BRT should return EOPNOTSUPP
[zfs.git] / module / zfs / zfs_fm.c
blobc4eb74e873db2b6bd9fadea01e8c5c3f5b73f38d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
105 #ifdef _KERNEL
107 * Duplicate ereport Detection
109 * Some ereports are retained momentarily for detecting duplicates. These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
127 static unsigned int zfs_zevent_retain_max = 2000;
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
134 static unsigned int zfs_zevent_retain_expire_secs = 900;
136 typedef enum zfs_subclass {
137 ZSC_IO,
138 ZSC_DATA,
139 ZSC_CHECKSUM
140 } zfs_subclass_t;
142 typedef struct {
143 /* common criteria */
144 uint64_t re_pool_guid;
145 uint64_t re_vdev_guid;
146 int re_io_error;
147 uint64_t re_io_size;
148 uint64_t re_io_offset;
149 zfs_subclass_t re_subclass;
150 zio_priority_t re_io_priority;
152 /* logical zio criteria (optional) */
153 zbookmark_phys_t re_io_bookmark;
155 /* internal state */
156 avl_node_t re_tree_link;
157 list_node_t re_list_link;
158 uint64_t re_timestamp;
159 } recent_events_node_t;
161 static int
162 recent_events_compare(const void *a, const void *b)
164 const recent_events_node_t *node1 = a;
165 const recent_events_node_t *node2 = b;
166 int cmp;
169 * The comparison order here is somewhat arbitrary.
170 * What's important is that if every criteria matches, then it
171 * is a duplicate (i.e. compare returns 0)
173 if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 return (cmp);
175 if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 return (cmp);
177 if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 return (cmp);
179 if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 return (cmp);
181 if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 return (cmp);
183 if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 return (cmp);
185 if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 return (cmp);
188 const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
191 if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 return (cmp);
193 if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 return (cmp);
195 if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 return (cmp);
197 if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 return (cmp);
200 return (0);
204 * workaround: vdev properties don't have inheritance
206 static uint64_t
207 vdev_prop_get_inherited(vdev_t *vd, vdev_prop_t prop)
209 uint64_t propdef, propval;
211 propdef = vdev_prop_default_numeric(prop);
212 switch (prop) {
213 case VDEV_PROP_CHECKSUM_N:
214 propval = vd->vdev_checksum_n;
215 break;
216 case VDEV_PROP_CHECKSUM_T:
217 propval = vd->vdev_checksum_t;
218 break;
219 case VDEV_PROP_IO_N:
220 propval = vd->vdev_io_n;
221 break;
222 case VDEV_PROP_IO_T:
223 propval = vd->vdev_io_t;
224 break;
225 default:
226 propval = propdef;
227 break;
230 if (propval != propdef)
231 return (propval);
233 if (vd->vdev_parent == NULL)
234 return (propdef);
236 return (vdev_prop_get_inherited(vd->vdev_parent, prop));
239 static void zfs_ereport_schedule_cleaner(void);
242 * background task to clean stale recent event nodes.
244 static void
245 zfs_ereport_cleaner(void *arg)
247 recent_events_node_t *entry;
248 uint64_t now = gethrtime();
251 * purge expired entries
253 mutex_enter(&recent_events_lock);
254 while ((entry = list_tail(&recent_events_list)) != NULL) {
255 uint64_t age = NSEC2SEC(now - entry->re_timestamp);
256 if (age <= zfs_zevent_retain_expire_secs)
257 break;
259 /* remove expired node */
260 avl_remove(&recent_events_tree, entry);
261 list_remove(&recent_events_list, entry);
262 kmem_free(entry, sizeof (*entry));
265 /* Restart the cleaner if more entries remain */
266 recent_events_cleaner_tqid = 0;
267 if (!list_is_empty(&recent_events_list))
268 zfs_ereport_schedule_cleaner();
270 mutex_exit(&recent_events_lock);
273 static void
274 zfs_ereport_schedule_cleaner(void)
276 ASSERT(MUTEX_HELD(&recent_events_lock));
278 uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
280 recent_events_cleaner_tqid = taskq_dispatch_delay(
281 system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
282 ddi_get_lbolt() + NSEC_TO_TICK(timeout));
286 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
288 void
289 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
291 uint64_t vdev_guid, pool_guid;
293 ASSERT(vd != NULL || spa != NULL);
294 if (vd == NULL) {
295 vdev_guid = 0;
296 pool_guid = spa_guid(spa);
297 } else {
298 vdev_guid = vd->vdev_guid;
299 pool_guid = 0;
302 mutex_enter(&recent_events_lock);
304 recent_events_node_t *next = list_head(&recent_events_list);
305 while (next != NULL) {
306 recent_events_node_t *entry = next;
308 next = list_next(&recent_events_list, next);
310 if (entry->re_vdev_guid == vdev_guid ||
311 entry->re_pool_guid == pool_guid) {
312 avl_remove(&recent_events_tree, entry);
313 list_remove(&recent_events_list, entry);
314 kmem_free(entry, sizeof (*entry));
318 mutex_exit(&recent_events_lock);
322 * Check if an ereport would be a duplicate of one recently posted.
324 * An ereport is considered a duplicate if the set of criteria in
325 * recent_events_node_t all match.
327 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
328 * are candidates for duplicate checking.
330 static boolean_t
331 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
332 const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
334 recent_events_node_t search = {0}, *entry;
336 if (vd == NULL || zio == NULL)
337 return (B_FALSE);
339 if (zfs_zevent_retain_max == 0)
340 return (B_FALSE);
342 if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
343 search.re_subclass = ZSC_IO;
344 else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
345 search.re_subclass = ZSC_DATA;
346 else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
347 search.re_subclass = ZSC_CHECKSUM;
348 else
349 return (B_FALSE);
351 search.re_pool_guid = spa_guid(spa);
352 search.re_vdev_guid = vd->vdev_guid;
353 search.re_io_error = zio->io_error;
354 search.re_io_priority = zio->io_priority;
355 /* if size is supplied use it over what's in zio */
356 if (size) {
357 search.re_io_size = size;
358 search.re_io_offset = offset;
359 } else {
360 search.re_io_size = zio->io_size;
361 search.re_io_offset = zio->io_offset;
364 /* grab optional logical zio criteria */
365 if (zb != NULL) {
366 search.re_io_bookmark.zb_objset = zb->zb_objset;
367 search.re_io_bookmark.zb_object = zb->zb_object;
368 search.re_io_bookmark.zb_level = zb->zb_level;
369 search.re_io_bookmark.zb_blkid = zb->zb_blkid;
372 uint64_t now = gethrtime();
374 mutex_enter(&recent_events_lock);
376 /* check if we have seen this one recently */
377 entry = avl_find(&recent_events_tree, &search, NULL);
378 if (entry != NULL) {
379 uint64_t age = NSEC2SEC(now - entry->re_timestamp);
382 * There is still an active cleaner (since we're here).
383 * Reset the last seen time for this duplicate entry
384 * so that its lifespand gets extended.
386 list_remove(&recent_events_list, entry);
387 list_insert_head(&recent_events_list, entry);
388 entry->re_timestamp = now;
390 zfs_zevent_track_duplicate();
391 mutex_exit(&recent_events_lock);
393 return (age <= zfs_zevent_retain_expire_secs);
396 if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
397 /* recycle oldest node */
398 entry = list_tail(&recent_events_list);
399 ASSERT(entry != NULL);
400 list_remove(&recent_events_list, entry);
401 avl_remove(&recent_events_tree, entry);
402 } else {
403 entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
406 /* record this as a recent ereport */
407 *entry = search;
408 avl_add(&recent_events_tree, entry);
409 list_insert_head(&recent_events_list, entry);
410 entry->re_timestamp = now;
412 /* Start a cleaner if not already scheduled */
413 if (recent_events_cleaner_tqid == 0)
414 zfs_ereport_schedule_cleaner();
416 mutex_exit(&recent_events_lock);
417 return (B_FALSE);
420 void
421 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
423 if (nvl)
424 fm_nvlist_destroy(nvl, FM_NVA_FREE);
426 if (detector)
427 fm_nvlist_destroy(detector, FM_NVA_FREE);
431 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
432 * flood zevent consumers when a disk is acting up.
434 * Returns 1 if we're ratelimiting, 0 if not.
436 static int
437 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
439 int rc = 0;
441 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
442 * are. Invert it to get our return value.
444 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
445 rc = !zfs_ratelimit(&vd->vdev_delay_rl);
446 } else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
447 rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
448 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
449 rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
452 if (rc) {
453 /* We're rate limiting */
454 fm_erpt_dropped_increment();
457 return (rc);
461 * Return B_TRUE if the event actually posted, B_FALSE if not.
463 static boolean_t
464 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
465 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
466 zio_t *zio, uint64_t stateoroffset, uint64_t size)
468 nvlist_t *ereport, *detector;
470 uint64_t ena;
471 char class[64];
473 if ((ereport = fm_nvlist_create(NULL)) == NULL)
474 return (B_FALSE);
476 if ((detector = fm_nvlist_create(NULL)) == NULL) {
477 fm_nvlist_destroy(ereport, FM_NVA_FREE);
478 return (B_FALSE);
482 * Serialize ereport generation
484 mutex_enter(&spa->spa_errlist_lock);
487 * Determine the ENA to use for this event. If we are in a loading
488 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
489 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
491 if (spa_load_state(spa) != SPA_LOAD_NONE) {
492 if (spa->spa_ena == 0)
493 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
494 ena = spa->spa_ena;
495 } else if (zio != NULL && zio->io_logical != NULL) {
496 if (zio->io_logical->io_ena == 0)
497 zio->io_logical->io_ena =
498 fm_ena_generate(0, FM_ENA_FMT1);
499 ena = zio->io_logical->io_ena;
500 } else {
501 ena = fm_ena_generate(0, FM_ENA_FMT1);
505 * Construct the full class, detector, and other standard FMA fields.
507 (void) snprintf(class, sizeof (class), "%s.%s",
508 ZFS_ERROR_CLASS, subclass);
510 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
511 vd != NULL ? vd->vdev_guid : 0);
513 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
516 * Construct the per-ereport payload, depending on which parameters are
517 * passed in.
521 * Generic payload members common to all ereports.
523 fm_payload_set(ereport,
524 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
525 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
526 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
527 (uint64_t)spa_state(spa),
528 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
529 (int32_t)spa_load_state(spa), NULL);
531 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
532 DATA_TYPE_STRING,
533 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
534 FM_EREPORT_FAILMODE_WAIT :
535 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
536 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
537 NULL);
539 if (vd != NULL) {
540 vdev_t *pvd = vd->vdev_parent;
541 vdev_queue_t *vq = &vd->vdev_queue;
542 vdev_stat_t *vs = &vd->vdev_stat;
543 vdev_t *spare_vd;
544 uint64_t *spare_guids;
545 char **spare_paths;
546 int i, spare_count;
548 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
549 DATA_TYPE_UINT64, vd->vdev_guid,
550 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
551 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
552 if (vd->vdev_path != NULL)
553 fm_payload_set(ereport,
554 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
555 DATA_TYPE_STRING, vd->vdev_path, NULL);
556 if (vd->vdev_devid != NULL)
557 fm_payload_set(ereport,
558 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
559 DATA_TYPE_STRING, vd->vdev_devid, NULL);
560 if (vd->vdev_fru != NULL)
561 fm_payload_set(ereport,
562 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
563 DATA_TYPE_STRING, vd->vdev_fru, NULL);
564 if (vd->vdev_enc_sysfs_path != NULL)
565 fm_payload_set(ereport,
566 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
567 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
568 if (vd->vdev_ashift)
569 fm_payload_set(ereport,
570 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
571 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
573 if (vq != NULL) {
574 fm_payload_set(ereport,
575 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
576 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
577 fm_payload_set(ereport,
578 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
579 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
582 if (vs != NULL) {
583 fm_payload_set(ereport,
584 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
585 DATA_TYPE_UINT64, vs->vs_read_errors,
586 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
587 DATA_TYPE_UINT64, vs->vs_write_errors,
588 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
589 DATA_TYPE_UINT64, vs->vs_checksum_errors,
590 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
591 DATA_TYPE_UINT64, vs->vs_slow_ios,
592 NULL);
595 if (pvd != NULL) {
596 fm_payload_set(ereport,
597 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
598 DATA_TYPE_UINT64, pvd->vdev_guid,
599 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
600 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
601 NULL);
602 if (pvd->vdev_path)
603 fm_payload_set(ereport,
604 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
605 DATA_TYPE_STRING, pvd->vdev_path, NULL);
606 if (pvd->vdev_devid)
607 fm_payload_set(ereport,
608 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
609 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
612 spare_count = spa->spa_spares.sav_count;
613 spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
614 KM_SLEEP);
615 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
616 KM_SLEEP);
618 for (i = 0; i < spare_count; i++) {
619 spare_vd = spa->spa_spares.sav_vdevs[i];
620 if (spare_vd) {
621 spare_paths[i] = spare_vd->vdev_path;
622 spare_guids[i] = spare_vd->vdev_guid;
626 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
627 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
628 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
629 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
631 kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
632 kmem_free(spare_paths, sizeof (char *) * spare_count);
635 if (zio != NULL) {
637 * Payload common to all I/Os.
639 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
640 DATA_TYPE_INT32, zio->io_error, NULL);
641 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
642 DATA_TYPE_INT32, zio->io_flags, NULL);
643 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
644 DATA_TYPE_UINT32, zio->io_stage, NULL);
645 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
646 DATA_TYPE_UINT32, zio->io_pipeline, NULL);
647 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
648 DATA_TYPE_UINT64, zio->io_delay, NULL);
649 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
650 DATA_TYPE_UINT64, zio->io_timestamp, NULL);
651 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
652 DATA_TYPE_UINT64, zio->io_delta, NULL);
653 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
654 DATA_TYPE_UINT32, zio->io_priority, NULL);
657 * If the 'size' parameter is non-zero, it indicates this is a
658 * RAID-Z or other I/O where the physical offset and length are
659 * provided for us, instead of within the zio_t.
661 if (vd != NULL) {
662 if (size)
663 fm_payload_set(ereport,
664 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
665 DATA_TYPE_UINT64, stateoroffset,
666 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
667 DATA_TYPE_UINT64, size, NULL);
668 else
669 fm_payload_set(ereport,
670 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
671 DATA_TYPE_UINT64, zio->io_offset,
672 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
673 DATA_TYPE_UINT64, zio->io_size, NULL);
675 } else if (vd != NULL) {
677 * If we have a vdev but no zio, this is a device fault, and the
678 * 'stateoroffset' parameter indicates the previous state of the
679 * vdev.
681 fm_payload_set(ereport,
682 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
683 DATA_TYPE_UINT64, stateoroffset, NULL);
687 * Payload for I/Os with corresponding logical information.
689 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
690 fm_payload_set(ereport,
691 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
692 DATA_TYPE_UINT64, zb->zb_objset,
693 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
694 DATA_TYPE_UINT64, zb->zb_object,
695 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
696 DATA_TYPE_INT64, zb->zb_level,
697 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
698 DATA_TYPE_UINT64, zb->zb_blkid, NULL);
702 * Payload for tuning the zed
704 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
705 uint64_t cksum_n, cksum_t;
707 cksum_n = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_N);
708 if (cksum_n != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N))
709 fm_payload_set(ereport,
710 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
711 DATA_TYPE_UINT64,
712 cksum_n,
713 NULL);
715 cksum_t = vdev_prop_get_inherited(vd, VDEV_PROP_CHECKSUM_T);
716 if (cksum_t != vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T))
717 fm_payload_set(ereport,
718 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
719 DATA_TYPE_UINT64,
720 cksum_t,
721 NULL);
724 if (vd != NULL && strcmp(subclass, FM_EREPORT_ZFS_IO) == 0) {
725 uint64_t io_n, io_t;
727 io_n = vdev_prop_get_inherited(vd, VDEV_PROP_IO_N);
728 if (io_n != vdev_prop_default_numeric(VDEV_PROP_IO_N))
729 fm_payload_set(ereport,
730 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
731 DATA_TYPE_UINT64,
732 io_n,
733 NULL);
735 io_t = vdev_prop_get_inherited(vd, VDEV_PROP_IO_T);
736 if (io_t != vdev_prop_default_numeric(VDEV_PROP_IO_T))
737 fm_payload_set(ereport,
738 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
739 DATA_TYPE_UINT64,
740 io_t,
741 NULL);
744 mutex_exit(&spa->spa_errlist_lock);
746 *ereport_out = ereport;
747 *detector_out = detector;
748 return (B_TRUE);
751 /* if it's <= 128 bytes, save the corruption directly */
752 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
754 #define MAX_RANGES 16
756 typedef struct zfs_ecksum_info {
757 /* inline arrays of bits set and cleared. */
758 uint64_t zei_bits_set[ZFM_MAX_INLINE];
759 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
762 * for each range, the number of bits set and cleared. The Hamming
763 * distance between the good and bad buffers is the sum of them all.
765 uint32_t zei_range_sets[MAX_RANGES];
766 uint32_t zei_range_clears[MAX_RANGES];
768 struct zei_ranges {
769 uint32_t zr_start;
770 uint32_t zr_end;
771 } zei_ranges[MAX_RANGES];
773 size_t zei_range_count;
774 uint32_t zei_mingap;
775 uint32_t zei_allowed_mingap;
777 } zfs_ecksum_info_t;
779 static void
780 update_bad_bits(uint64_t value_arg, uint32_t *count)
782 size_t i;
783 size_t bits = 0;
784 uint64_t value = BE_64(value_arg);
786 /* We store the bits in big-endian (largest-first) order */
787 for (i = 0; i < 64; i++) {
788 if (value & (1ull << i))
789 ++bits;
791 /* update the count of bits changed */
792 *count += bits;
796 * We've now filled up the range array, and need to increase "mingap" and
797 * shrink the range list accordingly. zei_mingap is always the smallest
798 * distance between array entries, so we set the new_allowed_gap to be
799 * one greater than that. We then go through the list, joining together
800 * any ranges which are closer than the new_allowed_gap.
802 * By construction, there will be at least one. We also update zei_mingap
803 * to the new smallest gap, to prepare for our next invocation.
805 static void
806 zei_shrink_ranges(zfs_ecksum_info_t *eip)
808 uint32_t mingap = UINT32_MAX;
809 uint32_t new_allowed_gap = eip->zei_mingap + 1;
811 size_t idx, output;
812 size_t max = eip->zei_range_count;
814 struct zei_ranges *r = eip->zei_ranges;
816 ASSERT3U(eip->zei_range_count, >, 0);
817 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
819 output = idx = 0;
820 while (idx < max - 1) {
821 uint32_t start = r[idx].zr_start;
822 uint32_t end = r[idx].zr_end;
824 while (idx < max - 1) {
825 idx++;
827 uint32_t nstart = r[idx].zr_start;
828 uint32_t nend = r[idx].zr_end;
830 uint32_t gap = nstart - end;
831 if (gap < new_allowed_gap) {
832 end = nend;
833 continue;
835 if (gap < mingap)
836 mingap = gap;
837 break;
839 r[output].zr_start = start;
840 r[output].zr_end = end;
841 output++;
843 ASSERT3U(output, <, eip->zei_range_count);
844 eip->zei_range_count = output;
845 eip->zei_mingap = mingap;
846 eip->zei_allowed_mingap = new_allowed_gap;
849 static void
850 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
852 struct zei_ranges *r = eip->zei_ranges;
853 size_t count = eip->zei_range_count;
855 if (count >= MAX_RANGES) {
856 zei_shrink_ranges(eip);
857 count = eip->zei_range_count;
859 if (count == 0) {
860 eip->zei_mingap = UINT32_MAX;
861 eip->zei_allowed_mingap = 1;
862 } else {
863 int gap = start - r[count - 1].zr_end;
865 if (gap < eip->zei_allowed_mingap) {
866 r[count - 1].zr_end = end;
867 return;
869 if (gap < eip->zei_mingap)
870 eip->zei_mingap = gap;
872 r[count].zr_start = start;
873 r[count].zr_end = end;
874 eip->zei_range_count++;
877 static size_t
878 zei_range_total_size(zfs_ecksum_info_t *eip)
880 struct zei_ranges *r = eip->zei_ranges;
881 size_t count = eip->zei_range_count;
882 size_t result = 0;
883 size_t idx;
885 for (idx = 0; idx < count; idx++)
886 result += (r[idx].zr_end - r[idx].zr_start);
888 return (result);
891 static zfs_ecksum_info_t *
892 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
893 const abd_t *goodabd, const abd_t *badabd, size_t size,
894 boolean_t drop_if_identical)
896 const uint64_t *good;
897 const uint64_t *bad;
899 size_t nui64s = size / sizeof (uint64_t);
901 size_t inline_size;
902 int no_inline = 0;
903 size_t idx;
904 size_t range;
906 size_t offset = 0;
907 ssize_t start = -1;
909 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
911 /* don't do any annotation for injected checksum errors */
912 if (info != NULL && info->zbc_injected)
913 return (eip);
915 if (info != NULL && info->zbc_has_cksum) {
916 fm_payload_set(ereport,
917 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
918 DATA_TYPE_STRING,
919 info->zbc_checksum_name,
920 NULL);
922 if (info->zbc_byteswapped) {
923 fm_payload_set(ereport,
924 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
925 DATA_TYPE_BOOLEAN, 1,
926 NULL);
930 if (badabd == NULL || goodabd == NULL)
931 return (eip);
933 ASSERT3U(nui64s, <=, UINT32_MAX);
934 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
935 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
936 ASSERT3U(size, <=, UINT32_MAX);
938 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
939 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
941 /* build up the range list by comparing the two buffers. */
942 for (idx = 0; idx < nui64s; idx++) {
943 if (good[idx] == bad[idx]) {
944 if (start == -1)
945 continue;
947 zei_add_range(eip, start, idx);
948 start = -1;
949 } else {
950 if (start != -1)
951 continue;
953 start = idx;
956 if (start != -1)
957 zei_add_range(eip, start, idx);
959 /* See if it will fit in our inline buffers */
960 inline_size = zei_range_total_size(eip);
961 if (inline_size > ZFM_MAX_INLINE)
962 no_inline = 1;
965 * If there is no change and we want to drop if the buffers are
966 * identical, do so.
968 if (inline_size == 0 && drop_if_identical) {
969 kmem_free(eip, sizeof (*eip));
970 abd_return_buf((abd_t *)goodabd, (void *)good, size);
971 abd_return_buf((abd_t *)badabd, (void *)bad, size);
972 return (NULL);
976 * Now walk through the ranges, filling in the details of the
977 * differences. Also convert our uint64_t-array offsets to byte
978 * offsets.
980 for (range = 0; range < eip->zei_range_count; range++) {
981 size_t start = eip->zei_ranges[range].zr_start;
982 size_t end = eip->zei_ranges[range].zr_end;
984 for (idx = start; idx < end; idx++) {
985 uint64_t set, cleared;
987 // bits set in bad, but not in good
988 set = ((~good[idx]) & bad[idx]);
989 // bits set in good, but not in bad
990 cleared = (good[idx] & (~bad[idx]));
992 if (!no_inline) {
993 ASSERT3U(offset, <, inline_size);
994 eip->zei_bits_set[offset] = set;
995 eip->zei_bits_cleared[offset] = cleared;
996 offset++;
999 update_bad_bits(set, &eip->zei_range_sets[range]);
1000 update_bad_bits(cleared, &eip->zei_range_clears[range]);
1003 /* convert to byte offsets */
1004 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
1005 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
1008 abd_return_buf((abd_t *)goodabd, (void *)good, size);
1009 abd_return_buf((abd_t *)badabd, (void *)bad, size);
1011 eip->zei_allowed_mingap *= sizeof (uint64_t);
1012 inline_size *= sizeof (uint64_t);
1014 /* fill in ereport */
1015 fm_payload_set(ereport,
1016 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
1017 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
1018 (uint32_t *)eip->zei_ranges,
1019 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
1020 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
1021 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
1022 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
1023 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
1024 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
1025 NULL);
1027 if (!no_inline) {
1028 fm_payload_set(ereport,
1029 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
1030 DATA_TYPE_UINT8_ARRAY,
1031 inline_size, (uint8_t *)eip->zei_bits_set,
1032 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
1033 DATA_TYPE_UINT8_ARRAY,
1034 inline_size, (uint8_t *)eip->zei_bits_cleared,
1035 NULL);
1037 return (eip);
1039 #else
1040 void
1041 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
1043 (void) spa, (void) vd;
1045 #endif
1048 * Make sure our event is still valid for the given zio/vdev/pool. For example,
1049 * we don't want to keep logging events for a faulted or missing vdev.
1051 boolean_t
1052 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1054 #ifdef _KERNEL
1056 * If we are doing a spa_tryimport() or in recovery mode,
1057 * ignore errors.
1059 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1060 spa_load_state(spa) == SPA_LOAD_RECOVER)
1061 return (B_FALSE);
1064 * If we are in the middle of opening a pool, and the previous attempt
1065 * failed, don't bother logging any new ereports - we're just going to
1066 * get the same diagnosis anyway.
1068 if (spa_load_state(spa) != SPA_LOAD_NONE &&
1069 spa->spa_last_open_failed)
1070 return (B_FALSE);
1072 if (zio != NULL) {
1074 * If this is not a read or write zio, ignore the error. This
1075 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1077 if (zio->io_type != ZIO_TYPE_READ &&
1078 zio->io_type != ZIO_TYPE_WRITE)
1079 return (B_FALSE);
1081 if (vd != NULL) {
1083 * If the vdev has already been marked as failing due
1084 * to a failed probe, then ignore any subsequent I/O
1085 * errors, as the DE will automatically fault the vdev
1086 * on the first such failure. This also catches cases
1087 * where vdev_remove_wanted is set and the device has
1088 * not yet been asynchronously placed into the REMOVED
1089 * state.
1091 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1092 return (B_FALSE);
1095 * Ignore checksum errors for reads from DTL regions of
1096 * leaf vdevs.
1098 if (zio->io_type == ZIO_TYPE_READ &&
1099 zio->io_error == ECKSUM &&
1100 vd->vdev_ops->vdev_op_leaf &&
1101 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1102 return (B_FALSE);
1107 * For probe failure, we want to avoid posting ereports if we've
1108 * already removed the device in the meantime.
1110 if (vd != NULL &&
1111 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1112 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1113 return (B_FALSE);
1115 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1116 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1117 (zio != NULL) && (!zio->io_timestamp)) {
1118 return (B_FALSE);
1120 #else
1121 (void) subclass, (void) spa, (void) vd, (void) zio;
1122 #endif
1123 return (B_TRUE);
1127 * Post an ereport for the given subclass
1129 * Returns
1130 * - 0 if an event was posted
1131 * - EINVAL if there was a problem posting event
1132 * - EBUSY if the event was rate limited
1133 * - EALREADY if the event was already posted (duplicate)
1136 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1137 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1139 int rc = 0;
1140 #ifdef _KERNEL
1141 nvlist_t *ereport = NULL;
1142 nvlist_t *detector = NULL;
1144 if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1145 return (EINVAL);
1147 if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1148 return (SET_ERROR(EALREADY));
1150 if (zfs_is_ratelimiting_event(subclass, vd))
1151 return (SET_ERROR(EBUSY));
1153 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1154 zb, zio, state, 0))
1155 return (SET_ERROR(EINVAL)); /* couldn't post event */
1157 if (ereport == NULL)
1158 return (SET_ERROR(EINVAL));
1160 /* Cleanup is handled by the callback function */
1161 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1162 #else
1163 (void) subclass, (void) spa, (void) vd, (void) zb, (void) zio,
1164 (void) state;
1165 #endif
1166 return (rc);
1170 * Prepare a checksum ereport
1172 * Returns
1173 * - 0 if an event was posted
1174 * - EINVAL if there was a problem posting event
1175 * - EBUSY if the event was rate limited
1176 * - EALREADY if the event was already posted (duplicate)
1179 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1180 struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1182 zio_cksum_report_t *report;
1184 #ifdef _KERNEL
1185 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1186 return (SET_ERROR(EINVAL));
1188 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1189 offset, length))
1190 return (SET_ERROR(EALREADY));
1192 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1193 return (SET_ERROR(EBUSY));
1194 #else
1195 (void) zb, (void) offset;
1196 #endif
1198 report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1200 zio_vsd_default_cksum_report(zio, report);
1202 /* copy the checksum failure information if it was provided */
1203 if (info != NULL) {
1204 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1205 memcpy(report->zcr_ckinfo, info, sizeof (*info));
1208 report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1209 report->zcr_align =
1210 vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1211 report->zcr_length = length;
1213 #ifdef _KERNEL
1214 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1215 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1217 if (report->zcr_ereport == NULL) {
1218 zfs_ereport_free_checksum(report);
1219 return (0);
1221 #endif
1223 mutex_enter(&spa->spa_errlist_lock);
1224 report->zcr_next = zio->io_logical->io_cksum_report;
1225 zio->io_logical->io_cksum_report = report;
1226 mutex_exit(&spa->spa_errlist_lock);
1227 return (0);
1230 void
1231 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1232 const abd_t *bad_data, boolean_t drop_if_identical)
1234 #ifdef _KERNEL
1235 zfs_ecksum_info_t *info;
1237 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1238 good_data, bad_data, report->zcr_length, drop_if_identical);
1239 if (info != NULL)
1240 zfs_zevent_post(report->zcr_ereport,
1241 report->zcr_detector, zfs_zevent_post_cb);
1242 else
1243 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1245 report->zcr_ereport = report->zcr_detector = NULL;
1246 if (info != NULL)
1247 kmem_free(info, sizeof (*info));
1248 #else
1249 (void) report, (void) good_data, (void) bad_data,
1250 (void) drop_if_identical;
1251 #endif
1254 void
1255 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1257 #ifdef _KERNEL
1258 if (rpt->zcr_ereport != NULL) {
1259 fm_nvlist_destroy(rpt->zcr_ereport,
1260 FM_NVA_FREE);
1261 fm_nvlist_destroy(rpt->zcr_detector,
1262 FM_NVA_FREE);
1264 #endif
1265 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1267 if (rpt->zcr_ckinfo != NULL)
1268 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1270 kmem_free(rpt, sizeof (*rpt));
1274 * Post a checksum ereport
1276 * Returns
1277 * - 0 if an event was posted
1278 * - EINVAL if there was a problem posting event
1279 * - EBUSY if the event was rate limited
1280 * - EALREADY if the event was already posted (duplicate)
1283 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1284 struct zio *zio, uint64_t offset, uint64_t length,
1285 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1287 int rc = 0;
1288 #ifdef _KERNEL
1289 nvlist_t *ereport = NULL;
1290 nvlist_t *detector = NULL;
1291 zfs_ecksum_info_t *info;
1293 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1294 return (SET_ERROR(EINVAL));
1296 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1297 offset, length))
1298 return (SET_ERROR(EALREADY));
1300 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1301 return (SET_ERROR(EBUSY));
1303 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1304 spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1305 return (SET_ERROR(EINVAL));
1308 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1309 B_FALSE);
1311 if (info != NULL) {
1312 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1313 kmem_free(info, sizeof (*info));
1315 #else
1316 (void) spa, (void) vd, (void) zb, (void) zio, (void) offset,
1317 (void) length, (void) good_data, (void) bad_data, (void) zbc;
1318 #endif
1319 return (rc);
1323 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1324 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1325 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1326 * additional details refer to the zed(8) man page.
1328 nvlist_t *
1329 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1330 nvlist_t *aux)
1332 nvlist_t *resource = NULL;
1333 #ifdef _KERNEL
1334 char class[64];
1336 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1337 return (NULL);
1339 if ((resource = fm_nvlist_create(NULL)) == NULL)
1340 return (NULL);
1342 (void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1343 ZFS_ERROR_CLASS, name);
1344 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1345 VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1346 VERIFY0(nvlist_add_string(resource,
1347 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1348 VERIFY0(nvlist_add_uint64(resource,
1349 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1350 VERIFY0(nvlist_add_uint64(resource,
1351 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1352 VERIFY0(nvlist_add_int32(resource,
1353 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1355 if (vd) {
1356 VERIFY0(nvlist_add_uint64(resource,
1357 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1358 VERIFY0(nvlist_add_uint64(resource,
1359 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1360 if (vd->vdev_path != NULL)
1361 VERIFY0(nvlist_add_string(resource,
1362 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1363 if (vd->vdev_devid != NULL)
1364 VERIFY0(nvlist_add_string(resource,
1365 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1366 if (vd->vdev_fru != NULL)
1367 VERIFY0(nvlist_add_string(resource,
1368 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1369 if (vd->vdev_enc_sysfs_path != NULL)
1370 VERIFY0(nvlist_add_string(resource,
1371 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1372 vd->vdev_enc_sysfs_path));
1375 /* also copy any optional payload data */
1376 if (aux) {
1377 nvpair_t *elem = NULL;
1379 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1380 (void) nvlist_add_nvpair(resource, elem);
1382 #else
1383 (void) spa, (void) vd, (void) type, (void) name, (void) aux;
1384 #endif
1385 return (resource);
1388 static void
1389 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1390 nvlist_t *aux)
1392 #ifdef _KERNEL
1393 nvlist_t *resource;
1395 resource = zfs_event_create(spa, vd, type, name, aux);
1396 if (resource)
1397 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1398 #else
1399 (void) spa, (void) vd, (void) type, (void) name, (void) aux;
1400 #endif
1404 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1405 * has been removed from the system. This will cause the DE to ignore any
1406 * recent I/O errors, inferring that they are due to the asynchronous device
1407 * removal.
1409 void
1410 zfs_post_remove(spa_t *spa, vdev_t *vd)
1412 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1416 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1417 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1418 * handled by higher level logic, and no vdev fault should be generated.
1420 void
1421 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1423 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1427 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1428 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1429 * cause the retire agent to repair any outstanding fault management cases
1430 * open because the device was not found (fault.fs.zfs.device).
1432 void
1433 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1435 #ifdef _KERNEL
1436 nvlist_t *aux;
1439 * Add optional supplemental keys to payload
1441 aux = fm_nvlist_create(NULL);
1442 if (vd && aux) {
1443 if (vd->vdev_physpath) {
1444 fnvlist_add_string(aux,
1445 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1446 vd->vdev_physpath);
1448 if (vd->vdev_enc_sysfs_path) {
1449 fnvlist_add_string(aux,
1450 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1451 vd->vdev_enc_sysfs_path);
1454 fnvlist_add_uint64(aux,
1455 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1458 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1459 aux);
1461 if (aux)
1462 fm_nvlist_destroy(aux, FM_NVA_FREE);
1463 #else
1464 (void) spa, (void) vd, (void) laststate;
1465 #endif
1468 #ifdef _KERNEL
1469 void
1470 zfs_ereport_init(void)
1472 mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1473 list_create(&recent_events_list, sizeof (recent_events_node_t),
1474 offsetof(recent_events_node_t, re_list_link));
1475 avl_create(&recent_events_tree, recent_events_compare,
1476 sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1477 re_tree_link));
1481 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1482 * for the system_delay_taskq to drain.
1484 void
1485 zfs_ereport_taskq_fini(void)
1487 mutex_enter(&recent_events_lock);
1488 if (recent_events_cleaner_tqid != 0) {
1489 taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1490 recent_events_cleaner_tqid = 0;
1492 mutex_exit(&recent_events_lock);
1495 void
1496 zfs_ereport_fini(void)
1498 recent_events_node_t *entry;
1500 while ((entry = list_remove_head(&recent_events_list)) != NULL) {
1501 avl_remove(&recent_events_tree, entry);
1502 kmem_free(entry, sizeof (*entry));
1504 avl_destroy(&recent_events_tree);
1505 list_destroy(&recent_events_list);
1506 mutex_destroy(&recent_events_lock);
1509 void
1510 zfs_ereport_snapshot_post(const char *subclass, spa_t *spa, const char *name)
1512 nvlist_t *aux;
1514 aux = fm_nvlist_create(NULL);
1515 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME, name);
1517 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1518 fm_nvlist_destroy(aux, FM_NVA_FREE);
1522 * Post when a event when a zvol is created or removed
1524 * This is currently only used by macOS, since it uses the event to create
1525 * symlinks between the volume name (mypool/myvol) and the actual /dev
1526 * device (/dev/disk3). For example:
1528 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1530 * name: The full name of the zvol ("mypool/myvol")
1531 * dev_name: The full /dev name for the zvol ("/dev/disk3")
1532 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3")
1534 void
1535 zfs_ereport_zvol_post(const char *subclass, const char *name,
1536 const char *dev_name, const char *raw_name)
1538 nvlist_t *aux;
1539 char *r;
1541 boolean_t locked = mutex_owned(&spa_namespace_lock);
1542 if (!locked) mutex_enter(&spa_namespace_lock);
1543 spa_t *spa = spa_lookup(name);
1544 if (!locked) mutex_exit(&spa_namespace_lock);
1546 if (spa == NULL)
1547 return;
1549 aux = fm_nvlist_create(NULL);
1550 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME, dev_name);
1551 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME,
1552 raw_name);
1553 r = strchr(name, '/');
1554 if (r && r[1])
1555 fnvlist_add_string(aux, FM_EREPORT_PAYLOAD_ZFS_VOLUME, &r[1]);
1557 zfs_post_common(spa, NULL, FM_RSRC_CLASS, subclass, aux);
1558 fm_nvlist_destroy(aux, FM_NVA_FREE);
1561 EXPORT_SYMBOL(zfs_ereport_post);
1562 EXPORT_SYMBOL(zfs_ereport_is_valid);
1563 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1564 EXPORT_SYMBOL(zfs_post_remove);
1565 EXPORT_SYMBOL(zfs_post_autoreplace);
1566 EXPORT_SYMBOL(zfs_post_state_change);
1568 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1569 "Maximum recent zevents records to retain for duplicate checking");
1570 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1571 "Expiration time for recent zevents records");
1572 #endif /* _KERNEL */