2 * Implement fast Fletcher4 with NEON instructions. (aarch64)
4 * Use the 128-bit NEON SIMD instructions and registers to compute
5 * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
7 * This implementation is a derivative of the AVX SIMD implementation by
8 * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
10 * Copyright (C) 2016 Romain Dolbeau.
13 * Romain Dolbeau <romain.dolbeau@atos.net>
15 * This software is available to you under a choice of one of two
16 * licenses. You may choose to be licensed under the terms of the GNU
17 * General Public License (GPL) Version 2, available from the file
18 * COPYING in the main directory of this source tree, or the
19 * OpenIB.org BSD license below:
21 * Redistribution and use in source and binary forms, with or
22 * without modification, are permitted provided that the following
25 * - Redistributions of source code must retain the above
26 * copyright notice, this list of conditions and the following
29 * - Redistributions in binary form must reproduce the above
30 * copyright notice, this list of conditions and the following
31 * disclaimer in the documentation and/or other materials
32 * provided with the distribution.
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
44 #if defined(__aarch64__)
47 #include <sys/spa_checksum.h>
48 #include <sys/string.h>
49 #include <zfs_fletcher.h>
52 fletcher_4_aarch64_neon_init(fletcher_4_ctx_t
*ctx
)
54 memset(ctx
->aarch64_neon
, 0, 4 * sizeof (zfs_fletcher_aarch64_neon_t
));
58 fletcher_4_aarch64_neon_fini(fletcher_4_ctx_t
*ctx
, zio_cksum_t
*zcp
)
61 A
= ctx
->aarch64_neon
[0].v
[0] + ctx
->aarch64_neon
[0].v
[1];
62 B
= 2 * ctx
->aarch64_neon
[1].v
[0] + 2 * ctx
->aarch64_neon
[1].v
[1] -
63 ctx
->aarch64_neon
[0].v
[1];
64 C
= 4 * ctx
->aarch64_neon
[2].v
[0] - ctx
->aarch64_neon
[1].v
[0] +
65 4 * ctx
->aarch64_neon
[2].v
[1] - 3 * ctx
->aarch64_neon
[1].v
[1];
66 D
= 8 * ctx
->aarch64_neon
[3].v
[0] - 4 * ctx
->aarch64_neon
[2].v
[0] +
67 8 * ctx
->aarch64_neon
[3].v
[1] - 8 * ctx
->aarch64_neon
[2].v
[1] +
68 ctx
->aarch64_neon
[1].v
[1];
69 ZIO_SET_CHECKSUM(zcp
, A
, B
, C
, D
);
72 #define NEON_INIT_LOOP() \
73 asm("eor %[ZERO].16b,%[ZERO].16b,%[ZERO].16b\n" \
74 "ld1 { %[ACC0].4s }, %[CTX0]\n" \
75 "ld1 { %[ACC1].4s }, %[CTX1]\n" \
76 "ld1 { %[ACC2].4s }, %[CTX2]\n" \
77 "ld1 { %[ACC3].4s }, %[CTX3]\n" \
78 : [ZERO] "=w" (ZERO), \
79 [ACC0] "=w" (ACC0), [ACC1] "=w" (ACC1), \
80 [ACC2] "=w" (ACC2), [ACC3] "=w" (ACC3) \
81 : [CTX0] "Q" (ctx->aarch64_neon[0]), \
82 [CTX1] "Q" (ctx->aarch64_neon[1]), \
83 [CTX2] "Q" (ctx->aarch64_neon[2]), \
84 [CTX3] "Q" (ctx->aarch64_neon[3]))
86 #define NEON_DO_REVERSE "rev32 %[SRC].16b, %[SRC].16b\n"
88 #define NEON_DONT_REVERSE ""
90 #define NEON_MAIN_LOOP(REVERSE) \
91 asm("ld1 { %[SRC].4s }, %[IP]\n" \
93 "zip1 %[TMP1].4s, %[SRC].4s, %[ZERO].4s\n" \
94 "zip2 %[TMP2].4s, %[SRC].4s, %[ZERO].4s\n" \
95 "add %[ACC0].2d, %[ACC0].2d, %[TMP1].2d\n" \
96 "add %[ACC1].2d, %[ACC1].2d, %[ACC0].2d\n" \
97 "add %[ACC2].2d, %[ACC2].2d, %[ACC1].2d\n" \
98 "add %[ACC3].2d, %[ACC3].2d, %[ACC2].2d\n" \
99 "add %[ACC0].2d, %[ACC0].2d, %[TMP2].2d\n" \
100 "add %[ACC1].2d, %[ACC1].2d, %[ACC0].2d\n" \
101 "add %[ACC2].2d, %[ACC2].2d, %[ACC1].2d\n" \
102 "add %[ACC3].2d, %[ACC3].2d, %[ACC2].2d\n" \
103 : [SRC] "=&w" (SRC), \
104 [TMP1] "=&w" (TMP1), [TMP2] "=&w" (TMP2), \
105 [ACC0] "+w" (ACC0), [ACC1] "+w" (ACC1), \
106 [ACC2] "+w" (ACC2), [ACC3] "+w" (ACC3) \
107 : [ZERO] "w" (ZERO), [IP] "Q" (*ip))
109 #define NEON_FINI_LOOP() \
110 asm("st1 { %[ACC0].4s },%[DST0]\n" \
111 "st1 { %[ACC1].4s },%[DST1]\n" \
112 "st1 { %[ACC2].4s },%[DST2]\n" \
113 "st1 { %[ACC3].4s },%[DST3]\n" \
114 : [DST0] "=Q" (ctx->aarch64_neon[0]), \
115 [DST1] "=Q" (ctx->aarch64_neon[1]), \
116 [DST2] "=Q" (ctx->aarch64_neon[2]), \
117 [DST3] "=Q" (ctx->aarch64_neon[3]) \
118 : [ACC0] "w" (ACC0), [ACC1] "w" (ACC1), \
119 [ACC2] "w" (ACC2), [ACC3] "w" (ACC3))
122 fletcher_4_aarch64_neon_native(fletcher_4_ctx_t
*ctx
,
123 const void *buf
, uint64_t size
)
125 const uint64_t *ip
= buf
;
126 const uint64_t *ipend
= (uint64_t *)((uint8_t *)ip
+ size
);
128 register unsigned char ZERO
asm("v0") __attribute__((vector_size(16)));
129 register unsigned char ACC0
asm("v1") __attribute__((vector_size(16)));
130 register unsigned char ACC1
asm("v2") __attribute__((vector_size(16)));
131 register unsigned char ACC2
asm("v3") __attribute__((vector_size(16)));
132 register unsigned char ACC3
asm("v4") __attribute__((vector_size(16)));
133 register unsigned char TMP1
asm("v5") __attribute__((vector_size(16)));
134 register unsigned char TMP2
asm("v6") __attribute__((vector_size(16)));
135 register unsigned char SRC
asm("v7") __attribute__((vector_size(16)));
137 unsigned char ZERO
__attribute__((vector_size(16)));
138 unsigned char ACC0
__attribute__((vector_size(16)));
139 unsigned char ACC1
__attribute__((vector_size(16)));
140 unsigned char ACC2
__attribute__((vector_size(16)));
141 unsigned char ACC3
__attribute__((vector_size(16)));
142 unsigned char TMP1
__attribute__((vector_size(16)));
143 unsigned char TMP2
__attribute__((vector_size(16)));
144 unsigned char SRC
__attribute__((vector_size(16)));
150 NEON_MAIN_LOOP(NEON_DONT_REVERSE
);
151 } while ((ip
+= 2) < ipend
);
157 fletcher_4_aarch64_neon_byteswap(fletcher_4_ctx_t
*ctx
,
158 const void *buf
, uint64_t size
)
160 const uint64_t *ip
= buf
;
161 const uint64_t *ipend
= (uint64_t *)((uint8_t *)ip
+ size
);
163 register unsigned char ZERO
asm("v0") __attribute__((vector_size(16)));
164 register unsigned char ACC0
asm("v1") __attribute__((vector_size(16)));
165 register unsigned char ACC1
asm("v2") __attribute__((vector_size(16)));
166 register unsigned char ACC2
asm("v3") __attribute__((vector_size(16)));
167 register unsigned char ACC3
asm("v4") __attribute__((vector_size(16)));
168 register unsigned char TMP1
asm("v5") __attribute__((vector_size(16)));
169 register unsigned char TMP2
asm("v6") __attribute__((vector_size(16)));
170 register unsigned char SRC
asm("v7") __attribute__((vector_size(16)));
172 unsigned char ZERO
__attribute__((vector_size(16)));
173 unsigned char ACC0
__attribute__((vector_size(16)));
174 unsigned char ACC1
__attribute__((vector_size(16)));
175 unsigned char ACC2
__attribute__((vector_size(16)));
176 unsigned char ACC3
__attribute__((vector_size(16)));
177 unsigned char TMP1
__attribute__((vector_size(16)));
178 unsigned char TMP2
__attribute__((vector_size(16)));
179 unsigned char SRC
__attribute__((vector_size(16)));
185 NEON_MAIN_LOOP(NEON_DO_REVERSE
);
186 } while ((ip
+= 2) < ipend
);
191 static boolean_t
fletcher_4_aarch64_neon_valid(void)
193 return (kfpu_allowed());
196 const fletcher_4_ops_t fletcher_4_aarch64_neon_ops
= {
197 .init_native
= fletcher_4_aarch64_neon_init
,
198 .compute_native
= fletcher_4_aarch64_neon_native
,
199 .fini_native
= fletcher_4_aarch64_neon_fini
,
200 .init_byteswap
= fletcher_4_aarch64_neon_init
,
201 .compute_byteswap
= fletcher_4_aarch64_neon_byteswap
,
202 .fini_byteswap
= fletcher_4_aarch64_neon_fini
,
203 .valid
= fletcher_4_aarch64_neon_valid
,
205 .name
= "aarch64_neon"
208 #endif /* defined(__aarch64__) */