2 * Implement fast Fletcher4 with AVX2 instructions. (x86_64)
4 * Use the 256-bit AVX2 SIMD instructions and registers to compute
5 * Fletcher4 in four incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
8 * Copyright (C) 2015 Intel Corporation.
11 * James Guilford <james.guilford@intel.com>
12 * Jinshan Xiong <jinshan.xiong@intel.com>
14 * This software is available to you under a choice of one of two
15 * licenses. You may choose to be licensed under the terms of the GNU
16 * General Public License (GPL) Version 2, available from the file
17 * COPYING in the main directory of this source tree, or the
18 * OpenIB.org BSD license below:
20 * Redistribution and use in source and binary forms, with or
21 * without modification, are permitted provided that the following
24 * - Redistributions of source code must retain the above
25 * copyright notice, this list of conditions and the following
28 * - Redistributions in binary form must reproduce the above
29 * copyright notice, this list of conditions and the following
30 * disclaimer in the documentation and/or other materials
31 * provided with the distribution.
33 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
34 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
35 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
36 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
37 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
38 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
39 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
43 #if defined(HAVE_AVX) && defined(HAVE_AVX2)
45 #include <sys/spa_checksum.h>
46 #include <sys/string.h>
48 #include <zfs_fletcher.h>
51 fletcher_4_avx2_init(fletcher_4_ctx_t
*ctx
)
53 memset(ctx
->avx
, 0, 4 * sizeof (zfs_fletcher_avx_t
));
57 fletcher_4_avx2_fini(fletcher_4_ctx_t
*ctx
, zio_cksum_t
*zcp
)
61 A
= ctx
->avx
[0].v
[0] + ctx
->avx
[0].v
[1] +
62 ctx
->avx
[0].v
[2] + ctx
->avx
[0].v
[3];
63 B
= 0 - ctx
->avx
[0].v
[1] - 2 * ctx
->avx
[0].v
[2] - 3 * ctx
->avx
[0].v
[3] +
64 4 * ctx
->avx
[1].v
[0] + 4 * ctx
->avx
[1].v
[1] + 4 * ctx
->avx
[1].v
[2] +
67 C
= ctx
->avx
[0].v
[2] + 3 * ctx
->avx
[0].v
[3] - 6 * ctx
->avx
[1].v
[0] -
68 10 * ctx
->avx
[1].v
[1] - 14 * ctx
->avx
[1].v
[2] -
69 18 * ctx
->avx
[1].v
[3] + 16 * ctx
->avx
[2].v
[0] +
70 16 * ctx
->avx
[2].v
[1] + 16 * ctx
->avx
[2].v
[2] +
71 16 * ctx
->avx
[2].v
[3];
73 D
= 0 - ctx
->avx
[0].v
[3] + 4 * ctx
->avx
[1].v
[0] +
74 10 * ctx
->avx
[1].v
[1] + 20 * ctx
->avx
[1].v
[2] +
75 34 * ctx
->avx
[1].v
[3] - 48 * ctx
->avx
[2].v
[0] -
76 64 * ctx
->avx
[2].v
[1] - 80 * ctx
->avx
[2].v
[2] -
77 96 * ctx
->avx
[2].v
[3] + 64 * ctx
->avx
[3].v
[0] +
78 64 * ctx
->avx
[3].v
[1] + 64 * ctx
->avx
[3].v
[2] +
79 64 * ctx
->avx
[3].v
[3];
81 ZIO_SET_CHECKSUM(zcp
, A
, B
, C
, D
);
84 #define FLETCHER_4_AVX2_RESTORE_CTX(ctx) \
86 asm volatile("vmovdqu %0, %%ymm0" :: "m" ((ctx)->avx[0])); \
87 asm volatile("vmovdqu %0, %%ymm1" :: "m" ((ctx)->avx[1])); \
88 asm volatile("vmovdqu %0, %%ymm2" :: "m" ((ctx)->avx[2])); \
89 asm volatile("vmovdqu %0, %%ymm3" :: "m" ((ctx)->avx[3])); \
92 #define FLETCHER_4_AVX2_SAVE_CTX(ctx) \
94 asm volatile("vmovdqu %%ymm0, %0" : "=m" ((ctx)->avx[0])); \
95 asm volatile("vmovdqu %%ymm1, %0" : "=m" ((ctx)->avx[1])); \
96 asm volatile("vmovdqu %%ymm2, %0" : "=m" ((ctx)->avx[2])); \
97 asm volatile("vmovdqu %%ymm3, %0" : "=m" ((ctx)->avx[3])); \
102 fletcher_4_avx2_native(fletcher_4_ctx_t
*ctx
, const void *buf
, uint64_t size
)
104 const uint64_t *ip
= buf
;
105 const uint64_t *ipend
= (uint64_t *)((uint8_t *)ip
+ size
);
107 FLETCHER_4_AVX2_RESTORE_CTX(ctx
);
110 asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip
));
111 asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
112 asm volatile("vpaddq %ymm0, %ymm1, %ymm1");
113 asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
114 asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
115 } while ((ip
+= 2) < ipend
);
117 FLETCHER_4_AVX2_SAVE_CTX(ctx
);
118 asm volatile("vzeroupper");
122 fletcher_4_avx2_byteswap(fletcher_4_ctx_t
*ctx
, const void *buf
, uint64_t size
)
124 static const zfs_fletcher_avx_t mask
= {
125 .v
= { 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B,
126 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B }
128 const uint64_t *ip
= buf
;
129 const uint64_t *ipend
= (uint64_t *)((uint8_t *)ip
+ size
);
131 FLETCHER_4_AVX2_RESTORE_CTX(ctx
);
133 asm volatile("vmovdqu %0, %%ymm5" :: "m" (mask
));
136 asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip
));
137 asm volatile("vpshufb %ymm5, %ymm4, %ymm4");
139 asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
140 asm volatile("vpaddq %ymm0, %ymm1, %ymm1");
141 asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
142 asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
143 } while ((ip
+= 2) < ipend
);
145 FLETCHER_4_AVX2_SAVE_CTX(ctx
);
146 asm volatile("vzeroupper");
149 static boolean_t
fletcher_4_avx2_valid(void)
151 return (kfpu_allowed() && zfs_avx_available() && zfs_avx2_available());
154 const fletcher_4_ops_t fletcher_4_avx2_ops
= {
155 .init_native
= fletcher_4_avx2_init
,
156 .fini_native
= fletcher_4_avx2_fini
,
157 .compute_native
= fletcher_4_avx2_native
,
158 .init_byteswap
= fletcher_4_avx2_init
,
159 .fini_byteswap
= fletcher_4_avx2_fini
,
160 .compute_byteswap
= fletcher_4_avx2_byteswap
,
161 .valid
= fletcher_4_avx2_valid
,
166 #endif /* defined(HAVE_AVX) && defined(HAVE_AVX2) */