BRT should return EOPNOTSUPP
[zfs.git] / module / zfs / vdev_initialize.c
blobffdcef1972c3b2f12d5cb3237defee7885600e68
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
37 * Value that is written to disk during initialization.
39 static uint64_t zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
41 /* maximum number of I/Os outstanding per leaf vdev */
42 static const int zfs_initialize_limit = 1;
44 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
45 static uint64_t zfs_initialize_chunk_size = 1024 * 1024;
47 static boolean_t
48 vdev_initialize_should_stop(vdev_t *vd)
50 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
51 vd->vdev_detached || vd->vdev_top->vdev_removing);
54 static void
55 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
58 * We pass in the guid instead of the vdev_t since the vdev may
59 * have been freed prior to the sync task being processed. This
60 * happens when a vdev is detached as we call spa_config_vdev_exit(),
61 * stop the initializing thread, schedule the sync task, and free
62 * the vdev. Later when the scheduled sync task is invoked, it would
63 * find that the vdev has been freed.
65 uint64_t guid = *(uint64_t *)arg;
66 uint64_t txg = dmu_tx_get_txg(tx);
67 kmem_free(arg, sizeof (uint64_t));
69 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
70 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
71 return;
73 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
74 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
76 VERIFY(vd->vdev_leaf_zap != 0);
78 objset_t *mos = vd->vdev_spa->spa_meta_objset;
80 if (last_offset > 0) {
81 vd->vdev_initialize_last_offset = last_offset;
82 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
83 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
84 sizeof (last_offset), 1, &last_offset, tx));
86 if (vd->vdev_initialize_action_time > 0) {
87 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
88 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
89 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
90 1, &val, tx));
93 uint64_t initialize_state = vd->vdev_initialize_state;
94 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
95 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
96 &initialize_state, tx));
99 static void
100 vdev_initialize_zap_remove_sync(void *arg, dmu_tx_t *tx)
102 uint64_t guid = *(uint64_t *)arg;
104 kmem_free(arg, sizeof (uint64_t));
106 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
107 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
108 return;
110 ASSERT3S(vd->vdev_initialize_state, ==, VDEV_INITIALIZE_NONE);
111 ASSERT3U(vd->vdev_leaf_zap, !=, 0);
113 vd->vdev_initialize_last_offset = 0;
114 vd->vdev_initialize_action_time = 0;
116 objset_t *mos = vd->vdev_spa->spa_meta_objset;
117 int error;
119 error = zap_remove(mos, vd->vdev_leaf_zap,
120 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET, tx);
121 VERIFY(error == 0 || error == ENOENT);
123 error = zap_remove(mos, vd->vdev_leaf_zap,
124 VDEV_LEAF_ZAP_INITIALIZE_STATE, tx);
125 VERIFY(error == 0 || error == ENOENT);
127 error = zap_remove(mos, vd->vdev_leaf_zap,
128 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, tx);
129 VERIFY(error == 0 || error == ENOENT);
132 static void
133 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
135 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
136 spa_t *spa = vd->vdev_spa;
138 if (new_state == vd->vdev_initialize_state)
139 return;
142 * Copy the vd's guid, this will be freed by the sync task.
144 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
145 *guid = vd->vdev_guid;
148 * If we're suspending, then preserving the original start time.
150 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
151 vd->vdev_initialize_action_time = gethrestime_sec();
154 vdev_initializing_state_t old_state = vd->vdev_initialize_state;
155 vd->vdev_initialize_state = new_state;
157 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
158 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
160 if (new_state != VDEV_INITIALIZE_NONE) {
161 dsl_sync_task_nowait(spa_get_dsl(spa),
162 vdev_initialize_zap_update_sync, guid, tx);
163 } else {
164 dsl_sync_task_nowait(spa_get_dsl(spa),
165 vdev_initialize_zap_remove_sync, guid, tx);
168 switch (new_state) {
169 case VDEV_INITIALIZE_ACTIVE:
170 spa_history_log_internal(spa, "initialize", tx,
171 "vdev=%s activated", vd->vdev_path);
172 break;
173 case VDEV_INITIALIZE_SUSPENDED:
174 spa_history_log_internal(spa, "initialize", tx,
175 "vdev=%s suspended", vd->vdev_path);
176 break;
177 case VDEV_INITIALIZE_CANCELED:
178 if (old_state == VDEV_INITIALIZE_ACTIVE ||
179 old_state == VDEV_INITIALIZE_SUSPENDED)
180 spa_history_log_internal(spa, "initialize", tx,
181 "vdev=%s canceled", vd->vdev_path);
182 break;
183 case VDEV_INITIALIZE_COMPLETE:
184 spa_history_log_internal(spa, "initialize", tx,
185 "vdev=%s complete", vd->vdev_path);
186 break;
187 case VDEV_INITIALIZE_NONE:
188 spa_history_log_internal(spa, "uninitialize", tx,
189 "vdev=%s", vd->vdev_path);
190 break;
191 default:
192 panic("invalid state %llu", (unsigned long long)new_state);
195 dmu_tx_commit(tx);
197 if (new_state != VDEV_INITIALIZE_ACTIVE)
198 spa_notify_waiters(spa);
201 static void
202 vdev_initialize_cb(zio_t *zio)
204 vdev_t *vd = zio->io_vd;
205 mutex_enter(&vd->vdev_initialize_io_lock);
206 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
208 * The I/O failed because the vdev was unavailable; roll the
209 * last offset back. (This works because spa_sync waits on
210 * spa_txg_zio before it runs sync tasks.)
212 uint64_t *off =
213 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
214 *off = MIN(*off, zio->io_offset);
215 } else {
217 * Since initializing is best-effort, we ignore I/O errors and
218 * rely on vdev_probe to determine if the errors are more
219 * critical.
221 if (zio->io_error != 0)
222 vd->vdev_stat.vs_initialize_errors++;
224 vd->vdev_initialize_bytes_done += zio->io_orig_size;
226 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
227 vd->vdev_initialize_inflight--;
228 cv_broadcast(&vd->vdev_initialize_io_cv);
229 mutex_exit(&vd->vdev_initialize_io_lock);
231 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
234 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
235 static int
236 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
238 spa_t *spa = vd->vdev_spa;
240 /* Limit inflight initializing I/Os */
241 mutex_enter(&vd->vdev_initialize_io_lock);
242 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
243 cv_wait(&vd->vdev_initialize_io_cv,
244 &vd->vdev_initialize_io_lock);
246 vd->vdev_initialize_inflight++;
247 mutex_exit(&vd->vdev_initialize_io_lock);
249 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
250 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
251 uint64_t txg = dmu_tx_get_txg(tx);
253 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
254 mutex_enter(&vd->vdev_initialize_lock);
256 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
257 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
258 *guid = vd->vdev_guid;
260 /* This is the first write of this txg. */
261 dsl_sync_task_nowait(spa_get_dsl(spa),
262 vdev_initialize_zap_update_sync, guid, tx);
266 * We know the vdev struct will still be around since all
267 * consumers of vdev_free must stop the initialization first.
269 if (vdev_initialize_should_stop(vd)) {
270 mutex_enter(&vd->vdev_initialize_io_lock);
271 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
272 vd->vdev_initialize_inflight--;
273 mutex_exit(&vd->vdev_initialize_io_lock);
274 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
275 mutex_exit(&vd->vdev_initialize_lock);
276 dmu_tx_commit(tx);
277 return (SET_ERROR(EINTR));
279 mutex_exit(&vd->vdev_initialize_lock);
281 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
282 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
283 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
284 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
285 /* vdev_initialize_cb releases SCL_STATE_ALL */
287 dmu_tx_commit(tx);
289 return (0);
293 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
294 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
295 * allocation will guarantee these for us.
297 static int
298 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
300 (void) unused;
302 ASSERT0(len % sizeof (uint64_t));
303 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
304 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
306 return (0);
309 static abd_t *
310 vdev_initialize_block_alloc(void)
312 /* Allocate ABD for filler data */
313 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
315 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
316 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
317 vdev_initialize_block_fill, NULL);
319 return (data);
322 static void
323 vdev_initialize_block_free(abd_t *data)
325 abd_free(data);
328 static int
329 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
331 range_tree_t *rt = vd->vdev_initialize_tree;
332 zfs_btree_t *bt = &rt->rt_root;
333 zfs_btree_index_t where;
335 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
336 rs = zfs_btree_next(bt, &where, &where)) {
337 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
339 /* Split range into legally-sized physical chunks */
340 uint64_t writes_required =
341 ((size - 1) / zfs_initialize_chunk_size) + 1;
343 for (uint64_t w = 0; w < writes_required; w++) {
344 int error;
346 error = vdev_initialize_write(vd,
347 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
348 (w * zfs_initialize_chunk_size),
349 MIN(size - (w * zfs_initialize_chunk_size),
350 zfs_initialize_chunk_size), data);
351 if (error != 0)
352 return (error);
355 return (0);
358 static void
359 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
361 uint64_t *last_rs_end = (uint64_t *)arg;
363 if (physical_rs->rs_end > *last_rs_end)
364 *last_rs_end = physical_rs->rs_end;
367 static void
368 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
370 vdev_t *vd = (vdev_t *)arg;
372 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
373 vd->vdev_initialize_bytes_est += size;
375 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
376 vd->vdev_initialize_bytes_done += size;
377 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
378 vd->vdev_initialize_last_offset < physical_rs->rs_end) {
379 vd->vdev_initialize_bytes_done +=
380 vd->vdev_initialize_last_offset - physical_rs->rs_start;
384 static void
385 vdev_initialize_calculate_progress(vdev_t *vd)
387 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
388 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
389 ASSERT(vd->vdev_leaf_zap != 0);
391 vd->vdev_initialize_bytes_est = 0;
392 vd->vdev_initialize_bytes_done = 0;
394 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
395 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
396 mutex_enter(&msp->ms_lock);
398 uint64_t ms_free = (msp->ms_size -
399 metaslab_allocated_space(msp)) /
400 vdev_get_ndisks(vd->vdev_top);
403 * Convert the metaslab range to a physical range
404 * on our vdev. We use this to determine if we are
405 * in the middle of this metaslab range.
407 range_seg64_t logical_rs, physical_rs, remain_rs;
408 logical_rs.rs_start = msp->ms_start;
409 logical_rs.rs_end = msp->ms_start + msp->ms_size;
411 /* Metaslab space after this offset has not been initialized */
412 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
413 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
414 vd->vdev_initialize_bytes_est += ms_free;
415 mutex_exit(&msp->ms_lock);
416 continue;
419 /* Metaslab space before this offset has been initialized */
420 uint64_t last_rs_end = physical_rs.rs_end;
421 if (!vdev_xlate_is_empty(&remain_rs)) {
422 vdev_xlate_walk(vd, &remain_rs,
423 vdev_initialize_xlate_last_rs_end, &last_rs_end);
426 if (vd->vdev_initialize_last_offset > last_rs_end) {
427 vd->vdev_initialize_bytes_done += ms_free;
428 vd->vdev_initialize_bytes_est += ms_free;
429 mutex_exit(&msp->ms_lock);
430 continue;
434 * If we get here, we're in the middle of initializing this
435 * metaslab. Load it and walk the free tree for more accurate
436 * progress estimation.
438 VERIFY0(metaslab_load(msp));
440 zfs_btree_index_t where;
441 range_tree_t *rt = msp->ms_allocatable;
442 for (range_seg_t *rs =
443 zfs_btree_first(&rt->rt_root, &where); rs;
444 rs = zfs_btree_next(&rt->rt_root, &where,
445 &where)) {
446 logical_rs.rs_start = rs_get_start(rs, rt);
447 logical_rs.rs_end = rs_get_end(rs, rt);
449 vdev_xlate_walk(vd, &logical_rs,
450 vdev_initialize_xlate_progress, vd);
452 mutex_exit(&msp->ms_lock);
456 static int
457 vdev_initialize_load(vdev_t *vd)
459 int err = 0;
460 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
461 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
462 ASSERT(vd->vdev_leaf_zap != 0);
464 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
465 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
466 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
467 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
468 sizeof (vd->vdev_initialize_last_offset), 1,
469 &vd->vdev_initialize_last_offset);
470 if (err == ENOENT) {
471 vd->vdev_initialize_last_offset = 0;
472 err = 0;
476 vdev_initialize_calculate_progress(vd);
477 return (err);
480 static void
481 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
483 vdev_t *vd = arg;
485 /* Only add segments that we have not visited yet */
486 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
487 return;
489 /* Pick up where we left off mid-range. */
490 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
491 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
492 "(%llu, %llu)", vd->vdev_path,
493 (u_longlong_t)physical_rs->rs_start,
494 (u_longlong_t)physical_rs->rs_end,
495 (u_longlong_t)vd->vdev_initialize_last_offset,
496 (u_longlong_t)physical_rs->rs_end);
497 ASSERT3U(physical_rs->rs_end, >,
498 vd->vdev_initialize_last_offset);
499 physical_rs->rs_start = vd->vdev_initialize_last_offset;
502 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
504 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
505 physical_rs->rs_end - physical_rs->rs_start);
509 * Convert the logical range into a physical range and add it to our
510 * avl tree.
512 static void
513 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
515 vdev_t *vd = arg;
516 range_seg64_t logical_rs;
517 logical_rs.rs_start = start;
518 logical_rs.rs_end = start + size;
520 ASSERT(vd->vdev_ops->vdev_op_leaf);
521 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
524 static __attribute__((noreturn)) void
525 vdev_initialize_thread(void *arg)
527 vdev_t *vd = arg;
528 spa_t *spa = vd->vdev_spa;
529 int error = 0;
530 uint64_t ms_count = 0;
532 ASSERT(vdev_is_concrete(vd));
533 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
535 vd->vdev_initialize_last_offset = 0;
536 VERIFY0(vdev_initialize_load(vd));
538 abd_t *deadbeef = vdev_initialize_block_alloc();
540 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
541 0, 0);
543 for (uint64_t i = 0; !vd->vdev_detached &&
544 i < vd->vdev_top->vdev_ms_count; i++) {
545 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
546 boolean_t unload_when_done = B_FALSE;
549 * If we've expanded the top-level vdev or it's our
550 * first pass, calculate our progress.
552 if (vd->vdev_top->vdev_ms_count != ms_count) {
553 vdev_initialize_calculate_progress(vd);
554 ms_count = vd->vdev_top->vdev_ms_count;
557 spa_config_exit(spa, SCL_CONFIG, FTAG);
558 metaslab_disable(msp);
559 mutex_enter(&msp->ms_lock);
560 if (!msp->ms_loaded && !msp->ms_loading)
561 unload_when_done = B_TRUE;
562 VERIFY0(metaslab_load(msp));
564 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
565 vd);
566 mutex_exit(&msp->ms_lock);
568 error = vdev_initialize_ranges(vd, deadbeef);
569 metaslab_enable(msp, B_TRUE, unload_when_done);
570 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
572 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
573 if (error != 0)
574 break;
577 spa_config_exit(spa, SCL_CONFIG, FTAG);
578 mutex_enter(&vd->vdev_initialize_io_lock);
579 while (vd->vdev_initialize_inflight > 0) {
580 cv_wait(&vd->vdev_initialize_io_cv,
581 &vd->vdev_initialize_io_lock);
583 mutex_exit(&vd->vdev_initialize_io_lock);
585 range_tree_destroy(vd->vdev_initialize_tree);
586 vdev_initialize_block_free(deadbeef);
587 vd->vdev_initialize_tree = NULL;
589 mutex_enter(&vd->vdev_initialize_lock);
590 if (!vd->vdev_initialize_exit_wanted) {
591 if (vdev_writeable(vd)) {
592 vdev_initialize_change_state(vd,
593 VDEV_INITIALIZE_COMPLETE);
594 } else if (vd->vdev_faulted) {
595 vdev_initialize_change_state(vd,
596 VDEV_INITIALIZE_CANCELED);
599 ASSERT(vd->vdev_initialize_thread != NULL ||
600 vd->vdev_initialize_inflight == 0);
603 * Drop the vdev_initialize_lock while we sync out the
604 * txg since it's possible that a device might be trying to
605 * come online and must check to see if it needs to restart an
606 * initialization. That thread will be holding the spa_config_lock
607 * which would prevent the txg_wait_synced from completing.
609 mutex_exit(&vd->vdev_initialize_lock);
610 txg_wait_synced(spa_get_dsl(spa), 0);
611 mutex_enter(&vd->vdev_initialize_lock);
613 vd->vdev_initialize_thread = NULL;
614 cv_broadcast(&vd->vdev_initialize_cv);
615 mutex_exit(&vd->vdev_initialize_lock);
617 thread_exit();
621 * Initiates a device. Caller must hold vdev_initialize_lock.
622 * Device must be a leaf and not already be initializing.
624 void
625 vdev_initialize(vdev_t *vd)
627 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
628 ASSERT(vd->vdev_ops->vdev_op_leaf);
629 ASSERT(vdev_is_concrete(vd));
630 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
631 ASSERT(!vd->vdev_detached);
632 ASSERT(!vd->vdev_initialize_exit_wanted);
633 ASSERT(!vd->vdev_top->vdev_removing);
635 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
636 vd->vdev_initialize_thread = thread_create(NULL, 0,
637 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
641 * Uninitializes a device. Caller must hold vdev_initialize_lock.
642 * Device must be a leaf and not already be initializing.
644 void
645 vdev_uninitialize(vdev_t *vd)
647 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
648 ASSERT(vd->vdev_ops->vdev_op_leaf);
649 ASSERT(vdev_is_concrete(vd));
650 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
651 ASSERT(!vd->vdev_detached);
652 ASSERT(!vd->vdev_initialize_exit_wanted);
653 ASSERT(!vd->vdev_top->vdev_removing);
655 vdev_initialize_change_state(vd, VDEV_INITIALIZE_NONE);
659 * Wait for the initialize thread to be terminated (cancelled or stopped).
661 static void
662 vdev_initialize_stop_wait_impl(vdev_t *vd)
664 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
666 while (vd->vdev_initialize_thread != NULL)
667 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
669 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
670 vd->vdev_initialize_exit_wanted = B_FALSE;
674 * Wait for vdev initialize threads which were either to cleanly exit.
676 void
677 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
679 (void) spa;
680 vdev_t *vd;
682 ASSERT(MUTEX_HELD(&spa_namespace_lock));
684 while ((vd = list_remove_head(vd_list)) != NULL) {
685 mutex_enter(&vd->vdev_initialize_lock);
686 vdev_initialize_stop_wait_impl(vd);
687 mutex_exit(&vd->vdev_initialize_lock);
692 * Stop initializing a device, with the resultant initializing state being
693 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
694 * a list_t is provided the stopping vdev is inserted in to the list. Callers
695 * are then required to call vdev_initialize_stop_wait() to block for all the
696 * initialization threads to exit. The caller must hold vdev_initialize_lock
697 * and must not be writing to the spa config, as the initializing thread may
698 * try to enter the config as a reader before exiting.
700 void
701 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
702 list_t *vd_list)
704 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
705 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
706 ASSERT(vd->vdev_ops->vdev_op_leaf);
707 ASSERT(vdev_is_concrete(vd));
710 * Allow cancel requests to proceed even if the initialize thread
711 * has stopped.
713 if (vd->vdev_initialize_thread == NULL &&
714 tgt_state != VDEV_INITIALIZE_CANCELED) {
715 return;
718 vdev_initialize_change_state(vd, tgt_state);
719 vd->vdev_initialize_exit_wanted = B_TRUE;
721 if (vd_list == NULL) {
722 vdev_initialize_stop_wait_impl(vd);
723 } else {
724 ASSERT(MUTEX_HELD(&spa_namespace_lock));
725 list_insert_tail(vd_list, vd);
729 static void
730 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
731 list_t *vd_list)
733 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
734 mutex_enter(&vd->vdev_initialize_lock);
735 vdev_initialize_stop(vd, tgt_state, vd_list);
736 mutex_exit(&vd->vdev_initialize_lock);
737 return;
740 for (uint64_t i = 0; i < vd->vdev_children; i++) {
741 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
742 vd_list);
747 * Convenience function to stop initializing of a vdev tree and set all
748 * initialize thread pointers to NULL.
750 void
751 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
753 spa_t *spa = vd->vdev_spa;
754 list_t vd_list;
756 ASSERT(MUTEX_HELD(&spa_namespace_lock));
758 list_create(&vd_list, sizeof (vdev_t),
759 offsetof(vdev_t, vdev_initialize_node));
761 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
762 vdev_initialize_stop_wait(spa, &vd_list);
764 if (vd->vdev_spa->spa_sync_on) {
765 /* Make sure that our state has been synced to disk */
766 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
769 list_destroy(&vd_list);
772 void
773 vdev_initialize_restart(vdev_t *vd)
775 ASSERT(MUTEX_HELD(&spa_namespace_lock));
776 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
778 if (vd->vdev_leaf_zap != 0) {
779 mutex_enter(&vd->vdev_initialize_lock);
780 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
781 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
782 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
783 sizeof (initialize_state), 1, &initialize_state);
784 ASSERT(err == 0 || err == ENOENT);
785 vd->vdev_initialize_state = initialize_state;
787 uint64_t timestamp = 0;
788 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
789 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
790 sizeof (timestamp), 1, &timestamp);
791 ASSERT(err == 0 || err == ENOENT);
792 vd->vdev_initialize_action_time = timestamp;
794 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
795 vd->vdev_offline) {
796 /* load progress for reporting, but don't resume */
797 VERIFY0(vdev_initialize_load(vd));
798 } else if (vd->vdev_initialize_state ==
799 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
800 !vd->vdev_top->vdev_removing &&
801 vd->vdev_initialize_thread == NULL) {
802 vdev_initialize(vd);
805 mutex_exit(&vd->vdev_initialize_lock);
808 for (uint64_t i = 0; i < vd->vdev_children; i++) {
809 vdev_initialize_restart(vd->vdev_child[i]);
813 EXPORT_SYMBOL(vdev_initialize);
814 EXPORT_SYMBOL(vdev_uninitialize);
815 EXPORT_SYMBOL(vdev_initialize_stop);
816 EXPORT_SYMBOL(vdev_initialize_stop_all);
817 EXPORT_SYMBOL(vdev_initialize_stop_wait);
818 EXPORT_SYMBOL(vdev_initialize_restart);
820 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, U64, ZMOD_RW,
821 "Value written during zpool initialize");
823 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, U64, ZMOD_RW,
824 "Size in bytes of writes by zpool initialize");