;
2980 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2981 zfs_dbgmsg("txg %llu, requesting force condense: "
2982 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2983 (u_longlong_t)msp->ms_id,
2984 (u_longlong_t)vd->vdev_id);
2986 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2987 return;
2990 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2991 uint64_t space = 0;
2992 uint8_t shift = msp->ms_sm->sm_shift;
2994 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2995 FRAGMENTATION_TABLE_SIZE - 1);
2997 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2998 continue;
3000 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
3001 total += space;
3003 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
3004 fragmentation += space * zfs_frag_table[idx];
3007 if (total > 0)
3008 fragmentation /= total;
3009 ASSERT3U(fragmentation, <=, 100);
3011 msp->ms_fragmentation = fragmentation;
3015 * Compute a weight -- a selection preference value -- for the given metaslab.
3016 * This is based on the amount of free space, the level of fragmentation,
3017 * the LBA range, and whether the metaslab is loaded.
3019 static uint64_t
3020 metaslab_space_weight(metaslab_t *msp)
3022 metaslab_group_t *mg = msp->ms_group;
3023 vdev_t *vd = mg->mg_vd;
3024 uint64_t weight, space;
3026 ASSERT(MUTEX_HELD(&msp->ms_lock));
3029 * The baseline weight is the metaslab's free space.
3031 space = msp->ms_size - metaslab_allocated_space(msp);
3033 if (metaslab_fragmentation_factor_enabled &&
3034 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3036 * Use the fragmentation information to inversely scale
3037 * down the baseline weight. We need to ensure that we
3038 * don't exclude this metaslab completely when it's 100%
3039 * fragmented. To avoid this we reduce the fragmented value
3040 * by 1.
3042 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3045 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3046 * this metaslab again. The fragmentation metric may have
3047 * decreased the space to something smaller than
3048 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3049 * so that we can consume any remaining space.
3051 if (space > 0 && space < SPA_MINBLOCKSIZE)
3052 space = SPA_MINBLOCKSIZE;
3054 weight = space;
3057 * Modern disks have uniform bit density and constant angular velocity.
3058 * Therefore, the outer recording zones are faster (higher bandwidth)
3059 * than the inner zones by the ratio of outer to inner track diameter,
3060 * which is typically around 2:1. We account for this by assigning
3061 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3062 * In effect, this means that we'll select the metaslab with the most
3063 * free bandwidth rather than simply the one with the most free space.
3065 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3066 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3067 ASSERT(weight >= space && weight <= 2 * space);
3071 * If this metaslab is one we're actively using, adjust its
3072 * weight to make it preferable to any inactive metaslab so
3073 * we'll polish it off. If the fragmentation on this metaslab
3074 * has exceed our threshold, then don't mark it active.
3076 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3077 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3078 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3081 WEIGHT_SET_SPACEBASED(weight);
3082 return (weight);
3086 * Return the weight of the specified metaslab, according to the segment-based
3087 * weighting algorithm. The metaslab must be loaded. This function can
3088 * be called within a sync pass since it relies only on the metaslab's
3089 * range tree which is always accurate when the metaslab is loaded.
3091 static uint64_t
3092 metaslab_weight_from_range_tree(metaslab_t *msp)
3094 uint64_t weight = 0;
3095 uint32_t segments = 0;
3097 ASSERT(msp->ms_loaded);
3099 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3100 i--) {
3101 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3102 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3104 segments <<= 1;
3105 segments += msp->ms_allocatable->rt_histogram[i];
3108 * The range tree provides more precision than the space map
3109 * and must be downgraded so that all values fit within the
3110 * space map's histogram. This allows us to compare loaded
3111 * vs. unloaded metaslabs to determine which metaslab is
3112 * considered "best".
3114 if (i > max_idx)
3115 continue;
3117 if (segments != 0) {
3118 WEIGHT_SET_COUNT(weight, segments);
3119 WEIGHT_SET_INDEX(weight, i);
3120 WEIGHT_SET_ACTIVE(weight, 0);
3121 break;
3124 return (weight);
3128 * Calculate the weight based on the on-disk histogram. Should be applied
3129 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3130 * give results consistent with the on-disk state
3132 static uint64_t
3133 metaslab_weight_from_spacemap(metaslab_t *msp)
3135 space_map_t *sm = msp->ms_sm;
3136 ASSERT(!msp->ms_loaded);
3137 ASSERT(sm != NULL);
3138 ASSERT3U(space_map_object(sm), !=, 0);
3139 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3142 * Create a joint histogram from all the segments that have made
3143 * it to the metaslab's space map histogram, that are not yet
3144 * available for allocation because they are still in the freeing
3145 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3146 * these segments from the space map's histogram to get a more
3147 * accurate weight.
3149 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3150 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3151 deferspace_histogram[i] += msp->ms_synchist[i];
3152 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3153 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3154 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3158 uint64_t weight = 0;
3159 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3160 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3161 deferspace_histogram[i]);
3162 uint64_t count =
3163 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3164 if (count != 0) {
3165 WEIGHT_SET_COUNT(weight, count);
3166 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3167 WEIGHT_SET_ACTIVE(weight, 0);
3168 break;
3171 return (weight);
3175 * Compute a segment-based weight for the specified metaslab. The weight
3176 * is determined by highest bucket in the histogram. The information
3177 * for the highest bucket is encoded into the weight value.
3179 static uint64_t
3180 metaslab_segment_weight(metaslab_t *msp)
3182 metaslab_group_t *mg = msp->ms_group;
3183 uint64_t weight = 0;
3184 uint8_t shift = mg->mg_vd->vdev_ashift;
3186 ASSERT(MUTEX_HELD(&msp->ms_lock));
3189 * The metaslab is completely free.
3191 if (metaslab_allocated_space(msp) == 0) {
3192 int idx = highbit64(msp->ms_size) - 1;
3193 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3195 if (idx < max_idx) {
3196 WEIGHT_SET_COUNT(weight, 1ULL);
3197 WEIGHT_SET_INDEX(weight, idx);
3198 } else {
3199 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3200 WEIGHT_SET_INDEX(weight, max_idx);
3202 WEIGHT_SET_ACTIVE(weight, 0);
3203 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3204 return (weight);
3207 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3210 * If the metaslab is fully allocated then just make the weight 0.
3212 if (metaslab_allocated_space(msp) == msp->ms_size)
3213 return (0);
3215 * If the metaslab is already loaded, then use the range tree to
3216 * determine the weight. Otherwise, we rely on the space map information
3217 * to generate the weight.
3219 if (msp->ms_loaded) {
3220 weight = metaslab_weight_from_range_tree(msp);
3221 } else {
3222 weight = metaslab_weight_from_spacemap(msp);
3226 * If the metaslab was active the last time we calculated its weight
3227 * then keep it active. We want to consume the entire region that
3228 * is associated with this weight.
3230 if (msp->ms_activation_weight != 0 && weight != 0)
3231 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3232 return (weight);
3236 * Determine if we should attempt to allocate from this metaslab. If the
3237 * metaslab is loaded, then we can determine if the desired allocation
3238 * can be satisfied by looking at the size of the maximum free segment
3239 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3240 * weight. For segment-based weighting we can determine the maximum
3241 * allocation based on the index encoded in its value. For space-based
3242 * weights we rely on the entire weight (excluding the weight-type bit).
3244 static boolean_t
3245 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3248 * This case will usually but not always get caught by the checks below;
3249 * metaslabs can be loaded by various means, including the trim and
3250 * initialize code. Once that happens, without this check they are
3251 * allocatable even before they finish their first txg sync.
3253 if (unlikely(msp->ms_new))
3254 return (B_FALSE);
3257 * If the metaslab is loaded, ms_max_size is definitive and we can use
3258 * the fast check. If it's not, the ms_max_size is a lower bound (once
3259 * set), and we should use the fast check as long as we're not in
3260 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3261 * seconds since the metaslab was unloaded.
3263 if (msp->ms_loaded ||
3264 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3265 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3266 return (msp->ms_max_size >= asize);
3268 boolean_t should_allocate;
3269 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3271 * The metaslab segment weight indicates segments in the
3272 * range [2^i, 2^(i+1)), where i is the index in the weight.
3273 * Since the asize might be in the middle of the range, we
3274 * should attempt the allocation if asize < 2^(i+1).
3276 should_allocate = (asize <
3277 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3278 } else {
3279 should_allocate = (asize <=
3280 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3283 return (should_allocate);
3286 static uint64_t
3287 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3289 vdev_t *vd = msp->ms_group->mg_vd;
3290 spa_t *spa = vd->vdev_spa;
3291 uint64_t weight;
3293 ASSERT(MUTEX_HELD(&msp->ms_lock));
3295 metaslab_set_fragmentation(msp, nodirty);
3298 * Update the maximum size. If the metaslab is loaded, this will
3299 * ensure that we get an accurate maximum size if newly freed space
3300 * has been added back into the free tree. If the metaslab is
3301 * unloaded, we check if there's a larger free segment in the
3302 * unflushed frees. This is a lower bound on the largest allocatable
3303 * segment size. Coalescing of adjacent entries may reveal larger
3304 * allocatable segments, but we aren't aware of those until loading
3305 * the space map into a range tree.
3307 if (msp->ms_loaded) {
3308 msp->ms_max_size = metaslab_largest_allocatable(msp);
3309 } else {
3310 msp->ms_max_size = MAX(msp->ms_max_size,
3311 metaslab_largest_unflushed_free(msp));
3315 * Segment-based weighting requires space map histogram support.
3317 if (zfs_metaslab_segment_weight_enabled &&
3318 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3319 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3320 sizeof (space_map_phys_t))) {
3321 weight = metaslab_segment_weight(msp);
3322 } else {
3323 weight = metaslab_space_weight(msp);
3325 return (weight);
3328 void
3329 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3331 ASSERT(MUTEX_HELD(&msp->ms_lock));
3333 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3334 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3335 metaslab_group_sort(msp->ms_group, msp,
3336 metaslab_weight(msp, B_FALSE) | was_active);
3339 static int
3340 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3341 int allocator, uint64_t activation_weight)
3343 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3344 ASSERT(MUTEX_HELD(&msp->ms_lock));
3347 * If we're activating for the claim code, we don't want to actually
3348 * set the metaslab up for a specific allocator.
3350 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3351 ASSERT0(msp->ms_activation_weight);
3352 msp->ms_activation_weight = msp->ms_weight;
3353 metaslab_group_sort(mg, msp, msp->ms_weight |
3354 activation_weight);
3355 return (0);
3358 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3359 &mga->mga_primary : &mga->mga_secondary);
3361 mutex_enter(&mg->mg_lock);
3362 if (*mspp != NULL) {
3363 mutex_exit(&mg->mg_lock);
3364 return (EEXIST);
3367 *mspp = msp;
3368 ASSERT3S(msp->ms_allocator, ==, -1);
3369 msp->ms_allocator = allocator;
3370 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3372 ASSERT0(msp->ms_activation_weight);
3373 msp->ms_activation_weight = msp->ms_weight;
3374 metaslab_group_sort_impl(mg, msp,
3375 msp->ms_weight | activation_weight);
3376 mutex_exit(&mg->mg_lock);
3378 return (0);
3381 static int
3382 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3384 ASSERT(MUTEX_HELD(&msp->ms_lock));
3387 * The current metaslab is already activated for us so there
3388 * is nothing to do. Already activated though, doesn't mean
3389 * that this metaslab is activated for our allocator nor our
3390 * requested activation weight. The metaslab could have started
3391 * as an active one for our allocator but changed allocators
3392 * while we were waiting to grab its ms_lock or we stole it
3393 * [see find_valid_metaslab()]. This means that there is a
3394 * possibility of passivating a metaslab of another allocator
3395 * or from a different activation mask, from this thread.
3397 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3398 ASSERT(msp->ms_loaded);
3399 return (0);
3402 int error = metaslab_load(msp);
3403 if (error != 0) {
3404 metaslab_group_sort(msp->ms_group, msp, 0);
3405 return (error);
3409 * When entering metaslab_load() we may have dropped the
3410 * ms_lock because we were loading this metaslab, or we
3411 * were waiting for another thread to load it for us. In
3412 * that scenario, we recheck the weight of the metaslab
3413 * to see if it was activated by another thread.
3415 * If the metaslab was activated for another allocator or
3416 * it was activated with a different activation weight (e.g.
3417 * we wanted to make it a primary but it was activated as
3418 * secondary) we return error (EBUSY).
3420 * If the metaslab was activated for the same allocator
3421 * and requested activation mask, skip activating it.
3423 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3424 if (msp->ms_allocator != allocator)
3425 return (EBUSY);
3427 if ((msp->ms_weight & activation_weight) == 0)
3428 return (SET_ERROR(EBUSY));
3430 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3431 msp->ms_primary);
3432 return (0);
3436 * If the metaslab has literally 0 space, it will have weight 0. In
3437 * that case, don't bother activating it. This can happen if the
3438 * metaslab had space during find_valid_metaslab, but another thread
3439 * loaded it and used all that space while we were waiting to grab the
3440 * lock.
3442 if (msp->ms_weight == 0) {
3443 ASSERT0(range_tree_space(msp->ms_allocatable));
3444 return (SET_ERROR(ENOSPC));
3447 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3448 allocator, activation_weight)) != 0) {
3449 return (error);
3452 ASSERT(msp->ms_loaded);
3453 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3455 return (0);
3458 static void
3459 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3460 uint64_t weight)
3462 ASSERT(MUTEX_HELD(&msp->ms_lock));
3463 ASSERT(msp->ms_loaded);
3465 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3466 metaslab_group_sort(mg, msp, weight);
3467 return;
3470 mutex_enter(&mg->mg_lock);
3471 ASSERT3P(msp->ms_group, ==, mg);
3472 ASSERT3S(0, <=, msp->ms_allocator);
3473 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3475 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3476 if (msp->ms_primary) {
3477 ASSERT3P(mga->mga_primary, ==, msp);
3478 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3479 mga->mga_primary = NULL;
3480 } else {
3481 ASSERT3P(mga->mga_secondary, ==, msp);
3482 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3483 mga->mga_secondary = NULL;
3485 msp->ms_allocator = -1;
3486 metaslab_group_sort_impl(mg, msp, weight);
3487 mutex_exit(&mg->mg_lock);
3490 static void
3491 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3493 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3496 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3497 * this metaslab again. In that case, it had better be empty,
3498 * or we would be leaving space on the table.
3500 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3501 size >= SPA_MINBLOCKSIZE ||
3502 range_tree_space(msp->ms_allocatable) == 0);
3503 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3505 ASSERT(msp->ms_activation_weight != 0);
3506 msp->ms_activation_weight = 0;
3507 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3508 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3512 * Segment-based metaslabs are activated once and remain active until
3513 * we either fail an allocation attempt (similar to space-based metaslabs)
3514 * or have exhausted the free space in zfs_metaslab_switch_threshold
3515 * buckets since the metaslab was activated. This function checks to see
3516 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3517 * metaslab and passivates it proactively. This will allow us to select a
3518 * metaslab with a larger contiguous region, if any, remaining within this
3519 * metaslab group. If we're in sync pass > 1, then we continue using this
3520 * metaslab so that we don't dirty more block and cause more sync passes.
3522 static void
3523 metaslab_segment_may_passivate(metaslab_t *msp)
3525 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3527 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3528 return;
3531 * Since we are in the middle of a sync pass, the most accurate
3532 * information that is accessible to us is the in-core range tree
3533 * histogram; calculate the new weight based on that information.
3535 uint64_t weight = metaslab_weight_from_range_tree(msp);
3536 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3537 int current_idx = WEIGHT_GET_INDEX(weight);
3539 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3540 metaslab_passivate(msp, weight);
3543 static void
3544 metaslab_preload(void *arg)
3546 metaslab_t *msp = arg;
3547 metaslab_class_t *mc = msp->ms_group->mg_class;
3548 spa_t *spa = mc->mc_spa;
3549 fstrans_cookie_t cookie = spl_fstrans_mark();
3551 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3553 mutex_enter(&msp->ms_lock);
3554 (void) metaslab_load(msp);
3555 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3556 mutex_exit(&msp->ms_lock);
3557 spl_fstrans_unmark(cookie);
3560 static void
3561 metaslab_group_preload(metaslab_group_t *mg)
3563 spa_t *spa = mg->mg_vd->vdev_spa;
3564 metaslab_t *msp;
3565 avl_tree_t *t = &mg->mg_metaslab_tree;
3566 int m = 0;
3568 if (spa_shutting_down(spa) || !metaslab_preload_enabled)
3569 return;
3571 mutex_enter(&mg->mg_lock);
3574 * Load the next potential metaslabs
3576 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3577 ASSERT3P(msp->ms_group, ==, mg);
3580 * We preload only the maximum number of metaslabs specified
3581 * by metaslab_preload_limit. If a metaslab is being forced
3582 * to condense then we preload it too. This will ensure
3583 * that force condensing happens in the next txg.
3585 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3586 continue;
3589 VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
3590 msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
3591 != TASKQID_INVALID);
3593 mutex_exit(&mg->mg_lock);
3597 * Determine if the space map's on-disk footprint is past our tolerance for
3598 * inefficiency. We would like to use the following criteria to make our
3599 * decision:
3601 * 1. Do not condense if the size of the space map object would dramatically
3602 * increase as a result of writing out the free space range tree.
3604 * 2. Condense if the on on-disk space map representation is at least
3605 * zfs_condense_pct/100 times the size of the optimal representation
3606 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3608 * 3. Do not condense if the on-disk size of the space map does not actually
3609 * decrease.
3611 * Unfortunately, we cannot compute the on-disk size of the space map in this
3612 * context because we cannot accurately compute the effects of compression, etc.
3613 * Instead, we apply the heuristic described in the block comment for
3614 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3615 * is greater than a threshold number of blocks.
3617 static boolean_t
3618 metaslab_should_condense(metaslab_t *msp)
3620 space_map_t *sm = msp->ms_sm;
3621 vdev_t *vd = msp->ms_group->mg_vd;
3622 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3624 ASSERT(MUTEX_HELD(&msp->ms_lock));
3625 ASSERT(msp->ms_loaded);
3626 ASSERT(sm != NULL);
3627 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3630 * We always condense metaslabs that are empty and metaslabs for
3631 * which a condense request has been made.
3633 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3634 msp->ms_condense_wanted)
3635 return (B_TRUE);
3637 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3638 uint64_t object_size = space_map_length(sm);
3639 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3640 msp->ms_allocatable, SM_NO_VDEVID);
3642 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3643 object_size > zfs_metaslab_condense_block_threshold * record_size);
3647 * Condense the on-disk space map representation to its minimized form.
3648 * The minimized form consists of a small number of allocations followed
3649 * by the entries of the free range tree (ms_allocatable). The condensed
3650 * spacemap contains all the entries of previous TXGs (including those in
3651 * the pool-wide log spacemaps; thus this is effectively a superset of
3652 * metaslab_flush()), but this TXG's entries still need to be written.
3654 static void
3655 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3657 range_tree_t *condense_tree;
3658 space_map_t *sm = msp->ms_sm;
3659 uint64_t txg = dmu_tx_get_txg(tx);
3660 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3662 ASSERT(MUTEX_HELD(&msp->ms_lock));
3663 ASSERT(msp->ms_loaded);
3664 ASSERT(msp->ms_sm != NULL);
3667 * In order to condense the space map, we need to change it so it
3668 * only describes which segments are currently allocated and free.
3670 * All the current free space resides in the ms_allocatable, all
3671 * the ms_defer trees, and all the ms_allocating trees. We ignore
3672 * ms_freed because it is empty because we're in sync pass 1. We
3673 * ignore ms_freeing because these changes are not yet reflected
3674 * in the spacemap (they will be written later this txg).
3676 * So to truncate the space map to represent all the entries of
3677 * previous TXGs we do the following:
3679 * 1] We create a range tree (condense tree) that is 100% empty.
3680 * 2] We add to it all segments found in the ms_defer trees
3681 * as those segments are marked as free in the original space
3682 * map. We do the same with the ms_allocating trees for the same
3683 * reason. Adding these segments should be a relatively
3684 * inexpensive operation since we expect these trees to have a
3685 * small number of nodes.
3686 * 3] We vacate any unflushed allocs, since they are not frees we
3687 * need to add to the condense tree. Then we vacate any
3688 * unflushed frees as they should already be part of ms_allocatable.
3689 * 4] At this point, we would ideally like to add all segments
3690 * in the ms_allocatable tree from the condense tree. This way
3691 * we would write all the entries of the condense tree as the
3692 * condensed space map, which would only contain freed
3693 * segments with everything else assumed to be allocated.
3695 * Doing so can be prohibitively expensive as ms_allocatable can
3696 * be large, and therefore computationally expensive to add to
3697 * the condense_tree. Instead we first sync out an entry marking
3698 * everything as allocated, then the condense_tree and then the
3699 * ms_allocatable, in the condensed space map. While this is not
3700 * optimal, it is typically close to optimal and more importantly
3701 * much cheaper to compute.
3703 * 5] Finally, as both of the unflushed trees were written to our
3704 * new and condensed metaslab space map, we basically flushed
3705 * all the unflushed changes to disk, thus we call
3706 * metaslab_flush_update().
3708 ASSERT3U(spa_sync_pass(spa), ==, 1);
3709 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3711 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3712 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3713 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3714 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3715 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3716 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3717 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3719 msp->ms_condense_wanted = B_FALSE;
3721 range_seg_type_t type;
3722 uint64_t shift, start;
3723 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3724 &start, &shift);
3726 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3728 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3729 range_tree_walk(msp->ms_defer[t],
3730 range_tree_add, condense_tree);
3733 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3734 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3735 range_tree_add, condense_tree);
3738 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3739 metaslab_unflushed_changes_memused(msp));
3740 spa->spa_unflushed_stats.sus_memused -=
3741 metaslab_unflushed_changes_memused(msp);
3742 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3743 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3746 * We're about to drop the metaslab's lock thus allowing other
3747 * consumers to change it's content. Set the metaslab's ms_condensing
3748 * flag to ensure that allocations on this metaslab do not occur
3749 * while we're in the middle of committing it to disk. This is only
3750 * critical for ms_allocatable as all other range trees use per TXG
3751 * views of their content.
3753 msp->ms_condensing = B_TRUE;
3755 mutex_exit(&msp->ms_lock);
3756 uint64_t object = space_map_object(msp->ms_sm);
3757 space_map_truncate(sm,
3758 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3759 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3762 * space_map_truncate() may have reallocated the spacemap object.
3763 * If so, update the vdev_ms_array.
3765 if (space_map_object(msp->ms_sm) != object) {
3766 object = space_map_object(msp->ms_sm);
3767 dmu_write(spa->spa_meta_objset,
3768 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3769 msp->ms_id, sizeof (uint64_t), &object, tx);
3773 * Note:
3774 * When the log space map feature is enabled, each space map will
3775 * always have ALLOCS followed by FREES for each sync pass. This is
3776 * typically true even when the log space map feature is disabled,
3777 * except from the case where a metaslab goes through metaslab_sync()
3778 * and gets condensed. In that case the metaslab's space map will have
3779 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3780 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3781 * sync pass 1.
3783 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3784 shift);
3785 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3786 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3787 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3788 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3790 range_tree_vacate(condense_tree, NULL, NULL);
3791 range_tree_destroy(condense_tree);
3792 range_tree_vacate(tmp_tree, NULL, NULL);
3793 range_tree_destroy(tmp_tree);
3794 mutex_enter(&msp->ms_lock);
3796 msp->ms_condensing = B_FALSE;
3797 metaslab_flush_update(msp, tx);
3800 static void
3801 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3803 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3804 ASSERT(spa_syncing_log_sm(spa) != NULL);
3805 ASSERT(msp->ms_sm != NULL);
3806 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3807 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3809 mutex_enter(&spa->spa_flushed_ms_lock);
3810 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3811 metaslab_set_unflushed_dirty(msp, B_TRUE);
3812 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3813 mutex_exit(&spa->spa_flushed_ms_lock);
3815 spa_log_sm_increment_current_mscount(spa);
3816 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3819 void
3820 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3822 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3823 ASSERT(spa_syncing_log_sm(spa) != NULL);
3824 ASSERT(msp->ms_sm != NULL);
3825 ASSERT(metaslab_unflushed_txg(msp) != 0);
3826 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3827 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3828 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3830 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3832 /* update metaslab's position in our flushing tree */
3833 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3834 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3835 mutex_enter(&spa->spa_flushed_ms_lock);
3836 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3837 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3838 metaslab_set_unflushed_dirty(msp, dirty);
3839 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3840 mutex_exit(&spa->spa_flushed_ms_lock);
3842 /* update metaslab counts of spa_log_sm_t nodes */
3843 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3844 spa_log_sm_increment_current_mscount(spa);
3846 /* update log space map summary */
3847 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3848 ms_prev_flushed_dirty);
3849 spa_log_summary_add_flushed_metaslab(spa, dirty);
3851 /* cleanup obsolete logs if any */
3852 spa_cleanup_old_sm_logs(spa, tx);
3856 * Called when the metaslab has been flushed (its own spacemap now reflects
3857 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3858 * metadata and any pool-wide related log space map data (e.g. summary,
3859 * obsolete logs, etc..) to reflect that.
3861 static void
3862 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3864 metaslab_group_t *mg = msp->ms_group;
3865 spa_t *spa = mg->mg_vd->vdev_spa;
3867 ASSERT(MUTEX_HELD(&msp->ms_lock));
3869 ASSERT3U(spa_sync_pass(spa), ==, 1);
3872 * Just because a metaslab got flushed, that doesn't mean that
3873 * it will pass through metaslab_sync_done(). Thus, make sure to
3874 * update ms_synced_length here in case it doesn't.
3876 msp->ms_synced_length = space_map_length(msp->ms_sm);
3879 * We may end up here from metaslab_condense() without the
3880 * feature being active. In that case this is a no-op.
3882 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3883 metaslab_unflushed_txg(msp) == 0)
3884 return;
3886 metaslab_unflushed_bump(msp, tx, B_FALSE);
3889 boolean_t
3890 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3892 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3894 ASSERT(MUTEX_HELD(&msp->ms_lock));
3895 ASSERT3U(spa_sync_pass(spa), ==, 1);
3896 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3898 ASSERT(msp->ms_sm != NULL);
3899 ASSERT(metaslab_unflushed_txg(msp) != 0);
3900 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3903 * There is nothing wrong with flushing the same metaslab twice, as
3904 * this codepath should work on that case. However, the current
3905 * flushing scheme makes sure to avoid this situation as we would be
3906 * making all these calls without having anything meaningful to write
3907 * to disk. We assert this behavior here.
3909 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3912 * We can not flush while loading, because then we would
3913 * not load the ms_unflushed_{allocs,frees}.
3915 if (msp->ms_loading)
3916 return (B_FALSE);
3918 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3919 metaslab_verify_weight_and_frag(msp);
3922 * Metaslab condensing is effectively flushing. Therefore if the
3923 * metaslab can be condensed we can just condense it instead of
3924 * flushing it.
3926 * Note that metaslab_condense() does call metaslab_flush_update()
3927 * so we can just return immediately after condensing. We also
3928 * don't need to care about setting ms_flushing or broadcasting
3929 * ms_flush_cv, even if we temporarily drop the ms_lock in
3930 * metaslab_condense(), as the metaslab is already loaded.
3932 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3933 metaslab_group_t *mg = msp->ms_group;
3936 * For all histogram operations below refer to the
3937 * comments of metaslab_sync() where we follow a
3938 * similar procedure.
3940 metaslab_group_histogram_verify(mg);
3941 metaslab_class_histogram_verify(mg->mg_class);
3942 metaslab_group_histogram_remove(mg, msp);
3944 metaslab_condense(msp, tx);
3946 space_map_histogram_clear(msp->ms_sm);
3947 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3948 ASSERT(range_tree_is_empty(msp->ms_freed));
3949 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3950 space_map_histogram_add(msp->ms_sm,
3951 msp->ms_defer[t], tx);
3953 metaslab_aux_histograms_update(msp);
3955 metaslab_group_histogram_add(mg, msp);
3956 metaslab_group_histogram_verify(mg);
3957 metaslab_class_histogram_verify(mg->mg_class);
3959 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3962 * Since we recreated the histogram (and potentially
3963 * the ms_sm too while condensing) ensure that the
3964 * weight is updated too because we are not guaranteed
3965 * that this metaslab is dirty and will go through
3966 * metaslab_sync_done().
3968 metaslab_recalculate_weight_and_sort(msp);
3969 return (B_TRUE);
3972 msp->ms_flushing = B_TRUE;
3973 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3975 mutex_exit(&msp->ms_lock);
3976 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3977 SM_NO_VDEVID, tx);
3978 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3979 SM_NO_VDEVID, tx);
3980 mutex_enter(&msp->ms_lock);
3982 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3983 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3984 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3985 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3986 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3987 spa_name(spa),
3988 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3989 (u_longlong_t)msp->ms_id,
3990 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3991 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3992 (u_longlong_t)(sm_len_after - sm_len_before));
3995 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3996 metaslab_unflushed_changes_memused(msp));
3997 spa->spa_unflushed_stats.sus_memused -=
3998 metaslab_unflushed_changes_memused(msp);
3999 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
4000 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
4002 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4003 metaslab_verify_weight_and_frag(msp);
4005 metaslab_flush_update(msp, tx);
4007 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
4008 metaslab_verify_weight_and_frag(msp);
4010 msp->ms_flushing = B_FALSE;
4011 cv_broadcast(&msp->ms_flush_cv);
4012 return (B_TRUE);
4016 * Write a metaslab to disk in the context of the specified transaction group.
4018 void
4019 metaslab_sync(metaslab_t *msp, uint64_t txg)
4021 metaslab_group_t *mg = msp->ms_group;
4022 vdev_t *vd = mg->mg_vd;
4023 spa_t *spa = vd->vdev_spa;
4024 objset_t *mos = spa_meta_objset(spa);
4025 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
4026 dmu_tx_t *tx;
4028 ASSERT(!vd->vdev_ishole);
4031 * This metaslab has just been added so there's no work to do now.
4033 if (msp->ms_new) {
4034 ASSERT0(range_tree_space(alloctree));
4035 ASSERT0(range_tree_space(msp->ms_freeing));
4036 ASSERT0(range_tree_space(msp->ms_freed));
4037 ASSERT0(range_tree_space(msp->ms_checkpointing));
4038 ASSERT0(range_tree_space(msp->ms_trim));
4039 return;
4043 * Normally, we don't want to process a metaslab if there are no
4044 * allocations or frees to perform. However, if the metaslab is being
4045 * forced to condense, it's loaded and we're not beyond the final
4046 * dirty txg, we need to let it through. Not condensing beyond the
4047 * final dirty txg prevents an issue where metaslabs that need to be
4048 * condensed but were loaded for other reasons could cause a panic
4049 * here. By only checking the txg in that branch of the conditional,
4050 * we preserve the utility of the VERIFY statements in all other
4051 * cases.
4053 if (range_tree_is_empty(alloctree) &&
4054 range_tree_is_empty(msp->ms_freeing) &&
4055 range_tree_is_empty(msp->ms_checkpointing) &&
4056 !(msp->ms_loaded && msp->ms_condense_wanted &&
4057 txg <= spa_final_dirty_txg(spa)))
4058 return;
4061 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4064 * The only state that can actually be changing concurrently
4065 * with metaslab_sync() is the metaslab's ms_allocatable. No
4066 * other thread can be modifying this txg's alloc, freeing,
4067 * freed, or space_map_phys_t. We drop ms_lock whenever we
4068 * could call into the DMU, because the DMU can call down to
4069 * us (e.g. via zio_free()) at any time.
4071 * The spa_vdev_remove_thread() can be reading metaslab state
4072 * concurrently, and it is locked out by the ms_sync_lock.
4073 * Note that the ms_lock is insufficient for this, because it
4074 * is dropped by space_map_write().
4076 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4079 * Generate a log space map if one doesn't exist already.
4081 spa_generate_syncing_log_sm(spa, tx);
4083 if (msp->ms_sm == NULL) {
4084 uint64_t new_object = space_map_alloc(mos,
4085 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4086 zfs_metaslab_sm_blksz_with_log :
4087 zfs_metaslab_sm_blksz_no_log, tx);
4088 VERIFY3U(new_object, !=, 0);
4090 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4091 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4093 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4094 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4095 ASSERT(msp->ms_sm != NULL);
4097 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4098 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4099 ASSERT0(metaslab_allocated_space(msp));
4102 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4103 vd->vdev_checkpoint_sm == NULL) {
4104 ASSERT(spa_has_checkpoint(spa));
4106 uint64_t new_object = space_map_alloc(mos,
4107 zfs_vdev_standard_sm_blksz, tx);
4108 VERIFY3U(new_object, !=, 0);
4110 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4111 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4112 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4115 * We save the space map object as an entry in vdev_top_zap
4116 * so it can be retrieved when the pool is reopened after an
4117 * export or through zdb.
4119 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4120 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4121 sizeof (new_object), 1, &new_object, tx));
4124 mutex_enter(&msp->ms_sync_lock);
4125 mutex_enter(&msp->ms_lock);
4128 * Note: metaslab_condense() clears the space map's histogram.
4129 * Therefore we must verify and remove this histogram before
4130 * condensing.
4132 metaslab_group_histogram_verify(mg);
4133 metaslab_class_histogram_verify(mg->mg_class);
4134 metaslab_group_histogram_remove(mg, msp);
4136 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4137 metaslab_should_condense(msp))
4138 metaslab_condense(msp, tx);
4141 * We'll be going to disk to sync our space accounting, thus we
4142 * drop the ms_lock during that time so allocations coming from
4143 * open-context (ZIL) for future TXGs do not block.
4145 mutex_exit(&msp->ms_lock);
4146 space_map_t *log_sm = spa_syncing_log_sm(spa);
4147 if (log_sm != NULL) {
4148 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4149 if (metaslab_unflushed_txg(msp) == 0)
4150 metaslab_unflushed_add(msp, tx);
4151 else if (!metaslab_unflushed_dirty(msp))
4152 metaslab_unflushed_bump(msp, tx, B_TRUE);
4154 space_map_write(log_sm, alloctree, SM_ALLOC,
4155 vd->vdev_id, tx);
4156 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4157 vd->vdev_id, tx);
4158 mutex_enter(&msp->ms_lock);
4160 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4161 metaslab_unflushed_changes_memused(msp));
4162 spa->spa_unflushed_stats.sus_memused -=
4163 metaslab_unflushed_changes_memused(msp);
4164 range_tree_remove_xor_add(alloctree,
4165 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4166 range_tree_remove_xor_add(msp->ms_freeing,
4167 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4168 spa->spa_unflushed_stats.sus_memused +=
4169 metaslab_unflushed_changes_memused(msp);
4170 } else {
4171 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4173 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4174 SM_NO_VDEVID, tx);
4175 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4176 SM_NO_VDEVID, tx);
4177 mutex_enter(&msp->ms_lock);
4180 msp->ms_allocated_space += range_tree_space(alloctree);
4181 ASSERT3U(msp->ms_allocated_space, >=,
4182 range_tree_space(msp->ms_freeing));
4183 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4185 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4186 ASSERT(spa_has_checkpoint(spa));
4187 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4190 * Since we are doing writes to disk and the ms_checkpointing
4191 * tree won't be changing during that time, we drop the
4192 * ms_lock while writing to the checkpoint space map, for the
4193 * same reason mentioned above.
4195 mutex_exit(&msp->ms_lock);
4196 space_map_write(vd->vdev_checkpoint_sm,
4197 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4198 mutex_enter(&msp->ms_lock);
4200 spa->spa_checkpoint_info.sci_dspace +=
4201 range_tree_space(msp->ms_checkpointing);
4202 vd->vdev_stat.vs_checkpoint_space +=
4203 range_tree_space(msp->ms_checkpointing);
4204 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4205 -space_map_allocated(vd->vdev_checkpoint_sm));
4207 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4210 if (msp->ms_loaded) {
4212 * When the space map is loaded, we have an accurate
4213 * histogram in the range tree. This gives us an opportunity
4214 * to bring the space map's histogram up-to-date so we clear
4215 * it first before updating it.
4217 space_map_histogram_clear(msp->ms_sm);
4218 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4221 * Since we've cleared the histogram we need to add back
4222 * any free space that has already been processed, plus
4223 * any deferred space. This allows the on-disk histogram
4224 * to accurately reflect all free space even if some space
4225 * is not yet available for allocation (i.e. deferred).
4227 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4230 * Add back any deferred free space that has not been
4231 * added back into the in-core free tree yet. This will
4232 * ensure that we don't end up with a space map histogram
4233 * that is completely empty unless the metaslab is fully
4234 * allocated.
4236 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4237 space_map_histogram_add(msp->ms_sm,
4238 msp->ms_defer[t], tx);
4243 * Always add the free space from this sync pass to the space
4244 * map histogram. We want to make sure that the on-disk histogram
4245 * accounts for all free space. If the space map is not loaded,
4246 * then we will lose some accuracy but will correct it the next
4247 * time we load the space map.
4249 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4250 metaslab_aux_histograms_update(msp);
4252 metaslab_group_histogram_add(mg, msp);
4253 metaslab_group_histogram_verify(mg);
4254 metaslab_class_histogram_verify(mg->mg_class);
4257 * For sync pass 1, we avoid traversing this txg's free range tree
4258 * and instead will just swap the pointers for freeing and freed.
4259 * We can safely do this since the freed_tree is guaranteed to be
4260 * empty on the initial pass.
4262 * Keep in mind that even if we are currently using a log spacemap
4263 * we want current frees to end up in the ms_allocatable (but not
4264 * get appended to the ms_sm) so their ranges can be reused as usual.
4266 if (spa_sync_pass(spa) == 1) {
4267 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4268 ASSERT0(msp->ms_allocated_this_txg);
4269 } else {
4270 range_tree_vacate(msp->ms_freeing,
4271 range_tree_add, msp->ms_freed);
4273 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4274 range_tree_vacate(alloctree, NULL, NULL);
4276 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4277 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4278 & TXG_MASK]));
4279 ASSERT0(range_tree_space(msp->ms_freeing));
4280 ASSERT0(range_tree_space(msp->ms_checkpointing));
4282 mutex_exit(&msp->ms_lock);
4285 * Verify that the space map object ID has been recorded in the
4286 * vdev_ms_array.
4288 uint64_t object;
4289 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4290 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4291 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4293 mutex_exit(&msp->ms_sync_lock);
4294 dmu_tx_commit(tx);
4297 static void
4298 metaslab_evict(metaslab_t *msp, uint64_t txg)
4300 if (!msp->ms_loaded || msp->ms_disabled != 0)
4301 return;
4303 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4304 VERIFY0(range_tree_space(
4305 msp->ms_allocating[(txg + t) & TXG_MASK]));
4307 if (msp->ms_allocator != -1)
4308 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4310 if (!metaslab_debug_unload)
4311 metaslab_unload(msp);
4315 * Called after a transaction group has completely synced to mark
4316 * all of the metaslab's free space as usable.
4318 void
4319 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4321 metaslab_group_t *mg = msp->ms_group;
4322 vdev_t *vd = mg->mg_vd;
4323 spa_t *spa = vd->vdev_spa;
4324 range_tree_t **defer_tree;
4325 int64_t alloc_delta, defer_delta;
4326 boolean_t defer_allowed = B_TRUE;
4328 ASSERT(!vd->vdev_ishole);
4330 mutex_enter(&msp->ms_lock);
4332 if (msp->ms_new) {
4333 /* this is a new metaslab, add its capacity to the vdev */
4334 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4336 /* there should be no allocations nor frees at this point */
4337 VERIFY0(msp->ms_allocated_this_txg);
4338 VERIFY0(range_tree_space(msp->ms_freed));
4341 ASSERT0(range_tree_space(msp->ms_freeing));
4342 ASSERT0(range_tree_space(msp->ms_checkpointing));
4344 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4346 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4347 metaslab_class_get_alloc(spa_normal_class(spa));
4348 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
4349 vd->vdev_rz_expanding) {
4350 defer_allowed = B_FALSE;
4353 defer_delta = 0;
4354 alloc_delta = msp->ms_allocated_this_txg -
4355 range_tree_space(msp->ms_freed);
4357 if (defer_allowed) {
4358 defer_delta = range_tree_space(msp->ms_freed) -
4359 range_tree_space(*defer_tree);
4360 } else {
4361 defer_delta -= range_tree_space(*defer_tree);
4363 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4364 defer_delta, 0);
4366 if (spa_syncing_log_sm(spa) == NULL) {
4368 * If there's a metaslab_load() in progress and we don't have
4369 * a log space map, it means that we probably wrote to the
4370 * metaslab's space map. If this is the case, we need to
4371 * make sure that we wait for the load to complete so that we
4372 * have a consistent view at the in-core side of the metaslab.
4374 metaslab_load_wait(msp);
4375 } else {
4376 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4380 * When auto-trimming is enabled, free ranges which are added to
4381 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4382 * periodically consumed by the vdev_autotrim_thread() which issues
4383 * trims for all ranges and then vacates the tree. The ms_trim tree
4384 * can be discarded at any time with the sole consequence of recent
4385 * frees not being trimmed.
4387 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4388 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4389 if (!defer_allowed) {
4390 range_tree_walk(msp->ms_freed, range_tree_add,
4391 msp->ms_trim);
4393 } else {
4394 range_tree_vacate(msp->ms_trim, NULL, NULL);
4398 * Move the frees from the defer_tree back to the free
4399 * range tree (if it's loaded). Swap the freed_tree and
4400 * the defer_tree -- this is safe to do because we've
4401 * just emptied out the defer_tree.
4403 range_tree_vacate(*defer_tree,
4404 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4405 if (defer_allowed) {
4406 range_tree_swap(&msp->ms_freed, defer_tree);
4407 } else {
4408 range_tree_vacate(msp->ms_freed,
4409 msp->ms_loaded ? range_tree_add : NULL,
4410 msp->ms_allocatable);
4413 msp->ms_synced_length = space_map_length(msp->ms_sm);
4415 msp->ms_deferspace += defer_delta;
4416 ASSERT3S(msp->ms_deferspace, >=, 0);
4417 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4418 if (msp->ms_deferspace != 0) {
4420 * Keep syncing this metaslab until all deferred frees
4421 * are back in circulation.
4423 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4425 metaslab_aux_histograms_update_done(msp, defer_allowed);
4427 if (msp->ms_new) {
4428 msp->ms_new = B_FALSE;
4429 mutex_enter(&mg->mg_lock);
4430 mg->mg_ms_ready++;
4431 mutex_exit(&mg->mg_lock);
4435 * Re-sort metaslab within its group now that we've adjusted
4436 * its allocatable space.
4438 metaslab_recalculate_weight_and_sort(msp);
4440 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4441 ASSERT0(range_tree_space(msp->ms_freeing));
4442 ASSERT0(range_tree_space(msp->ms_freed));
4443 ASSERT0(range_tree_space(msp->ms_checkpointing));
4444 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4445 msp->ms_allocated_this_txg = 0;
4446 mutex_exit(&msp->ms_lock);
4449 void
4450 metaslab_sync_reassess(metaslab_group_t *mg)
4452 spa_t *spa = mg->mg_class->mc_spa;
4454 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4455 metaslab_group_alloc_update(mg);
4456 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4459 * Preload the next potential metaslabs but only on active
4460 * metaslab groups. We can get into a state where the metaslab
4461 * is no longer active since we dirty metaslabs as we remove a
4462 * a device, thus potentially making the metaslab group eligible
4463 * for preloading.
4465 if (mg->mg_activation_count > 0) {
4466 metaslab_group_preload(mg);
4468 spa_config_exit(spa, SCL_ALLOC, FTAG);
4472 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4473 * the same vdev as an existing DVA of this BP, then try to allocate it
4474 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4476 static boolean_t
4477 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4479 uint64_t dva_ms_id;
4481 if (DVA_GET_ASIZE(dva) == 0)
4482 return (B_TRUE);
4484 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4485 return (B_TRUE);
4487 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4489 return (msp->ms_id != dva_ms_id);
4493 * ==========================================================================
4494 * Metaslab allocation tracing facility
4495 * ==========================================================================
4499 * Add an allocation trace element to the allocation tracing list.
4501 static void
4502 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4503 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4504 int allocator)
4506 metaslab_alloc_trace_t *mat;
4508 if (!metaslab_trace_enabled)
4509 return;
4512 * When the tracing list reaches its maximum we remove
4513 * the second element in the list before adding a new one.
4514 * By removing the second element we preserve the original
4515 * entry as a clue to what allocations steps have already been
4516 * performed.
4518 if (zal->zal_size == metaslab_trace_max_entries) {
4519 metaslab_alloc_trace_t *mat_next;
4520 #ifdef ZFS_DEBUG
4521 panic("too many entries in allocation list");
4522 #endif
4523 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4524 zal->zal_size--;
4525 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4526 list_remove(&zal->zal_list, mat_next);
4527 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4530 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4531 list_link_init(&mat->mat_list_node);
4532 mat->mat_mg = mg;
4533 mat->mat_msp = msp;
4534 mat->mat_size = psize;
4535 mat->mat_dva_id = dva_id;
4536 mat->mat_offset = offset;
4537 mat->mat_weight = 0;
4538 mat->mat_allocator = allocator;
4540 if (msp != NULL)
4541 mat->mat_weight = msp->ms_weight;
4544 * The list is part of the zio so locking is not required. Only
4545 * a single thread will perform allocations for a given zio.
4547 list_insert_tail(&zal->zal_list, mat);
4548 zal->zal_size++;
4550 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4553 void
4554 metaslab_trace_init(zio_alloc_list_t *zal)
4556 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4557 offsetof(metaslab_alloc_trace_t, mat_list_node));
4558 zal->zal_size = 0;
4561 void
4562 metaslab_trace_fini(zio_alloc_list_t *zal)
4564 metaslab_alloc_trace_t *mat;
4566 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4567 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4568 list_destroy(&zal->zal_list);
4569 zal->zal_size = 0;
4573 * ==========================================================================
4574 * Metaslab block operations
4575 * ==========================================================================
4578 static void
4579 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4580 int flags, int allocator)
4582 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4583 (flags & METASLAB_DONT_THROTTLE))
4584 return;
4586 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4587 if (!mg->mg_class->mc_alloc_throttle_enabled)
4588 return;
4590 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4591 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4594 static void
4595 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4597 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4598 metaslab_class_allocator_t *mca =
4599 &mg->mg_class->mc_allocator[allocator];
4600 uint64_t max = mg->mg_max_alloc_queue_depth;
4601 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4602 while (cur < max) {
4603 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4604 cur, cur + 1) == cur) {
4605 atomic_inc_64(&mca->mca_alloc_max_slots);
4606 return;
4608 cur = mga->mga_cur_max_alloc_queue_depth;
4612 void
4613 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4614 int flags, int allocator, boolean_t io_complete)
4616 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4617 (flags & METASLAB_DONT_THROTTLE))
4618 return;
4620 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4621 if (!mg->mg_class->mc_alloc_throttle_enabled)
4622 return;
4624 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4625 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4626 if (io_complete)
4627 metaslab_group_increment_qdepth(mg, allocator);
4630 void
4631 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4632 int allocator)
4634 #ifdef ZFS_DEBUG
4635 const dva_t *dva = bp->blk_dva;
4636 int ndvas = BP_GET_NDVAS(bp);
4638 for (int d = 0; d < ndvas; d++) {
4639 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4640 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4641 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4642 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4644 #endif
4647 static uint64_t
4648 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4650 uint64_t start;
4651 range_tree_t *rt = msp->ms_allocatable;
4652 metaslab_class_t *mc = msp->ms_group->mg_class;
4654 ASSERT(MUTEX_HELD(&msp->ms_lock));
4655 VERIFY(!msp->ms_condensing);
4656 VERIFY0(msp->ms_disabled);
4657 VERIFY0(msp->ms_new);
4659 start = mc->mc_ops->msop_alloc(msp, size);
4660 if (start != -1ULL) {
4661 metaslab_group_t *mg = msp->ms_group;
4662 vdev_t *vd = mg->mg_vd;
4664 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4665 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4666 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4667 range_tree_remove(rt, start, size);
4668 range_tree_clear(msp->ms_trim, start, size);
4670 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4671 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4673 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4674 msp->ms_allocating_total += size;
4676 /* Track the last successful allocation */
4677 msp->ms_alloc_txg = txg;
4678 metaslab_verify_space(msp, txg);
4682 * Now that we've attempted the allocation we need to update the
4683 * metaslab's maximum block size since it may have changed.
4685 msp->ms_max_size = metaslab_largest_allocatable(msp);
4686 return (start);
4690 * Find the metaslab with the highest weight that is less than what we've
4691 * already tried. In the common case, this means that we will examine each
4692 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4693 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4694 * activated by another thread, and we fail to allocate from the metaslab we
4695 * have selected, we may not try the newly-activated metaslab, and instead
4696 * activate another metaslab. This is not optimal, but generally does not cause
4697 * any problems (a possible exception being if every metaslab is completely full
4698 * except for the newly-activated metaslab which we fail to examine).
4700 static metaslab_t *
4701 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4702 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4703 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4704 boolean_t *was_active)
4706 avl_index_t idx;
4707 avl_tree_t *t = &mg->mg_metaslab_tree;
4708 metaslab_t *msp = avl_find(t, search, &idx);
4709 if (msp == NULL)
4710 msp = avl_nearest(t, idx, AVL_AFTER);
4712 uint_t tries = 0;
4713 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4714 int i;
4716 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4717 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4718 return (NULL);
4720 tries++;
4722 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4723 metaslab_trace_add(zal, mg, msp, asize, d,
4724 TRACE_TOO_SMALL, allocator);
4725 continue;
4729 * If the selected metaslab is condensing or disabled, or
4730 * hasn't gone through a metaslab_sync_done(), then skip it.
4732 if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
4733 continue;
4735 *was_active = msp->ms_allocator != -1;
4737 * If we're activating as primary, this is our first allocation
4738 * from this disk, so we don't need to check how close we are.
4739 * If the metaslab under consideration was already active,
4740 * we're getting desperate enough to steal another allocator's
4741 * metaslab, so we still don't care about distances.
4743 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4744 break;
4746 for (i = 0; i < d; i++) {
4747 if (want_unique &&
4748 !metaslab_is_unique(msp, &dva[i]))
4749 break; /* try another metaslab */
4751 if (i == d)
4752 break;
4755 if (msp != NULL) {
4756 search->ms_weight = msp->ms_weight;
4757 search->ms_start = msp->ms_start + 1;
4758 search->ms_allocator = msp->ms_allocator;
4759 search->ms_primary = msp->ms_primary;
4761 return (msp);
4764 static void
4765 metaslab_active_mask_verify(metaslab_t *msp)
4767 ASSERT(MUTEX_HELD(&msp->ms_lock));
4769 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4770 return;
4772 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4773 return;
4775 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4776 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4777 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4778 VERIFY3S(msp->ms_allocator, !=, -1);
4779 VERIFY(msp->ms_primary);
4780 return;
4783 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4784 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4785 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4786 VERIFY3S(msp->ms_allocator, !=, -1);
4787 VERIFY(!msp->ms_primary);
4788 return;
4791 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4792 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4793 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4794 VERIFY3S(msp->ms_allocator, ==, -1);
4795 return;
4799 static uint64_t
4800 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4801 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4802 int allocator, boolean_t try_hard)
4804 metaslab_t *msp = NULL;
4805 uint64_t offset = -1ULL;
4807 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4808 for (int i = 0; i < d; i++) {
4809 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4810 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4811 activation_weight = METASLAB_WEIGHT_SECONDARY;
4812 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4813 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4814 activation_weight = METASLAB_WEIGHT_CLAIM;
4815 break;
4820 * If we don't have enough metaslabs active to fill the entire array, we
4821 * just use the 0th slot.
4823 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4824 allocator = 0;
4825 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4827 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4829 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4830 search->ms_weight = UINT64_MAX;
4831 search->ms_start = 0;
4833 * At the end of the metaslab tree are the already-active metaslabs,
4834 * first the primaries, then the secondaries. When we resume searching
4835 * through the tree, we need to consider ms_allocator and ms_primary so
4836 * we start in the location right after where we left off, and don't
4837 * accidentally loop forever considering the same metaslabs.
4839 search->ms_allocator = -1;
4840 search->ms_primary = B_TRUE;
4841 for (;;) {
4842 boolean_t was_active = B_FALSE;
4844 mutex_enter(&mg->mg_lock);
4846 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4847 mga->mga_primary != NULL) {
4848 msp = mga->mga_primary;
4851 * Even though we don't hold the ms_lock for the
4852 * primary metaslab, those fields should not
4853 * change while we hold the mg_lock. Thus it is
4854 * safe to make assertions on them.
4856 ASSERT(msp->ms_primary);
4857 ASSERT3S(msp->ms_allocator, ==, allocator);
4858 ASSERT(msp->ms_loaded);
4860 was_active = B_TRUE;
4861 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4862 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4863 mga->mga_secondary != NULL) {
4864 msp = mga->mga_secondary;
4867 * See comment above about the similar assertions
4868 * for the primary metaslab.
4870 ASSERT(!msp->ms_primary);
4871 ASSERT3S(msp->ms_allocator, ==, allocator);
4872 ASSERT(msp->ms_loaded);
4874 was_active = B_TRUE;
4875 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4876 } else {
4877 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4878 want_unique, asize, allocator, try_hard, zal,
4879 search, &was_active);
4882 mutex_exit(&mg->mg_lock);
4883 if (msp == NULL) {
4884 kmem_free(search, sizeof (*search));
4885 return (-1ULL);
4887 mutex_enter(&msp->ms_lock);
4889 metaslab_active_mask_verify(msp);
4892 * This code is disabled out because of issues with
4893 * tracepoints in non-gpl kernel modules.
4895 #if 0
4896 DTRACE_PROBE3(ms__activation__attempt,
4897 metaslab_t *, msp, uint64_t, activation_weight,
4898 boolean_t, was_active);
4899 #endif
4902 * Ensure that the metaslab we have selected is still
4903 * capable of handling our request. It's possible that
4904 * another thread may have changed the weight while we
4905 * were blocked on the metaslab lock. We check the
4906 * active status first to see if we need to set_selected_txg
4907 * a new metaslab.
4909 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4910 ASSERT3S(msp->ms_allocator, ==, -1);
4911 mutex_exit(&msp->ms_lock);
4912 continue;
4916 * If the metaslab was activated for another allocator
4917 * while we were waiting in the ms_lock above, or it's
4918 * a primary and we're seeking a secondary (or vice versa),
4919 * we go back and select a new metaslab.
4921 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4922 (msp->ms_allocator != -1) &&
4923 (msp->ms_allocator != allocator || ((activation_weight ==
4924 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4925 ASSERT(msp->ms_loaded);
4926 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4927 msp->ms_allocator != -1);
4928 mutex_exit(&msp->ms_lock);
4929 continue;
4933 * This metaslab was used for claiming regions allocated
4934 * by the ZIL during pool import. Once these regions are
4935 * claimed we don't need to keep the CLAIM bit set
4936 * anymore. Passivate this metaslab to zero its activation
4937 * mask.
4939 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4940 activation_weight != METASLAB_WEIGHT_CLAIM) {
4941 ASSERT(msp->ms_loaded);
4942 ASSERT3S(msp->ms_allocator, ==, -1);
4943 metaslab_passivate(msp, msp->ms_weight &
4944 ~METASLAB_WEIGHT_CLAIM);
4945 mutex_exit(&msp->ms_lock);
4946 continue;
4949 metaslab_set_selected_txg(msp, txg);
4951 int activation_error =
4952 metaslab_activate(msp, allocator, activation_weight);
4953 metaslab_active_mask_verify(msp);
4956 * If the metaslab was activated by another thread for
4957 * another allocator or activation_weight (EBUSY), or it
4958 * failed because another metaslab was assigned as primary
4959 * for this allocator (EEXIST) we continue using this
4960 * metaslab for our allocation, rather than going on to a
4961 * worse metaslab (we waited for that metaslab to be loaded
4962 * after all).
4964 * If the activation failed due to an I/O error or ENOSPC we
4965 * skip to the next metaslab.
4967 boolean_t activated;
4968 if (activation_error == 0) {
4969 activated = B_TRUE;
4970 } else if (activation_error == EBUSY ||
4971 activation_error == EEXIST) {
4972 activated = B_FALSE;
4973 } else {
4974 mutex_exit(&msp->ms_lock);
4975 continue;
4977 ASSERT(msp->ms_loaded);
4980 * Now that we have the lock, recheck to see if we should
4981 * continue to use this metaslab for this allocation. The
4982 * the metaslab is now loaded so metaslab_should_allocate()
4983 * can accurately determine if the allocation attempt should
4984 * proceed.
4986 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4987 /* Passivate this metaslab and select a new one. */
4988 metaslab_trace_add(zal, mg, msp, asize, d,
4989 TRACE_TOO_SMALL, allocator);
4990 goto next;
4994 * If this metaslab is currently condensing then pick again
4995 * as we can't manipulate this metaslab until it's committed
4996 * to disk. If this metaslab is being initialized, we shouldn't
4997 * allocate from it since the allocated region might be
4998 * overwritten after allocation.
5000 if (msp->ms_condensing) {
5001 metaslab_trace_add(zal, mg, msp, asize, d,
5002 TRACE_CONDENSING, allocator);
5003 if (activated) {
5004 metaslab_passivate(msp, msp->ms_weight &
5005 ~METASLAB_ACTIVE_MASK);
5007 mutex_exit(&msp->ms_lock);
5008 continue;
5009 } else if (msp->ms_disabled > 0) {
5010 metaslab_trace_add(zal, mg, msp, asize, d,
5011 TRACE_DISABLED, allocator);
5012 if (activated) {
5013 metaslab_passivate(msp, msp->ms_weight &
5014 ~METASLAB_ACTIVE_MASK);
5016 mutex_exit(&msp->ms_lock);
5017 continue;
5020 offset = metaslab_block_alloc(msp, asize, txg);
5021 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
5023 if (offset != -1ULL) {
5024 /* Proactively passivate the metaslab, if needed */
5025 if (activated)
5026 metaslab_segment_may_passivate(msp);
5027 break;
5029 next:
5030 ASSERT(msp->ms_loaded);
5033 * This code is disabled out because of issues with
5034 * tracepoints in non-gpl kernel modules.
5036 #if 0
5037 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
5038 uint64_t, asize);
5039 #endif
5042 * We were unable to allocate from this metaslab so determine
5043 * a new weight for this metaslab. Now that we have loaded
5044 * the metaslab we can provide a better hint to the metaslab
5045 * selector.
5047 * For space-based metaslabs, we use the maximum block size.
5048 * This information is only available when the metaslab
5049 * is loaded and is more accurate than the generic free
5050 * space weight that was calculated by metaslab_weight().
5051 * This information allows us to quickly compare the maximum
5052 * available allocation in the metaslab to the allocation
5053 * size being requested.
5055 * For segment-based metaslabs, determine the new weight
5056 * based on the highest bucket in the range tree. We
5057 * explicitly use the loaded segment weight (i.e. the range
5058 * tree histogram) since it contains the space that is
5059 * currently available for allocation and is accurate
5060 * even within a sync pass.
5062 uint64_t weight;
5063 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5064 weight = metaslab_largest_allocatable(msp);
5065 WEIGHT_SET_SPACEBASED(weight);
5066 } else {
5067 weight = metaslab_weight_from_range_tree(msp);
5070 if (activated) {
5071 metaslab_passivate(msp, weight);
5072 } else {
5074 * For the case where we use the metaslab that is
5075 * active for another allocator we want to make
5076 * sure that we retain the activation mask.
5078 * Note that we could attempt to use something like
5079 * metaslab_recalculate_weight_and_sort() that
5080 * retains the activation mask here. That function
5081 * uses metaslab_weight() to set the weight though
5082 * which is not as accurate as the calculations
5083 * above.
5085 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5086 metaslab_group_sort(mg, msp, weight);
5088 metaslab_active_mask_verify(msp);
5091 * We have just failed an allocation attempt, check
5092 * that metaslab_should_allocate() agrees. Otherwise,
5093 * we may end up in an infinite loop retrying the same
5094 * metaslab.
5096 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5098 mutex_exit(&msp->ms_lock);
5100 mutex_exit(&msp->ms_lock);
5101 kmem_free(search, sizeof (*search));
5102 return (offset);
5105 static uint64_t
5106 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5107 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5108 int allocator, boolean_t try_hard)
5110 uint64_t offset;
5112 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5113 dva, d, allocator, try_hard);
5115 mutex_enter(&mg->mg_lock);
5116 if (offset == -1ULL) {
5117 mg->mg_failed_allocations++;
5118 metaslab_trace_add(zal, mg, NULL, asize, d,
5119 TRACE_GROUP_FAILURE, allocator);
5120 if (asize == SPA_GANGBLOCKSIZE) {
5122 * This metaslab group was unable to allocate
5123 * the minimum gang block size so it must be out of
5124 * space. We must notify the allocation throttle
5125 * to start skipping allocation attempts to this
5126 * metaslab group until more space becomes available.
5127 * Note: this failure cannot be caused by the
5128 * allocation throttle since the allocation throttle
5129 * is only responsible for skipping devices and
5130 * not failing block allocations.
5132 mg->mg_no_free_space = B_TRUE;
5135 mg->mg_allocations++;
5136 mutex_exit(&mg->mg_lock);
5137 return (offset);
5141 * Allocate a block for the specified i/o.
5144 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5145 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5146 zio_alloc_list_t *zal, int allocator)
5148 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5149 metaslab_group_t *mg, *rotor;
5150 vdev_t *vd;
5151 boolean_t try_hard = B_FALSE;
5153 ASSERT(!DVA_IS_VALID(&dva[d]));
5156 * For testing, make some blocks above a certain size be gang blocks.
5157 * This will result in more split blocks when using device removal,
5158 * and a large number of split blocks coupled with ztest-induced
5159 * damage can result in extremely long reconstruction times. This
5160 * will also test spilling from special to normal.
5162 if (psize >= metaslab_force_ganging &&
5163 metaslab_force_ganging_pct > 0 &&
5164 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5165 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5166 allocator);
5167 return (SET_ERROR(ENOSPC));
5171 * Start at the rotor and loop through all mgs until we find something.
5172 * Note that there's no locking on mca_rotor or mca_aliquot because
5173 * nothing actually breaks if we miss a few updates -- we just won't
5174 * allocate quite as evenly. It all balances out over time.
5176 * If we are doing ditto or log blocks, try to spread them across
5177 * consecutive vdevs. If we're forced to reuse a vdev before we've
5178 * allocated all of our ditto blocks, then try and spread them out on
5179 * that vdev as much as possible. If it turns out to not be possible,
5180 * gradually lower our standards until anything becomes acceptable.
5181 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5182 * gives us hope of containing our fault domains to something we're
5183 * able to reason about. Otherwise, any two top-level vdev failures
5184 * will guarantee the loss of data. With consecutive allocation,
5185 * only two adjacent top-level vdev failures will result in data loss.
5187 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5188 * ourselves on the same vdev as our gang block header. That
5189 * way, we can hope for locality in vdev_cache, plus it makes our
5190 * fault domains something tractable.
5192 if (hintdva) {
5193 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5196 * It's possible the vdev we're using as the hint no
5197 * longer exists or its mg has been closed (e.g. by
5198 * device removal). Consult the rotor when
5199 * all else fails.
5201 if (vd != NULL && vd->vdev_mg != NULL) {
5202 mg = vdev_get_mg(vd, mc);
5204 if (flags & METASLAB_HINTBP_AVOID)
5205 mg = mg->mg_next;
5206 } else {
5207 mg = mca->mca_rotor;
5209 } else if (d != 0) {
5210 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5211 mg = vd->vdev_mg->mg_next;
5212 } else {
5213 ASSERT(mca->mca_rotor != NULL);
5214 mg = mca->mca_rotor;
5218 * If the hint put us into the wrong metaslab class, or into a
5219 * metaslab group that has been passivated, just follow the rotor.
5221 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5222 mg = mca->mca_rotor;
5224 rotor = mg;
5225 top:
5226 do {
5227 boolean_t allocatable;
5229 ASSERT(mg->mg_activation_count == 1);
5230 vd = mg->mg_vd;
5233 * Don't allocate from faulted devices.
5235 if (try_hard) {
5236 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5237 allocatable = vdev_allocatable(vd);
5238 spa_config_exit(spa, SCL_ZIO, FTAG);
5239 } else {
5240 allocatable = vdev_allocatable(vd);
5244 * Determine if the selected metaslab group is eligible
5245 * for allocations. If we're ganging then don't allow
5246 * this metaslab group to skip allocations since that would
5247 * inadvertently return ENOSPC and suspend the pool
5248 * even though space is still available.
5250 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5251 allocatable = metaslab_group_allocatable(mg, rotor,
5252 flags, psize, allocator, d);
5255 if (!allocatable) {
5256 metaslab_trace_add(zal, mg, NULL, psize, d,
5257 TRACE_NOT_ALLOCATABLE, allocator);
5258 goto next;
5262 * Avoid writing single-copy data to an unhealthy,
5263 * non-redundant vdev, unless we've already tried all
5264 * other vdevs.
5266 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5267 d == 0 && !try_hard && vd->vdev_children == 0) {
5268 metaslab_trace_add(zal, mg, NULL, psize, d,
5269 TRACE_VDEV_ERROR, allocator);
5270 goto next;
5273 ASSERT(mg->mg_class == mc);
5275 uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
5276 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5279 * If we don't need to try hard, then require that the
5280 * block be on a different metaslab from any other DVAs
5281 * in this BP (unique=true). If we are trying hard, then
5282 * allow any metaslab to be used (unique=false).
5284 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5285 !try_hard, dva, d, allocator, try_hard);
5287 if (offset != -1ULL) {
5289 * If we've just selected this metaslab group,
5290 * figure out whether the corresponding vdev is
5291 * over- or under-used relative to the pool,
5292 * and set an allocation bias to even it out.
5294 * Bias is also used to compensate for unequally
5295 * sized vdevs so that space is allocated fairly.
5297 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5298 vdev_stat_t *vs = &vd->vdev_stat;
5299 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5300 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5301 int64_t ratio;
5304 * Calculate how much more or less we should
5305 * try to allocate from this device during
5306 * this iteration around the rotor.
5308 * This basically introduces a zero-centered
5309 * bias towards the devices with the most
5310 * free space, while compensating for vdev
5311 * size differences.
5313 * Examples:
5314 * vdev V1 = 16M/128M
5315 * vdev V2 = 16M/128M
5316 * ratio(V1) = 100% ratio(V2) = 100%
5318 * vdev V1 = 16M/128M
5319 * vdev V2 = 64M/128M
5320 * ratio(V1) = 127% ratio(V2) = 72%
5322 * vdev V1 = 16M/128M
5323 * vdev V2 = 64M/512M
5324 * ratio(V1) = 40% ratio(V2) = 160%
5326 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5327 (mc_free + 1);
5328 mg->mg_bias = ((ratio - 100) *
5329 (int64_t)mg->mg_aliquot) / 100;
5330 } else if (!metaslab_bias_enabled) {
5331 mg->mg_bias = 0;
5334 if ((flags & METASLAB_ZIL) ||
5335 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5336 mg->mg_aliquot + mg->mg_bias) {
5337 mca->mca_rotor = mg->mg_next;
5338 mca->mca_aliquot = 0;
5341 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5342 DVA_SET_OFFSET(&dva[d], offset);
5343 DVA_SET_GANG(&dva[d],
5344 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5345 DVA_SET_ASIZE(&dva[d], asize);
5347 return (0);
5349 next:
5350 mca->mca_rotor = mg->mg_next;
5351 mca->mca_aliquot = 0;
5352 } while ((mg = mg->mg_next) != rotor);
5355 * If we haven't tried hard, perhaps do so now.
5357 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5358 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5359 psize <= 1 << spa->spa_min_ashift)) {
5360 METASLABSTAT_BUMP(metaslabstat_try_hard);
5361 try_hard = B_TRUE;
5362 goto top;
5365 memset(&dva[d], 0, sizeof (dva_t));
5367 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5368 return (SET_ERROR(ENOSPC));
5371 void
5372 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5373 boolean_t checkpoint)
5375 metaslab_t *msp;
5376 spa_t *spa = vd->vdev_spa;
5378 ASSERT(vdev_is_concrete(vd));
5379 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5380 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5382 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5384 VERIFY(!msp->ms_condensing);
5385 VERIFY3U(offset, >=, msp->ms_start);
5386 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5387 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5388 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5390 metaslab_check_free_impl(vd, offset, asize);
5392 mutex_enter(&msp->ms_lock);
5393 if (range_tree_is_empty(msp->ms_freeing) &&
5394 range_tree_is_empty(msp->ms_checkpointing)) {
5395 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5398 if (checkpoint) {
5399 ASSERT(spa_has_checkpoint(spa));
5400 range_tree_add(msp->ms_checkpointing, offset, asize);
5401 } else {
5402 range_tree_add(msp->ms_freeing, offset, asize);
5404 mutex_exit(&msp->ms_lock);
5407 void
5408 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5409 uint64_t size, void *arg)
5411 (void) inner_offset;
5412 boolean_t *checkpoint = arg;
5414 ASSERT3P(checkpoint, !=, NULL);
5416 if (vd->vdev_ops->vdev_op_remap != NULL)
5417 vdev_indirect_mark_obsolete(vd, offset, size);
5418 else
5419 metaslab_free_impl(vd, offset, size, *checkpoint);
5422 static void
5423 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5424 boolean_t checkpoint)
5426 spa_t *spa = vd->vdev_spa;
5428 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5430 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5431 return;
5433 if (spa->spa_vdev_removal != NULL &&
5434 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5435 vdev_is_concrete(vd)) {
5437 * Note: we check if the vdev is concrete because when
5438 * we complete the removal, we first change the vdev to be
5439 * an indirect vdev (in open context), and then (in syncing
5440 * context) clear spa_vdev_removal.
5442 free_from_removing_vdev(vd, offset, size);
5443 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5444 vdev_indirect_mark_obsolete(vd, offset, size);
5445 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5446 metaslab_free_impl_cb, &checkpoint);
5447 } else {
5448 metaslab_free_concrete(vd, offset, size, checkpoint);
5452 typedef struct remap_blkptr_cb_arg {
5453 blkptr_t *rbca_bp;
5454 spa_remap_cb_t rbca_cb;
5455 vdev_t *rbca_remap_vd;
5456 uint64_t rbca_remap_offset;
5457 void *rbca_cb_arg;
5458 } remap_blkptr_cb_arg_t;
5460 static void
5461 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5462 uint64_t size, void *arg)
5464 remap_blkptr_cb_arg_t *rbca = arg;
5465 blkptr_t *bp = rbca->rbca_bp;
5467 /* We can not remap split blocks. */
5468 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5469 return;
5470 ASSERT0(inner_offset);
5472 if (rbca->rbca_cb != NULL) {
5474 * At this point we know that we are not handling split
5475 * blocks and we invoke the callback on the previous
5476 * vdev which must be indirect.
5478 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5480 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5481 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5483 /* set up remap_blkptr_cb_arg for the next call */
5484 rbca->rbca_remap_vd = vd;
5485 rbca->rbca_remap_offset = offset;
5489 * The phys birth time is that of dva[0]. This ensures that we know
5490 * when each dva was written, so that resilver can determine which
5491 * blocks need to be scrubbed (i.e. those written during the time
5492 * the vdev was offline). It also ensures that the key used in
5493 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5494 * we didn't change the phys_birth, a lookup in the ARC for a
5495 * remapped BP could find the data that was previously stored at
5496 * this vdev + offset.
5498 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5499 DVA_GET_VDEV(&bp->blk_dva[0]));
5500 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5501 uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
5502 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5503 BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
5505 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5506 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5510 * If the block pointer contains any indirect DVAs, modify them to refer to
5511 * concrete DVAs. Note that this will sometimes not be possible, leaving
5512 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5513 * segments in the mapping (i.e. it is a "split block").
5515 * If the BP was remapped, calls the callback on the original dva (note the
5516 * callback can be called multiple times if the original indirect DVA refers
5517 * to another indirect DVA, etc).
5519 * Returns TRUE if the BP was remapped.
5521 boolean_t
5522 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5524 remap_blkptr_cb_arg_t rbca;
5526 if (!zfs_remap_blkptr_enable)
5527 return (B_FALSE);
5529 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5530 return (B_FALSE);
5533 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5534 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5536 if (BP_GET_DEDUP(bp))
5537 return (B_FALSE);
5540 * Gang blocks can not be remapped, because
5541 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5542 * the BP used to read the gang block header (GBH) being the same
5543 * as the DVA[0] that we allocated for the GBH.
5545 if (BP_IS_GANG(bp))
5546 return (B_FALSE);
5549 * Embedded BP's have no DVA to remap.
5551 if (BP_GET_NDVAS(bp) < 1)
5552 return (B_FALSE);
5555 * Note: we only remap dva[0]. If we remapped other dvas, we
5556 * would no longer know what their phys birth txg is.
5558 dva_t *dva = &bp->blk_dva[0];
5560 uint64_t offset = DVA_GET_OFFSET(dva);
5561 uint64_t size = DVA_GET_ASIZE(dva);
5562 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5564 if (vd->vdev_ops->vdev_op_remap == NULL)
5565 return (B_FALSE);
5567 rbca.rbca_bp = bp;
5568 rbca.rbca_cb = callback;
5569 rbca.rbca_remap_vd = vd;
5570 rbca.rbca_remap_offset = offset;
5571 rbca.rbca_cb_arg = arg;
5574 * remap_blkptr_cb() will be called in order for each level of
5575 * indirection, until a concrete vdev is reached or a split block is
5576 * encountered. old_vd and old_offset are updated within the callback
5577 * as we go from the one indirect vdev to the next one (either concrete
5578 * or indirect again) in that order.
5580 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5582 /* Check if the DVA wasn't remapped because it is a split block */
5583 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5584 return (B_FALSE);
5586 return (B_TRUE);
5590 * Undo the allocation of a DVA which happened in the given transaction group.
5592 void
5593 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5595 metaslab_t *msp;
5596 vdev_t *vd;
5597 uint64_t vdev = DVA_GET_VDEV(dva);
5598 uint64_t offset = DVA_GET_OFFSET(dva);
5599 uint64_t size = DVA_GET_ASIZE(dva);
5601 ASSERT(DVA_IS_VALID(dva));
5602 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5604 if (txg > spa_freeze_txg(spa))
5605 return;
5607 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5608 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5609 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5610 (u_longlong_t)vdev, (u_longlong_t)offset,
5611 (u_longlong_t)size);
5612 return;
5615 ASSERT(!vd->vdev_removing);
5616 ASSERT(vdev_is_concrete(vd));
5617 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5618 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5620 if (DVA_GET_GANG(dva))
5621 size = vdev_gang_header_asize(vd);
5623 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5625 mutex_enter(&msp->ms_lock);
5626 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5627 offset, size);
5628 msp->ms_allocating_total -= size;
5630 VERIFY(!msp->ms_condensing);
5631 VERIFY3U(offset, >=, msp->ms_start);
5632 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5633 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5634 msp->ms_size);
5635 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5636 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5637 range_tree_add(msp->ms_allocatable, offset, size);
5638 mutex_exit(&msp->ms_lock);
5642 * Free the block represented by the given DVA.
5644 void
5645 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5647 uint64_t vdev = DVA_GET_VDEV(dva);
5648 uint64_t offset = DVA_GET_OFFSET(dva);
5649 uint64_t size = DVA_GET_ASIZE(dva);
5650 vdev_t *vd = vdev_lookup_top(spa, vdev);
5652 ASSERT(DVA_IS_VALID(dva));
5653 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5655 if (DVA_GET_GANG(dva)) {
5656 size = vdev_gang_header_asize(vd);
5659 metaslab_free_impl(vd, offset, size, checkpoint);
5663 * Reserve some allocation slots. The reservation system must be called
5664 * before we call into the allocator. If there aren't any available slots
5665 * then the I/O will be throttled until an I/O completes and its slots are
5666 * freed up. The function returns true if it was successful in placing
5667 * the reservation.
5669 boolean_t
5670 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5671 zio_t *zio, int flags)
5673 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5674 uint64_t max = mca->mca_alloc_max_slots;
5676 ASSERT(mc->mc_alloc_throttle_enabled);
5677 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5678 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5680 * The potential race between _count() and _add() is covered
5681 * by the allocator lock in most cases, or irrelevant due to
5682 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5683 * But even if we assume some other non-existing scenario, the
5684 * worst that can happen is few more I/Os get to allocation
5685 * earlier, that is not a problem.
5687 * We reserve the slots individually so that we can unreserve
5688 * them individually when an I/O completes.
5690 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5691 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5692 return (B_TRUE);
5694 return (B_FALSE);
5697 void
5698 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5699 int allocator, zio_t *zio)
5701 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5703 ASSERT(mc->mc_alloc_throttle_enabled);
5704 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5707 static int
5708 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5709 uint64_t txg)
5711 metaslab_t *msp;
5712 spa_t *spa = vd->vdev_spa;
5713 int error = 0;
5715 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5716 return (SET_ERROR(ENXIO));
5718 ASSERT3P(vd->vdev_ms, !=, NULL);
5719 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5721 mutex_enter(&msp->ms_lock);
5723 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5724 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5725 if (error == EBUSY) {
5726 ASSERT(msp->ms_loaded);
5727 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5728 error = 0;
5732 if (error == 0 &&
5733 !range_tree_contains(msp->ms_allocatable, offset, size))
5734 error = SET_ERROR(ENOENT);
5736 if (error || txg == 0) { /* txg == 0 indicates dry run */
5737 mutex_exit(&msp->ms_lock);
5738 return (error);
5741 VERIFY(!msp->ms_condensing);
5742 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5743 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5744 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5745 msp->ms_size);
5746 range_tree_remove(msp->ms_allocatable, offset, size);
5747 range_tree_clear(msp->ms_trim, offset, size);
5749 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5750 metaslab_class_t *mc = msp->ms_group->mg_class;
5751 multilist_sublist_t *mls =
5752 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5753 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5754 msp->ms_selected_txg = txg;
5755 multilist_sublist_insert_head(mls, msp);
5757 multilist_sublist_unlock(mls);
5759 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5760 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5761 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5762 offset, size);
5763 msp->ms_allocating_total += size;
5766 mutex_exit(&msp->ms_lock);
5768 return (0);
5771 typedef struct metaslab_claim_cb_arg_t {
5772 uint64_t mcca_txg;
5773 int mcca_error;
5774 } metaslab_claim_cb_arg_t;
5776 static void
5777 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5778 uint64_t size, void *arg)
5780 (void) inner_offset;
5781 metaslab_claim_cb_arg_t *mcca_arg = arg;
5783 if (mcca_arg->mcca_error == 0) {
5784 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5785 size, mcca_arg->mcca_txg);
5790 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5792 if (vd->vdev_ops->vdev_op_remap != NULL) {
5793 metaslab_claim_cb_arg_t arg;
5796 * Only zdb(8) can claim on indirect vdevs. This is used
5797 * to detect leaks of mapped space (that are not accounted
5798 * for in the obsolete counts, spacemap, or bpobj).
5800 ASSERT(!spa_writeable(vd->vdev_spa));
5801 arg.mcca_error = 0;
5802 arg.mcca_txg = txg;
5804 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5805 metaslab_claim_impl_cb, &arg);
5807 if (arg.mcca_error == 0) {
5808 arg.mcca_error = metaslab_claim_concrete(vd,
5809 offset, size, txg);
5811 return (arg.mcca_error);
5812 } else {
5813 return (metaslab_claim_concrete(vd, offset, size, txg));
5818 * Intent log support: upon opening the pool after a crash, notify the SPA
5819 * of blocks that the intent log has allocated for immediate write, but
5820 * which are still considered free by the SPA because the last transaction
5821 * group didn't commit yet.
5823 static int
5824 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5826 uint64_t vdev = DVA_GET_VDEV(dva);
5827 uint64_t offset = DVA_GET_OFFSET(dva);
5828 uint64_t size = DVA_GET_ASIZE(dva);
5829 vdev_t *vd;
5831 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5832 return (SET_ERROR(ENXIO));
5835 ASSERT(DVA_IS_VALID(dva));
5837 if (DVA_GET_GANG(dva))
5838 size = vdev_gang_header_asize(vd);
5840 return (metaslab_claim_impl(vd, offset, size, txg));
5844 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5845 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5846 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5848 dva_t *dva = bp->blk_dva;
5849 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5850 int error = 0;
5852 ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
5853 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
5855 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5857 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5858 /* no vdevs in this class */
5859 spa_config_exit(spa, SCL_ALLOC, FTAG);
5860 return (SET_ERROR(ENOSPC));
5863 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5864 ASSERT(BP_GET_NDVAS(bp) == 0);
5865 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5866 ASSERT3P(zal, !=, NULL);
5868 for (int d = 0; d < ndvas; d++) {
5869 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5870 txg, flags, zal, allocator);
5871 if (error != 0) {
5872 for (d--; d >= 0; d--) {
5873 metaslab_unalloc_dva(spa, &dva[d], txg);
5874 metaslab_group_alloc_decrement(spa,
5875 DVA_GET_VDEV(&dva[d]), zio, flags,
5876 allocator, B_FALSE);
5877 memset(&dva[d], 0, sizeof (dva_t));
5879 spa_config_exit(spa, SCL_ALLOC, FTAG);
5880 return (error);
5881 } else {
5883 * Update the metaslab group's queue depth
5884 * based on the newly allocated dva.
5886 metaslab_group_alloc_increment(spa,
5887 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5890 ASSERT(error == 0);
5891 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5893 spa_config_exit(spa, SCL_ALLOC, FTAG);
5895 BP_SET_BIRTH(bp, txg, 0);
5897 return (0);
5900 void
5901 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5903 const dva_t *dva = bp->blk_dva;
5904 int ndvas = BP_GET_NDVAS(bp);
5906 ASSERT(!BP_IS_HOLE(bp));
5907 ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
5910 * If we have a checkpoint for the pool we need to make sure that
5911 * the blocks that we free that are part of the checkpoint won't be
5912 * reused until the checkpoint is discarded or we revert to it.
5914 * The checkpoint flag is passed down the metaslab_free code path
5915 * and is set whenever we want to add a block to the checkpoint's
5916 * accounting. That is, we "checkpoint" blocks that existed at the
5917 * time the checkpoint was created and are therefore referenced by
5918 * the checkpointed uberblock.
5920 * Note that, we don't checkpoint any blocks if the current
5921 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5922 * normally as they will be referenced by the checkpointed uberblock.
5924 boolean_t checkpoint = B_FALSE;
5925 if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
5926 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5928 * At this point, if the block is part of the checkpoint
5929 * there is no way it was created in the current txg.
5931 ASSERT(!now);
5932 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5933 checkpoint = B_TRUE;
5936 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5938 for (int d = 0; d < ndvas; d++) {
5939 if (now) {
5940 metaslab_unalloc_dva(spa, &dva[d], txg);
5941 } else {
5942 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5943 metaslab_free_dva(spa, &dva[d], checkpoint);
5947 spa_config_exit(spa, SCL_FREE, FTAG);
5951 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5953 const dva_t *dva = bp->blk_dva;
5954 int ndvas = BP_GET_NDVAS(bp);
5955 int error = 0;
5957 ASSERT(!BP_IS_HOLE(bp));
5959 if (txg != 0) {
5961 * First do a dry run to make sure all DVAs are claimable,
5962 * so we don't have to unwind from partial failures below.
5964 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5965 return (error);
5968 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5970 for (int d = 0; d < ndvas; d++) {
5971 error = metaslab_claim_dva(spa, &dva[d], txg);
5972 if (error != 0)
5973 break;
5976 spa_config_exit(spa, SCL_ALLOC, FTAG);
5978 ASSERT(error == 0 || txg == 0);
5980 return (error);
5983 static void
5984 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5985 uint64_t size, void *arg)
5987 (void) inner, (void) arg;
5989 if (vd->vdev_ops == &vdev_indirect_ops)
5990 return;
5992 metaslab_check_free_impl(vd, offset, size);
5995 static void
5996 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5998 metaslab_t *msp;
5999 spa_t *spa __maybe_unused = vd->vdev_spa;
6001 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6002 return;
6004 if (vd->vdev_ops->vdev_op_remap != NULL) {
6005 vd->vdev_ops->vdev_op_remap(vd, offset, size,
6006 metaslab_check_free_impl_cb, NULL);
6007 return;
6010 ASSERT(vdev_is_concrete(vd));
6011 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
6012 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
6014 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6016 mutex_enter(&msp->ms_lock);
6017 if (msp->ms_loaded) {
6018 range_tree_verify_not_present(msp->ms_allocatable,
6019 offset, size);
6023 * Check all segments that currently exist in the freeing pipeline.
6025 * It would intuitively make sense to also check the current allocating
6026 * tree since metaslab_unalloc_dva() exists for extents that are
6027 * allocated and freed in the same sync pass within the same txg.
6028 * Unfortunately there are places (e.g. the ZIL) where we allocate a
6029 * segment but then we free part of it within the same txg
6030 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
6031 * current allocating tree.
6033 range_tree_verify_not_present(msp->ms_freeing, offset, size);
6034 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
6035 range_tree_verify_not_present(msp->ms_freed, offset, size);
6036 for (int j = 0; j < TXG_DEFER_SIZE; j++)
6037 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
6038 range_tree_verify_not_present(msp->ms_trim, offset, size);
6039 mutex_exit(&msp->ms_lock);
6042 void
6043 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6045 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6046 return;
6048 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6049 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6050 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6051 vdev_t *vd = vdev_lookup_top(spa, vdev);
6052 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6053 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6055 if (DVA_GET_GANG(&bp->blk_dva[i]))
6056 size = vdev_gang_header_asize(vd);
6058 ASSERT3P(vd, !=, NULL);
6060 metaslab_check_free_impl(vd, offset, size);
6062 spa_config_exit(spa, SCL_VDEV, FTAG);
6065 static void
6066 metaslab_group_disable_wait(metaslab_group_t *mg)
6068 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6069 while (mg->mg_disabled_updating) {
6070 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6074 static void
6075 metaslab_group_disabled_increment(metaslab_group_t *mg)
6077 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6078 ASSERT(mg->mg_disabled_updating);
6080 while (mg->mg_ms_disabled >= max_disabled_ms) {
6081 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6083 mg->mg_ms_disabled++;
6084 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6088 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6089 * We must also track how many metaslabs are currently disabled within a
6090 * metaslab group and limit them to prevent allocation failures from
6091 * occurring because all metaslabs are disabled.
6093 void
6094 metaslab_disable(metaslab_t *msp)
6096 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6097 metaslab_group_t *mg = msp->ms_group;
6099 mutex_enter(&mg->mg_ms_disabled_lock);
6102 * To keep an accurate count of how many threads have disabled
6103 * a specific metaslab group, we only allow one thread to mark
6104 * the metaslab group at a time. This ensures that the value of
6105 * ms_disabled will be accurate when we decide to mark a metaslab
6106 * group as disabled. To do this we force all other threads
6107 * to wait till the metaslab's mg_disabled_updating flag is no
6108 * longer set.
6110 metaslab_group_disable_wait(mg);
6111 mg->mg_disabled_updating = B_TRUE;
6112 if (msp->ms_disabled == 0) {
6113 metaslab_group_disabled_increment(mg);
6115 mutex_enter(&msp->ms_lock);
6116 msp->ms_disabled++;
6117 mutex_exit(&msp->ms_lock);
6119 mg->mg_disabled_updating = B_FALSE;
6120 cv_broadcast(&mg->mg_ms_disabled_cv);
6121 mutex_exit(&mg->mg_ms_disabled_lock);
6124 void
6125 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6127 metaslab_group_t *mg = msp->ms_group;
6128 spa_t *spa = mg->mg_vd->vdev_spa;
6131 * Wait for the outstanding IO to be synced to prevent newly
6132 * allocated blocks from being overwritten. This used by
6133 * initialize and TRIM which are modifying unallocated space.
6135 if (sync)
6136 txg_wait_synced(spa_get_dsl(spa), 0);
6138 mutex_enter(&mg->mg_ms_disabled_lock);
6139 mutex_enter(&msp->ms_lock);
6140 if (--msp->ms_disabled == 0) {
6141 mg->mg_ms_disabled--;
6142 cv_broadcast(&mg->mg_ms_disabled_cv);
6143 if (unload)
6144 metaslab_unload(msp);
6146 mutex_exit(&msp->ms_lock);
6147 mutex_exit(&mg->mg_ms_disabled_lock);
6150 void
6151 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6153 ms->ms_unflushed_dirty = dirty;
6156 static void
6157 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6159 vdev_t *vd = ms->ms_group->mg_vd;
6160 spa_t *spa = vd->vdev_spa;
6161 objset_t *mos = spa_meta_objset(spa);
6163 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6165 metaslab_unflushed_phys_t entry = {
6166 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6168 uint64_t entry_size = sizeof (entry);
6169 uint64_t entry_offset = ms->ms_id * entry_size;
6171 uint64_t object = 0;
6172 int err = zap_lookup(mos, vd->vdev_top_zap,
6173 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6174 &object);
6175 if (err == ENOENT) {
6176 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6177 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6178 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6179 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6180 &object, tx));
6181 } else {
6182 VERIFY0(err);
6185 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6186 &entry, tx);
6189 void
6190 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6192 ms->ms_unflushed_txg = txg;
6193 metaslab_update_ondisk_flush_data(ms, tx);
6196 boolean_t
6197 metaslab_unflushed_dirty(metaslab_t *ms)
6199 return (ms->ms_unflushed_dirty);
6202 uint64_t
6203 metaslab_unflushed_txg(metaslab_t *ms)
6205 return (ms->ms_unflushed_txg);
6208 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6209 "Allocation granularity (a.k.a. stripe size)");
6211 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6212 "Load all metaslabs when pool is first opened");
6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6215 "Prevent metaslabs from being unloaded");
6217 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6218 "Preload potential metaslabs during reassessment");
6220 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
6221 "Max number of metaslabs per group to preload");
6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6224 "Delay in txgs after metaslab was last used before unloading");
6226 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6227 "Delay in milliseconds after metaslab was last used before unloading");
6229 /* BEGIN CSTYLED */
6230 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6231 "Percentage of metaslab group size that should be free to make it "
6232 "eligible for allocation");
6234 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6235 "Percentage of metaslab group size that should be considered eligible "
6236 "for allocations unless all metaslab groups within the metaslab class "
6237 "have also crossed this threshold");
6239 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6240 ZMOD_RW,
6241 "Use the fragmentation metric to prefer less fragmented metaslabs");
6242 /* END CSTYLED */
6244 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6245 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6247 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6248 "Prefer metaslabs with lower LBAs");
6250 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6251 "Enable metaslab group biasing");
6253 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6254 ZMOD_RW, "Enable segment-based metaslab selection");
6256 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6257 "Segment-based metaslab selection maximum buckets before switching");
6259 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6260 "Blocks larger than this size are sometimes forced to be gang blocks");
6262 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6263 "Percentage of large blocks that will be forced to be gang blocks");
6265 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6266 "Max distance (bytes) to search forward before using size tree");
6268 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6269 "When looking in size tree, use largest segment instead of exact fit");
6271 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6272 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6274 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6275 "Percentage of memory that can be used to store metaslab range trees");
6277 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6278 ZMOD_RW, "Try hard to allocate before ganging");
6280 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6281 "Normally only consider this many of the best metaslabs in each vdev");
6283 /* BEGIN CSTYLED */
6284 ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
6285 param_set_active_allocator, param_get_charp, ZMOD_RW,
6286 "SPA active allocator");
6287 /* END CSTYLED */