4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
31 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
35 #include <sys/zio_checksum.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
47 * EREPORT POOL VDEV IO
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
63 * | Aggregate I/O | No associated logical data or device
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
107 * Duplicate ereport Detection
109 * Some ereports are retained momentarily for detecting duplicates. These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
116 static list_t recent_events_list
;
117 static avl_tree_t recent_events_tree
;
118 static kmutex_t recent_events_lock
;
119 static taskqid_t recent_events_cleaner_tqid
;
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
127 static unsigned int zfs_zevent_retain_max
= 2000;
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
134 static unsigned int zfs_zevent_retain_expire_secs
= 900;
136 typedef enum zfs_subclass
{
143 /* common criteria */
144 uint64_t re_pool_guid
;
145 uint64_t re_vdev_guid
;
148 uint64_t re_io_offset
;
149 zfs_subclass_t re_subclass
;
150 zio_priority_t re_io_priority
;
152 /* logical zio criteria (optional) */
153 zbookmark_phys_t re_io_bookmark
;
156 avl_node_t re_tree_link
;
157 list_node_t re_list_link
;
158 uint64_t re_timestamp
;
159 } recent_events_node_t
;
162 recent_events_compare(const void *a
, const void *b
)
164 const recent_events_node_t
*node1
= a
;
165 const recent_events_node_t
*node2
= b
;
169 * The comparison order here is somewhat arbitrary.
170 * What's important is that if every criteria matches, then it
171 * is a duplicate (i.e. compare returns 0)
173 if ((cmp
= TREE_CMP(node1
->re_subclass
, node2
->re_subclass
)) != 0)
175 if ((cmp
= TREE_CMP(node1
->re_pool_guid
, node2
->re_pool_guid
)) != 0)
177 if ((cmp
= TREE_CMP(node1
->re_vdev_guid
, node2
->re_vdev_guid
)) != 0)
179 if ((cmp
= TREE_CMP(node1
->re_io_error
, node2
->re_io_error
)) != 0)
181 if ((cmp
= TREE_CMP(node1
->re_io_priority
, node2
->re_io_priority
)) != 0)
183 if ((cmp
= TREE_CMP(node1
->re_io_size
, node2
->re_io_size
)) != 0)
185 if ((cmp
= TREE_CMP(node1
->re_io_offset
, node2
->re_io_offset
)) != 0)
188 const zbookmark_phys_t
*zb1
= &node1
->re_io_bookmark
;
189 const zbookmark_phys_t
*zb2
= &node2
->re_io_bookmark
;
191 if ((cmp
= TREE_CMP(zb1
->zb_objset
, zb2
->zb_objset
)) != 0)
193 if ((cmp
= TREE_CMP(zb1
->zb_object
, zb2
->zb_object
)) != 0)
195 if ((cmp
= TREE_CMP(zb1
->zb_level
, zb2
->zb_level
)) != 0)
197 if ((cmp
= TREE_CMP(zb1
->zb_blkid
, zb2
->zb_blkid
)) != 0)
204 * workaround: vdev properties don't have inheritance
207 vdev_prop_get_inherited(vdev_t
*vd
, vdev_prop_t prop
)
209 uint64_t propdef
, propval
;
211 propdef
= vdev_prop_default_numeric(prop
);
213 case VDEV_PROP_CHECKSUM_N
:
214 propval
= vd
->vdev_checksum_n
;
216 case VDEV_PROP_CHECKSUM_T
:
217 propval
= vd
->vdev_checksum_t
;
220 propval
= vd
->vdev_io_n
;
223 propval
= vd
->vdev_io_t
;
225 case VDEV_PROP_SLOW_IO_N
:
226 propval
= vd
->vdev_slow_io_n
;
228 case VDEV_PROP_SLOW_IO_T
:
229 propval
= vd
->vdev_slow_io_t
;
236 if (propval
!= propdef
)
239 if (vd
->vdev_parent
== NULL
)
242 return (vdev_prop_get_inherited(vd
->vdev_parent
, prop
));
245 static void zfs_ereport_schedule_cleaner(void);
248 * background task to clean stale recent event nodes.
251 zfs_ereport_cleaner(void *arg
)
253 recent_events_node_t
*entry
;
254 uint64_t now
= gethrtime();
257 * purge expired entries
259 mutex_enter(&recent_events_lock
);
260 while ((entry
= list_tail(&recent_events_list
)) != NULL
) {
261 uint64_t age
= NSEC2SEC(now
- entry
->re_timestamp
);
262 if (age
<= zfs_zevent_retain_expire_secs
)
265 /* remove expired node */
266 avl_remove(&recent_events_tree
, entry
);
267 list_remove(&recent_events_list
, entry
);
268 kmem_free(entry
, sizeof (*entry
));
271 /* Restart the cleaner if more entries remain */
272 recent_events_cleaner_tqid
= 0;
273 if (!list_is_empty(&recent_events_list
))
274 zfs_ereport_schedule_cleaner();
276 mutex_exit(&recent_events_lock
);
280 zfs_ereport_schedule_cleaner(void)
282 ASSERT(MUTEX_HELD(&recent_events_lock
));
284 uint64_t timeout
= SEC2NSEC(zfs_zevent_retain_expire_secs
+ 1);
286 recent_events_cleaner_tqid
= taskq_dispatch_delay(
287 system_delay_taskq
, zfs_ereport_cleaner
, NULL
, TQ_SLEEP
,
288 ddi_get_lbolt() + NSEC_TO_TICK(timeout
));
292 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
295 zfs_ereport_clear(spa_t
*spa
, vdev_t
*vd
)
297 uint64_t vdev_guid
, pool_guid
;
299 ASSERT(vd
!= NULL
|| spa
!= NULL
);
302 pool_guid
= spa_guid(spa
);
304 vdev_guid
= vd
->vdev_guid
;
308 mutex_enter(&recent_events_lock
);
310 recent_events_node_t
*next
= list_head(&recent_events_list
);
311 while (next
!= NULL
) {
312 recent_events_node_t
*entry
= next
;
314 next
= list_next(&recent_events_list
, next
);
316 if (entry
->re_vdev_guid
== vdev_guid
||
317 entry
->re_pool_guid
== pool_guid
) {
318 avl_remove(&recent_events_tree
, entry
);
319 list_remove(&recent_events_list
, entry
);
320 kmem_free(entry
, sizeof (*entry
));
324 mutex_exit(&recent_events_lock
);
328 * Check if an ereport would be a duplicate of one recently posted.
330 * An ereport is considered a duplicate if the set of criteria in
331 * recent_events_node_t all match.
333 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
334 * are candidates for duplicate checking.
337 zfs_ereport_is_duplicate(const char *subclass
, spa_t
*spa
, vdev_t
*vd
,
338 const zbookmark_phys_t
*zb
, zio_t
*zio
, uint64_t offset
, uint64_t size
)
340 recent_events_node_t search
= {0}, *entry
;
342 if (vd
== NULL
|| zio
== NULL
)
345 if (zfs_zevent_retain_max
== 0)
348 if (strcmp(subclass
, FM_EREPORT_ZFS_IO
) == 0)
349 search
.re_subclass
= ZSC_IO
;
350 else if (strcmp(subclass
, FM_EREPORT_ZFS_DATA
) == 0)
351 search
.re_subclass
= ZSC_DATA
;
352 else if (strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0)
353 search
.re_subclass
= ZSC_CHECKSUM
;
357 search
.re_pool_guid
= spa_guid(spa
);
358 search
.re_vdev_guid
= vd
->vdev_guid
;
359 search
.re_io_error
= zio
->io_error
;
360 search
.re_io_priority
= zio
->io_priority
;
361 /* if size is supplied use it over what's in zio */
363 search
.re_io_size
= size
;
364 search
.re_io_offset
= offset
;
366 search
.re_io_size
= zio
->io_size
;
367 search
.re_io_offset
= zio
->io_offset
;
370 /* grab optional logical zio criteria */
372 search
.re_io_bookmark
.zb_objset
= zb
->zb_objset
;
373 search
.re_io_bookmark
.zb_object
= zb
->zb_object
;
374 search
.re_io_bookmark
.zb_level
= zb
->zb_level
;
375 search
.re_io_bookmark
.zb_blkid
= zb
->zb_blkid
;
378 uint64_t now
= gethrtime();
380 mutex_enter(&recent_events_lock
);
382 /* check if we have seen this one recently */
383 entry
= avl_find(&recent_events_tree
, &search
, NULL
);
385 uint64_t age
= NSEC2SEC(now
- entry
->re_timestamp
);
388 * There is still an active cleaner (since we're here).
389 * Reset the last seen time for this duplicate entry
390 * so that its lifespand gets extended.
392 list_remove(&recent_events_list
, entry
);
393 list_insert_head(&recent_events_list
, entry
);
394 entry
->re_timestamp
= now
;
396 zfs_zevent_track_duplicate();
397 mutex_exit(&recent_events_lock
);
399 return (age
<= zfs_zevent_retain_expire_secs
);
402 if (avl_numnodes(&recent_events_tree
) >= zfs_zevent_retain_max
) {
403 /* recycle oldest node */
404 entry
= list_tail(&recent_events_list
);
405 ASSERT(entry
!= NULL
);
406 list_remove(&recent_events_list
, entry
);
407 avl_remove(&recent_events_tree
, entry
);
409 entry
= kmem_alloc(sizeof (recent_events_node_t
), KM_SLEEP
);
412 /* record this as a recent ereport */
414 avl_add(&recent_events_tree
, entry
);
415 list_insert_head(&recent_events_list
, entry
);
416 entry
->re_timestamp
= now
;
418 /* Start a cleaner if not already scheduled */
419 if (recent_events_cleaner_tqid
== 0)
420 zfs_ereport_schedule_cleaner();
422 mutex_exit(&recent_events_lock
);
427 zfs_zevent_post_cb(nvlist_t
*nvl
, nvlist_t
*detector
)
430 fm_nvlist_destroy(nvl
, FM_NVA_FREE
);
433 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
437 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
438 * flood zevent consumers when a disk is acting up.
440 * Returns 1 if we're ratelimiting, 0 if not.
443 zfs_is_ratelimiting_event(const char *subclass
, vdev_t
*vd
)
447 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
448 * are. Invert it to get our return value.
450 if (strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) {
451 rc
= !zfs_ratelimit(&vd
->vdev_delay_rl
);
452 } else if (strcmp(subclass
, FM_EREPORT_ZFS_DEADMAN
) == 0) {
453 rc
= !zfs_ratelimit(&vd
->vdev_deadman_rl
);
454 } else if (strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0) {
455 rc
= !zfs_ratelimit(&vd
->vdev_checksum_rl
);
459 /* We're rate limiting */
460 fm_erpt_dropped_increment();
467 * Return B_TRUE if the event actually posted, B_FALSE if not.
470 zfs_ereport_start(nvlist_t
**ereport_out
, nvlist_t
**detector_out
,
471 const char *subclass
, spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
472 zio_t
*zio
, uint64_t stateoroffset
, uint64_t size
)
474 nvlist_t
*ereport
, *detector
;
479 if ((ereport
= fm_nvlist_create(NULL
)) == NULL
)
482 if ((detector
= fm_nvlist_create(NULL
)) == NULL
) {
483 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
488 * Serialize ereport generation
490 mutex_enter(&spa
->spa_errlist_lock
);
493 * Determine the ENA to use for this event. If we are in a loading
494 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
495 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
497 if (spa_load_state(spa
) != SPA_LOAD_NONE
) {
498 if (spa
->spa_ena
== 0)
499 spa
->spa_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
501 } else if (zio
!= NULL
&& zio
->io_logical
!= NULL
) {
502 if (zio
->io_logical
->io_ena
== 0)
503 zio
->io_logical
->io_ena
=
504 fm_ena_generate(0, FM_ENA_FMT1
);
505 ena
= zio
->io_logical
->io_ena
;
507 ena
= fm_ena_generate(0, FM_ENA_FMT1
);
511 * Construct the full class, detector, and other standard FMA fields.
513 (void) snprintf(class, sizeof (class), "%s.%s",
514 ZFS_ERROR_CLASS
, subclass
);
516 fm_fmri_zfs_set(detector
, FM_ZFS_SCHEME_VERSION
, spa_guid(spa
),
517 vd
!= NULL
? vd
->vdev_guid
: 0);
519 fm_ereport_set(ereport
, FM_EREPORT_VERSION
, class, ena
, detector
, NULL
);
522 * Construct the per-ereport payload, depending on which parameters are
527 * Generic payload members common to all ereports.
529 fm_payload_set(ereport
,
530 FM_EREPORT_PAYLOAD_ZFS_POOL
, DATA_TYPE_STRING
, spa_name(spa
),
531 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, DATA_TYPE_UINT64
, spa_guid(spa
),
532 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE
, DATA_TYPE_UINT64
,
533 (uint64_t)spa_state(spa
),
534 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, DATA_TYPE_INT32
,
535 (int32_t)spa_load_state(spa
), NULL
);
537 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE
,
539 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_WAIT
?
540 FM_EREPORT_FAILMODE_WAIT
:
541 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_CONTINUE
?
542 FM_EREPORT_FAILMODE_CONTINUE
: FM_EREPORT_FAILMODE_PANIC
,
546 vdev_t
*pvd
= vd
->vdev_parent
;
547 vdev_queue_t
*vq
= &vd
->vdev_queue
;
548 vdev_stat_t
*vs
= &vd
->vdev_stat
;
550 uint64_t *spare_guids
;
554 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
,
555 DATA_TYPE_UINT64
, vd
->vdev_guid
,
556 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE
,
557 DATA_TYPE_STRING
, vd
->vdev_ops
->vdev_op_type
, NULL
);
558 if (vd
->vdev_path
!= NULL
)
559 fm_payload_set(ereport
,
560 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
,
561 DATA_TYPE_STRING
, vd
->vdev_path
, NULL
);
562 if (vd
->vdev_devid
!= NULL
)
563 fm_payload_set(ereport
,
564 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
,
565 DATA_TYPE_STRING
, vd
->vdev_devid
, NULL
);
566 if (vd
->vdev_fru
!= NULL
)
567 fm_payload_set(ereport
,
568 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
,
569 DATA_TYPE_STRING
, vd
->vdev_fru
, NULL
);
570 if (vd
->vdev_enc_sysfs_path
!= NULL
)
571 fm_payload_set(ereport
,
572 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
573 DATA_TYPE_STRING
, vd
->vdev_enc_sysfs_path
, NULL
);
575 fm_payload_set(ereport
,
576 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT
,
577 DATA_TYPE_UINT64
, vd
->vdev_ashift
, NULL
);
580 fm_payload_set(ereport
,
581 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS
,
582 DATA_TYPE_UINT64
, vq
->vq_io_complete_ts
, NULL
);
583 fm_payload_set(ereport
,
584 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS
,
585 DATA_TYPE_UINT64
, vq
->vq_io_delta_ts
, NULL
);
589 fm_payload_set(ereport
,
590 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS
,
591 DATA_TYPE_UINT64
, vs
->vs_read_errors
,
592 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS
,
593 DATA_TYPE_UINT64
, vs
->vs_write_errors
,
594 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS
,
595 DATA_TYPE_UINT64
, vs
->vs_checksum_errors
,
596 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS
,
597 DATA_TYPE_UINT64
, vs
->vs_slow_ios
,
598 FM_EREPORT_PAYLOAD_ZFS_VDEV_DIO_VERIFY_ERRORS
,
599 DATA_TYPE_UINT64
, vs
->vs_dio_verify_errors
,
604 fm_payload_set(ereport
,
605 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID
,
606 DATA_TYPE_UINT64
, pvd
->vdev_guid
,
607 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE
,
608 DATA_TYPE_STRING
, pvd
->vdev_ops
->vdev_op_type
,
611 fm_payload_set(ereport
,
612 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH
,
613 DATA_TYPE_STRING
, pvd
->vdev_path
, NULL
);
615 fm_payload_set(ereport
,
616 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID
,
617 DATA_TYPE_STRING
, pvd
->vdev_devid
, NULL
);
620 spare_count
= spa
->spa_spares
.sav_count
;
621 spare_paths
= kmem_zalloc(sizeof (char *) * spare_count
,
623 spare_guids
= kmem_zalloc(sizeof (uint64_t) * spare_count
,
626 for (i
= 0; i
< spare_count
; i
++) {
627 spare_vd
= spa
->spa_spares
.sav_vdevs
[i
];
629 spare_paths
[i
] = spare_vd
->vdev_path
;
630 spare_guids
[i
] = spare_vd
->vdev_guid
;
634 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS
,
635 DATA_TYPE_STRING_ARRAY
, spare_count
, spare_paths
,
636 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS
,
637 DATA_TYPE_UINT64_ARRAY
, spare_count
, spare_guids
, NULL
);
639 kmem_free(spare_guids
, sizeof (uint64_t) * spare_count
);
640 kmem_free(spare_paths
, sizeof (char *) * spare_count
);
645 * Payload common to all I/Os.
647 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR
,
648 DATA_TYPE_INT32
, zio
->io_error
, NULL
);
649 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS
,
650 DATA_TYPE_UINT64
, zio
->io_flags
, NULL
);
651 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE
,
652 DATA_TYPE_UINT32
, zio
->io_stage
, NULL
);
653 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE
,
654 DATA_TYPE_UINT32
, zio
->io_pipeline
, NULL
);
655 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY
,
656 DATA_TYPE_UINT64
, zio
->io_delay
, NULL
);
657 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP
,
658 DATA_TYPE_UINT64
, zio
->io_timestamp
, NULL
);
659 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA
,
660 DATA_TYPE_UINT64
, zio
->io_delta
, NULL
);
661 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY
,
662 DATA_TYPE_UINT32
, zio
->io_priority
, NULL
);
665 * If the 'size' parameter is non-zero, it indicates this is a
666 * RAID-Z or other I/O where the physical offset and length are
667 * provided for us, instead of within the zio_t.
671 fm_payload_set(ereport
,
672 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
673 DATA_TYPE_UINT64
, stateoroffset
,
674 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
675 DATA_TYPE_UINT64
, size
, NULL
);
677 fm_payload_set(ereport
,
678 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
679 DATA_TYPE_UINT64
, zio
->io_offset
,
680 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
681 DATA_TYPE_UINT64
, zio
->io_size
, NULL
);
683 } else if (vd
!= NULL
) {
685 * If we have a vdev but no zio, this is a device fault, and the
686 * 'stateoroffset' parameter indicates the previous state of the
689 fm_payload_set(ereport
,
690 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE
,
691 DATA_TYPE_UINT64
, stateoroffset
, NULL
);
695 * Payload for I/Os with corresponding logical information.
697 if (zb
!= NULL
&& (zio
== NULL
|| zio
->io_logical
!= NULL
)) {
698 fm_payload_set(ereport
,
699 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET
,
700 DATA_TYPE_UINT64
, zb
->zb_objset
,
701 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT
,
702 DATA_TYPE_UINT64
, zb
->zb_object
,
703 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL
,
704 DATA_TYPE_INT64
, zb
->zb_level
,
705 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID
,
706 DATA_TYPE_UINT64
, zb
->zb_blkid
, NULL
);
710 * Payload for tuning the zed
712 if (vd
!= NULL
&& strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0) {
713 uint64_t cksum_n
, cksum_t
;
715 cksum_n
= vdev_prop_get_inherited(vd
, VDEV_PROP_CHECKSUM_N
);
716 if (cksum_n
!= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N
))
717 fm_payload_set(ereport
,
718 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N
,
723 cksum_t
= vdev_prop_get_inherited(vd
, VDEV_PROP_CHECKSUM_T
);
724 if (cksum_t
!= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T
))
725 fm_payload_set(ereport
,
726 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T
,
732 if (vd
!= NULL
&& strcmp(subclass
, FM_EREPORT_ZFS_IO
) == 0) {
735 io_n
= vdev_prop_get_inherited(vd
, VDEV_PROP_IO_N
);
736 if (io_n
!= vdev_prop_default_numeric(VDEV_PROP_IO_N
))
737 fm_payload_set(ereport
,
738 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N
,
743 io_t
= vdev_prop_get_inherited(vd
, VDEV_PROP_IO_T
);
744 if (io_t
!= vdev_prop_default_numeric(VDEV_PROP_IO_T
))
745 fm_payload_set(ereport
,
746 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T
,
752 if (vd
!= NULL
&& strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) {
753 uint64_t slow_io_n
, slow_io_t
;
755 slow_io_n
= vdev_prop_get_inherited(vd
, VDEV_PROP_SLOW_IO_N
);
756 if (slow_io_n
!= vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_N
))
757 fm_payload_set(ereport
,
758 FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N
,
763 slow_io_t
= vdev_prop_get_inherited(vd
, VDEV_PROP_SLOW_IO_T
);
764 if (slow_io_t
!= vdev_prop_default_numeric(VDEV_PROP_SLOW_IO_T
))
765 fm_payload_set(ereport
,
766 FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T
,
772 mutex_exit(&spa
->spa_errlist_lock
);
774 *ereport_out
= ereport
;
775 *detector_out
= detector
;
779 /* if it's <= 128 bytes, save the corruption directly */
780 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
782 #define MAX_RANGES 16
784 typedef struct zfs_ecksum_info
{
785 /* inline arrays of bits set and cleared. */
786 uint64_t zei_bits_set
[ZFM_MAX_INLINE
];
787 uint64_t zei_bits_cleared
[ZFM_MAX_INLINE
];
790 * for each range, the number of bits set and cleared. The Hamming
791 * distance between the good and bad buffers is the sum of them all.
793 uint32_t zei_range_sets
[MAX_RANGES
];
794 uint32_t zei_range_clears
[MAX_RANGES
];
799 } zei_ranges
[MAX_RANGES
];
801 size_t zei_range_count
;
803 uint32_t zei_allowed_mingap
;
808 update_bad_bits(uint64_t value_arg
, uint32_t *count
)
812 uint64_t value
= BE_64(value_arg
);
814 /* We store the bits in big-endian (largest-first) order */
815 for (i
= 0; i
< 64; i
++) {
816 if (value
& (1ull << i
))
819 /* update the count of bits changed */
824 * We've now filled up the range array, and need to increase "mingap" and
825 * shrink the range list accordingly. zei_mingap is always the smallest
826 * distance between array entries, so we set the new_allowed_gap to be
827 * one greater than that. We then go through the list, joining together
828 * any ranges which are closer than the new_allowed_gap.
830 * By construction, there will be at least one. We also update zei_mingap
831 * to the new smallest gap, to prepare for our next invocation.
834 zei_shrink_ranges(zfs_ecksum_info_t
*eip
)
836 uint32_t mingap
= UINT32_MAX
;
837 uint32_t new_allowed_gap
= eip
->zei_mingap
+ 1;
840 size_t max
= eip
->zei_range_count
;
842 struct zei_ranges
*r
= eip
->zei_ranges
;
844 ASSERT3U(eip
->zei_range_count
, >, 0);
845 ASSERT3U(eip
->zei_range_count
, <=, MAX_RANGES
);
848 while (idx
< max
- 1) {
849 uint32_t start
= r
[idx
].zr_start
;
850 uint32_t end
= r
[idx
].zr_end
;
852 while (idx
< max
- 1) {
855 uint32_t nstart
= r
[idx
].zr_start
;
856 uint32_t nend
= r
[idx
].zr_end
;
858 uint32_t gap
= nstart
- end
;
859 if (gap
< new_allowed_gap
) {
867 r
[output
].zr_start
= start
;
868 r
[output
].zr_end
= end
;
871 ASSERT3U(output
, <, eip
->zei_range_count
);
872 eip
->zei_range_count
= output
;
873 eip
->zei_mingap
= mingap
;
874 eip
->zei_allowed_mingap
= new_allowed_gap
;
878 zei_add_range(zfs_ecksum_info_t
*eip
, int start
, int end
)
880 struct zei_ranges
*r
= eip
->zei_ranges
;
881 size_t count
= eip
->zei_range_count
;
883 if (count
>= MAX_RANGES
) {
884 zei_shrink_ranges(eip
);
885 count
= eip
->zei_range_count
;
888 eip
->zei_mingap
= UINT32_MAX
;
889 eip
->zei_allowed_mingap
= 1;
891 int gap
= start
- r
[count
- 1].zr_end
;
893 if (gap
< eip
->zei_allowed_mingap
) {
894 r
[count
- 1].zr_end
= end
;
897 if (gap
< eip
->zei_mingap
)
898 eip
->zei_mingap
= gap
;
900 r
[count
].zr_start
= start
;
901 r
[count
].zr_end
= end
;
902 eip
->zei_range_count
++;
906 zei_range_total_size(zfs_ecksum_info_t
*eip
)
908 struct zei_ranges
*r
= eip
->zei_ranges
;
909 size_t count
= eip
->zei_range_count
;
913 for (idx
= 0; idx
< count
; idx
++)
914 result
+= (r
[idx
].zr_end
- r
[idx
].zr_start
);
919 static zfs_ecksum_info_t
*
920 annotate_ecksum(nvlist_t
*ereport
, zio_bad_cksum_t
*info
,
921 const abd_t
*goodabd
, const abd_t
*badabd
, size_t size
,
922 boolean_t drop_if_identical
)
924 const uint64_t *good
;
927 size_t nui64s
= size
/ sizeof (uint64_t);
937 zfs_ecksum_info_t
*eip
= kmem_zalloc(sizeof (*eip
), KM_SLEEP
);
939 /* don't do any annotation for injected checksum errors */
940 if (info
!= NULL
&& info
->zbc_injected
)
943 if (info
!= NULL
&& info
->zbc_has_cksum
) {
944 fm_payload_set(ereport
,
945 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO
,
947 info
->zbc_checksum_name
,
950 if (info
->zbc_byteswapped
) {
951 fm_payload_set(ereport
,
952 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP
,
953 DATA_TYPE_BOOLEAN
, 1,
958 if (badabd
== NULL
|| goodabd
== NULL
)
961 ASSERT3U(nui64s
, <=, UINT32_MAX
);
962 ASSERT3U(size
, ==, nui64s
* sizeof (uint64_t));
963 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
964 ASSERT3U(size
, <=, UINT32_MAX
);
966 good
= (const uint64_t *) abd_borrow_buf_copy((abd_t
*)goodabd
, size
);
967 bad
= (const uint64_t *) abd_borrow_buf_copy((abd_t
*)badabd
, size
);
969 /* build up the range list by comparing the two buffers. */
970 for (idx
= 0; idx
< nui64s
; idx
++) {
971 if (good
[idx
] == bad
[idx
]) {
975 zei_add_range(eip
, start
, idx
);
985 zei_add_range(eip
, start
, idx
);
987 /* See if it will fit in our inline buffers */
988 inline_size
= zei_range_total_size(eip
);
989 if (inline_size
> ZFM_MAX_INLINE
)
993 * If there is no change and we want to drop if the buffers are
996 if (inline_size
== 0 && drop_if_identical
) {
997 kmem_free(eip
, sizeof (*eip
));
998 abd_return_buf((abd_t
*)goodabd
, (void *)good
, size
);
999 abd_return_buf((abd_t
*)badabd
, (void *)bad
, size
);
1004 * Now walk through the ranges, filling in the details of the
1005 * differences. Also convert our uint64_t-array offsets to byte
1008 for (range
= 0; range
< eip
->zei_range_count
; range
++) {
1009 size_t start
= eip
->zei_ranges
[range
].zr_start
;
1010 size_t end
= eip
->zei_ranges
[range
].zr_end
;
1012 for (idx
= start
; idx
< end
; idx
++) {
1013 uint64_t set
, cleared
;
1015 // bits set in bad, but not in good
1016 set
= ((~good
[idx
]) & bad
[idx
]);
1017 // bits set in good, but not in bad
1018 cleared
= (good
[idx
] & (~bad
[idx
]));
1021 ASSERT3U(offset
, <, inline_size
);
1022 eip
->zei_bits_set
[offset
] = set
;
1023 eip
->zei_bits_cleared
[offset
] = cleared
;
1027 update_bad_bits(set
, &eip
->zei_range_sets
[range
]);
1028 update_bad_bits(cleared
, &eip
->zei_range_clears
[range
]);
1031 /* convert to byte offsets */
1032 eip
->zei_ranges
[range
].zr_start
*= sizeof (uint64_t);
1033 eip
->zei_ranges
[range
].zr_end
*= sizeof (uint64_t);
1036 abd_return_buf((abd_t
*)goodabd
, (void *)good
, size
);
1037 abd_return_buf((abd_t
*)badabd
, (void *)bad
, size
);
1039 eip
->zei_allowed_mingap
*= sizeof (uint64_t);
1040 inline_size
*= sizeof (uint64_t);
1042 /* fill in ereport */
1043 fm_payload_set(ereport
,
1044 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES
,
1045 DATA_TYPE_UINT32_ARRAY
, 2 * eip
->zei_range_count
,
1046 (uint32_t *)eip
->zei_ranges
,
1047 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP
,
1048 DATA_TYPE_UINT32
, eip
->zei_allowed_mingap
,
1049 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS
,
1050 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_sets
,
1051 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS
,
1052 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_clears
,
1056 fm_payload_set(ereport
,
1057 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS
,
1058 DATA_TYPE_UINT8_ARRAY
,
1059 inline_size
, (uint8_t *)eip
->zei_bits_set
,
1060 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS
,
1061 DATA_TYPE_UINT8_ARRAY
,
1062 inline_size
, (uint8_t *)eip
->zei_bits_cleared
,
1069 zfs_ereport_clear(spa_t
*spa
, vdev_t
*vd
)
1071 (void) spa
, (void) vd
;
1076 * Make sure our event is still valid for the given zio/vdev/pool. For example,
1077 * we don't want to keep logging events for a faulted or missing vdev.
1080 zfs_ereport_is_valid(const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
)
1084 * If we are doing a spa_tryimport() or in recovery mode,
1087 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
||
1088 spa_load_state(spa
) == SPA_LOAD_RECOVER
)
1092 * If we are in the middle of opening a pool, and the previous attempt
1093 * failed, don't bother logging any new ereports - we're just going to
1094 * get the same diagnosis anyway.
1096 if (spa_load_state(spa
) != SPA_LOAD_NONE
&&
1097 spa
->spa_last_open_failed
)
1101 /* If this is not a read or write zio, ignore the error */
1102 if (zio
->io_type
!= ZIO_TYPE_READ
&&
1103 zio
->io_type
!= ZIO_TYPE_WRITE
)
1108 * If the vdev has already been marked as failing due
1109 * to a failed probe, then ignore any subsequent I/O
1110 * errors, as the DE will automatically fault the vdev
1111 * on the first such failure. This also catches cases
1112 * where vdev_remove_wanted is set and the device has
1113 * not yet been asynchronously placed into the REMOVED
1116 if (zio
->io_vd
== vd
&& !vdev_accessible(vd
, zio
))
1120 * Ignore checksum errors for reads from DTL regions of
1123 if (zio
->io_type
== ZIO_TYPE_READ
&&
1124 zio
->io_error
== ECKSUM
&&
1125 vd
->vdev_ops
->vdev_op_leaf
&&
1126 vdev_dtl_contains(vd
, DTL_MISSING
, zio
->io_txg
, 1))
1132 * For probe failure, we want to avoid posting ereports if we've
1133 * already removed the device in the meantime.
1136 strcmp(subclass
, FM_EREPORT_ZFS_PROBE_FAILURE
) == 0 &&
1137 (vd
->vdev_remove_wanted
|| vd
->vdev_state
== VDEV_STATE_REMOVED
))
1140 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1141 if ((strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) &&
1142 (zio
!= NULL
) && (!zio
->io_timestamp
)) {
1146 (void) subclass
, (void) spa
, (void) vd
, (void) zio
;
1152 * Post an ereport for the given subclass
1155 * - 0 if an event was posted
1156 * - EINVAL if there was a problem posting event
1157 * - EBUSY if the event was rate limited
1158 * - EALREADY if the event was already posted (duplicate)
1161 zfs_ereport_post(const char *subclass
, spa_t
*spa
, vdev_t
*vd
,
1162 const zbookmark_phys_t
*zb
, zio_t
*zio
, uint64_t state
)
1166 nvlist_t
*ereport
= NULL
;
1167 nvlist_t
*detector
= NULL
;
1169 if (!zfs_ereport_is_valid(subclass
, spa
, vd
, zio
))
1172 if (zfs_ereport_is_duplicate(subclass
, spa
, vd
, zb
, zio
, 0, 0))
1173 return (SET_ERROR(EALREADY
));
1175 if (zfs_is_ratelimiting_event(subclass
, vd
))
1176 return (SET_ERROR(EBUSY
));
1178 if (!zfs_ereport_start(&ereport
, &detector
, subclass
, spa
, vd
,
1180 return (SET_ERROR(EINVAL
)); /* couldn't post event */
1182 if (ereport
== NULL
)
1183 return (SET_ERROR(EINVAL
));
1185 /* Cleanup is handled by the callback function */
1186 rc
= zfs_zevent_post(ereport
, detector
, zfs_zevent_post_cb
);
1188 (void) subclass
, (void) spa
, (void) vd
, (void) zb
, (void) zio
,
1195 * Prepare a checksum ereport
1198 * - 0 if an event was posted
1199 * - EINVAL if there was a problem posting event
1200 * - EBUSY if the event was rate limited
1201 * - EALREADY if the event was already posted (duplicate)
1204 zfs_ereport_start_checksum(spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
1205 struct zio
*zio
, uint64_t offset
, uint64_t length
, zio_bad_cksum_t
*info
)
1207 zio_cksum_report_t
*report
;
1210 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
))
1211 return (SET_ERROR(EINVAL
));
1213 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
,
1215 return (SET_ERROR(EALREADY
));
1217 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM
, vd
))
1218 return (SET_ERROR(EBUSY
));
1220 (void) zb
, (void) offset
;
1223 report
= kmem_zalloc(sizeof (*report
), KM_SLEEP
);
1225 zio_vsd_default_cksum_report(zio
, report
);
1227 /* copy the checksum failure information if it was provided */
1229 report
->zcr_ckinfo
= kmem_zalloc(sizeof (*info
), KM_SLEEP
);
1230 memcpy(report
->zcr_ckinfo
, info
, sizeof (*info
));
1233 report
->zcr_sector
= 1ULL << vd
->vdev_top
->vdev_ashift
;
1235 vdev_psize_to_asize(vd
->vdev_top
, report
->zcr_sector
);
1236 report
->zcr_length
= length
;
1239 (void) zfs_ereport_start(&report
->zcr_ereport
, &report
->zcr_detector
,
1240 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
, offset
, length
);
1242 if (report
->zcr_ereport
== NULL
) {
1243 zfs_ereport_free_checksum(report
);
1248 mutex_enter(&spa
->spa_errlist_lock
);
1249 report
->zcr_next
= zio
->io_logical
->io_cksum_report
;
1250 zio
->io_logical
->io_cksum_report
= report
;
1251 mutex_exit(&spa
->spa_errlist_lock
);
1256 zfs_ereport_finish_checksum(zio_cksum_report_t
*report
, const abd_t
*good_data
,
1257 const abd_t
*bad_data
, boolean_t drop_if_identical
)
1260 zfs_ecksum_info_t
*info
;
1262 info
= annotate_ecksum(report
->zcr_ereport
, report
->zcr_ckinfo
,
1263 good_data
, bad_data
, report
->zcr_length
, drop_if_identical
);
1265 zfs_zevent_post(report
->zcr_ereport
,
1266 report
->zcr_detector
, zfs_zevent_post_cb
);
1268 zfs_zevent_post_cb(report
->zcr_ereport
, report
->zcr_detector
);
1270 report
->zcr_ereport
= report
->zcr_detector
= NULL
;
1272 kmem_free(info
, sizeof (*info
));
1274 (void) report
, (void) good_data
, (void) bad_data
,
1275 (void) drop_if_identical
;
1280 zfs_ereport_free_checksum(zio_cksum_report_t
*rpt
)
1283 if (rpt
->zcr_ereport
!= NULL
) {
1284 fm_nvlist_destroy(rpt
->zcr_ereport
,
1286 fm_nvlist_destroy(rpt
->zcr_detector
,
1290 rpt
->zcr_free(rpt
->zcr_cbdata
, rpt
->zcr_cbinfo
);
1292 if (rpt
->zcr_ckinfo
!= NULL
)
1293 kmem_free(rpt
->zcr_ckinfo
, sizeof (*rpt
->zcr_ckinfo
));
1295 kmem_free(rpt
, sizeof (*rpt
));
1299 * Post a checksum ereport
1302 * - 0 if an event was posted
1303 * - EINVAL if there was a problem posting event
1304 * - EBUSY if the event was rate limited
1305 * - EALREADY if the event was already posted (duplicate)
1308 zfs_ereport_post_checksum(spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
1309 struct zio
*zio
, uint64_t offset
, uint64_t length
,
1310 const abd_t
*good_data
, const abd_t
*bad_data
, zio_bad_cksum_t
*zbc
)
1314 nvlist_t
*ereport
= NULL
;
1315 nvlist_t
*detector
= NULL
;
1316 zfs_ecksum_info_t
*info
;
1318 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
))
1319 return (SET_ERROR(EINVAL
));
1321 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
,
1323 return (SET_ERROR(EALREADY
));
1325 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM
, vd
))
1326 return (SET_ERROR(EBUSY
));
1328 if (!zfs_ereport_start(&ereport
, &detector
, FM_EREPORT_ZFS_CHECKSUM
,
1329 spa
, vd
, zb
, zio
, offset
, length
) || (ereport
== NULL
)) {
1330 return (SET_ERROR(EINVAL
));
1333 info
= annotate_ecksum(ereport
, zbc
, good_data
, bad_data
, length
,
1337 rc
= zfs_zevent_post(ereport
, detector
, zfs_zevent_post_cb
);
1338 kmem_free(info
, sizeof (*info
));
1341 (void) spa
, (void) vd
, (void) zb
, (void) zio
, (void) offset
,
1342 (void) length
, (void) good_data
, (void) bad_data
, (void) zbc
;
1348 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1349 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1350 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1351 * additional details refer to the zed(8) man page.
1354 zfs_event_create(spa_t
*spa
, vdev_t
*vd
, const char *type
, const char *name
,
1357 nvlist_t
*resource
= NULL
;
1361 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
)
1364 if ((resource
= fm_nvlist_create(NULL
)) == NULL
)
1367 (void) snprintf(class, sizeof (class), "%s.%s.%s", type
,
1368 ZFS_ERROR_CLASS
, name
);
1369 VERIFY0(nvlist_add_uint8(resource
, FM_VERSION
, FM_RSRC_VERSION
));
1370 VERIFY0(nvlist_add_string(resource
, FM_CLASS
, class));
1371 VERIFY0(nvlist_add_string(resource
,
1372 FM_EREPORT_PAYLOAD_ZFS_POOL
, spa_name(spa
)));
1373 VERIFY0(nvlist_add_uint64(resource
,
1374 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, spa_guid(spa
)));
1375 VERIFY0(nvlist_add_uint64(resource
,
1376 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE
, spa_state(spa
)));
1377 VERIFY0(nvlist_add_int32(resource
,
1378 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, spa_load_state(spa
)));
1381 VERIFY0(nvlist_add_uint64(resource
,
1382 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
, vd
->vdev_guid
));
1383 VERIFY0(nvlist_add_uint64(resource
,
1384 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE
, vd
->vdev_state
));
1385 if (vd
->vdev_path
!= NULL
)
1386 VERIFY0(nvlist_add_string(resource
,
1387 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
, vd
->vdev_path
));
1388 if (vd
->vdev_devid
!= NULL
)
1389 VERIFY0(nvlist_add_string(resource
,
1390 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
, vd
->vdev_devid
));
1391 if (vd
->vdev_fru
!= NULL
)
1392 VERIFY0(nvlist_add_string(resource
,
1393 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
, vd
->vdev_fru
));
1394 if (vd
->vdev_enc_sysfs_path
!= NULL
)
1395 VERIFY0(nvlist_add_string(resource
,
1396 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
1397 vd
->vdev_enc_sysfs_path
));
1400 /* also copy any optional payload data */
1402 nvpair_t
*elem
= NULL
;
1404 while ((elem
= nvlist_next_nvpair(aux
, elem
)) != NULL
)
1405 (void) nvlist_add_nvpair(resource
, elem
);
1408 (void) spa
, (void) vd
, (void) type
, (void) name
, (void) aux
;
1414 zfs_post_common(spa_t
*spa
, vdev_t
*vd
, const char *type
, const char *name
,
1420 resource
= zfs_event_create(spa
, vd
, type
, name
, aux
);
1422 zfs_zevent_post(resource
, NULL
, zfs_zevent_post_cb
);
1424 (void) spa
, (void) vd
, (void) type
, (void) name
, (void) aux
;
1429 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1430 * has been removed from the system. This will cause the DE to ignore any
1431 * recent I/O errors, inferring that they are due to the asynchronous device
1435 zfs_post_remove(spa_t
*spa
, vdev_t
*vd
)
1437 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_REMOVED
, NULL
);
1441 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1442 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1443 * handled by higher level logic, and no vdev fault should be generated.
1446 zfs_post_autoreplace(spa_t
*spa
, vdev_t
*vd
)
1448 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_AUTOREPLACE
, NULL
);
1452 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1453 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1454 * cause the retire agent to repair any outstanding fault management cases
1455 * open because the device was not found (fault.fs.zfs.device).
1458 zfs_post_state_change(spa_t
*spa
, vdev_t
*vd
, uint64_t laststate
)
1464 * Add optional supplemental keys to payload
1466 aux
= fm_nvlist_create(NULL
);
1468 if (vd
->vdev_physpath
) {
1469 fnvlist_add_string(aux
,
1470 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH
,
1473 if (vd
->vdev_enc_sysfs_path
) {
1474 fnvlist_add_string(aux
,
1475 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
1476 vd
->vdev_enc_sysfs_path
);
1479 fnvlist_add_uint64(aux
,
1480 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE
, laststate
);
1483 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_STATECHANGE
,
1487 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1489 (void) spa
, (void) vd
, (void) laststate
;
1495 zfs_ereport_init(void)
1497 mutex_init(&recent_events_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1498 list_create(&recent_events_list
, sizeof (recent_events_node_t
),
1499 offsetof(recent_events_node_t
, re_list_link
));
1500 avl_create(&recent_events_tree
, recent_events_compare
,
1501 sizeof (recent_events_node_t
), offsetof(recent_events_node_t
,
1506 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1507 * for the system_delay_taskq to drain.
1510 zfs_ereport_taskq_fini(void)
1512 mutex_enter(&recent_events_lock
);
1513 if (recent_events_cleaner_tqid
!= 0) {
1514 taskq_cancel_id(system_delay_taskq
, recent_events_cleaner_tqid
);
1515 recent_events_cleaner_tqid
= 0;
1517 mutex_exit(&recent_events_lock
);
1521 zfs_ereport_fini(void)
1523 recent_events_node_t
*entry
;
1525 while ((entry
= list_remove_head(&recent_events_list
)) != NULL
) {
1526 avl_remove(&recent_events_tree
, entry
);
1527 kmem_free(entry
, sizeof (*entry
));
1529 avl_destroy(&recent_events_tree
);
1530 list_destroy(&recent_events_list
);
1531 mutex_destroy(&recent_events_lock
);
1535 zfs_ereport_snapshot_post(const char *subclass
, spa_t
*spa
, const char *name
)
1539 aux
= fm_nvlist_create(NULL
);
1540 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME
, name
);
1542 zfs_post_common(spa
, NULL
, FM_RSRC_CLASS
, subclass
, aux
);
1543 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1547 * Post when a event when a zvol is created or removed
1549 * This is currently only used by macOS, since it uses the event to create
1550 * symlinks between the volume name (mypool/myvol) and the actual /dev
1551 * device (/dev/disk3). For example:
1553 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1555 * name: The full name of the zvol ("mypool/myvol")
1556 * dev_name: The full /dev name for the zvol ("/dev/disk3")
1557 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3")
1560 zfs_ereport_zvol_post(const char *subclass
, const char *name
,
1561 const char *dev_name
, const char *raw_name
)
1566 boolean_t locked
= mutex_owned(&spa_namespace_lock
);
1567 if (!locked
) mutex_enter(&spa_namespace_lock
);
1568 spa_t
*spa
= spa_lookup(name
);
1569 if (!locked
) mutex_exit(&spa_namespace_lock
);
1574 aux
= fm_nvlist_create(NULL
);
1575 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME
, dev_name
);
1576 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME
,
1578 r
= strchr(name
, '/');
1580 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_VOLUME
, &r
[1]);
1582 zfs_post_common(spa
, NULL
, FM_RSRC_CLASS
, subclass
, aux
);
1583 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1586 EXPORT_SYMBOL(zfs_ereport_post
);
1587 EXPORT_SYMBOL(zfs_ereport_is_valid
);
1588 EXPORT_SYMBOL(zfs_ereport_post_checksum
);
1589 EXPORT_SYMBOL(zfs_post_remove
);
1590 EXPORT_SYMBOL(zfs_post_autoreplace
);
1591 EXPORT_SYMBOL(zfs_post_state_change
);
1593 ZFS_MODULE_PARAM(zfs_zevent
, zfs_zevent_
, retain_max
, UINT
, ZMOD_RW
,
1594 "Maximum recent zevents records to retain for duplicate checking");
1595 ZFS_MODULE_PARAM(zfs_zevent
, zfs_zevent_
, retain_expire_secs
, UINT
, ZMOD_RW
,
1596 "Expiration time for recent zevents records");
1597 #endif /* _KERNEL */