4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
29 * Virtual Device Labels
30 * ---------------------
32 * The vdev label serves several distinct purposes:
34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
35 * identity within the pool.
37 * 2. Verify that all the devices given in a configuration are present
40 * 3. Determine the uberblock for the pool.
42 * 4. In case of an import operation, determine the configuration of the
43 * toplevel vdev of which it is a part.
45 * 5. If an import operation cannot find all the devices in the pool,
46 * provide enough information to the administrator to determine which
47 * devices are missing.
49 * It is important to note that while the kernel is responsible for writing the
50 * label, it only consumes the information in the first three cases. The
51 * latter information is only consumed in userland when determining the
52 * configuration to import a pool.
58 * Before describing the contents of the label, it's important to understand how
59 * the labels are written and updated with respect to the uberblock.
61 * When the pool configuration is altered, either because it was newly created
62 * or a device was added, we want to update all the labels such that we can deal
63 * with fatal failure at any point. To this end, each disk has two labels which
64 * are updated before and after the uberblock is synced. Assuming we have
65 * labels and an uberblock with the following transaction groups:
68 * +------+ +------+ +------+
70 * | t10 | | t10 | | t10 |
72 * +------+ +------+ +------+
74 * In this stable state, the labels and the uberblock were all updated within
75 * the same transaction group (10). Each label is mirrored and checksummed, so
76 * that we can detect when we fail partway through writing the label.
78 * In order to identify which labels are valid, the labels are written in the
81 * 1. For each vdev, update 'L1' to the new label
82 * 2. Update the uberblock
83 * 3. For each vdev, update 'L2' to the new label
85 * Given arbitrary failure, we can determine the correct label to use based on
86 * the transaction group. If we fail after updating L1 but before updating the
87 * UB, we will notice that L1's transaction group is greater than the uberblock,
88 * so L2 must be valid. If we fail after writing the uberblock but before
89 * writing L2, we will notice that L2's transaction group is less than L1, and
90 * therefore L1 is valid.
92 * Another added complexity is that not every label is updated when the config
93 * is synced. If we add a single device, we do not want to have to re-write
94 * every label for every device in the pool. This means that both L1 and L2 may
95 * be older than the pool uberblock, because the necessary information is stored
102 * The vdev label consists of two distinct parts, and is wrapped within the
103 * vdev_label_t structure. The label includes 8k of padding to permit legacy
104 * VTOC disk labels, but is otherwise ignored.
106 * The first half of the label is a packed nvlist which contains pool wide
107 * properties, per-vdev properties, and configuration information. It is
108 * described in more detail below.
110 * The latter half of the label consists of a redundant array of uberblocks.
111 * These uberblocks are updated whenever a transaction group is committed,
112 * or when the configuration is updated. When a pool is loaded, we scan each
113 * vdev for the 'best' uberblock.
116 * Configuration Information
117 * -------------------------
119 * The nvlist describing the pool and vdev contains the following elements:
121 * version ZFS on-disk version
124 * txg Transaction group in which this label was written
125 * pool_guid Unique identifier for this pool
126 * vdev_tree An nvlist describing vdev tree.
128 * An nvlist of the features necessary for reading the MOS.
130 * Each leaf device label also contains the following:
132 * top_guid Unique ID for top-level vdev in which this is contained
133 * guid Unique ID for the leaf vdev
135 * The 'vs' configuration follows the format described in 'spa_config.c'.
138 #include <sys/zfs_context.h>
140 #include <sys/spa_impl.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/vdev_raidz.h>
146 #include <sys/vdev_draid.h>
147 #include <sys/uberblock_impl.h>
148 #include <sys/metaslab.h>
149 #include <sys/metaslab_impl.h>
151 #include <sys/dsl_scan.h>
153 #include <sys/fs/zfs.h>
154 #include <sys/byteorder.h>
155 #include <sys/zfs_bootenv.h>
158 * Basic routines to read and write from a vdev label.
159 * Used throughout the rest of this file.
162 vdev_label_offset(uint64_t psize
, int l
, uint64_t offset
)
164 ASSERT(offset
< sizeof (vdev_label_t
));
165 ASSERT(P2PHASE_TYPED(psize
, sizeof (vdev_label_t
), uint64_t) == 0);
167 return (offset
+ l
* sizeof (vdev_label_t
) + (l
< VDEV_LABELS
/ 2 ?
168 0 : psize
- VDEV_LABELS
* sizeof (vdev_label_t
)));
172 * Returns back the vdev label associated with the passed in offset.
175 vdev_label_number(uint64_t psize
, uint64_t offset
)
179 if (offset
>= psize
- VDEV_LABEL_END_SIZE
) {
180 offset
-= psize
- VDEV_LABEL_END_SIZE
;
181 offset
+= (VDEV_LABELS
/ 2) * sizeof (vdev_label_t
);
183 l
= offset
/ sizeof (vdev_label_t
);
184 return (l
< VDEV_LABELS
? l
: -1);
188 vdev_label_read(zio_t
*zio
, vdev_t
*vd
, int l
, abd_t
*buf
, uint64_t offset
,
189 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
192 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_READER
) == SCL_STATE
||
193 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_WRITER
) == SCL_STATE
);
194 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
196 zio_nowait(zio_read_phys(zio
, vd
,
197 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
198 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
199 ZIO_PRIORITY_SYNC_READ
, flags
, B_TRUE
));
203 vdev_label_write(zio_t
*zio
, vdev_t
*vd
, int l
, abd_t
*buf
, uint64_t offset
,
204 uint64_t size
, zio_done_func_t
*done
, void *private, int flags
)
207 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_READER
) == SCL_STATE
||
208 spa_config_held(zio
->io_spa
, SCL_STATE
, RW_WRITER
) == SCL_STATE
);
209 ASSERT(flags
& ZIO_FLAG_CONFIG_WRITER
);
211 zio_nowait(zio_write_phys(zio
, vd
,
212 vdev_label_offset(vd
->vdev_psize
, l
, offset
),
213 size
, buf
, ZIO_CHECKSUM_LABEL
, done
, private,
214 ZIO_PRIORITY_SYNC_WRITE
, flags
, B_TRUE
));
218 * Generate the nvlist representing this vdev's stats
221 vdev_config_generate_stats(vdev_t
*vd
, nvlist_t
*nv
)
227 vs
= kmem_alloc(sizeof (*vs
), KM_SLEEP
);
228 vsx
= kmem_alloc(sizeof (*vsx
), KM_SLEEP
);
230 vdev_get_stats_ex(vd
, vs
, vsx
);
231 fnvlist_add_uint64_array(nv
, ZPOOL_CONFIG_VDEV_STATS
,
232 (uint64_t *)vs
, sizeof (*vs
) / sizeof (uint64_t));
235 * Add extended stats into a special extended stats nvlist. This keeps
236 * all the extended stats nicely grouped together. The extended stats
237 * nvlist is then added to the main nvlist.
239 nvx
= fnvlist_alloc();
241 /* ZIOs in flight to disk */
242 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE
,
243 vsx
->vsx_active_queue
[ZIO_PRIORITY_SYNC_READ
]);
245 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE
,
246 vsx
->vsx_active_queue
[ZIO_PRIORITY_SYNC_WRITE
]);
248 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE
,
249 vsx
->vsx_active_queue
[ZIO_PRIORITY_ASYNC_READ
]);
251 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE
,
252 vsx
->vsx_active_queue
[ZIO_PRIORITY_ASYNC_WRITE
]);
254 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE
,
255 vsx
->vsx_active_queue
[ZIO_PRIORITY_SCRUB
]);
257 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE
,
258 vsx
->vsx_active_queue
[ZIO_PRIORITY_TRIM
]);
260 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_REBUILD_ACTIVE_QUEUE
,
261 vsx
->vsx_active_queue
[ZIO_PRIORITY_REBUILD
]);
264 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE
,
265 vsx
->vsx_pend_queue
[ZIO_PRIORITY_SYNC_READ
]);
267 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE
,
268 vsx
->vsx_pend_queue
[ZIO_PRIORITY_SYNC_WRITE
]);
270 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE
,
271 vsx
->vsx_pend_queue
[ZIO_PRIORITY_ASYNC_READ
]);
273 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE
,
274 vsx
->vsx_pend_queue
[ZIO_PRIORITY_ASYNC_WRITE
]);
276 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE
,
277 vsx
->vsx_pend_queue
[ZIO_PRIORITY_SCRUB
]);
279 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE
,
280 vsx
->vsx_pend_queue
[ZIO_PRIORITY_TRIM
]);
282 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_REBUILD_PEND_QUEUE
,
283 vsx
->vsx_pend_queue
[ZIO_PRIORITY_REBUILD
]);
286 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO
,
287 vsx
->vsx_total_histo
[ZIO_TYPE_READ
],
288 ARRAY_SIZE(vsx
->vsx_total_histo
[ZIO_TYPE_READ
]));
290 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO
,
291 vsx
->vsx_total_histo
[ZIO_TYPE_WRITE
],
292 ARRAY_SIZE(vsx
->vsx_total_histo
[ZIO_TYPE_WRITE
]));
294 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO
,
295 vsx
->vsx_disk_histo
[ZIO_TYPE_READ
],
296 ARRAY_SIZE(vsx
->vsx_disk_histo
[ZIO_TYPE_READ
]));
298 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO
,
299 vsx
->vsx_disk_histo
[ZIO_TYPE_WRITE
],
300 ARRAY_SIZE(vsx
->vsx_disk_histo
[ZIO_TYPE_WRITE
]));
302 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO
,
303 vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_READ
],
304 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_READ
]));
306 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO
,
307 vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_WRITE
],
308 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_SYNC_WRITE
]));
310 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO
,
311 vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_READ
],
312 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_READ
]));
314 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO
,
315 vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_WRITE
],
316 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_ASYNC_WRITE
]));
318 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO
,
319 vsx
->vsx_queue_histo
[ZIO_PRIORITY_SCRUB
],
320 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_SCRUB
]));
322 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO
,
323 vsx
->vsx_queue_histo
[ZIO_PRIORITY_TRIM
],
324 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_TRIM
]));
326 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_REBUILD_LAT_HISTO
,
327 vsx
->vsx_queue_histo
[ZIO_PRIORITY_REBUILD
],
328 ARRAY_SIZE(vsx
->vsx_queue_histo
[ZIO_PRIORITY_REBUILD
]));
331 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO
,
332 vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_READ
],
333 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_READ
]));
335 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO
,
336 vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_WRITE
],
337 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_SYNC_WRITE
]));
339 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO
,
340 vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_READ
],
341 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_READ
]));
343 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO
,
344 vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_WRITE
],
345 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_ASYNC_WRITE
]));
347 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO
,
348 vsx
->vsx_ind_histo
[ZIO_PRIORITY_SCRUB
],
349 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_SCRUB
]));
351 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO
,
352 vsx
->vsx_ind_histo
[ZIO_PRIORITY_TRIM
],
353 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_TRIM
]));
355 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_IND_REBUILD_HISTO
,
356 vsx
->vsx_ind_histo
[ZIO_PRIORITY_REBUILD
],
357 ARRAY_SIZE(vsx
->vsx_ind_histo
[ZIO_PRIORITY_REBUILD
]));
359 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO
,
360 vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_READ
],
361 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_READ
]));
363 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO
,
364 vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_WRITE
],
365 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_SYNC_WRITE
]));
367 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO
,
368 vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_READ
],
369 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_READ
]));
371 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO
,
372 vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_WRITE
],
373 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_ASYNC_WRITE
]));
375 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO
,
376 vsx
->vsx_agg_histo
[ZIO_PRIORITY_SCRUB
],
377 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_SCRUB
]));
379 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO
,
380 vsx
->vsx_agg_histo
[ZIO_PRIORITY_TRIM
],
381 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_TRIM
]));
383 fnvlist_add_uint64_array(nvx
, ZPOOL_CONFIG_VDEV_AGG_REBUILD_HISTO
,
384 vsx
->vsx_agg_histo
[ZIO_PRIORITY_REBUILD
],
385 ARRAY_SIZE(vsx
->vsx_agg_histo
[ZIO_PRIORITY_REBUILD
]));
388 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_SLOW_IOS
, vs
->vs_slow_ios
);
390 /* Direct I/O write verify errors */
391 fnvlist_add_uint64(nvx
, ZPOOL_CONFIG_VDEV_DIO_VERIFY_ERRORS
,
392 vs
->vs_dio_verify_errors
);
394 /* Add extended stats nvlist to main nvlist */
395 fnvlist_add_nvlist(nv
, ZPOOL_CONFIG_VDEV_STATS_EX
, nvx
);
398 kmem_free(vs
, sizeof (*vs
));
399 kmem_free(vsx
, sizeof (*vsx
));
403 root_vdev_actions_getprogress(vdev_t
*vd
, nvlist_t
*nvl
)
405 spa_t
*spa
= vd
->vdev_spa
;
407 if (vd
!= spa
->spa_root_vdev
)
410 /* provide either current or previous scan information */
412 if (spa_scan_get_stats(spa
, &ps
) == 0) {
413 fnvlist_add_uint64_array(nvl
,
414 ZPOOL_CONFIG_SCAN_STATS
, (uint64_t *)&ps
,
415 sizeof (pool_scan_stat_t
) / sizeof (uint64_t));
418 pool_removal_stat_t prs
;
419 if (spa_removal_get_stats(spa
, &prs
) == 0) {
420 fnvlist_add_uint64_array(nvl
,
421 ZPOOL_CONFIG_REMOVAL_STATS
, (uint64_t *)&prs
,
422 sizeof (prs
) / sizeof (uint64_t));
425 pool_checkpoint_stat_t pcs
;
426 if (spa_checkpoint_get_stats(spa
, &pcs
) == 0) {
427 fnvlist_add_uint64_array(nvl
,
428 ZPOOL_CONFIG_CHECKPOINT_STATS
, (uint64_t *)&pcs
,
429 sizeof (pcs
) / sizeof (uint64_t));
432 pool_raidz_expand_stat_t pres
;
433 if (spa_raidz_expand_get_stats(spa
, &pres
) == 0) {
434 fnvlist_add_uint64_array(nvl
,
435 ZPOOL_CONFIG_RAIDZ_EXPAND_STATS
, (uint64_t *)&pres
,
436 sizeof (pres
) / sizeof (uint64_t));
441 top_vdev_actions_getprogress(vdev_t
*vd
, nvlist_t
*nvl
)
443 if (vd
== vd
->vdev_top
) {
444 vdev_rebuild_stat_t vrs
;
445 if (vdev_rebuild_get_stats(vd
, &vrs
) == 0) {
446 fnvlist_add_uint64_array(nvl
,
447 ZPOOL_CONFIG_REBUILD_STATS
, (uint64_t *)&vrs
,
448 sizeof (vrs
) / sizeof (uint64_t));
454 * Generate the nvlist representing this vdev's config.
457 vdev_config_generate(spa_t
*spa
, vdev_t
*vd
, boolean_t getstats
,
458 vdev_config_flag_t flags
)
461 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
463 nv
= fnvlist_alloc();
465 fnvlist_add_string(nv
, ZPOOL_CONFIG_TYPE
, vd
->vdev_ops
->vdev_op_type
);
466 if (!(flags
& (VDEV_CONFIG_SPARE
| VDEV_CONFIG_L2CACHE
)))
467 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ID
, vd
->vdev_id
);
468 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_GUID
, vd
->vdev_guid
);
470 if (vd
->vdev_path
!= NULL
)
471 fnvlist_add_string(nv
, ZPOOL_CONFIG_PATH
, vd
->vdev_path
);
473 if (vd
->vdev_devid
!= NULL
)
474 fnvlist_add_string(nv
, ZPOOL_CONFIG_DEVID
, vd
->vdev_devid
);
476 if (vd
->vdev_physpath
!= NULL
)
477 fnvlist_add_string(nv
, ZPOOL_CONFIG_PHYS_PATH
,
480 if (vd
->vdev_enc_sysfs_path
!= NULL
)
481 fnvlist_add_string(nv
, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH
,
482 vd
->vdev_enc_sysfs_path
);
484 if (vd
->vdev_fru
!= NULL
)
485 fnvlist_add_string(nv
, ZPOOL_CONFIG_FRU
, vd
->vdev_fru
);
487 if (vd
->vdev_ops
->vdev_op_config_generate
!= NULL
)
488 vd
->vdev_ops
->vdev_op_config_generate(vd
, nv
);
490 if (vd
->vdev_wholedisk
!= -1ULL) {
491 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_WHOLE_DISK
,
495 if (vd
->vdev_not_present
&& !(flags
& VDEV_CONFIG_MISSING
))
496 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NOT_PRESENT
, 1);
498 if (vd
->vdev_isspare
)
499 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_SPARE
, 1);
501 if (flags
& VDEV_CONFIG_L2CACHE
)
502 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ASHIFT
, vd
->vdev_ashift
);
504 if (!(flags
& (VDEV_CONFIG_SPARE
| VDEV_CONFIG_L2CACHE
)) &&
505 vd
== vd
->vdev_top
) {
506 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_ARRAY
,
508 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_METASLAB_SHIFT
,
510 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ASHIFT
, vd
->vdev_ashift
);
511 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ASIZE
,
513 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_LOG
, vd
->vdev_islog
);
514 if (vd
->vdev_noalloc
) {
515 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NONALLOCATING
,
520 * Slog devices are removed synchronously so don't
521 * persist the vdev_removing flag to the label.
523 if (vd
->vdev_removing
&& !vd
->vdev_islog
) {
524 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVING
,
528 /* zpool command expects alloc class data */
529 if (getstats
&& vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
) {
530 const char *bias
= NULL
;
532 switch (vd
->vdev_alloc_bias
) {
534 bias
= VDEV_ALLOC_BIAS_LOG
;
536 case VDEV_BIAS_SPECIAL
:
537 bias
= VDEV_ALLOC_BIAS_SPECIAL
;
539 case VDEV_BIAS_DEDUP
:
540 bias
= VDEV_ALLOC_BIAS_DEDUP
;
543 ASSERT3U(vd
->vdev_alloc_bias
, ==,
546 fnvlist_add_string(nv
, ZPOOL_CONFIG_ALLOCATION_BIAS
,
551 if (vd
->vdev_dtl_sm
!= NULL
) {
552 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DTL
,
553 space_map_object(vd
->vdev_dtl_sm
));
556 if (vic
->vic_mapping_object
!= 0) {
557 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_OBJECT
,
558 vic
->vic_mapping_object
);
561 if (vic
->vic_births_object
!= 0) {
562 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_BIRTHS
,
563 vic
->vic_births_object
);
566 if (vic
->vic_prev_indirect_vdev
!= UINT64_MAX
) {
567 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_PREV_INDIRECT_VDEV
,
568 vic
->vic_prev_indirect_vdev
);
572 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_CREATE_TXG
, vd
->vdev_crtxg
);
574 if (vd
->vdev_expansion_time
)
575 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_EXPANSION_TIME
,
576 vd
->vdev_expansion_time
);
578 if (flags
& VDEV_CONFIG_MOS
) {
579 if (vd
->vdev_leaf_zap
!= 0) {
580 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
581 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VDEV_LEAF_ZAP
,
585 if (vd
->vdev_top_zap
!= 0) {
586 ASSERT(vd
== vd
->vdev_top
);
587 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VDEV_TOP_ZAP
,
591 if (vd
->vdev_ops
== &vdev_root_ops
&& vd
->vdev_root_zap
!= 0 &&
592 spa_feature_is_active(vd
->vdev_spa
, SPA_FEATURE_AVZ_V2
)) {
593 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_VDEV_ROOT_ZAP
,
597 if (vd
->vdev_resilver_deferred
) {
598 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
599 ASSERT(spa
->spa_resilver_deferred
);
600 fnvlist_add_boolean(nv
, ZPOOL_CONFIG_RESILVER_DEFER
);
605 vdev_config_generate_stats(vd
, nv
);
607 root_vdev_actions_getprogress(vd
, nv
);
608 top_vdev_actions_getprogress(vd
, nv
);
611 * Note: this can be called from open context
612 * (spa_get_stats()), so we need the rwlock to prevent
613 * the mapping from being changed by condensing.
615 rw_enter(&vd
->vdev_indirect_rwlock
, RW_READER
);
616 if (vd
->vdev_indirect_mapping
!= NULL
) {
617 ASSERT(vd
->vdev_indirect_births
!= NULL
);
618 vdev_indirect_mapping_t
*vim
=
619 vd
->vdev_indirect_mapping
;
620 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_SIZE
,
621 vdev_indirect_mapping_size(vim
));
623 rw_exit(&vd
->vdev_indirect_rwlock
);
624 if (vd
->vdev_mg
!= NULL
&&
625 vd
->vdev_mg
->mg_fragmentation
!= ZFS_FRAG_INVALID
) {
627 * Compute approximately how much memory would be used
628 * for the indirect mapping if this device were to
631 * Note: If the frag metric is invalid, then not
632 * enough metaslabs have been converted to have
635 uint64_t seg_count
= 0;
636 uint64_t to_alloc
= vd
->vdev_stat
.vs_alloc
;
639 * There are the same number of allocated segments
640 * as free segments, so we will have at least one
641 * entry per free segment. However, small free
642 * segments (smaller than vdev_removal_max_span)
643 * will be combined with adjacent allocated segments
644 * as a single mapping.
646 for (int i
= 0; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
647 if (i
+ 1 < highbit64(vdev_removal_max_span
)
650 vd
->vdev_mg
->mg_histogram
[i
] <<
654 vd
->vdev_mg
->mg_histogram
[i
];
659 * The maximum length of a mapping is
660 * zfs_remove_max_segment, so we need at least one entry
661 * per zfs_remove_max_segment of allocated data.
663 seg_count
+= to_alloc
/ spa_remove_max_segment(spa
);
665 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_INDIRECT_SIZE
,
667 sizeof (vdev_indirect_mapping_entry_phys_t
));
671 if (!vd
->vdev_ops
->vdev_op_leaf
) {
675 ASSERT(!vd
->vdev_ishole
);
677 child
= kmem_alloc(vd
->vdev_children
* sizeof (nvlist_t
*),
680 for (c
= 0; c
< vd
->vdev_children
; c
++) {
681 child
[c
] = vdev_config_generate(spa
, vd
->vdev_child
[c
],
685 fnvlist_add_nvlist_array(nv
, ZPOOL_CONFIG_CHILDREN
,
686 (const nvlist_t
* const *)child
, vd
->vdev_children
);
688 for (c
= 0; c
< vd
->vdev_children
; c
++)
689 nvlist_free(child
[c
]);
691 kmem_free(child
, vd
->vdev_children
* sizeof (nvlist_t
*));
694 const char *aux
= NULL
;
696 if (vd
->vdev_offline
&& !vd
->vdev_tmpoffline
)
697 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_OFFLINE
, B_TRUE
);
698 if (vd
->vdev_resilver_txg
!= 0)
699 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_RESILVER_TXG
,
700 vd
->vdev_resilver_txg
);
701 if (vd
->vdev_rebuild_txg
!= 0)
702 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_REBUILD_TXG
,
703 vd
->vdev_rebuild_txg
);
704 if (vd
->vdev_faulted
)
705 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_FAULTED
, B_TRUE
);
706 if (vd
->vdev_degraded
)
707 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_DEGRADED
, B_TRUE
);
708 if (vd
->vdev_removed
)
709 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_REMOVED
, B_TRUE
);
710 if (vd
->vdev_unspare
)
711 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_UNSPARE
, B_TRUE
);
713 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_IS_HOLE
, B_TRUE
);
715 /* Set the reason why we're FAULTED/DEGRADED. */
716 switch (vd
->vdev_stat
.vs_aux
) {
717 case VDEV_AUX_ERR_EXCEEDED
:
718 aux
= "err_exceeded";
721 case VDEV_AUX_EXTERNAL
:
726 if (aux
!= NULL
&& !vd
->vdev_tmpoffline
) {
727 fnvlist_add_string(nv
, ZPOOL_CONFIG_AUX_STATE
, aux
);
730 * We're healthy - clear any previous AUX_STATE values.
732 if (nvlist_exists(nv
, ZPOOL_CONFIG_AUX_STATE
))
733 nvlist_remove_all(nv
, ZPOOL_CONFIG_AUX_STATE
);
736 if (vd
->vdev_splitting
&& vd
->vdev_orig_guid
!= 0LL) {
737 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_ORIG_GUID
,
746 * Generate a view of the top-level vdevs. If we currently have holes
747 * in the namespace, then generate an array which contains a list of holey
748 * vdevs. Additionally, add the number of top-level children that currently
752 vdev_top_config_generate(spa_t
*spa
, nvlist_t
*config
)
754 vdev_t
*rvd
= spa
->spa_root_vdev
;
758 array
= kmem_alloc(rvd
->vdev_children
* sizeof (uint64_t), KM_SLEEP
);
760 for (c
= 0, idx
= 0; c
< rvd
->vdev_children
; c
++) {
761 vdev_t
*tvd
= rvd
->vdev_child
[c
];
763 if (tvd
->vdev_ishole
) {
769 VERIFY(nvlist_add_uint64_array(config
, ZPOOL_CONFIG_HOLE_ARRAY
,
773 VERIFY(nvlist_add_uint64(config
, ZPOOL_CONFIG_VDEV_CHILDREN
,
774 rvd
->vdev_children
) == 0);
776 kmem_free(array
, rvd
->vdev_children
* sizeof (uint64_t));
780 * Returns the configuration from the label of the given vdev. For vdevs
781 * which don't have a txg value stored on their label (i.e. spares/cache)
782 * or have not been completely initialized (txg = 0) just return
783 * the configuration from the first valid label we find. Otherwise,
784 * find the most up-to-date label that does not exceed the specified
788 vdev_label_read_config(vdev_t
*vd
, uint64_t txg
)
790 spa_t
*spa
= vd
->vdev_spa
;
791 nvlist_t
*config
= NULL
;
792 vdev_phys_t
*vp
[VDEV_LABELS
];
793 abd_t
*vp_abd
[VDEV_LABELS
];
794 zio_t
*zio
[VDEV_LABELS
];
795 uint64_t best_txg
= 0;
796 uint64_t label_txg
= 0;
798 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
799 ZIO_FLAG_SPECULATIVE
;
801 ASSERT(vd
->vdev_validate_thread
== curthread
||
802 spa_config_held(spa
, SCL_STATE_ALL
, RW_WRITER
) == SCL_STATE_ALL
);
804 if (!vdev_readable(vd
))
808 * The label for a dRAID distributed spare is not stored on disk.
809 * Instead it is generated when needed which allows us to bypass
810 * the pipeline when reading the config from the label.
812 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
813 return (vdev_draid_read_config_spare(vd
));
815 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
816 vp_abd
[l
] = abd_alloc_linear(sizeof (vdev_phys_t
), B_TRUE
);
817 vp
[l
] = abd_to_buf(vp_abd
[l
]);
821 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
822 zio
[l
] = zio_root(spa
, NULL
, NULL
, flags
);
824 vdev_label_read(zio
[l
], vd
, l
, vp_abd
[l
],
825 offsetof(vdev_label_t
, vl_vdev_phys
), sizeof (vdev_phys_t
),
828 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
829 nvlist_t
*label
= NULL
;
831 if (zio_wait(zio
[l
]) == 0 &&
832 nvlist_unpack(vp
[l
]->vp_nvlist
, sizeof (vp
[l
]->vp_nvlist
),
835 * Auxiliary vdevs won't have txg values in their
836 * labels and newly added vdevs may not have been
837 * completely initialized so just return the
838 * configuration from the first valid label we
841 error
= nvlist_lookup_uint64(label
,
842 ZPOOL_CONFIG_POOL_TXG
, &label_txg
);
843 if ((error
|| label_txg
== 0) && !config
) {
845 for (l
++; l
< VDEV_LABELS
; l
++)
848 } else if (label_txg
<= txg
&& label_txg
> best_txg
) {
849 best_txg
= label_txg
;
851 config
= fnvlist_dup(label
);
861 if (config
== NULL
&& !(flags
& ZIO_FLAG_TRYHARD
)) {
862 flags
|= ZIO_FLAG_TRYHARD
;
867 * We found a valid label but it didn't pass txg restrictions.
869 if (config
== NULL
&& label_txg
!= 0) {
870 vdev_dbgmsg(vd
, "label discarded as txg is too large "
871 "(%llu > %llu)", (u_longlong_t
)label_txg
,
875 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
883 * Determine if a device is in use. The 'spare_guid' parameter will be filled
884 * in with the device guid if this spare is active elsewhere on the system.
887 vdev_inuse(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
,
888 uint64_t *spare_guid
, uint64_t *l2cache_guid
)
890 spa_t
*spa
= vd
->vdev_spa
;
891 uint64_t state
, pool_guid
, device_guid
, txg
, spare_pool
;
898 *l2cache_guid
= 0ULL;
901 * Read the label, if any, and perform some basic sanity checks.
903 if ((label
= vdev_label_read_config(vd
, -1ULL)) == NULL
)
906 (void) nvlist_lookup_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
909 if (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_STATE
,
911 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_GUID
,
912 &device_guid
) != 0) {
917 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
918 (nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_GUID
,
920 nvlist_lookup_uint64(label
, ZPOOL_CONFIG_POOL_TXG
,
929 * Check to see if this device indeed belongs to the pool it claims to
930 * be a part of. The only way this is allowed is if the device is a hot
931 * spare (which we check for later on).
933 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
934 !spa_guid_exists(pool_guid
, device_guid
) &&
935 !spa_spare_exists(device_guid
, NULL
, NULL
) &&
936 !spa_l2cache_exists(device_guid
, NULL
))
940 * If the transaction group is zero, then this an initialized (but
941 * unused) label. This is only an error if the create transaction
942 * on-disk is the same as the one we're using now, in which case the
943 * user has attempted to add the same vdev multiple times in the same
946 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
947 txg
== 0 && vdtxg
== crtxg
)
951 * Check to see if this is a spare device. We do an explicit check for
952 * spa_has_spare() here because it may be on our pending list of spares
955 if (spa_spare_exists(device_guid
, &spare_pool
, NULL
) ||
956 spa_has_spare(spa
, device_guid
)) {
958 *spare_guid
= device_guid
;
961 case VDEV_LABEL_CREATE
:
964 case VDEV_LABEL_REPLACE
:
965 return (!spa_has_spare(spa
, device_guid
) ||
968 case VDEV_LABEL_SPARE
:
969 return (spa_has_spare(spa
, device_guid
));
976 * Check to see if this is an l2cache device.
978 if (spa_l2cache_exists(device_guid
, NULL
) ||
979 spa_has_l2cache(spa
, device_guid
)) {
981 *l2cache_guid
= device_guid
;
984 case VDEV_LABEL_CREATE
:
987 case VDEV_LABEL_REPLACE
:
988 return (!spa_has_l2cache(spa
, device_guid
));
990 case VDEV_LABEL_L2CACHE
:
991 return (spa_has_l2cache(spa
, device_guid
));
998 * We can't rely on a pool's state if it's been imported
999 * read-only. Instead we look to see if the pools is marked
1000 * read-only in the namespace and set the state to active.
1002 if (state
!= POOL_STATE_SPARE
&& state
!= POOL_STATE_L2CACHE
&&
1003 (spa
= spa_by_guid(pool_guid
, device_guid
)) != NULL
&&
1004 spa_mode(spa
) == SPA_MODE_READ
)
1005 state
= POOL_STATE_ACTIVE
;
1008 * If the device is marked ACTIVE, then this device is in use by another
1009 * pool on the system.
1011 return (state
== POOL_STATE_ACTIVE
);
1015 vdev_aux_label_generate(vdev_t
*vd
, boolean_t reason_spare
)
1018 * For inactive hot spares and level 2 ARC devices, we generate
1019 * a special label that identifies as a mutually shared hot
1020 * spare or l2cache device. We write the label in case of
1021 * addition or removal of hot spare or l2cache vdev (in which
1022 * case we want to revert the labels).
1024 nvlist_t
*label
= fnvlist_alloc();
1025 fnvlist_add_uint64(label
, ZPOOL_CONFIG_VERSION
,
1026 spa_version(vd
->vdev_spa
));
1027 fnvlist_add_uint64(label
, ZPOOL_CONFIG_POOL_STATE
, reason_spare
?
1028 POOL_STATE_SPARE
: POOL_STATE_L2CACHE
);
1029 fnvlist_add_uint64(label
, ZPOOL_CONFIG_GUID
, vd
->vdev_guid
);
1032 * This is merely to facilitate reporting the ashift of the
1033 * cache device through zdb. The actual retrieval of the
1034 * ashift (in vdev_alloc()) uses the nvlist
1035 * spa->spa_l2cache->sav_config (populated in
1036 * spa_ld_open_aux_vdevs()).
1039 fnvlist_add_uint64(label
, ZPOOL_CONFIG_ASHIFT
, vd
->vdev_ashift
);
1042 * Add path information to help find it during pool import
1044 if (vd
->vdev_path
!= NULL
)
1045 fnvlist_add_string(label
, ZPOOL_CONFIG_PATH
, vd
->vdev_path
);
1046 if (vd
->vdev_devid
!= NULL
)
1047 fnvlist_add_string(label
, ZPOOL_CONFIG_DEVID
, vd
->vdev_devid
);
1048 if (vd
->vdev_physpath
!= NULL
) {
1049 fnvlist_add_string(label
, ZPOOL_CONFIG_PHYS_PATH
,
1056 * Initialize a vdev label. We check to make sure each leaf device is not in
1057 * use, and writable. We put down an initial label which we will later
1058 * overwrite with a complete label. Note that it's important to do this
1059 * sequentially, not in parallel, so that we catch cases of multiple use of the
1060 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
1064 vdev_label_init(vdev_t
*vd
, uint64_t crtxg
, vdev_labeltype_t reason
)
1066 spa_t
*spa
= vd
->vdev_spa
;
1077 uint64_t spare_guid
= 0, l2cache_guid
= 0;
1078 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1079 boolean_t reason_spare
= (reason
== VDEV_LABEL_SPARE
|| (reason
==
1080 VDEV_LABEL_REMOVE
&& vd
->vdev_isspare
));
1081 boolean_t reason_l2cache
= (reason
== VDEV_LABEL_L2CACHE
|| (reason
==
1082 VDEV_LABEL_REMOVE
&& vd
->vdev_isl2cache
));
1084 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1086 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1087 if ((error
= vdev_label_init(vd
->vdev_child
[c
],
1088 crtxg
, reason
)) != 0)
1091 /* Track the creation time for this vdev */
1092 vd
->vdev_crtxg
= crtxg
;
1094 if (!vd
->vdev_ops
->vdev_op_leaf
|| !spa_writeable(spa
))
1098 * Dead vdevs cannot be initialized.
1100 if (vdev_is_dead(vd
))
1101 return (SET_ERROR(EIO
));
1104 * Determine if the vdev is in use.
1106 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPLIT
&&
1107 vdev_inuse(vd
, crtxg
, reason
, &spare_guid
, &l2cache_guid
))
1108 return (SET_ERROR(EBUSY
));
1111 * If this is a request to add or replace a spare or l2cache device
1112 * that is in use elsewhere on the system, then we must update the
1113 * guid (which was initialized to a random value) to reflect the
1114 * actual GUID (which is shared between multiple pools).
1116 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_L2CACHE
&&
1117 spare_guid
!= 0ULL) {
1118 uint64_t guid_delta
= spare_guid
- vd
->vdev_guid
;
1120 vd
->vdev_guid
+= guid_delta
;
1122 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
1123 pvd
->vdev_guid_sum
+= guid_delta
;
1126 * If this is a replacement, then we want to fallthrough to the
1127 * rest of the code. If we're adding a spare, then it's already
1128 * labeled appropriately and we can just return.
1130 if (reason
== VDEV_LABEL_SPARE
)
1132 ASSERT(reason
== VDEV_LABEL_REPLACE
||
1133 reason
== VDEV_LABEL_SPLIT
);
1136 if (reason
!= VDEV_LABEL_REMOVE
&& reason
!= VDEV_LABEL_SPARE
&&
1137 l2cache_guid
!= 0ULL) {
1138 uint64_t guid_delta
= l2cache_guid
- vd
->vdev_guid
;
1140 vd
->vdev_guid
+= guid_delta
;
1142 for (vdev_t
*pvd
= vd
; pvd
!= NULL
; pvd
= pvd
->vdev_parent
)
1143 pvd
->vdev_guid_sum
+= guid_delta
;
1146 * If this is a replacement, then we want to fallthrough to the
1147 * rest of the code. If we're adding an l2cache, then it's
1148 * already labeled appropriately and we can just return.
1150 if (reason
== VDEV_LABEL_L2CACHE
)
1152 ASSERT(reason
== VDEV_LABEL_REPLACE
);
1156 * Initialize its label.
1158 vp_abd
= abd_alloc_linear(sizeof (vdev_phys_t
), B_TRUE
);
1159 abd_zero(vp_abd
, sizeof (vdev_phys_t
));
1160 vp
= abd_to_buf(vp_abd
);
1163 * Generate a label describing the pool and our top-level vdev.
1164 * We mark it as being from txg 0 to indicate that it's not
1165 * really part of an active pool just yet. The labels will
1166 * be written again with a meaningful txg by spa_sync().
1168 if (reason_spare
|| reason_l2cache
) {
1169 label
= vdev_aux_label_generate(vd
, reason_spare
);
1172 * When spare or l2cache (aux) vdev is added during pool
1173 * creation, spa->spa_uberblock is not written until this
1174 * point. Write it on next config sync.
1176 if (uberblock_verify(&spa
->spa_uberblock
))
1177 spa
->spa_aux_sync_uber
= B_TRUE
;
1179 uint64_t txg
= 0ULL;
1181 if (reason
== VDEV_LABEL_SPLIT
)
1182 txg
= spa
->spa_uberblock
.ub_txg
;
1183 label
= spa_config_generate(spa
, vd
, txg
, B_FALSE
);
1186 * Add our creation time. This allows us to detect multiple
1187 * vdev uses as described above, and automatically expires if we
1190 VERIFY(nvlist_add_uint64(label
, ZPOOL_CONFIG_CREATE_TXG
,
1194 buf
= vp
->vp_nvlist
;
1195 buflen
= sizeof (vp
->vp_nvlist
);
1197 error
= nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
);
1201 /* EFAULT means nvlist_pack ran out of room */
1202 return (SET_ERROR(error
== EFAULT
? ENAMETOOLONG
: EINVAL
));
1206 * Initialize uberblock template.
1208 ub_abd
= abd_alloc_linear(VDEV_UBERBLOCK_RING
, B_TRUE
);
1209 abd_copy_from_buf(ub_abd
, &spa
->spa_uberblock
, sizeof (uberblock_t
));
1210 abd_zero_off(ub_abd
, sizeof (uberblock_t
),
1211 VDEV_UBERBLOCK_RING
- sizeof (uberblock_t
));
1212 ub
= abd_to_buf(ub_abd
);
1215 /* Initialize the 2nd padding area. */
1216 bootenv
= abd_alloc_for_io(VDEV_PAD_SIZE
, B_TRUE
);
1217 abd_zero(bootenv
, VDEV_PAD_SIZE
);
1220 * Write everything in parallel.
1223 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1225 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1227 vdev_label_write(zio
, vd
, l
, vp_abd
,
1228 offsetof(vdev_label_t
, vl_vdev_phys
),
1229 sizeof (vdev_phys_t
), NULL
, NULL
, flags
);
1232 * Skip the 1st padding area.
1233 * Zero out the 2nd padding area where it might have
1234 * left over data from previous filesystem format.
1236 vdev_label_write(zio
, vd
, l
, bootenv
,
1237 offsetof(vdev_label_t
, vl_be
),
1238 VDEV_PAD_SIZE
, NULL
, NULL
, flags
);
1240 vdev_label_write(zio
, vd
, l
, ub_abd
,
1241 offsetof(vdev_label_t
, vl_uberblock
),
1242 VDEV_UBERBLOCK_RING
, NULL
, NULL
, flags
);
1245 error
= zio_wait(zio
);
1247 if (error
!= 0 && !(flags
& ZIO_FLAG_TRYHARD
)) {
1248 flags
|= ZIO_FLAG_TRYHARD
;
1258 * If this vdev hasn't been previously identified as a spare, then we
1259 * mark it as such only if a) we are labeling it as a spare, or b) it
1260 * exists as a spare elsewhere in the system. Do the same for
1261 * level 2 ARC devices.
1263 if (error
== 0 && !vd
->vdev_isspare
&&
1264 (reason
== VDEV_LABEL_SPARE
||
1265 spa_spare_exists(vd
->vdev_guid
, NULL
, NULL
)))
1268 if (error
== 0 && !vd
->vdev_isl2cache
&&
1269 (reason
== VDEV_LABEL_L2CACHE
||
1270 spa_l2cache_exists(vd
->vdev_guid
, NULL
)))
1271 spa_l2cache_add(vd
);
1277 * Done callback for vdev_label_read_bootenv_impl. If this is the first
1278 * callback to finish, store our abd in the callback pointer. Otherwise, we
1279 * just free our abd and return.
1282 vdev_label_read_bootenv_done(zio_t
*zio
)
1284 zio_t
*rio
= zio
->io_private
;
1285 abd_t
**cbp
= rio
->io_private
;
1287 ASSERT3U(zio
->io_size
, ==, VDEV_PAD_SIZE
);
1289 if (zio
->io_error
== 0) {
1290 mutex_enter(&rio
->io_lock
);
1292 /* Will free this buffer in vdev_label_read_bootenv. */
1295 abd_free(zio
->io_abd
);
1297 mutex_exit(&rio
->io_lock
);
1299 abd_free(zio
->io_abd
);
1304 vdev_label_read_bootenv_impl(zio_t
*zio
, vdev_t
*vd
, int flags
)
1306 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1307 vdev_label_read_bootenv_impl(zio
, vd
->vdev_child
[c
], flags
);
1310 * We just use the first label that has a correct checksum; the
1311 * bootloader should have rewritten them all to be the same on boot,
1312 * and any changes we made since boot have been the same across all
1315 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_readable(vd
)) {
1316 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1317 vdev_label_read(zio
, vd
, l
,
1318 abd_alloc_linear(VDEV_PAD_SIZE
, B_FALSE
),
1319 offsetof(vdev_label_t
, vl_be
), VDEV_PAD_SIZE
,
1320 vdev_label_read_bootenv_done
, zio
, flags
);
1326 vdev_label_read_bootenv(vdev_t
*rvd
, nvlist_t
*bootenv
)
1329 spa_t
*spa
= rvd
->vdev_spa
;
1331 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
1332 ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_TRYHARD
;
1335 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1337 zio_t
*zio
= zio_root(spa
, NULL
, &abd
, flags
);
1338 vdev_label_read_bootenv_impl(zio
, rvd
, flags
);
1339 int err
= zio_wait(zio
);
1343 vdev_boot_envblock_t
*vbe
= abd_to_buf(abd
);
1345 vbe
->vbe_version
= ntohll(vbe
->vbe_version
);
1346 switch (vbe
->vbe_version
) {
1349 * if we have textual data in vbe_bootenv, create nvlist
1350 * with key "envmap".
1352 fnvlist_add_uint64(bootenv
, BOOTENV_VERSION
, VB_RAW
);
1353 vbe
->vbe_bootenv
[sizeof (vbe
->vbe_bootenv
) - 1] = '\0';
1354 fnvlist_add_string(bootenv
, GRUB_ENVMAP
,
1359 err
= nvlist_unpack(vbe
->vbe_bootenv
,
1360 sizeof (vbe
->vbe_bootenv
), &config
, 0);
1362 fnvlist_merge(bootenv
, config
);
1363 nvlist_free(config
);
1368 /* Check for FreeBSD zfs bootonce command string */
1369 buf
= abd_to_buf(abd
);
1371 fnvlist_add_uint64(bootenv
, BOOTENV_VERSION
,
1375 fnvlist_add_string(bootenv
, FREEBSD_BOOTONCE
, buf
);
1379 * abd was allocated in vdev_label_read_bootenv_impl()
1383 * If we managed to read any successfully,
1392 vdev_label_write_bootenv(vdev_t
*vd
, nvlist_t
*env
)
1395 spa_t
*spa
= vd
->vdev_spa
;
1396 vdev_boot_envblock_t
*bootenv
;
1397 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
1403 error
= nvlist_size(env
, &nvsize
, NV_ENCODE_XDR
);
1405 return (SET_ERROR(error
));
1407 if (nvsize
>= sizeof (bootenv
->vbe_bootenv
)) {
1408 return (SET_ERROR(E2BIG
));
1411 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
1414 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1417 child_err
= vdev_label_write_bootenv(vd
->vdev_child
[c
], env
);
1419 * As long as any of the disks managed to write all of their
1420 * labels successfully, return success.
1426 if (!vd
->vdev_ops
->vdev_op_leaf
|| vdev_is_dead(vd
) ||
1427 !vdev_writeable(vd
)) {
1430 ASSERT3U(sizeof (*bootenv
), ==, VDEV_PAD_SIZE
);
1431 abd_t
*abd
= abd_alloc_for_io(VDEV_PAD_SIZE
, B_TRUE
);
1432 abd_zero(abd
, VDEV_PAD_SIZE
);
1434 bootenv
= abd_borrow_buf_copy(abd
, VDEV_PAD_SIZE
);
1435 nvbuf
= bootenv
->vbe_bootenv
;
1436 nvsize
= sizeof (bootenv
->vbe_bootenv
);
1438 bootenv
->vbe_version
= fnvlist_lookup_uint64(env
, BOOTENV_VERSION
);
1439 switch (bootenv
->vbe_version
) {
1441 if (nvlist_lookup_string(env
, GRUB_ENVMAP
, &tmp
) == 0) {
1442 (void) strlcpy(bootenv
->vbe_bootenv
, tmp
, nvsize
);
1448 error
= nvlist_pack(env
, &nvbuf
, &nvsize
, NV_ENCODE_XDR
,
1458 bootenv
->vbe_version
= htonll(bootenv
->vbe_version
);
1459 abd_return_buf_copy(abd
, bootenv
, VDEV_PAD_SIZE
);
1462 return (SET_ERROR(error
));
1466 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1467 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1468 vdev_label_write(zio
, vd
, l
, abd
,
1469 offsetof(vdev_label_t
, vl_be
),
1470 VDEV_PAD_SIZE
, NULL
, NULL
, flags
);
1473 error
= zio_wait(zio
);
1474 if (error
!= 0 && !(flags
& ZIO_FLAG_TRYHARD
)) {
1475 flags
|= ZIO_FLAG_TRYHARD
;
1484 * ==========================================================================
1485 * uberblock load/sync
1486 * ==========================================================================
1490 * Consider the following situation: txg is safely synced to disk. We've
1491 * written the first uberblock for txg + 1, and then we lose power. When we
1492 * come back up, we fail to see the uberblock for txg + 1 because, say,
1493 * it was on a mirrored device and the replica to which we wrote txg + 1
1494 * is now offline. If we then make some changes and sync txg + 1, and then
1495 * the missing replica comes back, then for a few seconds we'll have two
1496 * conflicting uberblocks on disk with the same txg. The solution is simple:
1497 * among uberblocks with equal txg, choose the one with the latest timestamp.
1500 vdev_uberblock_compare(const uberblock_t
*ub1
, const uberblock_t
*ub2
)
1502 int cmp
= TREE_CMP(ub1
->ub_txg
, ub2
->ub_txg
);
1507 cmp
= TREE_CMP(ub1
->ub_timestamp
, ub2
->ub_timestamp
);
1512 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1513 * ZFS, e.g. OpenZFS >= 0.7.
1515 * If one ub has MMP and the other does not, they were written by
1516 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as
1519 * Since timestamp and txg are the same if we get this far, either is
1520 * acceptable for importing the pool.
1522 unsigned int seq1
= 0;
1523 unsigned int seq2
= 0;
1525 if (MMP_VALID(ub1
) && MMP_SEQ_VALID(ub1
))
1526 seq1
= MMP_SEQ(ub1
);
1528 if (MMP_VALID(ub2
) && MMP_SEQ_VALID(ub2
))
1529 seq2
= MMP_SEQ(ub2
);
1531 return (TREE_CMP(seq1
, seq2
));
1535 uberblock_t ubl_latest
; /* Most recent uberblock */
1536 uberblock_t
*ubl_ubbest
; /* Best uberblock (w/r/t max_txg) */
1537 vdev_t
*ubl_vd
; /* vdev associated with the above */
1541 vdev_uberblock_load_done(zio_t
*zio
)
1543 vdev_t
*vd
= zio
->io_vd
;
1544 spa_t
*spa
= zio
->io_spa
;
1545 zio_t
*rio
= zio
->io_private
;
1546 uberblock_t
*ub
= abd_to_buf(zio
->io_abd
);
1547 struct ubl_cbdata
*cbp
= rio
->io_private
;
1549 ASSERT3U(zio
->io_size
, ==, VDEV_UBERBLOCK_SIZE(vd
));
1551 if (zio
->io_error
== 0 && uberblock_verify(ub
) == 0) {
1552 mutex_enter(&rio
->io_lock
);
1553 if (vdev_uberblock_compare(ub
, &cbp
->ubl_latest
) > 0) {
1554 cbp
->ubl_latest
= *ub
;
1556 if (ub
->ub_txg
<= spa
->spa_load_max_txg
&&
1557 vdev_uberblock_compare(ub
, cbp
->ubl_ubbest
) > 0) {
1559 * Keep track of the vdev in which this uberblock
1560 * was found. We will use this information later
1561 * to obtain the config nvlist associated with
1564 *cbp
->ubl_ubbest
= *ub
;
1567 mutex_exit(&rio
->io_lock
);
1570 abd_free(zio
->io_abd
);
1574 vdev_uberblock_load_impl(zio_t
*zio
, vdev_t
*vd
, int flags
,
1575 struct ubl_cbdata
*cbp
)
1577 for (int c
= 0; c
< vd
->vdev_children
; c
++)
1578 vdev_uberblock_load_impl(zio
, vd
->vdev_child
[c
], flags
, cbp
);
1580 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_readable(vd
) &&
1581 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
1582 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
1583 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
1584 vdev_label_read(zio
, vd
, l
,
1585 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd
),
1586 B_TRUE
), VDEV_UBERBLOCK_OFFSET(vd
, n
),
1587 VDEV_UBERBLOCK_SIZE(vd
),
1588 vdev_uberblock_load_done
, zio
, flags
);
1595 * Reads the 'best' uberblock from disk along with its associated
1596 * configuration. First, we read the uberblock array of each label of each
1597 * vdev, keeping track of the uberblock with the highest txg in each array.
1598 * Then, we read the configuration from the same vdev as the best uberblock.
1601 vdev_uberblock_load(vdev_t
*rvd
, uberblock_t
*ub
, nvlist_t
**config
)
1604 spa_t
*spa
= rvd
->vdev_spa
;
1605 struct ubl_cbdata cb
;
1606 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
1607 ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_TRYHARD
;
1612 memset(ub
, 0, sizeof (uberblock_t
));
1613 memset(&cb
, 0, sizeof (cb
));
1618 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1619 zio
= zio_root(spa
, NULL
, &cb
, flags
);
1620 vdev_uberblock_load_impl(zio
, rvd
, flags
, &cb
);
1621 (void) zio_wait(zio
);
1624 * It's possible that the best uberblock was discovered on a label
1625 * that has a configuration which was written in a future txg.
1626 * Search all labels on this vdev to find the configuration that
1627 * matches the txg for our uberblock.
1629 if (cb
.ubl_vd
!= NULL
) {
1630 vdev_dbgmsg(cb
.ubl_vd
, "best uberblock found for spa %s. "
1631 "txg %llu", spa
->spa_name
, (u_longlong_t
)ub
->ub_txg
);
1633 if (ub
->ub_raidz_reflow_info
!=
1634 cb
.ubl_latest
.ub_raidz_reflow_info
) {
1635 vdev_dbgmsg(cb
.ubl_vd
,
1636 "spa=%s best uberblock (txg=%llu info=0x%llx) "
1637 "has different raidz_reflow_info than latest "
1638 "uberblock (txg=%llu info=0x%llx)",
1640 (u_longlong_t
)ub
->ub_txg
,
1641 (u_longlong_t
)ub
->ub_raidz_reflow_info
,
1642 (u_longlong_t
)cb
.ubl_latest
.ub_txg
,
1643 (u_longlong_t
)cb
.ubl_latest
.ub_raidz_reflow_info
);
1644 memset(ub
, 0, sizeof (uberblock_t
));
1645 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1649 *config
= vdev_label_read_config(cb
.ubl_vd
, ub
->ub_txg
);
1650 if (*config
== NULL
&& spa
->spa_extreme_rewind
) {
1651 vdev_dbgmsg(cb
.ubl_vd
, "failed to read label config. "
1652 "Trying again without txg restrictions.");
1653 *config
= vdev_label_read_config(cb
.ubl_vd
, UINT64_MAX
);
1655 if (*config
== NULL
) {
1656 vdev_dbgmsg(cb
.ubl_vd
, "failed to read label config");
1659 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1663 * For use when a leaf vdev is expanded.
1664 * The location of labels 2 and 3 changed, and at the new location the
1665 * uberblock rings are either empty or contain garbage. The sync will write
1666 * new configs there because the vdev is dirty, but expansion also needs the
1667 * uberblock rings copied. Read them from label 0 which did not move.
1669 * Since the point is to populate labels {2,3} with valid uberblocks,
1670 * we zero uberblocks we fail to read or which are not valid.
1674 vdev_copy_uberblocks(vdev_t
*vd
)
1678 int locks
= (SCL_L2ARC
| SCL_ZIO
);
1679 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
|
1680 ZIO_FLAG_SPECULATIVE
;
1682 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_STATE
, RW_READER
) ==
1684 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1687 * No uberblocks are stored on distributed spares, they may be
1688 * safely skipped when expanding a leaf vdev.
1690 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1693 spa_config_enter(vd
->vdev_spa
, locks
, FTAG
, RW_READER
);
1695 ub_abd
= abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd
), B_TRUE
);
1697 write_zio
= zio_root(vd
->vdev_spa
, NULL
, NULL
, flags
);
1698 for (int n
= 0; n
< VDEV_UBERBLOCK_COUNT(vd
); n
++) {
1699 const int src_label
= 0;
1702 zio
= zio_root(vd
->vdev_spa
, NULL
, NULL
, flags
);
1703 vdev_label_read(zio
, vd
, src_label
, ub_abd
,
1704 VDEV_UBERBLOCK_OFFSET(vd
, n
), VDEV_UBERBLOCK_SIZE(vd
),
1707 if (zio_wait(zio
) || uberblock_verify(abd_to_buf(ub_abd
)))
1708 abd_zero(ub_abd
, VDEV_UBERBLOCK_SIZE(vd
));
1710 for (int l
= 2; l
< VDEV_LABELS
; l
++)
1711 vdev_label_write(write_zio
, vd
, l
, ub_abd
,
1712 VDEV_UBERBLOCK_OFFSET(vd
, n
),
1713 VDEV_UBERBLOCK_SIZE(vd
), NULL
, NULL
,
1714 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1716 (void) zio_wait(write_zio
);
1718 spa_config_exit(vd
->vdev_spa
, locks
, FTAG
);
1724 * On success, increment root zio's count of good writes.
1725 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1728 vdev_uberblock_sync_done(zio_t
*zio
)
1730 uint64_t *good_writes
= zio
->io_private
;
1732 if (zio
->io_error
== 0 && zio
->io_vd
->vdev_top
->vdev_ms_array
!= 0)
1733 atomic_inc_64(good_writes
);
1737 * Write the uberblock to all labels of all leaves of the specified vdev.
1740 vdev_uberblock_sync(zio_t
*zio
, uint64_t *good_writes
,
1741 uberblock_t
*ub
, vdev_t
*vd
, int flags
)
1743 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++) {
1744 vdev_uberblock_sync(zio
, good_writes
,
1745 ub
, vd
->vdev_child
[c
], flags
);
1748 if (!vd
->vdev_ops
->vdev_op_leaf
)
1751 if (!vdev_writeable(vd
))
1755 * There's no need to write uberblocks to a distributed spare, they
1756 * are already stored on all the leaves of the parent dRAID. For
1757 * this same reason vdev_uberblock_load_impl() skips distributed
1758 * spares when reading uberblocks.
1760 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1763 /* If the vdev was expanded, need to copy uberblock rings. */
1764 if (vd
->vdev_state
== VDEV_STATE_HEALTHY
&&
1765 vd
->vdev_copy_uberblocks
== B_TRUE
) {
1766 vdev_copy_uberblocks(vd
);
1767 vd
->vdev_copy_uberblocks
= B_FALSE
;
1771 * We chose a slot based on the txg. If this uberblock has a special
1772 * RAIDZ expansion state, then it is essentially an update of the
1773 * current uberblock (it has the same txg). However, the current
1774 * state is committed, so we want to write it to a different slot. If
1775 * we overwrote the same slot, and we lose power during the uberblock
1776 * write, and the disk does not do single-sector overwrites
1777 * atomically (even though it is required to - i.e. we should see
1778 * either the old or the new uberblock), then we could lose this
1779 * txg's uberblock. Rewinding to the previous txg's uberblock may not
1780 * be possible because RAIDZ expansion may have already overwritten
1781 * some of the data, so we need the progress indicator in the
1784 int m
= spa_multihost(vd
->vdev_spa
) ? MMP_BLOCKS_PER_LABEL
: 0;
1785 int n
= (ub
->ub_txg
- (RRSS_GET_STATE(ub
) == RRSS_SCRATCH_VALID
)) %
1786 (VDEV_UBERBLOCK_COUNT(vd
) - m
);
1788 /* Copy the uberblock_t into the ABD */
1789 abd_t
*ub_abd
= abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd
), B_TRUE
);
1790 abd_copy_from_buf(ub_abd
, ub
, sizeof (uberblock_t
));
1791 abd_zero_off(ub_abd
, sizeof (uberblock_t
),
1792 VDEV_UBERBLOCK_SIZE(vd
) - sizeof (uberblock_t
));
1794 for (int l
= 0; l
< VDEV_LABELS
; l
++)
1795 vdev_label_write(zio
, vd
, l
, ub_abd
,
1796 VDEV_UBERBLOCK_OFFSET(vd
, n
), VDEV_UBERBLOCK_SIZE(vd
),
1797 vdev_uberblock_sync_done
, good_writes
,
1798 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1803 /* Sync the uberblocks to all vdevs in svd[] */
1805 vdev_uberblock_sync_list(vdev_t
**svd
, int svdcount
, uberblock_t
*ub
, int flags
)
1807 spa_t
*spa
= svd
[0]->vdev_spa
;
1809 uint64_t good_writes
= 0;
1811 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1813 for (int v
= 0; v
< svdcount
; v
++)
1814 vdev_uberblock_sync(zio
, &good_writes
, ub
, svd
[v
], flags
);
1816 if (spa
->spa_aux_sync_uber
) {
1817 for (int v
= 0; v
< spa
->spa_spares
.sav_count
; v
++) {
1818 vdev_uberblock_sync(zio
, &good_writes
, ub
,
1819 spa
->spa_spares
.sav_vdevs
[v
], flags
);
1821 for (int v
= 0; v
< spa
->spa_l2cache
.sav_count
; v
++) {
1822 vdev_uberblock_sync(zio
, &good_writes
, ub
,
1823 spa
->spa_l2cache
.sav_vdevs
[v
], flags
);
1826 (void) zio_wait(zio
);
1829 * Flush the uberblocks to disk. This ensures that the odd labels
1830 * are no longer needed (because the new uberblocks and the even
1831 * labels are safely on disk), so it is safe to overwrite them.
1833 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1835 for (int v
= 0; v
< svdcount
; v
++) {
1836 if (vdev_writeable(svd
[v
])) {
1837 zio_flush(zio
, svd
[v
]);
1840 if (spa
->spa_aux_sync_uber
) {
1841 spa
->spa_aux_sync_uber
= B_FALSE
;
1842 for (int v
= 0; v
< spa
->spa_spares
.sav_count
; v
++) {
1843 if (vdev_writeable(spa
->spa_spares
.sav_vdevs
[v
])) {
1844 zio_flush(zio
, spa
->spa_spares
.sav_vdevs
[v
]);
1847 for (int v
= 0; v
< spa
->spa_l2cache
.sav_count
; v
++) {
1848 if (vdev_writeable(spa
->spa_l2cache
.sav_vdevs
[v
])) {
1849 zio_flush(zio
, spa
->spa_l2cache
.sav_vdevs
[v
]);
1854 (void) zio_wait(zio
);
1856 return (good_writes
>= 1 ? 0 : EIO
);
1860 * On success, increment the count of good writes for our top-level vdev.
1863 vdev_label_sync_done(zio_t
*zio
)
1865 uint64_t *good_writes
= zio
->io_private
;
1867 if (zio
->io_error
== 0)
1868 atomic_inc_64(good_writes
);
1872 * If there weren't enough good writes, indicate failure to the parent.
1875 vdev_label_sync_top_done(zio_t
*zio
)
1877 uint64_t *good_writes
= zio
->io_private
;
1879 if (*good_writes
== 0)
1880 zio
->io_error
= SET_ERROR(EIO
);
1882 kmem_free(good_writes
, sizeof (uint64_t));
1886 * We ignore errors for log and cache devices, simply free the private data.
1889 vdev_label_sync_ignore_done(zio_t
*zio
)
1891 kmem_free(zio
->io_private
, sizeof (uint64_t));
1895 * Write all even or odd labels to all leaves of the specified vdev.
1898 vdev_label_sync(zio_t
*zio
, uint64_t *good_writes
,
1899 vdev_t
*vd
, int l
, uint64_t txg
, int flags
)
1906 vdev_t
*pvd
= vd
->vdev_parent
;
1907 boolean_t spare_in_use
= B_FALSE
;
1909 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
1910 vdev_label_sync(zio
, good_writes
,
1911 vd
->vdev_child
[c
], l
, txg
, flags
);
1914 if (!vd
->vdev_ops
->vdev_op_leaf
)
1917 if (!vdev_writeable(vd
))
1921 * The top-level config never needs to be written to a distributed
1922 * spare. When read vdev_dspare_label_read_config() will generate
1923 * the config for the vdev_label_read_config().
1925 if (vd
->vdev_ops
== &vdev_draid_spare_ops
)
1928 if (pvd
&& pvd
->vdev_ops
== &vdev_spare_ops
)
1929 spare_in_use
= B_TRUE
;
1932 * Generate a label describing the top-level config to which we belong.
1934 if ((vd
->vdev_isspare
&& !spare_in_use
) || vd
->vdev_isl2cache
) {
1935 label
= vdev_aux_label_generate(vd
, vd
->vdev_isspare
);
1937 label
= spa_config_generate(vd
->vdev_spa
, vd
, txg
, B_FALSE
);
1940 vp_abd
= abd_alloc_linear(sizeof (vdev_phys_t
), B_TRUE
);
1941 abd_zero(vp_abd
, sizeof (vdev_phys_t
));
1942 vp
= abd_to_buf(vp_abd
);
1944 buf
= vp
->vp_nvlist
;
1945 buflen
= sizeof (vp
->vp_nvlist
);
1947 if (!nvlist_pack(label
, &buf
, &buflen
, NV_ENCODE_XDR
, KM_SLEEP
)) {
1948 for (; l
< VDEV_LABELS
; l
+= 2) {
1949 vdev_label_write(zio
, vd
, l
, vp_abd
,
1950 offsetof(vdev_label_t
, vl_vdev_phys
),
1951 sizeof (vdev_phys_t
),
1952 vdev_label_sync_done
, good_writes
,
1953 flags
| ZIO_FLAG_DONT_PROPAGATE
);
1962 vdev_label_sync_list(spa_t
*spa
, int l
, uint64_t txg
, int flags
)
1964 list_t
*dl
= &spa
->spa_config_dirty_list
;
1970 * Write the new labels to disk.
1972 zio
= zio_root(spa
, NULL
, NULL
, flags
);
1974 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
)) {
1975 uint64_t *good_writes
;
1977 ASSERT(!vd
->vdev_ishole
);
1979 good_writes
= kmem_zalloc(sizeof (uint64_t), KM_SLEEP
);
1980 zio_t
*vio
= zio_null(zio
, spa
, NULL
,
1981 (vd
->vdev_islog
|| vd
->vdev_aux
!= NULL
) ?
1982 vdev_label_sync_ignore_done
: vdev_label_sync_top_done
,
1983 good_writes
, flags
);
1984 vdev_label_sync(vio
, good_writes
, vd
, l
, txg
, flags
);
1989 * AUX path may have changed during import
1991 spa_aux_vdev_t
*sav
[2] = {&spa
->spa_spares
, &spa
->spa_l2cache
};
1992 for (int i
= 0; i
< 2; i
++) {
1993 for (int v
= 0; v
< sav
[i
]->sav_count
; v
++) {
1994 uint64_t *good_writes
;
1995 if (!sav
[i
]->sav_label_sync
)
1997 good_writes
= kmem_zalloc(sizeof (uint64_t), KM_SLEEP
);
1998 zio_t
*vio
= zio_null(zio
, spa
, NULL
,
1999 vdev_label_sync_ignore_done
, good_writes
, flags
);
2000 vdev_label_sync(vio
, good_writes
, sav
[i
]->sav_vdevs
[v
],
2006 error
= zio_wait(zio
);
2009 * Flush the new labels to disk.
2011 zio
= zio_root(spa
, NULL
, NULL
, flags
);
2013 for (vd
= list_head(dl
); vd
!= NULL
; vd
= list_next(dl
, vd
))
2016 for (int i
= 0; i
< 2; i
++) {
2017 if (!sav
[i
]->sav_label_sync
)
2019 for (int v
= 0; v
< sav
[i
]->sav_count
; v
++)
2020 zio_flush(zio
, sav
[i
]->sav_vdevs
[v
]);
2022 sav
[i
]->sav_label_sync
= B_FALSE
;
2025 (void) zio_wait(zio
);
2031 * Sync the uberblock and any changes to the vdev configuration.
2033 * The order of operations is carefully crafted to ensure that
2034 * if the system panics or loses power at any time, the state on disk
2035 * is still transactionally consistent. The in-line comments below
2036 * describe the failure semantics at each stage.
2038 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
2039 * at any time, you can just call it again, and it will resume its work.
2042 vdev_config_sync(vdev_t
**svd
, int svdcount
, uint64_t txg
)
2044 spa_t
*spa
= svd
[0]->vdev_spa
;
2045 uberblock_t
*ub
= &spa
->spa_uberblock
;
2047 int flags
= ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_CANFAIL
;
2049 ASSERT(svdcount
!= 0);
2052 * Normally, we don't want to try too hard to write every label and
2053 * uberblock. If there is a flaky disk, we don't want the rest of the
2054 * sync process to block while we retry. But if we can't write a
2055 * single label out, we should retry with ZIO_FLAG_TRYHARD before
2056 * bailing out and declaring the pool faulted.
2059 if ((flags
& ZIO_FLAG_TRYHARD
) != 0)
2061 flags
|= ZIO_FLAG_TRYHARD
;
2064 ASSERT(ub
->ub_txg
<= txg
);
2067 * If this isn't a resync due to I/O errors,
2068 * and nothing changed in this transaction group,
2069 * and multihost protection isn't enabled,
2070 * and the vdev configuration hasn't changed,
2071 * then there's nothing to do.
2073 if (ub
->ub_txg
< txg
) {
2074 boolean_t changed
= uberblock_update(ub
, spa
->spa_root_vdev
,
2075 txg
, spa
->spa_mmp
.mmp_delay
);
2077 if (!changed
&& list_is_empty(&spa
->spa_config_dirty_list
) &&
2078 !spa_multihost(spa
))
2082 if (txg
> spa_freeze_txg(spa
))
2085 ASSERT(txg
<= spa
->spa_final_txg
);
2088 * Flush the write cache of every disk that's been written to
2089 * in this transaction group. This ensures that all blocks
2090 * written in this txg will be committed to stable storage
2091 * before any uberblock that references them.
2093 zio_t
*zio
= zio_root(spa
, NULL
, NULL
, flags
);
2096 txg_list_head(&spa
->spa_vdev_txg_list
, TXG_CLEAN(txg
)); vd
!= NULL
;
2097 vd
= txg_list_next(&spa
->spa_vdev_txg_list
, vd
, TXG_CLEAN(txg
)))
2100 (void) zio_wait(zio
);
2103 * Sync out the even labels (L0, L2) for every dirty vdev. If the
2104 * system dies in the middle of this process, that's OK: all of the
2105 * even labels that made it to disk will be newer than any uberblock,
2106 * and will therefore be considered invalid. The odd labels (L1, L3),
2107 * which have not yet been touched, will still be valid. We flush
2108 * the new labels to disk to ensure that all even-label updates
2109 * are committed to stable storage before the uberblock update.
2111 if ((error
= vdev_label_sync_list(spa
, 0, txg
, flags
)) != 0) {
2112 if ((flags
& ZIO_FLAG_TRYHARD
) != 0) {
2113 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2114 "for pool '%s' when syncing out the even labels "
2115 "of dirty vdevs", error
, spa_name(spa
));
2121 * Sync the uberblocks to all vdevs in svd[].
2122 * If the system dies in the middle of this step, there are two cases
2123 * to consider, and the on-disk state is consistent either way:
2125 * (1) If none of the new uberblocks made it to disk, then the
2126 * previous uberblock will be the newest, and the odd labels
2127 * (which had not yet been touched) will be valid with respect
2128 * to that uberblock.
2130 * (2) If one or more new uberblocks made it to disk, then they
2131 * will be the newest, and the even labels (which had all
2132 * been successfully committed) will be valid with respect
2133 * to the new uberblocks.
2135 if ((error
= vdev_uberblock_sync_list(svd
, svdcount
, ub
, flags
)) != 0) {
2136 if ((flags
& ZIO_FLAG_TRYHARD
) != 0) {
2137 zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
2138 "%d for pool '%s'", error
, spa_name(spa
));
2143 if (spa_multihost(spa
))
2144 mmp_update_uberblock(spa
, ub
);
2147 * Sync out odd labels for every dirty vdev. If the system dies
2148 * in the middle of this process, the even labels and the new
2149 * uberblocks will suffice to open the pool. The next time
2150 * the pool is opened, the first thing we'll do -- before any
2151 * user data is modified -- is mark every vdev dirty so that
2152 * all labels will be brought up to date. We flush the new labels
2153 * to disk to ensure that all odd-label updates are committed to
2154 * stable storage before the next transaction group begins.
2156 if ((error
= vdev_label_sync_list(spa
, 1, txg
, flags
)) != 0) {
2157 if ((flags
& ZIO_FLAG_TRYHARD
) != 0) {
2158 zfs_dbgmsg("vdev_label_sync_list() returned error %d "
2159 "for pool '%s' when syncing out the odd labels of "
2160 "dirty vdevs", error
, spa_name(spa
));