FreeBSD: Lock vnode in zfs_ioctl()
[zfs.git] / module / zfs / dsl_pool.c
blob5ae96882935cc59e51db083843276b826b56bae9
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
55 * ZFS Write Throttle
56 * ------------------
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
75 * Implementation
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
100 * parameter.
102 uint64_t zfs_dirty_data_max = 0;
103 uint64_t zfs_dirty_data_max_max = 0;
104 uint_t zfs_dirty_data_max_percent = 10;
105 uint_t zfs_dirty_data_max_max_percent = 25;
108 * The upper limit of TX_WRITE log data. Write operations are throttled
109 * when approaching the limit until log data is cleared out after txg sync.
110 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
112 uint64_t zfs_wrlog_data_max = 0;
115 * If there's at least this much dirty data (as a percentage of
116 * zfs_dirty_data_max), push out a txg. This should be less than
117 * zfs_vdev_async_write_active_min_dirty_percent.
119 static uint_t zfs_dirty_data_sync_percent = 20;
122 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
123 * and delay each transaction.
124 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
126 uint_t zfs_delay_min_dirty_percent = 60;
129 * This controls how quickly the delay approaches infinity.
130 * Larger values cause it to delay more for a given amount of dirty data.
131 * Therefore larger values will cause there to be less dirty data for a
132 * given throughput.
134 * For the smoothest delay, this value should be about 1 billion divided
135 * by the maximum number of operations per second. This will smoothly
136 * handle between 10x and 1/10th this number.
138 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
139 * multiply in dmu_tx_delay().
141 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
144 * These tunables determine the behavior of how zil_itxg_clean() is
145 * called via zil_clean() in the context of spa_sync(). When an itxg
146 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
147 * If the dispatch fails, the call to zil_itxg_clean() will occur
148 * synchronously in the context of spa_sync(), which can negatively
149 * impact the performance of spa_sync() (e.g. in the case of the itxg
150 * list having a large number of itxs that needs to be cleaned).
152 * Thus, these tunables can be used to manipulate the behavior of the
153 * taskq used by zil_clean(); they determine the number of taskq entries
154 * that are pre-populated when the taskq is first created (via the
155 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
156 * taskq entries that are cached after an on-demand allocation (via the
157 * "zfs_zil_clean_taskq_maxalloc").
159 * The idea being, we want to try reasonably hard to ensure there will
160 * already be a taskq entry pre-allocated by the time that it is needed
161 * by zil_clean(). This way, we can avoid the possibility of an
162 * on-demand allocation of a new taskq entry from failing, which would
163 * result in zil_itxg_clean() being called synchronously from zil_clean()
164 * (which can adversely affect performance of spa_sync()).
166 * Additionally, the number of threads used by the taskq can be
167 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
169 static int zfs_zil_clean_taskq_nthr_pct = 100;
170 static int zfs_zil_clean_taskq_minalloc = 1024;
171 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
174 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
176 uint64_t obj;
177 int err;
179 err = zap_lookup(dp->dp_meta_objset,
180 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
181 name, sizeof (obj), 1, &obj);
182 if (err)
183 return (err);
185 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
188 static dsl_pool_t *
189 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
191 dsl_pool_t *dp;
192 blkptr_t *bp = spa_get_rootblkptr(spa);
194 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
195 dp->dp_spa = spa;
196 dp->dp_meta_rootbp = *bp;
197 rrw_init(&dp->dp_config_rwlock, B_TRUE);
198 txg_init(dp, txg);
199 mmp_init(spa);
201 txg_list_create(&dp->dp_dirty_datasets, spa,
202 offsetof(dsl_dataset_t, ds_dirty_link));
203 txg_list_create(&dp->dp_dirty_zilogs, spa,
204 offsetof(zilog_t, zl_dirty_link));
205 txg_list_create(&dp->dp_dirty_dirs, spa,
206 offsetof(dsl_dir_t, dd_dirty_link));
207 txg_list_create(&dp->dp_sync_tasks, spa,
208 offsetof(dsl_sync_task_t, dst_node));
209 txg_list_create(&dp->dp_early_sync_tasks, spa,
210 offsetof(dsl_sync_task_t, dst_node));
212 dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216 zfs_zil_clean_taskq_minalloc,
217 zfs_zil_clean_taskq_maxalloc,
218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
223 aggsum_init(&dp->dp_wrlog_total, 0);
224 for (int i = 0; i < TXG_SIZE; i++) {
225 aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
228 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
229 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
230 TASKQ_THREADS_CPU_PCT);
231 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
232 100, defclsyspri, boot_ncpus, INT_MAX,
233 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
235 return (dp);
239 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
241 int err;
242 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
245 * Initialize the caller's dsl_pool_t structure before we actually open
246 * the meta objset. This is done because a self-healing write zio may
247 * be issued as part of dmu_objset_open_impl() and the spa needs its
248 * dsl_pool_t initialized in order to handle the write.
250 *dpp = dp;
252 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
253 &dp->dp_meta_objset);
254 if (err != 0) {
255 dsl_pool_close(dp);
256 *dpp = NULL;
259 return (err);
263 dsl_pool_open(dsl_pool_t *dp)
265 int err;
266 dsl_dir_t *dd;
267 dsl_dataset_t *ds;
268 uint64_t obj;
270 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
271 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
273 &dp->dp_root_dir_obj);
274 if (err)
275 goto out;
277 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
278 NULL, dp, &dp->dp_root_dir);
279 if (err)
280 goto out;
282 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
283 if (err)
284 goto out;
286 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
287 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
288 if (err)
289 goto out;
290 err = dsl_dataset_hold_obj(dp,
291 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
292 if (err == 0) {
293 err = dsl_dataset_hold_obj(dp,
294 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
295 &dp->dp_origin_snap);
296 dsl_dataset_rele(ds, FTAG);
298 dsl_dir_rele(dd, dp);
299 if (err)
300 goto out;
303 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
304 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
305 &dp->dp_free_dir);
306 if (err)
307 goto out;
309 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
310 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
311 if (err)
312 goto out;
313 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
314 dp->dp_meta_objset, obj));
317 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
318 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
319 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
320 if (err == 0) {
321 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
322 dp->dp_meta_objset, obj));
323 } else if (err == ENOENT) {
325 * We might not have created the remap bpobj yet.
327 } else {
328 goto out;
333 * Note: errors ignored, because the these special dirs, used for
334 * space accounting, are only created on demand.
336 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
337 &dp->dp_leak_dir);
339 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
340 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
341 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
342 &dp->dp_bptree_obj);
343 if (err != 0)
344 goto out;
347 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
348 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
349 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
350 &dp->dp_empty_bpobj);
351 if (err != 0)
352 goto out;
355 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
356 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
357 &dp->dp_tmp_userrefs_obj);
358 if (err == ENOENT)
359 err = 0;
360 if (err)
361 goto out;
363 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
365 out:
366 rrw_exit(&dp->dp_config_rwlock, FTAG);
367 return (err);
370 void
371 dsl_pool_close(dsl_pool_t *dp)
374 * Drop our references from dsl_pool_open().
376 * Since we held the origin_snap from "syncing" context (which
377 * includes pool-opening context), it actually only got a "ref"
378 * and not a hold, so just drop that here.
380 if (dp->dp_origin_snap != NULL)
381 dsl_dataset_rele(dp->dp_origin_snap, dp);
382 if (dp->dp_mos_dir != NULL)
383 dsl_dir_rele(dp->dp_mos_dir, dp);
384 if (dp->dp_free_dir != NULL)
385 dsl_dir_rele(dp->dp_free_dir, dp);
386 if (dp->dp_leak_dir != NULL)
387 dsl_dir_rele(dp->dp_leak_dir, dp);
388 if (dp->dp_root_dir != NULL)
389 dsl_dir_rele(dp->dp_root_dir, dp);
391 bpobj_close(&dp->dp_free_bpobj);
392 bpobj_close(&dp->dp_obsolete_bpobj);
394 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
395 if (dp->dp_meta_objset != NULL)
396 dmu_objset_evict(dp->dp_meta_objset);
398 txg_list_destroy(&dp->dp_dirty_datasets);
399 txg_list_destroy(&dp->dp_dirty_zilogs);
400 txg_list_destroy(&dp->dp_sync_tasks);
401 txg_list_destroy(&dp->dp_early_sync_tasks);
402 txg_list_destroy(&dp->dp_dirty_dirs);
404 taskq_destroy(dp->dp_zil_clean_taskq);
405 spa_sync_tq_destroy(dp->dp_spa);
408 * We can't set retry to TRUE since we're explicitly specifying
409 * a spa to flush. This is good enough; any missed buffers for
410 * this spa won't cause trouble, and they'll eventually fall
411 * out of the ARC just like any other unused buffer.
413 arc_flush(dp->dp_spa, FALSE);
415 mmp_fini(dp->dp_spa);
416 txg_fini(dp);
417 dsl_scan_fini(dp);
418 dmu_buf_user_evict_wait();
420 rrw_destroy(&dp->dp_config_rwlock);
421 mutex_destroy(&dp->dp_lock);
422 cv_destroy(&dp->dp_spaceavail_cv);
424 ASSERT0(aggsum_value(&dp->dp_wrlog_total));
425 aggsum_fini(&dp->dp_wrlog_total);
426 for (int i = 0; i < TXG_SIZE; i++) {
427 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
428 aggsum_fini(&dp->dp_wrlog_pertxg[i]);
431 taskq_destroy(dp->dp_unlinked_drain_taskq);
432 taskq_destroy(dp->dp_zrele_taskq);
433 if (dp->dp_blkstats != NULL)
434 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
435 kmem_free(dp, sizeof (dsl_pool_t));
438 void
439 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
441 uint64_t obj;
443 * Currently, we only create the obsolete_bpobj where there are
444 * indirect vdevs with referenced mappings.
446 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
447 /* create and open the obsolete_bpobj */
448 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
449 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
450 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
451 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
452 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
455 void
456 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
458 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
459 VERIFY0(zap_remove(dp->dp_meta_objset,
460 DMU_POOL_DIRECTORY_OBJECT,
461 DMU_POOL_OBSOLETE_BPOBJ, tx));
462 bpobj_free(dp->dp_meta_objset,
463 dp->dp_obsolete_bpobj.bpo_object, tx);
464 bpobj_close(&dp->dp_obsolete_bpobj);
467 dsl_pool_t *
468 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
469 dsl_crypto_params_t *dcp, uint64_t txg)
471 int err;
472 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
473 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
474 #ifdef _KERNEL
475 objset_t *os;
476 #else
477 objset_t *os __attribute__((unused));
478 #endif
479 dsl_dataset_t *ds;
480 uint64_t obj;
482 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
484 /* create and open the MOS (meta-objset) */
485 dp->dp_meta_objset = dmu_objset_create_impl(spa,
486 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
487 spa->spa_meta_objset = dp->dp_meta_objset;
489 /* create the pool directory */
490 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
491 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
492 ASSERT0(err);
494 /* Initialize scan structures */
495 VERIFY0(dsl_scan_init(dp, txg));
497 /* create and open the root dir */
498 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
499 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
500 NULL, dp, &dp->dp_root_dir));
502 /* create and open the meta-objset dir */
503 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
504 VERIFY0(dsl_pool_open_special_dir(dp,
505 MOS_DIR_NAME, &dp->dp_mos_dir));
507 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
508 /* create and open the free dir */
509 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
510 FREE_DIR_NAME, tx);
511 VERIFY0(dsl_pool_open_special_dir(dp,
512 FREE_DIR_NAME, &dp->dp_free_dir));
514 /* create and open the free_bplist */
515 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
516 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
517 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
518 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
519 dp->dp_meta_objset, obj));
522 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
523 dsl_pool_create_origin(dp, tx);
526 * Some features may be needed when creating the root dataset, so we
527 * create the feature objects here.
529 if (spa_version(spa) >= SPA_VERSION_FEATURES)
530 spa_feature_create_zap_objects(spa, tx);
532 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
533 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
534 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
536 /* create the root dataset */
537 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
539 /* create the root objset */
540 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
541 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
542 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
543 os = dmu_objset_create_impl(dp->dp_spa, ds,
544 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
545 rrw_exit(&ds->ds_bp_rwlock, FTAG);
546 #ifdef _KERNEL
547 zfs_create_fs(os, kcred, zplprops, tx);
548 #endif
549 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
551 dmu_tx_commit(tx);
553 rrw_exit(&dp->dp_config_rwlock, FTAG);
555 return (dp);
559 * Account for the meta-objset space in its placeholder dsl_dir.
561 void
562 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
563 int64_t used, int64_t comp, int64_t uncomp)
565 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
566 mutex_enter(&dp->dp_lock);
567 dp->dp_mos_used_delta += used;
568 dp->dp_mos_compressed_delta += comp;
569 dp->dp_mos_uncompressed_delta += uncomp;
570 mutex_exit(&dp->dp_lock);
573 static void
574 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
576 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
577 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
578 VERIFY0(zio_wait(zio));
579 dmu_objset_sync_done(dp->dp_meta_objset, tx);
580 taskq_wait(dp->dp_sync_taskq);
581 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
583 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
584 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
587 static void
588 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
590 ASSERT(MUTEX_HELD(&dp->dp_lock));
592 if (delta < 0)
593 ASSERT3U(-delta, <=, dp->dp_dirty_total);
595 dp->dp_dirty_total += delta;
598 * Note: we signal even when increasing dp_dirty_total.
599 * This ensures forward progress -- each thread wakes the next waiter.
601 if (dp->dp_dirty_total < zfs_dirty_data_max)
602 cv_signal(&dp->dp_spaceavail_cv);
605 void
606 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
608 ASSERT3S(size, >=, 0);
610 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
611 aggsum_add(&dp->dp_wrlog_total, size);
613 /* Choose a value slightly bigger than min dirty sync bytes */
614 uint64_t sync_min =
615 zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
616 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
617 txg_kick(dp, txg);
620 boolean_t
621 dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
623 uint64_t delay_min_bytes =
624 zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
626 return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
629 static void
630 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
632 int64_t delta;
633 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
634 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
635 aggsum_add(&dp->dp_wrlog_total, delta);
636 /* Compact per-CPU sums after the big change. */
637 (void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
638 (void) aggsum_value(&dp->dp_wrlog_total);
641 #ifdef ZFS_DEBUG
642 static boolean_t
643 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
645 spa_t *spa = dp->dp_spa;
646 vdev_t *rvd = spa->spa_root_vdev;
648 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
649 vdev_t *vd = rvd->vdev_child[c];
650 txg_list_t *tl = &vd->vdev_ms_list;
651 metaslab_t *ms;
653 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
654 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
655 VERIFY(range_tree_is_empty(ms->ms_freeing));
656 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
660 return (B_TRUE);
662 #else
663 #define dsl_early_sync_task_verify(dp, txg) \
664 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
665 #endif
667 void
668 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
670 zio_t *rio; /* root zio for all dirty dataset syncs */
671 dmu_tx_t *tx;
672 dsl_dir_t *dd;
673 dsl_dataset_t *ds;
674 objset_t *mos = dp->dp_meta_objset;
675 list_t synced_datasets;
677 list_create(&synced_datasets, sizeof (dsl_dataset_t),
678 offsetof(dsl_dataset_t, ds_synced_link));
680 tx = dmu_tx_create_assigned(dp, txg);
683 * Run all early sync tasks before writing out any dirty blocks.
684 * For more info on early sync tasks see block comment in
685 * dsl_early_sync_task().
687 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
688 dsl_sync_task_t *dst;
690 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
691 while ((dst =
692 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
693 ASSERT(dsl_early_sync_task_verify(dp, txg));
694 dsl_sync_task_sync(dst, tx);
696 ASSERT(dsl_early_sync_task_verify(dp, txg));
700 * Write out all dirty blocks of dirty datasets. Note, this could
701 * create a very large (+10k) zio tree.
703 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
704 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
706 * We must not sync any non-MOS datasets twice, because
707 * we may have taken a snapshot of them. However, we
708 * may sync newly-created datasets on pass 2.
710 ASSERT(!list_link_active(&ds->ds_synced_link));
711 list_insert_tail(&synced_datasets, ds);
712 dsl_dataset_sync(ds, rio, tx);
714 VERIFY0(zio_wait(rio));
717 * Update the long range free counter after
718 * we're done syncing user data
720 mutex_enter(&dp->dp_lock);
721 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
722 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
723 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
724 mutex_exit(&dp->dp_lock);
727 * After the data blocks have been written (ensured by the zio_wait()
728 * above), update the user/group/project space accounting. This happens
729 * in tasks dispatched to dp_sync_taskq, so wait for them before
730 * continuing.
732 for (ds = list_head(&synced_datasets); ds != NULL;
733 ds = list_next(&synced_datasets, ds)) {
734 dmu_objset_sync_done(ds->ds_objset, tx);
736 taskq_wait(dp->dp_sync_taskq);
739 * Sync the datasets again to push out the changes due to
740 * userspace updates. This must be done before we process the
741 * sync tasks, so that any snapshots will have the correct
742 * user accounting information (and we won't get confused
743 * about which blocks are part of the snapshot).
745 rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
746 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
747 objset_t *os = ds->ds_objset;
749 ASSERT(list_link_active(&ds->ds_synced_link));
750 dmu_buf_rele(ds->ds_dbuf, ds);
751 dsl_dataset_sync(ds, rio, tx);
754 * Release any key mappings created by calls to
755 * dsl_dataset_dirty() from the userquota accounting
756 * code paths.
758 if (os->os_encrypted && !os->os_raw_receive &&
759 !os->os_next_write_raw[txg & TXG_MASK]) {
760 ASSERT3P(ds->ds_key_mapping, !=, NULL);
761 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
764 VERIFY0(zio_wait(rio));
767 * Now that the datasets have been completely synced, we can
768 * clean up our in-memory structures accumulated while syncing:
770 * - move dead blocks from the pending deadlist and livelists
771 * to the on-disk versions
772 * - release hold from dsl_dataset_dirty()
773 * - release key mapping hold from dsl_dataset_dirty()
775 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
776 objset_t *os = ds->ds_objset;
778 if (os->os_encrypted && !os->os_raw_receive &&
779 !os->os_next_write_raw[txg & TXG_MASK]) {
780 ASSERT3P(ds->ds_key_mapping, !=, NULL);
781 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
784 dsl_dataset_sync_done(ds, tx);
785 dmu_buf_rele(ds->ds_dbuf, ds);
788 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
789 dsl_dir_sync(dd, tx);
793 * The MOS's space is accounted for in the pool/$MOS
794 * (dp_mos_dir). We can't modify the mos while we're syncing
795 * it, so we remember the deltas and apply them here.
797 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
798 dp->dp_mos_uncompressed_delta != 0) {
799 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
800 dp->dp_mos_used_delta,
801 dp->dp_mos_compressed_delta,
802 dp->dp_mos_uncompressed_delta, tx);
803 dp->dp_mos_used_delta = 0;
804 dp->dp_mos_compressed_delta = 0;
805 dp->dp_mos_uncompressed_delta = 0;
808 if (dmu_objset_is_dirty(mos, txg)) {
809 dsl_pool_sync_mos(dp, tx);
813 * We have written all of the accounted dirty data, so our
814 * dp_space_towrite should now be zero. However, some seldom-used
815 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
816 * the accounting of any dirtied space now.
818 * Note that, besides any dirty data from datasets, the amount of
819 * dirty data in the MOS is also accounted by the pool. Therefore,
820 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
821 * attempt to update the accounting for the same dirty data twice.
822 * (i.e. at this point we only update the accounting for the space
823 * that we know that we "leaked").
825 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
828 * If we modify a dataset in the same txg that we want to destroy it,
829 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
830 * dsl_dir_destroy_check() will fail if there are unexpected holds.
831 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
832 * and clearing the hold on it) before we process the sync_tasks.
833 * The MOS data dirtied by the sync_tasks will be synced on the next
834 * pass.
836 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
837 dsl_sync_task_t *dst;
839 * No more sync tasks should have been added while we
840 * were syncing.
842 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
843 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
844 dsl_sync_task_sync(dst, tx);
847 dmu_tx_commit(tx);
849 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
852 void
853 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
855 zilog_t *zilog;
857 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
858 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
860 * We don't remove the zilog from the dp_dirty_zilogs
861 * list until after we've cleaned it. This ensures that
862 * callers of zilog_is_dirty() receive an accurate
863 * answer when they are racing with the spa sync thread.
865 zil_clean(zilog, txg);
866 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
867 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
868 dmu_buf_rele(ds->ds_dbuf, zilog);
871 dsl_pool_wrlog_clear(dp, txg);
873 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
877 * TRUE if the current thread is the tx_sync_thread or if we
878 * are being called from SPA context during pool initialization.
881 dsl_pool_sync_context(dsl_pool_t *dp)
883 return (curthread == dp->dp_tx.tx_sync_thread ||
884 spa_is_initializing(dp->dp_spa) ||
885 taskq_member(dp->dp_sync_taskq, curthread));
889 * This function returns the amount of allocatable space in the pool
890 * minus whatever space is currently reserved by ZFS for specific
891 * purposes. Specifically:
893 * 1] Any reserved SLOP space
894 * 2] Any space used by the checkpoint
895 * 3] Any space used for deferred frees
897 * The latter 2 are especially important because they are needed to
898 * rectify the SPA's and DMU's different understanding of how much space
899 * is used. Now the DMU is aware of that extra space tracked by the SPA
900 * without having to maintain a separate special dir (e.g similar to
901 * $MOS, $FREEING, and $LEAKED).
903 * Note: By deferred frees here, we mean the frees that were deferred
904 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
905 * segments placed in ms_defer trees during metaslab_sync_done().
907 uint64_t
908 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
910 spa_t *spa = dp->dp_spa;
911 uint64_t space, resv, adjustedsize;
912 uint64_t spa_deferred_frees =
913 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
915 space = spa_get_dspace(spa)
916 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
917 resv = spa_get_slop_space(spa);
919 switch (slop_policy) {
920 case ZFS_SPACE_CHECK_NORMAL:
921 break;
922 case ZFS_SPACE_CHECK_RESERVED:
923 resv >>= 1;
924 break;
925 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
926 resv >>= 2;
927 break;
928 case ZFS_SPACE_CHECK_NONE:
929 resv = 0;
930 break;
931 default:
932 panic("invalid slop policy value: %d", slop_policy);
933 break;
935 adjustedsize = (space >= resv) ? (space - resv) : 0;
937 return (adjustedsize);
940 uint64_t
941 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
943 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
944 uint64_t deferred =
945 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
946 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
947 return (quota);
950 uint64_t
951 dsl_pool_deferred_space(dsl_pool_t *dp)
953 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
956 boolean_t
957 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
959 uint64_t delay_min_bytes =
960 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
963 * We are not taking the dp_lock here and few other places, since torn
964 * reads are unlikely: on 64-bit systems due to register size and on
965 * 32-bit due to memory constraints. Pool-wide locks in hot path may
966 * be too expensive, while we do not need a precise result here.
968 return (dp->dp_dirty_total > delay_min_bytes);
971 static boolean_t
972 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
974 uint64_t dirty_min_bytes =
975 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
976 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
978 return (dirty > dirty_min_bytes);
981 void
982 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
984 if (space > 0) {
985 mutex_enter(&dp->dp_lock);
986 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
987 dsl_pool_dirty_delta(dp, space);
988 boolean_t needsync = !dmu_tx_is_syncing(tx) &&
989 dsl_pool_need_dirty_sync(dp, tx->tx_txg);
990 mutex_exit(&dp->dp_lock);
992 if (needsync)
993 txg_kick(dp, tx->tx_txg);
997 void
998 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
1000 ASSERT3S(space, >=, 0);
1001 if (space == 0)
1002 return;
1004 mutex_enter(&dp->dp_lock);
1005 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1006 /* XXX writing something we didn't dirty? */
1007 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1009 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1010 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1011 ASSERT3U(dp->dp_dirty_total, >=, space);
1012 dsl_pool_dirty_delta(dp, -space);
1013 mutex_exit(&dp->dp_lock);
1016 static int
1017 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1019 dmu_tx_t *tx = arg;
1020 dsl_dataset_t *ds, *prev = NULL;
1021 int err;
1023 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1024 if (err)
1025 return (err);
1027 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1028 err = dsl_dataset_hold_obj(dp,
1029 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1030 if (err) {
1031 dsl_dataset_rele(ds, FTAG);
1032 return (err);
1035 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1036 break;
1037 dsl_dataset_rele(ds, FTAG);
1038 ds = prev;
1039 prev = NULL;
1042 if (prev == NULL) {
1043 prev = dp->dp_origin_snap;
1046 * The $ORIGIN can't have any data, or the accounting
1047 * will be wrong.
1049 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1050 ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
1051 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1053 /* The origin doesn't get attached to itself */
1054 if (ds->ds_object == prev->ds_object) {
1055 dsl_dataset_rele(ds, FTAG);
1056 return (0);
1059 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1060 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1061 dsl_dataset_phys(ds)->ds_prev_snap_txg =
1062 dsl_dataset_phys(prev)->ds_creation_txg;
1064 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1065 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1067 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1068 dsl_dataset_phys(prev)->ds_num_children++;
1070 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1071 ASSERT(ds->ds_prev == NULL);
1072 VERIFY0(dsl_dataset_hold_obj(dp,
1073 dsl_dataset_phys(ds)->ds_prev_snap_obj,
1074 ds, &ds->ds_prev));
1078 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1079 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1081 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1082 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1083 dsl_dataset_phys(prev)->ds_next_clones_obj =
1084 zap_create(dp->dp_meta_objset,
1085 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1087 VERIFY0(zap_add_int(dp->dp_meta_objset,
1088 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1090 dsl_dataset_rele(ds, FTAG);
1091 if (prev != dp->dp_origin_snap)
1092 dsl_dataset_rele(prev, FTAG);
1093 return (0);
1096 void
1097 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1099 ASSERT(dmu_tx_is_syncing(tx));
1100 ASSERT(dp->dp_origin_snap != NULL);
1102 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1103 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1106 static int
1107 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1109 dmu_tx_t *tx = arg;
1110 objset_t *mos = dp->dp_meta_objset;
1112 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1113 dsl_dataset_t *origin;
1115 VERIFY0(dsl_dataset_hold_obj(dp,
1116 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1118 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1119 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1120 dsl_dir_phys(origin->ds_dir)->dd_clones =
1121 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1122 0, tx);
1125 VERIFY0(zap_add_int(dp->dp_meta_objset,
1126 dsl_dir_phys(origin->ds_dir)->dd_clones,
1127 ds->ds_object, tx));
1129 dsl_dataset_rele(origin, FTAG);
1131 return (0);
1134 void
1135 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1137 uint64_t obj;
1139 ASSERT(dmu_tx_is_syncing(tx));
1141 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1142 VERIFY0(dsl_pool_open_special_dir(dp,
1143 FREE_DIR_NAME, &dp->dp_free_dir));
1146 * We can't use bpobj_alloc(), because spa_version() still
1147 * returns the old version, and we need a new-version bpobj with
1148 * subobj support. So call dmu_object_alloc() directly.
1150 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1151 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1152 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1153 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1154 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1156 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1157 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1160 void
1161 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1163 uint64_t dsobj;
1164 dsl_dataset_t *ds;
1166 ASSERT(dmu_tx_is_syncing(tx));
1167 ASSERT(dp->dp_origin_snap == NULL);
1168 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1170 /* create the origin dir, ds, & snap-ds */
1171 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1172 NULL, 0, kcred, NULL, tx);
1173 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1174 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1175 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1176 dp, &dp->dp_origin_snap));
1177 dsl_dataset_rele(ds, FTAG);
1180 taskq_t *
1181 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1183 return (dp->dp_zrele_taskq);
1186 taskq_t *
1187 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1189 return (dp->dp_unlinked_drain_taskq);
1193 * Walk through the pool-wide zap object of temporary snapshot user holds
1194 * and release them.
1196 void
1197 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1199 zap_attribute_t *za;
1200 zap_cursor_t zc;
1201 objset_t *mos = dp->dp_meta_objset;
1202 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1203 nvlist_t *holds;
1205 if (zapobj == 0)
1206 return;
1207 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1209 holds = fnvlist_alloc();
1211 za = zap_attribute_alloc();
1212 for (zap_cursor_init(&zc, mos, zapobj);
1213 zap_cursor_retrieve(&zc, za) == 0;
1214 zap_cursor_advance(&zc)) {
1215 char *htag;
1216 nvlist_t *tags;
1218 htag = strchr(za->za_name, '-');
1219 *htag = '\0';
1220 ++htag;
1221 if (nvlist_lookup_nvlist(holds, za->za_name, &tags) != 0) {
1222 tags = fnvlist_alloc();
1223 fnvlist_add_boolean(tags, htag);
1224 fnvlist_add_nvlist(holds, za->za_name, tags);
1225 fnvlist_free(tags);
1226 } else {
1227 fnvlist_add_boolean(tags, htag);
1230 dsl_dataset_user_release_tmp(dp, holds);
1231 fnvlist_free(holds);
1232 zap_cursor_fini(&zc);
1233 zap_attribute_free(za);
1237 * Create the pool-wide zap object for storing temporary snapshot holds.
1239 static void
1240 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1242 objset_t *mos = dp->dp_meta_objset;
1244 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1245 ASSERT(dmu_tx_is_syncing(tx));
1247 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1248 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1251 static int
1252 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1253 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1255 objset_t *mos = dp->dp_meta_objset;
1256 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1257 char *name;
1258 int error;
1260 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1261 ASSERT(dmu_tx_is_syncing(tx));
1264 * If the pool was created prior to SPA_VERSION_USERREFS, the
1265 * zap object for temporary holds might not exist yet.
1267 if (zapobj == 0) {
1268 if (holding) {
1269 dsl_pool_user_hold_create_obj(dp, tx);
1270 zapobj = dp->dp_tmp_userrefs_obj;
1271 } else {
1272 return (SET_ERROR(ENOENT));
1276 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1277 if (holding)
1278 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1279 else
1280 error = zap_remove(mos, zapobj, name, tx);
1281 kmem_strfree(name);
1283 return (error);
1287 * Add a temporary hold for the given dataset object and tag.
1290 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1291 uint64_t now, dmu_tx_t *tx)
1293 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1297 * Release a temporary hold for the given dataset object and tag.
1300 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1301 dmu_tx_t *tx)
1303 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1304 tx, B_FALSE));
1308 * DSL Pool Configuration Lock
1310 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1311 * creation / destruction / rename / property setting). It must be held for
1312 * read to hold a dataset or dsl_dir. I.e. you must call
1313 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1314 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1315 * must be held continuously until all datasets and dsl_dirs are released.
1317 * The only exception to this rule is that if a "long hold" is placed on
1318 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1319 * is still held. The long hold will prevent the dataset from being
1320 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1321 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1322 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1324 * Legitimate long-holders (including owners) should be long-running, cancelable
1325 * tasks that should cause "zfs destroy" to fail. This includes DMU
1326 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1327 * "zfs send", and "zfs diff". There are several other long-holders whose
1328 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1330 * The usual formula for long-holding would be:
1331 * dsl_pool_hold()
1332 * dsl_dataset_hold()
1333 * ... perform checks ...
1334 * dsl_dataset_long_hold()
1335 * dsl_pool_rele()
1336 * ... perform long-running task ...
1337 * dsl_dataset_long_rele()
1338 * dsl_dataset_rele()
1340 * Note that when the long hold is released, the dataset is still held but
1341 * the pool is not held. The dataset may change arbitrarily during this time
1342 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1343 * dataset except release it.
1345 * Operations generally fall somewhere into the following taxonomy:
1347 * Read-Only Modifying
1349 * Dataset Layer / MOS zfs get zfs destroy
1351 * Individual Dataset read() write()
1354 * Dataset Layer Operations
1356 * Modifying operations should generally use dsl_sync_task(). The synctask
1357 * infrastructure enforces proper locking strategy with respect to the
1358 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1360 * Read-only operations will manually hold the pool, then the dataset, obtain
1361 * information from the dataset, then release the pool and dataset.
1362 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1363 * hold/rele.
1366 * Operations On Individual Datasets
1368 * Objects _within_ an objset should only be modified by the current 'owner'
1369 * of the objset to prevent incorrect concurrent modification. Thus, use
1370 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1371 * and fail with EBUSY if there is already an owner. The owner can then
1372 * implement its own locking strategy, independent of the dataset layer's
1373 * locking infrastructure.
1374 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1375 * vnop will not reach into the dataset layer).
1377 * Ideally, objects would also only be read by the objset’s owner, so that we
1378 * don’t observe state mid-modification.
1379 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1380 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1381 * intermediate state. The ioctl level violates this but in pretty benign
1382 * ways, e.g. reading the zpl props object.)
1386 dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
1388 spa_t *spa;
1389 int error;
1391 error = spa_open(name, &spa, tag);
1392 if (error == 0) {
1393 *dp = spa_get_dsl(spa);
1394 dsl_pool_config_enter(*dp, tag);
1396 return (error);
1399 void
1400 dsl_pool_rele(dsl_pool_t *dp, const void *tag)
1402 dsl_pool_config_exit(dp, tag);
1403 spa_close(dp->dp_spa, tag);
1406 void
1407 dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
1410 * We use a "reentrant" reader-writer lock, but not reentrantly.
1412 * The rrwlock can (with the track_all flag) track all reading threads,
1413 * which is very useful for debugging which code path failed to release
1414 * the lock, and for verifying that the *current* thread does hold
1415 * the lock.
1417 * (Unlike a rwlock, which knows that N threads hold it for
1418 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1419 * if any thread holds it for read, even if this thread doesn't).
1421 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1422 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1425 void
1426 dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
1428 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1429 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1432 void
1433 dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
1435 rrw_exit(&dp->dp_config_rwlock, tag);
1438 boolean_t
1439 dsl_pool_config_held(dsl_pool_t *dp)
1441 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1444 boolean_t
1445 dsl_pool_config_held_writer(dsl_pool_t *dp)
1447 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1450 EXPORT_SYMBOL(dsl_pool_config_enter);
1451 EXPORT_SYMBOL(dsl_pool_config_exit);
1453 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1454 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
1455 "Max percent of RAM allowed to be dirty");
1457 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1458 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
1459 "zfs_dirty_data_max upper bound as % of RAM");
1461 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
1462 "Transaction delay threshold");
1464 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
1465 "Determines the dirty space limit");
1467 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
1468 "The size limit of write-transaction zil log data");
1470 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1471 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
1472 "zfs_dirty_data_max upper bound in bytes");
1474 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
1475 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1477 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
1478 "How quickly delay approaches infinity");
1480 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1481 "Max percent of CPUs that are used per dp_sync_taskq");
1483 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1484 "Number of taskq entries that are pre-populated");
1486 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1487 "Max number of taskq entries that are cached");