Always validate checksums for Direct I/O reads
[zfs.git] / cmd / ztest.c
blob4a7959ebfca588091995637b4ba62c45260379dd
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
29 * Copyright (c) 2023, Klara, Inc.
33 * The objective of this program is to provide a DMU/ZAP/SPA stress test
34 * that runs entirely in userland, is easy to use, and easy to extend.
36 * The overall design of the ztest program is as follows:
38 * (1) For each major functional area (e.g. adding vdevs to a pool,
39 * creating and destroying datasets, reading and writing objects, etc)
40 * we have a simple routine to test that functionality. These
41 * individual routines do not have to do anything "stressful".
43 * (2) We turn these simple functionality tests into a stress test by
44 * running them all in parallel, with as many threads as desired,
45 * and spread across as many datasets, objects, and vdevs as desired.
47 * (3) While all this is happening, we inject faults into the pool to
48 * verify that self-healing data really works.
50 * (4) Every time we open a dataset, we change its checksum and compression
51 * functions. Thus even individual objects vary from block to block
52 * in which checksum they use and whether they're compressed.
54 * (5) To verify that we never lose on-disk consistency after a crash,
55 * we run the entire test in a child of the main process.
56 * At random times, the child self-immolates with a SIGKILL.
57 * This is the software equivalent of pulling the power cord.
58 * The parent then runs the test again, using the existing
59 * storage pool, as many times as desired. If backwards compatibility
60 * testing is enabled ztest will sometimes run the "older" version
61 * of ztest after a SIGKILL.
63 * (6) To verify that we don't have future leaks or temporal incursions,
64 * many of the functional tests record the transaction group number
65 * as part of their data. When reading old data, they verify that
66 * the transaction group number is less than the current, open txg.
67 * If you add a new test, please do this if applicable.
69 * (7) Threads are created with a reduced stack size, for sanity checking.
70 * Therefore, it's important not to allocate huge buffers on the stack.
72 * When run with no arguments, ztest runs for about five minutes and
73 * produces no output if successful. To get a little bit of information,
74 * specify -V. To get more information, specify -VV, and so on.
76 * To turn this into an overnight stress test, use -T to specify run time.
78 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
79 * to increase the pool capacity, fanout, and overall stress level.
81 * Use the -k option to set the desired frequency of kills.
83 * When ztest invokes itself it passes all relevant information through a
84 * temporary file which is mmap-ed in the child process. This allows shared
85 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
86 * stored at offset 0 of this file and contains information on the size and
87 * number of shared structures in the file. The information stored in this file
88 * must remain backwards compatible with older versions of ztest so that
89 * ztest can invoke them during backwards compatibility testing (-B).
92 #include <sys/zfs_context.h>
93 #include <sys/spa.h>
94 #include <sys/dmu.h>
95 #include <sys/txg.h>
96 #include <sys/dbuf.h>
97 #include <sys/zap.h>
98 #include <sys/dmu_objset.h>
99 #include <sys/poll.h>
100 #include <sys/stat.h>
101 #include <sys/time.h>
102 #include <sys/wait.h>
103 #include <sys/mman.h>
104 #include <sys/resource.h>
105 #include <sys/zio.h>
106 #include <sys/zil.h>
107 #include <sys/zil_impl.h>
108 #include <sys/vdev_draid.h>
109 #include <sys/vdev_impl.h>
110 #include <sys/vdev_file.h>
111 #include <sys/vdev_initialize.h>
112 #include <sys/vdev_raidz.h>
113 #include <sys/vdev_trim.h>
114 #include <sys/spa_impl.h>
115 #include <sys/metaslab_impl.h>
116 #include <sys/dsl_prop.h>
117 #include <sys/dsl_dataset.h>
118 #include <sys/dsl_destroy.h>
119 #include <sys/dsl_scan.h>
120 #include <sys/zio_checksum.h>
121 #include <sys/zfs_refcount.h>
122 #include <sys/zfeature.h>
123 #include <sys/dsl_userhold.h>
124 #include <sys/abd.h>
125 #include <sys/blake3.h>
126 #include <stdio.h>
127 #include <stdlib.h>
128 #include <unistd.h>
129 #include <getopt.h>
130 #include <signal.h>
131 #include <umem.h>
132 #include <ctype.h>
133 #include <math.h>
134 #include <sys/fs/zfs.h>
135 #include <zfs_fletcher.h>
136 #include <libnvpair.h>
137 #include <libzutil.h>
138 #include <sys/crypto/icp.h>
139 #include <sys/zfs_impl.h>
140 #include <sys/backtrace.h>
142 static int ztest_fd_data = -1;
143 static int ztest_fd_rand = -1;
145 typedef struct ztest_shared_hdr {
146 uint64_t zh_hdr_size;
147 uint64_t zh_opts_size;
148 uint64_t zh_size;
149 uint64_t zh_stats_size;
150 uint64_t zh_stats_count;
151 uint64_t zh_ds_size;
152 uint64_t zh_ds_count;
153 uint64_t zh_scratch_state_size;
154 } ztest_shared_hdr_t;
156 static ztest_shared_hdr_t *ztest_shared_hdr;
158 enum ztest_class_state {
159 ZTEST_VDEV_CLASS_OFF,
160 ZTEST_VDEV_CLASS_ON,
161 ZTEST_VDEV_CLASS_RND
164 /* Dedicated RAIDZ Expansion test states */
165 typedef enum {
166 RAIDZ_EXPAND_NONE, /* Default is none, must opt-in */
167 RAIDZ_EXPAND_REQUESTED, /* The '-X' option was used */
168 RAIDZ_EXPAND_STARTED, /* Testing has commenced */
169 RAIDZ_EXPAND_KILLED, /* Reached the proccess kill */
170 RAIDZ_EXPAND_CHECKED, /* Pool scrub verification done */
171 } raidz_expand_test_state_t;
174 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
175 #define ZO_GVARS_MAX_COUNT ((size_t)10)
177 typedef struct ztest_shared_opts {
178 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
179 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
180 char zo_alt_ztest[MAXNAMELEN];
181 char zo_alt_libpath[MAXNAMELEN];
182 uint64_t zo_vdevs;
183 uint64_t zo_vdevtime;
184 size_t zo_vdev_size;
185 int zo_ashift;
186 int zo_mirrors;
187 int zo_raid_do_expand;
188 int zo_raid_children;
189 int zo_raid_parity;
190 char zo_raid_type[8];
191 int zo_draid_data;
192 int zo_draid_spares;
193 int zo_datasets;
194 int zo_threads;
195 uint64_t zo_passtime;
196 uint64_t zo_killrate;
197 int zo_verbose;
198 int zo_init;
199 uint64_t zo_time;
200 uint64_t zo_maxloops;
201 uint64_t zo_metaslab_force_ganging;
202 raidz_expand_test_state_t zo_raidz_expand_test;
203 int zo_mmp_test;
204 int zo_special_vdevs;
205 int zo_dump_dbgmsg;
206 int zo_gvars_count;
207 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
208 } ztest_shared_opts_t;
210 /* Default values for command line options. */
211 #define DEFAULT_POOL "ztest"
212 #define DEFAULT_VDEV_DIR "/tmp"
213 #define DEFAULT_VDEV_COUNT 5
214 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
215 #define DEFAULT_VDEV_SIZE_STR "256M"
216 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
217 #define DEFAULT_MIRRORS 2
218 #define DEFAULT_RAID_CHILDREN 4
219 #define DEFAULT_RAID_PARITY 1
220 #define DEFAULT_DRAID_DATA 4
221 #define DEFAULT_DRAID_SPARES 1
222 #define DEFAULT_DATASETS_COUNT 7
223 #define DEFAULT_THREADS 23
224 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
225 #define DEFAULT_RUN_TIME_STR "300 sec"
226 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
227 #define DEFAULT_PASS_TIME_STR "60 sec"
228 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
229 #define DEFAULT_KILLRATE_STR "70%"
230 #define DEFAULT_INITS 1
231 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
232 #define DEFAULT_FORCE_GANGING (64 << 10)
233 #define DEFAULT_FORCE_GANGING_STR "64K"
235 /* Simplifying assumption: -1 is not a valid default. */
236 #define NO_DEFAULT -1
238 static const ztest_shared_opts_t ztest_opts_defaults = {
239 .zo_pool = DEFAULT_POOL,
240 .zo_dir = DEFAULT_VDEV_DIR,
241 .zo_alt_ztest = { '\0' },
242 .zo_alt_libpath = { '\0' },
243 .zo_vdevs = DEFAULT_VDEV_COUNT,
244 .zo_ashift = DEFAULT_ASHIFT,
245 .zo_mirrors = DEFAULT_MIRRORS,
246 .zo_raid_children = DEFAULT_RAID_CHILDREN,
247 .zo_raid_parity = DEFAULT_RAID_PARITY,
248 .zo_raid_type = VDEV_TYPE_RAIDZ,
249 .zo_vdev_size = DEFAULT_VDEV_SIZE,
250 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
251 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
252 .zo_datasets = DEFAULT_DATASETS_COUNT,
253 .zo_threads = DEFAULT_THREADS,
254 .zo_passtime = DEFAULT_PASS_TIME,
255 .zo_killrate = DEFAULT_KILL_RATE,
256 .zo_verbose = 0,
257 .zo_mmp_test = 0,
258 .zo_init = DEFAULT_INITS,
259 .zo_time = DEFAULT_RUN_TIME,
260 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
261 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
262 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
263 .zo_gvars_count = 0,
264 .zo_raidz_expand_test = RAIDZ_EXPAND_NONE,
267 extern uint64_t metaslab_force_ganging;
268 extern uint64_t metaslab_df_alloc_threshold;
269 extern uint64_t zfs_deadman_synctime_ms;
270 extern uint_t metaslab_preload_limit;
271 extern int zfs_compressed_arc_enabled;
272 extern int zfs_abd_scatter_enabled;
273 extern uint_t dmu_object_alloc_chunk_shift;
274 extern boolean_t zfs_force_some_double_word_sm_entries;
275 extern unsigned long zio_decompress_fail_fraction;
276 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
277 extern uint64_t raidz_expand_max_reflow_bytes;
278 extern uint_t raidz_expand_pause_point;
279 extern boolean_t ddt_prune_artificial_age;
280 extern boolean_t ddt_dump_prune_histogram;
283 static ztest_shared_opts_t *ztest_shared_opts;
284 static ztest_shared_opts_t ztest_opts;
285 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
287 typedef struct ztest_shared_ds {
288 uint64_t zd_seq;
289 } ztest_shared_ds_t;
291 static ztest_shared_ds_t *ztest_shared_ds;
292 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
294 typedef struct ztest_scratch_state {
295 uint64_t zs_raidz_scratch_verify_pause;
296 } ztest_shared_scratch_state_t;
298 static ztest_shared_scratch_state_t *ztest_scratch_state;
300 #define BT_MAGIC 0x123456789abcdefULL
301 #define MAXFAULTS(zs) \
302 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
304 enum ztest_io_type {
305 ZTEST_IO_WRITE_TAG,
306 ZTEST_IO_WRITE_PATTERN,
307 ZTEST_IO_WRITE_ZEROES,
308 ZTEST_IO_TRUNCATE,
309 ZTEST_IO_SETATTR,
310 ZTEST_IO_REWRITE,
311 ZTEST_IO_TYPES
314 typedef struct ztest_block_tag {
315 uint64_t bt_magic;
316 uint64_t bt_objset;
317 uint64_t bt_object;
318 uint64_t bt_dnodesize;
319 uint64_t bt_offset;
320 uint64_t bt_gen;
321 uint64_t bt_txg;
322 uint64_t bt_crtxg;
323 } ztest_block_tag_t;
325 typedef struct bufwad {
326 uint64_t bw_index;
327 uint64_t bw_txg;
328 uint64_t bw_data;
329 } bufwad_t;
332 * It would be better to use a rangelock_t per object. Unfortunately
333 * the rangelock_t is not a drop-in replacement for rl_t, because we
334 * still need to map from object ID to rangelock_t.
336 typedef enum {
337 ZTRL_READER,
338 ZTRL_WRITER,
339 ZTRL_APPEND
340 } rl_type_t;
342 typedef struct rll {
343 void *rll_writer;
344 int rll_readers;
345 kmutex_t rll_lock;
346 kcondvar_t rll_cv;
347 } rll_t;
349 typedef struct rl {
350 uint64_t rl_object;
351 uint64_t rl_offset;
352 uint64_t rl_size;
353 rll_t *rl_lock;
354 } rl_t;
356 #define ZTEST_RANGE_LOCKS 64
357 #define ZTEST_OBJECT_LOCKS 64
360 * Object descriptor. Used as a template for object lookup/create/remove.
362 typedef struct ztest_od {
363 uint64_t od_dir;
364 uint64_t od_object;
365 dmu_object_type_t od_type;
366 dmu_object_type_t od_crtype;
367 uint64_t od_blocksize;
368 uint64_t od_crblocksize;
369 uint64_t od_crdnodesize;
370 uint64_t od_gen;
371 uint64_t od_crgen;
372 char od_name[ZFS_MAX_DATASET_NAME_LEN];
373 } ztest_od_t;
376 * Per-dataset state.
378 typedef struct ztest_ds {
379 ztest_shared_ds_t *zd_shared;
380 objset_t *zd_os;
381 pthread_rwlock_t zd_zilog_lock;
382 zilog_t *zd_zilog;
383 ztest_od_t *zd_od; /* debugging aid */
384 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
385 kmutex_t zd_dirobj_lock;
386 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
387 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
388 } ztest_ds_t;
391 * Per-iteration state.
393 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
395 typedef struct ztest_info {
396 ztest_func_t *zi_func; /* test function */
397 uint64_t zi_iters; /* iterations per execution */
398 uint64_t *zi_interval; /* execute every <interval> seconds */
399 const char *zi_funcname; /* name of test function */
400 } ztest_info_t;
402 typedef struct ztest_shared_callstate {
403 uint64_t zc_count; /* per-pass count */
404 uint64_t zc_time; /* per-pass time */
405 uint64_t zc_next; /* next time to call this function */
406 } ztest_shared_callstate_t;
408 static ztest_shared_callstate_t *ztest_shared_callstate;
409 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
411 ztest_func_t ztest_dmu_read_write;
412 ztest_func_t ztest_dmu_write_parallel;
413 ztest_func_t ztest_dmu_object_alloc_free;
414 ztest_func_t ztest_dmu_object_next_chunk;
415 ztest_func_t ztest_dmu_commit_callbacks;
416 ztest_func_t ztest_zap;
417 ztest_func_t ztest_zap_parallel;
418 ztest_func_t ztest_zil_commit;
419 ztest_func_t ztest_zil_remount;
420 ztest_func_t ztest_dmu_read_write_zcopy;
421 ztest_func_t ztest_dmu_objset_create_destroy;
422 ztest_func_t ztest_dmu_prealloc;
423 ztest_func_t ztest_fzap;
424 ztest_func_t ztest_dmu_snapshot_create_destroy;
425 ztest_func_t ztest_dsl_prop_get_set;
426 ztest_func_t ztest_spa_prop_get_set;
427 ztest_func_t ztest_spa_create_destroy;
428 ztest_func_t ztest_fault_inject;
429 ztest_func_t ztest_dmu_snapshot_hold;
430 ztest_func_t ztest_mmp_enable_disable;
431 ztest_func_t ztest_scrub;
432 ztest_func_t ztest_dsl_dataset_promote_busy;
433 ztest_func_t ztest_vdev_attach_detach;
434 ztest_func_t ztest_vdev_raidz_attach;
435 ztest_func_t ztest_vdev_LUN_growth;
436 ztest_func_t ztest_vdev_add_remove;
437 ztest_func_t ztest_vdev_class_add;
438 ztest_func_t ztest_vdev_aux_add_remove;
439 ztest_func_t ztest_split_pool;
440 ztest_func_t ztest_reguid;
441 ztest_func_t ztest_spa_upgrade;
442 ztest_func_t ztest_device_removal;
443 ztest_func_t ztest_spa_checkpoint_create_discard;
444 ztest_func_t ztest_initialize;
445 ztest_func_t ztest_trim;
446 ztest_func_t ztest_blake3;
447 ztest_func_t ztest_fletcher;
448 ztest_func_t ztest_fletcher_incr;
449 ztest_func_t ztest_verify_dnode_bt;
450 ztest_func_t ztest_pool_prefetch_ddt;
451 ztest_func_t ztest_ddt_prune;
453 static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
454 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
455 static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
456 static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
457 static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
459 #define ZTI_INIT(func, iters, interval) \
460 { .zi_func = (func), \
461 .zi_iters = (iters), \
462 .zi_interval = (interval), \
463 .zi_funcname = # func }
465 static ztest_info_t ztest_info[] = {
466 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
467 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
468 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
469 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
470 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
471 ZTI_INIT(ztest_zap, 30, &zopt_always),
472 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
473 ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
474 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
475 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
476 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
477 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
478 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
479 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
480 #if 0
481 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
482 #endif
483 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
484 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
485 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
486 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
487 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
488 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
489 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
490 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
491 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
492 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
493 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
494 ZTI_INIT(ztest_vdev_raidz_attach, 1, &zopt_sometimes),
495 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
496 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
497 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
498 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
499 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
500 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
501 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
502 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
503 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
504 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
505 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
506 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
507 ZTI_INIT(ztest_pool_prefetch_ddt, 1, &zopt_rarely),
508 ZTI_INIT(ztest_ddt_prune, 1, &zopt_rarely),
511 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
514 * The following struct is used to hold a list of uncalled commit callbacks.
515 * The callbacks are ordered by txg number.
517 typedef struct ztest_cb_list {
518 kmutex_t zcl_callbacks_lock;
519 list_t zcl_callbacks;
520 } ztest_cb_list_t;
523 * Stuff we need to share writably between parent and child.
525 typedef struct ztest_shared {
526 boolean_t zs_do_init;
527 hrtime_t zs_proc_start;
528 hrtime_t zs_proc_stop;
529 hrtime_t zs_thread_start;
530 hrtime_t zs_thread_stop;
531 hrtime_t zs_thread_kill;
532 uint64_t zs_enospc_count;
533 uint64_t zs_vdev_next_leaf;
534 uint64_t zs_vdev_aux;
535 uint64_t zs_alloc;
536 uint64_t zs_space;
537 uint64_t zs_splits;
538 uint64_t zs_mirrors;
539 uint64_t zs_metaslab_sz;
540 uint64_t zs_metaslab_df_alloc_threshold;
541 uint64_t zs_guid;
542 } ztest_shared_t;
544 #define ID_PARALLEL -1ULL
546 static char ztest_dev_template[] = "%s/%s.%llua";
547 static char ztest_aux_template[] = "%s/%s.%s.%llu";
548 static ztest_shared_t *ztest_shared;
550 static spa_t *ztest_spa = NULL;
551 static ztest_ds_t *ztest_ds;
553 static kmutex_t ztest_vdev_lock;
554 static boolean_t ztest_device_removal_active = B_FALSE;
555 static boolean_t ztest_pool_scrubbed = B_FALSE;
556 static kmutex_t ztest_checkpoint_lock;
559 * The ztest_name_lock protects the pool and dataset namespace used by
560 * the individual tests. To modify the namespace, consumers must grab
561 * this lock as writer. Grabbing the lock as reader will ensure that the
562 * namespace does not change while the lock is held.
564 static pthread_rwlock_t ztest_name_lock;
566 static boolean_t ztest_dump_core = B_TRUE;
567 static boolean_t ztest_exiting;
569 /* Global commit callback list */
570 static ztest_cb_list_t zcl;
571 /* Commit cb delay */
572 static uint64_t zc_min_txg_delay = UINT64_MAX;
573 static int zc_cb_counter = 0;
576 * Minimum number of commit callbacks that need to be registered for us to check
577 * whether the minimum txg delay is acceptable.
579 #define ZTEST_COMMIT_CB_MIN_REG 100
582 * If a number of txgs equal to this threshold have been created after a commit
583 * callback has been registered but not called, then we assume there is an
584 * implementation bug.
586 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
588 enum ztest_object {
589 ZTEST_META_DNODE = 0,
590 ZTEST_DIROBJ,
591 ZTEST_OBJECTS
594 static __attribute__((noreturn)) void usage(boolean_t requested);
595 static int ztest_scrub_impl(spa_t *spa);
598 * These libumem hooks provide a reasonable set of defaults for the allocator's
599 * debugging facilities.
601 const char *
602 _umem_debug_init(void)
604 return ("default,verbose"); /* $UMEM_DEBUG setting */
607 const char *
608 _umem_logging_init(void)
610 return ("fail,contents"); /* $UMEM_LOGGING setting */
613 static void
614 dump_debug_buffer(void)
616 ssize_t ret __attribute__((unused));
618 if (!ztest_opts.zo_dump_dbgmsg)
619 return;
622 * We use write() instead of printf() so that this function
623 * is safe to call from a signal handler.
625 ret = write(STDERR_FILENO, "\n", 1);
626 zfs_dbgmsg_print(STDERR_FILENO, "ztest");
629 static void sig_handler(int signo)
631 struct sigaction action;
633 libspl_backtrace(STDERR_FILENO);
634 dump_debug_buffer();
637 * Restore default action and re-raise signal so SIGSEGV and
638 * SIGABRT can trigger a core dump.
640 action.sa_handler = SIG_DFL;
641 sigemptyset(&action.sa_mask);
642 action.sa_flags = 0;
643 (void) sigaction(signo, &action, NULL);
644 raise(signo);
647 #define FATAL_MSG_SZ 1024
649 static const char *fatal_msg;
651 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
652 fatal(int do_perror, const char *message, ...)
654 va_list args;
655 int save_errno = errno;
656 char *buf;
658 (void) fflush(stdout);
659 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
660 if (buf == NULL)
661 goto out;
663 va_start(args, message);
664 (void) sprintf(buf, "ztest: ");
665 /* LINTED */
666 (void) vsprintf(buf + strlen(buf), message, args);
667 va_end(args);
668 if (do_perror) {
669 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
670 ": %s", strerror(save_errno));
672 (void) fprintf(stderr, "%s\n", buf);
673 fatal_msg = buf; /* to ease debugging */
675 out:
676 if (ztest_dump_core)
677 abort();
678 else
679 dump_debug_buffer();
681 exit(3);
684 static int
685 str2shift(const char *buf)
687 const char *ends = "BKMGTPEZ";
688 int i, len;
690 if (buf[0] == '\0')
691 return (0);
693 len = strlen(ends);
694 for (i = 0; i < len; i++) {
695 if (toupper(buf[0]) == ends[i])
696 break;
698 if (i == len) {
699 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
700 buf);
701 usage(B_FALSE);
703 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
704 return (10*i);
706 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
707 usage(B_FALSE);
710 static uint64_t
711 nicenumtoull(const char *buf)
713 char *end;
714 uint64_t val;
716 val = strtoull(buf, &end, 0);
717 if (end == buf) {
718 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
719 usage(B_FALSE);
720 } else if (end[0] == '.') {
721 double fval = strtod(buf, &end);
722 fval *= pow(2, str2shift(end));
724 * UINT64_MAX is not exactly representable as a double.
725 * The closest representation is UINT64_MAX + 1, so we
726 * use a >= comparison instead of > for the bounds check.
728 if (fval >= (double)UINT64_MAX) {
729 (void) fprintf(stderr, "ztest: value too large: %s\n",
730 buf);
731 usage(B_FALSE);
733 val = (uint64_t)fval;
734 } else {
735 int shift = str2shift(end);
736 if (shift >= 64 || (val << shift) >> shift != val) {
737 (void) fprintf(stderr, "ztest: value too large: %s\n",
738 buf);
739 usage(B_FALSE);
741 val <<= shift;
743 return (val);
746 typedef struct ztest_option {
747 const char short_opt;
748 const char *long_opt;
749 const char *long_opt_param;
750 const char *comment;
751 unsigned int default_int;
752 const char *default_str;
753 } ztest_option_t;
756 * The following option_table is used for generating the usage info as well as
757 * the long and short option information for calling getopt_long().
759 static ztest_option_t option_table[] = {
760 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
761 NULL},
762 { 's', "vdev-size", "INTEGER", "Size of each vdev",
763 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
764 { 'a', "alignment-shift", "INTEGER",
765 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
766 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
767 DEFAULT_MIRRORS, NULL},
768 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
769 DEFAULT_RAID_CHILDREN, NULL},
770 { 'R', "raid-parity", "INTEGER", "Raid parity",
771 DEFAULT_RAID_PARITY, NULL},
772 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
773 NO_DEFAULT, "random"},
774 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
775 DEFAULT_DRAID_DATA, NULL},
776 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
777 DEFAULT_DRAID_SPARES, NULL},
778 { 'd', "datasets", "INTEGER", "Number of datasets",
779 DEFAULT_DATASETS_COUNT, NULL},
780 { 't', "threads", "INTEGER", "Number of ztest threads",
781 DEFAULT_THREADS, NULL},
782 { 'g', "gang-block-threshold", "INTEGER",
783 "Metaslab gang block threshold",
784 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
785 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
786 DEFAULT_INITS, NULL},
787 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
788 NO_DEFAULT, DEFAULT_KILLRATE_STR},
789 { 'p', "pool-name", "STRING", "Pool name",
790 NO_DEFAULT, DEFAULT_POOL},
791 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
792 NO_DEFAULT, DEFAULT_VDEV_DIR},
793 { 'M', "multi-host", NULL,
794 "Multi-host; simulate pool imported on remote host",
795 NO_DEFAULT, NULL},
796 { 'E', "use-existing-pool", NULL,
797 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
798 { 'T', "run-time", "INTEGER", "Total run time",
799 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
800 { 'P', "pass-time", "INTEGER", "Time per pass",
801 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
802 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
803 DEFAULT_MAX_LOOPS, NULL},
804 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
805 NO_DEFAULT, NULL},
806 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
807 NO_DEFAULT, "random"},
808 { 'X', "raidz-expansion", NULL,
809 "Perform a dedicated raidz expansion test",
810 NO_DEFAULT, NULL},
811 { 'o', "option", "\"OPTION=INTEGER\"",
812 "Set global variable to an unsigned 32-bit integer value",
813 NO_DEFAULT, NULL},
814 { 'G', "dump-debug-msg", NULL,
815 "Dump zfs_dbgmsg buffer before exiting due to an error",
816 NO_DEFAULT, NULL},
817 { 'V', "verbose", NULL,
818 "Verbose (use multiple times for ever more verbosity)",
819 NO_DEFAULT, NULL},
820 { 'h', "help", NULL, "Show this help",
821 NO_DEFAULT, NULL},
822 {0, 0, 0, 0, 0, 0}
825 static struct option *long_opts = NULL;
826 static char *short_opts = NULL;
828 static void
829 init_options(void)
831 ASSERT3P(long_opts, ==, NULL);
832 ASSERT3P(short_opts, ==, NULL);
834 int count = sizeof (option_table) / sizeof (option_table[0]);
835 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
837 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
838 int short_opt_index = 0;
840 for (int i = 0; i < count; i++) {
841 long_opts[i].val = option_table[i].short_opt;
842 long_opts[i].name = option_table[i].long_opt;
843 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
844 ? required_argument : no_argument;
845 long_opts[i].flag = NULL;
846 short_opts[short_opt_index++] = option_table[i].short_opt;
847 if (option_table[i].long_opt_param != NULL) {
848 short_opts[short_opt_index++] = ':';
853 static void
854 fini_options(void)
856 int count = sizeof (option_table) / sizeof (option_table[0]);
858 umem_free(long_opts, sizeof (struct option) * count);
859 umem_free(short_opts, sizeof (char) * 2 * count);
861 long_opts = NULL;
862 short_opts = NULL;
865 static __attribute__((noreturn)) void
866 usage(boolean_t requested)
868 char option[80];
869 FILE *fp = requested ? stdout : stderr;
871 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
872 for (int i = 0; option_table[i].short_opt != 0; i++) {
873 if (option_table[i].long_opt_param != NULL) {
874 (void) sprintf(option, " -%c --%s=%s",
875 option_table[i].short_opt,
876 option_table[i].long_opt,
877 option_table[i].long_opt_param);
878 } else {
879 (void) sprintf(option, " -%c --%s",
880 option_table[i].short_opt,
881 option_table[i].long_opt);
883 (void) fprintf(fp, " %-43s%s", option,
884 option_table[i].comment);
886 if (option_table[i].long_opt_param != NULL) {
887 if (option_table[i].default_str != NULL) {
888 (void) fprintf(fp, " (default: %s)",
889 option_table[i].default_str);
890 } else if (option_table[i].default_int != NO_DEFAULT) {
891 (void) fprintf(fp, " (default: %u)",
892 option_table[i].default_int);
895 (void) fprintf(fp, "\n");
897 exit(requested ? 0 : 1);
900 static uint64_t
901 ztest_random(uint64_t range)
903 uint64_t r;
905 ASSERT3S(ztest_fd_rand, >=, 0);
907 if (range == 0)
908 return (0);
910 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
911 fatal(B_TRUE, "short read from /dev/urandom");
913 return (r % range);
916 static void
917 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
919 char name[32];
920 char *value;
921 int state = ZTEST_VDEV_CLASS_RND;
923 (void) strlcpy(name, input, sizeof (name));
925 value = strchr(name, '=');
926 if (value == NULL) {
927 (void) fprintf(stderr, "missing value in property=value "
928 "'-C' argument (%s)\n", input);
929 usage(B_FALSE);
931 *(value) = '\0';
932 value++;
934 if (strcmp(value, "on") == 0) {
935 state = ZTEST_VDEV_CLASS_ON;
936 } else if (strcmp(value, "off") == 0) {
937 state = ZTEST_VDEV_CLASS_OFF;
938 } else if (strcmp(value, "random") == 0) {
939 state = ZTEST_VDEV_CLASS_RND;
940 } else {
941 (void) fprintf(stderr, "invalid property value '%s'\n", value);
942 usage(B_FALSE);
945 if (strcmp(name, "special") == 0) {
946 zo->zo_special_vdevs = state;
947 } else {
948 (void) fprintf(stderr, "invalid property name '%s'\n", name);
949 usage(B_FALSE);
951 if (zo->zo_verbose >= 3)
952 (void) printf("%s vdev state is '%s'\n", name, value);
955 static void
956 process_options(int argc, char **argv)
958 char *path;
959 ztest_shared_opts_t *zo = &ztest_opts;
961 int opt;
962 uint64_t value;
963 const char *raid_kind = "random";
965 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
967 init_options();
969 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
970 NULL)) != EOF) {
971 value = 0;
972 switch (opt) {
973 case 'v':
974 case 's':
975 case 'a':
976 case 'm':
977 case 'r':
978 case 'R':
979 case 'D':
980 case 'S':
981 case 'd':
982 case 't':
983 case 'g':
984 case 'i':
985 case 'k':
986 case 'T':
987 case 'P':
988 case 'F':
989 value = nicenumtoull(optarg);
991 switch (opt) {
992 case 'v':
993 zo->zo_vdevs = value;
994 break;
995 case 's':
996 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
997 break;
998 case 'a':
999 zo->zo_ashift = value;
1000 break;
1001 case 'm':
1002 zo->zo_mirrors = value;
1003 break;
1004 case 'r':
1005 zo->zo_raid_children = MAX(1, value);
1006 break;
1007 case 'R':
1008 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
1009 break;
1010 case 'K':
1011 raid_kind = optarg;
1012 break;
1013 case 'D':
1014 zo->zo_draid_data = MAX(1, value);
1015 break;
1016 case 'S':
1017 zo->zo_draid_spares = MAX(1, value);
1018 break;
1019 case 'd':
1020 zo->zo_datasets = MAX(1, value);
1021 break;
1022 case 't':
1023 zo->zo_threads = MAX(1, value);
1024 break;
1025 case 'g':
1026 zo->zo_metaslab_force_ganging =
1027 MAX(SPA_MINBLOCKSIZE << 1, value);
1028 break;
1029 case 'i':
1030 zo->zo_init = value;
1031 break;
1032 case 'k':
1033 zo->zo_killrate = value;
1034 break;
1035 case 'p':
1036 (void) strlcpy(zo->zo_pool, optarg,
1037 sizeof (zo->zo_pool));
1038 break;
1039 case 'f':
1040 path = realpath(optarg, NULL);
1041 if (path == NULL) {
1042 (void) fprintf(stderr, "error: %s: %s\n",
1043 optarg, strerror(errno));
1044 usage(B_FALSE);
1045 } else {
1046 (void) strlcpy(zo->zo_dir, path,
1047 sizeof (zo->zo_dir));
1048 free(path);
1050 break;
1051 case 'M':
1052 zo->zo_mmp_test = 1;
1053 break;
1054 case 'V':
1055 zo->zo_verbose++;
1056 break;
1057 case 'X':
1058 zo->zo_raidz_expand_test = RAIDZ_EXPAND_REQUESTED;
1059 break;
1060 case 'E':
1061 zo->zo_init = 0;
1062 break;
1063 case 'T':
1064 zo->zo_time = value;
1065 break;
1066 case 'P':
1067 zo->zo_passtime = MAX(1, value);
1068 break;
1069 case 'F':
1070 zo->zo_maxloops = MAX(1, value);
1071 break;
1072 case 'B':
1073 (void) strlcpy(zo->zo_alt_ztest, optarg,
1074 sizeof (zo->zo_alt_ztest));
1075 break;
1076 case 'C':
1077 ztest_parse_name_value(optarg, zo);
1078 break;
1079 case 'o':
1080 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1081 (void) fprintf(stderr,
1082 "max global var count (%zu) exceeded\n",
1083 ZO_GVARS_MAX_COUNT);
1084 usage(B_FALSE);
1086 char *v = zo->zo_gvars[zo->zo_gvars_count];
1087 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1088 ZO_GVARS_MAX_ARGLEN) {
1089 (void) fprintf(stderr,
1090 "global var option '%s' is too long\n",
1091 optarg);
1092 usage(B_FALSE);
1094 zo->zo_gvars_count++;
1095 break;
1096 case 'G':
1097 zo->zo_dump_dbgmsg = 1;
1098 break;
1099 case 'h':
1100 usage(B_TRUE);
1101 break;
1102 case '?':
1103 default:
1104 usage(B_FALSE);
1105 break;
1109 fini_options();
1111 /* Force compatible options for raidz expansion run */
1112 if (zo->zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED) {
1113 zo->zo_mmp_test = 0;
1114 zo->zo_mirrors = 0;
1115 zo->zo_vdevs = 1;
1116 zo->zo_vdev_size = DEFAULT_VDEV_SIZE * 2;
1117 zo->zo_raid_do_expand = B_FALSE;
1118 raid_kind = "raidz";
1121 if (strcmp(raid_kind, "random") == 0) {
1122 switch (ztest_random(3)) {
1123 case 0:
1124 raid_kind = "raidz";
1125 break;
1126 case 1:
1127 raid_kind = "eraidz";
1128 break;
1129 case 2:
1130 raid_kind = "draid";
1131 break;
1134 if (ztest_opts.zo_verbose >= 3)
1135 (void) printf("choosing RAID type '%s'\n", raid_kind);
1138 if (strcmp(raid_kind, "draid") == 0) {
1139 uint64_t min_devsize;
1141 /* With fewer disk use 256M, otherwise 128M is OK */
1142 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1143 (256ULL << 20) : (128ULL << 20);
1145 /* No top-level mirrors with dRAID for now */
1146 zo->zo_mirrors = 0;
1148 /* Use more appropriate defaults for dRAID */
1149 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1150 zo->zo_vdevs = 1;
1151 if (zo->zo_raid_children ==
1152 ztest_opts_defaults.zo_raid_children)
1153 zo->zo_raid_children = 16;
1154 if (zo->zo_ashift < 12)
1155 zo->zo_ashift = 12;
1156 if (zo->zo_vdev_size < min_devsize)
1157 zo->zo_vdev_size = min_devsize;
1159 if (zo->zo_draid_data + zo->zo_raid_parity >
1160 zo->zo_raid_children - zo->zo_draid_spares) {
1161 (void) fprintf(stderr, "error: too few draid "
1162 "children (%d) for stripe width (%d)\n",
1163 zo->zo_raid_children,
1164 zo->zo_draid_data + zo->zo_raid_parity);
1165 usage(B_FALSE);
1168 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1169 sizeof (zo->zo_raid_type));
1171 } else if (strcmp(raid_kind, "eraidz") == 0) {
1172 /* using eraidz (expandable raidz) */
1173 zo->zo_raid_do_expand = B_TRUE;
1175 /* tests expect top-level to be raidz */
1176 zo->zo_mirrors = 0;
1177 zo->zo_vdevs = 1;
1179 /* Make sure parity is less than data columns */
1180 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1181 zo->zo_raid_children - 1);
1183 } else /* using raidz */ {
1184 ASSERT0(strcmp(raid_kind, "raidz"));
1186 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1187 zo->zo_raid_children - 1);
1190 zo->zo_vdevtime =
1191 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1192 UINT64_MAX >> 2);
1194 if (*zo->zo_alt_ztest) {
1195 const char *invalid_what = "ztest";
1196 char *val = zo->zo_alt_ztest;
1197 if (0 != access(val, X_OK) ||
1198 (strrchr(val, '/') == NULL && (errno == EINVAL)))
1199 goto invalid;
1201 int dirlen = strrchr(val, '/') - val;
1202 strlcpy(zo->zo_alt_libpath, val,
1203 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1204 invalid_what = "library path", val = zo->zo_alt_libpath;
1205 if (strrchr(val, '/') == NULL && (errno == EINVAL))
1206 goto invalid;
1207 *strrchr(val, '/') = '\0';
1208 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1210 if (0 != access(zo->zo_alt_libpath, X_OK))
1211 goto invalid;
1212 return;
1214 invalid:
1215 ztest_dump_core = B_FALSE;
1216 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1220 static void
1221 ztest_kill(ztest_shared_t *zs)
1223 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1224 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1227 * Before we kill ourselves, make sure that the config is updated.
1228 * See comment above spa_write_cachefile().
1230 if (raidz_expand_pause_point != RAIDZ_EXPAND_PAUSE_NONE) {
1231 if (mutex_tryenter(&spa_namespace_lock)) {
1232 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE,
1233 B_FALSE);
1234 mutex_exit(&spa_namespace_lock);
1236 ztest_scratch_state->zs_raidz_scratch_verify_pause =
1237 raidz_expand_pause_point;
1238 } else {
1240 * Do not verify scratch object in case if
1241 * spa_namespace_lock cannot be acquired,
1242 * it can cause deadlock in spa_config_update().
1244 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
1246 return;
1248 } else {
1249 mutex_enter(&spa_namespace_lock);
1250 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1251 mutex_exit(&spa_namespace_lock);
1254 (void) raise(SIGKILL);
1257 static void
1258 ztest_record_enospc(const char *s)
1260 (void) s;
1261 ztest_shared->zs_enospc_count++;
1264 static uint64_t
1265 ztest_get_ashift(void)
1267 if (ztest_opts.zo_ashift == 0)
1268 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1269 return (ztest_opts.zo_ashift);
1272 static boolean_t
1273 ztest_is_draid_spare(const char *name)
1275 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1277 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1278 &parity, &vdev_id, &spare_id) == 3) {
1279 return (B_TRUE);
1282 return (B_FALSE);
1285 static nvlist_t *
1286 make_vdev_file(const char *path, const char *aux, const char *pool,
1287 size_t size, uint64_t ashift)
1289 char *pathbuf = NULL;
1290 uint64_t vdev;
1291 nvlist_t *file;
1292 boolean_t draid_spare = B_FALSE;
1295 if (ashift == 0)
1296 ashift = ztest_get_ashift();
1298 if (path == NULL) {
1299 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1300 path = pathbuf;
1302 if (aux != NULL) {
1303 vdev = ztest_shared->zs_vdev_aux;
1304 (void) snprintf(pathbuf, MAXPATHLEN,
1305 ztest_aux_template, ztest_opts.zo_dir,
1306 pool == NULL ? ztest_opts.zo_pool : pool,
1307 aux, vdev);
1308 } else {
1309 vdev = ztest_shared->zs_vdev_next_leaf++;
1310 (void) snprintf(pathbuf, MAXPATHLEN,
1311 ztest_dev_template, ztest_opts.zo_dir,
1312 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1314 } else {
1315 draid_spare = ztest_is_draid_spare(path);
1318 if (size != 0 && !draid_spare) {
1319 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1320 if (fd == -1)
1321 fatal(B_TRUE, "can't open %s", path);
1322 if (ftruncate(fd, size) != 0)
1323 fatal(B_TRUE, "can't ftruncate %s", path);
1324 (void) close(fd);
1327 file = fnvlist_alloc();
1328 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1329 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1330 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1331 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1332 umem_free(pathbuf, MAXPATHLEN);
1334 return (file);
1337 static nvlist_t *
1338 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1339 uint64_t ashift, int r)
1341 nvlist_t *raid, **child;
1342 int c;
1344 if (r < 2)
1345 return (make_vdev_file(path, aux, pool, size, ashift));
1346 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1348 for (c = 0; c < r; c++)
1349 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1351 raid = fnvlist_alloc();
1352 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1353 ztest_opts.zo_raid_type);
1354 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1355 ztest_opts.zo_raid_parity);
1356 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1357 (const nvlist_t **)child, r);
1359 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1360 uint64_t ndata = ztest_opts.zo_draid_data;
1361 uint64_t nparity = ztest_opts.zo_raid_parity;
1362 uint64_t nspares = ztest_opts.zo_draid_spares;
1363 uint64_t children = ztest_opts.zo_raid_children;
1364 uint64_t ngroups = 1;
1367 * Calculate the minimum number of groups required to fill a
1368 * slice. This is the LCM of the stripe width (data + parity)
1369 * and the number of data drives (children - spares).
1371 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1372 ngroups++;
1374 /* Store the basic dRAID configuration. */
1375 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1376 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1377 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1380 for (c = 0; c < r; c++)
1381 fnvlist_free(child[c]);
1383 umem_free(child, r * sizeof (nvlist_t *));
1385 return (raid);
1388 static nvlist_t *
1389 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1390 size_t size, uint64_t ashift, int r, int m)
1392 nvlist_t *mirror, **child;
1393 int c;
1395 if (m < 1)
1396 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1398 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1400 for (c = 0; c < m; c++)
1401 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1403 mirror = fnvlist_alloc();
1404 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1405 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1406 (const nvlist_t **)child, m);
1408 for (c = 0; c < m; c++)
1409 fnvlist_free(child[c]);
1411 umem_free(child, m * sizeof (nvlist_t *));
1413 return (mirror);
1416 static nvlist_t *
1417 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1418 uint64_t ashift, const char *class, int r, int m, int t)
1420 nvlist_t *root, **child;
1421 int c;
1422 boolean_t log;
1424 ASSERT3S(t, >, 0);
1426 log = (class != NULL && strcmp(class, "log") == 0);
1428 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1430 for (c = 0; c < t; c++) {
1431 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1432 r, m);
1433 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1435 if (class != NULL && class[0] != '\0') {
1436 ASSERT(m > 1 || log); /* expecting a mirror */
1437 fnvlist_add_string(child[c],
1438 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1442 root = fnvlist_alloc();
1443 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1444 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1445 (const nvlist_t **)child, t);
1447 for (c = 0; c < t; c++)
1448 fnvlist_free(child[c]);
1450 umem_free(child, t * sizeof (nvlist_t *));
1452 return (root);
1456 * Find a random spa version. Returns back a random spa version in the
1457 * range [initial_version, SPA_VERSION_FEATURES].
1459 static uint64_t
1460 ztest_random_spa_version(uint64_t initial_version)
1462 uint64_t version = initial_version;
1464 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1465 version = version +
1466 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1469 if (version > SPA_VERSION_BEFORE_FEATURES)
1470 version = SPA_VERSION_FEATURES;
1472 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1473 return (version);
1476 static int
1477 ztest_random_blocksize(void)
1479 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1482 * Choose a block size >= the ashift.
1483 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1485 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1486 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1487 maxbs = 20;
1488 uint64_t block_shift =
1489 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1490 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1493 static int
1494 ztest_random_dnodesize(void)
1496 int slots;
1497 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1499 if (max_slots == DNODE_MIN_SLOTS)
1500 return (DNODE_MIN_SIZE);
1503 * Weight the random distribution more heavily toward smaller
1504 * dnode sizes since that is more likely to reflect real-world
1505 * usage.
1507 ASSERT3U(max_slots, >, 4);
1508 switch (ztest_random(10)) {
1509 case 0:
1510 slots = 5 + ztest_random(max_slots - 4);
1511 break;
1512 case 1 ... 4:
1513 slots = 2 + ztest_random(3);
1514 break;
1515 default:
1516 slots = 1;
1517 break;
1520 return (slots << DNODE_SHIFT);
1523 static int
1524 ztest_random_ibshift(void)
1526 return (DN_MIN_INDBLKSHIFT +
1527 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1530 static uint64_t
1531 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1533 uint64_t top;
1534 vdev_t *rvd = spa->spa_root_vdev;
1535 vdev_t *tvd;
1537 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1539 do {
1540 top = ztest_random(rvd->vdev_children);
1541 tvd = rvd->vdev_child[top];
1542 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1543 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1545 return (top);
1548 static uint64_t
1549 ztest_random_dsl_prop(zfs_prop_t prop)
1551 uint64_t value;
1553 do {
1554 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1555 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1557 return (value);
1560 static int
1561 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1562 boolean_t inherit)
1564 const char *propname = zfs_prop_to_name(prop);
1565 const char *valname;
1566 char *setpoint;
1567 uint64_t curval;
1568 int error;
1570 error = dsl_prop_set_int(osname, propname,
1571 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1573 if (error == ENOSPC) {
1574 ztest_record_enospc(FTAG);
1575 return (error);
1577 ASSERT0(error);
1579 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1580 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1582 if (ztest_opts.zo_verbose >= 6) {
1583 int err;
1585 err = zfs_prop_index_to_string(prop, curval, &valname);
1586 if (err)
1587 (void) printf("%s %s = %llu at '%s'\n", osname,
1588 propname, (unsigned long long)curval, setpoint);
1589 else
1590 (void) printf("%s %s = %s at '%s'\n",
1591 osname, propname, valname, setpoint);
1593 umem_free(setpoint, MAXPATHLEN);
1595 return (error);
1598 static int
1599 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1601 spa_t *spa = ztest_spa;
1602 nvlist_t *props = NULL;
1603 int error;
1605 props = fnvlist_alloc();
1606 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1608 error = spa_prop_set(spa, props);
1610 fnvlist_free(props);
1612 if (error == ENOSPC) {
1613 ztest_record_enospc(FTAG);
1614 return (error);
1616 ASSERT0(error);
1618 return (error);
1621 static int
1622 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1623 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1625 int err;
1626 char *cp = NULL;
1627 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1629 strlcpy(ddname, name, sizeof (ddname));
1630 cp = strchr(ddname, '@');
1631 if (cp != NULL)
1632 *cp = '\0';
1634 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1635 while (decrypt && err == EACCES) {
1636 dsl_crypto_params_t *dcp;
1637 nvlist_t *crypto_args = fnvlist_alloc();
1639 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1640 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1641 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1642 crypto_args, &dcp));
1643 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1645 * Note: if there was an error loading, the wkey was not
1646 * consumed, and needs to be freed.
1648 dsl_crypto_params_free(dcp, (err != 0));
1649 fnvlist_free(crypto_args);
1651 if (err == EINVAL) {
1653 * We couldn't load a key for this dataset so try
1654 * the parent. This loop will eventually hit the
1655 * encryption root since ztest only makes clones
1656 * as children of their origin datasets.
1658 cp = strrchr(ddname, '/');
1659 if (cp == NULL)
1660 return (err);
1662 *cp = '\0';
1663 err = EACCES;
1664 continue;
1665 } else if (err != 0) {
1666 break;
1669 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1670 break;
1673 return (err);
1676 static void
1677 ztest_rll_init(rll_t *rll)
1679 rll->rll_writer = NULL;
1680 rll->rll_readers = 0;
1681 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1682 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1685 static void
1686 ztest_rll_destroy(rll_t *rll)
1688 ASSERT3P(rll->rll_writer, ==, NULL);
1689 ASSERT0(rll->rll_readers);
1690 mutex_destroy(&rll->rll_lock);
1691 cv_destroy(&rll->rll_cv);
1694 static void
1695 ztest_rll_lock(rll_t *rll, rl_type_t type)
1697 mutex_enter(&rll->rll_lock);
1699 if (type == ZTRL_READER) {
1700 while (rll->rll_writer != NULL)
1701 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1702 rll->rll_readers++;
1703 } else {
1704 while (rll->rll_writer != NULL || rll->rll_readers)
1705 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1706 rll->rll_writer = curthread;
1709 mutex_exit(&rll->rll_lock);
1712 static void
1713 ztest_rll_unlock(rll_t *rll)
1715 mutex_enter(&rll->rll_lock);
1717 if (rll->rll_writer) {
1718 ASSERT0(rll->rll_readers);
1719 rll->rll_writer = NULL;
1720 } else {
1721 ASSERT3S(rll->rll_readers, >, 0);
1722 ASSERT3P(rll->rll_writer, ==, NULL);
1723 rll->rll_readers--;
1726 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1727 cv_broadcast(&rll->rll_cv);
1729 mutex_exit(&rll->rll_lock);
1732 static void
1733 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1735 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1737 ztest_rll_lock(rll, type);
1740 static void
1741 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1743 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1745 ztest_rll_unlock(rll);
1748 static rl_t *
1749 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1750 uint64_t size, rl_type_t type)
1752 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1753 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1754 rl_t *rl;
1756 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1757 rl->rl_object = object;
1758 rl->rl_offset = offset;
1759 rl->rl_size = size;
1760 rl->rl_lock = rll;
1762 ztest_rll_lock(rll, type);
1764 return (rl);
1767 static void
1768 ztest_range_unlock(rl_t *rl)
1770 rll_t *rll = rl->rl_lock;
1772 ztest_rll_unlock(rll);
1774 umem_free(rl, sizeof (*rl));
1777 static void
1778 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1780 zd->zd_os = os;
1781 zd->zd_zilog = dmu_objset_zil(os);
1782 zd->zd_shared = szd;
1783 dmu_objset_name(os, zd->zd_name);
1784 int l;
1786 if (zd->zd_shared != NULL)
1787 zd->zd_shared->zd_seq = 0;
1789 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1790 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1792 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1793 ztest_rll_init(&zd->zd_object_lock[l]);
1795 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1796 ztest_rll_init(&zd->zd_range_lock[l]);
1799 static void
1800 ztest_zd_fini(ztest_ds_t *zd)
1802 int l;
1804 mutex_destroy(&zd->zd_dirobj_lock);
1805 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1807 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1808 ztest_rll_destroy(&zd->zd_object_lock[l]);
1810 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1811 ztest_rll_destroy(&zd->zd_range_lock[l]);
1814 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1816 static uint64_t
1817 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1819 uint64_t txg;
1820 int error;
1823 * Attempt to assign tx to some transaction group.
1825 error = dmu_tx_assign(tx, txg_how);
1826 if (error) {
1827 if (error == ERESTART) {
1828 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1829 dmu_tx_wait(tx);
1830 } else {
1831 ASSERT3U(error, ==, ENOSPC);
1832 ztest_record_enospc(tag);
1834 dmu_tx_abort(tx);
1835 return (0);
1837 txg = dmu_tx_get_txg(tx);
1838 ASSERT3U(txg, !=, 0);
1839 return (txg);
1842 static void
1843 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1844 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1845 uint64_t crtxg)
1847 bt->bt_magic = BT_MAGIC;
1848 bt->bt_objset = dmu_objset_id(os);
1849 bt->bt_object = object;
1850 bt->bt_dnodesize = dnodesize;
1851 bt->bt_offset = offset;
1852 bt->bt_gen = gen;
1853 bt->bt_txg = txg;
1854 bt->bt_crtxg = crtxg;
1857 static void
1858 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1859 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1860 uint64_t crtxg)
1862 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1863 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1864 ASSERT3U(bt->bt_object, ==, object);
1865 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1866 ASSERT3U(bt->bt_offset, ==, offset);
1867 ASSERT3U(bt->bt_gen, <=, gen);
1868 ASSERT3U(bt->bt_txg, <=, txg);
1869 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1872 static ztest_block_tag_t *
1873 ztest_bt_bonus(dmu_buf_t *db)
1875 dmu_object_info_t doi;
1876 ztest_block_tag_t *bt;
1878 dmu_object_info_from_db(db, &doi);
1879 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1880 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1881 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1883 return (bt);
1887 * Generate a token to fill up unused bonus buffer space. Try to make
1888 * it unique to the object, generation, and offset to verify that data
1889 * is not getting overwritten by data from other dnodes.
1891 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1895 * Fill up the unused bonus buffer region before the block tag with a
1896 * verifiable pattern. Filling the whole bonus area with non-zero data
1897 * helps ensure that all dnode traversal code properly skips the
1898 * interior regions of large dnodes.
1900 static void
1901 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1902 objset_t *os, uint64_t gen)
1904 uint64_t *bonusp;
1906 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1908 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1909 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1910 gen, bonusp - (uint64_t *)db->db_data);
1911 *bonusp = token;
1916 * Verify that the unused area of a bonus buffer is filled with the
1917 * expected tokens.
1919 static void
1920 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1921 objset_t *os, uint64_t gen)
1923 uint64_t *bonusp;
1925 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1926 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1927 gen, bonusp - (uint64_t *)db->db_data);
1928 VERIFY3U(*bonusp, ==, token);
1933 * ZIL logging ops
1936 #define lrz_type lr_mode
1937 #define lrz_blocksize lr_uid
1938 #define lrz_ibshift lr_gid
1939 #define lrz_bonustype lr_rdev
1940 #define lrz_dnodesize lr_crtime[1]
1942 static void
1943 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1945 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1946 size_t namesize = strlen(name) + 1;
1947 itx_t *itx;
1949 if (zil_replaying(zd->zd_zilog, tx))
1950 return;
1952 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1953 memcpy(&itx->itx_lr + 1, &lr->lr_create.lr_common + 1,
1954 sizeof (*lr) + namesize - sizeof (lr_t));
1956 zil_itx_assign(zd->zd_zilog, itx, tx);
1959 static void
1960 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1962 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
1963 size_t namesize = strlen(name) + 1;
1964 itx_t *itx;
1966 if (zil_replaying(zd->zd_zilog, tx))
1967 return;
1969 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1970 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1971 sizeof (*lr) + namesize - sizeof (lr_t));
1973 itx->itx_oid = object;
1974 zil_itx_assign(zd->zd_zilog, itx, tx);
1977 static void
1978 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1980 itx_t *itx;
1981 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1983 if (zil_replaying(zd->zd_zilog, tx))
1984 return;
1986 if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1987 write_state = WR_INDIRECT;
1989 itx = zil_itx_create(TX_WRITE,
1990 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1992 if (write_state == WR_COPIED &&
1993 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1994 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1995 zil_itx_destroy(itx);
1996 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1997 write_state = WR_NEED_COPY;
1999 itx->itx_private = zd;
2000 itx->itx_wr_state = write_state;
2001 itx->itx_sync = (ztest_random(8) == 0);
2003 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2004 sizeof (*lr) - sizeof (lr_t));
2006 zil_itx_assign(zd->zd_zilog, itx, tx);
2009 static void
2010 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
2012 itx_t *itx;
2014 if (zil_replaying(zd->zd_zilog, tx))
2015 return;
2017 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
2018 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2019 sizeof (*lr) - sizeof (lr_t));
2021 itx->itx_sync = B_FALSE;
2022 zil_itx_assign(zd->zd_zilog, itx, tx);
2025 static void
2026 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
2028 itx_t *itx;
2030 if (zil_replaying(zd->zd_zilog, tx))
2031 return;
2033 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
2034 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
2035 sizeof (*lr) - sizeof (lr_t));
2037 itx->itx_sync = B_FALSE;
2038 zil_itx_assign(zd->zd_zilog, itx, tx);
2042 * ZIL replay ops
2044 static int
2045 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
2047 ztest_ds_t *zd = arg1;
2048 lr_create_t *lrc = arg2;
2049 _lr_create_t *lr = &lrc->lr_create;
2050 char *name = (char *)&lrc->lr_data[0]; /* name follows lr */
2051 objset_t *os = zd->zd_os;
2052 ztest_block_tag_t *bbt;
2053 dmu_buf_t *db;
2054 dmu_tx_t *tx;
2055 uint64_t txg;
2056 int error = 0;
2057 int bonuslen;
2059 if (byteswap)
2060 byteswap_uint64_array(lr, sizeof (*lr));
2062 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2063 ASSERT3S(name[0], !=, '\0');
2065 tx = dmu_tx_create(os);
2067 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
2069 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2070 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
2071 } else {
2072 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
2075 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2076 if (txg == 0)
2077 return (ENOSPC);
2079 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
2080 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2082 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2083 if (lr->lr_foid == 0) {
2084 lr->lr_foid = zap_create_dnsize(os,
2085 lr->lrz_type, lr->lrz_bonustype,
2086 bonuslen, lr->lrz_dnodesize, tx);
2087 } else {
2088 error = zap_create_claim_dnsize(os, lr->lr_foid,
2089 lr->lrz_type, lr->lrz_bonustype,
2090 bonuslen, lr->lrz_dnodesize, tx);
2092 } else {
2093 if (lr->lr_foid == 0) {
2094 lr->lr_foid = dmu_object_alloc_dnsize(os,
2095 lr->lrz_type, 0, lr->lrz_bonustype,
2096 bonuslen, lr->lrz_dnodesize, tx);
2097 } else {
2098 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2099 lr->lrz_type, 0, lr->lrz_bonustype,
2100 bonuslen, lr->lrz_dnodesize, tx);
2104 if (error) {
2105 ASSERT3U(error, ==, EEXIST);
2106 ASSERT(zd->zd_zilog->zl_replay);
2107 dmu_tx_commit(tx);
2108 return (error);
2111 ASSERT3U(lr->lr_foid, !=, 0);
2113 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2114 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2115 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2117 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2118 bbt = ztest_bt_bonus(db);
2119 dmu_buf_will_dirty(db, tx);
2120 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2121 lr->lr_gen, txg, txg);
2122 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2123 dmu_buf_rele(db, FTAG);
2125 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2126 &lr->lr_foid, tx));
2128 (void) ztest_log_create(zd, tx, lrc);
2130 dmu_tx_commit(tx);
2132 return (0);
2135 static int
2136 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2138 ztest_ds_t *zd = arg1;
2139 lr_remove_t *lr = arg2;
2140 char *name = (char *)&lr->lr_data[0]; /* name follows lr */
2141 objset_t *os = zd->zd_os;
2142 dmu_object_info_t doi;
2143 dmu_tx_t *tx;
2144 uint64_t object, txg;
2146 if (byteswap)
2147 byteswap_uint64_array(lr, sizeof (*lr));
2149 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2150 ASSERT3S(name[0], !=, '\0');
2152 VERIFY0(
2153 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2154 ASSERT3U(object, !=, 0);
2156 ztest_object_lock(zd, object, ZTRL_WRITER);
2158 VERIFY0(dmu_object_info(os, object, &doi));
2160 tx = dmu_tx_create(os);
2162 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2163 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2165 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2166 if (txg == 0) {
2167 ztest_object_unlock(zd, object);
2168 return (ENOSPC);
2171 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2172 VERIFY0(zap_destroy(os, object, tx));
2173 } else {
2174 VERIFY0(dmu_object_free(os, object, tx));
2177 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2179 (void) ztest_log_remove(zd, tx, lr, object);
2181 dmu_tx_commit(tx);
2183 ztest_object_unlock(zd, object);
2185 return (0);
2188 static int
2189 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2191 ztest_ds_t *zd = arg1;
2192 lr_write_t *lr = arg2;
2193 objset_t *os = zd->zd_os;
2194 uint8_t *data = &lr->lr_data[0]; /* data follows lr */
2195 uint64_t offset, length;
2196 ztest_block_tag_t *bt = (ztest_block_tag_t *)data;
2197 ztest_block_tag_t *bbt;
2198 uint64_t gen, txg, lrtxg, crtxg;
2199 dmu_object_info_t doi;
2200 dmu_tx_t *tx;
2201 dmu_buf_t *db;
2202 arc_buf_t *abuf = NULL;
2203 rl_t *rl;
2205 if (byteswap)
2206 byteswap_uint64_array(lr, sizeof (*lr));
2208 offset = lr->lr_offset;
2209 length = lr->lr_length;
2211 /* If it's a dmu_sync() block, write the whole block */
2212 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2213 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2214 if (length < blocksize) {
2215 offset -= offset % blocksize;
2216 length = blocksize;
2220 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2221 byteswap_uint64_array(bt, sizeof (*bt));
2223 if (bt->bt_magic != BT_MAGIC)
2224 bt = NULL;
2226 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2227 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, ZTRL_WRITER);
2229 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2231 dmu_object_info_from_db(db, &doi);
2233 bbt = ztest_bt_bonus(db);
2234 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2235 gen = bbt->bt_gen;
2236 crtxg = bbt->bt_crtxg;
2237 lrtxg = lr->lr_common.lrc_txg;
2239 tx = dmu_tx_create(os);
2241 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2243 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2244 P2PHASE(offset, length) == 0)
2245 abuf = dmu_request_arcbuf(db, length);
2247 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2248 if (txg == 0) {
2249 if (abuf != NULL)
2250 dmu_return_arcbuf(abuf);
2251 dmu_buf_rele(db, FTAG);
2252 ztest_range_unlock(rl);
2253 ztest_object_unlock(zd, lr->lr_foid);
2254 return (ENOSPC);
2257 if (bt != NULL) {
2259 * Usually, verify the old data before writing new data --
2260 * but not always, because we also want to verify correct
2261 * behavior when the data was not recently read into cache.
2263 ASSERT(doi.doi_data_block_size);
2264 ASSERT0(offset % doi.doi_data_block_size);
2265 if (ztest_random(4) != 0) {
2266 int prefetch = ztest_random(2) ?
2267 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2270 * We will randomly set when to do O_DIRECT on a read.
2272 if (ztest_random(4) == 0)
2273 prefetch |= DMU_DIRECTIO;
2275 ztest_block_tag_t rbt;
2277 VERIFY(dmu_read(os, lr->lr_foid, offset,
2278 sizeof (rbt), &rbt, prefetch) == 0);
2279 if (rbt.bt_magic == BT_MAGIC) {
2280 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2281 offset, gen, txg, crtxg);
2286 * Writes can appear to be newer than the bonus buffer because
2287 * the ztest_get_data() callback does a dmu_read() of the
2288 * open-context data, which may be different than the data
2289 * as it was when the write was generated.
2291 if (zd->zd_zilog->zl_replay) {
2292 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2293 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2294 bt->bt_crtxg);
2298 * Set the bt's gen/txg to the bonus buffer's gen/txg
2299 * so that all of the usual ASSERTs will work.
2301 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2302 crtxg);
2305 if (abuf == NULL) {
2306 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2307 } else {
2308 memcpy(abuf->b_data, data, length);
2309 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2312 (void) ztest_log_write(zd, tx, lr);
2314 dmu_buf_rele(db, FTAG);
2316 dmu_tx_commit(tx);
2318 ztest_range_unlock(rl);
2319 ztest_object_unlock(zd, lr->lr_foid);
2321 return (0);
2324 static int
2325 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2327 ztest_ds_t *zd = arg1;
2328 lr_truncate_t *lr = arg2;
2329 objset_t *os = zd->zd_os;
2330 dmu_tx_t *tx;
2331 uint64_t txg;
2332 rl_t *rl;
2334 if (byteswap)
2335 byteswap_uint64_array(lr, sizeof (*lr));
2337 ztest_object_lock(zd, lr->lr_foid, ZTRL_READER);
2338 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2339 ZTRL_WRITER);
2341 tx = dmu_tx_create(os);
2343 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2345 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2346 if (txg == 0) {
2347 ztest_range_unlock(rl);
2348 ztest_object_unlock(zd, lr->lr_foid);
2349 return (ENOSPC);
2352 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2353 lr->lr_length, tx));
2355 (void) ztest_log_truncate(zd, tx, lr);
2357 dmu_tx_commit(tx);
2359 ztest_range_unlock(rl);
2360 ztest_object_unlock(zd, lr->lr_foid);
2362 return (0);
2365 static int
2366 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2368 ztest_ds_t *zd = arg1;
2369 lr_setattr_t *lr = arg2;
2370 objset_t *os = zd->zd_os;
2371 dmu_tx_t *tx;
2372 dmu_buf_t *db;
2373 ztest_block_tag_t *bbt;
2374 uint64_t txg, lrtxg, crtxg, dnodesize;
2376 if (byteswap)
2377 byteswap_uint64_array(lr, sizeof (*lr));
2379 ztest_object_lock(zd, lr->lr_foid, ZTRL_WRITER);
2381 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2383 tx = dmu_tx_create(os);
2384 dmu_tx_hold_bonus(tx, lr->lr_foid);
2386 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2387 if (txg == 0) {
2388 dmu_buf_rele(db, FTAG);
2389 ztest_object_unlock(zd, lr->lr_foid);
2390 return (ENOSPC);
2393 bbt = ztest_bt_bonus(db);
2394 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2395 crtxg = bbt->bt_crtxg;
2396 lrtxg = lr->lr_common.lrc_txg;
2397 dnodesize = bbt->bt_dnodesize;
2399 if (zd->zd_zilog->zl_replay) {
2400 ASSERT3U(lr->lr_size, !=, 0);
2401 ASSERT3U(lr->lr_mode, !=, 0);
2402 ASSERT3U(lrtxg, !=, 0);
2403 } else {
2405 * Randomly change the size and increment the generation.
2407 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2408 sizeof (*bbt);
2409 lr->lr_mode = bbt->bt_gen + 1;
2410 ASSERT0(lrtxg);
2414 * Verify that the current bonus buffer is not newer than our txg.
2416 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2417 MAX(txg, lrtxg), crtxg);
2419 dmu_buf_will_dirty(db, tx);
2421 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2422 ASSERT3U(lr->lr_size, <=, db->db_size);
2423 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2424 bbt = ztest_bt_bonus(db);
2426 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2427 txg, crtxg);
2428 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2429 dmu_buf_rele(db, FTAG);
2431 (void) ztest_log_setattr(zd, tx, lr);
2433 dmu_tx_commit(tx);
2435 ztest_object_unlock(zd, lr->lr_foid);
2437 return (0);
2440 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2441 NULL, /* 0 no such transaction type */
2442 ztest_replay_create, /* TX_CREATE */
2443 NULL, /* TX_MKDIR */
2444 NULL, /* TX_MKXATTR */
2445 NULL, /* TX_SYMLINK */
2446 ztest_replay_remove, /* TX_REMOVE */
2447 NULL, /* TX_RMDIR */
2448 NULL, /* TX_LINK */
2449 NULL, /* TX_RENAME */
2450 ztest_replay_write, /* TX_WRITE */
2451 ztest_replay_truncate, /* TX_TRUNCATE */
2452 ztest_replay_setattr, /* TX_SETATTR */
2453 NULL, /* TX_ACL */
2454 NULL, /* TX_CREATE_ACL */
2455 NULL, /* TX_CREATE_ATTR */
2456 NULL, /* TX_CREATE_ACL_ATTR */
2457 NULL, /* TX_MKDIR_ACL */
2458 NULL, /* TX_MKDIR_ATTR */
2459 NULL, /* TX_MKDIR_ACL_ATTR */
2460 NULL, /* TX_WRITE2 */
2461 NULL, /* TX_SETSAXATTR */
2462 NULL, /* TX_RENAME_EXCHANGE */
2463 NULL, /* TX_RENAME_WHITEOUT */
2467 * ZIL get_data callbacks
2470 static void
2471 ztest_get_done(zgd_t *zgd, int error)
2473 (void) error;
2474 ztest_ds_t *zd = zgd->zgd_private;
2475 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2477 if (zgd->zgd_db)
2478 dmu_buf_rele(zgd->zgd_db, zgd);
2480 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2481 ztest_object_unlock(zd, object);
2483 umem_free(zgd, sizeof (*zgd));
2486 static int
2487 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2488 struct lwb *lwb, zio_t *zio)
2490 (void) arg2;
2491 ztest_ds_t *zd = arg;
2492 objset_t *os = zd->zd_os;
2493 uint64_t object = lr->lr_foid;
2494 uint64_t offset = lr->lr_offset;
2495 uint64_t size = lr->lr_length;
2496 uint64_t txg = lr->lr_common.lrc_txg;
2497 uint64_t crtxg;
2498 dmu_object_info_t doi;
2499 dmu_buf_t *db;
2500 zgd_t *zgd;
2501 int error;
2503 ASSERT3P(lwb, !=, NULL);
2504 ASSERT3U(size, !=, 0);
2506 ztest_object_lock(zd, object, ZTRL_READER);
2507 error = dmu_bonus_hold(os, object, FTAG, &db);
2508 if (error) {
2509 ztest_object_unlock(zd, object);
2510 return (error);
2513 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2515 if (crtxg == 0 || crtxg > txg) {
2516 dmu_buf_rele(db, FTAG);
2517 ztest_object_unlock(zd, object);
2518 return (ENOENT);
2521 dmu_object_info_from_db(db, &doi);
2522 dmu_buf_rele(db, FTAG);
2523 db = NULL;
2525 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2526 zgd->zgd_lwb = lwb;
2527 zgd->zgd_private = zd;
2529 if (buf != NULL) { /* immediate write */
2530 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2531 object, offset, size, ZTRL_READER);
2533 error = dmu_read(os, object, offset, size, buf,
2534 DMU_READ_NO_PREFETCH);
2535 ASSERT0(error);
2536 } else {
2537 ASSERT3P(zio, !=, NULL);
2538 size = doi.doi_data_block_size;
2539 if (ISP2(size)) {
2540 offset = P2ALIGN_TYPED(offset, size, uint64_t);
2541 } else {
2542 ASSERT3U(offset, <, size);
2543 offset = 0;
2546 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2547 object, offset, size, ZTRL_READER);
2549 error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2551 if (error == 0) {
2552 blkptr_t *bp = &lr->lr_blkptr;
2554 zgd->zgd_db = db;
2555 zgd->zgd_bp = bp;
2557 ASSERT3U(db->db_offset, ==, offset);
2558 ASSERT3U(db->db_size, ==, size);
2560 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2561 ztest_get_done, zgd);
2563 if (error == 0)
2564 return (0);
2568 ztest_get_done(zgd, error);
2570 return (error);
2573 static void *
2574 ztest_lr_alloc(size_t lrsize, char *name)
2576 char *lr;
2577 size_t namesize = name ? strlen(name) + 1 : 0;
2579 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2581 if (name)
2582 memcpy(lr + lrsize, name, namesize);
2584 return (lr);
2587 static void
2588 ztest_lr_free(void *lr, size_t lrsize, char *name)
2590 size_t namesize = name ? strlen(name) + 1 : 0;
2592 umem_free(lr, lrsize + namesize);
2596 * Lookup a bunch of objects. Returns the number of objects not found.
2598 static int
2599 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2601 int missing = 0;
2602 int error;
2603 int i;
2605 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2607 for (i = 0; i < count; i++, od++) {
2608 od->od_object = 0;
2609 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2610 sizeof (uint64_t), 1, &od->od_object);
2611 if (error) {
2612 ASSERT3S(error, ==, ENOENT);
2613 ASSERT0(od->od_object);
2614 missing++;
2615 } else {
2616 dmu_buf_t *db;
2617 ztest_block_tag_t *bbt;
2618 dmu_object_info_t doi;
2620 ASSERT3U(od->od_object, !=, 0);
2621 ASSERT0(missing); /* there should be no gaps */
2623 ztest_object_lock(zd, od->od_object, ZTRL_READER);
2624 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2625 FTAG, &db));
2626 dmu_object_info_from_db(db, &doi);
2627 bbt = ztest_bt_bonus(db);
2628 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2629 od->od_type = doi.doi_type;
2630 od->od_blocksize = doi.doi_data_block_size;
2631 od->od_gen = bbt->bt_gen;
2632 dmu_buf_rele(db, FTAG);
2633 ztest_object_unlock(zd, od->od_object);
2637 return (missing);
2640 static int
2641 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2643 int missing = 0;
2644 int i;
2646 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2648 for (i = 0; i < count; i++, od++) {
2649 if (missing) {
2650 od->od_object = 0;
2651 missing++;
2652 continue;
2655 lr_create_t *lrc = ztest_lr_alloc(sizeof (*lrc), od->od_name);
2656 _lr_create_t *lr = &lrc->lr_create;
2658 lr->lr_doid = od->od_dir;
2659 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2660 lr->lrz_type = od->od_crtype;
2661 lr->lrz_blocksize = od->od_crblocksize;
2662 lr->lrz_ibshift = ztest_random_ibshift();
2663 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2664 lr->lrz_dnodesize = od->od_crdnodesize;
2665 lr->lr_gen = od->od_crgen;
2666 lr->lr_crtime[0] = time(NULL);
2668 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2669 ASSERT0(missing);
2670 od->od_object = 0;
2671 missing++;
2672 } else {
2673 od->od_object = lr->lr_foid;
2674 od->od_type = od->od_crtype;
2675 od->od_blocksize = od->od_crblocksize;
2676 od->od_gen = od->od_crgen;
2677 ASSERT3U(od->od_object, !=, 0);
2680 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2683 return (missing);
2686 static int
2687 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2689 int missing = 0;
2690 int error;
2691 int i;
2693 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2695 od += count - 1;
2697 for (i = count - 1; i >= 0; i--, od--) {
2698 if (missing) {
2699 missing++;
2700 continue;
2704 * No object was found.
2706 if (od->od_object == 0)
2707 continue;
2709 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2711 lr->lr_doid = od->od_dir;
2713 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2714 ASSERT3U(error, ==, ENOSPC);
2715 missing++;
2716 } else {
2717 od->od_object = 0;
2719 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2722 return (missing);
2725 static int
2726 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2727 const void *data)
2729 lr_write_t *lr;
2730 int error;
2732 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2734 lr->lr_foid = object;
2735 lr->lr_offset = offset;
2736 lr->lr_length = size;
2737 lr->lr_blkoff = 0;
2738 BP_ZERO(&lr->lr_blkptr);
2740 memcpy(&lr->lr_data[0], data, size);
2742 error = ztest_replay_write(zd, lr, B_FALSE);
2744 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2746 return (error);
2749 static int
2750 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2752 lr_truncate_t *lr;
2753 int error;
2755 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2757 lr->lr_foid = object;
2758 lr->lr_offset = offset;
2759 lr->lr_length = size;
2761 error = ztest_replay_truncate(zd, lr, B_FALSE);
2763 ztest_lr_free(lr, sizeof (*lr), NULL);
2765 return (error);
2768 static int
2769 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2771 lr_setattr_t *lr;
2772 int error;
2774 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2776 lr->lr_foid = object;
2777 lr->lr_size = 0;
2778 lr->lr_mode = 0;
2780 error = ztest_replay_setattr(zd, lr, B_FALSE);
2782 ztest_lr_free(lr, sizeof (*lr), NULL);
2784 return (error);
2787 static void
2788 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2790 objset_t *os = zd->zd_os;
2791 dmu_tx_t *tx;
2792 uint64_t txg;
2793 rl_t *rl;
2795 txg_wait_synced(dmu_objset_pool(os), 0);
2797 ztest_object_lock(zd, object, ZTRL_READER);
2798 rl = ztest_range_lock(zd, object, offset, size, ZTRL_WRITER);
2800 tx = dmu_tx_create(os);
2802 dmu_tx_hold_write(tx, object, offset, size);
2804 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2806 if (txg != 0) {
2807 dmu_prealloc(os, object, offset, size, tx);
2808 dmu_tx_commit(tx);
2809 txg_wait_synced(dmu_objset_pool(os), txg);
2810 } else {
2811 (void) dmu_free_long_range(os, object, offset, size);
2814 ztest_range_unlock(rl);
2815 ztest_object_unlock(zd, object);
2818 static void
2819 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2821 int err;
2822 ztest_block_tag_t wbt;
2823 dmu_object_info_t doi;
2824 enum ztest_io_type io_type;
2825 uint64_t blocksize;
2826 void *data;
2827 uint32_t dmu_read_flags = DMU_READ_NO_PREFETCH;
2830 * We will randomly set when to do O_DIRECT on a read.
2832 if (ztest_random(4) == 0)
2833 dmu_read_flags |= DMU_DIRECTIO;
2835 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2836 blocksize = doi.doi_data_block_size;
2837 data = umem_alloc(blocksize, UMEM_NOFAIL);
2840 * Pick an i/o type at random, biased toward writing block tags.
2842 io_type = ztest_random(ZTEST_IO_TYPES);
2843 if (ztest_random(2) == 0)
2844 io_type = ZTEST_IO_WRITE_TAG;
2846 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2848 switch (io_type) {
2850 case ZTEST_IO_WRITE_TAG:
2851 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2852 offset, 0, 0, 0);
2853 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2854 break;
2856 case ZTEST_IO_WRITE_PATTERN:
2857 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2858 if (ztest_random(2) == 0) {
2860 * Induce fletcher2 collisions to ensure that
2861 * zio_ddt_collision() detects and resolves them
2862 * when using fletcher2-verify for deduplication.
2864 ((uint64_t *)data)[0] ^= 1ULL << 63;
2865 ((uint64_t *)data)[4] ^= 1ULL << 63;
2867 (void) ztest_write(zd, object, offset, blocksize, data);
2868 break;
2870 case ZTEST_IO_WRITE_ZEROES:
2871 memset(data, 0, blocksize);
2872 (void) ztest_write(zd, object, offset, blocksize, data);
2873 break;
2875 case ZTEST_IO_TRUNCATE:
2876 (void) ztest_truncate(zd, object, offset, blocksize);
2877 break;
2879 case ZTEST_IO_SETATTR:
2880 (void) ztest_setattr(zd, object);
2881 break;
2882 default:
2883 break;
2885 case ZTEST_IO_REWRITE:
2886 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2887 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2888 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2889 B_FALSE);
2890 ASSERT(err == 0 || err == ENOSPC);
2891 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2892 ZFS_PROP_COMPRESSION,
2893 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2894 B_FALSE);
2895 ASSERT(err == 0 || err == ENOSPC);
2896 (void) pthread_rwlock_unlock(&ztest_name_lock);
2898 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2899 dmu_read_flags));
2901 (void) ztest_write(zd, object, offset, blocksize, data);
2902 break;
2905 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2907 umem_free(data, blocksize);
2911 * Initialize an object description template.
2913 static void
2914 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2915 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2916 uint64_t gen)
2918 od->od_dir = ZTEST_DIROBJ;
2919 od->od_object = 0;
2921 od->od_crtype = type;
2922 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2923 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2924 od->od_crgen = gen;
2926 od->od_type = DMU_OT_NONE;
2927 od->od_blocksize = 0;
2928 od->od_gen = 0;
2930 (void) snprintf(od->od_name, sizeof (od->od_name),
2931 "%s(%"PRId64")[%"PRIu64"]",
2932 tag, id, index);
2936 * Lookup or create the objects for a test using the od template.
2937 * If the objects do not all exist, or if 'remove' is specified,
2938 * remove any existing objects and create new ones. Otherwise,
2939 * use the existing objects.
2941 static int
2942 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2944 int count = size / sizeof (*od);
2945 int rv = 0;
2947 mutex_enter(&zd->zd_dirobj_lock);
2948 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2949 (ztest_remove(zd, od, count) != 0 ||
2950 ztest_create(zd, od, count) != 0))
2951 rv = -1;
2952 zd->zd_od = od;
2953 mutex_exit(&zd->zd_dirobj_lock);
2955 return (rv);
2958 void
2959 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2961 (void) id;
2962 zilog_t *zilog = zd->zd_zilog;
2964 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2966 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2969 * Remember the committed values in zd, which is in parent/child
2970 * shared memory. If we die, the next iteration of ztest_run()
2971 * will verify that the log really does contain this record.
2973 mutex_enter(&zilog->zl_lock);
2974 ASSERT3P(zd->zd_shared, !=, NULL);
2975 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2976 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2977 mutex_exit(&zilog->zl_lock);
2979 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2983 * This function is designed to simulate the operations that occur during a
2984 * mount/unmount operation. We hold the dataset across these operations in an
2985 * attempt to expose any implicit assumptions about ZIL management.
2987 void
2988 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2990 (void) id;
2991 objset_t *os = zd->zd_os;
2994 * We hold the ztest_vdev_lock so we don't cause problems with
2995 * other threads that wish to remove a log device, such as
2996 * ztest_device_removal().
2998 mutex_enter(&ztest_vdev_lock);
3001 * We grab the zd_dirobj_lock to ensure that no other thread is
3002 * updating the zil (i.e. adding in-memory log records) and the
3003 * zd_zilog_lock to block any I/O.
3005 mutex_enter(&zd->zd_dirobj_lock);
3006 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
3008 /* zfsvfs_teardown() */
3009 zil_close(zd->zd_zilog);
3011 /* zfsvfs_setup() */
3012 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
3013 zil_replay(os, zd, ztest_replay_vector);
3015 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
3016 mutex_exit(&zd->zd_dirobj_lock);
3017 mutex_exit(&ztest_vdev_lock);
3021 * Verify that we can't destroy an active pool, create an existing pool,
3022 * or create a pool with a bad vdev spec.
3024 void
3025 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
3027 (void) zd, (void) id;
3028 ztest_shared_opts_t *zo = &ztest_opts;
3029 spa_t *spa;
3030 nvlist_t *nvroot;
3032 if (zo->zo_mmp_test)
3033 return;
3036 * Attempt to create using a bad file.
3038 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3039 VERIFY3U(ENOENT, ==,
3040 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
3041 fnvlist_free(nvroot);
3044 * Attempt to create using a bad mirror.
3046 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
3047 VERIFY3U(ENOENT, ==,
3048 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
3049 fnvlist_free(nvroot);
3052 * Attempt to create an existing pool. It shouldn't matter
3053 * what's in the nvroot; we should fail with EEXIST.
3055 (void) pthread_rwlock_rdlock(&ztest_name_lock);
3056 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
3057 VERIFY3U(EEXIST, ==,
3058 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
3059 fnvlist_free(nvroot);
3062 * We open a reference to the spa and then we try to export it
3063 * expecting one of the following errors:
3065 * EBUSY
3066 * Because of the reference we just opened.
3068 * ZFS_ERR_EXPORT_IN_PROGRESS
3069 * For the case that there is another ztest thread doing
3070 * an export concurrently.
3072 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
3073 int error = spa_destroy(zo->zo_pool);
3074 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
3075 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
3076 spa->spa_name, error);
3078 spa_close(spa, FTAG);
3080 (void) pthread_rwlock_unlock(&ztest_name_lock);
3084 * Start and then stop the MMP threads to ensure the startup and shutdown code
3085 * works properly. Actual protection and property-related code tested via ZTS.
3087 void
3088 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
3090 (void) zd, (void) id;
3091 ztest_shared_opts_t *zo = &ztest_opts;
3092 spa_t *spa = ztest_spa;
3094 if (zo->zo_mmp_test)
3095 return;
3098 * Since enabling MMP involves setting a property, it could not be done
3099 * while the pool is suspended.
3101 if (spa_suspended(spa))
3102 return;
3104 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3105 mutex_enter(&spa->spa_props_lock);
3107 zfs_multihost_fail_intervals = 0;
3109 if (!spa_multihost(spa)) {
3110 spa->spa_multihost = B_TRUE;
3111 mmp_thread_start(spa);
3114 mutex_exit(&spa->spa_props_lock);
3115 spa_config_exit(spa, SCL_CONFIG, FTAG);
3117 txg_wait_synced(spa_get_dsl(spa), 0);
3118 mmp_signal_all_threads();
3119 txg_wait_synced(spa_get_dsl(spa), 0);
3121 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3122 mutex_enter(&spa->spa_props_lock);
3124 if (spa_multihost(spa)) {
3125 mmp_thread_stop(spa);
3126 spa->spa_multihost = B_FALSE;
3129 mutex_exit(&spa->spa_props_lock);
3130 spa_config_exit(spa, SCL_CONFIG, FTAG);
3133 static int
3134 ztest_get_raidz_children(spa_t *spa)
3136 (void) spa;
3137 vdev_t *raidvd;
3139 ASSERT(MUTEX_HELD(&ztest_vdev_lock));
3141 if (ztest_opts.zo_raid_do_expand) {
3142 raidvd = ztest_spa->spa_root_vdev->vdev_child[0];
3144 ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
3146 return (raidvd->vdev_children);
3149 return (ztest_opts.zo_raid_children);
3152 void
3153 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3155 (void) zd, (void) id;
3156 spa_t *spa;
3157 uint64_t initial_version = SPA_VERSION_INITIAL;
3158 uint64_t raidz_children, version, newversion;
3159 nvlist_t *nvroot, *props;
3160 char *name;
3162 if (ztest_opts.zo_mmp_test)
3163 return;
3165 /* dRAID added after feature flags, skip upgrade test. */
3166 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3167 return;
3169 mutex_enter(&ztest_vdev_lock);
3170 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3173 * Clean up from previous runs.
3175 (void) spa_destroy(name);
3177 raidz_children = ztest_get_raidz_children(ztest_spa);
3179 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3180 NULL, raidz_children, ztest_opts.zo_mirrors, 1);
3183 * If we're configuring a RAIDZ device then make sure that the
3184 * initial version is capable of supporting that feature.
3186 switch (ztest_opts.zo_raid_parity) {
3187 case 0:
3188 case 1:
3189 initial_version = SPA_VERSION_INITIAL;
3190 break;
3191 case 2:
3192 initial_version = SPA_VERSION_RAIDZ2;
3193 break;
3194 case 3:
3195 initial_version = SPA_VERSION_RAIDZ3;
3196 break;
3200 * Create a pool with a spa version that can be upgraded. Pick
3201 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3203 do {
3204 version = ztest_random_spa_version(initial_version);
3205 } while (version > SPA_VERSION_BEFORE_FEATURES);
3207 props = fnvlist_alloc();
3208 fnvlist_add_uint64(props,
3209 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3210 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3211 fnvlist_free(nvroot);
3212 fnvlist_free(props);
3214 VERIFY0(spa_open(name, &spa, FTAG));
3215 VERIFY3U(spa_version(spa), ==, version);
3216 newversion = ztest_random_spa_version(version + 1);
3218 if (ztest_opts.zo_verbose >= 4) {
3219 (void) printf("upgrading spa version from "
3220 "%"PRIu64" to %"PRIu64"\n",
3221 version, newversion);
3224 spa_upgrade(spa, newversion);
3225 VERIFY3U(spa_version(spa), >, version);
3226 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3227 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3228 spa_close(spa, FTAG);
3230 kmem_strfree(name);
3231 mutex_exit(&ztest_vdev_lock);
3234 static void
3235 ztest_spa_checkpoint(spa_t *spa)
3237 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3239 int error = spa_checkpoint(spa->spa_name);
3241 switch (error) {
3242 case 0:
3243 case ZFS_ERR_DEVRM_IN_PROGRESS:
3244 case ZFS_ERR_DISCARDING_CHECKPOINT:
3245 case ZFS_ERR_CHECKPOINT_EXISTS:
3246 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS:
3247 break;
3248 case ENOSPC:
3249 ztest_record_enospc(FTAG);
3250 break;
3251 default:
3252 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3256 static void
3257 ztest_spa_discard_checkpoint(spa_t *spa)
3259 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3261 int error = spa_checkpoint_discard(spa->spa_name);
3263 switch (error) {
3264 case 0:
3265 case ZFS_ERR_DISCARDING_CHECKPOINT:
3266 case ZFS_ERR_NO_CHECKPOINT:
3267 break;
3268 default:
3269 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3270 spa->spa_name, error);
3275 void
3276 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3278 (void) zd, (void) id;
3279 spa_t *spa = ztest_spa;
3281 mutex_enter(&ztest_checkpoint_lock);
3282 if (ztest_random(2) == 0) {
3283 ztest_spa_checkpoint(spa);
3284 } else {
3285 ztest_spa_discard_checkpoint(spa);
3287 mutex_exit(&ztest_checkpoint_lock);
3291 static vdev_t *
3292 vdev_lookup_by_path(vdev_t *vd, const char *path)
3294 vdev_t *mvd;
3295 int c;
3297 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3298 return (vd);
3300 for (c = 0; c < vd->vdev_children; c++)
3301 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3302 NULL)
3303 return (mvd);
3305 return (NULL);
3308 static int
3309 spa_num_top_vdevs(spa_t *spa)
3311 vdev_t *rvd = spa->spa_root_vdev;
3312 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3313 return (rvd->vdev_children);
3317 * Verify that vdev_add() works as expected.
3319 void
3320 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3322 (void) zd, (void) id;
3323 ztest_shared_t *zs = ztest_shared;
3324 spa_t *spa = ztest_spa;
3325 uint64_t leaves;
3326 uint64_t guid;
3327 uint64_t raidz_children;
3329 nvlist_t *nvroot;
3330 int error;
3332 if (ztest_opts.zo_mmp_test)
3333 return;
3335 mutex_enter(&ztest_vdev_lock);
3336 raidz_children = ztest_get_raidz_children(spa);
3337 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3339 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3341 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3344 * If we have slogs then remove them 1/4 of the time.
3346 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3347 metaslab_group_t *mg;
3350 * find the first real slog in log allocation class
3352 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3353 while (!mg->mg_vd->vdev_islog)
3354 mg = mg->mg_next;
3356 guid = mg->mg_vd->vdev_guid;
3358 spa_config_exit(spa, SCL_VDEV, FTAG);
3361 * We have to grab the zs_name_lock as writer to
3362 * prevent a race between removing a slog (dmu_objset_find)
3363 * and destroying a dataset. Removing the slog will
3364 * grab a reference on the dataset which may cause
3365 * dsl_destroy_head() to fail with EBUSY thus
3366 * leaving the dataset in an inconsistent state.
3368 pthread_rwlock_wrlock(&ztest_name_lock);
3369 error = spa_vdev_remove(spa, guid, B_FALSE);
3370 pthread_rwlock_unlock(&ztest_name_lock);
3372 switch (error) {
3373 case 0:
3374 case EEXIST: /* Generic zil_reset() error */
3375 case EBUSY: /* Replay required */
3376 case EACCES: /* Crypto key not loaded */
3377 case ZFS_ERR_CHECKPOINT_EXISTS:
3378 case ZFS_ERR_DISCARDING_CHECKPOINT:
3379 break;
3380 default:
3381 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3383 } else {
3384 spa_config_exit(spa, SCL_VDEV, FTAG);
3387 * Make 1/4 of the devices be log devices
3389 nvroot = make_vdev_root(NULL, NULL, NULL,
3390 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3391 "log" : NULL, raidz_children, zs->zs_mirrors,
3394 error = spa_vdev_add(spa, nvroot, B_FALSE);
3395 fnvlist_free(nvroot);
3397 switch (error) {
3398 case 0:
3399 break;
3400 case ENOSPC:
3401 ztest_record_enospc("spa_vdev_add");
3402 break;
3403 default:
3404 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3408 mutex_exit(&ztest_vdev_lock);
3411 void
3412 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3414 (void) zd, (void) id;
3415 ztest_shared_t *zs = ztest_shared;
3416 spa_t *spa = ztest_spa;
3417 uint64_t leaves;
3418 nvlist_t *nvroot;
3419 uint64_t raidz_children;
3420 const char *class = (ztest_random(2) == 0) ?
3421 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3422 int error;
3425 * By default add a special vdev 50% of the time
3427 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3428 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3429 ztest_random(2) == 0)) {
3430 return;
3433 mutex_enter(&ztest_vdev_lock);
3435 /* Only test with mirrors */
3436 if (zs->zs_mirrors < 2) {
3437 mutex_exit(&ztest_vdev_lock);
3438 return;
3441 /* requires feature@allocation_classes */
3442 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3443 mutex_exit(&ztest_vdev_lock);
3444 return;
3447 raidz_children = ztest_get_raidz_children(spa);
3448 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
3450 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3451 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3452 spa_config_exit(spa, SCL_VDEV, FTAG);
3454 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3455 class, raidz_children, zs->zs_mirrors, 1);
3457 error = spa_vdev_add(spa, nvroot, B_FALSE);
3458 fnvlist_free(nvroot);
3460 if (error == ENOSPC)
3461 ztest_record_enospc("spa_vdev_add");
3462 else if (error != 0)
3463 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3466 * 50% of the time allow small blocks in the special class
3468 if (error == 0 &&
3469 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3470 if (ztest_opts.zo_verbose >= 3)
3471 (void) printf("Enabling special VDEV small blocks\n");
3472 error = ztest_dsl_prop_set_uint64(zd->zd_name,
3473 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3474 ASSERT(error == 0 || error == ENOSPC);
3477 mutex_exit(&ztest_vdev_lock);
3479 if (ztest_opts.zo_verbose >= 3) {
3480 metaslab_class_t *mc;
3482 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3483 mc = spa_special_class(spa);
3484 else
3485 mc = spa_dedup_class(spa);
3486 (void) printf("Added a %s mirrored vdev (of %d)\n",
3487 class, (int)mc->mc_groups);
3492 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3494 void
3495 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3497 (void) zd, (void) id;
3498 ztest_shared_t *zs = ztest_shared;
3499 spa_t *spa = ztest_spa;
3500 vdev_t *rvd = spa->spa_root_vdev;
3501 spa_aux_vdev_t *sav;
3502 const char *aux;
3503 char *path;
3504 uint64_t guid = 0;
3505 int error, ignore_err = 0;
3507 if (ztest_opts.zo_mmp_test)
3508 return;
3510 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3512 if (ztest_random(2) == 0) {
3513 sav = &spa->spa_spares;
3514 aux = ZPOOL_CONFIG_SPARES;
3515 } else {
3516 sav = &spa->spa_l2cache;
3517 aux = ZPOOL_CONFIG_L2CACHE;
3520 mutex_enter(&ztest_vdev_lock);
3522 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3524 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3526 * Pick a random device to remove.
3528 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3530 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3531 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3532 ignore_err = ENOTSUP;
3534 guid = svd->vdev_guid;
3535 } else {
3537 * Find an unused device we can add.
3539 zs->zs_vdev_aux = 0;
3540 for (;;) {
3541 int c;
3542 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3543 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3544 zs->zs_vdev_aux);
3545 for (c = 0; c < sav->sav_count; c++)
3546 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3547 path) == 0)
3548 break;
3549 if (c == sav->sav_count &&
3550 vdev_lookup_by_path(rvd, path) == NULL)
3551 break;
3552 zs->zs_vdev_aux++;
3556 spa_config_exit(spa, SCL_VDEV, FTAG);
3558 if (guid == 0) {
3560 * Add a new device.
3562 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3563 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3564 error = spa_vdev_add(spa, nvroot, B_FALSE);
3566 switch (error) {
3567 case 0:
3568 break;
3569 default:
3570 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3572 fnvlist_free(nvroot);
3573 } else {
3575 * Remove an existing device. Sometimes, dirty its
3576 * vdev state first to make sure we handle removal
3577 * of devices that have pending state changes.
3579 if (ztest_random(2) == 0)
3580 (void) vdev_online(spa, guid, 0, NULL);
3582 error = spa_vdev_remove(spa, guid, B_FALSE);
3584 switch (error) {
3585 case 0:
3586 case EBUSY:
3587 case ZFS_ERR_CHECKPOINT_EXISTS:
3588 case ZFS_ERR_DISCARDING_CHECKPOINT:
3589 break;
3590 default:
3591 if (error != ignore_err)
3592 fatal(B_FALSE,
3593 "spa_vdev_remove(%"PRIu64") = %d",
3594 guid, error);
3598 mutex_exit(&ztest_vdev_lock);
3600 umem_free(path, MAXPATHLEN);
3604 * split a pool if it has mirror tlvdevs
3606 void
3607 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3609 (void) zd, (void) id;
3610 ztest_shared_t *zs = ztest_shared;
3611 spa_t *spa = ztest_spa;
3612 vdev_t *rvd = spa->spa_root_vdev;
3613 nvlist_t *tree, **child, *config, *split, **schild;
3614 uint_t c, children, schildren = 0, lastlogid = 0;
3615 int error = 0;
3617 if (ztest_opts.zo_mmp_test)
3618 return;
3620 mutex_enter(&ztest_vdev_lock);
3622 /* ensure we have a usable config; mirrors of raidz aren't supported */
3623 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3624 mutex_exit(&ztest_vdev_lock);
3625 return;
3628 /* clean up the old pool, if any */
3629 (void) spa_destroy("splitp");
3631 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3633 /* generate a config from the existing config */
3634 mutex_enter(&spa->spa_props_lock);
3635 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3636 mutex_exit(&spa->spa_props_lock);
3638 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3639 &child, &children));
3641 schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3642 UMEM_NOFAIL);
3643 for (c = 0; c < children; c++) {
3644 vdev_t *tvd = rvd->vdev_child[c];
3645 nvlist_t **mchild;
3646 uint_t mchildren;
3648 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3649 schild[schildren] = fnvlist_alloc();
3650 fnvlist_add_string(schild[schildren],
3651 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3652 fnvlist_add_uint64(schild[schildren],
3653 ZPOOL_CONFIG_IS_HOLE, 1);
3654 if (lastlogid == 0)
3655 lastlogid = schildren;
3656 ++schildren;
3657 continue;
3659 lastlogid = 0;
3660 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3661 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3662 schild[schildren++] = fnvlist_dup(mchild[0]);
3665 /* OK, create a config that can be used to split */
3666 split = fnvlist_alloc();
3667 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3668 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3669 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3671 config = fnvlist_alloc();
3672 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3674 for (c = 0; c < schildren; c++)
3675 fnvlist_free(schild[c]);
3676 umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3677 fnvlist_free(split);
3679 spa_config_exit(spa, SCL_VDEV, FTAG);
3681 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3682 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3683 (void) pthread_rwlock_unlock(&ztest_name_lock);
3685 fnvlist_free(config);
3687 if (error == 0) {
3688 (void) printf("successful split - results:\n");
3689 mutex_enter(&spa_namespace_lock);
3690 show_pool_stats(spa);
3691 show_pool_stats(spa_lookup("splitp"));
3692 mutex_exit(&spa_namespace_lock);
3693 ++zs->zs_splits;
3694 --zs->zs_mirrors;
3696 mutex_exit(&ztest_vdev_lock);
3700 * Verify that we can attach and detach devices.
3702 void
3703 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3705 (void) zd, (void) id;
3706 ztest_shared_t *zs = ztest_shared;
3707 spa_t *spa = ztest_spa;
3708 spa_aux_vdev_t *sav = &spa->spa_spares;
3709 vdev_t *rvd = spa->spa_root_vdev;
3710 vdev_t *oldvd, *newvd, *pvd;
3711 nvlist_t *root;
3712 uint64_t leaves;
3713 uint64_t leaf, top;
3714 uint64_t ashift = ztest_get_ashift();
3715 uint64_t oldguid, pguid;
3716 uint64_t oldsize, newsize;
3717 uint64_t raidz_children;
3718 char *oldpath, *newpath;
3719 int replacing;
3720 int oldvd_has_siblings = B_FALSE;
3721 int newvd_is_spare = B_FALSE;
3722 int newvd_is_dspare = B_FALSE;
3723 int oldvd_is_log;
3724 int oldvd_is_special;
3725 int error, expected_error;
3727 if (ztest_opts.zo_mmp_test)
3728 return;
3730 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3731 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3733 mutex_enter(&ztest_vdev_lock);
3734 raidz_children = ztest_get_raidz_children(spa);
3735 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
3737 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3740 * If a vdev is in the process of being removed, its removal may
3741 * finish while we are in progress, leading to an unexpected error
3742 * value. Don't bother trying to attach while we are in the middle
3743 * of removal.
3745 if (ztest_device_removal_active) {
3746 spa_config_exit(spa, SCL_ALL, FTAG);
3747 goto out;
3751 * RAIDZ leaf VDEV mirrors are not currently supported while a
3752 * RAIDZ expansion is in progress.
3754 if (ztest_opts.zo_raid_do_expand) {
3755 spa_config_exit(spa, SCL_ALL, FTAG);
3756 goto out;
3760 * Decide whether to do an attach or a replace.
3762 replacing = ztest_random(2);
3765 * Pick a random top-level vdev.
3767 top = ztest_random_vdev_top(spa, B_TRUE);
3770 * Pick a random leaf within it.
3772 leaf = ztest_random(leaves);
3775 * Locate this vdev.
3777 oldvd = rvd->vdev_child[top];
3779 /* pick a child from the mirror */
3780 if (zs->zs_mirrors >= 1) {
3781 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3782 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3783 oldvd = oldvd->vdev_child[leaf / raidz_children];
3786 /* pick a child out of the raidz group */
3787 if (ztest_opts.zo_raid_children > 1) {
3788 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3789 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3790 else
3791 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3792 oldvd = oldvd->vdev_child[leaf % raidz_children];
3796 * If we're already doing an attach or replace, oldvd may be a
3797 * mirror vdev -- in which case, pick a random child.
3799 while (oldvd->vdev_children != 0) {
3800 oldvd_has_siblings = B_TRUE;
3801 ASSERT3U(oldvd->vdev_children, >=, 2);
3802 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3805 oldguid = oldvd->vdev_guid;
3806 oldsize = vdev_get_min_asize(oldvd);
3807 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3808 oldvd_is_special =
3809 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3810 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3811 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3812 pvd = oldvd->vdev_parent;
3813 pguid = pvd->vdev_guid;
3816 * If oldvd has siblings, then half of the time, detach it. Prior
3817 * to the detach the pool is scrubbed in order to prevent creating
3818 * unrepairable blocks as a result of the data corruption injection.
3820 if (oldvd_has_siblings && ztest_random(2) == 0) {
3821 spa_config_exit(spa, SCL_ALL, FTAG);
3823 error = ztest_scrub_impl(spa);
3824 if (error)
3825 goto out;
3827 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3828 if (error != 0 && error != ENODEV && error != EBUSY &&
3829 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3830 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3831 fatal(B_FALSE, "detach (%s) returned %d",
3832 oldpath, error);
3833 goto out;
3837 * For the new vdev, choose with equal probability between the two
3838 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3840 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3841 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3842 newvd_is_spare = B_TRUE;
3844 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3845 newvd_is_dspare = B_TRUE;
3847 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3848 } else {
3849 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3850 ztest_opts.zo_dir, ztest_opts.zo_pool,
3851 top * leaves + leaf);
3852 if (ztest_random(2) == 0)
3853 newpath[strlen(newpath) - 1] = 'b';
3854 newvd = vdev_lookup_by_path(rvd, newpath);
3857 if (newvd) {
3859 * Reopen to ensure the vdev's asize field isn't stale.
3861 vdev_reopen(newvd);
3862 newsize = vdev_get_min_asize(newvd);
3863 } else {
3865 * Make newsize a little bigger or smaller than oldsize.
3866 * If it's smaller, the attach should fail.
3867 * If it's larger, and we're doing a replace,
3868 * we should get dynamic LUN growth when we're done.
3870 newsize = 10 * oldsize / (9 + ztest_random(3));
3874 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3875 * unless it's a replace; in that case any non-replacing parent is OK.
3877 * If newvd is already part of the pool, it should fail with EBUSY.
3879 * If newvd is too small, it should fail with EOVERFLOW.
3881 * If newvd is a distributed spare and it's being attached to a
3882 * dRAID which is not its parent it should fail with EINVAL.
3884 if (pvd->vdev_ops != &vdev_mirror_ops &&
3885 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3886 pvd->vdev_ops == &vdev_replacing_ops ||
3887 pvd->vdev_ops == &vdev_spare_ops))
3888 expected_error = ENOTSUP;
3889 else if (newvd_is_spare &&
3890 (!replacing || oldvd_is_log || oldvd_is_special))
3891 expected_error = ENOTSUP;
3892 else if (newvd == oldvd)
3893 expected_error = replacing ? 0 : EBUSY;
3894 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3895 expected_error = EBUSY;
3896 else if (!newvd_is_dspare && newsize < oldsize)
3897 expected_error = EOVERFLOW;
3898 else if (ashift > oldvd->vdev_top->vdev_ashift)
3899 expected_error = EDOM;
3900 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3901 expected_error = EINVAL;
3902 else
3903 expected_error = 0;
3905 spa_config_exit(spa, SCL_ALL, FTAG);
3908 * Build the nvlist describing newpath.
3910 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3911 ashift, NULL, 0, 0, 1);
3914 * When supported select either a healing or sequential resilver.
3916 boolean_t rebuilding = B_FALSE;
3917 if (pvd->vdev_ops == &vdev_mirror_ops ||
3918 pvd->vdev_ops == &vdev_root_ops) {
3919 rebuilding = !!ztest_random(2);
3922 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3924 fnvlist_free(root);
3927 * If our parent was the replacing vdev, but the replace completed,
3928 * then instead of failing with ENOTSUP we may either succeed,
3929 * fail with ENODEV, or fail with EOVERFLOW.
3931 if (expected_error == ENOTSUP &&
3932 (error == 0 || error == ENODEV || error == EOVERFLOW))
3933 expected_error = error;
3936 * If someone grew the LUN, the replacement may be too small.
3938 if (error == EOVERFLOW || error == EBUSY)
3939 expected_error = error;
3941 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3942 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3943 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3944 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3945 expected_error = error;
3947 if (error != expected_error && expected_error != EBUSY) {
3948 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3949 "returned %d, expected %d",
3950 oldpath, oldsize, newpath,
3951 newsize, replacing, error, expected_error);
3953 out:
3954 mutex_exit(&ztest_vdev_lock);
3956 umem_free(oldpath, MAXPATHLEN);
3957 umem_free(newpath, MAXPATHLEN);
3960 static void
3961 raidz_scratch_verify(void)
3963 spa_t *spa;
3964 uint64_t write_size, logical_size, offset;
3965 raidz_reflow_scratch_state_t state;
3966 vdev_raidz_expand_t *vre;
3967 vdev_t *raidvd;
3969 ASSERT(raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE);
3971 if (ztest_scratch_state->zs_raidz_scratch_verify_pause == 0)
3972 return;
3974 kernel_init(SPA_MODE_READ);
3976 mutex_enter(&spa_namespace_lock);
3977 spa = spa_lookup(ztest_opts.zo_pool);
3978 ASSERT(spa);
3979 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
3980 mutex_exit(&spa_namespace_lock);
3982 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
3984 ASSERT3U(RRSS_GET_OFFSET(&spa->spa_uberblock), !=, UINT64_MAX);
3986 mutex_enter(&ztest_vdev_lock);
3988 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
3990 vre = spa->spa_raidz_expand;
3991 if (vre == NULL)
3992 goto out;
3994 raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
3995 offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
3996 state = RRSS_GET_STATE(&spa->spa_uberblock);
3997 write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << raidvd->vdev_ashift,
3998 uint64_t);
3999 logical_size = write_size * raidvd->vdev_children;
4001 switch (state) {
4003 * Initial state of reflow process. RAIDZ expansion was
4004 * requested by user, but scratch object was not created.
4006 case RRSS_SCRATCH_NOT_IN_USE:
4007 ASSERT3U(offset, ==, 0);
4008 break;
4011 * Scratch object was synced and stored in boot area.
4013 case RRSS_SCRATCH_VALID:
4016 * Scratch object was synced back to raidz start offset,
4017 * raidz is ready for sector by sector reflow process.
4019 case RRSS_SCRATCH_INVALID_SYNCED:
4022 * Scratch object was synced back to raidz start offset
4023 * on zpool importing, raidz is ready for sector by sector
4024 * reflow process.
4026 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT:
4027 ASSERT3U(offset, ==, logical_size);
4028 break;
4031 * Sector by sector reflow process started.
4033 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW:
4034 ASSERT3U(offset, >=, logical_size);
4035 break;
4038 out:
4039 spa_config_exit(spa, SCL_ALL, FTAG);
4041 mutex_exit(&ztest_vdev_lock);
4043 ztest_scratch_state->zs_raidz_scratch_verify_pause = 0;
4045 spa_close(spa, FTAG);
4046 kernel_fini();
4049 static void
4050 ztest_scratch_thread(void *arg)
4052 (void) arg;
4054 /* wait up to 10 seconds */
4055 for (int t = 100; t > 0; t -= 1) {
4056 if (raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE)
4057 thread_exit();
4059 (void) poll(NULL, 0, 100);
4062 /* killed when the scratch area progress reached a certain point */
4063 ztest_kill(ztest_shared);
4067 * Verify that we can attach raidz device.
4069 void
4070 ztest_vdev_raidz_attach(ztest_ds_t *zd, uint64_t id)
4072 (void) zd, (void) id;
4073 ztest_shared_t *zs = ztest_shared;
4074 spa_t *spa = ztest_spa;
4075 uint64_t leaves, raidz_children, newsize, ashift = ztest_get_ashift();
4076 kthread_t *scratch_thread = NULL;
4077 vdev_t *newvd, *pvd;
4078 nvlist_t *root;
4079 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
4080 int error, expected_error = 0;
4082 mutex_enter(&ztest_vdev_lock);
4084 spa_config_enter(spa, SCL_ALL, FTAG, RW_READER);
4086 /* Only allow attach when raid-kind = 'eraidz' */
4087 if (!ztest_opts.zo_raid_do_expand) {
4088 spa_config_exit(spa, SCL_ALL, FTAG);
4089 goto out;
4092 if (ztest_opts.zo_mmp_test) {
4093 spa_config_exit(spa, SCL_ALL, FTAG);
4094 goto out;
4097 if (ztest_device_removal_active) {
4098 spa_config_exit(spa, SCL_ALL, FTAG);
4099 goto out;
4102 pvd = vdev_lookup_top(spa, 0);
4104 ASSERT(pvd->vdev_ops == &vdev_raidz_ops);
4107 * Get size of a child of the raidz group,
4108 * make sure device is a bit bigger
4110 newvd = pvd->vdev_child[ztest_random(pvd->vdev_children)];
4111 newsize = 10 * vdev_get_min_asize(newvd) / (9 + ztest_random(2));
4114 * Get next attached leaf id
4116 raidz_children = ztest_get_raidz_children(spa);
4117 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * raidz_children;
4118 zs->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
4120 if (spa->spa_raidz_expand)
4121 expected_error = ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS;
4123 spa_config_exit(spa, SCL_ALL, FTAG);
4126 * Path to vdev to be attached
4128 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
4129 ztest_opts.zo_dir, ztest_opts.zo_pool, zs->zs_vdev_next_leaf);
4132 * Build the nvlist describing newpath.
4134 root = make_vdev_root(newpath, NULL, NULL, newsize, ashift, NULL,
4135 0, 0, 1);
4138 * 50% of the time, set raidz_expand_pause_point to cause
4139 * raidz_reflow_scratch_sync() to pause at a certain point and
4140 * then kill the test after 10 seconds so raidz_scratch_verify()
4141 * can confirm consistency when the pool is imported.
4143 if (ztest_random(2) == 0 && expected_error == 0) {
4144 raidz_expand_pause_point =
4145 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2) + 1;
4146 scratch_thread = thread_create(NULL, 0, ztest_scratch_thread,
4147 ztest_shared, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
4150 error = spa_vdev_attach(spa, pvd->vdev_guid, root, B_FALSE, B_FALSE);
4152 nvlist_free(root);
4154 if (error == EOVERFLOW || error == ENXIO ||
4155 error == ZFS_ERR_CHECKPOINT_EXISTS ||
4156 error == ZFS_ERR_DISCARDING_CHECKPOINT)
4157 expected_error = error;
4159 if (error != 0 && error != expected_error) {
4160 fatal(0, "raidz attach (%s %"PRIu64") returned %d, expected %d",
4161 newpath, newsize, error, expected_error);
4164 if (raidz_expand_pause_point) {
4165 if (error != 0) {
4167 * Do not verify scratch object in case of error
4168 * returned by vdev attaching.
4170 raidz_expand_pause_point = RAIDZ_EXPAND_PAUSE_NONE;
4173 VERIFY0(thread_join(scratch_thread));
4175 out:
4176 mutex_exit(&ztest_vdev_lock);
4178 umem_free(newpath, MAXPATHLEN);
4181 void
4182 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
4184 (void) zd, (void) id;
4185 spa_t *spa = ztest_spa;
4186 vdev_t *vd;
4187 uint64_t guid;
4188 int error;
4190 mutex_enter(&ztest_vdev_lock);
4192 if (ztest_device_removal_active) {
4193 mutex_exit(&ztest_vdev_lock);
4194 return;
4198 * Remove a random top-level vdev and wait for removal to finish.
4200 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4201 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
4202 guid = vd->vdev_guid;
4203 spa_config_exit(spa, SCL_VDEV, FTAG);
4205 error = spa_vdev_remove(spa, guid, B_FALSE);
4206 if (error == 0) {
4207 ztest_device_removal_active = B_TRUE;
4208 mutex_exit(&ztest_vdev_lock);
4211 * spa->spa_vdev_removal is created in a sync task that
4212 * is initiated via dsl_sync_task_nowait(). Since the
4213 * task may not run before spa_vdev_remove() returns, we
4214 * must wait at least 1 txg to ensure that the removal
4215 * struct has been created.
4217 txg_wait_synced(spa_get_dsl(spa), 0);
4219 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
4220 txg_wait_synced(spa_get_dsl(spa), 0);
4221 } else {
4222 mutex_exit(&ztest_vdev_lock);
4223 return;
4227 * The pool needs to be scrubbed after completing device removal.
4228 * Failure to do so may result in checksum errors due to the
4229 * strategy employed by ztest_fault_inject() when selecting which
4230 * offset are redundant and can be damaged.
4232 error = spa_scan(spa, POOL_SCAN_SCRUB);
4233 if (error == 0) {
4234 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
4235 txg_wait_synced(spa_get_dsl(spa), 0);
4238 mutex_enter(&ztest_vdev_lock);
4239 ztest_device_removal_active = B_FALSE;
4240 mutex_exit(&ztest_vdev_lock);
4244 * Callback function which expands the physical size of the vdev.
4246 static vdev_t *
4247 grow_vdev(vdev_t *vd, void *arg)
4249 spa_t *spa __maybe_unused = vd->vdev_spa;
4250 size_t *newsize = arg;
4251 size_t fsize;
4252 int fd;
4254 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4255 ASSERT(vd->vdev_ops->vdev_op_leaf);
4257 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
4258 return (vd);
4260 fsize = lseek(fd, 0, SEEK_END);
4261 VERIFY0(ftruncate(fd, *newsize));
4263 if (ztest_opts.zo_verbose >= 6) {
4264 (void) printf("%s grew from %lu to %lu bytes\n",
4265 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
4267 (void) close(fd);
4268 return (NULL);
4272 * Callback function which expands a given vdev by calling vdev_online().
4274 static vdev_t *
4275 online_vdev(vdev_t *vd, void *arg)
4277 (void) arg;
4278 spa_t *spa = vd->vdev_spa;
4279 vdev_t *tvd = vd->vdev_top;
4280 uint64_t guid = vd->vdev_guid;
4281 uint64_t generation = spa->spa_config_generation + 1;
4282 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
4283 int error;
4285 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
4286 ASSERT(vd->vdev_ops->vdev_op_leaf);
4288 /* Calling vdev_online will initialize the new metaslabs */
4289 spa_config_exit(spa, SCL_STATE, spa);
4290 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
4291 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4294 * If vdev_online returned an error or the underlying vdev_open
4295 * failed then we abort the expand. The only way to know that
4296 * vdev_open fails is by checking the returned newstate.
4298 if (error || newstate != VDEV_STATE_HEALTHY) {
4299 if (ztest_opts.zo_verbose >= 5) {
4300 (void) printf("Unable to expand vdev, state %u, "
4301 "error %d\n", newstate, error);
4303 return (vd);
4305 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
4308 * Since we dropped the lock we need to ensure that we're
4309 * still talking to the original vdev. It's possible this
4310 * vdev may have been detached/replaced while we were
4311 * trying to online it.
4313 if (generation != spa->spa_config_generation) {
4314 if (ztest_opts.zo_verbose >= 5) {
4315 (void) printf("vdev configuration has changed, "
4316 "guid %"PRIu64", state %"PRIu64", "
4317 "expected gen %"PRIu64", got gen %"PRIu64"\n",
4318 guid,
4319 tvd->vdev_state,
4320 generation,
4321 spa->spa_config_generation);
4323 return (vd);
4325 return (NULL);
4329 * Traverse the vdev tree calling the supplied function.
4330 * We continue to walk the tree until we either have walked all
4331 * children or we receive a non-NULL return from the callback.
4332 * If a NULL callback is passed, then we just return back the first
4333 * leaf vdev we encounter.
4335 static vdev_t *
4336 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
4338 uint_t c;
4340 if (vd->vdev_ops->vdev_op_leaf) {
4341 if (func == NULL)
4342 return (vd);
4343 else
4344 return (func(vd, arg));
4347 for (c = 0; c < vd->vdev_children; c++) {
4348 vdev_t *cvd = vd->vdev_child[c];
4349 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
4350 return (cvd);
4352 return (NULL);
4356 * Verify that dynamic LUN growth works as expected.
4358 void
4359 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4361 (void) zd, (void) id;
4362 spa_t *spa = ztest_spa;
4363 vdev_t *vd, *tvd;
4364 metaslab_class_t *mc;
4365 metaslab_group_t *mg;
4366 size_t psize, newsize;
4367 uint64_t top;
4368 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4370 mutex_enter(&ztest_checkpoint_lock);
4371 mutex_enter(&ztest_vdev_lock);
4372 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4375 * If there is a vdev removal in progress, it could complete while
4376 * we are running, in which case we would not be able to verify
4377 * that the metaslab_class space increased (because it decreases
4378 * when the device removal completes).
4380 if (ztest_device_removal_active) {
4381 spa_config_exit(spa, SCL_STATE, spa);
4382 mutex_exit(&ztest_vdev_lock);
4383 mutex_exit(&ztest_checkpoint_lock);
4384 return;
4388 * If we are under raidz expansion, the test can failed because the
4389 * metaslabs count will not increase immediately after the vdev is
4390 * expanded. It will happen only after raidz expansion completion.
4392 if (spa->spa_raidz_expand) {
4393 spa_config_exit(spa, SCL_STATE, spa);
4394 mutex_exit(&ztest_vdev_lock);
4395 mutex_exit(&ztest_checkpoint_lock);
4396 return;
4399 top = ztest_random_vdev_top(spa, B_TRUE);
4401 tvd = spa->spa_root_vdev->vdev_child[top];
4402 mg = tvd->vdev_mg;
4403 mc = mg->mg_class;
4404 old_ms_count = tvd->vdev_ms_count;
4405 old_class_space = metaslab_class_get_space(mc);
4408 * Determine the size of the first leaf vdev associated with
4409 * our top-level device.
4411 vd = vdev_walk_tree(tvd, NULL, NULL);
4412 ASSERT3P(vd, !=, NULL);
4413 ASSERT(vd->vdev_ops->vdev_op_leaf);
4415 psize = vd->vdev_psize;
4418 * We only try to expand the vdev if it's healthy, less than 4x its
4419 * original size, and it has a valid psize.
4421 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4422 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4423 spa_config_exit(spa, SCL_STATE, spa);
4424 mutex_exit(&ztest_vdev_lock);
4425 mutex_exit(&ztest_checkpoint_lock);
4426 return;
4428 ASSERT3U(psize, >, 0);
4429 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4430 ASSERT3U(newsize, >, psize);
4432 if (ztest_opts.zo_verbose >= 6) {
4433 (void) printf("Expanding LUN %s from %lu to %lu\n",
4434 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4438 * Growing the vdev is a two step process:
4439 * 1). expand the physical size (i.e. relabel)
4440 * 2). online the vdev to create the new metaslabs
4442 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4443 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4444 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4445 if (ztest_opts.zo_verbose >= 5) {
4446 (void) printf("Could not expand LUN because "
4447 "the vdev configuration changed.\n");
4449 spa_config_exit(spa, SCL_STATE, spa);
4450 mutex_exit(&ztest_vdev_lock);
4451 mutex_exit(&ztest_checkpoint_lock);
4452 return;
4455 spa_config_exit(spa, SCL_STATE, spa);
4458 * Expanding the LUN will update the config asynchronously,
4459 * thus we must wait for the async thread to complete any
4460 * pending tasks before proceeding.
4462 for (;;) {
4463 boolean_t done;
4464 mutex_enter(&spa->spa_async_lock);
4465 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4466 mutex_exit(&spa->spa_async_lock);
4467 if (done)
4468 break;
4469 txg_wait_synced(spa_get_dsl(spa), 0);
4470 (void) poll(NULL, 0, 100);
4473 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4475 tvd = spa->spa_root_vdev->vdev_child[top];
4476 new_ms_count = tvd->vdev_ms_count;
4477 new_class_space = metaslab_class_get_space(mc);
4479 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4480 if (ztest_opts.zo_verbose >= 5) {
4481 (void) printf("Could not verify LUN expansion due to "
4482 "intervening vdev offline or remove.\n");
4484 spa_config_exit(spa, SCL_STATE, spa);
4485 mutex_exit(&ztest_vdev_lock);
4486 mutex_exit(&ztest_checkpoint_lock);
4487 return;
4491 * Make sure we were able to grow the vdev.
4493 if (new_ms_count <= old_ms_count) {
4494 fatal(B_FALSE,
4495 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4496 old_ms_count, new_ms_count);
4500 * Make sure we were able to grow the pool.
4502 if (new_class_space <= old_class_space) {
4503 fatal(B_FALSE,
4504 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4505 old_class_space, new_class_space);
4508 if (ztest_opts.zo_verbose >= 5) {
4509 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4511 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4512 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4513 (void) printf("%s grew from %s to %s\n",
4514 spa->spa_name, oldnumbuf, newnumbuf);
4517 spa_config_exit(spa, SCL_STATE, spa);
4518 mutex_exit(&ztest_vdev_lock);
4519 mutex_exit(&ztest_checkpoint_lock);
4523 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4525 static void
4526 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4528 (void) arg, (void) cr;
4531 * Create the objects common to all ztest datasets.
4533 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4534 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4537 static int
4538 ztest_dataset_create(char *dsname)
4540 int err;
4541 uint64_t rand;
4542 dsl_crypto_params_t *dcp = NULL;
4545 * 50% of the time, we create encrypted datasets
4546 * using a random cipher suite and a hard-coded
4547 * wrapping key.
4549 rand = ztest_random(2);
4550 if (rand != 0) {
4551 nvlist_t *crypto_args = fnvlist_alloc();
4552 nvlist_t *props = fnvlist_alloc();
4554 /* slight bias towards the default cipher suite */
4555 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4556 if (rand < ZIO_CRYPT_AES_128_CCM)
4557 rand = ZIO_CRYPT_ON;
4559 fnvlist_add_uint64(props,
4560 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4561 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4562 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4565 * These parameters aren't really used by the kernel. They
4566 * are simply stored so that userspace knows how to load
4567 * the wrapping key.
4569 fnvlist_add_uint64(props,
4570 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4571 fnvlist_add_string(props,
4572 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4573 fnvlist_add_uint64(props,
4574 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4575 fnvlist_add_uint64(props,
4576 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4578 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4579 crypto_args, &dcp));
4582 * Cycle through all available encryption implementations
4583 * to verify interoperability.
4585 VERIFY0(gcm_impl_set("cycle"));
4586 VERIFY0(aes_impl_set("cycle"));
4588 fnvlist_free(crypto_args);
4589 fnvlist_free(props);
4592 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4593 ztest_objset_create_cb, NULL);
4594 dsl_crypto_params_free(dcp, !!err);
4596 rand = ztest_random(100);
4597 if (err || rand < 80)
4598 return (err);
4600 if (ztest_opts.zo_verbose >= 5)
4601 (void) printf("Setting dataset %s to sync always\n", dsname);
4602 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4603 ZFS_SYNC_ALWAYS, B_FALSE));
4606 static int
4607 ztest_objset_destroy_cb(const char *name, void *arg)
4609 (void) arg;
4610 objset_t *os;
4611 dmu_object_info_t doi;
4612 int error;
4615 * Verify that the dataset contains a directory object.
4617 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4618 B_TRUE, FTAG, &os));
4619 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4620 if (error != ENOENT) {
4621 /* We could have crashed in the middle of destroying it */
4622 ASSERT0(error);
4623 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4624 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4626 dmu_objset_disown(os, B_TRUE, FTAG);
4629 * Destroy the dataset.
4631 if (strchr(name, '@') != NULL) {
4632 error = dsl_destroy_snapshot(name, B_TRUE);
4633 if (error != ECHRNG) {
4635 * The program was executed, but encountered a runtime
4636 * error, such as insufficient slop, or a hold on the
4637 * dataset.
4639 ASSERT0(error);
4641 } else {
4642 error = dsl_destroy_head(name);
4643 if (error == ENOSPC) {
4644 /* There could be checkpoint or insufficient slop */
4645 ztest_record_enospc(FTAG);
4646 } else if (error != EBUSY) {
4647 /* There could be a hold on this dataset */
4648 ASSERT0(error);
4651 return (0);
4654 static boolean_t
4655 ztest_snapshot_create(char *osname, uint64_t id)
4657 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4658 int error;
4660 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4662 error = dmu_objset_snapshot_one(osname, snapname);
4663 if (error == ENOSPC) {
4664 ztest_record_enospc(FTAG);
4665 return (B_FALSE);
4667 if (error != 0 && error != EEXIST && error != ECHRNG) {
4668 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4669 snapname, error);
4671 return (B_TRUE);
4674 static boolean_t
4675 ztest_snapshot_destroy(char *osname, uint64_t id)
4677 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4678 int error;
4680 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4681 osname, id);
4683 error = dsl_destroy_snapshot(snapname, B_FALSE);
4684 if (error != 0 && error != ENOENT && error != ECHRNG)
4685 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4686 snapname, error);
4687 return (B_TRUE);
4690 void
4691 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4693 (void) zd;
4694 ztest_ds_t *zdtmp;
4695 int iters;
4696 int error;
4697 objset_t *os, *os2;
4698 char name[ZFS_MAX_DATASET_NAME_LEN];
4699 zilog_t *zilog;
4700 int i;
4702 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4704 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4706 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4707 ztest_opts.zo_pool, id);
4710 * If this dataset exists from a previous run, process its replay log
4711 * half of the time. If we don't replay it, then dsl_destroy_head()
4712 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4714 if (ztest_random(2) == 0 &&
4715 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4716 B_TRUE, FTAG, &os) == 0) {
4717 ztest_zd_init(zdtmp, NULL, os);
4718 zil_replay(os, zdtmp, ztest_replay_vector);
4719 ztest_zd_fini(zdtmp);
4720 dmu_objset_disown(os, B_TRUE, FTAG);
4724 * There may be an old instance of the dataset we're about to
4725 * create lying around from a previous run. If so, destroy it
4726 * and all of its snapshots.
4728 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4729 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4732 * Verify that the destroyed dataset is no longer in the namespace.
4733 * It may still be present if the destroy above fails with ENOSPC.
4735 error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4736 FTAG, &os);
4737 if (error == 0) {
4738 dmu_objset_disown(os, B_TRUE, FTAG);
4739 ztest_record_enospc(FTAG);
4740 goto out;
4742 VERIFY3U(ENOENT, ==, error);
4745 * Verify that we can create a new dataset.
4747 error = ztest_dataset_create(name);
4748 if (error) {
4749 if (error == ENOSPC) {
4750 ztest_record_enospc(FTAG);
4751 goto out;
4753 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4756 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4757 FTAG, &os));
4759 ztest_zd_init(zdtmp, NULL, os);
4762 * Open the intent log for it.
4764 zilog = zil_open(os, ztest_get_data, NULL);
4767 * Put some objects in there, do a little I/O to them,
4768 * and randomly take a couple of snapshots along the way.
4770 iters = ztest_random(5);
4771 for (i = 0; i < iters; i++) {
4772 ztest_dmu_object_alloc_free(zdtmp, id);
4773 if (ztest_random(iters) == 0)
4774 (void) ztest_snapshot_create(name, i);
4778 * Verify that we cannot create an existing dataset.
4780 VERIFY3U(EEXIST, ==,
4781 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4784 * Verify that we can hold an objset that is also owned.
4786 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4787 dmu_objset_rele(os2, FTAG);
4790 * Verify that we cannot own an objset that is already owned.
4792 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4793 B_FALSE, B_TRUE, FTAG, &os2));
4795 zil_close(zilog);
4796 dmu_objset_disown(os, B_TRUE, FTAG);
4797 ztest_zd_fini(zdtmp);
4798 out:
4799 (void) pthread_rwlock_unlock(&ztest_name_lock);
4801 umem_free(zdtmp, sizeof (ztest_ds_t));
4805 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4807 void
4808 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4810 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4811 (void) ztest_snapshot_destroy(zd->zd_name, id);
4812 (void) ztest_snapshot_create(zd->zd_name, id);
4813 (void) pthread_rwlock_unlock(&ztest_name_lock);
4817 * Cleanup non-standard snapshots and clones.
4819 static void
4820 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4822 char *snap1name;
4823 char *clone1name;
4824 char *snap2name;
4825 char *clone2name;
4826 char *snap3name;
4827 int error;
4829 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4830 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4831 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4832 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4833 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4835 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4836 osname, id);
4837 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4838 osname, id);
4839 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4840 clone1name, id);
4841 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4842 osname, id);
4843 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4844 clone1name, id);
4846 error = dsl_destroy_head(clone2name);
4847 if (error && error != ENOENT)
4848 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4849 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4850 if (error && error != ENOENT)
4851 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4852 snap3name, error);
4853 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4854 if (error && error != ENOENT)
4855 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4856 snap2name, error);
4857 error = dsl_destroy_head(clone1name);
4858 if (error && error != ENOENT)
4859 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4860 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4861 if (error && error != ENOENT)
4862 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4863 snap1name, error);
4865 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4866 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4867 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4868 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4869 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4873 * Verify dsl_dataset_promote handles EBUSY
4875 void
4876 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4878 objset_t *os;
4879 char *snap1name;
4880 char *clone1name;
4881 char *snap2name;
4882 char *clone2name;
4883 char *snap3name;
4884 char *osname = zd->zd_name;
4885 int error;
4887 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4888 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4889 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4890 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4891 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4893 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4895 ztest_dsl_dataset_cleanup(osname, id);
4897 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4898 osname, id);
4899 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4900 osname, id);
4901 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4902 clone1name, id);
4903 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4904 osname, id);
4905 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4906 clone1name, id);
4908 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4909 if (error && error != EEXIST) {
4910 if (error == ENOSPC) {
4911 ztest_record_enospc(FTAG);
4912 goto out;
4914 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4917 error = dmu_objset_clone(clone1name, snap1name);
4918 if (error) {
4919 if (error == ENOSPC) {
4920 ztest_record_enospc(FTAG);
4921 goto out;
4923 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4926 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4927 if (error && error != EEXIST) {
4928 if (error == ENOSPC) {
4929 ztest_record_enospc(FTAG);
4930 goto out;
4932 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4935 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4936 if (error && error != EEXIST) {
4937 if (error == ENOSPC) {
4938 ztest_record_enospc(FTAG);
4939 goto out;
4941 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4944 error = dmu_objset_clone(clone2name, snap3name);
4945 if (error) {
4946 if (error == ENOSPC) {
4947 ztest_record_enospc(FTAG);
4948 goto out;
4950 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4953 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4954 FTAG, &os);
4955 if (error)
4956 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4957 error = dsl_dataset_promote(clone2name, NULL);
4958 if (error == ENOSPC) {
4959 dmu_objset_disown(os, B_TRUE, FTAG);
4960 ztest_record_enospc(FTAG);
4961 goto out;
4963 if (error != EBUSY)
4964 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4965 clone2name, error);
4966 dmu_objset_disown(os, B_TRUE, FTAG);
4968 out:
4969 ztest_dsl_dataset_cleanup(osname, id);
4971 (void) pthread_rwlock_unlock(&ztest_name_lock);
4973 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4974 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4975 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4976 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4977 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4980 #undef OD_ARRAY_SIZE
4981 #define OD_ARRAY_SIZE 4
4984 * Verify that dmu_object_{alloc,free} work as expected.
4986 void
4987 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4989 ztest_od_t *od;
4990 int batchsize;
4991 int size;
4992 int b;
4994 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4995 od = umem_alloc(size, UMEM_NOFAIL);
4996 batchsize = OD_ARRAY_SIZE;
4998 for (b = 0; b < batchsize; b++)
4999 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
5000 0, 0, 0);
5003 * Destroy the previous batch of objects, create a new batch,
5004 * and do some I/O on the new objects.
5006 if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
5007 zd->zd_od = NULL;
5008 umem_free(od, size);
5009 return;
5012 while (ztest_random(4 * batchsize) != 0)
5013 ztest_io(zd, od[ztest_random(batchsize)].od_object,
5014 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5016 umem_free(od, size);
5020 * Rewind the global allocator to verify object allocation backfilling.
5022 void
5023 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
5025 (void) id;
5026 objset_t *os = zd->zd_os;
5027 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
5028 uint64_t object;
5031 * Rewind the global allocator randomly back to a lower object number
5032 * to force backfilling and reclamation of recently freed dnodes.
5034 mutex_enter(&os->os_obj_lock);
5035 object = ztest_random(os->os_obj_next_chunk);
5036 os->os_obj_next_chunk = P2ALIGN_TYPED(object, dnodes_per_chunk,
5037 uint64_t);
5038 mutex_exit(&os->os_obj_lock);
5041 #undef OD_ARRAY_SIZE
5042 #define OD_ARRAY_SIZE 2
5045 * Verify that dmu_{read,write} work as expected.
5047 void
5048 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
5050 int size;
5051 ztest_od_t *od;
5053 objset_t *os = zd->zd_os;
5054 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5055 od = umem_alloc(size, UMEM_NOFAIL);
5056 dmu_tx_t *tx;
5057 int freeit, error;
5058 uint64_t i, n, s, txg;
5059 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
5060 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5061 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
5062 uint64_t regions = 997;
5063 uint64_t stride = 123456789ULL;
5064 uint64_t width = 40;
5065 int free_percent = 5;
5066 uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5069 * We will randomly set when to do O_DIRECT on a read.
5071 if (ztest_random(4) == 0)
5072 dmu_read_flags |= DMU_DIRECTIO;
5075 * This test uses two objects, packobj and bigobj, that are always
5076 * updated together (i.e. in the same tx) so that their contents are
5077 * in sync and can be compared. Their contents relate to each other
5078 * in a simple way: packobj is a dense array of 'bufwad' structures,
5079 * while bigobj is a sparse array of the same bufwads. Specifically,
5080 * for any index n, there are three bufwads that should be identical:
5082 * packobj, at offset n * sizeof (bufwad_t)
5083 * bigobj, at the head of the nth chunk
5084 * bigobj, at the tail of the nth chunk
5086 * The chunk size is arbitrary. It doesn't have to be a power of two,
5087 * and it doesn't have any relation to the object blocksize.
5088 * The only requirement is that it can hold at least two bufwads.
5090 * Normally, we write the bufwad to each of these locations.
5091 * However, free_percent of the time we instead write zeroes to
5092 * packobj and perform a dmu_free_range() on bigobj. By comparing
5093 * bigobj to packobj, we can verify that the DMU is correctly
5094 * tracking which parts of an object are allocated and free,
5095 * and that the contents of the allocated blocks are correct.
5099 * Read the directory info. If it's the first time, set things up.
5101 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
5102 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5103 chunksize);
5105 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5106 umem_free(od, size);
5107 return;
5110 bigobj = od[0].od_object;
5111 packobj = od[1].od_object;
5112 chunksize = od[0].od_gen;
5113 ASSERT3U(chunksize, ==, od[1].od_gen);
5116 * Prefetch a random chunk of the big object.
5117 * Our aim here is to get some async reads in flight
5118 * for blocks that we may free below; the DMU should
5119 * handle this race correctly.
5121 n = ztest_random(regions) * stride + ztest_random(width);
5122 s = 1 + ztest_random(2 * width - 1);
5123 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
5124 ZIO_PRIORITY_SYNC_READ);
5127 * Pick a random index and compute the offsets into packobj and bigobj.
5129 n = ztest_random(regions) * stride + ztest_random(width);
5130 s = 1 + ztest_random(width - 1);
5132 packoff = n * sizeof (bufwad_t);
5133 packsize = s * sizeof (bufwad_t);
5135 bigoff = n * chunksize;
5136 bigsize = s * chunksize;
5138 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
5139 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
5142 * free_percent of the time, free a range of bigobj rather than
5143 * overwriting it.
5145 freeit = (ztest_random(100) < free_percent);
5148 * Read the current contents of our objects.
5150 error = dmu_read(os, packobj, packoff, packsize, packbuf,
5151 dmu_read_flags);
5152 ASSERT0(error);
5153 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
5154 dmu_read_flags);
5155 ASSERT0(error);
5158 * Get a tx for the mods to both packobj and bigobj.
5160 tx = dmu_tx_create(os);
5162 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5164 if (freeit)
5165 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
5166 else
5167 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5169 /* This accounts for setting the checksum/compression. */
5170 dmu_tx_hold_bonus(tx, bigobj);
5172 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5173 if (txg == 0) {
5174 umem_free(packbuf, packsize);
5175 umem_free(bigbuf, bigsize);
5176 umem_free(od, size);
5177 return;
5180 enum zio_checksum cksum;
5181 do {
5182 cksum = (enum zio_checksum)
5183 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
5184 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
5185 dmu_object_set_checksum(os, bigobj, cksum, tx);
5187 enum zio_compress comp;
5188 do {
5189 comp = (enum zio_compress)
5190 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
5191 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
5192 dmu_object_set_compress(os, bigobj, comp, tx);
5195 * For each index from n to n + s, verify that the existing bufwad
5196 * in packobj matches the bufwads at the head and tail of the
5197 * corresponding chunk in bigobj. Then update all three bufwads
5198 * with the new values we want to write out.
5200 for (i = 0; i < s; i++) {
5201 /* LINTED */
5202 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5203 /* LINTED */
5204 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5205 /* LINTED */
5206 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5208 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5209 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5211 if (pack->bw_txg > txg)
5212 fatal(B_FALSE,
5213 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5214 pack->bw_txg, txg);
5216 if (pack->bw_data != 0 && pack->bw_index != n + i)
5217 fatal(B_FALSE, "wrong index: "
5218 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5219 pack->bw_index, n, i);
5221 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5222 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5223 pack, bigH);
5225 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5226 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5227 pack, bigT);
5229 if (freeit) {
5230 memset(pack, 0, sizeof (bufwad_t));
5231 } else {
5232 pack->bw_index = n + i;
5233 pack->bw_txg = txg;
5234 pack->bw_data = 1 + ztest_random(-2ULL);
5236 *bigH = *pack;
5237 *bigT = *pack;
5241 * We've verified all the old bufwads, and made new ones.
5242 * Now write them out.
5244 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5246 if (freeit) {
5247 if (ztest_opts.zo_verbose >= 7) {
5248 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
5249 " txg %"PRIx64"\n",
5250 bigoff, bigsize, txg);
5252 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
5253 } else {
5254 if (ztest_opts.zo_verbose >= 7) {
5255 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5256 " txg %"PRIx64"\n",
5257 bigoff, bigsize, txg);
5259 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
5262 dmu_tx_commit(tx);
5265 * Sanity check the stuff we just wrote.
5268 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5269 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5271 VERIFY0(dmu_read(os, packobj, packoff,
5272 packsize, packcheck, dmu_read_flags));
5273 VERIFY0(dmu_read(os, bigobj, bigoff,
5274 bigsize, bigcheck, dmu_read_flags));
5276 ASSERT0(memcmp(packbuf, packcheck, packsize));
5277 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5279 umem_free(packcheck, packsize);
5280 umem_free(bigcheck, bigsize);
5283 umem_free(packbuf, packsize);
5284 umem_free(bigbuf, bigsize);
5285 umem_free(od, size);
5288 static void
5289 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
5290 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
5292 uint64_t i;
5293 bufwad_t *pack;
5294 bufwad_t *bigH;
5295 bufwad_t *bigT;
5298 * For each index from n to n + s, verify that the existing bufwad
5299 * in packobj matches the bufwads at the head and tail of the
5300 * corresponding chunk in bigobj. Then update all three bufwads
5301 * with the new values we want to write out.
5303 for (i = 0; i < s; i++) {
5304 /* LINTED */
5305 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
5306 /* LINTED */
5307 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
5308 /* LINTED */
5309 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
5311 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
5312 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
5314 if (pack->bw_txg > txg)
5315 fatal(B_FALSE,
5316 "future leak: got %"PRIx64", open txg is %"PRIx64"",
5317 pack->bw_txg, txg);
5319 if (pack->bw_data != 0 && pack->bw_index != n + i)
5320 fatal(B_FALSE, "wrong index: "
5321 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
5322 pack->bw_index, n, i);
5324 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
5325 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
5326 pack, bigH);
5328 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
5329 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
5330 pack, bigT);
5332 pack->bw_index = n + i;
5333 pack->bw_txg = txg;
5334 pack->bw_data = 1 + ztest_random(-2ULL);
5336 *bigH = *pack;
5337 *bigT = *pack;
5341 #undef OD_ARRAY_SIZE
5342 #define OD_ARRAY_SIZE 2
5344 void
5345 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
5347 objset_t *os = zd->zd_os;
5348 ztest_od_t *od;
5349 dmu_tx_t *tx;
5350 uint64_t i;
5351 int error;
5352 int size;
5353 uint64_t n, s, txg;
5354 bufwad_t *packbuf, *bigbuf;
5355 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
5356 uint64_t blocksize = ztest_random_blocksize();
5357 uint64_t chunksize = blocksize;
5358 uint64_t regions = 997;
5359 uint64_t stride = 123456789ULL;
5360 uint64_t width = 9;
5361 dmu_buf_t *bonus_db;
5362 arc_buf_t **bigbuf_arcbufs;
5363 dmu_object_info_t doi;
5364 uint32_t dmu_read_flags = DMU_READ_PREFETCH;
5367 * We will randomly set when to do O_DIRECT on a read.
5369 if (ztest_random(4) == 0)
5370 dmu_read_flags |= DMU_DIRECTIO;
5372 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
5373 od = umem_alloc(size, UMEM_NOFAIL);
5376 * This test uses two objects, packobj and bigobj, that are always
5377 * updated together (i.e. in the same tx) so that their contents are
5378 * in sync and can be compared. Their contents relate to each other
5379 * in a simple way: packobj is a dense array of 'bufwad' structures,
5380 * while bigobj is a sparse array of the same bufwads. Specifically,
5381 * for any index n, there are three bufwads that should be identical:
5383 * packobj, at offset n * sizeof (bufwad_t)
5384 * bigobj, at the head of the nth chunk
5385 * bigobj, at the tail of the nth chunk
5387 * The chunk size is set equal to bigobj block size so that
5388 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5392 * Read the directory info. If it's the first time, set things up.
5394 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5395 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5396 chunksize);
5399 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5400 umem_free(od, size);
5401 return;
5404 bigobj = od[0].od_object;
5405 packobj = od[1].od_object;
5406 blocksize = od[0].od_blocksize;
5407 chunksize = blocksize;
5408 ASSERT3U(chunksize, ==, od[1].od_gen);
5410 VERIFY0(dmu_object_info(os, bigobj, &doi));
5411 VERIFY(ISP2(doi.doi_data_block_size));
5412 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5413 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5416 * Pick a random index and compute the offsets into packobj and bigobj.
5418 n = ztest_random(regions) * stride + ztest_random(width);
5419 s = 1 + ztest_random(width - 1);
5421 packoff = n * sizeof (bufwad_t);
5422 packsize = s * sizeof (bufwad_t);
5424 bigoff = n * chunksize;
5425 bigsize = s * chunksize;
5427 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5428 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5430 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5432 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5435 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5436 * Iteration 1 test zcopy to already referenced dbufs.
5437 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5438 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5439 * Iteration 4 test zcopy when dbuf is no longer dirty.
5440 * Iteration 5 test zcopy when it can't be done.
5441 * Iteration 6 one more zcopy write.
5443 for (i = 0; i < 7; i++) {
5444 uint64_t j;
5445 uint64_t off;
5448 * In iteration 5 (i == 5) use arcbufs
5449 * that don't match bigobj blksz to test
5450 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5451 * assign an arcbuf to a dbuf.
5453 for (j = 0; j < s; j++) {
5454 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5455 bigbuf_arcbufs[j] =
5456 dmu_request_arcbuf(bonus_db, chunksize);
5457 } else {
5458 bigbuf_arcbufs[2 * j] =
5459 dmu_request_arcbuf(bonus_db, chunksize / 2);
5460 bigbuf_arcbufs[2 * j + 1] =
5461 dmu_request_arcbuf(bonus_db, chunksize / 2);
5466 * Get a tx for the mods to both packobj and bigobj.
5468 tx = dmu_tx_create(os);
5470 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5471 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5473 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5474 if (txg == 0) {
5475 umem_free(packbuf, packsize);
5476 umem_free(bigbuf, bigsize);
5477 for (j = 0; j < s; j++) {
5478 if (i != 5 ||
5479 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5480 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5481 } else {
5482 dmu_return_arcbuf(
5483 bigbuf_arcbufs[2 * j]);
5484 dmu_return_arcbuf(
5485 bigbuf_arcbufs[2 * j + 1]);
5488 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5489 umem_free(od, size);
5490 dmu_buf_rele(bonus_db, FTAG);
5491 return;
5495 * 50% of the time don't read objects in the 1st iteration to
5496 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5497 * no existing dbufs for the specified offsets.
5499 if (i != 0 || ztest_random(2) != 0) {
5500 error = dmu_read(os, packobj, packoff,
5501 packsize, packbuf, dmu_read_flags);
5502 ASSERT0(error);
5503 error = dmu_read(os, bigobj, bigoff, bigsize,
5504 bigbuf, dmu_read_flags);
5505 ASSERT0(error);
5507 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5508 n, chunksize, txg);
5511 * We've verified all the old bufwads, and made new ones.
5512 * Now write them out.
5514 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5515 if (ztest_opts.zo_verbose >= 7) {
5516 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5517 " txg %"PRIx64"\n",
5518 bigoff, bigsize, txg);
5520 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5521 dmu_buf_t *dbt;
5522 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5523 memcpy(bigbuf_arcbufs[j]->b_data,
5524 (caddr_t)bigbuf + (off - bigoff),
5525 chunksize);
5526 } else {
5527 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5528 (caddr_t)bigbuf + (off - bigoff),
5529 chunksize / 2);
5530 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5531 (caddr_t)bigbuf + (off - bigoff) +
5532 chunksize / 2,
5533 chunksize / 2);
5536 if (i == 1) {
5537 VERIFY(dmu_buf_hold(os, bigobj, off,
5538 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5540 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5541 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5542 off, bigbuf_arcbufs[j], tx));
5543 } else {
5544 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5545 off, bigbuf_arcbufs[2 * j], tx));
5546 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5547 off + chunksize / 2,
5548 bigbuf_arcbufs[2 * j + 1], tx));
5550 if (i == 1) {
5551 dmu_buf_rele(dbt, FTAG);
5554 dmu_tx_commit(tx);
5557 * Sanity check the stuff we just wrote.
5560 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5561 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5563 VERIFY0(dmu_read(os, packobj, packoff,
5564 packsize, packcheck, dmu_read_flags));
5565 VERIFY0(dmu_read(os, bigobj, bigoff,
5566 bigsize, bigcheck, dmu_read_flags));
5568 ASSERT0(memcmp(packbuf, packcheck, packsize));
5569 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5571 umem_free(packcheck, packsize);
5572 umem_free(bigcheck, bigsize);
5574 if (i == 2) {
5575 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5576 } else if (i == 3) {
5577 txg_wait_synced(dmu_objset_pool(os), 0);
5581 dmu_buf_rele(bonus_db, FTAG);
5582 umem_free(packbuf, packsize);
5583 umem_free(bigbuf, bigsize);
5584 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5585 umem_free(od, size);
5588 void
5589 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5591 (void) id;
5592 ztest_od_t *od;
5594 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5595 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5596 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5599 * Have multiple threads write to large offsets in an object
5600 * to verify that parallel writes to an object -- even to the
5601 * same blocks within the object -- doesn't cause any trouble.
5603 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5605 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5606 return;
5608 while (ztest_random(10) != 0)
5609 ztest_io(zd, od->od_object, offset);
5611 umem_free(od, sizeof (ztest_od_t));
5614 void
5615 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5617 ztest_od_t *od;
5618 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5619 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5620 uint64_t count = ztest_random(20) + 1;
5621 uint64_t blocksize = ztest_random_blocksize();
5622 void *data;
5624 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5626 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5628 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5629 !ztest_random(2)) != 0) {
5630 umem_free(od, sizeof (ztest_od_t));
5631 return;
5634 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5635 umem_free(od, sizeof (ztest_od_t));
5636 return;
5639 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5641 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5643 while (ztest_random(count) != 0) {
5644 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5645 if (ztest_write(zd, od->od_object, randoff, blocksize,
5646 data) != 0)
5647 break;
5648 while (ztest_random(4) != 0)
5649 ztest_io(zd, od->od_object, randoff);
5652 umem_free(data, blocksize);
5653 umem_free(od, sizeof (ztest_od_t));
5657 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5659 #define ZTEST_ZAP_MIN_INTS 1
5660 #define ZTEST_ZAP_MAX_INTS 4
5661 #define ZTEST_ZAP_MAX_PROPS 1000
5663 void
5664 ztest_zap(ztest_ds_t *zd, uint64_t id)
5666 objset_t *os = zd->zd_os;
5667 ztest_od_t *od;
5668 uint64_t object;
5669 uint64_t txg, last_txg;
5670 uint64_t value[ZTEST_ZAP_MAX_INTS];
5671 uint64_t zl_ints, zl_intsize, prop;
5672 int i, ints;
5673 dmu_tx_t *tx;
5674 char propname[100], txgname[100];
5675 int error;
5676 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5678 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5679 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5681 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5682 !ztest_random(2)) != 0)
5683 goto out;
5685 object = od->od_object;
5688 * Generate a known hash collision, and verify that
5689 * we can lookup and remove both entries.
5691 tx = dmu_tx_create(os);
5692 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5693 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5694 if (txg == 0)
5695 goto out;
5696 for (i = 0; i < 2; i++) {
5697 value[i] = i;
5698 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5699 1, &value[i], tx));
5701 for (i = 0; i < 2; i++) {
5702 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5703 sizeof (uint64_t), 1, &value[i], tx));
5704 VERIFY0(
5705 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5706 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5707 ASSERT3U(zl_ints, ==, 1);
5709 for (i = 0; i < 2; i++) {
5710 VERIFY0(zap_remove(os, object, hc[i], tx));
5712 dmu_tx_commit(tx);
5715 * Generate a bunch of random entries.
5717 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5719 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5720 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5721 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5722 memset(value, 0, sizeof (value));
5723 last_txg = 0;
5726 * If these zap entries already exist, validate their contents.
5728 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5729 if (error == 0) {
5730 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5731 ASSERT3U(zl_ints, ==, 1);
5733 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5734 zl_ints, &last_txg));
5736 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5737 &zl_ints));
5739 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5740 ASSERT3U(zl_ints, ==, ints);
5742 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5743 zl_ints, value));
5745 for (i = 0; i < ints; i++) {
5746 ASSERT3U(value[i], ==, last_txg + object + i);
5748 } else {
5749 ASSERT3U(error, ==, ENOENT);
5753 * Atomically update two entries in our zap object.
5754 * The first is named txg_%llu, and contains the txg
5755 * in which the property was last updated. The second
5756 * is named prop_%llu, and the nth element of its value
5757 * should be txg + object + n.
5759 tx = dmu_tx_create(os);
5760 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5761 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5762 if (txg == 0)
5763 goto out;
5765 if (last_txg > txg)
5766 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5767 last_txg, txg);
5769 for (i = 0; i < ints; i++)
5770 value[i] = txg + object + i;
5772 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5773 1, &txg, tx));
5774 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5775 ints, value, tx));
5777 dmu_tx_commit(tx);
5780 * Remove a random pair of entries.
5782 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5783 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5784 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5786 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5788 if (error == ENOENT)
5789 goto out;
5791 ASSERT0(error);
5793 tx = dmu_tx_create(os);
5794 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5795 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5796 if (txg == 0)
5797 goto out;
5798 VERIFY0(zap_remove(os, object, txgname, tx));
5799 VERIFY0(zap_remove(os, object, propname, tx));
5800 dmu_tx_commit(tx);
5801 out:
5802 umem_free(od, sizeof (ztest_od_t));
5806 * Test case to test the upgrading of a microzap to fatzap.
5808 void
5809 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5811 objset_t *os = zd->zd_os;
5812 ztest_od_t *od;
5813 uint64_t object, txg, value;
5815 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5816 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5818 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5819 !ztest_random(2)) != 0)
5820 goto out;
5821 object = od->od_object;
5824 * Add entries to this ZAP and make sure it spills over
5825 * and gets upgraded to a fatzap. Also, since we are adding
5826 * 2050 entries we should see ptrtbl growth and leaf-block split.
5828 for (value = 0; value < 2050; value++) {
5829 char name[ZFS_MAX_DATASET_NAME_LEN];
5830 dmu_tx_t *tx;
5831 int error;
5833 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5834 id, value);
5836 tx = dmu_tx_create(os);
5837 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5838 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5839 if (txg == 0)
5840 goto out;
5841 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5842 &value, tx);
5843 ASSERT(error == 0 || error == EEXIST);
5844 dmu_tx_commit(tx);
5846 out:
5847 umem_free(od, sizeof (ztest_od_t));
5850 void
5851 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5853 (void) id;
5854 objset_t *os = zd->zd_os;
5855 ztest_od_t *od;
5856 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5857 dmu_tx_t *tx;
5858 int i, namelen, error;
5859 int micro = ztest_random(2);
5860 char name[20], string_value[20];
5861 void *data;
5863 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5864 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5866 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5867 umem_free(od, sizeof (ztest_od_t));
5868 return;
5871 object = od->od_object;
5874 * Generate a random name of the form 'xxx.....' where each
5875 * x is a random printable character and the dots are dots.
5876 * There are 94 such characters, and the name length goes from
5877 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5879 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5881 for (i = 0; i < 3; i++)
5882 name[i] = '!' + ztest_random('~' - '!' + 1);
5883 for (; i < namelen - 1; i++)
5884 name[i] = '.';
5885 name[i] = '\0';
5887 if ((namelen & 1) || micro) {
5888 wsize = sizeof (txg);
5889 wc = 1;
5890 data = &txg;
5891 } else {
5892 wsize = 1;
5893 wc = namelen;
5894 data = string_value;
5897 count = -1ULL;
5898 VERIFY0(zap_count(os, object, &count));
5899 ASSERT3S(count, !=, -1ULL);
5902 * Select an operation: length, lookup, add, update, remove.
5904 i = ztest_random(5);
5906 if (i >= 2) {
5907 tx = dmu_tx_create(os);
5908 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5909 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5910 if (txg == 0) {
5911 umem_free(od, sizeof (ztest_od_t));
5912 return;
5914 memcpy(string_value, name, namelen);
5915 } else {
5916 tx = NULL;
5917 txg = 0;
5918 memset(string_value, 0, namelen);
5921 switch (i) {
5923 case 0:
5924 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5925 if (error == 0) {
5926 ASSERT3U(wsize, ==, zl_wsize);
5927 ASSERT3U(wc, ==, zl_wc);
5928 } else {
5929 ASSERT3U(error, ==, ENOENT);
5931 break;
5933 case 1:
5934 error = zap_lookup(os, object, name, wsize, wc, data);
5935 if (error == 0) {
5936 if (data == string_value &&
5937 memcmp(name, data, namelen) != 0)
5938 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5939 name, (char *)data, namelen);
5940 } else {
5941 ASSERT3U(error, ==, ENOENT);
5943 break;
5945 case 2:
5946 error = zap_add(os, object, name, wsize, wc, data, tx);
5947 ASSERT(error == 0 || error == EEXIST);
5948 break;
5950 case 3:
5951 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5952 break;
5954 case 4:
5955 error = zap_remove(os, object, name, tx);
5956 ASSERT(error == 0 || error == ENOENT);
5957 break;
5960 if (tx != NULL)
5961 dmu_tx_commit(tx);
5963 umem_free(od, sizeof (ztest_od_t));
5967 * Commit callback data.
5969 typedef struct ztest_cb_data {
5970 list_node_t zcd_node;
5971 uint64_t zcd_txg;
5972 int zcd_expected_err;
5973 boolean_t zcd_added;
5974 boolean_t zcd_called;
5975 spa_t *zcd_spa;
5976 } ztest_cb_data_t;
5978 /* This is the actual commit callback function */
5979 static void
5980 ztest_commit_callback(void *arg, int error)
5982 ztest_cb_data_t *data = arg;
5983 uint64_t synced_txg;
5985 VERIFY3P(data, !=, NULL);
5986 VERIFY3S(data->zcd_expected_err, ==, error);
5987 VERIFY(!data->zcd_called);
5989 synced_txg = spa_last_synced_txg(data->zcd_spa);
5990 if (data->zcd_txg > synced_txg)
5991 fatal(B_FALSE,
5992 "commit callback of txg %"PRIu64" called prematurely, "
5993 "last synced txg = %"PRIu64"\n",
5994 data->zcd_txg, synced_txg);
5996 data->zcd_called = B_TRUE;
5998 if (error == ECANCELED) {
5999 ASSERT0(data->zcd_txg);
6000 ASSERT(!data->zcd_added);
6003 * The private callback data should be destroyed here, but
6004 * since we are going to check the zcd_called field after
6005 * dmu_tx_abort(), we will destroy it there.
6007 return;
6010 ASSERT(data->zcd_added);
6011 ASSERT3U(data->zcd_txg, !=, 0);
6013 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6015 /* See if this cb was called more quickly */
6016 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
6017 zc_min_txg_delay = synced_txg - data->zcd_txg;
6019 /* Remove our callback from the list */
6020 list_remove(&zcl.zcl_callbacks, data);
6022 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6024 umem_free(data, sizeof (ztest_cb_data_t));
6027 /* Allocate and initialize callback data structure */
6028 static ztest_cb_data_t *
6029 ztest_create_cb_data(objset_t *os, uint64_t txg)
6031 ztest_cb_data_t *cb_data;
6033 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
6035 cb_data->zcd_txg = txg;
6036 cb_data->zcd_spa = dmu_objset_spa(os);
6037 list_link_init(&cb_data->zcd_node);
6039 return (cb_data);
6043 * Commit callback test.
6045 void
6046 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
6048 objset_t *os = zd->zd_os;
6049 ztest_od_t *od;
6050 dmu_tx_t *tx;
6051 ztest_cb_data_t *cb_data[3], *tmp_cb;
6052 uint64_t old_txg, txg;
6053 int i, error = 0;
6055 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
6056 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
6058 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
6059 umem_free(od, sizeof (ztest_od_t));
6060 return;
6063 tx = dmu_tx_create(os);
6065 cb_data[0] = ztest_create_cb_data(os, 0);
6066 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
6068 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
6070 /* Every once in a while, abort the transaction on purpose */
6071 if (ztest_random(100) == 0)
6072 error = -1;
6074 if (!error)
6075 error = dmu_tx_assign(tx, TXG_NOWAIT);
6077 txg = error ? 0 : dmu_tx_get_txg(tx);
6079 cb_data[0]->zcd_txg = txg;
6080 cb_data[1] = ztest_create_cb_data(os, txg);
6081 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
6083 if (error) {
6085 * It's not a strict requirement to call the registered
6086 * callbacks from inside dmu_tx_abort(), but that's what
6087 * it's supposed to happen in the current implementation
6088 * so we will check for that.
6090 for (i = 0; i < 2; i++) {
6091 cb_data[i]->zcd_expected_err = ECANCELED;
6092 VERIFY(!cb_data[i]->zcd_called);
6095 dmu_tx_abort(tx);
6097 for (i = 0; i < 2; i++) {
6098 VERIFY(cb_data[i]->zcd_called);
6099 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
6102 umem_free(od, sizeof (ztest_od_t));
6103 return;
6106 cb_data[2] = ztest_create_cb_data(os, txg);
6107 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
6110 * Read existing data to make sure there isn't a future leak.
6112 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
6113 &old_txg, DMU_READ_PREFETCH));
6115 if (old_txg > txg)
6116 fatal(B_FALSE,
6117 "future leak: got %"PRIu64", open txg is %"PRIu64"",
6118 old_txg, txg);
6120 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
6122 (void) mutex_enter(&zcl.zcl_callbacks_lock);
6125 * Since commit callbacks don't have any ordering requirement and since
6126 * it is theoretically possible for a commit callback to be called
6127 * after an arbitrary amount of time has elapsed since its txg has been
6128 * synced, it is difficult to reliably determine whether a commit
6129 * callback hasn't been called due to high load or due to a flawed
6130 * implementation.
6132 * In practice, we will assume that if after a certain number of txgs a
6133 * commit callback hasn't been called, then most likely there's an
6134 * implementation bug..
6136 tmp_cb = list_head(&zcl.zcl_callbacks);
6137 if (tmp_cb != NULL &&
6138 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
6139 fatal(B_FALSE,
6140 "Commit callback threshold exceeded, "
6141 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
6142 tmp_cb->zcd_txg, txg);
6146 * Let's find the place to insert our callbacks.
6148 * Even though the list is ordered by txg, it is possible for the
6149 * insertion point to not be the end because our txg may already be
6150 * quiescing at this point and other callbacks in the open txg
6151 * (from other objsets) may have sneaked in.
6153 tmp_cb = list_tail(&zcl.zcl_callbacks);
6154 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
6155 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
6157 /* Add the 3 callbacks to the list */
6158 for (i = 0; i < 3; i++) {
6159 if (tmp_cb == NULL)
6160 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
6161 else
6162 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
6163 cb_data[i]);
6165 cb_data[i]->zcd_added = B_TRUE;
6166 VERIFY(!cb_data[i]->zcd_called);
6168 tmp_cb = cb_data[i];
6171 zc_cb_counter += 3;
6173 (void) mutex_exit(&zcl.zcl_callbacks_lock);
6175 dmu_tx_commit(tx);
6177 umem_free(od, sizeof (ztest_od_t));
6181 * Visit each object in the dataset. Verify that its properties
6182 * are consistent what was stored in the block tag when it was created,
6183 * and that its unused bonus buffer space has not been overwritten.
6185 void
6186 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
6188 (void) id;
6189 objset_t *os = zd->zd_os;
6190 uint64_t obj;
6191 int err = 0;
6193 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
6194 ztest_block_tag_t *bt = NULL;
6195 dmu_object_info_t doi;
6196 dmu_buf_t *db;
6198 ztest_object_lock(zd, obj, ZTRL_READER);
6199 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
6200 ztest_object_unlock(zd, obj);
6201 continue;
6204 dmu_object_info_from_db(db, &doi);
6205 if (doi.doi_bonus_size >= sizeof (*bt))
6206 bt = ztest_bt_bonus(db);
6208 if (bt && bt->bt_magic == BT_MAGIC) {
6209 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
6210 bt->bt_offset, bt->bt_gen, bt->bt_txg,
6211 bt->bt_crtxg);
6212 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
6215 dmu_buf_rele(db, FTAG);
6216 ztest_object_unlock(zd, obj);
6220 void
6221 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
6223 (void) id;
6224 zfs_prop_t proplist[] = {
6225 ZFS_PROP_CHECKSUM,
6226 ZFS_PROP_COMPRESSION,
6227 ZFS_PROP_COPIES,
6228 ZFS_PROP_DEDUP
6231 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6233 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
6234 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
6235 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
6236 ASSERT(error == 0 || error == ENOSPC);
6239 int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
6240 ztest_random_blocksize(), (int)ztest_random(2));
6241 ASSERT(error == 0 || error == ENOSPC);
6243 (void) pthread_rwlock_unlock(&ztest_name_lock);
6246 void
6247 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
6249 (void) zd, (void) id;
6251 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6253 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
6255 nvlist_t *props = fnvlist_alloc();
6257 VERIFY0(spa_prop_get(ztest_spa, props));
6259 if (ztest_opts.zo_verbose >= 6)
6260 dump_nvlist(props, 4);
6262 fnvlist_free(props);
6264 (void) pthread_rwlock_unlock(&ztest_name_lock);
6267 static int
6268 user_release_one(const char *snapname, const char *holdname)
6270 nvlist_t *snaps, *holds;
6271 int error;
6273 snaps = fnvlist_alloc();
6274 holds = fnvlist_alloc();
6275 fnvlist_add_boolean(holds, holdname);
6276 fnvlist_add_nvlist(snaps, snapname, holds);
6277 fnvlist_free(holds);
6278 error = dsl_dataset_user_release(snaps, NULL);
6279 fnvlist_free(snaps);
6280 return (error);
6284 * Test snapshot hold/release and deferred destroy.
6286 void
6287 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
6289 int error;
6290 objset_t *os = zd->zd_os;
6291 objset_t *origin;
6292 char snapname[100];
6293 char fullname[100];
6294 char clonename[100];
6295 char tag[100];
6296 char osname[ZFS_MAX_DATASET_NAME_LEN];
6297 nvlist_t *holds;
6299 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6301 dmu_objset_name(os, osname);
6303 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
6304 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
6305 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
6306 osname, id);
6307 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
6310 * Clean up from any previous run.
6312 error = dsl_destroy_head(clonename);
6313 if (error != ENOENT)
6314 ASSERT0(error);
6315 error = user_release_one(fullname, tag);
6316 if (error != ESRCH && error != ENOENT)
6317 ASSERT0(error);
6318 error = dsl_destroy_snapshot(fullname, B_FALSE);
6319 if (error != ENOENT)
6320 ASSERT0(error);
6323 * Create snapshot, clone it, mark snap for deferred destroy,
6324 * destroy clone, verify snap was also destroyed.
6326 error = dmu_objset_snapshot_one(osname, snapname);
6327 if (error) {
6328 if (error == ENOSPC) {
6329 ztest_record_enospc("dmu_objset_snapshot");
6330 goto out;
6332 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6335 error = dmu_objset_clone(clonename, fullname);
6336 if (error) {
6337 if (error == ENOSPC) {
6338 ztest_record_enospc("dmu_objset_clone");
6339 goto out;
6341 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
6344 error = dsl_destroy_snapshot(fullname, B_TRUE);
6345 if (error) {
6346 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6347 fullname, error);
6350 error = dsl_destroy_head(clonename);
6351 if (error)
6352 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
6354 error = dmu_objset_hold(fullname, FTAG, &origin);
6355 if (error != ENOENT)
6356 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
6359 * Create snapshot, add temporary hold, verify that we can't
6360 * destroy a held snapshot, mark for deferred destroy,
6361 * release hold, verify snapshot was destroyed.
6363 error = dmu_objset_snapshot_one(osname, snapname);
6364 if (error) {
6365 if (error == ENOSPC) {
6366 ztest_record_enospc("dmu_objset_snapshot");
6367 goto out;
6369 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
6372 holds = fnvlist_alloc();
6373 fnvlist_add_string(holds, fullname, tag);
6374 error = dsl_dataset_user_hold(holds, 0, NULL);
6375 fnvlist_free(holds);
6377 if (error == ENOSPC) {
6378 ztest_record_enospc("dsl_dataset_user_hold");
6379 goto out;
6380 } else if (error) {
6381 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6382 fullname, tag, error);
6385 error = dsl_destroy_snapshot(fullname, B_FALSE);
6386 if (error != EBUSY) {
6387 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6388 fullname, error);
6391 error = dsl_destroy_snapshot(fullname, B_TRUE);
6392 if (error) {
6393 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6394 fullname, error);
6397 error = user_release_one(fullname, tag);
6398 if (error)
6399 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6400 fullname, tag, error);
6402 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6404 out:
6405 (void) pthread_rwlock_unlock(&ztest_name_lock);
6409 * Inject random faults into the on-disk data.
6411 void
6412 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6414 (void) zd, (void) id;
6415 ztest_shared_t *zs = ztest_shared;
6416 spa_t *spa = ztest_spa;
6417 int fd;
6418 uint64_t offset;
6419 uint64_t leaves;
6420 uint64_t bad = 0x1990c0ffeedecadeull;
6421 uint64_t top, leaf;
6422 uint64_t raidz_children;
6423 char *path0;
6424 char *pathrand;
6425 size_t fsize;
6426 int bshift = SPA_MAXBLOCKSHIFT + 2;
6427 int iters = 1000;
6428 int maxfaults;
6429 int mirror_save;
6430 vdev_t *vd0 = NULL;
6431 uint64_t guid0 = 0;
6432 boolean_t islog = B_FALSE;
6433 boolean_t injected = B_FALSE;
6435 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6436 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6438 mutex_enter(&ztest_vdev_lock);
6441 * Device removal is in progress, fault injection must be disabled
6442 * until it completes and the pool is scrubbed. The fault injection
6443 * strategy for damaging blocks does not take in to account evacuated
6444 * blocks which may have already been damaged.
6446 if (ztest_device_removal_active)
6447 goto out;
6450 * The fault injection strategy for damaging blocks cannot be used
6451 * if raidz expansion is in progress. The leaves value
6452 * (attached raidz children) is variable and strategy for damaging
6453 * blocks will corrupt same data blocks on different child vdevs
6454 * because of the reflow process.
6456 if (spa->spa_raidz_expand != NULL)
6457 goto out;
6459 maxfaults = MAXFAULTS(zs);
6460 raidz_children = ztest_get_raidz_children(spa);
6461 leaves = MAX(zs->zs_mirrors, 1) * raidz_children;
6462 mirror_save = zs->zs_mirrors;
6464 ASSERT3U(leaves, >=, 1);
6467 * While ztest is running the number of leaves will not change. This
6468 * is critical for the fault injection logic as it determines where
6469 * errors can be safely injected such that they are always repairable.
6471 * When restarting ztest a different number of leaves may be requested
6472 * which will shift the regions to be damaged. This is fine as long
6473 * as the pool has been scrubbed prior to using the new mapping.
6474 * Failure to do can result in non-repairable damage being injected.
6476 if (ztest_pool_scrubbed == B_FALSE)
6477 goto out;
6480 * Grab the name lock as reader. There are some operations
6481 * which don't like to have their vdevs changed while
6482 * they are in progress (i.e. spa_change_guid). Those
6483 * operations will have grabbed the name lock as writer.
6485 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6488 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6490 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6492 if (ztest_random(2) == 0) {
6494 * Inject errors on a normal data device or slog device.
6496 top = ztest_random_vdev_top(spa, B_TRUE);
6497 leaf = ztest_random(leaves) + zs->zs_splits;
6500 * Generate paths to the first leaf in this top-level vdev,
6501 * and to the random leaf we selected. We'll induce transient
6502 * write failures and random online/offline activity on leaf 0,
6503 * and we'll write random garbage to the randomly chosen leaf.
6505 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6506 ztest_opts.zo_dir, ztest_opts.zo_pool,
6507 top * leaves + zs->zs_splits);
6508 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6509 ztest_opts.zo_dir, ztest_opts.zo_pool,
6510 top * leaves + leaf);
6512 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6513 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6514 islog = B_TRUE;
6517 * If the top-level vdev needs to be resilvered
6518 * then we only allow faults on the device that is
6519 * resilvering.
6521 if (vd0 != NULL && maxfaults != 1 &&
6522 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6523 vd0->vdev_resilver_txg != 0)) {
6525 * Make vd0 explicitly claim to be unreadable,
6526 * or unwritable, or reach behind its back
6527 * and close the underlying fd. We can do this if
6528 * maxfaults == 0 because we'll fail and reexecute,
6529 * and we can do it if maxfaults >= 2 because we'll
6530 * have enough redundancy. If maxfaults == 1, the
6531 * combination of this with injection of random data
6532 * corruption below exceeds the pool's fault tolerance.
6534 vdev_file_t *vf = vd0->vdev_tsd;
6536 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6537 (long long)vd0->vdev_id, (int)maxfaults);
6539 if (vf != NULL && ztest_random(3) == 0) {
6540 (void) close(vf->vf_file->f_fd);
6541 vf->vf_file->f_fd = -1;
6542 } else if (ztest_random(2) == 0) {
6543 vd0->vdev_cant_read = B_TRUE;
6544 } else {
6545 vd0->vdev_cant_write = B_TRUE;
6547 guid0 = vd0->vdev_guid;
6549 } else {
6551 * Inject errors on an l2cache device.
6553 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6555 if (sav->sav_count == 0) {
6556 spa_config_exit(spa, SCL_STATE, FTAG);
6557 (void) pthread_rwlock_unlock(&ztest_name_lock);
6558 goto out;
6560 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6561 guid0 = vd0->vdev_guid;
6562 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6563 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6565 leaf = 0;
6566 leaves = 1;
6567 maxfaults = INT_MAX; /* no limit on cache devices */
6570 spa_config_exit(spa, SCL_STATE, FTAG);
6571 (void) pthread_rwlock_unlock(&ztest_name_lock);
6574 * If we can tolerate two or more faults, or we're dealing
6575 * with a slog, randomly online/offline vd0.
6577 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6578 if (ztest_random(10) < 6) {
6579 int flags = (ztest_random(2) == 0 ?
6580 ZFS_OFFLINE_TEMPORARY : 0);
6583 * We have to grab the zs_name_lock as writer to
6584 * prevent a race between offlining a slog and
6585 * destroying a dataset. Offlining the slog will
6586 * grab a reference on the dataset which may cause
6587 * dsl_destroy_head() to fail with EBUSY thus
6588 * leaving the dataset in an inconsistent state.
6590 if (islog)
6591 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6593 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6595 if (islog)
6596 (void) pthread_rwlock_unlock(&ztest_name_lock);
6597 } else {
6599 * Ideally we would like to be able to randomly
6600 * call vdev_[on|off]line without holding locks
6601 * to force unpredictable failures but the side
6602 * effects of vdev_[on|off]line prevent us from
6603 * doing so.
6605 (void) vdev_online(spa, guid0, 0, NULL);
6609 if (maxfaults == 0)
6610 goto out;
6613 * We have at least single-fault tolerance, so inject data corruption.
6615 fd = open(pathrand, O_RDWR);
6617 if (fd == -1) /* we hit a gap in the device namespace */
6618 goto out;
6620 fsize = lseek(fd, 0, SEEK_END);
6622 while (--iters != 0) {
6624 * The offset must be chosen carefully to ensure that
6625 * we do not inject a given logical block with errors
6626 * on two different leaf devices, because ZFS can not
6627 * tolerate that (if maxfaults==1).
6629 * To achieve this we divide each leaf device into
6630 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6631 * Each chunk is further divided into error-injection
6632 * ranges (can accept errors) and clear ranges (we do
6633 * not inject errors in those). Each error-injection
6634 * range can accept errors only for a single leaf vdev.
6635 * Error-injection ranges are separated by clear ranges.
6637 * For example, with 3 leaves, each chunk looks like:
6638 * 0 to 32M: injection range for leaf 0
6639 * 32M to 64M: clear range - no injection allowed
6640 * 64M to 96M: injection range for leaf 1
6641 * 96M to 128M: clear range - no injection allowed
6642 * 128M to 160M: injection range for leaf 2
6643 * 160M to 192M: clear range - no injection allowed
6645 * Each clear range must be large enough such that a
6646 * single block cannot straddle it. This way a block
6647 * can't be a target in two different injection ranges
6648 * (on different leaf vdevs).
6650 offset = ztest_random(fsize / (leaves << bshift)) *
6651 (leaves << bshift) + (leaf << bshift) +
6652 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6655 * Only allow damage to the labels at one end of the vdev.
6657 * If all labels are damaged, the device will be totally
6658 * inaccessible, which will result in loss of data,
6659 * because we also damage (parts of) the other side of
6660 * the mirror/raidz.
6662 * Additionally, we will always have both an even and an
6663 * odd label, so that we can handle crashes in the
6664 * middle of vdev_config_sync().
6666 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6667 continue;
6670 * The two end labels are stored at the "end" of the disk, but
6671 * the end of the disk (vdev_psize) is aligned to
6672 * sizeof (vdev_label_t).
6674 uint64_t psize = P2ALIGN_TYPED(fsize, sizeof (vdev_label_t),
6675 uint64_t);
6676 if ((leaf & 1) == 1 &&
6677 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6678 continue;
6680 if (mirror_save != zs->zs_mirrors) {
6681 (void) close(fd);
6682 goto out;
6685 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6686 fatal(B_TRUE,
6687 "can't inject bad word at 0x%"PRIx64" in %s",
6688 offset, pathrand);
6690 if (ztest_opts.zo_verbose >= 7)
6691 (void) printf("injected bad word into %s,"
6692 " offset 0x%"PRIx64"\n", pathrand, offset);
6694 injected = B_TRUE;
6697 (void) close(fd);
6698 out:
6699 mutex_exit(&ztest_vdev_lock);
6701 if (injected && ztest_opts.zo_raid_do_expand) {
6702 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6703 if (error == 0) {
6704 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6705 txg_wait_synced(spa_get_dsl(spa), 0);
6709 umem_free(path0, MAXPATHLEN);
6710 umem_free(pathrand, MAXPATHLEN);
6714 * By design ztest will never inject uncorrectable damage in to the pool.
6715 * Issue a scrub, wait for it to complete, and verify there is never any
6716 * persistent damage.
6718 * Only after a full scrub has been completed is it safe to start injecting
6719 * data corruption. See the comment in zfs_fault_inject().
6721 * EBUSY may be returned for the following six cases. It's the callers
6722 * responsibility to handle them accordingly.
6724 * Current state Requested
6725 * 1. Normal Scrub Running Normal Scrub or Error Scrub
6726 * 2. Normal Scrub Paused Error Scrub
6727 * 3. Normal Scrub Paused Pause Normal Scrub
6728 * 4. Error Scrub Running Normal Scrub or Error Scrub
6729 * 5. Error Scrub Paused Pause Error Scrub
6730 * 6. Resilvering Anything else
6732 static int
6733 ztest_scrub_impl(spa_t *spa)
6735 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6736 if (error)
6737 return (error);
6739 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6740 txg_wait_synced(spa_get_dsl(spa), 0);
6742 if (spa_approx_errlog_size(spa) > 0)
6743 return (ECKSUM);
6745 ztest_pool_scrubbed = B_TRUE;
6747 return (0);
6751 * Scrub the pool.
6753 void
6754 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6756 (void) zd, (void) id;
6757 spa_t *spa = ztest_spa;
6758 int error;
6761 * Scrub in progress by device removal.
6763 if (ztest_device_removal_active)
6764 return;
6767 * Start a scrub, wait a moment, then force a restart.
6769 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6770 (void) poll(NULL, 0, 100);
6772 error = ztest_scrub_impl(spa);
6773 if (error == EBUSY)
6774 error = 0;
6775 ASSERT0(error);
6779 * Change the guid for the pool.
6781 void
6782 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6784 (void) zd, (void) id;
6785 spa_t *spa = ztest_spa;
6786 uint64_t orig, load;
6787 int error;
6788 ztest_shared_t *zs = ztest_shared;
6790 if (ztest_opts.zo_mmp_test)
6791 return;
6793 orig = spa_guid(spa);
6794 load = spa_load_guid(spa);
6796 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6797 error = spa_change_guid(spa, NULL);
6798 zs->zs_guid = spa_guid(spa);
6799 (void) pthread_rwlock_unlock(&ztest_name_lock);
6801 if (error != 0)
6802 return;
6804 if (ztest_opts.zo_verbose >= 4) {
6805 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6806 orig, spa_guid(spa));
6809 VERIFY3U(orig, !=, spa_guid(spa));
6810 VERIFY3U(load, ==, spa_load_guid(spa));
6813 void
6814 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6816 (void) zd, (void) id;
6817 hrtime_t end = gethrtime() + NANOSEC;
6818 zio_cksum_salt_t salt;
6819 void *salt_ptr = &salt.zcs_bytes;
6820 struct abd *abd_data, *abd_meta;
6821 void *buf, *templ;
6822 int i, *ptr;
6823 uint32_t size;
6824 BLAKE3_CTX ctx;
6825 const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6827 size = ztest_random_blocksize();
6828 buf = umem_alloc(size, UMEM_NOFAIL);
6829 abd_data = abd_alloc(size, B_FALSE);
6830 abd_meta = abd_alloc(size, B_TRUE);
6832 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6833 *ptr = ztest_random(UINT_MAX);
6834 memset(salt_ptr, 'A', 32);
6836 abd_copy_from_buf_off(abd_data, buf, 0, size);
6837 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6839 while (gethrtime() <= end) {
6840 int run_count = 100;
6841 zio_cksum_t zc_ref1, zc_ref2;
6842 zio_cksum_t zc_res1, zc_res2;
6844 void *ref1 = &zc_ref1;
6845 void *ref2 = &zc_ref2;
6846 void *res1 = &zc_res1;
6847 void *res2 = &zc_res2;
6849 /* BLAKE3_KEY_LEN = 32 */
6850 VERIFY0(blake3->setname("generic"));
6851 templ = abd_checksum_blake3_tmpl_init(&salt);
6852 Blake3_InitKeyed(&ctx, salt_ptr);
6853 Blake3_Update(&ctx, buf, size);
6854 Blake3_Final(&ctx, ref1);
6855 zc_ref2 = zc_ref1;
6856 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6857 abd_checksum_blake3_tmpl_free(templ);
6859 VERIFY0(blake3->setname("cycle"));
6860 while (run_count-- > 0) {
6862 /* Test current implementation */
6863 Blake3_InitKeyed(&ctx, salt_ptr);
6864 Blake3_Update(&ctx, buf, size);
6865 Blake3_Final(&ctx, res1);
6866 zc_res2 = zc_res1;
6867 ZIO_CHECKSUM_BSWAP(&zc_res2);
6869 VERIFY0(memcmp(ref1, res1, 32));
6870 VERIFY0(memcmp(ref2, res2, 32));
6872 /* Test ABD - data */
6873 templ = abd_checksum_blake3_tmpl_init(&salt);
6874 abd_checksum_blake3_native(abd_data, size,
6875 templ, &zc_res1);
6876 abd_checksum_blake3_byteswap(abd_data, size,
6877 templ, &zc_res2);
6879 VERIFY0(memcmp(ref1, res1, 32));
6880 VERIFY0(memcmp(ref2, res2, 32));
6882 /* Test ABD - metadata */
6883 abd_checksum_blake3_native(abd_meta, size,
6884 templ, &zc_res1);
6885 abd_checksum_blake3_byteswap(abd_meta, size,
6886 templ, &zc_res2);
6887 abd_checksum_blake3_tmpl_free(templ);
6889 VERIFY0(memcmp(ref1, res1, 32));
6890 VERIFY0(memcmp(ref2, res2, 32));
6895 abd_free(abd_data);
6896 abd_free(abd_meta);
6897 umem_free(buf, size);
6900 void
6901 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6903 (void) zd, (void) id;
6904 hrtime_t end = gethrtime() + NANOSEC;
6906 while (gethrtime() <= end) {
6907 int run_count = 100;
6908 void *buf;
6909 struct abd *abd_data, *abd_meta;
6910 uint32_t size;
6911 int *ptr;
6912 int i;
6913 zio_cksum_t zc_ref;
6914 zio_cksum_t zc_ref_byteswap;
6916 size = ztest_random_blocksize();
6918 buf = umem_alloc(size, UMEM_NOFAIL);
6919 abd_data = abd_alloc(size, B_FALSE);
6920 abd_meta = abd_alloc(size, B_TRUE);
6922 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6923 *ptr = ztest_random(UINT_MAX);
6925 abd_copy_from_buf_off(abd_data, buf, 0, size);
6926 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6928 VERIFY0(fletcher_4_impl_set("scalar"));
6929 fletcher_4_native(buf, size, NULL, &zc_ref);
6930 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6932 VERIFY0(fletcher_4_impl_set("cycle"));
6933 while (run_count-- > 0) {
6934 zio_cksum_t zc;
6935 zio_cksum_t zc_byteswap;
6937 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6938 fletcher_4_native(buf, size, NULL, &zc);
6940 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6941 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6942 sizeof (zc_byteswap)));
6944 /* Test ABD - data */
6945 abd_fletcher_4_byteswap(abd_data, size, NULL,
6946 &zc_byteswap);
6947 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6949 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6950 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6951 sizeof (zc_byteswap)));
6953 /* Test ABD - metadata */
6954 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6955 &zc_byteswap);
6956 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6958 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6959 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6960 sizeof (zc_byteswap)));
6964 umem_free(buf, size);
6965 abd_free(abd_data);
6966 abd_free(abd_meta);
6970 void
6971 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6973 (void) zd, (void) id;
6974 void *buf;
6975 size_t size;
6976 int *ptr;
6977 int i;
6978 zio_cksum_t zc_ref;
6979 zio_cksum_t zc_ref_bswap;
6981 hrtime_t end = gethrtime() + NANOSEC;
6983 while (gethrtime() <= end) {
6984 int run_count = 100;
6986 size = ztest_random_blocksize();
6987 buf = umem_alloc(size, UMEM_NOFAIL);
6989 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6990 *ptr = ztest_random(UINT_MAX);
6992 VERIFY0(fletcher_4_impl_set("scalar"));
6993 fletcher_4_native(buf, size, NULL, &zc_ref);
6994 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6996 VERIFY0(fletcher_4_impl_set("cycle"));
6998 while (run_count-- > 0) {
6999 zio_cksum_t zc;
7000 zio_cksum_t zc_bswap;
7001 size_t pos = 0;
7003 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7004 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7006 while (pos < size) {
7007 size_t inc = 64 * ztest_random(size / 67);
7008 /* sometimes add few bytes to test non-simd */
7009 if (ztest_random(100) < 10)
7010 inc += P2ALIGN_TYPED(ztest_random(64),
7011 sizeof (uint32_t), uint64_t);
7013 if (inc > (size - pos))
7014 inc = size - pos;
7016 fletcher_4_incremental_native(buf + pos, inc,
7017 &zc);
7018 fletcher_4_incremental_byteswap(buf + pos, inc,
7019 &zc_bswap);
7021 pos += inc;
7024 VERIFY3U(pos, ==, size);
7026 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7027 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7030 * verify if incremental on the whole buffer is
7031 * equivalent to non-incremental version
7033 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
7034 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
7036 fletcher_4_incremental_native(buf, size, &zc);
7037 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
7039 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
7040 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
7043 umem_free(buf, size);
7047 void
7048 ztest_pool_prefetch_ddt(ztest_ds_t *zd, uint64_t id)
7050 (void) zd, (void) id;
7051 spa_t *spa;
7053 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7054 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7056 ddt_prefetch_all(spa);
7058 spa_close(spa, FTAG);
7059 (void) pthread_rwlock_unlock(&ztest_name_lock);
7062 static int
7063 ztest_set_global_vars(void)
7065 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7066 char *kv = ztest_opts.zo_gvars[i];
7067 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
7068 VERIFY3U(strlen(kv), >, 0);
7069 int err = set_global_var(kv);
7070 if (ztest_opts.zo_verbose > 0) {
7071 (void) printf("setting global var %s ... %s\n", kv,
7072 err ? "failed" : "ok");
7074 if (err != 0) {
7075 (void) fprintf(stderr,
7076 "failed to set global var '%s'\n", kv);
7077 return (err);
7080 return (0);
7083 static char **
7084 ztest_global_vars_to_zdb_args(void)
7086 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
7087 char **cur = args;
7088 if (args == NULL)
7089 return (NULL);
7090 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
7091 *cur++ = (char *)"-o";
7092 *cur++ = ztest_opts.zo_gvars[i];
7094 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
7095 *cur = NULL;
7096 return (args);
7099 /* The end of strings is indicated by a NULL element */
7100 static char *
7101 join_strings(char **strings, const char *sep)
7103 size_t totallen = 0;
7104 for (char **sp = strings; *sp != NULL; sp++) {
7105 totallen += strlen(*sp);
7106 totallen += strlen(sep);
7108 if (totallen > 0) {
7109 ASSERT(totallen >= strlen(sep));
7110 totallen -= strlen(sep);
7113 size_t buflen = totallen + 1;
7114 char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
7115 o[0] = '\0';
7116 for (char **sp = strings; *sp != NULL; sp++) {
7117 size_t would;
7118 would = strlcat(o, *sp, buflen);
7119 VERIFY3U(would, <, buflen);
7120 if (*(sp+1) == NULL) {
7121 break;
7123 would = strlcat(o, sep, buflen);
7124 VERIFY3U(would, <, buflen);
7126 ASSERT3S(strlen(o), ==, totallen);
7127 return (o);
7130 static int
7131 ztest_check_path(char *path)
7133 struct stat s;
7134 /* return true on success */
7135 return (!stat(path, &s));
7138 static void
7139 ztest_get_zdb_bin(char *bin, int len)
7141 char *zdb_path;
7143 * Try to use $ZDB and in-tree zdb path. If not successful, just
7144 * let popen to search through PATH.
7146 if ((zdb_path = getenv("ZDB"))) {
7147 strlcpy(bin, zdb_path, len); /* In env */
7148 if (!ztest_check_path(bin)) {
7149 ztest_dump_core = 0;
7150 fatal(B_TRUE, "invalid ZDB '%s'", bin);
7152 return;
7155 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
7156 if (strstr(bin, ".libs/ztest")) {
7157 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
7158 strcat(bin, "zdb");
7159 if (ztest_check_path(bin))
7160 return;
7162 strcpy(bin, "zdb");
7165 static vdev_t *
7166 ztest_random_concrete_vdev_leaf(vdev_t *vd)
7168 if (vd == NULL)
7169 return (NULL);
7171 if (vd->vdev_children == 0)
7172 return (vd);
7174 vdev_t *eligible[vd->vdev_children];
7175 int eligible_idx = 0, i;
7176 for (i = 0; i < vd->vdev_children; i++) {
7177 vdev_t *cvd = vd->vdev_child[i];
7178 if (cvd->vdev_top->vdev_removing)
7179 continue;
7180 if (cvd->vdev_children > 0 ||
7181 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
7182 eligible[eligible_idx++] = cvd;
7185 VERIFY3S(eligible_idx, >, 0);
7187 uint64_t child_no = ztest_random(eligible_idx);
7188 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
7191 void
7192 ztest_initialize(ztest_ds_t *zd, uint64_t id)
7194 (void) zd, (void) id;
7195 spa_t *spa = ztest_spa;
7196 int error = 0;
7198 mutex_enter(&ztest_vdev_lock);
7200 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7202 /* Random leaf vdev */
7203 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7204 if (rand_vd == NULL) {
7205 spa_config_exit(spa, SCL_VDEV, FTAG);
7206 mutex_exit(&ztest_vdev_lock);
7207 return;
7211 * The random vdev we've selected may change as soon as we
7212 * drop the spa_config_lock. We create local copies of things
7213 * we're interested in.
7215 uint64_t guid = rand_vd->vdev_guid;
7216 char *path = strdup(rand_vd->vdev_path);
7217 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
7219 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
7220 spa_config_exit(spa, SCL_VDEV, FTAG);
7222 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
7224 nvlist_t *vdev_guids = fnvlist_alloc();
7225 nvlist_t *vdev_errlist = fnvlist_alloc();
7226 fnvlist_add_uint64(vdev_guids, path, guid);
7227 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
7228 fnvlist_free(vdev_guids);
7229 fnvlist_free(vdev_errlist);
7231 switch (cmd) {
7232 case POOL_INITIALIZE_CANCEL:
7233 if (ztest_opts.zo_verbose >= 4) {
7234 (void) printf("Cancel initialize %s", path);
7235 if (!active)
7236 (void) printf(" failed (no initialize active)");
7237 (void) printf("\n");
7239 break;
7240 case POOL_INITIALIZE_START:
7241 if (ztest_opts.zo_verbose >= 4) {
7242 (void) printf("Start initialize %s", path);
7243 if (active && error == 0)
7244 (void) printf(" failed (already active)");
7245 else if (error != 0)
7246 (void) printf(" failed (error %d)", error);
7247 (void) printf("\n");
7249 break;
7250 case POOL_INITIALIZE_SUSPEND:
7251 if (ztest_opts.zo_verbose >= 4) {
7252 (void) printf("Suspend initialize %s", path);
7253 if (!active)
7254 (void) printf(" failed (no initialize active)");
7255 (void) printf("\n");
7257 break;
7259 free(path);
7260 mutex_exit(&ztest_vdev_lock);
7263 void
7264 ztest_trim(ztest_ds_t *zd, uint64_t id)
7266 (void) zd, (void) id;
7267 spa_t *spa = ztest_spa;
7268 int error = 0;
7270 mutex_enter(&ztest_vdev_lock);
7272 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
7274 /* Random leaf vdev */
7275 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
7276 if (rand_vd == NULL) {
7277 spa_config_exit(spa, SCL_VDEV, FTAG);
7278 mutex_exit(&ztest_vdev_lock);
7279 return;
7283 * The random vdev we've selected may change as soon as we
7284 * drop the spa_config_lock. We create local copies of things
7285 * we're interested in.
7287 uint64_t guid = rand_vd->vdev_guid;
7288 char *path = strdup(rand_vd->vdev_path);
7289 boolean_t active = rand_vd->vdev_trim_thread != NULL;
7291 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
7292 spa_config_exit(spa, SCL_VDEV, FTAG);
7294 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
7295 uint64_t rate = 1 << ztest_random(30);
7296 boolean_t partial = (ztest_random(5) > 0);
7297 boolean_t secure = (ztest_random(5) > 0);
7299 nvlist_t *vdev_guids = fnvlist_alloc();
7300 nvlist_t *vdev_errlist = fnvlist_alloc();
7301 fnvlist_add_uint64(vdev_guids, path, guid);
7302 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
7303 secure, vdev_errlist);
7304 fnvlist_free(vdev_guids);
7305 fnvlist_free(vdev_errlist);
7307 switch (cmd) {
7308 case POOL_TRIM_CANCEL:
7309 if (ztest_opts.zo_verbose >= 4) {
7310 (void) printf("Cancel TRIM %s", path);
7311 if (!active)
7312 (void) printf(" failed (no TRIM active)");
7313 (void) printf("\n");
7315 break;
7316 case POOL_TRIM_START:
7317 if (ztest_opts.zo_verbose >= 4) {
7318 (void) printf("Start TRIM %s", path);
7319 if (active && error == 0)
7320 (void) printf(" failed (already active)");
7321 else if (error != 0)
7322 (void) printf(" failed (error %d)", error);
7323 (void) printf("\n");
7325 break;
7326 case POOL_TRIM_SUSPEND:
7327 if (ztest_opts.zo_verbose >= 4) {
7328 (void) printf("Suspend TRIM %s", path);
7329 if (!active)
7330 (void) printf(" failed (no TRIM active)");
7331 (void) printf("\n");
7333 break;
7335 free(path);
7336 mutex_exit(&ztest_vdev_lock);
7339 void
7340 ztest_ddt_prune(ztest_ds_t *zd, uint64_t id)
7342 (void) zd, (void) id;
7344 spa_t *spa = ztest_spa;
7345 uint64_t pct = ztest_random(15) + 1;
7347 (void) ddt_prune_unique_entries(spa, ZPOOL_DDT_PRUNE_PERCENTAGE, pct);
7351 * Verify pool integrity by running zdb.
7353 static void
7354 ztest_run_zdb(uint64_t guid)
7356 int status;
7357 char *bin;
7358 char *zdb;
7359 char *zbuf;
7360 const int len = MAXPATHLEN + MAXNAMELEN + 20;
7361 FILE *fp;
7363 bin = umem_alloc(len, UMEM_NOFAIL);
7364 zdb = umem_alloc(len, UMEM_NOFAIL);
7365 zbuf = umem_alloc(1024, UMEM_NOFAIL);
7367 ztest_get_zdb_bin(bin, len);
7369 char **set_gvars_args = ztest_global_vars_to_zdb_args();
7370 if (set_gvars_args == NULL) {
7371 fatal(B_FALSE, "Failed to allocate memory in "
7372 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7374 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
7375 free(set_gvars_args);
7377 size_t would = snprintf(zdb, len,
7378 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
7379 bin,
7380 ztest_opts.zo_verbose >= 3 ? "s" : "",
7381 ztest_opts.zo_verbose >= 4 ? "v" : "",
7382 set_gvars_args_joined,
7383 ztest_opts.zo_dir,
7384 guid);
7385 ASSERT3U(would, <, len);
7387 umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
7389 if (ztest_opts.zo_verbose >= 5)
7390 (void) printf("Executing %s\n", zdb);
7392 fp = popen(zdb, "r");
7394 while (fgets(zbuf, 1024, fp) != NULL)
7395 if (ztest_opts.zo_verbose >= 3)
7396 (void) printf("%s", zbuf);
7398 status = pclose(fp);
7400 if (status == 0)
7401 goto out;
7403 ztest_dump_core = 0;
7404 if (WIFEXITED(status))
7405 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
7406 else
7407 fatal(B_FALSE, "'%s' died with signal %d",
7408 zdb, WTERMSIG(status));
7409 out:
7410 umem_free(bin, len);
7411 umem_free(zdb, len);
7412 umem_free(zbuf, 1024);
7415 static void
7416 ztest_walk_pool_directory(const char *header)
7418 spa_t *spa = NULL;
7420 if (ztest_opts.zo_verbose >= 6)
7421 (void) puts(header);
7423 mutex_enter(&spa_namespace_lock);
7424 while ((spa = spa_next(spa)) != NULL)
7425 if (ztest_opts.zo_verbose >= 6)
7426 (void) printf("\t%s\n", spa_name(spa));
7427 mutex_exit(&spa_namespace_lock);
7430 static void
7431 ztest_spa_import_export(char *oldname, char *newname)
7433 nvlist_t *config, *newconfig;
7434 uint64_t pool_guid;
7435 spa_t *spa;
7436 int error;
7438 if (ztest_opts.zo_verbose >= 4) {
7439 (void) printf("import/export: old = %s, new = %s\n",
7440 oldname, newname);
7444 * Clean up from previous runs.
7446 (void) spa_destroy(newname);
7449 * Get the pool's configuration and guid.
7451 VERIFY0(spa_open(oldname, &spa, FTAG));
7454 * Kick off a scrub to tickle scrub/export races.
7456 if (ztest_random(2) == 0)
7457 (void) spa_scan(spa, POOL_SCAN_SCRUB);
7459 pool_guid = spa_guid(spa);
7460 spa_close(spa, FTAG);
7462 ztest_walk_pool_directory("pools before export");
7465 * Export it.
7467 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7469 ztest_walk_pool_directory("pools after export");
7472 * Try to import it.
7474 newconfig = spa_tryimport(config);
7475 ASSERT3P(newconfig, !=, NULL);
7476 fnvlist_free(newconfig);
7479 * Import it under the new name.
7481 error = spa_import(newname, config, NULL, 0);
7482 if (error != 0) {
7483 dump_nvlist(config, 0);
7484 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7485 oldname, newname, error);
7488 ztest_walk_pool_directory("pools after import");
7491 * Try to import it again -- should fail with EEXIST.
7493 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7496 * Try to import it under a different name -- should fail with EEXIST.
7498 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7501 * Verify that the pool is no longer visible under the old name.
7503 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7506 * Verify that we can open and close the pool using the new name.
7508 VERIFY0(spa_open(newname, &spa, FTAG));
7509 ASSERT3U(pool_guid, ==, spa_guid(spa));
7510 spa_close(spa, FTAG);
7512 fnvlist_free(config);
7515 static void
7516 ztest_resume(spa_t *spa)
7518 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7519 (void) printf("resuming from suspended state\n");
7520 spa_vdev_state_enter(spa, SCL_NONE);
7521 vdev_clear(spa, NULL);
7522 (void) spa_vdev_state_exit(spa, NULL, 0);
7523 (void) zio_resume(spa);
7526 static __attribute__((noreturn)) void
7527 ztest_resume_thread(void *arg)
7529 spa_t *spa = arg;
7532 * Synthesize aged DDT entries for ddt prune testing
7534 ddt_prune_artificial_age = B_TRUE;
7535 if (ztest_opts.zo_verbose >= 3)
7536 ddt_dump_prune_histogram = B_TRUE;
7538 while (!ztest_exiting) {
7539 if (spa_suspended(spa))
7540 ztest_resume(spa);
7541 (void) poll(NULL, 0, 100);
7544 * Periodically change the zfs_compressed_arc_enabled setting.
7546 if (ztest_random(10) == 0)
7547 zfs_compressed_arc_enabled = ztest_random(2);
7550 * Periodically change the zfs_abd_scatter_enabled setting.
7552 if (ztest_random(10) == 0)
7553 zfs_abd_scatter_enabled = ztest_random(2);
7556 thread_exit();
7559 static __attribute__((noreturn)) void
7560 ztest_deadman_thread(void *arg)
7562 ztest_shared_t *zs = arg;
7563 spa_t *spa = ztest_spa;
7564 hrtime_t delay, overdue, last_run = gethrtime();
7566 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7567 MSEC2NSEC(zfs_deadman_synctime_ms);
7569 while (!ztest_exiting) {
7571 * Wait for the delay timer while checking occasionally
7572 * if we should stop.
7574 if (gethrtime() < last_run + delay) {
7575 (void) poll(NULL, 0, 1000);
7576 continue;
7580 * If the pool is suspended then fail immediately. Otherwise,
7581 * check to see if the pool is making any progress. If
7582 * vdev_deadman() discovers that there hasn't been any recent
7583 * I/Os then it will end up aborting the tests.
7585 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7586 fatal(B_FALSE,
7587 "aborting test after %llu seconds because "
7588 "pool has transitioned to a suspended state.",
7589 (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7591 vdev_deadman(spa->spa_root_vdev, FTAG);
7594 * If the process doesn't complete within a grace period of
7595 * zfs_deadman_synctime_ms over the expected finish time,
7596 * then it may be hung and is terminated.
7598 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7599 if (gethrtime() > overdue) {
7600 fatal(B_FALSE,
7601 "aborting test after %llu seconds because "
7602 "the process is overdue for termination.",
7603 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7606 (void) printf("ztest has been running for %lld seconds\n",
7607 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7609 last_run = gethrtime();
7610 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7613 thread_exit();
7616 static void
7617 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7619 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7620 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7621 hrtime_t functime = gethrtime();
7622 int i;
7624 for (i = 0; i < zi->zi_iters; i++)
7625 zi->zi_func(zd, id);
7627 functime = gethrtime() - functime;
7629 atomic_add_64(&zc->zc_count, 1);
7630 atomic_add_64(&zc->zc_time, functime);
7632 if (ztest_opts.zo_verbose >= 4)
7633 (void) printf("%6.2f sec in %s\n",
7634 (double)functime / NANOSEC, zi->zi_funcname);
7637 typedef struct ztest_raidz_expand_io {
7638 uint64_t rzx_id;
7639 uint64_t rzx_amount;
7640 uint64_t rzx_bufsize;
7641 const void *rzx_buffer;
7642 uint64_t rzx_alloc_max;
7643 spa_t *rzx_spa;
7644 } ztest_expand_io_t;
7646 #undef OD_ARRAY_SIZE
7647 #define OD_ARRAY_SIZE 10
7650 * Write a request amount of data to some dataset objects.
7651 * There will be ztest_opts.zo_threads count of these running in parallel.
7653 static __attribute__((noreturn)) void
7654 ztest_rzx_thread(void *arg)
7656 ztest_expand_io_t *info = (ztest_expand_io_t *)arg;
7657 ztest_od_t *od;
7658 int batchsize;
7659 int od_size;
7660 ztest_ds_t *zd = &ztest_ds[info->rzx_id % ztest_opts.zo_datasets];
7661 spa_t *spa = info->rzx_spa;
7663 od_size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
7664 od = umem_alloc(od_size, UMEM_NOFAIL);
7665 batchsize = OD_ARRAY_SIZE;
7667 /* Create objects to write to */
7668 for (int b = 0; b < batchsize; b++) {
7669 ztest_od_init(od + b, info->rzx_id, FTAG, b,
7670 DMU_OT_UINT64_OTHER, 0, 0, 0);
7672 if (ztest_object_init(zd, od, od_size, B_FALSE) != 0) {
7673 umem_free(od, od_size);
7674 thread_exit();
7677 for (uint64_t offset = 0, written = 0; written < info->rzx_amount;
7678 offset += info->rzx_bufsize) {
7679 /* write to 10 objects */
7680 for (int i = 0; i < batchsize && written < info->rzx_amount;
7681 i++) {
7682 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
7683 ztest_write(zd, od[i].od_object, offset,
7684 info->rzx_bufsize, info->rzx_buffer);
7685 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
7686 written += info->rzx_bufsize;
7688 txg_wait_synced(spa_get_dsl(spa), 0);
7689 /* due to inflation, we'll typically bail here */
7690 if (metaslab_class_get_alloc(spa_normal_class(spa)) >
7691 info->rzx_alloc_max) {
7692 break;
7696 /* Remove a few objects to leave some holes in allocation space */
7697 mutex_enter(&zd->zd_dirobj_lock);
7698 (void) ztest_remove(zd, od, 2);
7699 mutex_exit(&zd->zd_dirobj_lock);
7701 umem_free(od, od_size);
7703 thread_exit();
7706 static __attribute__((noreturn)) void
7707 ztest_thread(void *arg)
7709 int rand;
7710 uint64_t id = (uintptr_t)arg;
7711 ztest_shared_t *zs = ztest_shared;
7712 uint64_t call_next;
7713 hrtime_t now;
7714 ztest_info_t *zi;
7715 ztest_shared_callstate_t *zc;
7717 while ((now = gethrtime()) < zs->zs_thread_stop) {
7719 * See if it's time to force a crash.
7721 if (now > zs->zs_thread_kill &&
7722 raidz_expand_pause_point == RAIDZ_EXPAND_PAUSE_NONE) {
7723 ztest_kill(zs);
7727 * If we're getting ENOSPC with some regularity, stop.
7729 if (zs->zs_enospc_count > 10)
7730 break;
7733 * Pick a random function to execute.
7735 rand = ztest_random(ZTEST_FUNCS);
7736 zi = &ztest_info[rand];
7737 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7738 call_next = zc->zc_next;
7740 if (now >= call_next &&
7741 atomic_cas_64(&zc->zc_next, call_next, call_next +
7742 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7743 ztest_execute(rand, zi, id);
7747 thread_exit();
7750 static void
7751 ztest_dataset_name(char *dsname, const char *pool, int d)
7753 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7756 static void
7757 ztest_dataset_destroy(int d)
7759 char name[ZFS_MAX_DATASET_NAME_LEN];
7760 int t;
7762 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7764 if (ztest_opts.zo_verbose >= 3)
7765 (void) printf("Destroying %s to free up space\n", name);
7768 * Cleanup any non-standard clones and snapshots. In general,
7769 * ztest thread t operates on dataset (t % zopt_datasets),
7770 * so there may be more than one thing to clean up.
7772 for (t = d; t < ztest_opts.zo_threads;
7773 t += ztest_opts.zo_datasets)
7774 ztest_dsl_dataset_cleanup(name, t);
7776 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7777 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7780 static void
7781 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7783 uint64_t usedobjs, dirobjs, scratch;
7786 * ZTEST_DIROBJ is the object directory for the entire dataset.
7787 * Therefore, the number of objects in use should equal the
7788 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7789 * If not, we have an object leak.
7791 * Note that we can only check this in ztest_dataset_open(),
7792 * when the open-context and syncing-context values agree.
7793 * That's because zap_count() returns the open-context value,
7794 * while dmu_objset_space() returns the rootbp fill count.
7796 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7797 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7798 ASSERT3U(dirobjs + 1, ==, usedobjs);
7801 static int
7802 ztest_dataset_open(int d)
7804 ztest_ds_t *zd = &ztest_ds[d];
7805 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7806 objset_t *os;
7807 zilog_t *zilog;
7808 char name[ZFS_MAX_DATASET_NAME_LEN];
7809 int error;
7811 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7813 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7815 error = ztest_dataset_create(name);
7816 if (error == ENOSPC) {
7817 (void) pthread_rwlock_unlock(&ztest_name_lock);
7818 ztest_record_enospc(FTAG);
7819 return (error);
7821 ASSERT(error == 0 || error == EEXIST);
7823 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7824 B_TRUE, zd, &os));
7825 (void) pthread_rwlock_unlock(&ztest_name_lock);
7827 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7829 zilog = zd->zd_zilog;
7831 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7832 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7833 fatal(B_FALSE, "missing log records: "
7834 "claimed %"PRIu64" < committed %"PRIu64"",
7835 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7837 ztest_dataset_dirobj_verify(zd);
7839 zil_replay(os, zd, ztest_replay_vector);
7841 ztest_dataset_dirobj_verify(zd);
7843 if (ztest_opts.zo_verbose >= 6)
7844 (void) printf("%s replay %"PRIu64" blocks, "
7845 "%"PRIu64" records, seq %"PRIu64"\n",
7846 zd->zd_name,
7847 zilog->zl_parse_blk_count,
7848 zilog->zl_parse_lr_count,
7849 zilog->zl_replaying_seq);
7851 zilog = zil_open(os, ztest_get_data, NULL);
7853 if (zilog->zl_replaying_seq != 0 &&
7854 zilog->zl_replaying_seq < committed_seq)
7855 fatal(B_FALSE, "missing log records: "
7856 "replayed %"PRIu64" < committed %"PRIu64"",
7857 zilog->zl_replaying_seq, committed_seq);
7859 return (0);
7862 static void
7863 ztest_dataset_close(int d)
7865 ztest_ds_t *zd = &ztest_ds[d];
7867 zil_close(zd->zd_zilog);
7868 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7870 ztest_zd_fini(zd);
7873 static int
7874 ztest_replay_zil_cb(const char *name, void *arg)
7876 (void) arg;
7877 objset_t *os;
7878 ztest_ds_t *zdtmp;
7880 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7881 B_TRUE, FTAG, &os));
7883 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7885 ztest_zd_init(zdtmp, NULL, os);
7886 zil_replay(os, zdtmp, ztest_replay_vector);
7887 ztest_zd_fini(zdtmp);
7889 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7890 ztest_opts.zo_verbose >= 6) {
7891 zilog_t *zilog = dmu_objset_zil(os);
7893 (void) printf("%s replay %"PRIu64" blocks, "
7894 "%"PRIu64" records, seq %"PRIu64"\n",
7895 name,
7896 zilog->zl_parse_blk_count,
7897 zilog->zl_parse_lr_count,
7898 zilog->zl_replaying_seq);
7901 umem_free(zdtmp, sizeof (ztest_ds_t));
7903 dmu_objset_disown(os, B_TRUE, FTAG);
7904 return (0);
7907 static void
7908 ztest_freeze(void)
7910 ztest_ds_t *zd = &ztest_ds[0];
7911 spa_t *spa;
7912 int numloops = 0;
7914 /* freeze not supported during RAIDZ expansion */
7915 if (ztest_opts.zo_raid_do_expand)
7916 return;
7918 if (ztest_opts.zo_verbose >= 3)
7919 (void) printf("testing spa_freeze()...\n");
7921 raidz_scratch_verify();
7922 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7923 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7924 VERIFY0(ztest_dataset_open(0));
7925 ztest_spa = spa;
7928 * Force the first log block to be transactionally allocated.
7929 * We have to do this before we freeze the pool -- otherwise
7930 * the log chain won't be anchored.
7932 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7933 ztest_dmu_object_alloc_free(zd, 0);
7934 zil_commit(zd->zd_zilog, 0);
7937 txg_wait_synced(spa_get_dsl(spa), 0);
7940 * Freeze the pool. This stops spa_sync() from doing anything,
7941 * so that the only way to record changes from now on is the ZIL.
7943 spa_freeze(spa);
7946 * Because it is hard to predict how much space a write will actually
7947 * require beforehand, we leave ourselves some fudge space to write over
7948 * capacity.
7950 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7953 * Run tests that generate log records but don't alter the pool config
7954 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7955 * We do a txg_wait_synced() after each iteration to force the txg
7956 * to increase well beyond the last synced value in the uberblock.
7957 * The ZIL should be OK with that.
7959 * Run a random number of times less than zo_maxloops and ensure we do
7960 * not run out of space on the pool.
7962 while (ztest_random(10) != 0 &&
7963 numloops++ < ztest_opts.zo_maxloops &&
7964 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7965 ztest_od_t od;
7966 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7967 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7968 ztest_io(zd, od.od_object,
7969 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7970 txg_wait_synced(spa_get_dsl(spa), 0);
7974 * Commit all of the changes we just generated.
7976 zil_commit(zd->zd_zilog, 0);
7977 txg_wait_synced(spa_get_dsl(spa), 0);
7980 * Close our dataset and close the pool.
7982 ztest_dataset_close(0);
7983 spa_close(spa, FTAG);
7984 kernel_fini();
7987 * Open and close the pool and dataset to induce log replay.
7989 raidz_scratch_verify();
7990 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7991 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7992 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7993 VERIFY0(ztest_dataset_open(0));
7994 ztest_spa = spa;
7995 txg_wait_synced(spa_get_dsl(spa), 0);
7996 ztest_dataset_close(0);
7997 ztest_reguid(NULL, 0);
7999 spa_close(spa, FTAG);
8000 kernel_fini();
8003 static void
8004 ztest_import_impl(void)
8006 importargs_t args = { 0 };
8007 nvlist_t *cfg = NULL;
8008 int nsearch = 1;
8009 char *searchdirs[nsearch];
8010 int flags = ZFS_IMPORT_MISSING_LOG;
8012 searchdirs[0] = ztest_opts.zo_dir;
8013 args.paths = nsearch;
8014 args.path = searchdirs;
8015 args.can_be_active = B_FALSE;
8017 libpc_handle_t lpch = {
8018 .lpc_lib_handle = NULL,
8019 .lpc_ops = &libzpool_config_ops,
8020 .lpc_printerr = B_TRUE
8022 VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
8023 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
8024 fnvlist_free(cfg);
8028 * Import a storage pool with the given name.
8030 static void
8031 ztest_import(ztest_shared_t *zs)
8033 spa_t *spa;
8035 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8036 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8037 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8039 raidz_scratch_verify();
8040 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8042 ztest_import_impl();
8044 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8045 zs->zs_metaslab_sz =
8046 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8047 zs->zs_guid = spa_guid(spa);
8048 spa_close(spa, FTAG);
8050 kernel_fini();
8052 if (!ztest_opts.zo_mmp_test) {
8053 ztest_run_zdb(zs->zs_guid);
8054 ztest_freeze();
8055 ztest_run_zdb(zs->zs_guid);
8058 (void) pthread_rwlock_destroy(&ztest_name_lock);
8059 mutex_destroy(&ztest_vdev_lock);
8060 mutex_destroy(&ztest_checkpoint_lock);
8064 * After the expansion was killed, check that the pool is healthy
8066 static void
8067 ztest_raidz_expand_check(spa_t *spa)
8069 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==, RAIDZ_EXPAND_KILLED);
8071 * Set pool check done flag, main program will run a zdb check
8072 * of the pool when we exit.
8074 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_CHECKED;
8076 /* Wait for reflow to finish */
8077 if (ztest_opts.zo_verbose >= 1) {
8078 (void) printf("\nwaiting for reflow to finish ...\n");
8080 pool_raidz_expand_stat_t rzx_stats;
8081 pool_raidz_expand_stat_t *pres = &rzx_stats;
8082 do {
8083 txg_wait_synced(spa_get_dsl(spa), 0);
8084 (void) poll(NULL, 0, 500); /* wait 1/2 second */
8086 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8087 (void) spa_raidz_expand_get_stats(spa, pres);
8088 spa_config_exit(spa, SCL_CONFIG, FTAG);
8089 } while (pres->pres_state != DSS_FINISHED &&
8090 pres->pres_reflowed < pres->pres_to_reflow);
8092 if (ztest_opts.zo_verbose >= 1) {
8093 (void) printf("verifying an interrupted raidz "
8094 "expansion using a pool scrub ...\n");
8097 /* Will fail here if there is non-recoverable corruption detected */
8098 int error = ztest_scrub_impl(spa);
8099 if (error == EBUSY)
8100 error = 0;
8102 VERIFY0(error);
8104 if (ztest_opts.zo_verbose >= 1) {
8105 (void) printf("raidz expansion scrub check complete\n");
8110 * Start a raidz expansion test. We run some I/O on the pool for a while
8111 * to get some data in the pool. Then we grow the raidz and
8112 * kill the test at the requested offset into the reflow, verifying that
8113 * doing such does not lead to pool corruption.
8115 static void
8116 ztest_raidz_expand_run(ztest_shared_t *zs, spa_t *spa)
8118 nvlist_t *root;
8119 pool_raidz_expand_stat_t rzx_stats;
8120 pool_raidz_expand_stat_t *pres = &rzx_stats;
8121 kthread_t **run_threads;
8122 vdev_t *cvd, *rzvd = spa->spa_root_vdev->vdev_child[0];
8123 int total_disks = rzvd->vdev_children;
8124 int data_disks = total_disks - vdev_get_nparity(rzvd);
8125 uint64_t alloc_goal;
8126 uint64_t csize;
8127 int error, t;
8128 int threads = ztest_opts.zo_threads;
8129 ztest_expand_io_t *thread_args;
8131 ASSERT3U(ztest_opts.zo_raidz_expand_test, !=, RAIDZ_EXPAND_NONE);
8132 ASSERT3P(rzvd->vdev_ops, ==, &vdev_raidz_ops);
8133 ztest_opts.zo_raidz_expand_test = RAIDZ_EXPAND_STARTED;
8135 /* Setup a 1 MiB buffer of random data */
8136 uint64_t bufsize = 1024 * 1024;
8137 void *buffer = umem_alloc(bufsize, UMEM_NOFAIL);
8139 if (read(ztest_fd_rand, buffer, bufsize) != bufsize) {
8140 fatal(B_TRUE, "short read from /dev/urandom");
8143 * Put some data in the pool and then attach a vdev to initiate
8144 * reflow.
8146 run_threads = umem_zalloc(threads * sizeof (kthread_t *), UMEM_NOFAIL);
8147 thread_args = umem_zalloc(threads * sizeof (ztest_expand_io_t),
8148 UMEM_NOFAIL);
8149 /* Aim for roughly 25% of allocatable space up to 1GB */
8150 alloc_goal = (vdev_get_min_asize(rzvd) * data_disks) / total_disks;
8151 alloc_goal = MIN(alloc_goal >> 2, 1024*1024*1024);
8152 if (ztest_opts.zo_verbose >= 1) {
8153 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8154 ztest_opts.zo_pool, (u_longlong_t)alloc_goal);
8158 * Kick off all the I/O generators that run in parallel.
8160 for (t = 0; t < threads; t++) {
8161 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8162 umem_free(run_threads, threads * sizeof (kthread_t *));
8163 umem_free(buffer, bufsize);
8164 return;
8166 thread_args[t].rzx_id = t;
8167 thread_args[t].rzx_amount = alloc_goal / threads;
8168 thread_args[t].rzx_bufsize = bufsize;
8169 thread_args[t].rzx_buffer = buffer;
8170 thread_args[t].rzx_alloc_max = alloc_goal;
8171 thread_args[t].rzx_spa = spa;
8172 run_threads[t] = thread_create(NULL, 0, ztest_rzx_thread,
8173 &thread_args[t], 0, NULL, TS_RUN | TS_JOINABLE,
8174 defclsyspri);
8178 * Wait for all of the writers to complete.
8180 for (t = 0; t < threads; t++)
8181 VERIFY0(thread_join(run_threads[t]));
8184 * Close all datasets. This must be done after all the threads
8185 * are joined so we can be sure none of the datasets are in-use
8186 * by any of the threads.
8188 for (t = 0; t < ztest_opts.zo_threads; t++) {
8189 if (t < ztest_opts.zo_datasets)
8190 ztest_dataset_close(t);
8193 txg_wait_synced(spa_get_dsl(spa), 0);
8195 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8196 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8198 umem_free(buffer, bufsize);
8199 umem_free(run_threads, threads * sizeof (kthread_t *));
8200 umem_free(thread_args, threads * sizeof (ztest_expand_io_t));
8202 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8203 uint_t multiple = ztest_random(3) + 1;
8204 uint64_t reflow_max = (rzvd->vdev_stat.vs_alloc * multiple) / 4;
8205 raidz_expand_max_reflow_bytes = reflow_max;
8207 if (ztest_opts.zo_verbose >= 1) {
8208 (void) printf("running raidz expansion test, killing when "
8209 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8210 (u_longlong_t)reflow_max, multiple);
8213 /* XXX - do we want some I/O load during the reflow? */
8216 * Use a disk size that is larger than existing ones
8218 cvd = rzvd->vdev_child[0];
8219 csize = vdev_get_min_asize(cvd);
8220 csize += csize / 10;
8222 * Path to vdev to be attached
8224 char *newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8225 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
8226 ztest_opts.zo_dir, ztest_opts.zo_pool, rzvd->vdev_children);
8228 * Build the nvlist describing newpath.
8230 root = make_vdev_root(newpath, NULL, NULL, csize, ztest_get_ashift(),
8231 NULL, 0, 0, 1);
8233 * Expand the raidz vdev by attaching the new disk
8235 if (ztest_opts.zo_verbose >= 1) {
8236 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8237 (int)rzvd->vdev_children, (int)rzvd->vdev_children + 1,
8238 newpath);
8240 error = spa_vdev_attach(spa, rzvd->vdev_guid, root, B_FALSE, B_FALSE);
8241 nvlist_free(root);
8242 if (error != 0) {
8243 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8244 newpath, (long long)csize, error);
8248 * Wait for reflow to begin
8250 while (spa->spa_raidz_expand == NULL) {
8251 txg_wait_synced(spa_get_dsl(spa), 0);
8252 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8254 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8255 (void) spa_raidz_expand_get_stats(spa, pres);
8256 spa_config_exit(spa, SCL_CONFIG, FTAG);
8257 while (pres->pres_state != DSS_SCANNING) {
8258 txg_wait_synced(spa_get_dsl(spa), 0);
8259 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8260 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8261 (void) spa_raidz_expand_get_stats(spa, pres);
8262 spa_config_exit(spa, SCL_CONFIG, FTAG);
8265 ASSERT3U(pres->pres_state, ==, DSS_SCANNING);
8266 ASSERT3U(pres->pres_to_reflow, !=, 0);
8268 * Set so when we are killed we go to raidz checking rather than
8269 * restarting test.
8271 ztest_shared_opts->zo_raidz_expand_test = RAIDZ_EXPAND_KILLED;
8272 if (ztest_opts.zo_verbose >= 1) {
8273 (void) printf("raidz expansion reflow started, waiting for "
8274 "%llu bytes to be copied\n", (u_longlong_t)reflow_max);
8278 * Wait for reflow maximum to be reached and then kill the test
8280 while (pres->pres_reflowed < reflow_max) {
8281 txg_wait_synced(spa_get_dsl(spa), 0);
8282 (void) poll(NULL, 0, 100); /* wait 1/10 second */
8283 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8284 (void) spa_raidz_expand_get_stats(spa, pres);
8285 spa_config_exit(spa, SCL_CONFIG, FTAG);
8288 /* Reset the reflow pause before killing */
8289 raidz_expand_max_reflow_bytes = 0;
8291 if (ztest_opts.zo_verbose >= 1) {
8292 (void) printf("killing raidz expansion test after reflow "
8293 "reached %llu bytes\n", (u_longlong_t)pres->pres_reflowed);
8297 * Kill ourself to simulate a panic during a reflow. Our parent will
8298 * restart the test and the changed flag value will drive the test
8299 * through the scrub/check code to verify the pool is not corrupted.
8301 ztest_kill(zs);
8304 static void
8305 ztest_generic_run(ztest_shared_t *zs, spa_t *spa)
8307 kthread_t **run_threads;
8308 int t;
8310 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
8311 UMEM_NOFAIL);
8314 * Kick off all the tests that run in parallel.
8316 for (t = 0; t < ztest_opts.zo_threads; t++) {
8317 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
8318 umem_free(run_threads, ztest_opts.zo_threads *
8319 sizeof (kthread_t *));
8320 return;
8323 run_threads[t] = thread_create(NULL, 0, ztest_thread,
8324 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
8325 defclsyspri);
8329 * Wait for all of the tests to complete.
8331 for (t = 0; t < ztest_opts.zo_threads; t++)
8332 VERIFY0(thread_join(run_threads[t]));
8335 * Close all datasets. This must be done after all the threads
8336 * are joined so we can be sure none of the datasets are in-use
8337 * by any of the threads.
8339 for (t = 0; t < ztest_opts.zo_threads; t++) {
8340 if (t < ztest_opts.zo_datasets)
8341 ztest_dataset_close(t);
8344 txg_wait_synced(spa_get_dsl(spa), 0);
8346 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
8347 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
8349 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
8353 * Setup our test context and kick off threads to run tests on all datasets
8354 * in parallel.
8356 static void
8357 ztest_run(ztest_shared_t *zs)
8359 spa_t *spa;
8360 objset_t *os;
8361 kthread_t *resume_thread, *deadman_thread;
8362 uint64_t object;
8363 int error;
8364 int t, d;
8366 ztest_exiting = B_FALSE;
8369 * Initialize parent/child shared state.
8371 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8372 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8373 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8375 zs->zs_thread_start = gethrtime();
8376 zs->zs_thread_stop =
8377 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
8378 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
8379 zs->zs_thread_kill = zs->zs_thread_stop;
8380 if (ztest_random(100) < ztest_opts.zo_killrate) {
8381 zs->zs_thread_kill -=
8382 ztest_random(ztest_opts.zo_passtime * NANOSEC);
8385 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
8387 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
8388 offsetof(ztest_cb_data_t, zcd_node));
8391 * Open our pool. It may need to be imported first depending on
8392 * what tests were running when the previous pass was terminated.
8394 raidz_scratch_verify();
8395 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8396 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
8397 if (error) {
8398 VERIFY3S(error, ==, ENOENT);
8399 ztest_import_impl();
8400 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8401 zs->zs_metaslab_sz =
8402 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8405 metaslab_preload_limit = ztest_random(20) + 1;
8406 ztest_spa = spa;
8409 * XXX - BUGBUG raidz expansion do not run this for generic for now
8411 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8412 VERIFY0(vdev_raidz_impl_set("cycle"));
8414 dmu_objset_stats_t dds;
8415 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
8416 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
8417 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
8418 dmu_objset_fast_stat(os, &dds);
8419 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
8420 dmu_objset_disown(os, B_TRUE, FTAG);
8422 /* Give the dedicated raidz expansion test more grace time */
8423 if (ztest_opts.zo_raidz_expand_test != RAIDZ_EXPAND_NONE)
8424 zfs_deadman_synctime_ms *= 2;
8427 * Create a thread to periodically resume suspended I/O.
8429 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
8430 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8433 * Create a deadman thread and set to panic if we hang.
8435 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
8436 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
8438 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
8441 * Verify that we can safely inquire about any object,
8442 * whether it's allocated or not. To make it interesting,
8443 * we probe a 5-wide window around each power of two.
8444 * This hits all edge cases, including zero and the max.
8446 for (t = 0; t < 64; t++) {
8447 for (d = -5; d <= 5; d++) {
8448 error = dmu_object_info(spa->spa_meta_objset,
8449 (1ULL << t) + d, NULL);
8450 ASSERT(error == 0 || error == ENOENT ||
8451 error == EINVAL);
8456 * If we got any ENOSPC errors on the previous run, destroy something.
8458 if (zs->zs_enospc_count != 0) {
8459 /* Not expecting ENOSPC errors during raidz expansion tests */
8460 ASSERT3U(ztest_opts.zo_raidz_expand_test, ==,
8461 RAIDZ_EXPAND_NONE);
8463 int d = ztest_random(ztest_opts.zo_datasets);
8464 ztest_dataset_destroy(d);
8466 zs->zs_enospc_count = 0;
8469 * If we were in the middle of ztest_device_removal() and were killed
8470 * we need to ensure the removal and scrub complete before running
8471 * any tests that check ztest_device_removal_active. The removal will
8472 * be restarted automatically when the spa is opened, but we need to
8473 * initiate the scrub manually if it is not already in progress. Note
8474 * that we always run the scrub whenever an indirect vdev exists
8475 * because we have no way of knowing for sure if ztest_device_removal()
8476 * fully completed its scrub before the pool was reimported.
8478 * Does not apply for the RAIDZ expansion specific test runs
8480 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_NONE &&
8481 (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
8482 spa->spa_removing_phys.sr_prev_indirect_vdev != -1)) {
8483 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
8484 txg_wait_synced(spa_get_dsl(spa), 0);
8486 error = ztest_scrub_impl(spa);
8487 if (error == EBUSY)
8488 error = 0;
8489 ASSERT0(error);
8492 if (ztest_opts.zo_verbose >= 4)
8493 (void) printf("starting main threads...\n");
8496 * Replay all logs of all datasets in the pool. This is primarily for
8497 * temporary datasets which wouldn't otherwise get replayed, which
8498 * can trigger failures when attempting to offline a SLOG in
8499 * ztest_fault_inject().
8501 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
8502 NULL, DS_FIND_CHILDREN);
8504 if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_REQUESTED)
8505 ztest_raidz_expand_run(zs, spa);
8506 else if (ztest_opts.zo_raidz_expand_test == RAIDZ_EXPAND_KILLED)
8507 ztest_raidz_expand_check(spa);
8508 else
8509 ztest_generic_run(zs, spa);
8511 /* Kill the resume and deadman threads */
8512 ztest_exiting = B_TRUE;
8513 VERIFY0(thread_join(resume_thread));
8514 VERIFY0(thread_join(deadman_thread));
8515 ztest_resume(spa);
8518 * Right before closing the pool, kick off a bunch of async I/O;
8519 * spa_close() should wait for it to complete.
8521 for (object = 1; object < 50; object++) {
8522 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
8523 ZIO_PRIORITY_SYNC_READ);
8526 /* Verify that at least one commit cb was called in a timely fashion */
8527 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
8528 VERIFY0(zc_min_txg_delay);
8530 spa_close(spa, FTAG);
8533 * Verify that we can loop over all pools.
8535 mutex_enter(&spa_namespace_lock);
8536 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
8537 if (ztest_opts.zo_verbose > 3)
8538 (void) printf("spa_next: found %s\n", spa_name(spa));
8539 mutex_exit(&spa_namespace_lock);
8542 * Verify that we can export the pool and reimport it under a
8543 * different name.
8545 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
8546 char name[ZFS_MAX_DATASET_NAME_LEN];
8547 (void) snprintf(name, sizeof (name), "%s_import",
8548 ztest_opts.zo_pool);
8549 ztest_spa_import_export(ztest_opts.zo_pool, name);
8550 ztest_spa_import_export(name, ztest_opts.zo_pool);
8553 kernel_fini();
8555 list_destroy(&zcl.zcl_callbacks);
8556 mutex_destroy(&zcl.zcl_callbacks_lock);
8557 (void) pthread_rwlock_destroy(&ztest_name_lock);
8558 mutex_destroy(&ztest_vdev_lock);
8559 mutex_destroy(&ztest_checkpoint_lock);
8562 static void
8563 print_time(hrtime_t t, char *timebuf)
8565 hrtime_t s = t / NANOSEC;
8566 hrtime_t m = s / 60;
8567 hrtime_t h = m / 60;
8568 hrtime_t d = h / 24;
8570 s -= m * 60;
8571 m -= h * 60;
8572 h -= d * 24;
8574 timebuf[0] = '\0';
8576 if (d)
8577 (void) sprintf(timebuf,
8578 "%llud%02lluh%02llum%02llus", d, h, m, s);
8579 else if (h)
8580 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
8581 else if (m)
8582 (void) sprintf(timebuf, "%llum%02llus", m, s);
8583 else
8584 (void) sprintf(timebuf, "%llus", s);
8587 static nvlist_t *
8588 make_random_pool_props(void)
8590 nvlist_t *props;
8592 props = fnvlist_alloc();
8594 /* Twenty percent of the time enable ZPOOL_PROP_DEDUP_TABLE_QUOTA */
8595 if (ztest_random(5) == 0) {
8596 fnvlist_add_uint64(props,
8597 zpool_prop_to_name(ZPOOL_PROP_DEDUP_TABLE_QUOTA),
8598 2 * 1024 * 1024);
8601 /* Fifty percent of the time enable ZPOOL_PROP_AUTOREPLACE */
8602 if (ztest_random(2) == 0) {
8603 fnvlist_add_uint64(props,
8604 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
8607 return (props);
8611 * Create a storage pool with the given name and initial vdev size.
8612 * Then test spa_freeze() functionality.
8614 static void
8615 ztest_init(ztest_shared_t *zs)
8617 spa_t *spa;
8618 nvlist_t *nvroot, *props;
8619 int i;
8621 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
8622 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
8623 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
8625 raidz_scratch_verify();
8626 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
8629 * Create the storage pool.
8631 (void) spa_destroy(ztest_opts.zo_pool);
8632 ztest_shared->zs_vdev_next_leaf = 0;
8633 zs->zs_splits = 0;
8634 zs->zs_mirrors = ztest_opts.zo_mirrors;
8635 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
8636 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
8637 props = make_random_pool_props();
8640 * We don't expect the pool to suspend unless maxfaults == 0,
8641 * in which case ztest_fault_inject() temporarily takes away
8642 * the only valid replica.
8644 fnvlist_add_uint64(props,
8645 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
8646 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
8648 for (i = 0; i < SPA_FEATURES; i++) {
8649 char *buf;
8651 if (!spa_feature_table[i].fi_zfs_mod_supported)
8652 continue;
8655 * 75% chance of using the log space map feature. We want ztest
8656 * to exercise both the code paths that use the log space map
8657 * feature and the ones that don't.
8659 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
8660 continue;
8663 * split 50/50 between legacy and fast dedup
8665 if (i == SPA_FEATURE_FAST_DEDUP && ztest_random(2) != 0)
8666 continue;
8668 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
8669 spa_feature_table[i].fi_uname));
8670 fnvlist_add_uint64(props, buf, 0);
8671 free(buf);
8674 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
8675 fnvlist_free(nvroot);
8676 fnvlist_free(props);
8678 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
8679 zs->zs_metaslab_sz =
8680 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
8681 zs->zs_guid = spa_guid(spa);
8682 spa_close(spa, FTAG);
8684 kernel_fini();
8686 if (!ztest_opts.zo_mmp_test) {
8687 ztest_run_zdb(zs->zs_guid);
8688 ztest_freeze();
8689 ztest_run_zdb(zs->zs_guid);
8692 (void) pthread_rwlock_destroy(&ztest_name_lock);
8693 mutex_destroy(&ztest_vdev_lock);
8694 mutex_destroy(&ztest_checkpoint_lock);
8697 static void
8698 setup_data_fd(void)
8700 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
8702 ztest_fd_data = mkstemp(ztest_name_data);
8703 ASSERT3S(ztest_fd_data, >=, 0);
8704 (void) unlink(ztest_name_data);
8707 static int
8708 shared_data_size(ztest_shared_hdr_t *hdr)
8710 int size;
8712 size = hdr->zh_hdr_size;
8713 size += hdr->zh_opts_size;
8714 size += hdr->zh_size;
8715 size += hdr->zh_stats_size * hdr->zh_stats_count;
8716 size += hdr->zh_ds_size * hdr->zh_ds_count;
8717 size += hdr->zh_scratch_state_size;
8719 return (size);
8722 static void
8723 setup_hdr(void)
8725 int size;
8726 ztest_shared_hdr_t *hdr;
8728 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8729 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8730 ASSERT3P(hdr, !=, MAP_FAILED);
8732 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
8734 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
8735 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
8736 hdr->zh_size = sizeof (ztest_shared_t);
8737 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
8738 hdr->zh_stats_count = ZTEST_FUNCS;
8739 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
8740 hdr->zh_ds_count = ztest_opts.zo_datasets;
8741 hdr->zh_scratch_state_size = sizeof (ztest_shared_scratch_state_t);
8743 size = shared_data_size(hdr);
8744 VERIFY0(ftruncate(ztest_fd_data, size));
8746 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8749 static void
8750 setup_data(void)
8752 int size, offset;
8753 ztest_shared_hdr_t *hdr;
8754 uint8_t *buf;
8756 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
8757 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
8758 ASSERT3P(hdr, !=, MAP_FAILED);
8760 size = shared_data_size(hdr);
8762 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
8763 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
8764 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
8765 ASSERT3P(hdr, !=, MAP_FAILED);
8766 buf = (uint8_t *)hdr;
8768 offset = hdr->zh_hdr_size;
8769 ztest_shared_opts = (void *)&buf[offset];
8770 offset += hdr->zh_opts_size;
8771 ztest_shared = (void *)&buf[offset];
8772 offset += hdr->zh_size;
8773 ztest_shared_callstate = (void *)&buf[offset];
8774 offset += hdr->zh_stats_size * hdr->zh_stats_count;
8775 ztest_shared_ds = (void *)&buf[offset];
8776 offset += hdr->zh_ds_size * hdr->zh_ds_count;
8777 ztest_scratch_state = (void *)&buf[offset];
8780 static boolean_t
8781 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
8783 pid_t pid;
8784 int status;
8785 char *cmdbuf = NULL;
8787 pid = fork();
8789 if (cmd == NULL) {
8790 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
8791 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
8792 cmd = cmdbuf;
8795 if (pid == -1)
8796 fatal(B_TRUE, "fork failed");
8798 if (pid == 0) { /* child */
8799 char fd_data_str[12];
8801 VERIFY3S(11, >=,
8802 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
8803 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
8805 if (libpath != NULL) {
8806 const char *curlp = getenv("LD_LIBRARY_PATH");
8807 if (curlp == NULL)
8808 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8809 else {
8810 char *newlp = NULL;
8811 VERIFY3S(-1, !=,
8812 asprintf(&newlp, "%s:%s", libpath, curlp));
8813 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8814 free(newlp);
8817 (void) execl(cmd, cmd, (char *)NULL);
8818 ztest_dump_core = B_FALSE;
8819 fatal(B_TRUE, "exec failed: %s", cmd);
8822 if (cmdbuf != NULL) {
8823 umem_free(cmdbuf, MAXPATHLEN);
8824 cmd = NULL;
8827 while (waitpid(pid, &status, 0) != pid)
8828 continue;
8829 if (statusp != NULL)
8830 *statusp = status;
8832 if (WIFEXITED(status)) {
8833 if (WEXITSTATUS(status) != 0) {
8834 (void) fprintf(stderr, "child exited with code %d\n",
8835 WEXITSTATUS(status));
8836 exit(2);
8838 return (B_FALSE);
8839 } else if (WIFSIGNALED(status)) {
8840 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8841 (void) fprintf(stderr, "child died with signal %d\n",
8842 WTERMSIG(status));
8843 exit(3);
8845 return (B_TRUE);
8846 } else {
8847 (void) fprintf(stderr, "something strange happened to child\n");
8848 exit(4);
8852 static void
8853 ztest_run_init(void)
8855 int i;
8857 ztest_shared_t *zs = ztest_shared;
8860 * Blow away any existing copy of zpool.cache
8862 (void) remove(spa_config_path);
8864 if (ztest_opts.zo_init == 0) {
8865 if (ztest_opts.zo_verbose >= 1)
8866 (void) printf("Importing pool %s\n",
8867 ztest_opts.zo_pool);
8868 ztest_import(zs);
8869 return;
8873 * Create and initialize our storage pool.
8875 for (i = 1; i <= ztest_opts.zo_init; i++) {
8876 memset(zs, 0, sizeof (*zs));
8877 if (ztest_opts.zo_verbose >= 3 &&
8878 ztest_opts.zo_init != 1) {
8879 (void) printf("ztest_init(), pass %d\n", i);
8881 ztest_init(zs);
8886 main(int argc, char **argv)
8888 int kills = 0;
8889 int iters = 0;
8890 int older = 0;
8891 int newer = 0;
8892 ztest_shared_t *zs;
8893 ztest_info_t *zi;
8894 ztest_shared_callstate_t *zc;
8895 char timebuf[100];
8896 char numbuf[NN_NUMBUF_SZ];
8897 char *cmd;
8898 boolean_t hasalt;
8899 int f, err;
8900 char *fd_data_str = getenv("ZTEST_FD_DATA");
8901 struct sigaction action;
8903 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8905 dprintf_setup(&argc, argv);
8906 zfs_deadman_synctime_ms = 300000;
8907 zfs_deadman_checktime_ms = 30000;
8909 * As two-word space map entries may not come up often (especially
8910 * if pool and vdev sizes are small) we want to force at least some
8911 * of them so the feature get tested.
8913 zfs_force_some_double_word_sm_entries = B_TRUE;
8916 * Verify that even extensively damaged split blocks with many
8917 * segments can be reconstructed in a reasonable amount of time
8918 * when reconstruction is known to be possible.
8920 * Note: the lower this value is, the more damage we inflict, and
8921 * the more time ztest spends in recovering that damage. We chose
8922 * to induce damage 1/100th of the time so recovery is tested but
8923 * not so frequently that ztest doesn't get to test other code paths.
8925 zfs_reconstruct_indirect_damage_fraction = 100;
8927 action.sa_handler = sig_handler;
8928 sigemptyset(&action.sa_mask);
8929 action.sa_flags = 0;
8931 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8932 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8933 strerror(errno));
8934 exit(EXIT_FAILURE);
8937 if (sigaction(SIGABRT, &action, NULL) < 0) {
8938 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8939 strerror(errno));
8940 exit(EXIT_FAILURE);
8944 * Force random_get_bytes() to use /dev/urandom in order to prevent
8945 * ztest from needlessly depleting the system entropy pool.
8947 random_path = "/dev/urandom";
8948 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8949 ASSERT3S(ztest_fd_rand, >=, 0);
8951 if (!fd_data_str) {
8952 process_options(argc, argv);
8954 setup_data_fd();
8955 setup_hdr();
8956 setup_data();
8957 memcpy(ztest_shared_opts, &ztest_opts,
8958 sizeof (*ztest_shared_opts));
8959 } else {
8960 ztest_fd_data = atoi(fd_data_str);
8961 setup_data();
8962 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8964 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8966 err = ztest_set_global_vars();
8967 if (err != 0 && !fd_data_str) {
8968 /* error message done by ztest_set_global_vars */
8969 exit(EXIT_FAILURE);
8970 } else {
8971 /* children should not be spawned if setting gvars fails */
8972 VERIFY3S(err, ==, 0);
8975 /* Override location of zpool.cache */
8976 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8977 ztest_opts.zo_dir), !=, -1);
8979 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8980 UMEM_NOFAIL);
8981 zs = ztest_shared;
8983 if (fd_data_str) {
8984 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8985 metaslab_df_alloc_threshold =
8986 zs->zs_metaslab_df_alloc_threshold;
8988 if (zs->zs_do_init)
8989 ztest_run_init();
8990 else
8991 ztest_run(zs);
8992 exit(0);
8995 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8997 if (ztest_opts.zo_verbose >= 1) {
8998 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads, "
8999 "%d %s disks, parity %d, %"PRIu64" seconds...\n\n",
9000 ztest_opts.zo_vdevs,
9001 ztest_opts.zo_datasets,
9002 ztest_opts.zo_threads,
9003 ztest_opts.zo_raid_children,
9004 ztest_opts.zo_raid_type,
9005 ztest_opts.zo_raid_parity,
9006 ztest_opts.zo_time);
9009 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
9010 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
9012 zs->zs_do_init = B_TRUE;
9013 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
9014 if (ztest_opts.zo_verbose >= 1) {
9015 (void) printf("Executing older ztest for "
9016 "initialization: %s\n", ztest_opts.zo_alt_ztest);
9018 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
9019 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
9020 } else {
9021 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
9023 zs->zs_do_init = B_FALSE;
9025 zs->zs_proc_start = gethrtime();
9026 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
9028 for (f = 0; f < ZTEST_FUNCS; f++) {
9029 zi = &ztest_info[f];
9030 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9031 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
9032 zc->zc_next = UINT64_MAX;
9033 else
9034 zc->zc_next = zs->zs_proc_start +
9035 ztest_random(2 * zi->zi_interval[0] + 1);
9039 * Run the tests in a loop. These tests include fault injection
9040 * to verify that self-healing data works, and forced crashes
9041 * to verify that we never lose on-disk consistency.
9043 while (gethrtime() < zs->zs_proc_stop) {
9044 int status;
9045 boolean_t killed;
9048 * Initialize the workload counters for each function.
9050 for (f = 0; f < ZTEST_FUNCS; f++) {
9051 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9052 zc->zc_count = 0;
9053 zc->zc_time = 0;
9056 /* Set the allocation switch size */
9057 zs->zs_metaslab_df_alloc_threshold =
9058 ztest_random(zs->zs_metaslab_sz / 4) + 1;
9060 if (!hasalt || ztest_random(2) == 0) {
9061 if (hasalt && ztest_opts.zo_verbose >= 1) {
9062 (void) printf("Executing newer ztest: %s\n",
9063 cmd);
9065 newer++;
9066 killed = exec_child(cmd, NULL, B_TRUE, &status);
9067 } else {
9068 if (hasalt && ztest_opts.zo_verbose >= 1) {
9069 (void) printf("Executing older ztest: %s\n",
9070 ztest_opts.zo_alt_ztest);
9072 older++;
9073 killed = exec_child(ztest_opts.zo_alt_ztest,
9074 ztest_opts.zo_alt_libpath, B_TRUE, &status);
9077 if (killed)
9078 kills++;
9079 iters++;
9081 if (ztest_opts.zo_verbose >= 1) {
9082 hrtime_t now = gethrtime();
9084 now = MIN(now, zs->zs_proc_stop);
9085 print_time(zs->zs_proc_stop - now, timebuf);
9086 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
9088 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
9089 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
9090 iters,
9091 WIFEXITED(status) ? "Complete" : "SIGKILL",
9092 zs->zs_enospc_count,
9093 100.0 * zs->zs_alloc / zs->zs_space,
9094 numbuf,
9095 100.0 * (now - zs->zs_proc_start) /
9096 (ztest_opts.zo_time * NANOSEC), timebuf);
9099 if (ztest_opts.zo_verbose >= 2) {
9100 (void) printf("\nWorkload summary:\n\n");
9101 (void) printf("%7s %9s %s\n",
9102 "Calls", "Time", "Function");
9103 (void) printf("%7s %9s %s\n",
9104 "-----", "----", "--------");
9105 for (f = 0; f < ZTEST_FUNCS; f++) {
9106 zi = &ztest_info[f];
9107 zc = ZTEST_GET_SHARED_CALLSTATE(f);
9108 print_time(zc->zc_time, timebuf);
9109 (void) printf("%7"PRIu64" %9s %s\n",
9110 zc->zc_count, timebuf,
9111 zi->zi_funcname);
9113 (void) printf("\n");
9116 if (!ztest_opts.zo_mmp_test)
9117 ztest_run_zdb(zs->zs_guid);
9118 if (ztest_shared_opts->zo_raidz_expand_test ==
9119 RAIDZ_EXPAND_CHECKED)
9120 break; /* raidz expand test complete */
9123 if (ztest_opts.zo_verbose >= 1) {
9124 if (hasalt) {
9125 (void) printf("%d runs of older ztest: %s\n", older,
9126 ztest_opts.zo_alt_ztest);
9127 (void) printf("%d runs of newer ztest: %s\n", newer,
9128 cmd);
9130 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9131 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
9134 umem_free(cmd, MAXNAMELEN);
9136 return (0);