4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, 2023, 2024, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
32 #include <sys/sysmacros.h>
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/vdev_trim.h>
40 #include <sys/zio_impl.h>
41 #include <sys/zio_compress.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu_objset.h>
47 #include <sys/blkptr.h>
48 #include <sys/zfeature.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/metaslab_impl.h>
52 #include <sys/trace_zfs.h>
54 #include <sys/dsl_crypt.h>
58 * ==========================================================================
59 * I/O type descriptions
60 * ==========================================================================
62 const char *const zio_type_name
[ZIO_TYPES
] = {
64 * Note: Linux kernel thread name length is limited
65 * so these names will differ from upstream open zfs.
67 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
70 int zio_dva_throttle_enabled
= B_TRUE
;
71 static int zio_deadman_log_all
= B_FALSE
;
74 * ==========================================================================
76 * ==========================================================================
78 static kmem_cache_t
*zio_cache
;
79 static kmem_cache_t
*zio_link_cache
;
80 kmem_cache_t
*zio_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
81 kmem_cache_t
*zio_data_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
82 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
83 static uint64_t zio_buf_cache_allocs
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
84 static uint64_t zio_buf_cache_frees
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
87 /* Mark IOs as "slow" if they take longer than 30 seconds */
88 static uint_t zio_slow_io_ms
= (30 * MILLISEC
);
90 #define BP_SPANB(indblkshift, level) \
91 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
92 #define COMPARE_META_LEVEL 0x80000000ul
94 * The following actions directly effect the spa's sync-to-convergence logic.
95 * The values below define the sync pass when we start performing the action.
96 * Care should be taken when changing these values as they directly impact
97 * spa_sync() performance. Tuning these values may introduce subtle performance
98 * pathologies and should only be done in the context of performance analysis.
99 * These tunables will eventually be removed and replaced with #defines once
100 * enough analysis has been done to determine optimal values.
102 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
103 * regular blocks are not deferred.
105 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
106 * compression (including of metadata). In practice, we don't have this
107 * many sync passes, so this has no effect.
109 * The original intent was that disabling compression would help the sync
110 * passes to converge. However, in practice disabling compression increases
111 * the average number of sync passes, because when we turn compression off, a
112 * lot of block's size will change and thus we have to re-allocate (not
113 * overwrite) them. It also increases the number of 128KB allocations (e.g.
114 * for indirect blocks and spacemaps) because these will not be compressed.
115 * The 128K allocations are especially detrimental to performance on highly
116 * fragmented systems, which may have very few free segments of this size,
117 * and may need to load new metaslabs to satisfy 128K allocations.
120 /* defer frees starting in this pass */
121 uint_t zfs_sync_pass_deferred_free
= 2;
123 /* don't compress starting in this pass */
124 static uint_t zfs_sync_pass_dont_compress
= 8;
126 /* rewrite new bps starting in this pass */
127 static uint_t zfs_sync_pass_rewrite
= 2;
130 * An allocating zio is one that either currently has the DVA allocate
131 * stage set or will have it later in its lifetime.
133 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
136 * Enable smaller cores by excluding metadata
137 * allocations as well.
139 int zio_exclude_metadata
= 0;
140 static int zio_requeue_io_start_cut_in_line
= 1;
143 static const int zio_buf_debug_limit
= 16384;
145 static const int zio_buf_debug_limit
= 0;
148 static inline void __zio_execute(zio_t
*zio
);
150 static void zio_taskq_dispatch(zio_t
*, zio_taskq_type_t
, boolean_t
);
157 zio_cache
= kmem_cache_create("zio_cache",
158 sizeof (zio_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
159 zio_link_cache
= kmem_cache_create("zio_link_cache",
160 sizeof (zio_link_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
162 for (c
= 0; c
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; c
++) {
163 size_t size
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
164 size_t align
, cflags
, data_cflags
;
168 * Create cache for each half-power of 2 size, starting from
169 * SPA_MINBLOCKSIZE. It should give us memory space efficiency
170 * of ~7/8, sufficient for transient allocations mostly using
176 if (!IS_P2ALIGNED(size
, p2
/ 2))
181 * If we are using watchpoints, put each buffer on its own page,
182 * to eliminate the performance overhead of trapping to the
183 * kernel when modifying a non-watched buffer that shares the
184 * page with a watched buffer.
186 if (arc_watch
&& !IS_P2ALIGNED(size
, PAGESIZE
))
190 if (IS_P2ALIGNED(size
, PAGESIZE
))
193 align
= 1 << (highbit64(size
^ (size
- 1)) - 1);
195 cflags
= (zio_exclude_metadata
|| size
> zio_buf_debug_limit
) ?
197 data_cflags
= KMC_NODEBUG
;
198 if (abd_size_alloc_linear(size
)) {
199 cflags
|= KMC_RECLAIMABLE
;
200 data_cflags
|= KMC_RECLAIMABLE
;
202 if (cflags
== data_cflags
) {
204 * Resulting kmem caches would be identical.
205 * Save memory by creating only one.
207 (void) snprintf(name
, sizeof (name
),
208 "zio_buf_comb_%lu", (ulong_t
)size
);
209 zio_buf_cache
[c
] = kmem_cache_create(name
, size
, align
,
210 NULL
, NULL
, NULL
, NULL
, NULL
, cflags
);
211 zio_data_buf_cache
[c
] = zio_buf_cache
[c
];
214 (void) snprintf(name
, sizeof (name
), "zio_buf_%lu",
216 zio_buf_cache
[c
] = kmem_cache_create(name
, size
, align
,
217 NULL
, NULL
, NULL
, NULL
, NULL
, cflags
);
219 (void) snprintf(name
, sizeof (name
), "zio_data_buf_%lu",
221 zio_data_buf_cache
[c
] = kmem_cache_create(name
, size
, align
,
222 NULL
, NULL
, NULL
, NULL
, NULL
, data_cflags
);
226 ASSERT(zio_buf_cache
[c
] != NULL
);
227 if (zio_buf_cache
[c
- 1] == NULL
)
228 zio_buf_cache
[c
- 1] = zio_buf_cache
[c
];
230 ASSERT(zio_data_buf_cache
[c
] != NULL
);
231 if (zio_data_buf_cache
[c
- 1] == NULL
)
232 zio_data_buf_cache
[c
- 1] = zio_data_buf_cache
[c
];
243 size_t n
= SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
;
245 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
246 for (size_t i
= 0; i
< n
; i
++) {
247 if (zio_buf_cache_allocs
[i
] != zio_buf_cache_frees
[i
])
248 (void) printf("zio_fini: [%d] %llu != %llu\n",
249 (int)((i
+ 1) << SPA_MINBLOCKSHIFT
),
250 (long long unsigned)zio_buf_cache_allocs
[i
],
251 (long long unsigned)zio_buf_cache_frees
[i
]);
256 * The same kmem cache can show up multiple times in both zio_buf_cache
257 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
260 for (size_t i
= 0; i
< n
; i
++) {
261 kmem_cache_t
*cache
= zio_buf_cache
[i
];
264 for (size_t j
= i
; j
< n
; j
++) {
265 if (cache
== zio_buf_cache
[j
])
266 zio_buf_cache
[j
] = NULL
;
267 if (cache
== zio_data_buf_cache
[j
])
268 zio_data_buf_cache
[j
] = NULL
;
270 kmem_cache_destroy(cache
);
273 for (size_t i
= 0; i
< n
; i
++) {
274 kmem_cache_t
*cache
= zio_data_buf_cache
[i
];
277 for (size_t j
= i
; j
< n
; j
++) {
278 if (cache
== zio_data_buf_cache
[j
])
279 zio_data_buf_cache
[j
] = NULL
;
281 kmem_cache_destroy(cache
);
284 for (size_t i
= 0; i
< n
; i
++) {
285 VERIFY3P(zio_buf_cache
[i
], ==, NULL
);
286 VERIFY3P(zio_data_buf_cache
[i
], ==, NULL
);
289 kmem_cache_destroy(zio_link_cache
);
290 kmem_cache_destroy(zio_cache
);
298 * ==========================================================================
299 * Allocate and free I/O buffers
300 * ==========================================================================
303 #if defined(ZFS_DEBUG) && defined(_KERNEL)
304 #define ZFS_ZIO_BUF_CANARY 1
307 #ifdef ZFS_ZIO_BUF_CANARY
308 static const ulong_t zio_buf_canary
= (ulong_t
)0xdeadc0dedead210b;
311 * Use empty space after the buffer to detect overflows.
313 * Since zio_init() creates kmem caches only for certain set of buffer sizes,
314 * allocations of different sizes may have some unused space after the data.
315 * Filling part of that space with a known pattern on allocation and checking
316 * it on free should allow us to detect some buffer overflows.
319 zio_buf_put_canary(ulong_t
*p
, size_t size
, kmem_cache_t
**cache
, size_t c
)
321 size_t off
= P2ROUNDUP(size
, sizeof (ulong_t
));
322 ulong_t
*canary
= p
+ off
/ sizeof (ulong_t
);
323 size_t asize
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
324 if (c
+ 1 < SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
&&
325 cache
[c
] == cache
[c
+ 1])
326 asize
= (c
+ 2) << SPA_MINBLOCKSHIFT
;
327 for (; off
< asize
; canary
++, off
+= sizeof (ulong_t
))
328 *canary
= zio_buf_canary
;
332 zio_buf_check_canary(ulong_t
*p
, size_t size
, kmem_cache_t
**cache
, size_t c
)
334 size_t off
= P2ROUNDUP(size
, sizeof (ulong_t
));
335 ulong_t
*canary
= p
+ off
/ sizeof (ulong_t
);
336 size_t asize
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
337 if (c
+ 1 < SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
&&
338 cache
[c
] == cache
[c
+ 1])
339 asize
= (c
+ 2) << SPA_MINBLOCKSHIFT
;
340 for (; off
< asize
; canary
++, off
+= sizeof (ulong_t
)) {
341 if (unlikely(*canary
!= zio_buf_canary
)) {
342 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
343 p
, size
, (canary
- p
) * sizeof (ulong_t
),
344 *canary
, zio_buf_canary
);
351 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
352 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
353 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
354 * excess / transient data in-core during a crashdump.
357 zio_buf_alloc(size_t size
)
359 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
361 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
362 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
363 atomic_add_64(&zio_buf_cache_allocs
[c
], 1);
366 void *p
= kmem_cache_alloc(zio_buf_cache
[c
], KM_PUSHPAGE
);
367 #ifdef ZFS_ZIO_BUF_CANARY
368 zio_buf_put_canary(p
, size
, zio_buf_cache
, c
);
374 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
375 * crashdump if the kernel panics. This exists so that we will limit the amount
376 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
377 * of kernel heap dumped to disk when the kernel panics)
380 zio_data_buf_alloc(size_t size
)
382 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
384 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
386 void *p
= kmem_cache_alloc(zio_data_buf_cache
[c
], KM_PUSHPAGE
);
387 #ifdef ZFS_ZIO_BUF_CANARY
388 zio_buf_put_canary(p
, size
, zio_data_buf_cache
, c
);
394 zio_buf_free(void *buf
, size_t size
)
396 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
398 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
399 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
400 atomic_add_64(&zio_buf_cache_frees
[c
], 1);
403 #ifdef ZFS_ZIO_BUF_CANARY
404 zio_buf_check_canary(buf
, size
, zio_buf_cache
, c
);
406 kmem_cache_free(zio_buf_cache
[c
], buf
);
410 zio_data_buf_free(void *buf
, size_t size
)
412 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
414 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
416 #ifdef ZFS_ZIO_BUF_CANARY
417 zio_buf_check_canary(buf
, size
, zio_data_buf_cache
, c
);
419 kmem_cache_free(zio_data_buf_cache
[c
], buf
);
423 zio_abd_free(void *abd
, size_t size
)
426 abd_free((abd_t
*)abd
);
430 * ==========================================================================
431 * Push and pop I/O transform buffers
432 * ==========================================================================
435 zio_push_transform(zio_t
*zio
, abd_t
*data
, uint64_t size
, uint64_t bufsize
,
436 zio_transform_func_t
*transform
)
438 zio_transform_t
*zt
= kmem_alloc(sizeof (zio_transform_t
), KM_SLEEP
);
440 zt
->zt_orig_abd
= zio
->io_abd
;
441 zt
->zt_orig_size
= zio
->io_size
;
442 zt
->zt_bufsize
= bufsize
;
443 zt
->zt_transform
= transform
;
445 zt
->zt_next
= zio
->io_transform_stack
;
446 zio
->io_transform_stack
= zt
;
453 zio_pop_transforms(zio_t
*zio
)
457 while ((zt
= zio
->io_transform_stack
) != NULL
) {
458 if (zt
->zt_transform
!= NULL
)
459 zt
->zt_transform(zio
,
460 zt
->zt_orig_abd
, zt
->zt_orig_size
);
462 if (zt
->zt_bufsize
!= 0)
463 abd_free(zio
->io_abd
);
465 zio
->io_abd
= zt
->zt_orig_abd
;
466 zio
->io_size
= zt
->zt_orig_size
;
467 zio
->io_transform_stack
= zt
->zt_next
;
469 kmem_free(zt
, sizeof (zio_transform_t
));
474 * ==========================================================================
475 * I/O transform callbacks for subblocks, decompression, and decryption
476 * ==========================================================================
479 zio_subblock(zio_t
*zio
, abd_t
*data
, uint64_t size
)
481 ASSERT(zio
->io_size
> size
);
483 if (zio
->io_type
== ZIO_TYPE_READ
)
484 abd_copy(data
, zio
->io_abd
, size
);
488 zio_decompress(zio_t
*zio
, abd_t
*data
, uint64_t size
)
490 if (zio
->io_error
== 0) {
491 int ret
= zio_decompress_data(BP_GET_COMPRESS(zio
->io_bp
),
492 zio
->io_abd
, data
, zio
->io_size
, size
,
493 &zio
->io_prop
.zp_complevel
);
495 if (zio_injection_enabled
&& ret
== 0)
496 ret
= zio_handle_fault_injection(zio
, EINVAL
);
499 zio
->io_error
= SET_ERROR(EIO
);
504 zio_decrypt(zio_t
*zio
, abd_t
*data
, uint64_t size
)
508 blkptr_t
*bp
= zio
->io_bp
;
509 spa_t
*spa
= zio
->io_spa
;
510 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
511 uint64_t lsize
= BP_GET_LSIZE(bp
);
512 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
513 uint8_t salt
[ZIO_DATA_SALT_LEN
];
514 uint8_t iv
[ZIO_DATA_IV_LEN
];
515 uint8_t mac
[ZIO_DATA_MAC_LEN
];
516 boolean_t no_crypt
= B_FALSE
;
518 ASSERT(BP_USES_CRYPT(bp
));
519 ASSERT3U(size
, !=, 0);
521 if (zio
->io_error
!= 0)
525 * Verify the cksum of MACs stored in an indirect bp. It will always
526 * be possible to verify this since it does not require an encryption
529 if (BP_HAS_INDIRECT_MAC_CKSUM(bp
)) {
530 zio_crypt_decode_mac_bp(bp
, mac
);
532 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
) {
534 * We haven't decompressed the data yet, but
535 * zio_crypt_do_indirect_mac_checksum() requires
536 * decompressed data to be able to parse out the MACs
537 * from the indirect block. We decompress it now and
538 * throw away the result after we are finished.
540 abd_t
*abd
= abd_alloc_linear(lsize
, B_TRUE
);
541 ret
= zio_decompress_data(BP_GET_COMPRESS(bp
),
542 zio
->io_abd
, abd
, zio
->io_size
, lsize
,
543 &zio
->io_prop
.zp_complevel
);
546 ret
= SET_ERROR(EIO
);
549 ret
= zio_crypt_do_indirect_mac_checksum_abd(B_FALSE
,
550 abd
, lsize
, BP_SHOULD_BYTESWAP(bp
), mac
);
553 ret
= zio_crypt_do_indirect_mac_checksum_abd(B_FALSE
,
554 zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
), mac
);
556 abd_copy(data
, zio
->io_abd
, size
);
558 if (zio_injection_enabled
&& ot
!= DMU_OT_DNODE
&& ret
== 0) {
559 ret
= zio_handle_decrypt_injection(spa
,
560 &zio
->io_bookmark
, ot
, ECKSUM
);
569 * If this is an authenticated block, just check the MAC. It would be
570 * nice to separate this out into its own flag, but when this was done,
571 * we had run out of bits in what is now zio_flag_t. Future cleanup
572 * could make this a flag bit.
574 if (BP_IS_AUTHENTICATED(bp
)) {
575 if (ot
== DMU_OT_OBJSET
) {
576 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
,
577 dsobj
, zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
));
579 zio_crypt_decode_mac_bp(bp
, mac
);
580 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
,
581 zio
->io_abd
, size
, mac
);
582 if (zio_injection_enabled
&& ret
== 0) {
583 ret
= zio_handle_decrypt_injection(spa
,
584 &zio
->io_bookmark
, ot
, ECKSUM
);
587 abd_copy(data
, zio
->io_abd
, size
);
595 zio_crypt_decode_params_bp(bp
, salt
, iv
);
597 if (ot
== DMU_OT_INTENT_LOG
) {
598 tmp
= abd_borrow_buf_copy(zio
->io_abd
, sizeof (zil_chain_t
));
599 zio_crypt_decode_mac_zil(tmp
, mac
);
600 abd_return_buf(zio
->io_abd
, tmp
, sizeof (zil_chain_t
));
602 zio_crypt_decode_mac_bp(bp
, mac
);
605 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &zio
->io_bookmark
, BP_GET_TYPE(bp
),
606 BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
), salt
, iv
, mac
, size
, data
,
607 zio
->io_abd
, &no_crypt
);
609 abd_copy(data
, zio
->io_abd
, size
);
617 /* assert that the key was found unless this was speculative */
618 ASSERT(ret
!= EACCES
|| (zio
->io_flags
& ZIO_FLAG_SPECULATIVE
));
621 * If there was a decryption / authentication error return EIO as
622 * the io_error. If this was not a speculative zio, create an ereport.
625 zio
->io_error
= SET_ERROR(EIO
);
626 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
627 spa_log_error(spa
, &zio
->io_bookmark
,
628 BP_GET_LOGICAL_BIRTH(zio
->io_bp
));
629 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
630 spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
638 * ==========================================================================
639 * I/O parent/child relationships and pipeline interlocks
640 * ==========================================================================
643 zio_walk_parents(zio_t
*cio
, zio_link_t
**zl
)
645 list_t
*pl
= &cio
->io_parent_list
;
647 *zl
= (*zl
== NULL
) ? list_head(pl
) : list_next(pl
, *zl
);
651 ASSERT((*zl
)->zl_child
== cio
);
652 return ((*zl
)->zl_parent
);
656 zio_walk_children(zio_t
*pio
, zio_link_t
**zl
)
658 list_t
*cl
= &pio
->io_child_list
;
660 ASSERT(MUTEX_HELD(&pio
->io_lock
));
662 *zl
= (*zl
== NULL
) ? list_head(cl
) : list_next(cl
, *zl
);
666 ASSERT((*zl
)->zl_parent
== pio
);
667 return ((*zl
)->zl_child
);
671 zio_unique_parent(zio_t
*cio
)
673 zio_link_t
*zl
= NULL
;
674 zio_t
*pio
= zio_walk_parents(cio
, &zl
);
676 VERIFY3P(zio_walk_parents(cio
, &zl
), ==, NULL
);
681 zio_add_child(zio_t
*pio
, zio_t
*cio
)
684 * Logical I/Os can have logical, gang, or vdev children.
685 * Gang I/Os can have gang or vdev children.
686 * Vdev I/Os can only have vdev children.
687 * The following ASSERT captures all of these constraints.
689 ASSERT3S(cio
->io_child_type
, <=, pio
->io_child_type
);
691 /* Parent should not have READY stage if child doesn't have it. */
692 IMPLY((cio
->io_pipeline
& ZIO_STAGE_READY
) == 0 &&
693 (cio
->io_child_type
!= ZIO_CHILD_VDEV
),
694 (pio
->io_pipeline
& ZIO_STAGE_READY
) == 0);
696 zio_link_t
*zl
= kmem_cache_alloc(zio_link_cache
, KM_SLEEP
);
700 mutex_enter(&pio
->io_lock
);
701 mutex_enter(&cio
->io_lock
);
703 ASSERT(pio
->io_state
[ZIO_WAIT_DONE
] == 0);
705 uint64_t *countp
= pio
->io_children
[cio
->io_child_type
];
706 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
707 countp
[w
] += !cio
->io_state
[w
];
709 list_insert_head(&pio
->io_child_list
, zl
);
710 list_insert_head(&cio
->io_parent_list
, zl
);
712 mutex_exit(&cio
->io_lock
);
713 mutex_exit(&pio
->io_lock
);
717 zio_add_child_first(zio_t
*pio
, zio_t
*cio
)
720 * Logical I/Os can have logical, gang, or vdev children.
721 * Gang I/Os can have gang or vdev children.
722 * Vdev I/Os can only have vdev children.
723 * The following ASSERT captures all of these constraints.
725 ASSERT3S(cio
->io_child_type
, <=, pio
->io_child_type
);
727 /* Parent should not have READY stage if child doesn't have it. */
728 IMPLY((cio
->io_pipeline
& ZIO_STAGE_READY
) == 0 &&
729 (cio
->io_child_type
!= ZIO_CHILD_VDEV
),
730 (pio
->io_pipeline
& ZIO_STAGE_READY
) == 0);
732 zio_link_t
*zl
= kmem_cache_alloc(zio_link_cache
, KM_SLEEP
);
736 ASSERT(list_is_empty(&cio
->io_parent_list
));
737 list_insert_head(&cio
->io_parent_list
, zl
);
739 mutex_enter(&pio
->io_lock
);
741 ASSERT(pio
->io_state
[ZIO_WAIT_DONE
] == 0);
743 uint64_t *countp
= pio
->io_children
[cio
->io_child_type
];
744 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
745 countp
[w
] += !cio
->io_state
[w
];
747 list_insert_head(&pio
->io_child_list
, zl
);
749 mutex_exit(&pio
->io_lock
);
753 zio_remove_child(zio_t
*pio
, zio_t
*cio
, zio_link_t
*zl
)
755 ASSERT(zl
->zl_parent
== pio
);
756 ASSERT(zl
->zl_child
== cio
);
758 mutex_enter(&pio
->io_lock
);
759 mutex_enter(&cio
->io_lock
);
761 list_remove(&pio
->io_child_list
, zl
);
762 list_remove(&cio
->io_parent_list
, zl
);
764 mutex_exit(&cio
->io_lock
);
765 mutex_exit(&pio
->io_lock
);
766 kmem_cache_free(zio_link_cache
, zl
);
770 zio_wait_for_children(zio_t
*zio
, uint8_t childbits
, enum zio_wait_type wait
)
772 boolean_t waiting
= B_FALSE
;
774 mutex_enter(&zio
->io_lock
);
775 ASSERT(zio
->io_stall
== NULL
);
776 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++) {
777 if (!(ZIO_CHILD_BIT_IS_SET(childbits
, c
)))
780 uint64_t *countp
= &zio
->io_children
[c
][wait
];
783 ASSERT3U(zio
->io_stage
, !=, ZIO_STAGE_OPEN
);
784 zio
->io_stall
= countp
;
789 mutex_exit(&zio
->io_lock
);
793 __attribute__((always_inline
))
795 zio_notify_parent(zio_t
*pio
, zio_t
*zio
, enum zio_wait_type wait
,
796 zio_t
**next_to_executep
)
798 uint64_t *countp
= &pio
->io_children
[zio
->io_child_type
][wait
];
799 int *errorp
= &pio
->io_child_error
[zio
->io_child_type
];
801 mutex_enter(&pio
->io_lock
);
802 if (zio
->io_error
&& !(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
))
803 *errorp
= zio_worst_error(*errorp
, zio
->io_error
);
804 pio
->io_reexecute
|= zio
->io_reexecute
;
805 ASSERT3U(*countp
, >, 0);
808 * Propogate the Direct I/O checksum verify failure to the parent.
810 if (zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)
811 pio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
815 if (*countp
== 0 && pio
->io_stall
== countp
) {
816 zio_taskq_type_t type
=
817 pio
->io_stage
< ZIO_STAGE_VDEV_IO_START
? ZIO_TASKQ_ISSUE
:
819 pio
->io_stall
= NULL
;
820 mutex_exit(&pio
->io_lock
);
823 * If we can tell the caller to execute this parent next, do
824 * so. We do this if the parent's zio type matches the child's
825 * type, or if it's a zio_null() with no done callback, and so
826 * has no actual work to do. Otherwise dispatch the parent zio
829 * Having the caller execute the parent when possible reduces
830 * locking on the zio taskq's, reduces context switch
831 * overhead, and has no recursion penalty. Note that one
832 * read from disk typically causes at least 3 zio's: a
833 * zio_null(), the logical zio_read(), and then a physical
834 * zio. When the physical ZIO completes, we are able to call
835 * zio_done() on all 3 of these zio's from one invocation of
836 * zio_execute() by returning the parent back to
837 * zio_execute(). Since the parent isn't executed until this
838 * thread returns back to zio_execute(), the caller should do
841 * In other cases, dispatching the parent prevents
842 * overflowing the stack when we have deeply nested
843 * parent-child relationships, as we do with the "mega zio"
844 * of writes for spa_sync(), and the chain of ZIL blocks.
846 if (next_to_executep
!= NULL
&& *next_to_executep
== NULL
&&
847 (pio
->io_type
== zio
->io_type
||
848 (pio
->io_type
== ZIO_TYPE_NULL
&& !pio
->io_done
))) {
849 *next_to_executep
= pio
;
851 zio_taskq_dispatch(pio
, type
, B_FALSE
);
854 mutex_exit(&pio
->io_lock
);
859 zio_inherit_child_errors(zio_t
*zio
, enum zio_child c
)
861 if (zio
->io_child_error
[c
] != 0 && zio
->io_error
== 0)
862 zio
->io_error
= zio
->io_child_error
[c
];
866 zio_bookmark_compare(const void *x1
, const void *x2
)
868 const zio_t
*z1
= x1
;
869 const zio_t
*z2
= x2
;
871 if (z1
->io_bookmark
.zb_objset
< z2
->io_bookmark
.zb_objset
)
873 if (z1
->io_bookmark
.zb_objset
> z2
->io_bookmark
.zb_objset
)
876 if (z1
->io_bookmark
.zb_object
< z2
->io_bookmark
.zb_object
)
878 if (z1
->io_bookmark
.zb_object
> z2
->io_bookmark
.zb_object
)
881 if (z1
->io_bookmark
.zb_level
< z2
->io_bookmark
.zb_level
)
883 if (z1
->io_bookmark
.zb_level
> z2
->io_bookmark
.zb_level
)
886 if (z1
->io_bookmark
.zb_blkid
< z2
->io_bookmark
.zb_blkid
)
888 if (z1
->io_bookmark
.zb_blkid
> z2
->io_bookmark
.zb_blkid
)
900 * ==========================================================================
901 * Create the various types of I/O (read, write, free, etc)
902 * ==========================================================================
905 zio_create(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
906 abd_t
*data
, uint64_t lsize
, uint64_t psize
, zio_done_func_t
*done
,
907 void *private, zio_type_t type
, zio_priority_t priority
,
908 zio_flag_t flags
, vdev_t
*vd
, uint64_t offset
,
909 const zbookmark_phys_t
*zb
, enum zio_stage stage
,
910 enum zio_stage pipeline
)
914 IMPLY(type
!= ZIO_TYPE_TRIM
, psize
<= SPA_MAXBLOCKSIZE
);
915 ASSERT(P2PHASE(psize
, SPA_MINBLOCKSIZE
) == 0);
916 ASSERT(P2PHASE(offset
, SPA_MINBLOCKSIZE
) == 0);
918 ASSERT(!vd
|| spa_config_held(spa
, SCL_STATE_ALL
, RW_READER
));
919 ASSERT(!bp
|| !(flags
& ZIO_FLAG_CONFIG_WRITER
));
920 ASSERT(vd
|| stage
== ZIO_STAGE_OPEN
);
922 IMPLY(lsize
!= psize
, (flags
& ZIO_FLAG_RAW_COMPRESS
) != 0);
924 zio
= kmem_cache_alloc(zio_cache
, KM_SLEEP
);
925 memset(zio
, 0, sizeof (zio_t
));
927 mutex_init(&zio
->io_lock
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
928 cv_init(&zio
->io_cv
, NULL
, CV_DEFAULT
, NULL
);
930 list_create(&zio
->io_parent_list
, sizeof (zio_link_t
),
931 offsetof(zio_link_t
, zl_parent_node
));
932 list_create(&zio
->io_child_list
, sizeof (zio_link_t
),
933 offsetof(zio_link_t
, zl_child_node
));
934 metaslab_trace_init(&zio
->io_alloc_list
);
937 zio
->io_child_type
= ZIO_CHILD_VDEV
;
938 else if (flags
& ZIO_FLAG_GANG_CHILD
)
939 zio
->io_child_type
= ZIO_CHILD_GANG
;
940 else if (flags
& ZIO_FLAG_DDT_CHILD
)
941 zio
->io_child_type
= ZIO_CHILD_DDT
;
943 zio
->io_child_type
= ZIO_CHILD_LOGICAL
;
946 if (type
!= ZIO_TYPE_WRITE
||
947 zio
->io_child_type
== ZIO_CHILD_DDT
) {
948 zio
->io_bp_copy
= *bp
;
949 zio
->io_bp
= &zio
->io_bp_copy
; /* so caller can free */
951 zio
->io_bp
= (blkptr_t
*)bp
;
953 zio
->io_bp_orig
= *bp
;
954 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
955 zio
->io_logical
= zio
;
956 if (zio
->io_child_type
> ZIO_CHILD_GANG
&& BP_IS_GANG(bp
))
957 pipeline
|= ZIO_GANG_STAGES
;
963 zio
->io_private
= private;
965 zio
->io_priority
= priority
;
967 zio
->io_offset
= offset
;
968 zio
->io_orig_abd
= zio
->io_abd
= data
;
969 zio
->io_orig_size
= zio
->io_size
= psize
;
970 zio
->io_lsize
= lsize
;
971 zio
->io_orig_flags
= zio
->io_flags
= flags
;
972 zio
->io_orig_stage
= zio
->io_stage
= stage
;
973 zio
->io_orig_pipeline
= zio
->io_pipeline
= pipeline
;
974 zio
->io_pipeline_trace
= ZIO_STAGE_OPEN
;
975 zio
->io_allocator
= ZIO_ALLOCATOR_NONE
;
977 zio
->io_state
[ZIO_WAIT_READY
] = (stage
>= ZIO_STAGE_READY
) ||
978 (pipeline
& ZIO_STAGE_READY
) == 0;
979 zio
->io_state
[ZIO_WAIT_DONE
] = (stage
>= ZIO_STAGE_DONE
);
982 zio
->io_bookmark
= *zb
;
985 zio
->io_metaslab_class
= pio
->io_metaslab_class
;
986 if (zio
->io_logical
== NULL
)
987 zio
->io_logical
= pio
->io_logical
;
988 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
989 zio
->io_gang_leader
= pio
->io_gang_leader
;
990 zio_add_child_first(pio
, zio
);
993 taskq_init_ent(&zio
->io_tqent
);
999 zio_destroy(zio_t
*zio
)
1001 metaslab_trace_fini(&zio
->io_alloc_list
);
1002 list_destroy(&zio
->io_parent_list
);
1003 list_destroy(&zio
->io_child_list
);
1004 mutex_destroy(&zio
->io_lock
);
1005 cv_destroy(&zio
->io_cv
);
1006 kmem_cache_free(zio_cache
, zio
);
1010 * ZIO intended to be between others. Provides synchronization at READY
1011 * and DONE pipeline stages and calls the respective callbacks.
1014 zio_null(zio_t
*pio
, spa_t
*spa
, vdev_t
*vd
, zio_done_func_t
*done
,
1015 void *private, zio_flag_t flags
)
1019 zio
= zio_create(pio
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
1020 ZIO_TYPE_NULL
, ZIO_PRIORITY_NOW
, flags
, vd
, 0, NULL
,
1021 ZIO_STAGE_OPEN
, ZIO_INTERLOCK_PIPELINE
);
1027 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a
1028 * READY pipeline stage (is ready on creation), so it should not be used
1029 * as child of any ZIO that may need waiting for grandchildren READY stage
1030 * (any other ZIO type).
1033 zio_root(spa_t
*spa
, zio_done_func_t
*done
, void *private, zio_flag_t flags
)
1037 zio
= zio_create(NULL
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
1038 ZIO_TYPE_NULL
, ZIO_PRIORITY_NOW
, flags
, NULL
, 0, NULL
,
1039 ZIO_STAGE_OPEN
, ZIO_ROOT_PIPELINE
);
1045 zfs_blkptr_verify_log(spa_t
*spa
, const blkptr_t
*bp
,
1046 enum blk_verify_flag blk_verify
, const char *fmt
, ...)
1052 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
1055 zfs_dbgmsg("bad blkptr at %px: "
1056 "DVA[0]=%#llx/%#llx "
1057 "DVA[1]=%#llx/%#llx "
1058 "DVA[2]=%#llx/%#llx "
1064 "cksum=%#llx/%#llx/%#llx/%#llx",
1066 (long long)bp
->blk_dva
[0].dva_word
[0],
1067 (long long)bp
->blk_dva
[0].dva_word
[1],
1068 (long long)bp
->blk_dva
[1].dva_word
[0],
1069 (long long)bp
->blk_dva
[1].dva_word
[1],
1070 (long long)bp
->blk_dva
[2].dva_word
[0],
1071 (long long)bp
->blk_dva
[2].dva_word
[1],
1072 (long long)bp
->blk_prop
,
1073 (long long)bp
->blk_pad
[0],
1074 (long long)bp
->blk_pad
[1],
1075 (long long)BP_GET_PHYSICAL_BIRTH(bp
),
1076 (long long)BP_GET_LOGICAL_BIRTH(bp
),
1077 (long long)bp
->blk_fill
,
1078 (long long)bp
->blk_cksum
.zc_word
[0],
1079 (long long)bp
->blk_cksum
.zc_word
[1],
1080 (long long)bp
->blk_cksum
.zc_word
[2],
1081 (long long)bp
->blk_cksum
.zc_word
[3]);
1082 switch (blk_verify
) {
1083 case BLK_VERIFY_HALT
:
1084 zfs_panic_recover("%s: %s", spa_name(spa
), buf
);
1086 case BLK_VERIFY_LOG
:
1087 zfs_dbgmsg("%s: %s", spa_name(spa
), buf
);
1089 case BLK_VERIFY_ONLY
:
1097 * Verify the block pointer fields contain reasonable values. This means
1098 * it only contains known object types, checksum/compression identifiers,
1099 * block sizes within the maximum allowed limits, valid DVAs, etc.
1101 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
1102 * argument controls the behavior when an invalid field is detected.
1104 * Values for blk_verify_flag:
1105 * BLK_VERIFY_ONLY: evaluate the block
1106 * BLK_VERIFY_LOG: evaluate the block and log problems
1107 * BLK_VERIFY_HALT: call zfs_panic_recover on error
1109 * Values for blk_config_flag:
1110 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1111 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1112 * obtained for reader
1113 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1117 zfs_blkptr_verify(spa_t
*spa
, const blkptr_t
*bp
,
1118 enum blk_config_flag blk_config
, enum blk_verify_flag blk_verify
)
1122 if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp
)))) {
1123 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1124 "blkptr at %px has invalid TYPE %llu",
1125 bp
, (longlong_t
)BP_GET_TYPE(bp
));
1127 if (unlikely(BP_GET_COMPRESS(bp
) >= ZIO_COMPRESS_FUNCTIONS
)) {
1128 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1129 "blkptr at %px has invalid COMPRESS %llu",
1130 bp
, (longlong_t
)BP_GET_COMPRESS(bp
));
1132 if (unlikely(BP_GET_LSIZE(bp
) > SPA_MAXBLOCKSIZE
)) {
1133 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1134 "blkptr at %px has invalid LSIZE %llu",
1135 bp
, (longlong_t
)BP_GET_LSIZE(bp
));
1137 if (BP_IS_EMBEDDED(bp
)) {
1138 if (unlikely(BPE_GET_ETYPE(bp
) >= NUM_BP_EMBEDDED_TYPES
)) {
1139 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1140 "blkptr at %px has invalid ETYPE %llu",
1141 bp
, (longlong_t
)BPE_GET_ETYPE(bp
));
1143 if (unlikely(BPE_GET_PSIZE(bp
) > BPE_PAYLOAD_SIZE
)) {
1144 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1145 "blkptr at %px has invalid PSIZE %llu",
1146 bp
, (longlong_t
)BPE_GET_PSIZE(bp
));
1148 return (errors
== 0);
1150 if (unlikely(BP_GET_CHECKSUM(bp
) >= ZIO_CHECKSUM_FUNCTIONS
)) {
1151 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1152 "blkptr at %px has invalid CHECKSUM %llu",
1153 bp
, (longlong_t
)BP_GET_CHECKSUM(bp
));
1155 if (unlikely(BP_GET_PSIZE(bp
) > SPA_MAXBLOCKSIZE
)) {
1156 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1157 "blkptr at %px has invalid PSIZE %llu",
1158 bp
, (longlong_t
)BP_GET_PSIZE(bp
));
1162 * Do not verify individual DVAs if the config is not trusted. This
1163 * will be done once the zio is executed in vdev_mirror_map_alloc.
1165 if (unlikely(!spa
->spa_trust_config
))
1166 return (errors
== 0);
1168 switch (blk_config
) {
1169 case BLK_CONFIG_HELD
:
1170 ASSERT(spa_config_held(spa
, SCL_VDEV
, RW_WRITER
));
1172 case BLK_CONFIG_NEEDED
:
1173 spa_config_enter(spa
, SCL_VDEV
, bp
, RW_READER
);
1175 case BLK_CONFIG_SKIP
:
1176 return (errors
== 0);
1178 panic("invalid blk_config %u", blk_config
);
1182 * Pool-specific checks.
1184 * Note: it would be nice to verify that the logical birth
1185 * and physical birth are not too large. However,
1186 * spa_freeze() allows the birth time of log blocks (and
1187 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1190 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
1191 const dva_t
*dva
= &bp
->blk_dva
[i
];
1192 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1194 if (unlikely(vdevid
>= spa
->spa_root_vdev
->vdev_children
)) {
1195 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1196 "blkptr at %px DVA %u has invalid VDEV %llu",
1197 bp
, i
, (longlong_t
)vdevid
);
1200 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1201 if (unlikely(vd
== NULL
)) {
1202 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1203 "blkptr at %px DVA %u has invalid VDEV %llu",
1204 bp
, i
, (longlong_t
)vdevid
);
1207 if (unlikely(vd
->vdev_ops
== &vdev_hole_ops
)) {
1208 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1209 "blkptr at %px DVA %u has hole VDEV %llu",
1210 bp
, i
, (longlong_t
)vdevid
);
1213 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1215 * "missing" vdevs are valid during import, but we
1216 * don't have their detailed info (e.g. asize), so
1217 * we can't perform any more checks on them.
1221 uint64_t offset
= DVA_GET_OFFSET(dva
);
1222 uint64_t asize
= DVA_GET_ASIZE(dva
);
1223 if (DVA_GET_GANG(dva
))
1224 asize
= vdev_gang_header_asize(vd
);
1225 if (unlikely(offset
+ asize
> vd
->vdev_asize
)) {
1226 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1227 "blkptr at %px DVA %u has invalid OFFSET %llu",
1228 bp
, i
, (longlong_t
)offset
);
1231 if (blk_config
== BLK_CONFIG_NEEDED
)
1232 spa_config_exit(spa
, SCL_VDEV
, bp
);
1234 return (errors
== 0);
1238 zfs_dva_valid(spa_t
*spa
, const dva_t
*dva
, const blkptr_t
*bp
)
1241 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1243 if (vdevid
>= spa
->spa_root_vdev
->vdev_children
)
1246 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1250 if (vd
->vdev_ops
== &vdev_hole_ops
)
1253 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1257 uint64_t offset
= DVA_GET_OFFSET(dva
);
1258 uint64_t asize
= DVA_GET_ASIZE(dva
);
1260 if (DVA_GET_GANG(dva
))
1261 asize
= vdev_gang_header_asize(vd
);
1262 if (offset
+ asize
> vd
->vdev_asize
)
1269 zio_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
1270 abd_t
*data
, uint64_t size
, zio_done_func_t
*done
, void *private,
1271 zio_priority_t priority
, zio_flag_t flags
, const zbookmark_phys_t
*zb
)
1275 zio
= zio_create(pio
, spa
, BP_GET_BIRTH(bp
), bp
,
1276 data
, size
, size
, done
, private,
1277 ZIO_TYPE_READ
, priority
, flags
, NULL
, 0, zb
,
1278 ZIO_STAGE_OPEN
, (flags
& ZIO_FLAG_DDT_CHILD
) ?
1279 ZIO_DDT_CHILD_READ_PIPELINE
: ZIO_READ_PIPELINE
);
1285 zio_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
,
1286 abd_t
*data
, uint64_t lsize
, uint64_t psize
, const zio_prop_t
*zp
,
1287 zio_done_func_t
*ready
, zio_done_func_t
*children_ready
,
1288 zio_done_func_t
*done
, void *private, zio_priority_t priority
,
1289 zio_flag_t flags
, const zbookmark_phys_t
*zb
)
1292 enum zio_stage pipeline
= zp
->zp_direct_write
== B_TRUE
?
1293 ZIO_DIRECT_WRITE_PIPELINE
: (flags
& ZIO_FLAG_DDT_CHILD
) ?
1294 ZIO_DDT_CHILD_WRITE_PIPELINE
: ZIO_WRITE_PIPELINE
;
1297 zio
= zio_create(pio
, spa
, txg
, bp
, data
, lsize
, psize
, done
, private,
1298 ZIO_TYPE_WRITE
, priority
, flags
, NULL
, 0, zb
,
1299 ZIO_STAGE_OPEN
, pipeline
);
1301 zio
->io_ready
= ready
;
1302 zio
->io_children_ready
= children_ready
;
1306 * Data can be NULL if we are going to call zio_write_override() to
1307 * provide the already-allocated BP. But we may need the data to
1308 * verify a dedup hit (if requested). In this case, don't try to
1309 * dedup (just take the already-allocated BP verbatim). Encrypted
1310 * dedup blocks need data as well so we also disable dedup in this
1314 (zio
->io_prop
.zp_dedup_verify
|| zio
->io_prop
.zp_encrypt
)) {
1315 zio
->io_prop
.zp_dedup
= zio
->io_prop
.zp_dedup_verify
= B_FALSE
;
1322 zio_rewrite(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
, abd_t
*data
,
1323 uint64_t size
, zio_done_func_t
*done
, void *private,
1324 zio_priority_t priority
, zio_flag_t flags
, zbookmark_phys_t
*zb
)
1328 zio
= zio_create(pio
, spa
, txg
, bp
, data
, size
, size
, done
, private,
1329 ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_IO_REWRITE
, NULL
, 0, zb
,
1330 ZIO_STAGE_OPEN
, ZIO_REWRITE_PIPELINE
);
1336 zio_write_override(zio_t
*zio
, blkptr_t
*bp
, int copies
, boolean_t nopwrite
,
1339 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
1340 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1341 ASSERT(zio
->io_stage
== ZIO_STAGE_OPEN
);
1342 ASSERT(zio
->io_txg
== spa_syncing_txg(zio
->io_spa
));
1343 ASSERT(!brtwrite
|| !nopwrite
);
1346 * We must reset the io_prop to match the values that existed
1347 * when the bp was first written by dmu_sync() keeping in mind
1348 * that nopwrite and dedup are mutually exclusive.
1350 zio
->io_prop
.zp_dedup
= nopwrite
? B_FALSE
: zio
->io_prop
.zp_dedup
;
1351 zio
->io_prop
.zp_nopwrite
= nopwrite
;
1352 zio
->io_prop
.zp_brtwrite
= brtwrite
;
1353 zio
->io_prop
.zp_copies
= copies
;
1354 zio
->io_bp_override
= bp
;
1358 zio_free(spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
)
1361 (void) zfs_blkptr_verify(spa
, bp
, BLK_CONFIG_NEEDED
, BLK_VERIFY_HALT
);
1364 * The check for EMBEDDED is a performance optimization. We
1365 * process the free here (by ignoring it) rather than
1366 * putting it on the list and then processing it in zio_free_sync().
1368 if (BP_IS_EMBEDDED(bp
))
1372 * Frees that are for the currently-syncing txg, are not going to be
1373 * deferred, and which will not need to do a read (i.e. not GANG or
1374 * DEDUP), can be processed immediately. Otherwise, put them on the
1375 * in-memory list for later processing.
1377 * Note that we only defer frees after zfs_sync_pass_deferred_free
1378 * when the log space map feature is disabled. [see relevant comment
1379 * in spa_sync_iterate_to_convergence()]
1381 if (BP_IS_GANG(bp
) ||
1383 txg
!= spa
->spa_syncing_txg
||
1384 (spa_sync_pass(spa
) >= zfs_sync_pass_deferred_free
&&
1385 !spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
)) ||
1386 brt_maybe_exists(spa
, bp
)) {
1387 metaslab_check_free(spa
, bp
);
1388 bplist_append(&spa
->spa_free_bplist
[txg
& TXG_MASK
], bp
);
1390 VERIFY3P(zio_free_sync(NULL
, spa
, txg
, bp
, 0), ==, NULL
);
1395 * To improve performance, this function may return NULL if we were able
1396 * to do the free immediately. This avoids the cost of creating a zio
1397 * (and linking it to the parent, etc).
1400 zio_free_sync(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1403 ASSERT(!BP_IS_HOLE(bp
));
1404 ASSERT(spa_syncing_txg(spa
) == txg
);
1406 if (BP_IS_EMBEDDED(bp
))
1409 metaslab_check_free(spa
, bp
);
1411 dsl_scan_freed(spa
, bp
);
1413 if (BP_IS_GANG(bp
) ||
1415 brt_maybe_exists(spa
, bp
)) {
1417 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1418 * block header, the DDT or the BRT), so issue them
1419 * asynchronously so that this thread is not tied up.
1421 enum zio_stage stage
=
1422 ZIO_FREE_PIPELINE
| ZIO_STAGE_ISSUE_ASYNC
;
1424 return (zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1425 BP_GET_PSIZE(bp
), NULL
, NULL
,
1426 ZIO_TYPE_FREE
, ZIO_PRIORITY_NOW
,
1427 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, stage
));
1429 metaslab_free(spa
, bp
, txg
, B_FALSE
);
1435 zio_claim(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1436 zio_done_func_t
*done
, void *private, zio_flag_t flags
)
1440 (void) zfs_blkptr_verify(spa
, bp
, (flags
& ZIO_FLAG_CONFIG_WRITER
) ?
1441 BLK_CONFIG_HELD
: BLK_CONFIG_NEEDED
, BLK_VERIFY_HALT
);
1443 if (BP_IS_EMBEDDED(bp
))
1444 return (zio_null(pio
, spa
, NULL
, NULL
, NULL
, 0));
1447 * A claim is an allocation of a specific block. Claims are needed
1448 * to support immediate writes in the intent log. The issue is that
1449 * immediate writes contain committed data, but in a txg that was
1450 * *not* committed. Upon opening the pool after an unclean shutdown,
1451 * the intent log claims all blocks that contain immediate write data
1452 * so that the SPA knows they're in use.
1454 * All claims *must* be resolved in the first txg -- before the SPA
1455 * starts allocating blocks -- so that nothing is allocated twice.
1456 * If txg == 0 we just verify that the block is claimable.
1458 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa
->spa_uberblock
.ub_rootbp
), <,
1459 spa_min_claim_txg(spa
));
1460 ASSERT(txg
== spa_min_claim_txg(spa
) || txg
== 0);
1461 ASSERT(!BP_GET_DEDUP(bp
) || !spa_writeable(spa
)); /* zdb(8) */
1463 zio
= zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1464 BP_GET_PSIZE(bp
), done
, private, ZIO_TYPE_CLAIM
, ZIO_PRIORITY_NOW
,
1465 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, ZIO_CLAIM_PIPELINE
);
1466 ASSERT0(zio
->io_queued_timestamp
);
1472 zio_trim(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1473 zio_done_func_t
*done
, void *private, zio_priority_t priority
,
1474 zio_flag_t flags
, enum trim_flag trim_flags
)
1478 ASSERT0(vd
->vdev_children
);
1479 ASSERT0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
1480 ASSERT0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
1481 ASSERT3U(size
, !=, 0);
1483 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, NULL
, size
, size
, done
,
1484 private, ZIO_TYPE_TRIM
, priority
, flags
| ZIO_FLAG_PHYSICAL
,
1485 vd
, offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_TRIM_PIPELINE
);
1486 zio
->io_trim_flags
= trim_flags
;
1492 zio_read_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1493 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1494 zio_priority_t priority
, zio_flag_t flags
, boolean_t labels
)
1498 ASSERT(vd
->vdev_children
== 0);
1499 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1500 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1501 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1503 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1504 private, ZIO_TYPE_READ
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1505 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_READ_PHYS_PIPELINE
);
1507 zio
->io_prop
.zp_checksum
= checksum
;
1513 zio_write_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1514 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1515 zio_priority_t priority
, zio_flag_t flags
, boolean_t labels
)
1519 ASSERT(vd
->vdev_children
== 0);
1520 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1521 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1522 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1524 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1525 private, ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1526 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_WRITE_PHYS_PIPELINE
);
1528 zio
->io_prop
.zp_checksum
= checksum
;
1530 if (zio_checksum_table
[checksum
].ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
1532 * zec checksums are necessarily destructive -- they modify
1533 * the end of the write buffer to hold the verifier/checksum.
1534 * Therefore, we must make a local copy in case the data is
1535 * being written to multiple places in parallel.
1537 abd_t
*wbuf
= abd_alloc_sametype(data
, size
);
1538 abd_copy(wbuf
, data
, size
);
1540 zio_push_transform(zio
, wbuf
, size
, size
, NULL
);
1547 * Create a child I/O to do some work for us.
1550 zio_vdev_child_io(zio_t
*pio
, blkptr_t
*bp
, vdev_t
*vd
, uint64_t offset
,
1551 abd_t
*data
, uint64_t size
, int type
, zio_priority_t priority
,
1552 zio_flag_t flags
, zio_done_func_t
*done
, void *private)
1554 enum zio_stage pipeline
= ZIO_VDEV_CHILD_PIPELINE
;
1558 * vdev child I/Os do not propagate their error to the parent.
1559 * Therefore, for correct operation the caller *must* check for
1560 * and handle the error in the child i/o's done callback.
1561 * The only exceptions are i/os that we don't care about
1562 * (OPTIONAL or REPAIR).
1564 ASSERT((flags
& ZIO_FLAG_OPTIONAL
) || (flags
& ZIO_FLAG_IO_REPAIR
) ||
1567 if (type
== ZIO_TYPE_READ
&& bp
!= NULL
) {
1569 * If we have the bp, then the child should perform the
1570 * checksum and the parent need not. This pushes error
1571 * detection as close to the leaves as possible and
1572 * eliminates redundant checksums in the interior nodes.
1574 pipeline
|= ZIO_STAGE_CHECKSUM_VERIFY
;
1575 pio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
1577 * We never allow the mirror VDEV to attempt reading from any
1578 * additional data copies after the first Direct I/O checksum
1579 * verify failure. This is to avoid bad data being written out
1580 * through the mirror during self healing. See comment in
1581 * vdev_mirror_io_done() for more details.
1583 ASSERT0(pio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
);
1584 } else if (type
== ZIO_TYPE_WRITE
&&
1585 pio
->io_prop
.zp_direct_write
== B_TRUE
) {
1587 * By default we only will verify checksums for Direct I/O
1588 * writes for Linux. FreeBSD is able to place user pages under
1589 * write protection before issuing them to the ZIO pipeline.
1591 * Checksum validation errors will only be reported through
1592 * the top-level VDEV, which is set by this child ZIO.
1594 ASSERT3P(bp
, !=, NULL
);
1595 ASSERT3U(pio
->io_child_type
, ==, ZIO_CHILD_LOGICAL
);
1596 pipeline
|= ZIO_STAGE_DIO_CHECKSUM_VERIFY
;
1599 if (vd
->vdev_ops
->vdev_op_leaf
) {
1600 ASSERT0(vd
->vdev_children
);
1601 offset
+= VDEV_LABEL_START_SIZE
;
1604 flags
|= ZIO_VDEV_CHILD_FLAGS(pio
);
1607 * If we've decided to do a repair, the write is not speculative --
1608 * even if the original read was.
1610 if (flags
& ZIO_FLAG_IO_REPAIR
)
1611 flags
&= ~ZIO_FLAG_SPECULATIVE
;
1614 * If we're creating a child I/O that is not associated with a
1615 * top-level vdev, then the child zio is not an allocating I/O.
1616 * If this is a retried I/O then we ignore it since we will
1617 * have already processed the original allocating I/O.
1619 if (flags
& ZIO_FLAG_IO_ALLOCATING
&&
1620 (vd
!= vd
->vdev_top
|| (flags
& ZIO_FLAG_IO_RETRY
))) {
1621 ASSERT(pio
->io_metaslab_class
!= NULL
);
1622 ASSERT(pio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
1623 ASSERT(type
== ZIO_TYPE_WRITE
);
1624 ASSERT(priority
== ZIO_PRIORITY_ASYNC_WRITE
);
1625 ASSERT(!(flags
& ZIO_FLAG_IO_REPAIR
));
1626 ASSERT(!(pio
->io_flags
& ZIO_FLAG_IO_REWRITE
) ||
1627 pio
->io_child_type
== ZIO_CHILD_GANG
);
1629 flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
1632 zio
= zio_create(pio
, pio
->io_spa
, pio
->io_txg
, bp
, data
, size
, size
,
1633 done
, private, type
, priority
, flags
, vd
, offset
, &pio
->io_bookmark
,
1634 ZIO_STAGE_VDEV_IO_START
>> 1, pipeline
);
1635 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
1641 zio_vdev_delegated_io(vdev_t
*vd
, uint64_t offset
, abd_t
*data
, uint64_t size
,
1642 zio_type_t type
, zio_priority_t priority
, zio_flag_t flags
,
1643 zio_done_func_t
*done
, void *private)
1647 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1649 zio
= zio_create(NULL
, vd
->vdev_spa
, 0, NULL
,
1650 data
, size
, size
, done
, private, type
, priority
,
1651 flags
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_DELEGATED
,
1653 ZIO_STAGE_VDEV_IO_START
>> 1, ZIO_VDEV_CHILD_PIPELINE
);
1660 * Send a flush command to the given vdev. Unlike most zio creation functions,
1661 * the flush zios are issued immediately. You can wait on pio to pause until
1662 * the flushes complete.
1665 zio_flush(zio_t
*pio
, vdev_t
*vd
)
1667 const zio_flag_t flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
|
1668 ZIO_FLAG_DONT_RETRY
;
1670 if (vd
->vdev_nowritecache
)
1673 if (vd
->vdev_children
== 0) {
1674 zio_nowait(zio_create(pio
, vd
->vdev_spa
, 0, NULL
, NULL
, 0, 0,
1675 NULL
, NULL
, ZIO_TYPE_FLUSH
, ZIO_PRIORITY_NOW
, flags
, vd
, 0,
1676 NULL
, ZIO_STAGE_OPEN
, ZIO_FLUSH_PIPELINE
));
1678 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++)
1679 zio_flush(pio
, vd
->vdev_child
[c
]);
1684 zio_shrink(zio_t
*zio
, uint64_t size
)
1686 ASSERT3P(zio
->io_executor
, ==, NULL
);
1687 ASSERT3U(zio
->io_orig_size
, ==, zio
->io_size
);
1688 ASSERT3U(size
, <=, zio
->io_size
);
1691 * We don't shrink for raidz because of problems with the
1692 * reconstruction when reading back less than the block size.
1693 * Note, BP_IS_RAIDZ() assumes no compression.
1695 ASSERT(BP_GET_COMPRESS(zio
->io_bp
) == ZIO_COMPRESS_OFF
);
1696 if (!BP_IS_RAIDZ(zio
->io_bp
)) {
1697 /* we are not doing a raw write */
1698 ASSERT3U(zio
->io_size
, ==, zio
->io_lsize
);
1699 zio
->io_orig_size
= zio
->io_size
= zio
->io_lsize
= size
;
1704 * Round provided allocation size up to a value that can be allocated
1705 * by at least some vdev(s) in the pool with minimum or no additional
1706 * padding and without extra space usage on others
1709 zio_roundup_alloc_size(spa_t
*spa
, uint64_t size
)
1711 if (size
> spa
->spa_min_alloc
)
1712 return (roundup(size
, spa
->spa_gcd_alloc
));
1713 return (spa
->spa_min_alloc
);
1717 zio_get_compression_max_size(enum zio_compress compress
, uint64_t gcd_alloc
,
1718 uint64_t min_alloc
, size_t s_len
)
1722 /* minimum 12.5% must be saved (legacy value, may be changed later) */
1723 d_len
= s_len
- (s_len
>> 3);
1725 /* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1726 if (compress
== ZIO_COMPRESS_ZLE
)
1729 d_len
= d_len
- d_len
% gcd_alloc
;
1731 if (d_len
< min_alloc
)
1732 return (BPE_PAYLOAD_SIZE
);
1737 * ==========================================================================
1738 * Prepare to read and write logical blocks
1739 * ==========================================================================
1743 zio_read_bp_init(zio_t
*zio
)
1745 blkptr_t
*bp
= zio
->io_bp
;
1747 BP_IS_EMBEDDED(bp
) ? BPE_GET_PSIZE(bp
) : BP_GET_PSIZE(bp
);
1749 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1751 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
&&
1752 zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
1753 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1754 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1755 psize
, psize
, zio_decompress
);
1758 if (((BP_IS_PROTECTED(bp
) && !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) ||
1759 BP_HAS_INDIRECT_MAC_CKSUM(bp
)) &&
1760 zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
1761 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1762 psize
, psize
, zio_decrypt
);
1765 if (BP_IS_EMBEDDED(bp
) && BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
) {
1766 int psize
= BPE_GET_PSIZE(bp
);
1767 void *data
= abd_borrow_buf(zio
->io_abd
, psize
);
1769 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1770 decode_embedded_bp_compressed(bp
, data
);
1771 abd_return_buf_copy(zio
->io_abd
, data
, psize
);
1773 ASSERT(!BP_IS_EMBEDDED(bp
));
1776 if (BP_GET_DEDUP(bp
) && zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
1777 zio
->io_pipeline
= ZIO_DDT_READ_PIPELINE
;
1783 zio_write_bp_init(zio_t
*zio
)
1785 if (!IO_IS_ALLOCATING(zio
))
1788 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1790 if (zio
->io_bp_override
) {
1791 blkptr_t
*bp
= zio
->io_bp
;
1792 zio_prop_t
*zp
= &zio
->io_prop
;
1794 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) != zio
->io_txg
);
1796 *bp
= *zio
->io_bp_override
;
1797 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1799 if (zp
->zp_brtwrite
)
1802 ASSERT(!BP_GET_DEDUP(zio
->io_bp_override
));
1804 if (BP_IS_EMBEDDED(bp
))
1808 * If we've been overridden and nopwrite is set then
1809 * set the flag accordingly to indicate that a nopwrite
1810 * has already occurred.
1812 if (!BP_IS_HOLE(bp
) && zp
->zp_nopwrite
) {
1813 ASSERT(!zp
->zp_dedup
);
1814 ASSERT3U(BP_GET_CHECKSUM(bp
), ==, zp
->zp_checksum
);
1815 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
1819 ASSERT(!zp
->zp_nopwrite
);
1821 if (BP_IS_HOLE(bp
) || !zp
->zp_dedup
)
1824 ASSERT((zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
1825 ZCHECKSUM_FLAG_DEDUP
) || zp
->zp_dedup_verify
);
1827 if (BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
&&
1829 BP_SET_DEDUP(bp
, 1);
1830 zio
->io_pipeline
|= ZIO_STAGE_DDT_WRITE
;
1835 * We were unable to handle this as an override bp, treat
1836 * it as a regular write I/O.
1838 zio
->io_bp_override
= NULL
;
1839 *bp
= zio
->io_bp_orig
;
1840 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1847 zio_write_compress(zio_t
*zio
)
1849 spa_t
*spa
= zio
->io_spa
;
1850 zio_prop_t
*zp
= &zio
->io_prop
;
1851 enum zio_compress compress
= zp
->zp_compress
;
1852 blkptr_t
*bp
= zio
->io_bp
;
1853 uint64_t lsize
= zio
->io_lsize
;
1854 uint64_t psize
= zio
->io_size
;
1858 * If our children haven't all reached the ready stage,
1859 * wait for them and then repeat this pipeline stage.
1861 if (zio_wait_for_children(zio
, ZIO_CHILD_LOGICAL_BIT
|
1862 ZIO_CHILD_GANG_BIT
, ZIO_WAIT_READY
)) {
1866 if (!IO_IS_ALLOCATING(zio
))
1869 if (zio
->io_children_ready
!= NULL
) {
1871 * Now that all our children are ready, run the callback
1872 * associated with this zio in case it wants to modify the
1873 * data to be written.
1875 ASSERT3U(zp
->zp_level
, >, 0);
1876 zio
->io_children_ready(zio
);
1879 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1880 ASSERT(zio
->io_bp_override
== NULL
);
1882 if (!BP_IS_HOLE(bp
) && BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
) {
1884 * We're rewriting an existing block, which means we're
1885 * working on behalf of spa_sync(). For spa_sync() to
1886 * converge, it must eventually be the case that we don't
1887 * have to allocate new blocks. But compression changes
1888 * the blocksize, which forces a reallocate, and makes
1889 * convergence take longer. Therefore, after the first
1890 * few passes, stop compressing to ensure convergence.
1892 pass
= spa_sync_pass(spa
);
1894 ASSERT(zio
->io_txg
== spa_syncing_txg(spa
));
1895 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1896 ASSERT(!BP_GET_DEDUP(bp
));
1898 if (pass
>= zfs_sync_pass_dont_compress
)
1899 compress
= ZIO_COMPRESS_OFF
;
1901 /* Make sure someone doesn't change their mind on overwrites */
1902 ASSERT(BP_IS_EMBEDDED(bp
) || BP_IS_GANG(bp
) ||
1903 MIN(zp
->zp_copies
, spa_max_replication(spa
))
1904 == BP_GET_NDVAS(bp
));
1907 /* If it's a compressed write that is not raw, compress the buffer. */
1908 if (compress
!= ZIO_COMPRESS_OFF
&&
1909 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1911 if (abd_cmp_zero(zio
->io_abd
, lsize
) == 0)
1913 else if (compress
== ZIO_COMPRESS_EMPTY
)
1916 psize
= zio_compress_data(compress
, zio
->io_abd
, &cabd
,
1918 zio_get_compression_max_size(compress
,
1919 spa
->spa_gcd_alloc
, spa
->spa_min_alloc
, lsize
),
1922 compress
= ZIO_COMPRESS_OFF
;
1923 } else if (psize
>= lsize
) {
1924 compress
= ZIO_COMPRESS_OFF
;
1927 } else if (!zp
->zp_dedup
&& !zp
->zp_encrypt
&&
1928 psize
<= BPE_PAYLOAD_SIZE
&&
1929 zp
->zp_level
== 0 && !DMU_OT_HAS_FILL(zp
->zp_type
) &&
1930 spa_feature_is_enabled(spa
, SPA_FEATURE_EMBEDDED_DATA
)) {
1931 void *cbuf
= abd_borrow_buf_copy(cabd
, lsize
);
1932 encode_embedded_bp_compressed(bp
,
1933 cbuf
, compress
, lsize
, psize
);
1934 BPE_SET_ETYPE(bp
, BP_EMBEDDED_TYPE_DATA
);
1935 BP_SET_TYPE(bp
, zio
->io_prop
.zp_type
);
1936 BP_SET_LEVEL(bp
, zio
->io_prop
.zp_level
);
1937 abd_return_buf(cabd
, cbuf
, lsize
);
1939 BP_SET_LOGICAL_BIRTH(bp
, zio
->io_txg
);
1940 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1941 ASSERT(spa_feature_is_active(spa
,
1942 SPA_FEATURE_EMBEDDED_DATA
));
1946 * Round compressed size up to the minimum allocation
1947 * size of the smallest-ashift device, and zero the
1948 * tail. This ensures that the compressed size of the
1949 * BP (and thus compressratio property) are correct,
1950 * in that we charge for the padding used to fill out
1953 size_t rounded
= (size_t)zio_roundup_alloc_size(spa
,
1955 if (rounded
>= lsize
) {
1956 compress
= ZIO_COMPRESS_OFF
;
1960 abd_zero_off(cabd
, psize
, rounded
- psize
);
1962 zio_push_transform(zio
, cabd
,
1963 psize
, lsize
, NULL
);
1968 * We were unable to handle this as an override bp, treat
1969 * it as a regular write I/O.
1971 zio
->io_bp_override
= NULL
;
1972 *bp
= zio
->io_bp_orig
;
1973 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1975 } else if ((zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0 &&
1976 zp
->zp_type
== DMU_OT_DNODE
) {
1978 * The DMU actually relies on the zio layer's compression
1979 * to free metadnode blocks that have had all contained
1980 * dnodes freed. As a result, even when doing a raw
1981 * receive, we must check whether the block can be compressed
1984 if (abd_cmp_zero(zio
->io_abd
, lsize
) == 0) {
1986 compress
= ZIO_COMPRESS_OFF
;
1990 } else if (zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
&&
1991 !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) {
1993 * If we are raw receiving an encrypted dataset we should not
1994 * take this codepath because it will change the on-disk block
1995 * and decryption will fail.
1997 size_t rounded
= MIN((size_t)zio_roundup_alloc_size(spa
, psize
),
2000 if (rounded
!= psize
) {
2001 abd_t
*cdata
= abd_alloc_linear(rounded
, B_TRUE
);
2002 abd_zero_off(cdata
, psize
, rounded
- psize
);
2003 abd_copy_off(cdata
, zio
->io_abd
, 0, 0, psize
);
2005 zio_push_transform(zio
, cdata
,
2006 psize
, rounded
, NULL
);
2009 ASSERT3U(psize
, !=, 0);
2013 * The final pass of spa_sync() must be all rewrites, but the first
2014 * few passes offer a trade-off: allocating blocks defers convergence,
2015 * but newly allocated blocks are sequential, so they can be written
2016 * to disk faster. Therefore, we allow the first few passes of
2017 * spa_sync() to allocate new blocks, but force rewrites after that.
2018 * There should only be a handful of blocks after pass 1 in any case.
2020 if (!BP_IS_HOLE(bp
) && BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
&&
2021 BP_GET_PSIZE(bp
) == psize
&&
2022 pass
>= zfs_sync_pass_rewrite
) {
2023 VERIFY3U(psize
, !=, 0);
2024 enum zio_stage gang_stages
= zio
->io_pipeline
& ZIO_GANG_STAGES
;
2026 zio
->io_pipeline
= ZIO_REWRITE_PIPELINE
| gang_stages
;
2027 zio
->io_flags
|= ZIO_FLAG_IO_REWRITE
;
2030 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
2034 if (BP_GET_LOGICAL_BIRTH(&zio
->io_bp_orig
) != 0 &&
2035 spa_feature_is_active(spa
, SPA_FEATURE_HOLE_BIRTH
)) {
2036 BP_SET_LSIZE(bp
, lsize
);
2037 BP_SET_TYPE(bp
, zp
->zp_type
);
2038 BP_SET_LEVEL(bp
, zp
->zp_level
);
2039 BP_SET_BIRTH(bp
, zio
->io_txg
, 0);
2041 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2043 ASSERT(zp
->zp_checksum
!= ZIO_CHECKSUM_GANG_HEADER
);
2044 BP_SET_LSIZE(bp
, lsize
);
2045 BP_SET_TYPE(bp
, zp
->zp_type
);
2046 BP_SET_LEVEL(bp
, zp
->zp_level
);
2047 BP_SET_PSIZE(bp
, psize
);
2048 BP_SET_COMPRESS(bp
, compress
);
2049 BP_SET_CHECKSUM(bp
, zp
->zp_checksum
);
2050 BP_SET_DEDUP(bp
, zp
->zp_dedup
);
2051 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
2053 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2054 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
2055 ASSERT(!zp
->zp_encrypt
||
2056 DMU_OT_IS_ENCRYPTED(zp
->zp_type
));
2057 zio
->io_pipeline
= ZIO_DDT_WRITE_PIPELINE
;
2059 if (zp
->zp_nopwrite
) {
2060 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2061 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
2062 zio
->io_pipeline
|= ZIO_STAGE_NOP_WRITE
;
2069 zio_free_bp_init(zio_t
*zio
)
2071 blkptr_t
*bp
= zio
->io_bp
;
2073 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
2074 if (BP_GET_DEDUP(bp
))
2075 zio
->io_pipeline
= ZIO_DDT_FREE_PIPELINE
;
2078 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
2084 * ==========================================================================
2085 * Execute the I/O pipeline
2086 * ==========================================================================
2090 zio_taskq_dispatch(zio_t
*zio
, zio_taskq_type_t q
, boolean_t cutinline
)
2092 spa_t
*spa
= zio
->io_spa
;
2093 zio_type_t t
= zio
->io_type
;
2096 * If we're a config writer or a probe, the normal issue and
2097 * interrupt threads may all be blocked waiting for the config lock.
2098 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2100 if (zio
->io_flags
& (ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_PROBE
))
2104 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2106 if (t
== ZIO_TYPE_WRITE
&& zio
->io_vd
&& zio
->io_vd
->vdev_aux
)
2110 * If this is a high priority I/O, then use the high priority taskq if
2111 * available or cut the line otherwise.
2113 if (zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
) {
2114 if (spa
->spa_zio_taskq
[t
][q
+ 1].stqs_count
!= 0)
2120 ASSERT3U(q
, <, ZIO_TASKQ_TYPES
);
2122 spa_taskq_dispatch(spa
, t
, q
, zio_execute
, zio
, cutinline
);
2126 zio_taskq_member(zio_t
*zio
, zio_taskq_type_t q
)
2128 spa_t
*spa
= zio
->io_spa
;
2130 taskq_t
*tq
= taskq_of_curthread();
2132 for (zio_type_t t
= 0; t
< ZIO_TYPES
; t
++) {
2133 spa_taskqs_t
*tqs
= &spa
->spa_zio_taskq
[t
][q
];
2135 for (i
= 0; i
< tqs
->stqs_count
; i
++) {
2136 if (tqs
->stqs_taskq
[i
] == tq
)
2145 zio_issue_async(zio_t
*zio
)
2147 ASSERT((zio
->io_type
!= ZIO_TYPE_WRITE
) || ZIO_HAS_ALLOCATOR(zio
));
2148 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
2153 zio_interrupt(void *zio
)
2155 zio_taskq_dispatch(zio
, ZIO_TASKQ_INTERRUPT
, B_FALSE
);
2159 zio_delay_interrupt(zio_t
*zio
)
2162 * The timeout_generic() function isn't defined in userspace, so
2163 * rather than trying to implement the function, the zio delay
2164 * functionality has been disabled for userspace builds.
2169 * If io_target_timestamp is zero, then no delay has been registered
2170 * for this IO, thus jump to the end of this function and "skip" the
2171 * delay; issuing it directly to the zio layer.
2173 if (zio
->io_target_timestamp
!= 0) {
2174 hrtime_t now
= gethrtime();
2176 if (now
>= zio
->io_target_timestamp
) {
2178 * This IO has already taken longer than the target
2179 * delay to complete, so we don't want to delay it
2180 * any longer; we "miss" the delay and issue it
2181 * directly to the zio layer. This is likely due to
2182 * the target latency being set to a value less than
2183 * the underlying hardware can satisfy (e.g. delay
2184 * set to 1ms, but the disks take 10ms to complete an
2188 DTRACE_PROBE2(zio__delay__miss
, zio_t
*, zio
,
2194 hrtime_t diff
= zio
->io_target_timestamp
- now
;
2195 clock_t expire_at_tick
= ddi_get_lbolt() +
2198 DTRACE_PROBE3(zio__delay__hit
, zio_t
*, zio
,
2199 hrtime_t
, now
, hrtime_t
, diff
);
2201 if (NSEC_TO_TICK(diff
) == 0) {
2202 /* Our delay is less than a jiffy - just spin */
2203 zfs_sleep_until(zio
->io_target_timestamp
);
2207 * Use taskq_dispatch_delay() in the place of
2208 * OpenZFS's timeout_generic().
2210 tid
= taskq_dispatch_delay(system_taskq
,
2211 zio_interrupt
, zio
, TQ_NOSLEEP
,
2213 if (tid
== TASKQID_INVALID
) {
2215 * Couldn't allocate a task. Just
2216 * finish the zio without a delay.
2225 DTRACE_PROBE1(zio__delay__skip
, zio_t
*, zio
);
2230 zio_deadman_impl(zio_t
*pio
, int ziodepth
)
2232 zio_t
*cio
, *cio_next
;
2233 zio_link_t
*zl
= NULL
;
2234 vdev_t
*vd
= pio
->io_vd
;
2236 if (zio_deadman_log_all
|| (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
)) {
2237 vdev_queue_t
*vq
= vd
? &vd
->vdev_queue
: NULL
;
2238 zbookmark_phys_t
*zb
= &pio
->io_bookmark
;
2239 uint64_t delta
= gethrtime() - pio
->io_timestamp
;
2240 uint64_t failmode
= spa_get_deadman_failmode(pio
->io_spa
);
2242 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2243 "delta=%llu queued=%llu io=%llu "
2245 "last=%llu type=%d "
2246 "priority=%d flags=0x%llx stage=0x%x "
2247 "pipeline=0x%x pipeline-trace=0x%x "
2248 "objset=%llu object=%llu "
2249 "level=%llu blkid=%llu "
2250 "offset=%llu size=%llu "
2252 ziodepth
, pio
, pio
->io_timestamp
,
2253 (u_longlong_t
)delta
, pio
->io_delta
, pio
->io_delay
,
2254 vd
? vd
->vdev_path
: "NULL",
2255 vq
? vq
->vq_io_complete_ts
: 0, pio
->io_type
,
2256 pio
->io_priority
, (u_longlong_t
)pio
->io_flags
,
2257 pio
->io_stage
, pio
->io_pipeline
, pio
->io_pipeline_trace
,
2258 (u_longlong_t
)zb
->zb_objset
, (u_longlong_t
)zb
->zb_object
,
2259 (u_longlong_t
)zb
->zb_level
, (u_longlong_t
)zb
->zb_blkid
,
2260 (u_longlong_t
)pio
->io_offset
, (u_longlong_t
)pio
->io_size
,
2262 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN
,
2263 pio
->io_spa
, vd
, zb
, pio
, 0);
2265 if (failmode
== ZIO_FAILURE_MODE_CONTINUE
&&
2266 taskq_empty_ent(&pio
->io_tqent
)) {
2271 mutex_enter(&pio
->io_lock
);
2272 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2273 cio_next
= zio_walk_children(pio
, &zl
);
2274 zio_deadman_impl(cio
, ziodepth
+ 1);
2276 mutex_exit(&pio
->io_lock
);
2280 * Log the critical information describing this zio and all of its children
2281 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2284 zio_deadman(zio_t
*pio
, const char *tag
)
2286 spa_t
*spa
= pio
->io_spa
;
2287 char *name
= spa_name(spa
);
2289 if (!zfs_deadman_enabled
|| spa_suspended(spa
))
2292 zio_deadman_impl(pio
, 0);
2294 switch (spa_get_deadman_failmode(spa
)) {
2295 case ZIO_FAILURE_MODE_WAIT
:
2296 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag
, name
);
2299 case ZIO_FAILURE_MODE_CONTINUE
:
2300 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag
, name
);
2303 case ZIO_FAILURE_MODE_PANIC
:
2304 fm_panic("%s determined I/O to pool '%s' is hung.", tag
, name
);
2310 * Execute the I/O pipeline until one of the following occurs:
2311 * (1) the I/O completes; (2) the pipeline stalls waiting for
2312 * dependent child I/Os; (3) the I/O issues, so we're waiting
2313 * for an I/O completion interrupt; (4) the I/O is delegated by
2314 * vdev-level caching or aggregation; (5) the I/O is deferred
2315 * due to vdev-level queueing; (6) the I/O is handed off to
2316 * another thread. In all cases, the pipeline stops whenever
2317 * there's no CPU work; it never burns a thread in cv_wait_io().
2319 * There's no locking on io_stage because there's no legitimate way
2320 * for multiple threads to be attempting to process the same I/O.
2322 static zio_pipe_stage_t
*zio_pipeline
[];
2325 * zio_execute() is a wrapper around the static function
2326 * __zio_execute() so that we can force __zio_execute() to be
2327 * inlined. This reduces stack overhead which is important
2328 * because __zio_execute() is called recursively in several zio
2329 * code paths. zio_execute() itself cannot be inlined because
2330 * it is externally visible.
2333 zio_execute(void *zio
)
2335 fstrans_cookie_t cookie
;
2337 cookie
= spl_fstrans_mark();
2339 spl_fstrans_unmark(cookie
);
2343 * Used to determine if in the current context the stack is sized large
2344 * enough to allow zio_execute() to be called recursively. A minimum
2345 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2348 zio_execute_stack_check(zio_t
*zio
)
2350 #if !defined(HAVE_LARGE_STACKS)
2351 dsl_pool_t
*dp
= spa_get_dsl(zio
->io_spa
);
2353 /* Executing in txg_sync_thread() context. */
2354 if (dp
&& curthread
== dp
->dp_tx
.tx_sync_thread
)
2357 /* Pool initialization outside of zio_taskq context. */
2358 if (dp
&& spa_is_initializing(dp
->dp_spa
) &&
2359 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE
) &&
2360 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE_HIGH
))
2364 #endif /* HAVE_LARGE_STACKS */
2369 __attribute__((always_inline
))
2371 __zio_execute(zio_t
*zio
)
2373 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
2375 while (zio
->io_stage
< ZIO_STAGE_DONE
) {
2376 enum zio_stage pipeline
= zio
->io_pipeline
;
2377 enum zio_stage stage
= zio
->io_stage
;
2379 zio
->io_executor
= curthread
;
2381 ASSERT(!MUTEX_HELD(&zio
->io_lock
));
2382 ASSERT(ISP2(stage
));
2383 ASSERT(zio
->io_stall
== NULL
);
2387 } while ((stage
& pipeline
) == 0);
2389 ASSERT(stage
<= ZIO_STAGE_DONE
);
2392 * If we are in interrupt context and this pipeline stage
2393 * will grab a config lock that is held across I/O,
2394 * or may wait for an I/O that needs an interrupt thread
2395 * to complete, issue async to avoid deadlock.
2397 * For VDEV_IO_START, we cut in line so that the io will
2398 * be sent to disk promptly.
2400 if ((stage
& ZIO_BLOCKING_STAGES
) && zio
->io_vd
== NULL
&&
2401 zio_taskq_member(zio
, ZIO_TASKQ_INTERRUPT
)) {
2402 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2403 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2404 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2409 * If the current context doesn't have large enough stacks
2410 * the zio must be issued asynchronously to prevent overflow.
2412 if (zio_execute_stack_check(zio
)) {
2413 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2414 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2415 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2419 zio
->io_stage
= stage
;
2420 zio
->io_pipeline_trace
|= zio
->io_stage
;
2423 * The zio pipeline stage returns the next zio to execute
2424 * (typically the same as this one), or NULL if we should
2427 zio
= zio_pipeline
[highbit64(stage
) - 1](zio
);
2436 * ==========================================================================
2437 * Initiate I/O, either sync or async
2438 * ==========================================================================
2441 zio_wait(zio_t
*zio
)
2444 * Some routines, like zio_free_sync(), may return a NULL zio
2445 * to avoid the performance overhead of creating and then destroying
2446 * an unneeded zio. For the callers' simplicity, we accept a NULL
2447 * zio and ignore it.
2452 long timeout
= MSEC_TO_TICK(zfs_deadman_ziotime_ms
);
2455 ASSERT3S(zio
->io_stage
, ==, ZIO_STAGE_OPEN
);
2456 ASSERT3P(zio
->io_executor
, ==, NULL
);
2458 zio
->io_waiter
= curthread
;
2459 ASSERT0(zio
->io_queued_timestamp
);
2460 zio
->io_queued_timestamp
= gethrtime();
2462 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2463 spa_select_allocator(zio
);
2467 mutex_enter(&zio
->io_lock
);
2468 while (zio
->io_executor
!= NULL
) {
2469 error
= cv_timedwait_io(&zio
->io_cv
, &zio
->io_lock
,
2470 ddi_get_lbolt() + timeout
);
2472 if (zfs_deadman_enabled
&& error
== -1 &&
2473 gethrtime() - zio
->io_queued_timestamp
>
2474 spa_deadman_ziotime(zio
->io_spa
)) {
2475 mutex_exit(&zio
->io_lock
);
2476 timeout
= MSEC_TO_TICK(zfs_deadman_checktime_ms
);
2477 zio_deadman(zio
, FTAG
);
2478 mutex_enter(&zio
->io_lock
);
2481 mutex_exit(&zio
->io_lock
);
2483 error
= zio
->io_error
;
2490 zio_nowait(zio_t
*zio
)
2493 * See comment in zio_wait().
2498 ASSERT3P(zio
->io_executor
, ==, NULL
);
2500 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
2501 list_is_empty(&zio
->io_parent_list
)) {
2505 * This is a logical async I/O with no parent to wait for it.
2506 * We add it to the spa_async_root_zio "Godfather" I/O which
2507 * will ensure they complete prior to unloading the pool.
2509 spa_t
*spa
= zio
->io_spa
;
2510 pio
= spa
->spa_async_zio_root
[CPU_SEQID_UNSTABLE
];
2512 zio_add_child(pio
, zio
);
2515 ASSERT0(zio
->io_queued_timestamp
);
2516 zio
->io_queued_timestamp
= gethrtime();
2517 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2518 spa_select_allocator(zio
);
2524 * ==========================================================================
2525 * Reexecute, cancel, or suspend/resume failed I/O
2526 * ==========================================================================
2530 zio_reexecute(void *arg
)
2533 zio_t
*cio
, *cio_next
, *gio
;
2535 ASSERT(pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2536 ASSERT(pio
->io_orig_stage
== ZIO_STAGE_OPEN
);
2537 ASSERT(pio
->io_gang_leader
== NULL
);
2538 ASSERT(pio
->io_gang_tree
== NULL
);
2540 mutex_enter(&pio
->io_lock
);
2541 pio
->io_flags
= pio
->io_orig_flags
;
2542 pio
->io_stage
= pio
->io_orig_stage
;
2543 pio
->io_pipeline
= pio
->io_orig_pipeline
;
2544 pio
->io_reexecute
= 0;
2545 pio
->io_flags
|= ZIO_FLAG_REEXECUTED
;
2546 pio
->io_pipeline_trace
= 0;
2548 pio
->io_state
[ZIO_WAIT_READY
] = (pio
->io_stage
>= ZIO_STAGE_READY
) ||
2549 (pio
->io_pipeline
& ZIO_STAGE_READY
) == 0;
2550 pio
->io_state
[ZIO_WAIT_DONE
] = (pio
->io_stage
>= ZIO_STAGE_DONE
);
2551 zio_link_t
*zl
= NULL
;
2552 while ((gio
= zio_walk_parents(pio
, &zl
)) != NULL
) {
2553 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++) {
2554 gio
->io_children
[pio
->io_child_type
][w
] +=
2558 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
2559 pio
->io_child_error
[c
] = 0;
2561 if (IO_IS_ALLOCATING(pio
))
2562 BP_ZERO(pio
->io_bp
);
2565 * As we reexecute pio's children, new children could be created.
2566 * New children go to the head of pio's io_child_list, however,
2567 * so we will (correctly) not reexecute them. The key is that
2568 * the remainder of pio's io_child_list, from 'cio_next' onward,
2569 * cannot be affected by any side effects of reexecuting 'cio'.
2572 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2573 cio_next
= zio_walk_children(pio
, &zl
);
2574 mutex_exit(&pio
->io_lock
);
2576 mutex_enter(&pio
->io_lock
);
2578 mutex_exit(&pio
->io_lock
);
2581 * Now that all children have been reexecuted, execute the parent.
2582 * We don't reexecute "The Godfather" I/O here as it's the
2583 * responsibility of the caller to wait on it.
2585 if (!(pio
->io_flags
& ZIO_FLAG_GODFATHER
)) {
2586 pio
->io_queued_timestamp
= gethrtime();
2592 zio_suspend(spa_t
*spa
, zio_t
*zio
, zio_suspend_reason_t reason
)
2594 if (spa_get_failmode(spa
) == ZIO_FAILURE_MODE_PANIC
)
2595 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2596 "failure and the failure mode property for this pool "
2597 "is set to panic.", spa_name(spa
));
2599 if (reason
!= ZIO_SUSPEND_MMP
) {
2600 cmn_err(CE_WARN
, "Pool '%s' has encountered an uncorrectable "
2601 "I/O failure and has been suspended.", spa_name(spa
));
2604 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE
, spa
, NULL
,
2607 mutex_enter(&spa
->spa_suspend_lock
);
2609 if (spa
->spa_suspend_zio_root
== NULL
)
2610 spa
->spa_suspend_zio_root
= zio_root(spa
, NULL
, NULL
,
2611 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
2612 ZIO_FLAG_GODFATHER
);
2614 spa
->spa_suspended
= reason
;
2617 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
2618 ASSERT(zio
!= spa
->spa_suspend_zio_root
);
2619 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2620 ASSERT(zio_unique_parent(zio
) == NULL
);
2621 ASSERT(zio
->io_stage
== ZIO_STAGE_DONE
);
2622 zio_add_child(spa
->spa_suspend_zio_root
, zio
);
2625 mutex_exit(&spa
->spa_suspend_lock
);
2629 zio_resume(spa_t
*spa
)
2634 * Reexecute all previously suspended i/o.
2636 mutex_enter(&spa
->spa_suspend_lock
);
2637 if (spa
->spa_suspended
!= ZIO_SUSPEND_NONE
)
2638 cmn_err(CE_WARN
, "Pool '%s' was suspended and is being "
2639 "resumed. Failed I/O will be retried.",
2641 spa
->spa_suspended
= ZIO_SUSPEND_NONE
;
2642 cv_broadcast(&spa
->spa_suspend_cv
);
2643 pio
= spa
->spa_suspend_zio_root
;
2644 spa
->spa_suspend_zio_root
= NULL
;
2645 mutex_exit(&spa
->spa_suspend_lock
);
2651 return (zio_wait(pio
));
2655 zio_resume_wait(spa_t
*spa
)
2657 mutex_enter(&spa
->spa_suspend_lock
);
2658 while (spa_suspended(spa
))
2659 cv_wait(&spa
->spa_suspend_cv
, &spa
->spa_suspend_lock
);
2660 mutex_exit(&spa
->spa_suspend_lock
);
2664 * ==========================================================================
2667 * A gang block is a collection of small blocks that looks to the DMU
2668 * like one large block. When zio_dva_allocate() cannot find a block
2669 * of the requested size, due to either severe fragmentation or the pool
2670 * being nearly full, it calls zio_write_gang_block() to construct the
2671 * block from smaller fragments.
2673 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2674 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2675 * an indirect block: it's an array of block pointers. It consumes
2676 * only one sector and hence is allocatable regardless of fragmentation.
2677 * The gang header's bps point to its gang members, which hold the data.
2679 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2680 * as the verifier to ensure uniqueness of the SHA256 checksum.
2681 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2682 * not the gang header. This ensures that data block signatures (needed for
2683 * deduplication) are independent of how the block is physically stored.
2685 * Gang blocks can be nested: a gang member may itself be a gang block.
2686 * Thus every gang block is a tree in which root and all interior nodes are
2687 * gang headers, and the leaves are normal blocks that contain user data.
2688 * The root of the gang tree is called the gang leader.
2690 * To perform any operation (read, rewrite, free, claim) on a gang block,
2691 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2692 * in the io_gang_tree field of the original logical i/o by recursively
2693 * reading the gang leader and all gang headers below it. This yields
2694 * an in-core tree containing the contents of every gang header and the
2695 * bps for every constituent of the gang block.
2697 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2698 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2699 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2700 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2701 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2702 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2703 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2704 * of the gang header plus zio_checksum_compute() of the data to update the
2705 * gang header's blk_cksum as described above.
2707 * The two-phase assemble/issue model solves the problem of partial failure --
2708 * what if you'd freed part of a gang block but then couldn't read the
2709 * gang header for another part? Assembling the entire gang tree first
2710 * ensures that all the necessary gang header I/O has succeeded before
2711 * starting the actual work of free, claim, or write. Once the gang tree
2712 * is assembled, free and claim are in-memory operations that cannot fail.
2714 * In the event that a gang write fails, zio_dva_unallocate() walks the
2715 * gang tree to immediately free (i.e. insert back into the space map)
2716 * everything we've allocated. This ensures that we don't get ENOSPC
2717 * errors during repeated suspend/resume cycles due to a flaky device.
2719 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2720 * the gang tree, we won't modify the block, so we can safely defer the free
2721 * (knowing that the block is still intact). If we *can* assemble the gang
2722 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2723 * each constituent bp and we can allocate a new block on the next sync pass.
2725 * In all cases, the gang tree allows complete recovery from partial failure.
2726 * ==========================================================================
2730 zio_gang_issue_func_done(zio_t
*zio
)
2732 abd_free(zio
->io_abd
);
2736 zio_read_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2742 return (zio_read(pio
, pio
->io_spa
, bp
, abd_get_offset(data
, offset
),
2743 BP_GET_PSIZE(bp
), zio_gang_issue_func_done
,
2744 NULL
, pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2745 &pio
->io_bookmark
));
2749 zio_rewrite_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2756 abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2757 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2758 gbh_abd
, SPA_GANGBLOCKSIZE
, zio_gang_issue_func_done
, NULL
,
2759 pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2762 * As we rewrite each gang header, the pipeline will compute
2763 * a new gang block header checksum for it; but no one will
2764 * compute a new data checksum, so we do that here. The one
2765 * exception is the gang leader: the pipeline already computed
2766 * its data checksum because that stage precedes gang assembly.
2767 * (Presently, nothing actually uses interior data checksums;
2768 * this is just good hygiene.)
2770 if (gn
!= pio
->io_gang_leader
->io_gang_tree
) {
2771 abd_t
*buf
= abd_get_offset(data
, offset
);
2773 zio_checksum_compute(zio
, BP_GET_CHECKSUM(bp
),
2774 buf
, BP_GET_PSIZE(bp
));
2779 * If we are here to damage data for testing purposes,
2780 * leave the GBH alone so that we can detect the damage.
2782 if (pio
->io_gang_leader
->io_flags
& ZIO_FLAG_INDUCE_DAMAGE
)
2783 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
2785 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2786 abd_get_offset(data
, offset
), BP_GET_PSIZE(bp
),
2787 zio_gang_issue_func_done
, NULL
, pio
->io_priority
,
2788 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2795 zio_free_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2798 (void) gn
, (void) data
, (void) offset
;
2800 zio_t
*zio
= zio_free_sync(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2801 ZIO_GANG_CHILD_FLAGS(pio
));
2803 zio
= zio_null(pio
, pio
->io_spa
,
2804 NULL
, NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
));
2810 zio_claim_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2813 (void) gn
, (void) data
, (void) offset
;
2814 return (zio_claim(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2815 NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
)));
2818 static zio_gang_issue_func_t
*zio_gang_issue_func
[ZIO_TYPES
] = {
2827 static void zio_gang_tree_assemble_done(zio_t
*zio
);
2829 static zio_gang_node_t
*
2830 zio_gang_node_alloc(zio_gang_node_t
**gnpp
)
2832 zio_gang_node_t
*gn
;
2834 ASSERT(*gnpp
== NULL
);
2836 gn
= kmem_zalloc(sizeof (*gn
), KM_SLEEP
);
2837 gn
->gn_gbh
= zio_buf_alloc(SPA_GANGBLOCKSIZE
);
2844 zio_gang_node_free(zio_gang_node_t
**gnpp
)
2846 zio_gang_node_t
*gn
= *gnpp
;
2848 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2849 ASSERT(gn
->gn_child
[g
] == NULL
);
2851 zio_buf_free(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2852 kmem_free(gn
, sizeof (*gn
));
2857 zio_gang_tree_free(zio_gang_node_t
**gnpp
)
2859 zio_gang_node_t
*gn
= *gnpp
;
2864 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2865 zio_gang_tree_free(&gn
->gn_child
[g
]);
2867 zio_gang_node_free(gnpp
);
2871 zio_gang_tree_assemble(zio_t
*gio
, blkptr_t
*bp
, zio_gang_node_t
**gnpp
)
2873 zio_gang_node_t
*gn
= zio_gang_node_alloc(gnpp
);
2874 abd_t
*gbh_abd
= abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2876 ASSERT(gio
->io_gang_leader
== gio
);
2877 ASSERT(BP_IS_GANG(bp
));
2879 zio_nowait(zio_read(gio
, gio
->io_spa
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
2880 zio_gang_tree_assemble_done
, gn
, gio
->io_priority
,
2881 ZIO_GANG_CHILD_FLAGS(gio
), &gio
->io_bookmark
));
2885 zio_gang_tree_assemble_done(zio_t
*zio
)
2887 zio_t
*gio
= zio
->io_gang_leader
;
2888 zio_gang_node_t
*gn
= zio
->io_private
;
2889 blkptr_t
*bp
= zio
->io_bp
;
2891 ASSERT(gio
== zio_unique_parent(zio
));
2892 ASSERT(list_is_empty(&zio
->io_child_list
));
2897 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2898 if (BP_SHOULD_BYTESWAP(bp
))
2899 byteswap_uint64_array(abd_to_buf(zio
->io_abd
), zio
->io_size
);
2901 ASSERT3P(abd_to_buf(zio
->io_abd
), ==, gn
->gn_gbh
);
2902 ASSERT(zio
->io_size
== SPA_GANGBLOCKSIZE
);
2903 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2905 abd_free(zio
->io_abd
);
2907 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2908 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2909 if (!BP_IS_GANG(gbp
))
2911 zio_gang_tree_assemble(gio
, gbp
, &gn
->gn_child
[g
]);
2916 zio_gang_tree_issue(zio_t
*pio
, zio_gang_node_t
*gn
, blkptr_t
*bp
, abd_t
*data
,
2919 zio_t
*gio
= pio
->io_gang_leader
;
2922 ASSERT(BP_IS_GANG(bp
) == !!gn
);
2923 ASSERT(BP_GET_CHECKSUM(bp
) == BP_GET_CHECKSUM(gio
->io_bp
));
2924 ASSERT(BP_GET_LSIZE(bp
) == BP_GET_PSIZE(bp
) || gn
== gio
->io_gang_tree
);
2927 * If you're a gang header, your data is in gn->gn_gbh.
2928 * If you're a gang member, your data is in 'data' and gn == NULL.
2930 zio
= zio_gang_issue_func
[gio
->io_type
](pio
, bp
, gn
, data
, offset
);
2933 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2935 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2936 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2937 if (BP_IS_HOLE(gbp
))
2939 zio_gang_tree_issue(zio
, gn
->gn_child
[g
], gbp
, data
,
2941 offset
+= BP_GET_PSIZE(gbp
);
2945 if (gn
== gio
->io_gang_tree
)
2946 ASSERT3U(gio
->io_size
, ==, offset
);
2953 zio_gang_assemble(zio_t
*zio
)
2955 blkptr_t
*bp
= zio
->io_bp
;
2957 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== NULL
);
2958 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2960 zio
->io_gang_leader
= zio
;
2962 zio_gang_tree_assemble(zio
, bp
, &zio
->io_gang_tree
);
2968 zio_gang_issue(zio_t
*zio
)
2970 blkptr_t
*bp
= zio
->io_bp
;
2972 if (zio_wait_for_children(zio
, ZIO_CHILD_GANG_BIT
, ZIO_WAIT_DONE
)) {
2976 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== zio
);
2977 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2979 if (zio
->io_child_error
[ZIO_CHILD_GANG
] == 0)
2980 zio_gang_tree_issue(zio
, zio
->io_gang_tree
, bp
, zio
->io_abd
,
2983 zio_gang_tree_free(&zio
->io_gang_tree
);
2985 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2991 zio_gang_inherit_allocator(zio_t
*pio
, zio_t
*cio
)
2993 cio
->io_allocator
= pio
->io_allocator
;
2997 zio_write_gang_member_ready(zio_t
*zio
)
2999 zio_t
*pio
= zio_unique_parent(zio
);
3000 dva_t
*cdva
= zio
->io_bp
->blk_dva
;
3001 dva_t
*pdva
= pio
->io_bp
->blk_dva
;
3003 zio_t
*gio __maybe_unused
= zio
->io_gang_leader
;
3005 if (BP_IS_HOLE(zio
->io_bp
))
3008 ASSERT(BP_IS_HOLE(&zio
->io_bp_orig
));
3010 ASSERT(zio
->io_child_type
== ZIO_CHILD_GANG
);
3011 ASSERT3U(zio
->io_prop
.zp_copies
, ==, gio
->io_prop
.zp_copies
);
3012 ASSERT3U(zio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(zio
->io_bp
));
3013 ASSERT3U(pio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(pio
->io_bp
));
3014 VERIFY3U(BP_GET_NDVAS(zio
->io_bp
), <=, BP_GET_NDVAS(pio
->io_bp
));
3016 mutex_enter(&pio
->io_lock
);
3017 for (int d
= 0; d
< BP_GET_NDVAS(zio
->io_bp
); d
++) {
3018 ASSERT(DVA_GET_GANG(&pdva
[d
]));
3019 asize
= DVA_GET_ASIZE(&pdva
[d
]);
3020 asize
+= DVA_GET_ASIZE(&cdva
[d
]);
3021 DVA_SET_ASIZE(&pdva
[d
], asize
);
3023 mutex_exit(&pio
->io_lock
);
3027 zio_write_gang_done(zio_t
*zio
)
3030 * The io_abd field will be NULL for a zio with no data. The io_flags
3031 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3032 * check for it here as it is cleared in zio_ready.
3034 if (zio
->io_abd
!= NULL
)
3035 abd_free(zio
->io_abd
);
3039 zio_write_gang_block(zio_t
*pio
, metaslab_class_t
*mc
)
3041 spa_t
*spa
= pio
->io_spa
;
3042 blkptr_t
*bp
= pio
->io_bp
;
3043 zio_t
*gio
= pio
->io_gang_leader
;
3045 zio_gang_node_t
*gn
, **gnpp
;
3046 zio_gbh_phys_t
*gbh
;
3048 uint64_t txg
= pio
->io_txg
;
3049 uint64_t resid
= pio
->io_size
;
3051 int copies
= gio
->io_prop
.zp_copies
;
3054 boolean_t has_data
= !(pio
->io_flags
& ZIO_FLAG_NODATA
);
3057 * If one copy was requested, store 2 copies of the GBH, so that we
3058 * can still traverse all the data (e.g. to free or scrub) even if a
3059 * block is damaged. Note that we can't store 3 copies of the GBH in
3060 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
3062 int gbh_copies
= copies
;
3063 if (gbh_copies
== 1) {
3064 gbh_copies
= MIN(2, spa_max_replication(spa
));
3067 ASSERT(ZIO_HAS_ALLOCATOR(pio
));
3068 int flags
= METASLAB_HINTBP_FAVOR
| METASLAB_GANG_HEADER
;
3069 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
3070 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
3073 flags
|= METASLAB_ASYNC_ALLOC
;
3074 VERIFY(zfs_refcount_held(&mc
->mc_allocator
[pio
->io_allocator
].
3075 mca_alloc_slots
, pio
));
3078 * The logical zio has already placed a reservation for
3079 * 'copies' allocation slots but gang blocks may require
3080 * additional copies. These additional copies
3081 * (i.e. gbh_copies - copies) are guaranteed to succeed
3082 * since metaslab_class_throttle_reserve() always allows
3083 * additional reservations for gang blocks.
3085 VERIFY(metaslab_class_throttle_reserve(mc
, gbh_copies
- copies
,
3086 pio
->io_allocator
, pio
, flags
));
3089 error
= metaslab_alloc(spa
, mc
, SPA_GANGBLOCKSIZE
,
3090 bp
, gbh_copies
, txg
, pio
== gio
? NULL
: gio
->io_bp
, flags
,
3091 &pio
->io_alloc_list
, pio
, pio
->io_allocator
);
3093 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
3094 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
3098 * If we failed to allocate the gang block header then
3099 * we remove any additional allocation reservations that
3100 * we placed here. The original reservation will
3101 * be removed when the logical I/O goes to the ready
3104 metaslab_class_throttle_unreserve(mc
,
3105 gbh_copies
- copies
, pio
->io_allocator
, pio
);
3108 pio
->io_error
= error
;
3113 gnpp
= &gio
->io_gang_tree
;
3115 gnpp
= pio
->io_private
;
3116 ASSERT(pio
->io_ready
== zio_write_gang_member_ready
);
3119 gn
= zio_gang_node_alloc(gnpp
);
3121 memset(gbh
, 0, SPA_GANGBLOCKSIZE
);
3122 gbh_abd
= abd_get_from_buf(gbh
, SPA_GANGBLOCKSIZE
);
3125 * Create the gang header.
3127 zio
= zio_rewrite(pio
, spa
, txg
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
3128 zio_write_gang_done
, NULL
, pio
->io_priority
,
3129 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
3131 zio_gang_inherit_allocator(pio
, zio
);
3134 * Create and nowait the gang children.
3136 for (int g
= 0; resid
!= 0; resid
-= lsize
, g
++) {
3137 lsize
= P2ROUNDUP(resid
/ (SPA_GBH_NBLKPTRS
- g
),
3139 ASSERT(lsize
>= SPA_MINBLOCKSIZE
&& lsize
<= resid
);
3141 zp
.zp_checksum
= gio
->io_prop
.zp_checksum
;
3142 zp
.zp_compress
= ZIO_COMPRESS_OFF
;
3143 zp
.zp_complevel
= gio
->io_prop
.zp_complevel
;
3144 zp
.zp_type
= zp
.zp_storage_type
= DMU_OT_NONE
;
3146 zp
.zp_copies
= gio
->io_prop
.zp_copies
;
3147 zp
.zp_dedup
= B_FALSE
;
3148 zp
.zp_dedup_verify
= B_FALSE
;
3149 zp
.zp_nopwrite
= B_FALSE
;
3150 zp
.zp_encrypt
= gio
->io_prop
.zp_encrypt
;
3151 zp
.zp_byteorder
= gio
->io_prop
.zp_byteorder
;
3152 zp
.zp_direct_write
= B_FALSE
;
3153 memset(zp
.zp_salt
, 0, ZIO_DATA_SALT_LEN
);
3154 memset(zp
.zp_iv
, 0, ZIO_DATA_IV_LEN
);
3155 memset(zp
.zp_mac
, 0, ZIO_DATA_MAC_LEN
);
3157 zio_t
*cio
= zio_write(zio
, spa
, txg
, &gbh
->zg_blkptr
[g
],
3158 has_data
? abd_get_offset(pio
->io_abd
, pio
->io_size
-
3159 resid
) : NULL
, lsize
, lsize
, &zp
,
3160 zio_write_gang_member_ready
, NULL
,
3161 zio_write_gang_done
, &gn
->gn_child
[g
], pio
->io_priority
,
3162 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
3164 zio_gang_inherit_allocator(zio
, cio
);
3166 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
3167 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
3171 * Gang children won't throttle but we should
3172 * account for their work, so reserve an allocation
3173 * slot for them here.
3175 VERIFY(metaslab_class_throttle_reserve(mc
,
3176 zp
.zp_copies
, cio
->io_allocator
, cio
, flags
));
3182 * Set pio's pipeline to just wait for zio to finish.
3184 pio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3192 * The zio_nop_write stage in the pipeline determines if allocating a
3193 * new bp is necessary. The nopwrite feature can handle writes in
3194 * either syncing or open context (i.e. zil writes) and as a result is
3195 * mutually exclusive with dedup.
3197 * By leveraging a cryptographically secure checksum, such as SHA256, we
3198 * can compare the checksums of the new data and the old to determine if
3199 * allocating a new block is required. Note that our requirements for
3200 * cryptographic strength are fairly weak: there can't be any accidental
3201 * hash collisions, but we don't need to be secure against intentional
3202 * (malicious) collisions. To trigger a nopwrite, you have to be able
3203 * to write the file to begin with, and triggering an incorrect (hash
3204 * collision) nopwrite is no worse than simply writing to the file.
3205 * That said, there are no known attacks against the checksum algorithms
3206 * used for nopwrite, assuming that the salt and the checksums
3207 * themselves remain secret.
3210 zio_nop_write(zio_t
*zio
)
3212 blkptr_t
*bp
= zio
->io_bp
;
3213 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
3214 zio_prop_t
*zp
= &zio
->io_prop
;
3216 ASSERT(BP_IS_HOLE(bp
));
3217 ASSERT(BP_GET_LEVEL(bp
) == 0);
3218 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
3219 ASSERT(zp
->zp_nopwrite
);
3220 ASSERT(!zp
->zp_dedup
);
3221 ASSERT(zio
->io_bp_override
== NULL
);
3222 ASSERT(IO_IS_ALLOCATING(zio
));
3225 * Check to see if the original bp and the new bp have matching
3226 * characteristics (i.e. same checksum, compression algorithms, etc).
3227 * If they don't then just continue with the pipeline which will
3228 * allocate a new bp.
3230 if (BP_IS_HOLE(bp_orig
) ||
3231 !(zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_flags
&
3232 ZCHECKSUM_FLAG_NOPWRITE
) ||
3233 BP_IS_ENCRYPTED(bp
) || BP_IS_ENCRYPTED(bp_orig
) ||
3234 BP_GET_CHECKSUM(bp
) != BP_GET_CHECKSUM(bp_orig
) ||
3235 BP_GET_COMPRESS(bp
) != BP_GET_COMPRESS(bp_orig
) ||
3236 BP_GET_DEDUP(bp
) != BP_GET_DEDUP(bp_orig
) ||
3237 zp
->zp_copies
!= BP_GET_NDVAS(bp_orig
))
3241 * If the checksums match then reset the pipeline so that we
3242 * avoid allocating a new bp and issuing any I/O.
3244 if (ZIO_CHECKSUM_EQUAL(bp
->blk_cksum
, bp_orig
->blk_cksum
)) {
3245 ASSERT(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3246 ZCHECKSUM_FLAG_NOPWRITE
);
3247 ASSERT3U(BP_GET_PSIZE(bp
), ==, BP_GET_PSIZE(bp_orig
));
3248 ASSERT3U(BP_GET_LSIZE(bp
), ==, BP_GET_LSIZE(bp_orig
));
3249 ASSERT(zp
->zp_compress
!= ZIO_COMPRESS_OFF
);
3250 ASSERT3U(bp
->blk_prop
, ==, bp_orig
->blk_prop
);
3253 * If we're overwriting a block that is currently on an
3254 * indirect vdev, then ignore the nopwrite request and
3255 * allow a new block to be allocated on a concrete vdev.
3257 spa_config_enter(zio
->io_spa
, SCL_VDEV
, FTAG
, RW_READER
);
3258 for (int d
= 0; d
< BP_GET_NDVAS(bp_orig
); d
++) {
3259 vdev_t
*tvd
= vdev_lookup_top(zio
->io_spa
,
3260 DVA_GET_VDEV(&bp_orig
->blk_dva
[d
]));
3261 if (tvd
->vdev_ops
== &vdev_indirect_ops
) {
3262 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3266 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3269 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3270 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
3277 * ==========================================================================
3278 * Block Reference Table
3279 * ==========================================================================
3282 zio_brt_free(zio_t
*zio
)
3288 if (BP_GET_LEVEL(bp
) > 0 ||
3289 BP_IS_METADATA(bp
) ||
3290 !brt_maybe_exists(zio
->io_spa
, bp
)) {
3294 if (!brt_entry_decref(zio
->io_spa
, bp
)) {
3296 * This isn't the last reference, so we cannot free
3299 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3306 * ==========================================================================
3308 * ==========================================================================
3311 zio_ddt_child_read_done(zio_t
*zio
)
3313 blkptr_t
*bp
= zio
->io_bp
;
3315 ddt_entry_t
*dde
= zio
->io_private
;
3316 zio_t
*pio
= zio_unique_parent(zio
);
3318 mutex_enter(&pio
->io_lock
);
3319 ddt
= ddt_select(zio
->io_spa
, bp
);
3321 if (zio
->io_error
== 0) {
3322 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
3323 /* this phys variant doesn't need repair */
3324 ddt_phys_clear(dde
->dde_phys
, v
);
3327 if (zio
->io_error
== 0 && dde
->dde_io
->dde_repair_abd
== NULL
)
3328 dde
->dde_io
->dde_repair_abd
= zio
->io_abd
;
3330 abd_free(zio
->io_abd
);
3331 mutex_exit(&pio
->io_lock
);
3335 zio_ddt_read_start(zio_t
*zio
)
3337 blkptr_t
*bp
= zio
->io_bp
;
3339 ASSERT(BP_GET_DEDUP(bp
));
3340 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3341 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3343 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3344 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3345 ddt_entry_t
*dde
= ddt_repair_start(ddt
, bp
);
3346 ddt_phys_variant_t v_self
= ddt_phys_select(ddt
, dde
, bp
);
3347 ddt_univ_phys_t
*ddp
= dde
->dde_phys
;
3350 ASSERT(zio
->io_vsd
== NULL
);
3353 if (v_self
== DDT_PHYS_NONE
)
3356 /* issue I/O for the other copies */
3357 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
3358 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3360 if (ddt_phys_birth(ddp
, v
) == 0 || v
== v_self
)
3363 ddt_bp_create(ddt
->ddt_checksum
, &dde
->dde_key
,
3365 zio_nowait(zio_read(zio
, zio
->io_spa
, &blk
,
3366 abd_alloc_for_io(zio
->io_size
, B_TRUE
),
3367 zio
->io_size
, zio_ddt_child_read_done
, dde
,
3368 zio
->io_priority
, ZIO_DDT_CHILD_FLAGS(zio
) |
3369 ZIO_FLAG_DONT_PROPAGATE
, &zio
->io_bookmark
));
3374 zio_nowait(zio_read(zio
, zio
->io_spa
, bp
,
3375 zio
->io_abd
, zio
->io_size
, NULL
, NULL
, zio
->io_priority
,
3376 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
));
3382 zio_ddt_read_done(zio_t
*zio
)
3384 blkptr_t
*bp
= zio
->io_bp
;
3386 if (zio_wait_for_children(zio
, ZIO_CHILD_DDT_BIT
, ZIO_WAIT_DONE
)) {
3390 ASSERT(BP_GET_DEDUP(bp
));
3391 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3392 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3394 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3395 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3396 ddt_entry_t
*dde
= zio
->io_vsd
;
3398 ASSERT(spa_load_state(zio
->io_spa
) != SPA_LOAD_NONE
);
3402 zio
->io_stage
= ZIO_STAGE_DDT_READ_START
>> 1;
3403 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
3406 if (dde
->dde_io
->dde_repair_abd
!= NULL
) {
3407 abd_copy(zio
->io_abd
, dde
->dde_io
->dde_repair_abd
,
3409 zio
->io_child_error
[ZIO_CHILD_DDT
] = 0;
3411 ddt_repair_done(ddt
, dde
);
3415 ASSERT(zio
->io_vsd
== NULL
);
3421 zio_ddt_collision(zio_t
*zio
, ddt_t
*ddt
, ddt_entry_t
*dde
)
3423 spa_t
*spa
= zio
->io_spa
;
3424 boolean_t do_raw
= !!(zio
->io_flags
& ZIO_FLAG_RAW
);
3426 ASSERT(!(zio
->io_bp_override
&& do_raw
));
3429 * Note: we compare the original data, not the transformed data,
3430 * because when zio->io_bp is an override bp, we will not have
3431 * pushed the I/O transforms. That's an important optimization
3432 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3433 * However, we should never get a raw, override zio so in these
3434 * cases we can compare the io_abd directly. This is useful because
3435 * it allows us to do dedup verification even if we don't have access
3436 * to the original data (for instance, if the encryption keys aren't
3440 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
3441 if (DDT_PHYS_IS_DITTO(ddt
, p
))
3444 if (dde
->dde_io
== NULL
)
3447 zio_t
*lio
= dde
->dde_io
->dde_lead_zio
[p
];
3452 return (lio
->io_size
!= zio
->io_size
||
3453 abd_cmp(zio
->io_abd
, lio
->io_abd
) != 0);
3455 return (lio
->io_orig_size
!= zio
->io_orig_size
||
3456 abd_cmp(zio
->io_orig_abd
, lio
->io_orig_abd
) != 0);
3459 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
3460 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3461 uint64_t phys_birth
= ddt_phys_birth(dde
->dde_phys
, v
);
3463 if (phys_birth
!= 0 && do_raw
) {
3464 blkptr_t blk
= *zio
->io_bp
;
3469 ddt_bp_fill(dde
->dde_phys
, v
, &blk
, phys_birth
);
3470 psize
= BP_GET_PSIZE(&blk
);
3472 if (psize
!= zio
->io_size
)
3477 tmpabd
= abd_alloc_for_io(psize
, B_TRUE
);
3479 error
= zio_wait(zio_read(NULL
, spa
, &blk
, tmpabd
,
3480 psize
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
3481 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
3482 ZIO_FLAG_RAW
, &zio
->io_bookmark
));
3485 if (abd_cmp(tmpabd
, zio
->io_abd
) != 0)
3486 error
= SET_ERROR(ENOENT
);
3491 return (error
!= 0);
3492 } else if (phys_birth
!= 0) {
3493 arc_buf_t
*abuf
= NULL
;
3494 arc_flags_t aflags
= ARC_FLAG_WAIT
;
3495 blkptr_t blk
= *zio
->io_bp
;
3498 ddt_bp_fill(dde
->dde_phys
, v
, &blk
, phys_birth
);
3500 if (BP_GET_LSIZE(&blk
) != zio
->io_orig_size
)
3505 error
= arc_read(NULL
, spa
, &blk
,
3506 arc_getbuf_func
, &abuf
, ZIO_PRIORITY_SYNC_READ
,
3507 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3508 &aflags
, &zio
->io_bookmark
);
3511 if (abd_cmp_buf(zio
->io_orig_abd
, abuf
->b_data
,
3512 zio
->io_orig_size
) != 0)
3513 error
= SET_ERROR(ENOENT
);
3514 arc_buf_destroy(abuf
, &abuf
);
3518 return (error
!= 0);
3526 zio_ddt_child_write_done(zio_t
*zio
)
3528 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3529 ddt_entry_t
*dde
= zio
->io_private
;
3531 zio_link_t
*zl
= NULL
;
3532 ASSERT3P(zio_walk_parents(zio
, &zl
), !=, NULL
);
3534 int p
= DDT_PHYS_FOR_COPIES(ddt
, zio
->io_prop
.zp_copies
);
3535 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3536 ddt_univ_phys_t
*ddp
= dde
->dde_phys
;
3540 /* we're the lead, so once we're done there's no one else outstanding */
3541 if (dde
->dde_io
->dde_lead_zio
[p
] == zio
)
3542 dde
->dde_io
->dde_lead_zio
[p
] = NULL
;
3544 ddt_univ_phys_t
*orig
= &dde
->dde_io
->dde_orig_phys
;
3546 if (zio
->io_error
!= 0) {
3548 * The write failed, so we're about to abort the entire IO
3549 * chain. We need to revert the entry back to what it was at
3550 * the last time it was successfully extended.
3552 ddt_phys_copy(ddp
, orig
, v
);
3553 ddt_phys_clear(orig
, v
);
3560 * We've successfully added new DVAs to the entry. Clear the saved
3561 * state or, if there's still outstanding IO, remember it so we can
3562 * revert to a known good state if that IO fails.
3564 if (dde
->dde_io
->dde_lead_zio
[p
] == NULL
)
3565 ddt_phys_clear(orig
, v
);
3567 ddt_phys_copy(orig
, ddp
, v
);
3570 * Add references for all dedup writes that were waiting on the
3571 * physical one, skipping any other physical writes that are waiting.
3575 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
) {
3576 if (!(pio
->io_flags
& ZIO_FLAG_DDT_CHILD
))
3577 ddt_phys_addref(ddp
, v
);
3584 zio_ddt_child_write_ready(zio_t
*zio
)
3586 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3587 ddt_entry_t
*dde
= zio
->io_private
;
3589 zio_link_t
*zl
= NULL
;
3590 ASSERT3P(zio_walk_parents(zio
, &zl
), !=, NULL
);
3592 int p
= DDT_PHYS_FOR_COPIES(ddt
, zio
->io_prop
.zp_copies
);
3593 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3595 if (zio
->io_error
!= 0)
3600 ddt_phys_extend(dde
->dde_phys
, v
, zio
->io_bp
);
3604 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
) {
3605 if (!(pio
->io_flags
& ZIO_FLAG_DDT_CHILD
))
3606 ddt_bp_fill(dde
->dde_phys
, v
, pio
->io_bp
, zio
->io_txg
);
3613 zio_ddt_write(zio_t
*zio
)
3615 spa_t
*spa
= zio
->io_spa
;
3616 blkptr_t
*bp
= zio
->io_bp
;
3617 uint64_t txg
= zio
->io_txg
;
3618 zio_prop_t
*zp
= &zio
->io_prop
;
3619 ddt_t
*ddt
= ddt_select(spa
, bp
);
3622 ASSERT(BP_GET_DEDUP(bp
));
3623 ASSERT(BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
);
3624 ASSERT(BP_IS_HOLE(bp
) || zio
->io_bp_override
);
3625 ASSERT(!(zio
->io_bp_override
&& (zio
->io_flags
& ZIO_FLAG_RAW
)));
3627 * Deduplication will not take place for Direct I/O writes. The
3628 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3629 * place in the open-context. Direct I/O write can not attempt to
3630 * modify the ddt_tree while issuing out a write.
3632 ASSERT3B(zio
->io_prop
.zp_direct_write
, ==, B_FALSE
);
3635 dde
= ddt_lookup(ddt
, bp
);
3637 /* DDT size is over its quota so no new entries */
3638 zp
->zp_dedup
= B_FALSE
;
3639 BP_SET_DEDUP(bp
, B_FALSE
);
3640 if (zio
->io_bp_override
== NULL
)
3641 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
3646 if (zp
->zp_dedup_verify
&& zio_ddt_collision(zio
, ddt
, dde
)) {
3648 * If we're using a weak checksum, upgrade to a strong checksum
3649 * and try again. If we're already using a strong checksum,
3650 * we can't resolve it, so just convert to an ordinary write.
3651 * (And automatically e-mail a paper to Nature?)
3653 if (!(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3654 ZCHECKSUM_FLAG_DEDUP
)) {
3655 zp
->zp_checksum
= spa_dedup_checksum(spa
);
3656 zio_pop_transforms(zio
);
3657 zio
->io_stage
= ZIO_STAGE_OPEN
;
3660 zp
->zp_dedup
= B_FALSE
;
3661 BP_SET_DEDUP(bp
, B_FALSE
);
3663 ASSERT(!BP_GET_DEDUP(bp
));
3664 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
3669 int p
= DDT_PHYS_FOR_COPIES(ddt
, zp
->zp_copies
);
3670 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3671 ddt_univ_phys_t
*ddp
= dde
->dde_phys
;
3674 * In the common cases, at this point we have a regular BP with no
3675 * allocated DVAs, and the corresponding DDT entry for its checksum.
3676 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3679 * One of three things needs to happen to fulfill this:
3681 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3682 * them out of the entry and return;
3684 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3685 * issue the write as normal so that DVAs can be allocated and the
3686 * data land on disk. We then copy the DVAs into the DDT entry on
3689 * - if the DDT entry has some DVAs, but too few, we have to issue the
3690 * write, adjusted to have allocate fewer copies. When it returns, we
3691 * add the new DVAs to the DDT entry, and update the BP to have the
3692 * full amount it originally requested.
3694 * In all cases, if there's already a writing IO in flight, we need to
3695 * defer the action until after the write is done. If our action is to
3696 * write, we need to adjust our request for additional DVAs to match
3697 * what will be in the DDT entry after it completes. In this way every
3698 * IO can be guaranteed to recieve enough DVAs simply by joining the
3699 * end of the chain and letting the sequence play out.
3703 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3704 * the third one as normal.
3706 int have_dvas
= ddt_phys_dva_count(ddp
, v
, BP_IS_ENCRYPTED(bp
));
3707 IMPLY(have_dvas
== 0, ddt_phys_birth(ddp
, v
) == 0);
3709 /* Number of DVAs requested bya the IO. */
3710 uint8_t need_dvas
= zp
->zp_copies
;
3713 * What we do next depends on whether or not there's IO outstanding that
3714 * will update this entry.
3716 if (dde
->dde_io
== NULL
|| dde
->dde_io
->dde_lead_zio
[p
] == NULL
) {
3718 * No IO outstanding, so we only need to worry about ourselves.
3722 * Override BPs bring their own DVAs and their own problems.
3724 if (zio
->io_bp_override
) {
3726 * For a brand-new entry, all the work has been done
3727 * for us, and we can just fill it out from the provided
3730 if (have_dvas
== 0) {
3731 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) == txg
);
3732 ASSERT(BP_EQUAL(bp
, zio
->io_bp_override
));
3733 ddt_phys_extend(ddp
, v
, bp
);
3734 ddt_phys_addref(ddp
, v
);
3740 * If we already have this entry, then we want to treat
3741 * it like a regular write. To do this we just wipe
3742 * them out and proceed like a regular write.
3744 * Even if there are some DVAs in the entry, we still
3745 * have to clear them out. We can't use them to fill
3746 * out the dedup entry, as they are all referenced
3747 * together by a bp already on disk, and will be freed
3751 BP_SET_BIRTH(bp
, 0, 0);
3755 * If there are enough DVAs in the entry to service our request,
3756 * then we can just use them as-is.
3758 if (have_dvas
>= need_dvas
) {
3759 ddt_bp_fill(ddp
, v
, bp
, txg
);
3760 ddt_phys_addref(ddp
, v
);
3766 * Otherwise, we have to issue IO to fill the entry up to the
3769 need_dvas
-= have_dvas
;
3772 * There's a write in-flight. If there's already enough DVAs on
3773 * the entry, then either there were already enough to start
3774 * with, or the in-flight IO is between READY and DONE, and so
3775 * has extended the entry with new DVAs. Either way, we don't
3776 * need to do anything, we can just slot in behind it.
3779 if (zio
->io_bp_override
) {
3781 * If there's a write out, then we're soon going to
3782 * have our own copies of this block, so clear out the
3783 * override block and treat it as a regular dedup
3784 * write. See comment above.
3787 BP_SET_BIRTH(bp
, 0, 0);
3790 if (have_dvas
>= need_dvas
) {
3792 * A minor point: there might already be enough
3793 * committed DVAs in the entry to service our request,
3794 * but we don't know which are completed and which are
3795 * allocated but not yet written. In this case, should
3796 * the IO for the new DVAs fail, we will be on the end
3797 * of the IO chain and will also recieve an error, even
3798 * though our request could have been serviced.
3800 * This is an extremely rare case, as it requires the
3801 * original block to be copied with a request for a
3802 * larger number of DVAs, then copied again requesting
3803 * the same (or already fulfilled) number of DVAs while
3804 * the first request is active, and then that first
3805 * request errors. In return, the logic required to
3806 * catch and handle it is complex. For now, I'm just
3807 * not going to bother with it.
3811 * We always fill the bp here as we may have arrived
3812 * after the in-flight write has passed READY, and so
3815 ddt_bp_fill(ddp
, v
, bp
, txg
);
3816 zio_add_child(zio
, dde
->dde_io
->dde_lead_zio
[p
]);
3822 * There's not enough in the entry yet, so we need to look at
3823 * the write in-flight and see how many DVAs it will have once
3826 * The in-flight write has potentially had its copies request
3827 * reduced (if we're filling out an existing entry), so we need
3828 * to reach in and get the original write to find out what it is
3831 * Note that the parent of the lead zio will always have the
3832 * highest zp_copies of any zio in the chain, because ones that
3833 * can be serviced without additional IO are always added to
3834 * the back of the chain.
3836 zio_link_t
*zl
= NULL
;
3838 zio_walk_parents(dde
->dde_io
->dde_lead_zio
[p
], &zl
);
3840 uint8_t parent_dvas
= pio
->io_prop
.zp_copies
;
3842 if (parent_dvas
>= need_dvas
) {
3843 zio_add_child(zio
, dde
->dde_io
->dde_lead_zio
[p
]);
3849 * Still not enough, so we will need to issue to get the
3852 need_dvas
-= parent_dvas
;
3856 * We need to write. We will create a new write with the copies
3857 * property adjusted to match the number of DVAs we need to need to
3858 * grow the DDT entry by to satisfy the request.
3860 zio_prop_t czp
= *zp
;
3861 czp
.zp_copies
= need_dvas
;
3862 zio_t
*cio
= zio_write(zio
, spa
, txg
, bp
, zio
->io_orig_abd
,
3863 zio
->io_orig_size
, zio
->io_orig_size
, &czp
,
3864 zio_ddt_child_write_ready
, NULL
,
3865 zio_ddt_child_write_done
, dde
, zio
->io_priority
,
3866 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
);
3868 zio_push_transform(cio
, zio
->io_abd
, zio
->io_size
, 0, NULL
);
3871 * We are the new lead zio, because our parent has the highest
3872 * zp_copies that has been requested for this entry so far.
3874 ddt_alloc_entry_io(dde
);
3875 if (dde
->dde_io
->dde_lead_zio
[p
] == NULL
) {
3877 * First time out, take a copy of the stable entry to revert
3878 * to if there's an error (see zio_ddt_child_write_done())
3880 ddt_phys_copy(&dde
->dde_io
->dde_orig_phys
, dde
->dde_phys
, v
);
3883 * Make the existing chain our child, because it cannot
3884 * complete until we have.
3886 zio_add_child(cio
, dde
->dde_io
->dde_lead_zio
[p
]);
3888 dde
->dde_io
->dde_lead_zio
[p
] = cio
;
3897 static ddt_entry_t
*freedde
; /* for debugging */
3900 zio_ddt_free(zio_t
*zio
)
3902 spa_t
*spa
= zio
->io_spa
;
3903 blkptr_t
*bp
= zio
->io_bp
;
3904 ddt_t
*ddt
= ddt_select(spa
, bp
);
3905 ddt_entry_t
*dde
= NULL
;
3907 ASSERT(BP_GET_DEDUP(bp
));
3908 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3911 freedde
= dde
= ddt_lookup(ddt
, bp
);
3913 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
3914 if (v
!= DDT_PHYS_NONE
)
3915 ddt_phys_decref(dde
->dde_phys
, v
);
3920 * When no entry was found, it must have been pruned,
3921 * so we can free it now instead of decrementing the
3922 * refcount in the DDT.
3925 BP_SET_DEDUP(bp
, 0);
3926 zio
->io_pipeline
|= ZIO_STAGE_DVA_FREE
;
3933 * ==========================================================================
3934 * Allocate and free blocks
3935 * ==========================================================================
3939 zio_io_to_allocate(spa_t
*spa
, int allocator
)
3943 ASSERT(MUTEX_HELD(&spa
->spa_allocs
[allocator
].spaa_lock
));
3945 zio
= avl_first(&spa
->spa_allocs
[allocator
].spaa_tree
);
3949 ASSERT(IO_IS_ALLOCATING(zio
));
3950 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
3953 * Try to place a reservation for this zio. If we're unable to
3954 * reserve then we throttle.
3956 ASSERT3U(zio
->io_allocator
, ==, allocator
);
3957 if (!metaslab_class_throttle_reserve(zio
->io_metaslab_class
,
3958 zio
->io_prop
.zp_copies
, allocator
, zio
, 0)) {
3962 avl_remove(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3963 ASSERT3U(zio
->io_stage
, <, ZIO_STAGE_DVA_ALLOCATE
);
3969 zio_dva_throttle(zio_t
*zio
)
3971 spa_t
*spa
= zio
->io_spa
;
3973 metaslab_class_t
*mc
;
3975 /* locate an appropriate allocation class */
3976 mc
= spa_preferred_class(spa
, zio
);
3978 if (zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
||
3979 !mc
->mc_alloc_throttle_enabled
||
3980 zio
->io_child_type
== ZIO_CHILD_GANG
||
3981 zio
->io_flags
& ZIO_FLAG_NODATA
) {
3985 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
3986 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
3987 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
3988 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
3989 ASSERT(zio
->io_stage
== ZIO_STAGE_DVA_THROTTLE
);
3991 int allocator
= zio
->io_allocator
;
3992 zio
->io_metaslab_class
= mc
;
3993 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
3994 avl_add(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3995 nio
= zio_io_to_allocate(spa
, allocator
);
3996 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
4001 zio_allocate_dispatch(spa_t
*spa
, int allocator
)
4005 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
4006 zio
= zio_io_to_allocate(spa
, allocator
);
4007 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
4011 ASSERT3U(zio
->io_stage
, ==, ZIO_STAGE_DVA_THROTTLE
);
4012 ASSERT0(zio
->io_error
);
4013 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_TRUE
);
4017 zio_dva_allocate(zio_t
*zio
)
4019 spa_t
*spa
= zio
->io_spa
;
4020 metaslab_class_t
*mc
;
4021 blkptr_t
*bp
= zio
->io_bp
;
4025 if (zio
->io_gang_leader
== NULL
) {
4026 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
4027 zio
->io_gang_leader
= zio
;
4030 ASSERT(BP_IS_HOLE(bp
));
4031 ASSERT0(BP_GET_NDVAS(bp
));
4032 ASSERT3U(zio
->io_prop
.zp_copies
, >, 0);
4033 ASSERT3U(zio
->io_prop
.zp_copies
, <=, spa_max_replication(spa
));
4034 ASSERT3U(zio
->io_size
, ==, BP_GET_PSIZE(bp
));
4036 if (zio
->io_flags
& ZIO_FLAG_NODATA
)
4037 flags
|= METASLAB_DONT_THROTTLE
;
4038 if (zio
->io_flags
& ZIO_FLAG_GANG_CHILD
)
4039 flags
|= METASLAB_GANG_CHILD
;
4040 if (zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
)
4041 flags
|= METASLAB_ASYNC_ALLOC
;
4044 * if not already chosen, locate an appropriate allocation class
4046 mc
= zio
->io_metaslab_class
;
4048 mc
= spa_preferred_class(spa
, zio
);
4049 zio
->io_metaslab_class
= mc
;
4053 * Try allocating the block in the usual metaslab class.
4054 * If that's full, allocate it in the normal class.
4055 * If that's full, allocate as a gang block,
4056 * and if all are full, the allocation fails (which shouldn't happen).
4058 * Note that we do not fall back on embedded slog (ZIL) space, to
4059 * preserve unfragmented slog space, which is critical for decent
4060 * sync write performance. If a log allocation fails, we will fall
4061 * back to spa_sync() which is abysmal for performance.
4063 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
4064 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
4065 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
4066 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
4069 * Fallback to normal class when an alloc class is full
4071 if (error
== ENOSPC
&& mc
!= spa_normal_class(spa
)) {
4073 * When the dedup or special class is spilling into the normal
4074 * class, there can still be significant space available due
4075 * to deferred frees that are in-flight. We track the txg when
4076 * this occurred and back off adding new DDT entries for a few
4077 * txgs to allow the free blocks to be processed.
4079 if ((mc
== spa_dedup_class(spa
) || (spa_special_has_ddt(spa
) &&
4080 mc
== spa_special_class(spa
))) &&
4081 spa
->spa_dedup_class_full_txg
!= zio
->io_txg
) {
4082 spa
->spa_dedup_class_full_txg
= zio
->io_txg
;
4083 zfs_dbgmsg("%s[%d]: %s class spilling, req size %d, "
4084 "%llu allocated of %llu",
4085 spa_name(spa
), (int)zio
->io_txg
,
4086 mc
== spa_dedup_class(spa
) ? "dedup" : "special",
4088 (u_longlong_t
)metaslab_class_get_alloc(mc
),
4089 (u_longlong_t
)metaslab_class_get_space(mc
));
4093 * If throttling, transfer reservation over to normal class.
4094 * The io_allocator slot can remain the same even though we
4095 * are switching classes.
4097 if (mc
->mc_alloc_throttle_enabled
&&
4098 (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
)) {
4099 metaslab_class_throttle_unreserve(mc
,
4100 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
);
4101 zio
->io_flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
4103 VERIFY(metaslab_class_throttle_reserve(
4104 spa_normal_class(spa
),
4105 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
,
4106 flags
| METASLAB_MUST_RESERVE
));
4108 zio
->io_metaslab_class
= mc
= spa_normal_class(spa
);
4109 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
4110 zfs_dbgmsg("%s: metaslab allocation failure, "
4111 "trying normal class: zio %px, size %llu, error %d",
4112 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
4116 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
4117 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
4118 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
4121 if (error
== ENOSPC
&& zio
->io_size
> SPA_MINBLOCKSIZE
) {
4122 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
4123 zfs_dbgmsg("%s: metaslab allocation failure, "
4124 "trying ganging: zio %px, size %llu, error %d",
4125 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
4128 return (zio_write_gang_block(zio
, mc
));
4131 if (error
!= ENOSPC
||
4132 (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
)) {
4133 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4134 "size %llu, error %d",
4135 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
4138 zio
->io_error
= error
;
4145 zio_dva_free(zio_t
*zio
)
4147 metaslab_free(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
, B_FALSE
);
4153 zio_dva_claim(zio_t
*zio
)
4157 error
= metaslab_claim(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
);
4159 zio
->io_error
= error
;
4165 * Undo an allocation. This is used by zio_done() when an I/O fails
4166 * and we want to give back the block we just allocated.
4167 * This handles both normal blocks and gang blocks.
4170 zio_dva_unallocate(zio_t
*zio
, zio_gang_node_t
*gn
, blkptr_t
*bp
)
4172 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
|| BP_IS_HOLE(bp
));
4173 ASSERT(zio
->io_bp_override
== NULL
);
4175 if (!BP_IS_HOLE(bp
)) {
4176 metaslab_free(zio
->io_spa
, bp
, BP_GET_LOGICAL_BIRTH(bp
),
4181 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
4182 zio_dva_unallocate(zio
, gn
->gn_child
[g
],
4183 &gn
->gn_gbh
->zg_blkptr
[g
]);
4189 * Try to allocate an intent log block. Return 0 on success, errno on failure.
4192 zio_alloc_zil(spa_t
*spa
, objset_t
*os
, uint64_t txg
, blkptr_t
*new_bp
,
4193 uint64_t size
, boolean_t
*slog
)
4196 zio_alloc_list_t io_alloc_list
;
4198 ASSERT(txg
> spa_syncing_txg(spa
));
4200 metaslab_trace_init(&io_alloc_list
);
4203 * Block pointer fields are useful to metaslabs for stats and debugging.
4204 * Fill in the obvious ones before calling into metaslab_alloc().
4206 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
4207 BP_SET_PSIZE(new_bp
, size
);
4208 BP_SET_LEVEL(new_bp
, 0);
4211 * When allocating a zil block, we don't have information about
4212 * the final destination of the block except the objset it's part
4213 * of, so we just hash the objset ID to pick the allocator to get
4216 int flags
= METASLAB_ZIL
;
4217 int allocator
= (uint_t
)cityhash1(os
->os_dsl_dataset
->ds_object
)
4218 % spa
->spa_alloc_count
;
4219 error
= metaslab_alloc(spa
, spa_log_class(spa
), size
, new_bp
, 1,
4220 txg
, NULL
, flags
, &io_alloc_list
, NULL
, allocator
);
4221 *slog
= (error
== 0);
4223 error
= metaslab_alloc(spa
, spa_embedded_log_class(spa
), size
,
4224 new_bp
, 1, txg
, NULL
, flags
,
4225 &io_alloc_list
, NULL
, allocator
);
4228 error
= metaslab_alloc(spa
, spa_normal_class(spa
), size
,
4229 new_bp
, 1, txg
, NULL
, flags
,
4230 &io_alloc_list
, NULL
, allocator
);
4232 metaslab_trace_fini(&io_alloc_list
);
4235 BP_SET_LSIZE(new_bp
, size
);
4236 BP_SET_PSIZE(new_bp
, size
);
4237 BP_SET_COMPRESS(new_bp
, ZIO_COMPRESS_OFF
);
4238 BP_SET_CHECKSUM(new_bp
,
4239 spa_version(spa
) >= SPA_VERSION_SLIM_ZIL
4240 ? ZIO_CHECKSUM_ZILOG2
: ZIO_CHECKSUM_ZILOG
);
4241 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
4242 BP_SET_LEVEL(new_bp
, 0);
4243 BP_SET_DEDUP(new_bp
, 0);
4244 BP_SET_BYTEORDER(new_bp
, ZFS_HOST_BYTEORDER
);
4247 * encrypted blocks will require an IV and salt. We generate
4248 * these now since we will not be rewriting the bp at
4251 if (os
->os_encrypted
) {
4252 uint8_t iv
[ZIO_DATA_IV_LEN
];
4253 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4255 BP_SET_CRYPT(new_bp
, B_TRUE
);
4256 VERIFY0(spa_crypt_get_salt(spa
,
4257 dmu_objset_id(os
), salt
));
4258 VERIFY0(zio_crypt_generate_iv(iv
));
4260 zio_crypt_encode_params_bp(new_bp
, salt
, iv
);
4263 zfs_dbgmsg("%s: zil block allocation failure: "
4264 "size %llu, error %d", spa_name(spa
), (u_longlong_t
)size
,
4272 * ==========================================================================
4273 * Read and write to physical devices
4274 * ==========================================================================
4278 * Issue an I/O to the underlying vdev. Typically the issue pipeline
4279 * stops after this stage and will resume upon I/O completion.
4280 * However, there are instances where the vdev layer may need to
4281 * continue the pipeline when an I/O was not issued. Since the I/O
4282 * that was sent to the vdev layer might be different than the one
4283 * currently active in the pipeline (see vdev_queue_io()), we explicitly
4284 * force the underlying vdev layers to call either zio_execute() or
4285 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4288 zio_vdev_io_start(zio_t
*zio
)
4290 vdev_t
*vd
= zio
->io_vd
;
4292 spa_t
*spa
= zio
->io_spa
;
4296 ASSERT(zio
->io_error
== 0);
4297 ASSERT(zio
->io_child_error
[ZIO_CHILD_VDEV
] == 0);
4300 if (!(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
4301 spa_config_enter(spa
, SCL_ZIO
, zio
, RW_READER
);
4304 * The mirror_ops handle multiple DVAs in a single BP.
4306 vdev_mirror_ops
.vdev_op_io_start(zio
);
4310 ASSERT3P(zio
->io_logical
, !=, zio
);
4311 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4312 ASSERT(spa
->spa_trust_config
);
4315 * Note: the code can handle other kinds of writes,
4316 * but we don't expect them.
4318 if (zio
->io_vd
->vdev_noalloc
) {
4319 ASSERT(zio
->io_flags
&
4320 (ZIO_FLAG_PHYSICAL
| ZIO_FLAG_SELF_HEAL
|
4321 ZIO_FLAG_RESILVER
| ZIO_FLAG_INDUCE_DAMAGE
));
4325 align
= 1ULL << vd
->vdev_top
->vdev_ashift
;
4327 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
) &&
4328 P2PHASE(zio
->io_size
, align
) != 0) {
4329 /* Transform logical writes to be a full physical block size. */
4330 uint64_t asize
= P2ROUNDUP(zio
->io_size
, align
);
4331 abd_t
*abuf
= abd_alloc_sametype(zio
->io_abd
, asize
);
4332 ASSERT(vd
== vd
->vdev_top
);
4333 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4334 abd_copy(abuf
, zio
->io_abd
, zio
->io_size
);
4335 abd_zero_off(abuf
, zio
->io_size
, asize
- zio
->io_size
);
4337 zio_push_transform(zio
, abuf
, asize
, asize
, zio_subblock
);
4341 * If this is not a physical io, make sure that it is properly aligned
4342 * before proceeding.
4344 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
)) {
4345 ASSERT0(P2PHASE(zio
->io_offset
, align
));
4346 ASSERT0(P2PHASE(zio
->io_size
, align
));
4349 * For physical writes, we allow 512b aligned writes and assume
4350 * the device will perform a read-modify-write as necessary.
4352 ASSERT0(P2PHASE(zio
->io_offset
, SPA_MINBLOCKSIZE
));
4353 ASSERT0(P2PHASE(zio
->io_size
, SPA_MINBLOCKSIZE
));
4356 VERIFY(zio
->io_type
!= ZIO_TYPE_WRITE
|| spa_writeable(spa
));
4359 * If this is a repair I/O, and there's no self-healing involved --
4360 * that is, we're just resilvering what we expect to resilver --
4361 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4362 * This prevents spurious resilvering.
4364 * There are a few ways that we can end up creating these spurious
4367 * 1. A resilver i/o will be issued if any DVA in the BP has a
4368 * dirty DTL. The mirror code will issue resilver writes to
4369 * each DVA, including the one(s) that are not on vdevs with dirty
4372 * 2. With nested replication, which happens when we have a
4373 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4374 * For example, given mirror(replacing(A+B), C), it's likely that
4375 * only A is out of date (it's the new device). In this case, we'll
4376 * read from C, then use the data to resilver A+B -- but we don't
4377 * actually want to resilver B, just A. The top-level mirror has no
4378 * way to know this, so instead we just discard unnecessary repairs
4379 * as we work our way down the vdev tree.
4381 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4382 * The same logic applies to any form of nested replication: ditto
4383 * + mirror, RAID-Z + replacing, etc.
4385 * However, indirect vdevs point off to other vdevs which may have
4386 * DTL's, so we never bypass them. The child i/os on concrete vdevs
4387 * will be properly bypassed instead.
4389 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4390 * a dRAID spare vdev. For example, when a dRAID spare is first
4391 * used, its spare blocks need to be written to but the leaf vdev's
4392 * of such blocks can have empty DTL_PARTIAL.
4394 * There seemed no clean way to allow such writes while bypassing
4395 * spurious ones. At this point, just avoid all bypassing for dRAID
4398 if ((zio
->io_flags
& ZIO_FLAG_IO_REPAIR
) &&
4399 !(zio
->io_flags
& ZIO_FLAG_SELF_HEAL
) &&
4400 zio
->io_txg
!= 0 && /* not a delegated i/o */
4401 vd
->vdev_ops
!= &vdev_indirect_ops
&&
4402 vd
->vdev_top
->vdev_ops
!= &vdev_draid_ops
&&
4403 !vdev_dtl_contains(vd
, DTL_PARTIAL
, zio
->io_txg
, 1)) {
4404 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
4405 zio_vdev_io_bypass(zio
);
4410 * Select the next best leaf I/O to process. Distributed spares are
4411 * excluded since they dispatch the I/O directly to a leaf vdev after
4412 * applying the dRAID mapping.
4414 if (vd
->vdev_ops
->vdev_op_leaf
&&
4415 vd
->vdev_ops
!= &vdev_draid_spare_ops
&&
4416 (zio
->io_type
== ZIO_TYPE_READ
||
4417 zio
->io_type
== ZIO_TYPE_WRITE
||
4418 zio
->io_type
== ZIO_TYPE_TRIM
)) {
4420 if (zio_handle_device_injection(vd
, zio
, ENOSYS
) != 0) {
4422 * "no-op" injections return success, but do no actual
4423 * work. Just skip the remaining vdev stages.
4425 zio_vdev_io_bypass(zio
);
4430 if ((zio
= vdev_queue_io(zio
)) == NULL
)
4433 if (!vdev_accessible(vd
, zio
)) {
4434 zio
->io_error
= SET_ERROR(ENXIO
);
4438 zio
->io_delay
= gethrtime();
4441 vd
->vdev_ops
->vdev_op_io_start(zio
);
4446 zio_vdev_io_done(zio_t
*zio
)
4448 vdev_t
*vd
= zio
->io_vd
;
4449 vdev_ops_t
*ops
= vd
? vd
->vdev_ops
: &vdev_mirror_ops
;
4450 boolean_t unexpected_error
= B_FALSE
;
4452 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
4456 ASSERT(zio
->io_type
== ZIO_TYPE_READ
||
4457 zio
->io_type
== ZIO_TYPE_WRITE
||
4458 zio
->io_type
== ZIO_TYPE_FLUSH
||
4459 zio
->io_type
== ZIO_TYPE_TRIM
);
4462 zio
->io_delay
= gethrtime() - zio
->io_delay
;
4464 if (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4465 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
4466 if (zio
->io_type
!= ZIO_TYPE_FLUSH
)
4467 vdev_queue_io_done(zio
);
4469 if (zio_injection_enabled
&& zio
->io_error
== 0)
4470 zio
->io_error
= zio_handle_device_injections(vd
, zio
,
4473 if (zio_injection_enabled
&& zio
->io_error
== 0)
4474 zio
->io_error
= zio_handle_label_injection(zio
, EIO
);
4476 if (zio
->io_error
&& zio
->io_type
!= ZIO_TYPE_FLUSH
&&
4477 zio
->io_type
!= ZIO_TYPE_TRIM
) {
4478 if (!vdev_accessible(vd
, zio
)) {
4479 zio
->io_error
= SET_ERROR(ENXIO
);
4481 unexpected_error
= B_TRUE
;
4486 ops
->vdev_op_io_done(zio
);
4488 if (unexpected_error
&& vd
->vdev_remove_wanted
== B_FALSE
)
4489 VERIFY(vdev_probe(vd
, zio
) == NULL
);
4495 * This function is used to change the priority of an existing zio that is
4496 * currently in-flight. This is used by the arc to upgrade priority in the
4497 * event that a demand read is made for a block that is currently queued
4498 * as a scrub or async read IO. Otherwise, the high priority read request
4499 * would end up having to wait for the lower priority IO.
4502 zio_change_priority(zio_t
*pio
, zio_priority_t priority
)
4504 zio_t
*cio
, *cio_next
;
4505 zio_link_t
*zl
= NULL
;
4507 ASSERT3U(priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
4509 if (pio
->io_vd
!= NULL
&& pio
->io_vd
->vdev_ops
->vdev_op_leaf
) {
4510 vdev_queue_change_io_priority(pio
, priority
);
4512 pio
->io_priority
= priority
;
4515 mutex_enter(&pio
->io_lock
);
4516 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
4517 cio_next
= zio_walk_children(pio
, &zl
);
4518 zio_change_priority(cio
, priority
);
4520 mutex_exit(&pio
->io_lock
);
4524 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4525 * disk, and use that to finish the checksum ereport later.
4528 zio_vsd_default_cksum_finish(zio_cksum_report_t
*zcr
,
4529 const abd_t
*good_buf
)
4531 /* no processing needed */
4532 zfs_ereport_finish_checksum(zcr
, good_buf
, zcr
->zcr_cbdata
, B_FALSE
);
4536 zio_vsd_default_cksum_report(zio_t
*zio
, zio_cksum_report_t
*zcr
)
4538 void *abd
= abd_alloc_sametype(zio
->io_abd
, zio
->io_size
);
4540 abd_copy(abd
, zio
->io_abd
, zio
->io_size
);
4542 zcr
->zcr_cbinfo
= zio
->io_size
;
4543 zcr
->zcr_cbdata
= abd
;
4544 zcr
->zcr_finish
= zio_vsd_default_cksum_finish
;
4545 zcr
->zcr_free
= zio_abd_free
;
4549 zio_vdev_io_assess(zio_t
*zio
)
4551 vdev_t
*vd
= zio
->io_vd
;
4553 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
4557 if (vd
== NULL
&& !(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
4558 spa_config_exit(zio
->io_spa
, SCL_ZIO
, zio
);
4560 if (zio
->io_vsd
!= NULL
) {
4561 zio
->io_vsd_ops
->vsd_free(zio
);
4566 * If a Direct I/O operation has a checksum verify error then this I/O
4567 * should not attempt to be issued again.
4569 if (zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
) {
4570 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4571 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_LOGICAL
);
4572 ASSERT3U(zio
->io_error
, ==, EIO
);
4574 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4578 if (zio_injection_enabled
&& zio
->io_error
== 0)
4579 zio
->io_error
= zio_handle_fault_injection(zio
, EIO
);
4582 * If the I/O failed, determine whether we should attempt to retry it.
4584 * On retry, we cut in line in the issue queue, since we don't want
4585 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4587 if (zio
->io_error
&& vd
== NULL
&&
4588 !(zio
->io_flags
& (ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_IO_RETRY
))) {
4589 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)); /* not a leaf */
4590 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_BYPASS
)); /* not a leaf */
4592 zio
->io_flags
|= ZIO_FLAG_IO_RETRY
| ZIO_FLAG_DONT_AGGREGATE
;
4593 zio
->io_stage
= ZIO_STAGE_VDEV_IO_START
>> 1;
4594 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
,
4595 zio_requeue_io_start_cut_in_line
);
4600 * If we got an error on a leaf device, convert it to ENXIO
4601 * if the device is not accessible at all.
4603 if (zio
->io_error
&& vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4604 !vdev_accessible(vd
, zio
))
4605 zio
->io_error
= SET_ERROR(ENXIO
);
4608 * If we can't write to an interior vdev (mirror or RAID-Z),
4609 * set vdev_cant_write so that we stop trying to allocate from it.
4611 if (zio
->io_error
== ENXIO
&& zio
->io_type
== ZIO_TYPE_WRITE
&&
4612 vd
!= NULL
&& !vd
->vdev_ops
->vdev_op_leaf
) {
4613 vdev_dbgmsg(vd
, "zio_vdev_io_assess(zio=%px) setting "
4614 "cant_write=TRUE due to write failure with ENXIO",
4616 vd
->vdev_cant_write
= B_TRUE
;
4620 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4621 * attempts will ever succeed. In this case we set a persistent
4622 * boolean flag so that we don't bother with it in the future.
4624 if ((zio
->io_error
== ENOTSUP
|| zio
->io_error
== ENOTTY
) &&
4625 zio
->io_type
== ZIO_TYPE_FLUSH
&& vd
!= NULL
)
4626 vd
->vdev_nowritecache
= B_TRUE
;
4629 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4635 zio_vdev_io_reissue(zio_t
*zio
)
4637 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4638 ASSERT(zio
->io_error
== 0);
4640 zio
->io_stage
>>= 1;
4644 zio_vdev_io_redone(zio_t
*zio
)
4646 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_DONE
);
4648 zio
->io_stage
>>= 1;
4652 zio_vdev_io_bypass(zio_t
*zio
)
4654 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4655 ASSERT(zio
->io_error
== 0);
4657 zio
->io_flags
|= ZIO_FLAG_IO_BYPASS
;
4658 zio
->io_stage
= ZIO_STAGE_VDEV_IO_ASSESS
>> 1;
4662 * ==========================================================================
4663 * Encrypt and store encryption parameters
4664 * ==========================================================================
4669 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4670 * managing the storage of encryption parameters and passing them to the
4671 * lower-level encryption functions.
4674 zio_encrypt(zio_t
*zio
)
4676 zio_prop_t
*zp
= &zio
->io_prop
;
4677 spa_t
*spa
= zio
->io_spa
;
4678 blkptr_t
*bp
= zio
->io_bp
;
4679 uint64_t psize
= BP_GET_PSIZE(bp
);
4680 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
4681 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
4682 void *enc_buf
= NULL
;
4684 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4685 uint8_t iv
[ZIO_DATA_IV_LEN
];
4686 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4687 boolean_t no_crypt
= B_FALSE
;
4689 /* the root zio already encrypted the data */
4690 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
4693 /* only ZIL blocks are re-encrypted on rewrite */
4694 if (!IO_IS_ALLOCATING(zio
) && ot
!= DMU_OT_INTENT_LOG
)
4697 if (!(zp
->zp_encrypt
|| BP_IS_ENCRYPTED(bp
))) {
4698 BP_SET_CRYPT(bp
, B_FALSE
);
4702 /* if we are doing raw encryption set the provided encryption params */
4703 if (zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) {
4704 ASSERT0(BP_GET_LEVEL(bp
));
4705 BP_SET_CRYPT(bp
, B_TRUE
);
4706 BP_SET_BYTEORDER(bp
, zp
->zp_byteorder
);
4707 if (ot
!= DMU_OT_OBJSET
)
4708 zio_crypt_encode_mac_bp(bp
, zp
->zp_mac
);
4710 /* dnode blocks must be written out in the provided byteorder */
4711 if (zp
->zp_byteorder
!= ZFS_HOST_BYTEORDER
&&
4712 ot
== DMU_OT_DNODE
) {
4713 void *bswap_buf
= zio_buf_alloc(psize
);
4714 abd_t
*babd
= abd_get_from_buf(bswap_buf
, psize
);
4716 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4717 abd_copy_to_buf(bswap_buf
, zio
->io_abd
, psize
);
4718 dmu_ot_byteswap
[DMU_OT_BYTESWAP(ot
)].ob_func(bswap_buf
,
4721 abd_take_ownership_of_buf(babd
, B_TRUE
);
4722 zio_push_transform(zio
, babd
, psize
, psize
, NULL
);
4725 if (DMU_OT_IS_ENCRYPTED(ot
))
4726 zio_crypt_encode_params_bp(bp
, zp
->zp_salt
, zp
->zp_iv
);
4730 /* indirect blocks only maintain a cksum of the lower level MACs */
4731 if (BP_GET_LEVEL(bp
) > 0) {
4732 BP_SET_CRYPT(bp
, B_TRUE
);
4733 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE
,
4734 zio
->io_orig_abd
, BP_GET_LSIZE(bp
), BP_SHOULD_BYTESWAP(bp
),
4736 zio_crypt_encode_mac_bp(bp
, mac
);
4741 * Objset blocks are a special case since they have 2 256-bit MACs
4742 * embedded within them.
4744 if (ot
== DMU_OT_OBJSET
) {
4745 ASSERT0(DMU_OT_IS_ENCRYPTED(ot
));
4746 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4747 BP_SET_CRYPT(bp
, B_TRUE
);
4748 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE
, spa
, dsobj
,
4749 zio
->io_abd
, psize
, BP_SHOULD_BYTESWAP(bp
)));
4753 /* unencrypted object types are only authenticated with a MAC */
4754 if (!DMU_OT_IS_ENCRYPTED(ot
)) {
4755 BP_SET_CRYPT(bp
, B_TRUE
);
4756 VERIFY0(spa_do_crypt_mac_abd(B_TRUE
, spa
, dsobj
,
4757 zio
->io_abd
, psize
, mac
));
4758 zio_crypt_encode_mac_bp(bp
, mac
);
4763 * Later passes of sync-to-convergence may decide to rewrite data
4764 * in place to avoid more disk reallocations. This presents a problem
4765 * for encryption because this constitutes rewriting the new data with
4766 * the same encryption key and IV. However, this only applies to blocks
4767 * in the MOS (particularly the spacemaps) and we do not encrypt the
4768 * MOS. We assert that the zio is allocating or an intent log write
4771 ASSERT(IO_IS_ALLOCATING(zio
) || ot
== DMU_OT_INTENT_LOG
);
4772 ASSERT(BP_GET_LEVEL(bp
) == 0 || ot
== DMU_OT_INTENT_LOG
);
4773 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
4774 ASSERT3U(psize
, !=, 0);
4776 enc_buf
= zio_buf_alloc(psize
);
4777 eabd
= abd_get_from_buf(enc_buf
, psize
);
4778 abd_take_ownership_of_buf(eabd
, B_TRUE
);
4781 * For an explanation of what encryption parameters are stored
4782 * where, see the block comment in zio_crypt.c.
4784 if (ot
== DMU_OT_INTENT_LOG
) {
4785 zio_crypt_decode_params_bp(bp
, salt
, iv
);
4787 BP_SET_CRYPT(bp
, B_TRUE
);
4790 /* Perform the encryption. This should not fail */
4791 VERIFY0(spa_do_crypt_abd(B_TRUE
, spa
, &zio
->io_bookmark
,
4792 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
4793 salt
, iv
, mac
, psize
, zio
->io_abd
, eabd
, &no_crypt
));
4795 /* encode encryption metadata into the bp */
4796 if (ot
== DMU_OT_INTENT_LOG
) {
4798 * ZIL blocks store the MAC in the embedded checksum, so the
4799 * transform must always be applied.
4801 zio_crypt_encode_mac_zil(enc_buf
, mac
);
4802 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4804 BP_SET_CRYPT(bp
, B_TRUE
);
4805 zio_crypt_encode_params_bp(bp
, salt
, iv
);
4806 zio_crypt_encode_mac_bp(bp
, mac
);
4809 ASSERT3U(ot
, ==, DMU_OT_DNODE
);
4812 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4820 * ==========================================================================
4821 * Generate and verify checksums
4822 * ==========================================================================
4825 zio_checksum_generate(zio_t
*zio
)
4827 blkptr_t
*bp
= zio
->io_bp
;
4828 enum zio_checksum checksum
;
4832 * This is zio_write_phys().
4833 * We're either generating a label checksum, or none at all.
4835 checksum
= zio
->io_prop
.zp_checksum
;
4837 if (checksum
== ZIO_CHECKSUM_OFF
)
4840 ASSERT(checksum
== ZIO_CHECKSUM_LABEL
);
4842 if (BP_IS_GANG(bp
) && zio
->io_child_type
== ZIO_CHILD_GANG
) {
4843 ASSERT(!IO_IS_ALLOCATING(zio
));
4844 checksum
= ZIO_CHECKSUM_GANG_HEADER
;
4846 checksum
= BP_GET_CHECKSUM(bp
);
4850 zio_checksum_compute(zio
, checksum
, zio
->io_abd
, zio
->io_size
);
4856 zio_checksum_verify(zio_t
*zio
)
4858 zio_bad_cksum_t info
;
4859 blkptr_t
*bp
= zio
->io_bp
;
4862 ASSERT(zio
->io_vd
!= NULL
);
4866 * This is zio_read_phys().
4867 * We're either verifying a label checksum, or nothing at all.
4869 if (zio
->io_prop
.zp_checksum
== ZIO_CHECKSUM_OFF
)
4872 ASSERT3U(zio
->io_prop
.zp_checksum
, ==, ZIO_CHECKSUM_LABEL
);
4875 ASSERT0(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
);
4876 IMPLY(zio
->io_flags
& ZIO_FLAG_DIO_READ
,
4877 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
));
4879 if ((error
= zio_checksum_error(zio
, &info
)) != 0) {
4880 zio
->io_error
= error
;
4881 if (error
== ECKSUM
&&
4882 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
4883 if (zio
->io_flags
& ZIO_FLAG_DIO_READ
) {
4884 zio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
4885 zio_t
*pio
= zio_unique_parent(zio
);
4887 * Any Direct I/O read that has a checksum
4888 * error must be treated as suspicous as the
4889 * contents of the buffer could be getting
4890 * manipulated while the I/O is taking place.
4892 * The checksum verify error will only be
4893 * reported here for disk and file VDEV's and
4894 * will be reported on those that the failure
4895 * occurred on. Other types of VDEV's report the
4896 * verify failure in their own code paths.
4898 if (pio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
4899 zio_dio_chksum_verify_error_report(zio
);
4902 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4903 zio
->io_vd
->vdev_stat
.vs_checksum_errors
++;
4904 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4905 (void) zfs_ereport_start_checksum(zio
->io_spa
,
4906 zio
->io_vd
, &zio
->io_bookmark
, zio
,
4907 zio
->io_offset
, zio
->io_size
, &info
);
4916 zio_dio_checksum_verify(zio_t
*zio
)
4918 zio_t
*pio
= zio_unique_parent(zio
);
4921 ASSERT3P(zio
->io_vd
, !=, NULL
);
4922 ASSERT3P(zio
->io_bp
, !=, NULL
);
4923 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
4924 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
4925 ASSERT3B(pio
->io_prop
.zp_direct_write
, ==, B_TRUE
);
4926 ASSERT3U(pio
->io_child_type
, ==, ZIO_CHILD_LOGICAL
);
4928 if (zfs_vdev_direct_write_verify
== 0 || zio
->io_error
!= 0)
4931 if ((error
= zio_checksum_error(zio
, NULL
)) != 0) {
4932 zio
->io_error
= error
;
4933 if (error
== ECKSUM
) {
4934 zio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
4935 zio_dio_chksum_verify_error_report(zio
);
4945 * Called by RAID-Z to ensure we don't compute the checksum twice.
4948 zio_checksum_verified(zio_t
*zio
)
4950 zio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
4954 * Report Direct I/O checksum verify error and create ZED event.
4957 zio_dio_chksum_verify_error_report(zio_t
*zio
)
4959 ASSERT(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
);
4961 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
4964 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4965 zio
->io_vd
->vdev_stat
.vs_dio_verify_errors
++;
4966 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4967 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4969 * Convert checksum error for writes into EIO.
4971 zio
->io_error
= SET_ERROR(EIO
);
4973 * Report dio_verify_wr ZED event.
4975 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR
,
4976 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
4979 * Report dio_verify_rd ZED event.
4981 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD
,
4982 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
4987 * ==========================================================================
4988 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4989 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4990 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4991 * indicate errors that are specific to one I/O, and most likely permanent.
4992 * Any other error is presumed to be worse because we weren't expecting it.
4993 * ==========================================================================
4996 zio_worst_error(int e1
, int e2
)
4998 static int zio_error_rank
[] = { 0, ENXIO
, ECKSUM
, EIO
};
5001 for (r1
= 0; r1
< sizeof (zio_error_rank
) / sizeof (int); r1
++)
5002 if (e1
== zio_error_rank
[r1
])
5005 for (r2
= 0; r2
< sizeof (zio_error_rank
) / sizeof (int); r2
++)
5006 if (e2
== zio_error_rank
[r2
])
5009 return (r1
> r2
? e1
: e2
);
5013 * ==========================================================================
5015 * ==========================================================================
5018 zio_ready(zio_t
*zio
)
5020 blkptr_t
*bp
= zio
->io_bp
;
5021 zio_t
*pio
, *pio_next
;
5022 zio_link_t
*zl
= NULL
;
5024 if (zio_wait_for_children(zio
, ZIO_CHILD_LOGICAL_BIT
|
5025 ZIO_CHILD_GANG_BIT
| ZIO_CHILD_DDT_BIT
, ZIO_WAIT_READY
)) {
5029 if (zio
->io_ready
) {
5030 ASSERT(IO_IS_ALLOCATING(zio
));
5031 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
||
5032 BP_IS_HOLE(bp
) || (zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
5033 ASSERT(zio
->io_children
[ZIO_CHILD_GANG
][ZIO_WAIT_READY
] == 0);
5039 if (bp
!= NULL
&& bp
!= &zio
->io_bp_copy
)
5040 zio
->io_bp_copy
= *bp
;
5043 if (zio
->io_error
!= 0) {
5044 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
5046 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
5047 ASSERT(IO_IS_ALLOCATING(zio
));
5048 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
5049 ASSERT(zio
->io_metaslab_class
!= NULL
);
5050 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
5053 * We were unable to allocate anything, unreserve and
5054 * issue the next I/O to allocate.
5056 metaslab_class_throttle_unreserve(
5057 zio
->io_metaslab_class
, zio
->io_prop
.zp_copies
,
5058 zio
->io_allocator
, zio
);
5059 zio_allocate_dispatch(zio
->io_spa
, zio
->io_allocator
);
5063 mutex_enter(&zio
->io_lock
);
5064 zio
->io_state
[ZIO_WAIT_READY
] = 1;
5065 pio
= zio_walk_parents(zio
, &zl
);
5066 mutex_exit(&zio
->io_lock
);
5069 * As we notify zio's parents, new parents could be added.
5070 * New parents go to the head of zio's io_parent_list, however,
5071 * so we will (correctly) not notify them. The remainder of zio's
5072 * io_parent_list, from 'pio_next' onward, cannot change because
5073 * all parents must wait for us to be done before they can be done.
5075 for (; pio
!= NULL
; pio
= pio_next
) {
5076 pio_next
= zio_walk_parents(zio
, &zl
);
5077 zio_notify_parent(pio
, zio
, ZIO_WAIT_READY
, NULL
);
5080 if (zio
->io_flags
& ZIO_FLAG_NODATA
) {
5081 if (bp
!= NULL
&& BP_IS_GANG(bp
)) {
5082 zio
->io_flags
&= ~ZIO_FLAG_NODATA
;
5084 ASSERT((uintptr_t)zio
->io_abd
< SPA_MAXBLOCKSIZE
);
5085 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
5089 if (zio_injection_enabled
&&
5090 zio
->io_spa
->spa_syncing_txg
== zio
->io_txg
)
5091 zio_handle_ignored_writes(zio
);
5097 * Update the allocation throttle accounting.
5100 zio_dva_throttle_done(zio_t
*zio
)
5102 zio_t
*lio __maybe_unused
= zio
->io_logical
;
5103 zio_t
*pio
= zio_unique_parent(zio
);
5104 vdev_t
*vd
= zio
->io_vd
;
5105 int flags
= METASLAB_ASYNC_ALLOC
;
5107 ASSERT3P(zio
->io_bp
, !=, NULL
);
5108 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
5109 ASSERT3U(zio
->io_priority
, ==, ZIO_PRIORITY_ASYNC_WRITE
);
5110 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
5112 ASSERT3P(vd
, ==, vd
->vdev_top
);
5113 ASSERT(zio_injection_enabled
|| !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
));
5114 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
5115 ASSERT(zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
);
5116 ASSERT(!(lio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
5117 ASSERT(!(lio
->io_orig_flags
& ZIO_FLAG_NODATA
));
5120 * Parents of gang children can have two flavors -- ones that
5121 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
5122 * and ones that allocated the constituent blocks. The allocation
5123 * throttle needs to know the allocating parent zio so we must find
5126 if (pio
->io_child_type
== ZIO_CHILD_GANG
) {
5128 * If our parent is a rewrite gang child then our grandparent
5129 * would have been the one that performed the allocation.
5131 if (pio
->io_flags
& ZIO_FLAG_IO_REWRITE
)
5132 pio
= zio_unique_parent(pio
);
5133 flags
|= METASLAB_GANG_CHILD
;
5136 ASSERT(IO_IS_ALLOCATING(pio
));
5137 ASSERT(ZIO_HAS_ALLOCATOR(pio
));
5138 ASSERT3P(zio
, !=, zio
->io_logical
);
5139 ASSERT(zio
->io_logical
!= NULL
);
5140 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
5141 ASSERT0(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
5142 ASSERT(zio
->io_metaslab_class
!= NULL
);
5144 mutex_enter(&pio
->io_lock
);
5145 metaslab_group_alloc_decrement(zio
->io_spa
, vd
->vdev_id
, pio
, flags
,
5146 pio
->io_allocator
, B_TRUE
);
5147 mutex_exit(&pio
->io_lock
);
5149 metaslab_class_throttle_unreserve(zio
->io_metaslab_class
, 1,
5150 pio
->io_allocator
, pio
);
5153 * Call into the pipeline to see if there is more work that
5154 * needs to be done. If there is work to be done it will be
5155 * dispatched to another taskq thread.
5157 zio_allocate_dispatch(zio
->io_spa
, pio
->io_allocator
);
5161 zio_done(zio_t
*zio
)
5164 * Always attempt to keep stack usage minimal here since
5165 * we can be called recursively up to 19 levels deep.
5167 const uint64_t psize
= zio
->io_size
;
5168 zio_t
*pio
, *pio_next
;
5169 zio_link_t
*zl
= NULL
;
5172 * If our children haven't all completed,
5173 * wait for them and then repeat this pipeline stage.
5175 if (zio_wait_for_children(zio
, ZIO_CHILD_ALL_BITS
, ZIO_WAIT_DONE
)) {
5180 * If the allocation throttle is enabled, then update the accounting.
5181 * We only track child I/Os that are part of an allocating async
5182 * write. We must do this since the allocation is performed
5183 * by the logical I/O but the actual write is done by child I/Os.
5185 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
&&
5186 zio
->io_child_type
== ZIO_CHILD_VDEV
) {
5187 ASSERT(zio
->io_metaslab_class
!= NULL
);
5188 ASSERT(zio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
5189 zio_dva_throttle_done(zio
);
5193 * If the allocation throttle is enabled, verify that
5194 * we have decremented the refcounts for every I/O that was throttled.
5196 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
5197 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
5198 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
5199 ASSERT(zio
->io_bp
!= NULL
);
5200 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
5202 metaslab_group_alloc_verify(zio
->io_spa
, zio
->io_bp
, zio
,
5204 VERIFY(zfs_refcount_not_held(&zio
->io_metaslab_class
->
5205 mc_allocator
[zio
->io_allocator
].mca_alloc_slots
, zio
));
5209 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
5210 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
5211 ASSERT(zio
->io_children
[c
][w
] == 0);
5213 if (zio
->io_bp
!= NULL
&& !BP_IS_EMBEDDED(zio
->io_bp
)) {
5214 ASSERT(zio
->io_bp
->blk_pad
[0] == 0);
5215 ASSERT(zio
->io_bp
->blk_pad
[1] == 0);
5216 ASSERT(memcmp(zio
->io_bp
, &zio
->io_bp_copy
,
5217 sizeof (blkptr_t
)) == 0 ||
5218 (zio
->io_bp
== zio_unique_parent(zio
)->io_bp
));
5219 if (zio
->io_type
== ZIO_TYPE_WRITE
&& !BP_IS_HOLE(zio
->io_bp
) &&
5220 zio
->io_bp_override
== NULL
&&
5221 !(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
)) {
5222 ASSERT3U(zio
->io_prop
.zp_copies
, <=,
5223 BP_GET_NDVAS(zio
->io_bp
));
5224 ASSERT(BP_COUNT_GANG(zio
->io_bp
) == 0 ||
5225 (BP_COUNT_GANG(zio
->io_bp
) ==
5226 BP_GET_NDVAS(zio
->io_bp
)));
5228 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
)
5229 VERIFY(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
5233 * If there were child vdev/gang/ddt errors, they apply to us now.
5235 zio_inherit_child_errors(zio
, ZIO_CHILD_VDEV
);
5236 zio_inherit_child_errors(zio
, ZIO_CHILD_GANG
);
5237 zio_inherit_child_errors(zio
, ZIO_CHILD_DDT
);
5240 * If the I/O on the transformed data was successful, generate any
5241 * checksum reports now while we still have the transformed data.
5243 if (zio
->io_error
== 0) {
5244 while (zio
->io_cksum_report
!= NULL
) {
5245 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
5246 uint64_t align
= zcr
->zcr_align
;
5247 uint64_t asize
= P2ROUNDUP(psize
, align
);
5248 abd_t
*adata
= zio
->io_abd
;
5250 if (adata
!= NULL
&& asize
!= psize
) {
5251 adata
= abd_alloc(asize
, B_TRUE
);
5252 abd_copy(adata
, zio
->io_abd
, psize
);
5253 abd_zero_off(adata
, psize
, asize
- psize
);
5256 zio
->io_cksum_report
= zcr
->zcr_next
;
5257 zcr
->zcr_next
= NULL
;
5258 zcr
->zcr_finish(zcr
, adata
);
5259 zfs_ereport_free_checksum(zcr
);
5261 if (adata
!= NULL
&& asize
!= psize
)
5266 zio_pop_transforms(zio
); /* note: may set zio->io_error */
5268 vdev_stat_update(zio
, psize
);
5271 * If this I/O is attached to a particular vdev is slow, exceeding
5272 * 30 seconds to complete, post an error described the I/O delay.
5273 * We ignore these errors if the device is currently unavailable.
5275 if (zio
->io_delay
>= MSEC2NSEC(zio_slow_io_ms
)) {
5276 if (zio
->io_vd
!= NULL
&& !vdev_is_dead(zio
->io_vd
)) {
5278 * We want to only increment our slow IO counters if
5279 * the IO is valid (i.e. not if the drive is removed).
5281 * zfs_ereport_post() will also do these checks, but
5282 * it can also ratelimit and have other failures, so we
5283 * need to increment the slow_io counters independent
5286 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY
,
5287 zio
->io_spa
, zio
->io_vd
, zio
)) {
5288 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
5289 zio
->io_vd
->vdev_stat
.vs_slow_ios
++;
5290 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
5292 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY
,
5293 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
,
5299 if (zio
->io_error
) {
5301 * If this I/O is attached to a particular vdev,
5302 * generate an error message describing the I/O failure
5303 * at the block level. We ignore these errors if the
5304 * device is currently unavailable.
5306 if (zio
->io_error
!= ECKSUM
&& zio
->io_vd
!= NULL
&&
5307 !vdev_is_dead(zio
->io_vd
) &&
5308 !(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)) {
5309 int ret
= zfs_ereport_post(FM_EREPORT_ZFS_IO
,
5310 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
5311 if (ret
!= EALREADY
) {
5312 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
5313 if (zio
->io_type
== ZIO_TYPE_READ
)
5314 zio
->io_vd
->vdev_stat
.vs_read_errors
++;
5315 else if (zio
->io_type
== ZIO_TYPE_WRITE
)
5316 zio
->io_vd
->vdev_stat
.vs_write_errors
++;
5317 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
5321 if ((zio
->io_error
== EIO
|| !(zio
->io_flags
&
5322 (ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_DONT_PROPAGATE
))) &&
5323 !(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
) &&
5324 zio
== zio
->io_logical
) {
5326 * For logical I/O requests, tell the SPA to log the
5327 * error and generate a logical data ereport.
5329 spa_log_error(zio
->io_spa
, &zio
->io_bookmark
,
5330 BP_GET_LOGICAL_BIRTH(zio
->io_bp
));
5331 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA
,
5332 zio
->io_spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
5336 if (zio
->io_error
&& zio
== zio
->io_logical
) {
5338 * Determine whether zio should be reexecuted. This will
5339 * propagate all the way to the root via zio_notify_parent().
5341 ASSERT(zio
->io_vd
== NULL
&& zio
->io_bp
!= NULL
);
5342 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
5344 if (IO_IS_ALLOCATING(zio
) &&
5345 !(zio
->io_flags
& ZIO_FLAG_CANFAIL
) &&
5346 !(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)) {
5347 if (zio
->io_error
!= ENOSPC
)
5348 zio
->io_reexecute
|= ZIO_REEXECUTE_NOW
;
5350 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
5353 if ((zio
->io_type
== ZIO_TYPE_READ
||
5354 zio
->io_type
== ZIO_TYPE_FREE
) &&
5355 !(zio
->io_flags
& ZIO_FLAG_SCAN_THREAD
) &&
5356 zio
->io_error
== ENXIO
&&
5357 spa_load_state(zio
->io_spa
) == SPA_LOAD_NONE
&&
5358 spa_get_failmode(zio
->io_spa
) != ZIO_FAILURE_MODE_CONTINUE
)
5359 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
5361 if (!(zio
->io_flags
& ZIO_FLAG_CANFAIL
) && !zio
->io_reexecute
)
5362 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
5365 * Here is a possibly good place to attempt to do
5366 * either combinatorial reconstruction or error correction
5367 * based on checksums. It also might be a good place
5368 * to send out preliminary ereports before we suspend
5374 * If there were logical child errors, they apply to us now.
5375 * We defer this until now to avoid conflating logical child
5376 * errors with errors that happened to the zio itself when
5377 * updating vdev stats and reporting FMA events above.
5379 zio_inherit_child_errors(zio
, ZIO_CHILD_LOGICAL
);
5381 if ((zio
->io_error
|| zio
->io_reexecute
) &&
5382 IO_IS_ALLOCATING(zio
) && zio
->io_gang_leader
== zio
&&
5383 !(zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)))
5384 zio_dva_unallocate(zio
, zio
->io_gang_tree
, zio
->io_bp
);
5386 zio_gang_tree_free(&zio
->io_gang_tree
);
5389 * Godfather I/Os should never suspend.
5391 if ((zio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
5392 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
))
5393 zio
->io_reexecute
&= ~ZIO_REEXECUTE_SUSPEND
;
5395 if (zio
->io_reexecute
) {
5397 * A Direct I/O operation that has a checksum verify error
5398 * should not attempt to reexecute. Instead, the error should
5399 * just be propagated back.
5401 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
));
5404 * This is a logical I/O that wants to reexecute.
5406 * Reexecute is top-down. When an i/o fails, if it's not
5407 * the root, it simply notifies its parent and sticks around.
5408 * The parent, seeing that it still has children in zio_done(),
5409 * does the same. This percolates all the way up to the root.
5410 * The root i/o will reexecute or suspend the entire tree.
5412 * This approach ensures that zio_reexecute() honors
5413 * all the original i/o dependency relationships, e.g.
5414 * parents not executing until children are ready.
5416 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
5418 zio
->io_gang_leader
= NULL
;
5420 mutex_enter(&zio
->io_lock
);
5421 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
5422 mutex_exit(&zio
->io_lock
);
5425 * "The Godfather" I/O monitors its children but is
5426 * not a true parent to them. It will track them through
5427 * the pipeline but severs its ties whenever they get into
5428 * trouble (e.g. suspended). This allows "The Godfather"
5429 * I/O to return status without blocking.
5432 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
;
5434 zio_link_t
*remove_zl
= zl
;
5435 pio_next
= zio_walk_parents(zio
, &zl
);
5437 if ((pio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
5438 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
)) {
5439 zio_remove_child(pio
, zio
, remove_zl
);
5441 * This is a rare code path, so we don't
5442 * bother with "next_to_execute".
5444 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
,
5449 if ((pio
= zio_unique_parent(zio
)) != NULL
) {
5451 * We're not a root i/o, so there's nothing to do
5452 * but notify our parent. Don't propagate errors
5453 * upward since we haven't permanently failed yet.
5455 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
5456 zio
->io_flags
|= ZIO_FLAG_DONT_PROPAGATE
;
5458 * This is a rare code path, so we don't bother with
5459 * "next_to_execute".
5461 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, NULL
);
5462 } else if (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
) {
5464 * We'd fail again if we reexecuted now, so suspend
5465 * until conditions improve (e.g. device comes online).
5467 zio_suspend(zio
->io_spa
, zio
, ZIO_SUSPEND_IOERR
);
5470 * Reexecution is potentially a huge amount of work.
5471 * Hand it off to the otherwise-unused claim taskq.
5473 spa_taskq_dispatch(zio
->io_spa
,
5474 ZIO_TYPE_CLAIM
, ZIO_TASKQ_ISSUE
,
5475 zio_reexecute
, zio
, B_FALSE
);
5480 ASSERT(list_is_empty(&zio
->io_child_list
));
5481 ASSERT(zio
->io_reexecute
== 0);
5482 ASSERT(zio
->io_error
== 0 || (zio
->io_flags
& ZIO_FLAG_CANFAIL
));
5485 * Report any checksum errors, since the I/O is complete.
5487 while (zio
->io_cksum_report
!= NULL
) {
5488 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
5489 zio
->io_cksum_report
= zcr
->zcr_next
;
5490 zcr
->zcr_next
= NULL
;
5491 zcr
->zcr_finish(zcr
, NULL
);
5492 zfs_ereport_free_checksum(zcr
);
5496 * It is the responsibility of the done callback to ensure that this
5497 * particular zio is no longer discoverable for adoption, and as
5498 * such, cannot acquire any new parents.
5503 mutex_enter(&zio
->io_lock
);
5504 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
5505 mutex_exit(&zio
->io_lock
);
5508 * We are done executing this zio. We may want to execute a parent
5509 * next. See the comment in zio_notify_parent().
5511 zio_t
*next_to_execute
= NULL
;
5513 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
; pio
= pio_next
) {
5514 zio_link_t
*remove_zl
= zl
;
5515 pio_next
= zio_walk_parents(zio
, &zl
);
5516 zio_remove_child(pio
, zio
, remove_zl
);
5517 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, &next_to_execute
);
5520 if (zio
->io_waiter
!= NULL
) {
5521 mutex_enter(&zio
->io_lock
);
5522 zio
->io_executor
= NULL
;
5523 cv_broadcast(&zio
->io_cv
);
5524 mutex_exit(&zio
->io_lock
);
5529 return (next_to_execute
);
5533 * ==========================================================================
5534 * I/O pipeline definition
5535 * ==========================================================================
5537 static zio_pipe_stage_t
*zio_pipeline
[] = {
5545 zio_checksum_generate
,
5562 zio_checksum_verify
,
5563 zio_dio_checksum_verify
,
5571 * Compare two zbookmark_phys_t's to see which we would reach first in a
5572 * pre-order traversal of the object tree.
5574 * This is simple in every case aside from the meta-dnode object. For all other
5575 * objects, we traverse them in order (object 1 before object 2, and so on).
5576 * However, all of these objects are traversed while traversing object 0, since
5577 * the data it points to is the list of objects. Thus, we need to convert to a
5578 * canonical representation so we can compare meta-dnode bookmarks to
5579 * non-meta-dnode bookmarks.
5581 * We do this by calculating "equivalents" for each field of the zbookmark.
5582 * zbookmarks outside of the meta-dnode use their own object and level, and
5583 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5584 * blocks this bookmark refers to) by multiplying their blkid by their span
5585 * (the number of L0 blocks contained within one block at their level).
5586 * zbookmarks inside the meta-dnode calculate their object equivalent
5587 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5588 * level + 1<<31 (any value larger than a level could ever be) for their level.
5589 * This causes them to always compare before a bookmark in their object
5590 * equivalent, compare appropriately to bookmarks in other objects, and to
5591 * compare appropriately to other bookmarks in the meta-dnode.
5594 zbookmark_compare(uint16_t dbss1
, uint8_t ibs1
, uint16_t dbss2
, uint8_t ibs2
,
5595 const zbookmark_phys_t
*zb1
, const zbookmark_phys_t
*zb2
)
5598 * These variables represent the "equivalent" values for the zbookmark,
5599 * after converting zbookmarks inside the meta dnode to their
5600 * normal-object equivalents.
5602 uint64_t zb1obj
, zb2obj
;
5603 uint64_t zb1L0
, zb2L0
;
5604 uint64_t zb1level
, zb2level
;
5606 if (zb1
->zb_object
== zb2
->zb_object
&&
5607 zb1
->zb_level
== zb2
->zb_level
&&
5608 zb1
->zb_blkid
== zb2
->zb_blkid
)
5611 IMPLY(zb1
->zb_level
> 0, ibs1
>= SPA_MINBLOCKSHIFT
);
5612 IMPLY(zb2
->zb_level
> 0, ibs2
>= SPA_MINBLOCKSHIFT
);
5615 * BP_SPANB calculates the span in blocks.
5617 zb1L0
= (zb1
->zb_blkid
) * BP_SPANB(ibs1
, zb1
->zb_level
);
5618 zb2L0
= (zb2
->zb_blkid
) * BP_SPANB(ibs2
, zb2
->zb_level
);
5620 if (zb1
->zb_object
== DMU_META_DNODE_OBJECT
) {
5621 zb1obj
= zb1L0
* (dbss1
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
5623 zb1level
= zb1
->zb_level
+ COMPARE_META_LEVEL
;
5625 zb1obj
= zb1
->zb_object
;
5626 zb1level
= zb1
->zb_level
;
5629 if (zb2
->zb_object
== DMU_META_DNODE_OBJECT
) {
5630 zb2obj
= zb2L0
* (dbss2
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
5632 zb2level
= zb2
->zb_level
+ COMPARE_META_LEVEL
;
5634 zb2obj
= zb2
->zb_object
;
5635 zb2level
= zb2
->zb_level
;
5638 /* Now that we have a canonical representation, do the comparison. */
5639 if (zb1obj
!= zb2obj
)
5640 return (zb1obj
< zb2obj
? -1 : 1);
5641 else if (zb1L0
!= zb2L0
)
5642 return (zb1L0
< zb2L0
? -1 : 1);
5643 else if (zb1level
!= zb2level
)
5644 return (zb1level
> zb2level
? -1 : 1);
5646 * This can (theoretically) happen if the bookmarks have the same object
5647 * and level, but different blkids, if the block sizes are not the same.
5648 * There is presently no way to change the indirect block sizes
5654 * This function checks the following: given that last_block is the place that
5655 * our traversal stopped last time, does that guarantee that we've visited
5656 * every node under subtree_root? Therefore, we can't just use the raw output
5657 * of zbookmark_compare. We have to pass in a modified version of
5658 * subtree_root; by incrementing the block id, and then checking whether
5659 * last_block is before or equal to that, we can tell whether or not having
5660 * visited last_block implies that all of subtree_root's children have been
5664 zbookmark_subtree_completed(const dnode_phys_t
*dnp
,
5665 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
5667 zbookmark_phys_t mod_zb
= *subtree_root
;
5669 ASSERT0(last_block
->zb_level
);
5671 /* The objset_phys_t isn't before anything. */
5676 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5677 * data block size in sectors, because that variable is only used if
5678 * the bookmark refers to a block in the meta-dnode. Since we don't
5679 * know without examining it what object it refers to, and there's no
5680 * harm in passing in this value in other cases, we always pass it in.
5682 * We pass in 0 for the indirect block size shift because zb2 must be
5683 * level 0. The indirect block size is only used to calculate the span
5684 * of the bookmark, but since the bookmark must be level 0, the span is
5685 * always 1, so the math works out.
5687 * If you make changes to how the zbookmark_compare code works, be sure
5688 * to make sure that this code still works afterwards.
5690 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5691 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, &mod_zb
,
5696 * This function is similar to zbookmark_subtree_completed(), but returns true
5697 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5700 zbookmark_subtree_tbd(const dnode_phys_t
*dnp
,
5701 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
5703 ASSERT0(last_block
->zb_level
);
5706 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5707 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, subtree_root
,
5711 EXPORT_SYMBOL(zio_type_name
);
5712 EXPORT_SYMBOL(zio_buf_alloc
);
5713 EXPORT_SYMBOL(zio_data_buf_alloc
);
5714 EXPORT_SYMBOL(zio_buf_free
);
5715 EXPORT_SYMBOL(zio_data_buf_free
);
5717 ZFS_MODULE_PARAM(zfs_zio
, zio_
, slow_io_ms
, INT
, ZMOD_RW
,
5718 "Max I/O completion time (milliseconds) before marking it as slow");
5720 ZFS_MODULE_PARAM(zfs_zio
, zio_
, requeue_io_start_cut_in_line
, INT
, ZMOD_RW
,
5721 "Prioritize requeued I/O");
5723 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_deferred_free
, UINT
, ZMOD_RW
,
5724 "Defer frees starting in this pass");
5726 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_dont_compress
, UINT
, ZMOD_RW
,
5727 "Don't compress starting in this pass");
5729 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_rewrite
, UINT
, ZMOD_RW
,
5730 "Rewrite new bps starting in this pass");
5732 ZFS_MODULE_PARAM(zfs_zio
, zio_
, dva_throttle_enabled
, INT
, ZMOD_RW
,
5733 "Throttle block allocations in the ZIO pipeline");
5735 ZFS_MODULE_PARAM(zfs_zio
, zio_
, deadman_log_all
, INT
, ZMOD_RW
,
5736 "Log all slow ZIOs, not just those with vdevs");