4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
31 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/uberblock_impl.h>
39 #include <sys/bpobj.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_dir.h>
44 #include <sys/zfeature.h>
45 #include <sys/vdev_indirect_births.h>
46 #include <sys/vdev_indirect_mapping.h>
48 #include <sys/vdev_initialize.h>
49 #include <sys/vdev_trim.h>
50 #include <sys/trace_zfs.h>
53 * This file contains the necessary logic to remove vdevs from a
54 * storage pool. Currently, the only devices that can be removed
55 * are log, cache, and spare devices; and top level vdevs from a pool
56 * w/o raidz or mirrors. (Note that members of a mirror can be removed
57 * by the detach operation.)
59 * Log vdevs are removed by evacuating them and then turning the vdev
60 * into a hole vdev while holding spa config locks.
62 * Top level vdevs are removed and converted into an indirect vdev via
63 * a multi-step process:
65 * - Disable allocations from this device (spa_vdev_remove_top).
67 * - From a new thread (spa_vdev_remove_thread), copy data from
68 * the removing vdev to a different vdev. The copy happens in open
69 * context (spa_vdev_copy_impl) and issues a sync task
70 * (vdev_mapping_sync) so the sync thread can update the partial
71 * indirect mappings in core and on disk.
73 * - If a free happens during a removal, it is freed from the
74 * removing vdev, and if it has already been copied, from the new
75 * location as well (free_from_removing_vdev).
77 * - After the removal is completed, the copy thread converts the vdev
78 * into an indirect vdev (vdev_remove_complete) before instructing
79 * the sync thread to destroy the space maps and finish the removal
80 * (spa_finish_removal).
83 typedef struct vdev_copy_arg
{
85 uint64_t vca_outstanding_bytes
;
86 uint64_t vca_read_error_bytes
;
87 uint64_t vca_write_error_bytes
;
93 * The maximum amount of memory we can use for outstanding i/o while
94 * doing a device removal. This determines how much i/o we can have
95 * in flight concurrently.
97 static const uint_t zfs_remove_max_copy_bytes
= 64 * 1024 * 1024;
100 * The largest contiguous segment that we will attempt to allocate when
101 * removing a device. This can be no larger than SPA_MAXBLOCKSIZE. If
102 * there is a performance problem with attempting to allocate large blocks,
103 * consider decreasing this.
105 * See also the accessor function spa_remove_max_segment().
107 uint_t zfs_remove_max_segment
= SPA_MAXBLOCKSIZE
;
110 * Ignore hard IO errors during device removal. When set if a device
111 * encounters hard IO error during the removal process the removal will
112 * not be cancelled. This can result in a normally recoverable block
113 * becoming permanently damaged and is not recommended.
115 static int zfs_removal_ignore_errors
= 0;
118 * Allow a remap segment to span free chunks of at most this size. The main
119 * impact of a larger span is that we will read and write larger, more
120 * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
121 * for iops. The value here was chosen to align with
122 * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
123 * reads (but there's no reason it has to be the same).
125 * Additionally, a higher span will have the following relatively minor
127 * - the mapping will be smaller, since one entry can cover more allocated
129 * - more of the fragmentation in the removing device will be preserved
130 * - we'll do larger allocations, which may fail and fall back on smaller
133 uint_t vdev_removal_max_span
= 32 * 1024;
136 * This is used by the test suite so that it can ensure that certain
137 * actions happen while in the middle of a removal.
139 int zfs_removal_suspend_progress
= 0;
141 #define VDEV_REMOVAL_ZAP_OBJS "lzap"
143 static __attribute__((noreturn
)) void spa_vdev_remove_thread(void *arg
);
144 static int spa_vdev_remove_cancel_impl(spa_t
*spa
);
147 spa_sync_removing_state(spa_t
*spa
, dmu_tx_t
*tx
)
149 VERIFY0(zap_update(spa
->spa_dsl_pool
->dp_meta_objset
,
150 DMU_POOL_DIRECTORY_OBJECT
,
151 DMU_POOL_REMOVING
, sizeof (uint64_t),
152 sizeof (spa
->spa_removing_phys
) / sizeof (uint64_t),
153 &spa
->spa_removing_phys
, tx
));
157 spa_nvlist_lookup_by_guid(nvlist_t
**nvpp
, int count
, uint64_t target_guid
)
159 for (int i
= 0; i
< count
; i
++) {
161 fnvlist_lookup_uint64(nvpp
[i
], ZPOOL_CONFIG_GUID
);
163 if (guid
== target_guid
)
171 vdev_activate(vdev_t
*vd
)
173 metaslab_group_t
*mg
= vd
->vdev_mg
;
174 spa_t
*spa
= vd
->vdev_spa
;
175 uint64_t vdev_space
= spa_deflate(spa
) ?
176 vd
->vdev_stat
.vs_dspace
: vd
->vdev_stat
.vs_space
;
178 ASSERT(!vd
->vdev_islog
);
179 ASSERT(vd
->vdev_noalloc
);
181 metaslab_group_activate(mg
);
182 metaslab_group_activate(vd
->vdev_log_mg
);
184 ASSERT3U(spa
->spa_nonallocating_dspace
, >=, vdev_space
);
186 spa
->spa_nonallocating_dspace
-= vdev_space
;
188 vd
->vdev_noalloc
= B_FALSE
;
192 vdev_passivate(vdev_t
*vd
, uint64_t *txg
)
194 spa_t
*spa
= vd
->vdev_spa
;
197 ASSERT(!vd
->vdev_noalloc
);
199 vdev_t
*rvd
= spa
->spa_root_vdev
;
200 metaslab_group_t
*mg
= vd
->vdev_mg
;
201 metaslab_class_t
*normal
= spa_normal_class(spa
);
202 if (mg
->mg_class
== normal
) {
204 * We must check that this is not the only allocating device in
205 * the pool before passivating, otherwise we will not be able
206 * to make progress because we can't allocate from any vdevs.
208 boolean_t last
= B_TRUE
;
209 for (uint64_t id
= 0; id
< rvd
->vdev_children
; id
++) {
210 vdev_t
*cvd
= rvd
->vdev_child
[id
];
213 cvd
->vdev_ops
== &vdev_indirect_ops
)
216 metaslab_class_t
*mc
= cvd
->vdev_mg
->mg_class
;
220 if (!cvd
->vdev_noalloc
) {
226 return (SET_ERROR(EINVAL
));
229 metaslab_group_passivate(mg
);
230 ASSERT(!vd
->vdev_islog
);
231 metaslab_group_passivate(vd
->vdev_log_mg
);
234 * Wait for the youngest allocations and frees to sync,
235 * and then wait for the deferral of those frees to finish.
237 spa_vdev_config_exit(spa
, NULL
,
238 *txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
241 * We must ensure that no "stubby" log blocks are allocated
242 * on the device to be removed. These blocks could be
243 * written at any time, including while we are in the middle
246 error
= spa_reset_logs(spa
);
248 *txg
= spa_vdev_config_enter(spa
);
251 metaslab_group_activate(mg
);
252 ASSERT(!vd
->vdev_islog
);
253 if (vd
->vdev_log_mg
!= NULL
)
254 metaslab_group_activate(vd
->vdev_log_mg
);
258 spa
->spa_nonallocating_dspace
+= spa_deflate(spa
) ?
259 vd
->vdev_stat
.vs_dspace
: vd
->vdev_stat
.vs_space
;
260 vd
->vdev_noalloc
= B_TRUE
;
266 * Turn off allocations for a top-level device from the pool.
268 * Turning off allocations for a top-level device can take a significant
269 * amount of time. As a result we use the spa_vdev_config_[enter/exit]
270 * functions which allow us to grab and release the spa_config_lock while
271 * still holding the namespace lock. During each step the configuration
275 spa_vdev_noalloc(spa_t
*spa
, uint64_t guid
)
281 ASSERT(!MUTEX_HELD(&spa_namespace_lock
));
282 ASSERT(spa_writeable(spa
));
284 txg
= spa_vdev_enter(spa
);
286 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
288 vd
= spa_lookup_by_guid(spa
, guid
, B_FALSE
);
291 error
= SET_ERROR(ENOENT
);
292 else if (vd
->vdev_mg
== NULL
)
293 error
= SET_ERROR(ZFS_ERR_VDEV_NOTSUP
);
294 else if (!vd
->vdev_noalloc
)
295 error
= vdev_passivate(vd
, &txg
);
298 vdev_dirty_leaves(vd
, VDD_DTL
, txg
);
299 vdev_config_dirty(vd
);
302 error
= spa_vdev_exit(spa
, NULL
, txg
, error
);
308 spa_vdev_alloc(spa_t
*spa
, uint64_t guid
)
314 ASSERT(!MUTEX_HELD(&spa_namespace_lock
));
315 ASSERT(spa_writeable(spa
));
317 txg
= spa_vdev_enter(spa
);
319 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
321 vd
= spa_lookup_by_guid(spa
, guid
, B_FALSE
);
324 error
= SET_ERROR(ENOENT
);
325 else if (vd
->vdev_mg
== NULL
)
326 error
= SET_ERROR(ZFS_ERR_VDEV_NOTSUP
);
327 else if (!vd
->vdev_removing
)
331 vdev_dirty_leaves(vd
, VDD_DTL
, txg
);
332 vdev_config_dirty(vd
);
335 (void) spa_vdev_exit(spa
, NULL
, txg
, error
);
341 spa_vdev_remove_aux(nvlist_t
*config
, const char *name
, nvlist_t
**dev
,
342 int count
, nvlist_t
*dev_to_remove
)
344 nvlist_t
**newdev
= NULL
;
347 newdev
= kmem_alloc((count
- 1) * sizeof (void *), KM_SLEEP
);
349 for (int i
= 0, j
= 0; i
< count
; i
++) {
350 if (dev
[i
] == dev_to_remove
)
352 VERIFY(nvlist_dup(dev
[i
], &newdev
[j
++], KM_SLEEP
) == 0);
355 VERIFY(nvlist_remove(config
, name
, DATA_TYPE_NVLIST_ARRAY
) == 0);
356 fnvlist_add_nvlist_array(config
, name
, (const nvlist_t
* const *)newdev
,
359 for (int i
= 0; i
< count
- 1; i
++)
360 nvlist_free(newdev
[i
]);
363 kmem_free(newdev
, (count
- 1) * sizeof (void *));
366 static spa_vdev_removal_t
*
367 spa_vdev_removal_create(vdev_t
*vd
)
369 spa_vdev_removal_t
*svr
= kmem_zalloc(sizeof (*svr
), KM_SLEEP
);
370 mutex_init(&svr
->svr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
371 cv_init(&svr
->svr_cv
, NULL
, CV_DEFAULT
, NULL
);
372 svr
->svr_allocd_segs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
373 svr
->svr_vdev_id
= vd
->vdev_id
;
375 for (int i
= 0; i
< TXG_SIZE
; i
++) {
376 svr
->svr_frees
[i
] = range_tree_create(NULL
, RANGE_SEG64
, NULL
,
378 list_create(&svr
->svr_new_segments
[i
],
379 sizeof (vdev_indirect_mapping_entry_t
),
380 offsetof(vdev_indirect_mapping_entry_t
, vime_node
));
387 spa_vdev_removal_destroy(spa_vdev_removal_t
*svr
)
389 for (int i
= 0; i
< TXG_SIZE
; i
++) {
390 ASSERT0(svr
->svr_bytes_done
[i
]);
391 ASSERT0(svr
->svr_max_offset_to_sync
[i
]);
392 range_tree_destroy(svr
->svr_frees
[i
]);
393 list_destroy(&svr
->svr_new_segments
[i
]);
396 range_tree_destroy(svr
->svr_allocd_segs
);
397 mutex_destroy(&svr
->svr_lock
);
398 cv_destroy(&svr
->svr_cv
);
399 kmem_free(svr
, sizeof (*svr
));
403 * This is called as a synctask in the txg in which we will mark this vdev
404 * as removing (in the config stored in the MOS).
406 * It begins the evacuation of a toplevel vdev by:
407 * - initializing the spa_removing_phys which tracks this removal
408 * - computing the amount of space to remove for accounting purposes
409 * - dirtying all dbufs in the spa_config_object
410 * - creating the spa_vdev_removal
411 * - starting the spa_vdev_remove_thread
414 vdev_remove_initiate_sync(void *arg
, dmu_tx_t
*tx
)
416 int vdev_id
= (uintptr_t)arg
;
417 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
418 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
419 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
420 objset_t
*mos
= spa
->spa_dsl_pool
->dp_meta_objset
;
421 spa_vdev_removal_t
*svr
= NULL
;
422 uint64_t txg __maybe_unused
= dmu_tx_get_txg(tx
);
424 ASSERT0(vdev_get_nparity(vd
));
425 svr
= spa_vdev_removal_create(vd
);
427 ASSERT(vd
->vdev_removing
);
428 ASSERT3P(vd
->vdev_indirect_mapping
, ==, NULL
);
430 spa_feature_incr(spa
, SPA_FEATURE_DEVICE_REMOVAL
, tx
);
431 if (spa_feature_is_enabled(spa
, SPA_FEATURE_OBSOLETE_COUNTS
)) {
433 * By activating the OBSOLETE_COUNTS feature, we prevent
434 * the pool from being downgraded and ensure that the
435 * refcounts are precise.
437 spa_feature_incr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
439 VERIFY0(zap_add(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
440 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE
, sizeof (one
), 1,
442 boolean_t are_precise __maybe_unused
;
443 ASSERT0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
444 ASSERT3B(are_precise
, ==, B_TRUE
);
447 vic
->vic_mapping_object
= vdev_indirect_mapping_alloc(mos
, tx
);
448 vd
->vdev_indirect_mapping
=
449 vdev_indirect_mapping_open(mos
, vic
->vic_mapping_object
);
450 vic
->vic_births_object
= vdev_indirect_births_alloc(mos
, tx
);
451 vd
->vdev_indirect_births
=
452 vdev_indirect_births_open(mos
, vic
->vic_births_object
);
453 spa
->spa_removing_phys
.sr_removing_vdev
= vd
->vdev_id
;
454 spa
->spa_removing_phys
.sr_start_time
= gethrestime_sec();
455 spa
->spa_removing_phys
.sr_end_time
= 0;
456 spa
->spa_removing_phys
.sr_state
= DSS_SCANNING
;
457 spa
->spa_removing_phys
.sr_to_copy
= 0;
458 spa
->spa_removing_phys
.sr_copied
= 0;
461 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
462 * there may be space in the defer tree, which is free, but still
463 * counted in vs_alloc.
465 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
466 metaslab_t
*ms
= vd
->vdev_ms
[i
];
467 if (ms
->ms_sm
== NULL
)
470 spa
->spa_removing_phys
.sr_to_copy
+=
471 metaslab_allocated_space(ms
);
474 * Space which we are freeing this txg does not need to
477 spa
->spa_removing_phys
.sr_to_copy
-=
478 range_tree_space(ms
->ms_freeing
);
480 ASSERT0(range_tree_space(ms
->ms_freed
));
481 for (int t
= 0; t
< TXG_SIZE
; t
++)
482 ASSERT0(range_tree_space(ms
->ms_allocating
[t
]));
486 * Sync tasks are called before metaslab_sync(), so there should
487 * be no already-synced metaslabs in the TXG_CLEAN list.
489 ASSERT3P(txg_list_head(&vd
->vdev_ms_list
, TXG_CLEAN(txg
)), ==, NULL
);
491 spa_sync_removing_state(spa
, tx
);
494 * All blocks that we need to read the most recent mapping must be
495 * stored on concrete vdevs. Therefore, we must dirty anything that
496 * is read before spa_remove_init(). Specifically, the
497 * spa_config_object. (Note that although we already modified the
498 * spa_config_object in spa_sync_removing_state, that may not have
499 * modified all blocks of the object.)
501 dmu_object_info_t doi
;
502 VERIFY0(dmu_object_info(mos
, DMU_POOL_DIRECTORY_OBJECT
, &doi
));
503 for (uint64_t offset
= 0; offset
< doi
.doi_max_offset
; ) {
505 VERIFY0(dmu_buf_hold(mos
, DMU_POOL_DIRECTORY_OBJECT
,
506 offset
, FTAG
, &dbuf
, 0));
507 dmu_buf_will_dirty(dbuf
, tx
);
508 offset
+= dbuf
->db_size
;
509 dmu_buf_rele(dbuf
, FTAG
);
513 * Now that we've allocated the im_object, dirty the vdev to ensure
514 * that the object gets written to the config on disk.
516 vdev_config_dirty(vd
);
518 zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
519 "im_obj=%llu", (u_longlong_t
)vd
->vdev_id
, vd
,
520 (u_longlong_t
)dmu_tx_get_txg(tx
),
521 (u_longlong_t
)vic
->vic_mapping_object
);
523 spa_history_log_internal(spa
, "vdev remove started", tx
,
524 "%s vdev %llu %s", spa_name(spa
), (u_longlong_t
)vd
->vdev_id
,
525 (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
527 * Setting spa_vdev_removal causes subsequent frees to call
528 * free_from_removing_vdev(). Note that we don't need any locking
529 * because we are the sync thread, and metaslab_free_impl() is only
530 * called from syncing context (potentially from a zio taskq thread,
531 * but in any case only when there are outstanding free i/os, which
534 ASSERT3P(spa
->spa_vdev_removal
, ==, NULL
);
535 spa
->spa_vdev_removal
= svr
;
536 svr
->svr_thread
= thread_create(NULL
, 0,
537 spa_vdev_remove_thread
, spa
, 0, &p0
, TS_RUN
, minclsyspri
);
541 * When we are opening a pool, we must read the mapping for each
542 * indirect vdev in order from most recently removed to least
543 * recently removed. We do this because the blocks for the mapping
544 * of older indirect vdevs may be stored on more recently removed vdevs.
545 * In order to read each indirect mapping object, we must have
546 * initialized all more recently removed vdevs.
549 spa_remove_init(spa_t
*spa
)
553 error
= zap_lookup(spa
->spa_dsl_pool
->dp_meta_objset
,
554 DMU_POOL_DIRECTORY_OBJECT
,
555 DMU_POOL_REMOVING
, sizeof (uint64_t),
556 sizeof (spa
->spa_removing_phys
) / sizeof (uint64_t),
557 &spa
->spa_removing_phys
);
559 if (error
== ENOENT
) {
560 spa
->spa_removing_phys
.sr_state
= DSS_NONE
;
561 spa
->spa_removing_phys
.sr_removing_vdev
= -1;
562 spa
->spa_removing_phys
.sr_prev_indirect_vdev
= -1;
563 spa
->spa_indirect_vdevs_loaded
= B_TRUE
;
565 } else if (error
!= 0) {
569 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
) {
571 * We are currently removing a vdev. Create and
572 * initialize a spa_vdev_removal_t from the bonus
573 * buffer of the removing vdevs vdev_im_object, and
574 * initialize its partial mapping.
576 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
577 vdev_t
*vd
= vdev_lookup_top(spa
,
578 spa
->spa_removing_phys
.sr_removing_vdev
);
581 spa_config_exit(spa
, SCL_STATE
, FTAG
);
585 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
587 ASSERT(vdev_is_concrete(vd
));
588 spa_vdev_removal_t
*svr
= spa_vdev_removal_create(vd
);
589 ASSERT3U(svr
->svr_vdev_id
, ==, vd
->vdev_id
);
590 ASSERT(vd
->vdev_removing
);
592 vd
->vdev_indirect_mapping
= vdev_indirect_mapping_open(
593 spa
->spa_meta_objset
, vic
->vic_mapping_object
);
594 vd
->vdev_indirect_births
= vdev_indirect_births_open(
595 spa
->spa_meta_objset
, vic
->vic_births_object
);
596 spa_config_exit(spa
, SCL_STATE
, FTAG
);
598 spa
->spa_vdev_removal
= svr
;
601 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
602 uint64_t indirect_vdev_id
=
603 spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
604 while (indirect_vdev_id
!= UINT64_MAX
) {
605 vdev_t
*vd
= vdev_lookup_top(spa
, indirect_vdev_id
);
606 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
608 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
609 vd
->vdev_indirect_mapping
= vdev_indirect_mapping_open(
610 spa
->spa_meta_objset
, vic
->vic_mapping_object
);
611 vd
->vdev_indirect_births
= vdev_indirect_births_open(
612 spa
->spa_meta_objset
, vic
->vic_births_object
);
614 indirect_vdev_id
= vic
->vic_prev_indirect_vdev
;
616 spa_config_exit(spa
, SCL_STATE
, FTAG
);
619 * Now that we've loaded all the indirect mappings, we can allow
620 * reads from other blocks (e.g. via predictive prefetch).
622 spa
->spa_indirect_vdevs_loaded
= B_TRUE
;
627 spa_restart_removal(spa_t
*spa
)
629 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
635 * In general when this function is called there is no
636 * removal thread running. The only scenario where this
637 * is not true is during spa_import() where this function
638 * is called twice [once from spa_import_impl() and
639 * spa_async_resume()]. Thus, in the scenario where we
640 * import a pool that has an ongoing removal we don't
641 * want to spawn a second thread.
643 if (svr
->svr_thread
!= NULL
)
646 if (!spa_writeable(spa
))
649 zfs_dbgmsg("restarting removal of %llu",
650 (u_longlong_t
)svr
->svr_vdev_id
);
651 svr
->svr_thread
= thread_create(NULL
, 0, spa_vdev_remove_thread
, spa
,
652 0, &p0
, TS_RUN
, minclsyspri
);
656 * Process freeing from a device which is in the middle of being removed.
657 * We must handle this carefully so that we attempt to copy freed data,
658 * and we correctly free already-copied data.
661 free_from_removing_vdev(vdev_t
*vd
, uint64_t offset
, uint64_t size
)
663 spa_t
*spa
= vd
->vdev_spa
;
664 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
665 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
666 uint64_t txg
= spa_syncing_txg(spa
);
667 uint64_t max_offset_yet
= 0;
669 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
670 ASSERT3U(vd
->vdev_indirect_config
.vic_mapping_object
, ==,
671 vdev_indirect_mapping_object(vim
));
672 ASSERT3U(vd
->vdev_id
, ==, svr
->svr_vdev_id
);
674 mutex_enter(&svr
->svr_lock
);
677 * Remove the segment from the removing vdev's spacemap. This
678 * ensures that we will not attempt to copy this space (if the
679 * removal thread has not yet visited it), and also ensures
680 * that we know what is actually allocated on the new vdevs
681 * (needed if we cancel the removal).
683 * Note: we must do the metaslab_free_concrete() with the svr_lock
684 * held, so that the remove_thread can not load this metaslab and then
685 * visit this offset between the time that we metaslab_free_concrete()
686 * and when we check to see if it has been visited.
688 * Note: The checkpoint flag is set to false as having/taking
689 * a checkpoint and removing a device can't happen at the same
692 ASSERT(!spa_has_checkpoint(spa
));
693 metaslab_free_concrete(vd
, offset
, size
, B_FALSE
);
695 uint64_t synced_size
= 0;
696 uint64_t synced_offset
= 0;
697 uint64_t max_offset_synced
= vdev_indirect_mapping_max_offset(vim
);
698 if (offset
< max_offset_synced
) {
700 * The mapping for this offset is already on disk.
701 * Free from the new location.
703 * Note that we use svr_max_synced_offset because it is
704 * updated atomically with respect to the in-core mapping.
705 * By contrast, vim_max_offset is not.
707 * This block may be split between a synced entry and an
708 * in-flight or unvisited entry. Only process the synced
709 * portion of it here.
711 synced_size
= MIN(size
, max_offset_synced
- offset
);
712 synced_offset
= offset
;
714 ASSERT3U(max_offset_yet
, <=, max_offset_synced
);
715 max_offset_yet
= max_offset_synced
;
717 DTRACE_PROBE3(remove__free__synced
,
720 uint64_t, synced_size
);
723 offset
+= synced_size
;
727 * Look at all in-flight txgs starting from the currently syncing one
728 * and see if a section of this free is being copied. By starting from
729 * this txg and iterating forward, we might find that this region
730 * was copied in two different txgs and handle it appropriately.
732 for (int i
= 0; i
< TXG_CONCURRENT_STATES
; i
++) {
733 int txgoff
= (txg
+ i
) & TXG_MASK
;
734 if (size
> 0 && offset
< svr
->svr_max_offset_to_sync
[txgoff
]) {
736 * The mapping for this offset is in flight, and
737 * will be synced in txg+i.
739 uint64_t inflight_size
= MIN(size
,
740 svr
->svr_max_offset_to_sync
[txgoff
] - offset
);
742 DTRACE_PROBE4(remove__free__inflight
,
745 uint64_t, inflight_size
,
749 * We copy data in order of increasing offset.
750 * Therefore the max_offset_to_sync[] must increase
751 * (or be zero, indicating that nothing is being
752 * copied in that txg).
754 if (svr
->svr_max_offset_to_sync
[txgoff
] != 0) {
755 ASSERT3U(svr
->svr_max_offset_to_sync
[txgoff
],
758 svr
->svr_max_offset_to_sync
[txgoff
];
762 * We've already committed to copying this segment:
763 * we have allocated space elsewhere in the pool for
764 * it and have an IO outstanding to copy the data. We
765 * cannot free the space before the copy has
766 * completed, or else the copy IO might overwrite any
767 * new data. To free that space, we record the
768 * segment in the appropriate svr_frees tree and free
769 * the mapped space later, in the txg where we have
770 * completed the copy and synced the mapping (see
771 * vdev_mapping_sync).
773 range_tree_add(svr
->svr_frees
[txgoff
],
774 offset
, inflight_size
);
775 size
-= inflight_size
;
776 offset
+= inflight_size
;
779 * This space is already accounted for as being
780 * done, because it is being copied in txg+i.
781 * However, if i!=0, then it is being copied in
782 * a future txg. If we crash after this txg
783 * syncs but before txg+i syncs, then the space
784 * will be free. Therefore we must account
785 * for the space being done in *this* txg
786 * (when it is freed) rather than the future txg
787 * (when it will be copied).
789 ASSERT3U(svr
->svr_bytes_done
[txgoff
], >=,
791 svr
->svr_bytes_done
[txgoff
] -= inflight_size
;
792 svr
->svr_bytes_done
[txg
& TXG_MASK
] += inflight_size
;
795 ASSERT0(svr
->svr_max_offset_to_sync
[TXG_CLEAN(txg
) & TXG_MASK
]);
799 * The copy thread has not yet visited this offset. Ensure
803 DTRACE_PROBE3(remove__free__unvisited
,
808 if (svr
->svr_allocd_segs
!= NULL
)
809 range_tree_clear(svr
->svr_allocd_segs
, offset
, size
);
812 * Since we now do not need to copy this data, for
813 * accounting purposes we have done our job and can count
816 svr
->svr_bytes_done
[txg
& TXG_MASK
] += size
;
818 mutex_exit(&svr
->svr_lock
);
821 * Now that we have dropped svr_lock, process the synced portion
824 if (synced_size
> 0) {
825 vdev_indirect_mark_obsolete(vd
, synced_offset
, synced_size
);
828 * Note: this can only be called from syncing context,
829 * and the vdev_indirect_mapping is only changed from the
830 * sync thread, so we don't need svr_lock while doing
831 * metaslab_free_impl_cb.
833 boolean_t checkpoint
= B_FALSE
;
834 vdev_indirect_ops
.vdev_op_remap(vd
, synced_offset
, synced_size
,
835 metaslab_free_impl_cb
, &checkpoint
);
840 * Stop an active removal and update the spa_removing phys.
843 spa_finish_removal(spa_t
*spa
, dsl_scan_state_t state
, dmu_tx_t
*tx
)
845 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
846 ASSERT3U(dmu_tx_get_txg(tx
), ==, spa_syncing_txg(spa
));
848 /* Ensure the removal thread has completed before we free the svr. */
849 spa_vdev_remove_suspend(spa
);
851 ASSERT(state
== DSS_FINISHED
|| state
== DSS_CANCELED
);
853 if (state
== DSS_FINISHED
) {
854 spa_removing_phys_t
*srp
= &spa
->spa_removing_phys
;
855 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
856 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
858 if (srp
->sr_prev_indirect_vdev
!= -1) {
860 pvd
= vdev_lookup_top(spa
,
861 srp
->sr_prev_indirect_vdev
);
862 ASSERT3P(pvd
->vdev_ops
, ==, &vdev_indirect_ops
);
865 vic
->vic_prev_indirect_vdev
= srp
->sr_prev_indirect_vdev
;
866 srp
->sr_prev_indirect_vdev
= vd
->vdev_id
;
868 spa
->spa_removing_phys
.sr_state
= state
;
869 spa
->spa_removing_phys
.sr_end_time
= gethrestime_sec();
871 spa
->spa_vdev_removal
= NULL
;
872 spa_vdev_removal_destroy(svr
);
874 spa_sync_removing_state(spa
, tx
);
875 spa_notify_waiters(spa
);
877 vdev_config_dirty(spa
->spa_root_vdev
);
881 free_mapped_segment_cb(void *arg
, uint64_t offset
, uint64_t size
)
884 vdev_indirect_mark_obsolete(vd
, offset
, size
);
885 boolean_t checkpoint
= B_FALSE
;
886 vdev_indirect_ops
.vdev_op_remap(vd
, offset
, size
,
887 metaslab_free_impl_cb
, &checkpoint
);
891 * On behalf of the removal thread, syncs an incremental bit more of
892 * the indirect mapping to disk and updates the in-memory mapping.
893 * Called as a sync task in every txg that the removal thread makes progress.
896 vdev_mapping_sync(void *arg
, dmu_tx_t
*tx
)
898 spa_vdev_removal_t
*svr
= arg
;
899 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
900 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
901 vdev_indirect_config_t
*vic __maybe_unused
= &vd
->vdev_indirect_config
;
902 uint64_t txg
= dmu_tx_get_txg(tx
);
903 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
905 ASSERT(vic
->vic_mapping_object
!= 0);
906 ASSERT3U(txg
, ==, spa_syncing_txg(spa
));
908 vdev_indirect_mapping_add_entries(vim
,
909 &svr
->svr_new_segments
[txg
& TXG_MASK
], tx
);
910 vdev_indirect_births_add_entry(vd
->vdev_indirect_births
,
911 vdev_indirect_mapping_max_offset(vim
), dmu_tx_get_txg(tx
), tx
);
914 * Free the copied data for anything that was freed while the
915 * mapping entries were in flight.
917 mutex_enter(&svr
->svr_lock
);
918 range_tree_vacate(svr
->svr_frees
[txg
& TXG_MASK
],
919 free_mapped_segment_cb
, vd
);
920 ASSERT3U(svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
], >=,
921 vdev_indirect_mapping_max_offset(vim
));
922 svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] = 0;
923 mutex_exit(&svr
->svr_lock
);
925 spa_sync_removing_state(spa
, tx
);
928 typedef struct vdev_copy_segment_arg
{
930 dva_t
*vcsa_dest_dva
;
932 range_tree_t
*vcsa_obsolete_segs
;
933 } vdev_copy_segment_arg_t
;
936 unalloc_seg(void *arg
, uint64_t start
, uint64_t size
)
938 vdev_copy_segment_arg_t
*vcsa
= arg
;
939 spa_t
*spa
= vcsa
->vcsa_spa
;
940 blkptr_t bp
= { { { {0} } } };
942 BP_SET_BIRTH(&bp
, TXG_INITIAL
, TXG_INITIAL
);
943 BP_SET_LSIZE(&bp
, size
);
944 BP_SET_PSIZE(&bp
, size
);
945 BP_SET_COMPRESS(&bp
, ZIO_COMPRESS_OFF
);
946 BP_SET_CHECKSUM(&bp
, ZIO_CHECKSUM_OFF
);
947 BP_SET_TYPE(&bp
, DMU_OT_NONE
);
948 BP_SET_LEVEL(&bp
, 0);
949 BP_SET_DEDUP(&bp
, 0);
950 BP_SET_BYTEORDER(&bp
, ZFS_HOST_BYTEORDER
);
952 DVA_SET_VDEV(&bp
.blk_dva
[0], DVA_GET_VDEV(vcsa
->vcsa_dest_dva
));
953 DVA_SET_OFFSET(&bp
.blk_dva
[0],
954 DVA_GET_OFFSET(vcsa
->vcsa_dest_dva
) + start
);
955 DVA_SET_ASIZE(&bp
.blk_dva
[0], size
);
957 zio_free(spa
, vcsa
->vcsa_txg
, &bp
);
961 * All reads and writes associated with a call to spa_vdev_copy_segment()
965 spa_vdev_copy_segment_done(zio_t
*zio
)
967 vdev_copy_segment_arg_t
*vcsa
= zio
->io_private
;
969 range_tree_vacate(vcsa
->vcsa_obsolete_segs
,
971 range_tree_destroy(vcsa
->vcsa_obsolete_segs
);
972 kmem_free(vcsa
, sizeof (*vcsa
));
974 spa_config_exit(zio
->io_spa
, SCL_STATE
, zio
->io_spa
);
978 * The write of the new location is done.
981 spa_vdev_copy_segment_write_done(zio_t
*zio
)
983 vdev_copy_arg_t
*vca
= zio
->io_private
;
985 abd_free(zio
->io_abd
);
987 mutex_enter(&vca
->vca_lock
);
988 vca
->vca_outstanding_bytes
-= zio
->io_size
;
990 if (zio
->io_error
!= 0)
991 vca
->vca_write_error_bytes
+= zio
->io_size
;
993 cv_signal(&vca
->vca_cv
);
994 mutex_exit(&vca
->vca_lock
);
998 * The read of the old location is done. The parent zio is the write to
999 * the new location. Allow it to start.
1002 spa_vdev_copy_segment_read_done(zio_t
*zio
)
1004 vdev_copy_arg_t
*vca
= zio
->io_private
;
1006 if (zio
->io_error
!= 0) {
1007 mutex_enter(&vca
->vca_lock
);
1008 vca
->vca_read_error_bytes
+= zio
->io_size
;
1009 mutex_exit(&vca
->vca_lock
);
1012 zio_nowait(zio_unique_parent(zio
));
1016 * If the old and new vdevs are mirrors, we will read both sides of the old
1017 * mirror, and write each copy to the corresponding side of the new mirror.
1018 * If the old and new vdevs have a different number of children, we will do
1019 * this as best as possible. Since we aren't verifying checksums, this
1020 * ensures that as long as there's a good copy of the data, we'll have a
1021 * good copy after the removal, even if there's silent damage to one side
1022 * of the mirror. If we're removing a mirror that has some silent damage,
1023 * we'll have exactly the same damage in the new location (assuming that
1024 * the new location is also a mirror).
1026 * We accomplish this by creating a tree of zio_t's, with as many writes as
1027 * there are "children" of the new vdev (a non-redundant vdev counts as one
1028 * child, a 2-way mirror has 2 children, etc). Each write has an associated
1029 * read from a child of the old vdev. Typically there will be the same
1030 * number of children of the old and new vdevs. However, if there are more
1031 * children of the new vdev, some child(ren) of the old vdev will be issued
1032 * multiple reads. If there are more children of the old vdev, some copies
1035 * For example, the tree of zio_t's for a 2-way mirror is:
1039 * write(new vdev, child 0) write(new vdev, child 1)
1041 * read(old vdev, child 0) read(old vdev, child 1)
1043 * Child zio's complete before their parents complete. However, zio's
1044 * created with zio_vdev_child_io() may be issued before their children
1045 * complete. In this case we need to make sure that the children (reads)
1046 * complete before the parents (writes) are *issued*. We do this by not
1047 * calling zio_nowait() on each write until its corresponding read has
1050 * The spa_config_lock must be held while zio's created by
1051 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
1052 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
1053 * zio is needed to release the spa_config_lock after all the reads and
1054 * writes complete. (Note that we can't grab the config lock for each read,
1055 * because it is not reentrant - we could deadlock with a thread waiting
1056 * for a write lock.)
1059 spa_vdev_copy_one_child(vdev_copy_arg_t
*vca
, zio_t
*nzio
,
1060 vdev_t
*source_vd
, uint64_t source_offset
,
1061 vdev_t
*dest_child_vd
, uint64_t dest_offset
, int dest_id
, uint64_t size
)
1063 ASSERT3U(spa_config_held(nzio
->io_spa
, SCL_ALL
, RW_READER
), !=, 0);
1066 * If the destination child in unwritable then there is no point
1067 * in issuing the source reads which cannot be written.
1069 if (!vdev_writeable(dest_child_vd
))
1072 mutex_enter(&vca
->vca_lock
);
1073 vca
->vca_outstanding_bytes
+= size
;
1074 mutex_exit(&vca
->vca_lock
);
1076 abd_t
*abd
= abd_alloc_for_io(size
, B_FALSE
);
1078 vdev_t
*source_child_vd
= NULL
;
1079 if (source_vd
->vdev_ops
== &vdev_mirror_ops
&& dest_id
!= -1) {
1081 * Source and dest are both mirrors. Copy from the same
1082 * child id as we are copying to (wrapping around if there
1083 * are more dest children than source children). If the
1084 * preferred source child is unreadable select another.
1086 for (int i
= 0; i
< source_vd
->vdev_children
; i
++) {
1087 source_child_vd
= source_vd
->vdev_child
[
1088 (dest_id
+ i
) % source_vd
->vdev_children
];
1089 if (vdev_readable(source_child_vd
))
1093 source_child_vd
= source_vd
;
1097 * There should always be at least one readable source child or
1098 * the pool would be in a suspended state. Somehow selecting an
1099 * unreadable child would result in IO errors, the removal process
1100 * being cancelled, and the pool reverting to its pre-removal state.
1102 ASSERT3P(source_child_vd
, !=, NULL
);
1104 zio_t
*write_zio
= zio_vdev_child_io(nzio
, NULL
,
1105 dest_child_vd
, dest_offset
, abd
, size
,
1106 ZIO_TYPE_WRITE
, ZIO_PRIORITY_REMOVAL
,
1108 spa_vdev_copy_segment_write_done
, vca
);
1110 zio_nowait(zio_vdev_child_io(write_zio
, NULL
,
1111 source_child_vd
, source_offset
, abd
, size
,
1112 ZIO_TYPE_READ
, ZIO_PRIORITY_REMOVAL
,
1114 spa_vdev_copy_segment_read_done
, vca
));
1118 * Allocate a new location for this segment, and create the zio_t's to
1119 * read from the old location and write to the new location.
1122 spa_vdev_copy_segment(vdev_t
*vd
, range_tree_t
*segs
,
1123 uint64_t maxalloc
, uint64_t txg
,
1124 vdev_copy_arg_t
*vca
, zio_alloc_list_t
*zal
)
1126 metaslab_group_t
*mg
= vd
->vdev_mg
;
1127 spa_t
*spa
= vd
->vdev_spa
;
1128 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1129 vdev_indirect_mapping_entry_t
*entry
;
1130 dva_t dst
= {{ 0 }};
1131 uint64_t start
= range_tree_min(segs
);
1132 ASSERT0(P2PHASE(start
, 1 << spa
->spa_min_ashift
));
1134 ASSERT3U(maxalloc
, <=, SPA_MAXBLOCKSIZE
);
1135 ASSERT0(P2PHASE(maxalloc
, 1 << spa
->spa_min_ashift
));
1137 uint64_t size
= range_tree_span(segs
);
1138 if (range_tree_span(segs
) > maxalloc
) {
1140 * We can't allocate all the segments. Prefer to end
1141 * the allocation at the end of a segment, thus avoiding
1142 * additional split blocks.
1144 range_seg_max_t search
;
1145 zfs_btree_index_t where
;
1146 rs_set_start(&search
, segs
, start
+ maxalloc
);
1147 rs_set_end(&search
, segs
, start
+ maxalloc
);
1148 (void) zfs_btree_find(&segs
->rt_root
, &search
, &where
);
1149 range_seg_t
*rs
= zfs_btree_prev(&segs
->rt_root
, &where
,
1152 size
= rs_get_end(rs
, segs
) - start
;
1155 * There are no segments that end before maxalloc.
1156 * I.e. the first segment is larger than maxalloc,
1157 * so we must split it.
1162 ASSERT3U(size
, <=, maxalloc
);
1163 ASSERT0(P2PHASE(size
, 1 << spa
->spa_min_ashift
));
1166 * An allocation class might not have any remaining vdevs or space
1168 metaslab_class_t
*mc
= mg
->mg_class
;
1169 if (mc
->mc_groups
== 0)
1170 mc
= spa_normal_class(spa
);
1171 int error
= metaslab_alloc_dva(spa
, mc
, size
, &dst
, 0, NULL
, txg
,
1172 METASLAB_DONT_THROTTLE
, zal
, 0);
1173 if (error
== ENOSPC
&& mc
!= spa_normal_class(spa
)) {
1174 error
= metaslab_alloc_dva(spa
, spa_normal_class(spa
), size
,
1175 &dst
, 0, NULL
, txg
, METASLAB_DONT_THROTTLE
, zal
, 0);
1181 * Determine the ranges that are not actually needed. Offsets are
1182 * relative to the start of the range to be copied (i.e. relative to the
1183 * local variable "start").
1185 range_tree_t
*obsolete_segs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
,
1188 zfs_btree_index_t where
;
1189 range_seg_t
*rs
= zfs_btree_first(&segs
->rt_root
, &where
);
1190 ASSERT3U(rs_get_start(rs
, segs
), ==, start
);
1191 uint64_t prev_seg_end
= rs_get_end(rs
, segs
);
1192 while ((rs
= zfs_btree_next(&segs
->rt_root
, &where
, &where
)) != NULL
) {
1193 if (rs_get_start(rs
, segs
) >= start
+ size
) {
1196 range_tree_add(obsolete_segs
,
1197 prev_seg_end
- start
,
1198 rs_get_start(rs
, segs
) - prev_seg_end
);
1200 prev_seg_end
= rs_get_end(rs
, segs
);
1202 /* We don't end in the middle of an obsolete range */
1203 ASSERT3U(start
+ size
, <=, prev_seg_end
);
1205 range_tree_clear(segs
, start
, size
);
1208 * We can't have any padding of the allocated size, otherwise we will
1209 * misunderstand what's allocated, and the size of the mapping. We
1210 * prevent padding by ensuring that all devices in the pool have the
1211 * same ashift, and the allocation size is a multiple of the ashift.
1213 VERIFY3U(DVA_GET_ASIZE(&dst
), ==, size
);
1215 entry
= kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t
), KM_SLEEP
);
1216 DVA_MAPPING_SET_SRC_OFFSET(&entry
->vime_mapping
, start
);
1217 entry
->vime_mapping
.vimep_dst
= dst
;
1218 if (spa_feature_is_enabled(spa
, SPA_FEATURE_OBSOLETE_COUNTS
)) {
1219 entry
->vime_obsolete_count
= range_tree_space(obsolete_segs
);
1222 vdev_copy_segment_arg_t
*vcsa
= kmem_zalloc(sizeof (*vcsa
), KM_SLEEP
);
1223 vcsa
->vcsa_dest_dva
= &entry
->vime_mapping
.vimep_dst
;
1224 vcsa
->vcsa_obsolete_segs
= obsolete_segs
;
1225 vcsa
->vcsa_spa
= spa
;
1226 vcsa
->vcsa_txg
= txg
;
1229 * See comment before spa_vdev_copy_one_child().
1231 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
1232 zio_t
*nzio
= zio_null(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
, NULL
,
1233 spa_vdev_copy_segment_done
, vcsa
, 0);
1234 vdev_t
*dest_vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dst
));
1235 if (dest_vd
->vdev_ops
== &vdev_mirror_ops
) {
1236 for (int i
= 0; i
< dest_vd
->vdev_children
; i
++) {
1237 vdev_t
*child
= dest_vd
->vdev_child
[i
];
1238 spa_vdev_copy_one_child(vca
, nzio
, vd
, start
,
1239 child
, DVA_GET_OFFSET(&dst
), i
, size
);
1242 spa_vdev_copy_one_child(vca
, nzio
, vd
, start
,
1243 dest_vd
, DVA_GET_OFFSET(&dst
), -1, size
);
1247 list_insert_tail(&svr
->svr_new_segments
[txg
& TXG_MASK
], entry
);
1248 ASSERT3U(start
+ size
, <=, vd
->vdev_ms_count
<< vd
->vdev_ms_shift
);
1249 vdev_dirty(vd
, 0, NULL
, txg
);
1255 * Complete the removal of a toplevel vdev. This is called as a
1256 * synctask in the same txg that we will sync out the new config (to the
1257 * MOS object) which indicates that this vdev is indirect.
1260 vdev_remove_complete_sync(void *arg
, dmu_tx_t
*tx
)
1262 spa_vdev_removal_t
*svr
= arg
;
1263 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1264 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1266 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
1268 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1269 ASSERT0(svr
->svr_bytes_done
[i
]);
1272 ASSERT3U(spa
->spa_removing_phys
.sr_copied
, ==,
1273 spa
->spa_removing_phys
.sr_to_copy
);
1275 vdev_destroy_spacemaps(vd
, tx
);
1277 /* destroy leaf zaps, if any */
1278 ASSERT3P(svr
->svr_zaplist
, !=, NULL
);
1279 for (nvpair_t
*pair
= nvlist_next_nvpair(svr
->svr_zaplist
, NULL
);
1281 pair
= nvlist_next_nvpair(svr
->svr_zaplist
, pair
)) {
1282 vdev_destroy_unlink_zap(vd
, fnvpair_value_uint64(pair
), tx
);
1284 fnvlist_free(svr
->svr_zaplist
);
1286 spa_finish_removal(dmu_tx_pool(tx
)->dp_spa
, DSS_FINISHED
, tx
);
1287 /* vd->vdev_path is not available here */
1288 spa_history_log_internal(spa
, "vdev remove completed", tx
,
1289 "%s vdev %llu", spa_name(spa
), (u_longlong_t
)vd
->vdev_id
);
1293 vdev_remove_enlist_zaps(vdev_t
*vd
, nvlist_t
*zlist
)
1295 ASSERT3P(zlist
, !=, NULL
);
1296 ASSERT0(vdev_get_nparity(vd
));
1298 if (vd
->vdev_leaf_zap
!= 0) {
1300 (void) snprintf(zkey
, sizeof (zkey
), "%s-%llu",
1301 VDEV_REMOVAL_ZAP_OBJS
, (u_longlong_t
)vd
->vdev_leaf_zap
);
1302 fnvlist_add_uint64(zlist
, zkey
, vd
->vdev_leaf_zap
);
1305 for (uint64_t id
= 0; id
< vd
->vdev_children
; id
++) {
1306 vdev_remove_enlist_zaps(vd
->vdev_child
[id
], zlist
);
1311 vdev_remove_replace_with_indirect(vdev_t
*vd
, uint64_t txg
)
1315 spa_t
*spa
= vd
->vdev_spa
;
1316 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1319 * First, build a list of leaf zaps to be destroyed.
1320 * This is passed to the sync context thread,
1321 * which does the actual unlinking.
1323 svr
->svr_zaplist
= fnvlist_alloc();
1324 vdev_remove_enlist_zaps(vd
, svr
->svr_zaplist
);
1326 ivd
= vdev_add_parent(vd
, &vdev_indirect_ops
);
1327 ivd
->vdev_removing
= 0;
1329 vd
->vdev_leaf_zap
= 0;
1331 vdev_remove_child(ivd
, vd
);
1332 vdev_compact_children(ivd
);
1334 ASSERT(!list_link_active(&vd
->vdev_state_dirty_node
));
1336 mutex_enter(&svr
->svr_lock
);
1337 svr
->svr_thread
= NULL
;
1338 cv_broadcast(&svr
->svr_cv
);
1339 mutex_exit(&svr
->svr_lock
);
1341 /* After this, we can not use svr. */
1342 tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, txg
);
1343 dsl_sync_task_nowait(spa
->spa_dsl_pool
,
1344 vdev_remove_complete_sync
, svr
, tx
);
1349 * Complete the removal of a toplevel vdev. This is called in open
1350 * context by the removal thread after we have copied all vdev's data.
1353 vdev_remove_complete(spa_t
*spa
)
1358 * Wait for any deferred frees to be synced before we call
1359 * vdev_metaslab_fini()
1361 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1362 txg
= spa_vdev_enter(spa
);
1363 vdev_t
*vd
= vdev_lookup_top(spa
, spa
->spa_vdev_removal
->svr_vdev_id
);
1364 ASSERT3P(vd
->vdev_initialize_thread
, ==, NULL
);
1365 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1366 ASSERT3P(vd
->vdev_autotrim_thread
, ==, NULL
);
1367 vdev_rebuild_stop_wait(vd
);
1368 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
1369 uint64_t vdev_space
= spa_deflate(spa
) ?
1370 vd
->vdev_stat
.vs_dspace
: vd
->vdev_stat
.vs_space
;
1372 sysevent_t
*ev
= spa_event_create(spa
, vd
, NULL
,
1373 ESC_ZFS_VDEV_REMOVE_DEV
);
1375 zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1376 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)txg
);
1378 ASSERT3U(0, !=, vdev_space
);
1379 ASSERT3U(spa
->spa_nonallocating_dspace
, >=, vdev_space
);
1381 /* the vdev is no longer part of the dspace */
1382 spa
->spa_nonallocating_dspace
-= vdev_space
;
1385 * Discard allocation state.
1387 if (vd
->vdev_mg
!= NULL
) {
1388 vdev_metaslab_fini(vd
);
1389 metaslab_group_destroy(vd
->vdev_mg
);
1392 if (vd
->vdev_log_mg
!= NULL
) {
1393 ASSERT0(vd
->vdev_ms_count
);
1394 metaslab_group_destroy(vd
->vdev_log_mg
);
1395 vd
->vdev_log_mg
= NULL
;
1397 ASSERT0(vd
->vdev_stat
.vs_space
);
1398 ASSERT0(vd
->vdev_stat
.vs_dspace
);
1400 vdev_remove_replace_with_indirect(vd
, txg
);
1403 * We now release the locks, allowing spa_sync to run and finish the
1404 * removal via vdev_remove_complete_sync in syncing context.
1406 * Note that we hold on to the vdev_t that has been replaced. Since
1407 * it isn't part of the vdev tree any longer, it can't be concurrently
1408 * manipulated, even while we don't have the config lock.
1410 (void) spa_vdev_exit(spa
, NULL
, txg
, 0);
1413 * Top ZAP should have been transferred to the indirect vdev in
1414 * vdev_remove_replace_with_indirect.
1416 ASSERT0(vd
->vdev_top_zap
);
1419 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1421 ASSERT0(vd
->vdev_leaf_zap
);
1423 txg
= spa_vdev_enter(spa
);
1424 (void) vdev_label_init(vd
, 0, VDEV_LABEL_REMOVE
);
1426 * Request to update the config and the config cachefile.
1428 vdev_config_dirty(spa
->spa_root_vdev
);
1429 (void) spa_vdev_exit(spa
, vd
, txg
, 0);
1436 * Evacuates a segment of size at most max_alloc from the vdev
1437 * via repeated calls to spa_vdev_copy_segment. If an allocation
1438 * fails, the pool is probably too fragmented to handle such a
1439 * large size, so decrease max_alloc so that the caller will not try
1440 * this size again this txg.
1443 spa_vdev_copy_impl(vdev_t
*vd
, spa_vdev_removal_t
*svr
, vdev_copy_arg_t
*vca
,
1444 uint64_t *max_alloc
, dmu_tx_t
*tx
)
1446 uint64_t txg
= dmu_tx_get_txg(tx
);
1447 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1449 mutex_enter(&svr
->svr_lock
);
1452 * Determine how big of a chunk to copy. We can allocate up
1453 * to max_alloc bytes, and we can span up to vdev_removal_max_span
1454 * bytes of unallocated space at a time. "segs" will track the
1455 * allocated segments that we are copying. We may also be copying
1456 * free segments (of up to vdev_removal_max_span bytes).
1458 range_tree_t
*segs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
1460 range_tree_t
*rt
= svr
->svr_allocd_segs
;
1461 range_seg_t
*rs
= range_tree_first(rt
);
1466 uint64_t seg_length
;
1468 if (range_tree_is_empty(segs
)) {
1469 /* need to truncate the first seg based on max_alloc */
1470 seg_length
= MIN(rs_get_end(rs
, rt
) - rs_get_start(rs
,
1473 if (rs_get_start(rs
, rt
) - range_tree_max(segs
) >
1474 vdev_removal_max_span
) {
1476 * Including this segment would cause us to
1477 * copy a larger unneeded chunk than is allowed.
1480 } else if (rs_get_end(rs
, rt
) - range_tree_min(segs
) >
1483 * This additional segment would extend past
1484 * max_alloc. Rather than splitting this
1485 * segment, leave it for the next mapping.
1489 seg_length
= rs_get_end(rs
, rt
) -
1490 rs_get_start(rs
, rt
);
1494 range_tree_add(segs
, rs_get_start(rs
, rt
), seg_length
);
1495 range_tree_remove(svr
->svr_allocd_segs
,
1496 rs_get_start(rs
, rt
), seg_length
);
1499 if (range_tree_is_empty(segs
)) {
1500 mutex_exit(&svr
->svr_lock
);
1501 range_tree_destroy(segs
);
1505 if (svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] == 0) {
1506 dsl_sync_task_nowait(dmu_tx_pool(tx
), vdev_mapping_sync
,
1510 svr
->svr_max_offset_to_sync
[txg
& TXG_MASK
] = range_tree_max(segs
);
1513 * Note: this is the amount of *allocated* space
1514 * that we are taking care of each txg.
1516 svr
->svr_bytes_done
[txg
& TXG_MASK
] += range_tree_space(segs
);
1518 mutex_exit(&svr
->svr_lock
);
1520 zio_alloc_list_t zal
;
1521 metaslab_trace_init(&zal
);
1522 uint64_t thismax
= SPA_MAXBLOCKSIZE
;
1523 while (!range_tree_is_empty(segs
)) {
1524 int error
= spa_vdev_copy_segment(vd
,
1525 segs
, thismax
, txg
, vca
, &zal
);
1527 if (error
== ENOSPC
) {
1529 * Cut our segment in half, and don't try this
1530 * segment size again this txg. Note that the
1531 * allocation size must be aligned to the highest
1532 * ashift in the pool, so that the allocation will
1533 * not be padded out to a multiple of the ashift,
1534 * which could cause us to think that this mapping
1535 * is larger than we intended.
1537 ASSERT3U(spa
->spa_max_ashift
, >=, SPA_MINBLOCKSHIFT
);
1538 ASSERT3U(spa
->spa_max_ashift
, ==, spa
->spa_min_ashift
);
1539 uint64_t attempted
=
1540 MIN(range_tree_span(segs
), thismax
);
1541 thismax
= P2ROUNDUP(attempted
/ 2,
1542 1 << spa
->spa_max_ashift
);
1544 * The minimum-size allocation can not fail.
1546 ASSERT3U(attempted
, >, 1 << spa
->spa_max_ashift
);
1547 *max_alloc
= attempted
- (1 << spa
->spa_max_ashift
);
1552 * We've performed an allocation, so reset the
1555 metaslab_trace_fini(&zal
);
1556 metaslab_trace_init(&zal
);
1559 metaslab_trace_fini(&zal
);
1560 range_tree_destroy(segs
);
1564 * The size of each removal mapping is limited by the tunable
1565 * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1566 * pool's ashift, so that we don't try to split individual sectors regardless
1567 * of the tunable value. (Note that device removal requires that all devices
1568 * have the same ashift, so there's no difference between spa_min_ashift and
1569 * spa_max_ashift.) The raw tunable should not be used elsewhere.
1572 spa_remove_max_segment(spa_t
*spa
)
1574 return (P2ROUNDUP(zfs_remove_max_segment
, 1 << spa
->spa_max_ashift
));
1578 * The removal thread operates in open context. It iterates over all
1579 * allocated space in the vdev, by loading each metaslab's spacemap.
1580 * For each contiguous segment of allocated space (capping the segment
1581 * size at SPA_MAXBLOCKSIZE), we:
1582 * - Allocate space for it on another vdev.
1583 * - Create a new mapping from the old location to the new location
1584 * (as a record in svr_new_segments).
1585 * - Initiate a physical read zio to get the data off the removing disk.
1586 * - In the read zio's done callback, initiate a physical write zio to
1587 * write it to the new vdev.
1588 * Note that all of this will take effect when a particular TXG syncs.
1589 * The sync thread ensures that all the phys reads and writes for the syncing
1590 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1591 * (see vdev_mapping_sync()).
1593 static __attribute__((noreturn
)) void
1594 spa_vdev_remove_thread(void *arg
)
1597 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1598 vdev_copy_arg_t vca
;
1599 uint64_t max_alloc
= spa_remove_max_segment(spa
);
1600 uint64_t last_txg
= 0;
1602 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1603 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1604 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1605 uint64_t start_offset
= vdev_indirect_mapping_max_offset(vim
);
1607 ASSERT3P(vd
->vdev_ops
, !=, &vdev_indirect_ops
);
1608 ASSERT(vdev_is_concrete(vd
));
1609 ASSERT(vd
->vdev_removing
);
1610 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
1611 ASSERT(vim
!= NULL
);
1613 mutex_init(&vca
.vca_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1614 cv_init(&vca
.vca_cv
, NULL
, CV_DEFAULT
, NULL
);
1615 vca
.vca_outstanding_bytes
= 0;
1616 vca
.vca_read_error_bytes
= 0;
1617 vca
.vca_write_error_bytes
= 0;
1619 mutex_enter(&svr
->svr_lock
);
1622 * Start from vim_max_offset so we pick up where we left off
1623 * if we are restarting the removal after opening the pool.
1626 for (msi
= start_offset
>> vd
->vdev_ms_shift
;
1627 msi
< vd
->vdev_ms_count
&& !svr
->svr_thread_exit
; msi
++) {
1628 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
1629 ASSERT3U(msi
, <=, vd
->vdev_ms_count
);
1631 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1633 mutex_enter(&msp
->ms_sync_lock
);
1634 mutex_enter(&msp
->ms_lock
);
1637 * Assert nothing in flight -- ms_*tree is empty.
1639 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1640 ASSERT0(range_tree_space(msp
->ms_allocating
[i
]));
1644 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1645 * read the allocated segments from the space map object
1646 * into svr_allocd_segs. Since we do this while holding
1647 * svr_lock and ms_sync_lock, concurrent frees (which
1648 * would have modified the space map) will wait for us
1649 * to finish loading the spacemap, and then take the
1650 * appropriate action (see free_from_removing_vdev()).
1652 if (msp
->ms_sm
!= NULL
) {
1653 VERIFY0(space_map_load(msp
->ms_sm
,
1654 svr
->svr_allocd_segs
, SM_ALLOC
));
1656 range_tree_walk(msp
->ms_unflushed_allocs
,
1657 range_tree_add
, svr
->svr_allocd_segs
);
1658 range_tree_walk(msp
->ms_unflushed_frees
,
1659 range_tree_remove
, svr
->svr_allocd_segs
);
1660 range_tree_walk(msp
->ms_freeing
,
1661 range_tree_remove
, svr
->svr_allocd_segs
);
1664 * When we are resuming from a paused removal (i.e.
1665 * when importing a pool with a removal in progress),
1666 * discard any state that we have already processed.
1668 range_tree_clear(svr
->svr_allocd_segs
, 0, start_offset
);
1670 mutex_exit(&msp
->ms_lock
);
1671 mutex_exit(&msp
->ms_sync_lock
);
1674 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1675 (u_longlong_t
)zfs_btree_numnodes(
1676 &svr
->svr_allocd_segs
->rt_root
),
1677 (u_longlong_t
)msp
->ms_id
);
1679 while (!svr
->svr_thread_exit
&&
1680 !range_tree_is_empty(svr
->svr_allocd_segs
)) {
1682 mutex_exit(&svr
->svr_lock
);
1685 * We need to periodically drop the config lock so that
1686 * writers can get in. Additionally, we can't wait
1687 * for a txg to sync while holding a config lock
1688 * (since a waiting writer could cause a 3-way deadlock
1689 * with the sync thread, which also gets a config
1690 * lock for reader). So we can't hold the config lock
1691 * while calling dmu_tx_assign().
1693 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1696 * This delay will pause the removal around the point
1697 * specified by zfs_removal_suspend_progress. We do this
1698 * solely from the test suite or during debugging.
1700 while (zfs_removal_suspend_progress
&&
1701 !svr
->svr_thread_exit
)
1704 mutex_enter(&vca
.vca_lock
);
1705 while (vca
.vca_outstanding_bytes
>
1706 zfs_remove_max_copy_bytes
) {
1707 cv_wait(&vca
.vca_cv
, &vca
.vca_lock
);
1709 mutex_exit(&vca
.vca_lock
);
1712 dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
1714 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
1715 uint64_t txg
= dmu_tx_get_txg(tx
);
1718 * Reacquire the vdev_config lock. The vdev_t
1719 * that we're removing may have changed, e.g. due
1720 * to a vdev_attach or vdev_detach.
1722 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1723 vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1725 if (txg
!= last_txg
)
1726 max_alloc
= spa_remove_max_segment(spa
);
1729 spa_vdev_copy_impl(vd
, svr
, &vca
, &max_alloc
, tx
);
1732 mutex_enter(&svr
->svr_lock
);
1735 mutex_enter(&vca
.vca_lock
);
1736 if (zfs_removal_ignore_errors
== 0 &&
1737 (vca
.vca_read_error_bytes
> 0 ||
1738 vca
.vca_write_error_bytes
> 0)) {
1739 svr
->svr_thread_exit
= B_TRUE
;
1741 mutex_exit(&vca
.vca_lock
);
1744 mutex_exit(&svr
->svr_lock
);
1746 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1749 * Wait for all copies to finish before cleaning up the vca.
1751 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1752 ASSERT0(vca
.vca_outstanding_bytes
);
1754 mutex_destroy(&vca
.vca_lock
);
1755 cv_destroy(&vca
.vca_cv
);
1757 if (svr
->svr_thread_exit
) {
1758 mutex_enter(&svr
->svr_lock
);
1759 range_tree_vacate(svr
->svr_allocd_segs
, NULL
, NULL
);
1760 svr
->svr_thread
= NULL
;
1761 cv_broadcast(&svr
->svr_cv
);
1762 mutex_exit(&svr
->svr_lock
);
1765 * During the removal process an unrecoverable read or write
1766 * error was encountered. The removal process must be
1767 * cancelled or this damage may become permanent.
1769 if (zfs_removal_ignore_errors
== 0 &&
1770 (vca
.vca_read_error_bytes
> 0 ||
1771 vca
.vca_write_error_bytes
> 0)) {
1772 zfs_dbgmsg("canceling removal due to IO errors: "
1773 "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1774 (u_longlong_t
)vca
.vca_read_error_bytes
,
1775 (u_longlong_t
)vca
.vca_write_error_bytes
);
1776 spa_vdev_remove_cancel_impl(spa
);
1779 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1780 vdev_remove_complete(spa
);
1787 spa_vdev_remove_suspend(spa_t
*spa
)
1789 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1794 mutex_enter(&svr
->svr_lock
);
1795 svr
->svr_thread_exit
= B_TRUE
;
1796 while (svr
->svr_thread
!= NULL
)
1797 cv_wait(&svr
->svr_cv
, &svr
->svr_lock
);
1798 svr
->svr_thread_exit
= B_FALSE
;
1799 mutex_exit(&svr
->svr_lock
);
1803 * Return true if the "allocating" property has been set to "off"
1806 vdev_prop_allocating_off(vdev_t
*vd
)
1808 uint64_t objid
= vd
->vdev_top_zap
;
1809 uint64_t allocating
= 1;
1811 /* no vdev property object => no props */
1813 spa_t
*spa
= vd
->vdev_spa
;
1814 objset_t
*mos
= spa
->spa_meta_objset
;
1816 mutex_enter(&spa
->spa_props_lock
);
1817 (void) zap_lookup(mos
, objid
, "allocating", sizeof (uint64_t),
1819 mutex_exit(&spa
->spa_props_lock
);
1821 return (allocating
== 0);
1825 spa_vdev_remove_cancel_check(void *arg
, dmu_tx_t
*tx
)
1828 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1830 if (spa
->spa_vdev_removal
== NULL
)
1831 return (ENOTACTIVE
);
1836 * Cancel a removal by freeing all entries from the partial mapping
1837 * and marking the vdev as no longer being removing.
1840 spa_vdev_remove_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1843 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
1844 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
1845 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
1846 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1847 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1848 objset_t
*mos
= spa
->spa_meta_objset
;
1850 ASSERT3P(svr
->svr_thread
, ==, NULL
);
1852 spa_feature_decr(spa
, SPA_FEATURE_DEVICE_REMOVAL
, tx
);
1854 boolean_t are_precise
;
1855 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
1857 spa_feature_decr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
1858 VERIFY0(zap_remove(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
1859 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE
, tx
));
1862 uint64_t obsolete_sm_object
;
1863 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1864 if (obsolete_sm_object
!= 0) {
1865 ASSERT(vd
->vdev_obsolete_sm
!= NULL
);
1866 ASSERT3U(obsolete_sm_object
, ==,
1867 space_map_object(vd
->vdev_obsolete_sm
));
1869 space_map_free(vd
->vdev_obsolete_sm
, tx
);
1870 VERIFY0(zap_remove(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
1871 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM
, tx
));
1872 space_map_close(vd
->vdev_obsolete_sm
);
1873 vd
->vdev_obsolete_sm
= NULL
;
1874 spa_feature_decr(spa
, SPA_FEATURE_OBSOLETE_COUNTS
, tx
);
1876 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1877 ASSERT(list_is_empty(&svr
->svr_new_segments
[i
]));
1878 ASSERT3U(svr
->svr_max_offset_to_sync
[i
], <=,
1879 vdev_indirect_mapping_max_offset(vim
));
1882 for (uint64_t msi
= 0; msi
< vd
->vdev_ms_count
; msi
++) {
1883 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
1885 if (msp
->ms_start
>= vdev_indirect_mapping_max_offset(vim
))
1888 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
1890 mutex_enter(&msp
->ms_lock
);
1893 * Assert nothing in flight -- ms_*tree is empty.
1895 for (int i
= 0; i
< TXG_SIZE
; i
++)
1896 ASSERT0(range_tree_space(msp
->ms_allocating
[i
]));
1897 for (int i
= 0; i
< TXG_DEFER_SIZE
; i
++)
1898 ASSERT0(range_tree_space(msp
->ms_defer
[i
]));
1899 ASSERT0(range_tree_space(msp
->ms_freed
));
1901 if (msp
->ms_sm
!= NULL
) {
1902 mutex_enter(&svr
->svr_lock
);
1903 VERIFY0(space_map_load(msp
->ms_sm
,
1904 svr
->svr_allocd_segs
, SM_ALLOC
));
1906 range_tree_walk(msp
->ms_unflushed_allocs
,
1907 range_tree_add
, svr
->svr_allocd_segs
);
1908 range_tree_walk(msp
->ms_unflushed_frees
,
1909 range_tree_remove
, svr
->svr_allocd_segs
);
1910 range_tree_walk(msp
->ms_freeing
,
1911 range_tree_remove
, svr
->svr_allocd_segs
);
1914 * Clear everything past what has been synced,
1915 * because we have not allocated mappings for it yet.
1917 uint64_t syncd
= vdev_indirect_mapping_max_offset(vim
);
1918 uint64_t sm_end
= msp
->ms_sm
->sm_start
+
1919 msp
->ms_sm
->sm_size
;
1921 range_tree_clear(svr
->svr_allocd_segs
,
1922 syncd
, sm_end
- syncd
);
1924 mutex_exit(&svr
->svr_lock
);
1926 mutex_exit(&msp
->ms_lock
);
1928 mutex_enter(&svr
->svr_lock
);
1929 range_tree_vacate(svr
->svr_allocd_segs
,
1930 free_mapped_segment_cb
, vd
);
1931 mutex_exit(&svr
->svr_lock
);
1935 * Note: this must happen after we invoke free_mapped_segment_cb,
1936 * because it adds to the obsolete_segments.
1938 range_tree_vacate(vd
->vdev_obsolete_segments
, NULL
, NULL
);
1940 ASSERT3U(vic
->vic_mapping_object
, ==,
1941 vdev_indirect_mapping_object(vd
->vdev_indirect_mapping
));
1942 vdev_indirect_mapping_close(vd
->vdev_indirect_mapping
);
1943 vd
->vdev_indirect_mapping
= NULL
;
1944 vdev_indirect_mapping_free(mos
, vic
->vic_mapping_object
, tx
);
1945 vic
->vic_mapping_object
= 0;
1947 ASSERT3U(vic
->vic_births_object
, ==,
1948 vdev_indirect_births_object(vd
->vdev_indirect_births
));
1949 vdev_indirect_births_close(vd
->vdev_indirect_births
);
1950 vd
->vdev_indirect_births
= NULL
;
1951 vdev_indirect_births_free(mos
, vic
->vic_births_object
, tx
);
1952 vic
->vic_births_object
= 0;
1955 * We may have processed some frees from the removing vdev in this
1956 * txg, thus increasing svr_bytes_done; discard that here to
1957 * satisfy the assertions in spa_vdev_removal_destroy().
1958 * Note that future txg's can not have any bytes_done, because
1959 * future TXG's are only modified from open context, and we have
1960 * already shut down the copying thread.
1962 svr
->svr_bytes_done
[dmu_tx_get_txg(tx
) & TXG_MASK
] = 0;
1963 spa_finish_removal(spa
, DSS_CANCELED
, tx
);
1965 vd
->vdev_removing
= B_FALSE
;
1967 if (!vdev_prop_allocating_off(vd
)) {
1968 spa_config_enter(spa
, SCL_ALLOC
| SCL_VDEV
, FTAG
, RW_WRITER
);
1970 spa_config_exit(spa
, SCL_ALLOC
| SCL_VDEV
, FTAG
);
1973 vdev_config_dirty(vd
);
1975 zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1976 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)dmu_tx_get_txg(tx
));
1977 spa_history_log_internal(spa
, "vdev remove canceled", tx
,
1978 "%s vdev %llu %s", spa_name(spa
),
1979 (u_longlong_t
)vd
->vdev_id
,
1980 (vd
->vdev_path
!= NULL
) ? vd
->vdev_path
: "-");
1984 spa_vdev_remove_cancel_impl(spa_t
*spa
)
1986 int error
= dsl_sync_task(spa
->spa_name
, spa_vdev_remove_cancel_check
,
1987 spa_vdev_remove_cancel_sync
, NULL
, 0,
1988 ZFS_SPACE_CHECK_EXTRA_RESERVED
);
1993 spa_vdev_remove_cancel(spa_t
*spa
)
1995 spa_vdev_remove_suspend(spa
);
1997 if (spa
->spa_vdev_removal
== NULL
)
1998 return (ENOTACTIVE
);
2000 return (spa_vdev_remove_cancel_impl(spa
));
2004 svr_sync(spa_t
*spa
, dmu_tx_t
*tx
)
2006 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
2007 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
2013 * This check is necessary so that we do not dirty the
2014 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
2015 * is nothing to do. Dirtying it every time would prevent us
2016 * from syncing-to-convergence.
2018 if (svr
->svr_bytes_done
[txgoff
] == 0)
2022 * Update progress accounting.
2024 spa
->spa_removing_phys
.sr_copied
+= svr
->svr_bytes_done
[txgoff
];
2025 svr
->svr_bytes_done
[txgoff
] = 0;
2027 spa_sync_removing_state(spa
, tx
);
2031 vdev_remove_make_hole_and_free(vdev_t
*vd
)
2033 uint64_t id
= vd
->vdev_id
;
2034 spa_t
*spa
= vd
->vdev_spa
;
2035 vdev_t
*rvd
= spa
->spa_root_vdev
;
2037 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
2038 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
2042 vd
= vdev_alloc_common(spa
, id
, 0, &vdev_hole_ops
);
2043 vdev_add_child(rvd
, vd
);
2044 vdev_config_dirty(rvd
);
2047 * Reassess the health of our root vdev.
2053 * Remove a log device. The config lock is held for the specified TXG.
2056 spa_vdev_remove_log(vdev_t
*vd
, uint64_t *txg
)
2058 metaslab_group_t
*mg
= vd
->vdev_mg
;
2059 spa_t
*spa
= vd
->vdev_spa
;
2062 ASSERT(vd
->vdev_islog
);
2063 ASSERT(vd
== vd
->vdev_top
);
2064 ASSERT3P(vd
->vdev_log_mg
, ==, NULL
);
2065 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
2068 * Stop allocating from this vdev.
2070 metaslab_group_passivate(mg
);
2073 * Wait for the youngest allocations and frees to sync,
2074 * and then wait for the deferral of those frees to finish.
2076 spa_vdev_config_exit(spa
, NULL
,
2077 *txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
2080 * Cancel any initialize or TRIM which was in progress.
2082 vdev_initialize_stop_all(vd
, VDEV_INITIALIZE_CANCELED
);
2083 vdev_trim_stop_all(vd
, VDEV_TRIM_CANCELED
);
2084 vdev_autotrim_stop_wait(vd
);
2087 * Evacuate the device. We don't hold the config lock as
2088 * writer since we need to do I/O but we do keep the
2089 * spa_namespace_lock held. Once this completes the device
2090 * should no longer have any blocks allocated on it.
2092 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
2093 if (vd
->vdev_stat
.vs_alloc
!= 0)
2094 error
= spa_reset_logs(spa
);
2096 *txg
= spa_vdev_config_enter(spa
);
2099 metaslab_group_activate(mg
);
2100 ASSERT3P(vd
->vdev_log_mg
, ==, NULL
);
2103 ASSERT0(vd
->vdev_stat
.vs_alloc
);
2106 * The evacuation succeeded. Remove any remaining MOS metadata
2107 * associated with this vdev, and wait for these changes to sync.
2109 vd
->vdev_removing
= B_TRUE
;
2111 vdev_dirty_leaves(vd
, VDD_DTL
, *txg
);
2112 vdev_config_dirty(vd
);
2115 * When the log space map feature is enabled we look at
2116 * the vdev's top_zap to find the on-disk flush data of
2117 * the metaslab we just flushed. Thus, while removing a
2118 * log vdev we make sure to call vdev_metaslab_fini()
2119 * first, which removes all metaslabs of this vdev from
2120 * spa_metaslabs_by_flushed before vdev_remove_empty()
2121 * destroys the top_zap of this log vdev.
2123 * This avoids the scenario where we flush a metaslab
2124 * from the log vdev being removed that doesn't have a
2125 * top_zap and end up failing to lookup its on-disk flush
2128 * We don't call metaslab_group_destroy() right away
2129 * though (it will be called in vdev_free() later) as
2130 * during metaslab_sync() of metaslabs from other vdevs
2131 * we may touch the metaslab group of this vdev through
2132 * metaslab_class_histogram_verify()
2134 vdev_metaslab_fini(vd
);
2136 spa_vdev_config_exit(spa
, NULL
, *txg
, 0, FTAG
);
2137 *txg
= spa_vdev_config_enter(spa
);
2139 sysevent_t
*ev
= spa_event_create(spa
, vd
, NULL
,
2140 ESC_ZFS_VDEV_REMOVE_DEV
);
2141 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
2142 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_WRITER
) == SCL_ALL
);
2144 /* The top ZAP should have been destroyed by vdev_remove_empty. */
2145 ASSERT0(vd
->vdev_top_zap
);
2146 /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
2147 ASSERT0(vd
->vdev_leaf_zap
);
2149 (void) vdev_label_init(vd
, 0, VDEV_LABEL_REMOVE
);
2151 if (list_link_active(&vd
->vdev_state_dirty_node
))
2152 vdev_state_clean(vd
);
2153 if (list_link_active(&vd
->vdev_config_dirty_node
))
2154 vdev_config_clean(vd
);
2156 ASSERT0(vd
->vdev_stat
.vs_alloc
);
2159 * Clean up the vdev namespace.
2161 vdev_remove_make_hole_and_free(vd
);
2170 spa_vdev_remove_top_check(vdev_t
*vd
)
2172 spa_t
*spa
= vd
->vdev_spa
;
2174 if (vd
!= vd
->vdev_top
)
2175 return (SET_ERROR(ENOTSUP
));
2177 if (!vdev_is_concrete(vd
))
2178 return (SET_ERROR(ENOTSUP
));
2180 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REMOVAL
))
2181 return (SET_ERROR(ENOTSUP
));
2184 * This device is already being removed
2186 if (vd
->vdev_removing
)
2187 return (SET_ERROR(EALREADY
));
2189 metaslab_class_t
*mc
= vd
->vdev_mg
->mg_class
;
2190 metaslab_class_t
*normal
= spa_normal_class(spa
);
2193 * Space allocated from the special (or dedup) class is
2194 * included in the DMU's space usage, but it's not included
2195 * in spa_dspace (or dsl_pool_adjustedsize()). Therefore
2196 * there is always at least as much free space in the normal
2197 * class, as is allocated from the special (and dedup) class.
2198 * As a backup check, we will return ENOSPC if this is
2199 * violated. See also spa_update_dspace().
2201 uint64_t available
= metaslab_class_get_space(normal
) -
2202 metaslab_class_get_alloc(normal
);
2203 ASSERT3U(available
, >=, vd
->vdev_stat
.vs_alloc
);
2204 if (available
< vd
->vdev_stat
.vs_alloc
)
2205 return (SET_ERROR(ENOSPC
));
2206 } else if (!vd
->vdev_noalloc
) {
2207 /* available space in the pool's normal class */
2208 uint64_t available
= dsl_dir_space_available(
2209 spa
->spa_dsl_pool
->dp_root_dir
, NULL
, 0, B_TRUE
);
2210 if (available
< vd
->vdev_stat
.vs_dspace
)
2211 return (SET_ERROR(ENOSPC
));
2215 * There can not be a removal in progress.
2217 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
2218 return (SET_ERROR(EBUSY
));
2221 * The device must have all its data.
2223 if (!vdev_dtl_empty(vd
, DTL_MISSING
) ||
2224 !vdev_dtl_empty(vd
, DTL_OUTAGE
))
2225 return (SET_ERROR(EBUSY
));
2228 * The device must be healthy.
2230 if (!vdev_readable(vd
))
2231 return (SET_ERROR(EIO
));
2234 * All vdevs in normal class must have the same ashift.
2236 if (spa
->spa_max_ashift
!= spa
->spa_min_ashift
) {
2237 return (SET_ERROR(EINVAL
));
2241 * A removed special/dedup vdev must have same ashift as normal class.
2243 ASSERT(!vd
->vdev_islog
);
2244 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
&&
2245 vd
->vdev_ashift
!= spa
->spa_max_ashift
) {
2246 return (SET_ERROR(EINVAL
));
2250 * All vdevs in normal class must have the same ashift
2251 * and not be raidz or draid.
2253 vdev_t
*rvd
= spa
->spa_root_vdev
;
2254 for (uint64_t id
= 0; id
< rvd
->vdev_children
; id
++) {
2255 vdev_t
*cvd
= rvd
->vdev_child
[id
];
2258 * A removed special/dedup vdev must have the same ashift
2259 * across all vdevs in its class.
2261 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_NONE
&&
2262 cvd
->vdev_alloc_bias
== vd
->vdev_alloc_bias
&&
2263 cvd
->vdev_ashift
!= vd
->vdev_ashift
) {
2264 return (SET_ERROR(EINVAL
));
2266 if (cvd
->vdev_ashift
!= 0 &&
2267 cvd
->vdev_alloc_bias
== VDEV_BIAS_NONE
)
2268 ASSERT3U(cvd
->vdev_ashift
, ==, spa
->spa_max_ashift
);
2269 if (!vdev_is_concrete(cvd
))
2271 if (vdev_get_nparity(cvd
) != 0)
2272 return (SET_ERROR(EINVAL
));
2274 * Need the mirror to be mirror of leaf vdevs only
2276 if (cvd
->vdev_ops
== &vdev_mirror_ops
) {
2277 for (uint64_t cid
= 0;
2278 cid
< cvd
->vdev_children
; cid
++) {
2279 if (!cvd
->vdev_child
[cid
]->vdev_ops
->
2281 return (SET_ERROR(EINVAL
));
2290 * Initiate removal of a top-level vdev, reducing the total space in the pool.
2291 * The config lock is held for the specified TXG. Once initiated,
2292 * evacuation of all allocated space (copying it to other vdevs) happens
2293 * in the background (see spa_vdev_remove_thread()), and can be canceled
2294 * (see spa_vdev_remove_cancel()). If successful, the vdev will
2295 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2298 spa_vdev_remove_top(vdev_t
*vd
, uint64_t *txg
)
2300 spa_t
*spa
= vd
->vdev_spa
;
2301 boolean_t set_noalloc
= B_FALSE
;
2305 * Check for errors up-front, so that we don't waste time
2306 * passivating the metaslab group and clearing the ZIL if there
2309 error
= spa_vdev_remove_top_check(vd
);
2312 * Stop allocating from this vdev. Note that we must check
2313 * that this is not the only device in the pool before
2314 * passivating, otherwise we will not be able to make
2315 * progress because we can't allocate from any vdevs.
2316 * The above check for sufficient free space serves this
2319 if (error
== 0 && !vd
->vdev_noalloc
) {
2320 set_noalloc
= B_TRUE
;
2321 error
= vdev_passivate(vd
, txg
);
2328 * We stop any initializing and TRIM that is currently in progress
2329 * but leave the state as "active". This will allow the process to
2330 * resume if the removal is canceled sometime later.
2333 spa_vdev_config_exit(spa
, NULL
, *txg
, 0, FTAG
);
2335 vdev_initialize_stop_all(vd
, VDEV_INITIALIZE_ACTIVE
);
2336 vdev_trim_stop_all(vd
, VDEV_TRIM_ACTIVE
);
2337 vdev_autotrim_stop_wait(vd
);
2339 *txg
= spa_vdev_config_enter(spa
);
2342 * Things might have changed while the config lock was dropped
2343 * (e.g. space usage). Check for errors again.
2345 error
= spa_vdev_remove_top_check(vd
);
2350 spa_async_request(spa
, SPA_ASYNC_INITIALIZE_RESTART
);
2351 spa_async_request(spa
, SPA_ASYNC_TRIM_RESTART
);
2352 spa_async_request(spa
, SPA_ASYNC_AUTOTRIM_RESTART
);
2356 vd
->vdev_removing
= B_TRUE
;
2358 vdev_dirty_leaves(vd
, VDD_DTL
, *txg
);
2359 vdev_config_dirty(vd
);
2360 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
, *txg
);
2361 dsl_sync_task_nowait(spa
->spa_dsl_pool
,
2362 vdev_remove_initiate_sync
, (void *)(uintptr_t)vd
->vdev_id
, tx
);
2369 * Remove a device from the pool.
2371 * Removing a device from the vdev namespace requires several steps
2372 * and can take a significant amount of time. As a result we use
2373 * the spa_vdev_config_[enter/exit] functions which allow us to
2374 * grab and release the spa_config_lock while still holding the namespace
2375 * lock. During each step the configuration is synced out.
2378 spa_vdev_remove(spa_t
*spa
, uint64_t guid
, boolean_t unspare
)
2381 nvlist_t
**spares
, **l2cache
, *nv
;
2383 uint_t nspares
, nl2cache
;
2384 int error
= 0, error_log
;
2385 boolean_t locked
= MUTEX_HELD(&spa_namespace_lock
);
2386 sysevent_t
*ev
= NULL
;
2387 const char *vd_type
= NULL
;
2388 char *vd_path
= NULL
;
2390 ASSERT(spa_writeable(spa
));
2393 txg
= spa_vdev_enter(spa
);
2395 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
2396 if (spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
2397 error
= (spa_has_checkpoint(spa
)) ?
2398 ZFS_ERR_CHECKPOINT_EXISTS
: ZFS_ERR_DISCARDING_CHECKPOINT
;
2401 return (spa_vdev_exit(spa
, NULL
, txg
, error
));
2406 vd
= spa_lookup_by_guid(spa
, guid
, B_FALSE
);
2408 if (spa
->spa_spares
.sav_vdevs
!= NULL
&&
2409 nvlist_lookup_nvlist_array(spa
->spa_spares
.sav_config
,
2410 ZPOOL_CONFIG_SPARES
, &spares
, &nspares
) == 0 &&
2411 (nv
= spa_nvlist_lookup_by_guid(spares
, nspares
, guid
)) != NULL
) {
2413 * Only remove the hot spare if it's not currently in use
2416 if (vd
== NULL
|| unspare
) {
2418 boolean_t draid_spare
= B_FALSE
;
2420 if (nvlist_lookup_string(nv
, ZPOOL_CONFIG_TYPE
, &type
)
2421 == 0 && strcmp(type
, VDEV_TYPE_DRAID_SPARE
) == 0)
2422 draid_spare
= B_TRUE
;
2424 if (vd
== NULL
&& draid_spare
) {
2425 error
= SET_ERROR(ENOTSUP
);
2428 vd
= spa_lookup_by_guid(spa
,
2430 ev
= spa_event_create(spa
, vd
, NULL
,
2431 ESC_ZFS_VDEV_REMOVE_AUX
);
2433 vd_type
= VDEV_TYPE_SPARE
;
2434 vd_path
= spa_strdup(fnvlist_lookup_string(
2435 nv
, ZPOOL_CONFIG_PATH
));
2436 spa_vdev_remove_aux(spa
->spa_spares
.sav_config
,
2437 ZPOOL_CONFIG_SPARES
, spares
, nspares
, nv
);
2438 spa_load_spares(spa
);
2439 spa
->spa_spares
.sav_sync
= B_TRUE
;
2442 error
= SET_ERROR(EBUSY
);
2444 } else if (spa
->spa_l2cache
.sav_vdevs
!= NULL
&&
2445 nvlist_lookup_nvlist_array(spa
->spa_l2cache
.sav_config
,
2446 ZPOOL_CONFIG_L2CACHE
, &l2cache
, &nl2cache
) == 0 &&
2447 (nv
= spa_nvlist_lookup_by_guid(l2cache
, nl2cache
, guid
)) != NULL
) {
2448 vd_type
= VDEV_TYPE_L2CACHE
;
2449 vd_path
= spa_strdup(fnvlist_lookup_string(
2450 nv
, ZPOOL_CONFIG_PATH
));
2452 * Cache devices can always be removed.
2454 vd
= spa_lookup_by_guid(spa
, guid
, B_TRUE
);
2457 * Stop trimming the cache device. We need to release the
2458 * config lock to allow the syncing of TRIM transactions
2459 * without releasing the spa_namespace_lock. The same
2460 * strategy is employed in spa_vdev_remove_top().
2462 spa_vdev_config_exit(spa
, NULL
,
2463 txg
+ TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
, 0, FTAG
);
2464 mutex_enter(&vd
->vdev_trim_lock
);
2465 vdev_trim_stop(vd
, VDEV_TRIM_CANCELED
, NULL
);
2466 mutex_exit(&vd
->vdev_trim_lock
);
2467 txg
= spa_vdev_config_enter(spa
);
2469 ev
= spa_event_create(spa
, vd
, NULL
, ESC_ZFS_VDEV_REMOVE_AUX
);
2470 spa_vdev_remove_aux(spa
->spa_l2cache
.sav_config
,
2471 ZPOOL_CONFIG_L2CACHE
, l2cache
, nl2cache
, nv
);
2472 spa_load_l2cache(spa
);
2473 spa
->spa_l2cache
.sav_sync
= B_TRUE
;
2474 } else if (vd
!= NULL
&& vd
->vdev_islog
) {
2476 vd_type
= VDEV_TYPE_LOG
;
2477 vd_path
= spa_strdup((vd
->vdev_path
!= NULL
) ?
2478 vd
->vdev_path
: "-");
2479 error
= spa_vdev_remove_log(vd
, &txg
);
2480 } else if (vd
!= NULL
) {
2482 error
= spa_vdev_remove_top(vd
, &txg
);
2485 * There is no vdev of any kind with the specified guid.
2487 error
= SET_ERROR(ENOENT
);
2493 error
= spa_vdev_exit(spa
, NULL
, txg
, error
);
2496 * Logging must be done outside the spa config lock. Otherwise,
2497 * this code path could end up holding the spa config lock while
2498 * waiting for a txg_sync so it can write to the internal log.
2499 * Doing that would prevent the txg sync from actually happening,
2500 * causing a deadlock.
2502 if (error_log
== 0 && vd_type
!= NULL
&& vd_path
!= NULL
) {
2503 spa_history_log_internal(spa
, "vdev remove", NULL
,
2504 "%s vdev (%s) %s", spa_name(spa
), vd_type
, vd_path
);
2506 if (vd_path
!= NULL
)
2507 spa_strfree(vd_path
);
2516 spa_removal_get_stats(spa_t
*spa
, pool_removal_stat_t
*prs
)
2518 prs
->prs_state
= spa
->spa_removing_phys
.sr_state
;
2520 if (prs
->prs_state
== DSS_NONE
)
2521 return (SET_ERROR(ENOENT
));
2523 prs
->prs_removing_vdev
= spa
->spa_removing_phys
.sr_removing_vdev
;
2524 prs
->prs_start_time
= spa
->spa_removing_phys
.sr_start_time
;
2525 prs
->prs_end_time
= spa
->spa_removing_phys
.sr_end_time
;
2526 prs
->prs_to_copy
= spa
->spa_removing_phys
.sr_to_copy
;
2527 prs
->prs_copied
= spa
->spa_removing_phys
.sr_copied
;
2529 prs
->prs_mapping_memory
= 0;
2530 uint64_t indirect_vdev_id
=
2531 spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
2532 while (indirect_vdev_id
!= -1) {
2533 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[indirect_vdev_id
];
2534 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
2535 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
2537 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
2538 prs
->prs_mapping_memory
+= vdev_indirect_mapping_size(vim
);
2539 indirect_vdev_id
= vic
->vic_prev_indirect_vdev
;
2545 ZFS_MODULE_PARAM(zfs_vdev
, zfs_
, removal_ignore_errors
, INT
, ZMOD_RW
,
2546 "Ignore hard IO errors when removing device");
2548 ZFS_MODULE_PARAM(zfs_vdev
, zfs_
, remove_max_segment
, UINT
, ZMOD_RW
,
2549 "Largest contiguous segment to allocate when removing device");
2551 ZFS_MODULE_PARAM(zfs_vdev
, vdev_
, removal_max_span
, UINT
, ZMOD_RW
,
2552 "Largest span of free chunks a remap segment can span");
2555 ZFS_MODULE_PARAM(zfs_vdev
, zfs_
, removal_suspend_progress
, UINT
, ZMOD_RW
,
2556 "Pause device removal after this many bytes are copied "
2557 "(debug use only - causes removal to hang)");
2560 EXPORT_SYMBOL(free_from_removing_vdev
);
2561 EXPORT_SYMBOL(spa_removal_get_stats
);
2562 EXPORT_SYMBOL(spa_remove_init
);
2563 EXPORT_SYMBOL(spa_restart_removal
);
2564 EXPORT_SYMBOL(spa_vdev_removal_destroy
);
2565 EXPORT_SYMBOL(spa_vdev_remove
);
2566 EXPORT_SYMBOL(spa_vdev_remove_cancel
);
2567 EXPORT_SYMBOL(spa_vdev_remove_suspend
);
2568 EXPORT_SYMBOL(svr_sync
);