4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
31 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
35 #include <sys/zio_checksum.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
47 * EREPORT POOL VDEV IO
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
63 * | Aggregate I/O | No associated logical data or device
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
107 * Duplicate ereport Detection
109 * Some ereports are retained momentarily for detecting duplicates. These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
116 static list_t recent_events_list
;
117 static avl_tree_t recent_events_tree
;
118 static kmutex_t recent_events_lock
;
119 static taskqid_t recent_events_cleaner_tqid
;
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
127 static unsigned int zfs_zevent_retain_max
= 2000;
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
134 static unsigned int zfs_zevent_retain_expire_secs
= 900;
136 typedef enum zfs_subclass
{
143 /* common criteria */
144 uint64_t re_pool_guid
;
145 uint64_t re_vdev_guid
;
148 uint64_t re_io_offset
;
149 zfs_subclass_t re_subclass
;
150 zio_priority_t re_io_priority
;
152 /* logical zio criteria (optional) */
153 zbookmark_phys_t re_io_bookmark
;
156 avl_node_t re_tree_link
;
157 list_node_t re_list_link
;
158 uint64_t re_timestamp
;
159 } recent_events_node_t
;
162 recent_events_compare(const void *a
, const void *b
)
164 const recent_events_node_t
*node1
= a
;
165 const recent_events_node_t
*node2
= b
;
169 * The comparison order here is somewhat arbitrary.
170 * What's important is that if every criteria matches, then it
171 * is a duplicate (i.e. compare returns 0)
173 if ((cmp
= TREE_CMP(node1
->re_subclass
, node2
->re_subclass
)) != 0)
175 if ((cmp
= TREE_CMP(node1
->re_pool_guid
, node2
->re_pool_guid
)) != 0)
177 if ((cmp
= TREE_CMP(node1
->re_vdev_guid
, node2
->re_vdev_guid
)) != 0)
179 if ((cmp
= TREE_CMP(node1
->re_io_error
, node2
->re_io_error
)) != 0)
181 if ((cmp
= TREE_CMP(node1
->re_io_priority
, node2
->re_io_priority
)) != 0)
183 if ((cmp
= TREE_CMP(node1
->re_io_size
, node2
->re_io_size
)) != 0)
185 if ((cmp
= TREE_CMP(node1
->re_io_offset
, node2
->re_io_offset
)) != 0)
188 const zbookmark_phys_t
*zb1
= &node1
->re_io_bookmark
;
189 const zbookmark_phys_t
*zb2
= &node2
->re_io_bookmark
;
191 if ((cmp
= TREE_CMP(zb1
->zb_objset
, zb2
->zb_objset
)) != 0)
193 if ((cmp
= TREE_CMP(zb1
->zb_object
, zb2
->zb_object
)) != 0)
195 if ((cmp
= TREE_CMP(zb1
->zb_level
, zb2
->zb_level
)) != 0)
197 if ((cmp
= TREE_CMP(zb1
->zb_blkid
, zb2
->zb_blkid
)) != 0)
204 * workaround: vdev properties don't have inheritance
207 vdev_prop_get_inherited(vdev_t
*vd
, vdev_prop_t prop
)
209 uint64_t propdef
, propval
;
211 propdef
= vdev_prop_default_numeric(prop
);
213 case VDEV_PROP_CHECKSUM_N
:
214 propval
= vd
->vdev_checksum_n
;
216 case VDEV_PROP_CHECKSUM_T
:
217 propval
= vd
->vdev_checksum_t
;
220 propval
= vd
->vdev_io_n
;
223 propval
= vd
->vdev_io_t
;
230 if (propval
!= propdef
)
233 if (vd
->vdev_parent
== NULL
)
236 return (vdev_prop_get_inherited(vd
->vdev_parent
, prop
));
239 static void zfs_ereport_schedule_cleaner(void);
242 * background task to clean stale recent event nodes.
245 zfs_ereport_cleaner(void *arg
)
247 recent_events_node_t
*entry
;
248 uint64_t now
= gethrtime();
251 * purge expired entries
253 mutex_enter(&recent_events_lock
);
254 while ((entry
= list_tail(&recent_events_list
)) != NULL
) {
255 uint64_t age
= NSEC2SEC(now
- entry
->re_timestamp
);
256 if (age
<= zfs_zevent_retain_expire_secs
)
259 /* remove expired node */
260 avl_remove(&recent_events_tree
, entry
);
261 list_remove(&recent_events_list
, entry
);
262 kmem_free(entry
, sizeof (*entry
));
265 /* Restart the cleaner if more entries remain */
266 recent_events_cleaner_tqid
= 0;
267 if (!list_is_empty(&recent_events_list
))
268 zfs_ereport_schedule_cleaner();
270 mutex_exit(&recent_events_lock
);
274 zfs_ereport_schedule_cleaner(void)
276 ASSERT(MUTEX_HELD(&recent_events_lock
));
278 uint64_t timeout
= SEC2NSEC(zfs_zevent_retain_expire_secs
+ 1);
280 recent_events_cleaner_tqid
= taskq_dispatch_delay(
281 system_delay_taskq
, zfs_ereport_cleaner
, NULL
, TQ_SLEEP
,
282 ddi_get_lbolt() + NSEC_TO_TICK(timeout
));
286 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
289 zfs_ereport_clear(spa_t
*spa
, vdev_t
*vd
)
291 uint64_t vdev_guid
, pool_guid
;
293 ASSERT(vd
!= NULL
|| spa
!= NULL
);
296 pool_guid
= spa_guid(spa
);
298 vdev_guid
= vd
->vdev_guid
;
302 mutex_enter(&recent_events_lock
);
304 recent_events_node_t
*next
= list_head(&recent_events_list
);
305 while (next
!= NULL
) {
306 recent_events_node_t
*entry
= next
;
308 next
= list_next(&recent_events_list
, next
);
310 if (entry
->re_vdev_guid
== vdev_guid
||
311 entry
->re_pool_guid
== pool_guid
) {
312 avl_remove(&recent_events_tree
, entry
);
313 list_remove(&recent_events_list
, entry
);
314 kmem_free(entry
, sizeof (*entry
));
318 mutex_exit(&recent_events_lock
);
322 * Check if an ereport would be a duplicate of one recently posted.
324 * An ereport is considered a duplicate if the set of criteria in
325 * recent_events_node_t all match.
327 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
328 * are candidates for duplicate checking.
331 zfs_ereport_is_duplicate(const char *subclass
, spa_t
*spa
, vdev_t
*vd
,
332 const zbookmark_phys_t
*zb
, zio_t
*zio
, uint64_t offset
, uint64_t size
)
334 recent_events_node_t search
= {0}, *entry
;
336 if (vd
== NULL
|| zio
== NULL
)
339 if (zfs_zevent_retain_max
== 0)
342 if (strcmp(subclass
, FM_EREPORT_ZFS_IO
) == 0)
343 search
.re_subclass
= ZSC_IO
;
344 else if (strcmp(subclass
, FM_EREPORT_ZFS_DATA
) == 0)
345 search
.re_subclass
= ZSC_DATA
;
346 else if (strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0)
347 search
.re_subclass
= ZSC_CHECKSUM
;
351 search
.re_pool_guid
= spa_guid(spa
);
352 search
.re_vdev_guid
= vd
->vdev_guid
;
353 search
.re_io_error
= zio
->io_error
;
354 search
.re_io_priority
= zio
->io_priority
;
355 /* if size is supplied use it over what's in zio */
357 search
.re_io_size
= size
;
358 search
.re_io_offset
= offset
;
360 search
.re_io_size
= zio
->io_size
;
361 search
.re_io_offset
= zio
->io_offset
;
364 /* grab optional logical zio criteria */
366 search
.re_io_bookmark
.zb_objset
= zb
->zb_objset
;
367 search
.re_io_bookmark
.zb_object
= zb
->zb_object
;
368 search
.re_io_bookmark
.zb_level
= zb
->zb_level
;
369 search
.re_io_bookmark
.zb_blkid
= zb
->zb_blkid
;
372 uint64_t now
= gethrtime();
374 mutex_enter(&recent_events_lock
);
376 /* check if we have seen this one recently */
377 entry
= avl_find(&recent_events_tree
, &search
, NULL
);
379 uint64_t age
= NSEC2SEC(now
- entry
->re_timestamp
);
382 * There is still an active cleaner (since we're here).
383 * Reset the last seen time for this duplicate entry
384 * so that its lifespand gets extended.
386 list_remove(&recent_events_list
, entry
);
387 list_insert_head(&recent_events_list
, entry
);
388 entry
->re_timestamp
= now
;
390 zfs_zevent_track_duplicate();
391 mutex_exit(&recent_events_lock
);
393 return (age
<= zfs_zevent_retain_expire_secs
);
396 if (avl_numnodes(&recent_events_tree
) >= zfs_zevent_retain_max
) {
397 /* recycle oldest node */
398 entry
= list_tail(&recent_events_list
);
399 ASSERT(entry
!= NULL
);
400 list_remove(&recent_events_list
, entry
);
401 avl_remove(&recent_events_tree
, entry
);
403 entry
= kmem_alloc(sizeof (recent_events_node_t
), KM_SLEEP
);
406 /* record this as a recent ereport */
408 avl_add(&recent_events_tree
, entry
);
409 list_insert_head(&recent_events_list
, entry
);
410 entry
->re_timestamp
= now
;
412 /* Start a cleaner if not already scheduled */
413 if (recent_events_cleaner_tqid
== 0)
414 zfs_ereport_schedule_cleaner();
416 mutex_exit(&recent_events_lock
);
421 zfs_zevent_post_cb(nvlist_t
*nvl
, nvlist_t
*detector
)
424 fm_nvlist_destroy(nvl
, FM_NVA_FREE
);
427 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
431 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
432 * flood zevent consumers when a disk is acting up.
434 * Returns 1 if we're ratelimiting, 0 if not.
437 zfs_is_ratelimiting_event(const char *subclass
, vdev_t
*vd
)
441 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
442 * are. Invert it to get our return value.
444 if (strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) {
445 rc
= !zfs_ratelimit(&vd
->vdev_delay_rl
);
446 } else if (strcmp(subclass
, FM_EREPORT_ZFS_DEADMAN
) == 0) {
447 rc
= !zfs_ratelimit(&vd
->vdev_deadman_rl
);
448 } else if (strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0) {
449 rc
= !zfs_ratelimit(&vd
->vdev_checksum_rl
);
453 /* We're rate limiting */
454 fm_erpt_dropped_increment();
461 * Return B_TRUE if the event actually posted, B_FALSE if not.
464 zfs_ereport_start(nvlist_t
**ereport_out
, nvlist_t
**detector_out
,
465 const char *subclass
, spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
466 zio_t
*zio
, uint64_t stateoroffset
, uint64_t size
)
468 nvlist_t
*ereport
, *detector
;
473 if ((ereport
= fm_nvlist_create(NULL
)) == NULL
)
476 if ((detector
= fm_nvlist_create(NULL
)) == NULL
) {
477 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
482 * Serialize ereport generation
484 mutex_enter(&spa
->spa_errlist_lock
);
487 * Determine the ENA to use for this event. If we are in a loading
488 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
489 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
491 if (spa_load_state(spa
) != SPA_LOAD_NONE
) {
492 if (spa
->spa_ena
== 0)
493 spa
->spa_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
495 } else if (zio
!= NULL
&& zio
->io_logical
!= NULL
) {
496 if (zio
->io_logical
->io_ena
== 0)
497 zio
->io_logical
->io_ena
=
498 fm_ena_generate(0, FM_ENA_FMT1
);
499 ena
= zio
->io_logical
->io_ena
;
501 ena
= fm_ena_generate(0, FM_ENA_FMT1
);
505 * Construct the full class, detector, and other standard FMA fields.
507 (void) snprintf(class, sizeof (class), "%s.%s",
508 ZFS_ERROR_CLASS
, subclass
);
510 fm_fmri_zfs_set(detector
, FM_ZFS_SCHEME_VERSION
, spa_guid(spa
),
511 vd
!= NULL
? vd
->vdev_guid
: 0);
513 fm_ereport_set(ereport
, FM_EREPORT_VERSION
, class, ena
, detector
, NULL
);
516 * Construct the per-ereport payload, depending on which parameters are
521 * Generic payload members common to all ereports.
523 fm_payload_set(ereport
,
524 FM_EREPORT_PAYLOAD_ZFS_POOL
, DATA_TYPE_STRING
, spa_name(spa
),
525 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, DATA_TYPE_UINT64
, spa_guid(spa
),
526 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE
, DATA_TYPE_UINT64
,
527 (uint64_t)spa_state(spa
),
528 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, DATA_TYPE_INT32
,
529 (int32_t)spa_load_state(spa
), NULL
);
531 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE
,
533 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_WAIT
?
534 FM_EREPORT_FAILMODE_WAIT
:
535 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_CONTINUE
?
536 FM_EREPORT_FAILMODE_CONTINUE
: FM_EREPORT_FAILMODE_PANIC
,
540 vdev_t
*pvd
= vd
->vdev_parent
;
541 vdev_queue_t
*vq
= &vd
->vdev_queue
;
542 vdev_stat_t
*vs
= &vd
->vdev_stat
;
544 uint64_t *spare_guids
;
548 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
,
549 DATA_TYPE_UINT64
, vd
->vdev_guid
,
550 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE
,
551 DATA_TYPE_STRING
, vd
->vdev_ops
->vdev_op_type
, NULL
);
552 if (vd
->vdev_path
!= NULL
)
553 fm_payload_set(ereport
,
554 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
,
555 DATA_TYPE_STRING
, vd
->vdev_path
, NULL
);
556 if (vd
->vdev_devid
!= NULL
)
557 fm_payload_set(ereport
,
558 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
,
559 DATA_TYPE_STRING
, vd
->vdev_devid
, NULL
);
560 if (vd
->vdev_fru
!= NULL
)
561 fm_payload_set(ereport
,
562 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
,
563 DATA_TYPE_STRING
, vd
->vdev_fru
, NULL
);
564 if (vd
->vdev_enc_sysfs_path
!= NULL
)
565 fm_payload_set(ereport
,
566 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
567 DATA_TYPE_STRING
, vd
->vdev_enc_sysfs_path
, NULL
);
569 fm_payload_set(ereport
,
570 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT
,
571 DATA_TYPE_UINT64
, vd
->vdev_ashift
, NULL
);
574 fm_payload_set(ereport
,
575 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS
,
576 DATA_TYPE_UINT64
, vq
->vq_io_complete_ts
, NULL
);
577 fm_payload_set(ereport
,
578 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS
,
579 DATA_TYPE_UINT64
, vq
->vq_io_delta_ts
, NULL
);
583 fm_payload_set(ereport
,
584 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS
,
585 DATA_TYPE_UINT64
, vs
->vs_read_errors
,
586 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS
,
587 DATA_TYPE_UINT64
, vs
->vs_write_errors
,
588 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS
,
589 DATA_TYPE_UINT64
, vs
->vs_checksum_errors
,
590 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS
,
591 DATA_TYPE_UINT64
, vs
->vs_slow_ios
,
596 fm_payload_set(ereport
,
597 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID
,
598 DATA_TYPE_UINT64
, pvd
->vdev_guid
,
599 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE
,
600 DATA_TYPE_STRING
, pvd
->vdev_ops
->vdev_op_type
,
603 fm_payload_set(ereport
,
604 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH
,
605 DATA_TYPE_STRING
, pvd
->vdev_path
, NULL
);
607 fm_payload_set(ereport
,
608 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID
,
609 DATA_TYPE_STRING
, pvd
->vdev_devid
, NULL
);
612 spare_count
= spa
->spa_spares
.sav_count
;
613 spare_paths
= kmem_zalloc(sizeof (char *) * spare_count
,
615 spare_guids
= kmem_zalloc(sizeof (uint64_t) * spare_count
,
618 for (i
= 0; i
< spare_count
; i
++) {
619 spare_vd
= spa
->spa_spares
.sav_vdevs
[i
];
621 spare_paths
[i
] = spare_vd
->vdev_path
;
622 spare_guids
[i
] = spare_vd
->vdev_guid
;
626 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS
,
627 DATA_TYPE_STRING_ARRAY
, spare_count
, spare_paths
,
628 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS
,
629 DATA_TYPE_UINT64_ARRAY
, spare_count
, spare_guids
, NULL
);
631 kmem_free(spare_guids
, sizeof (uint64_t) * spare_count
);
632 kmem_free(spare_paths
, sizeof (char *) * spare_count
);
637 * Payload common to all I/Os.
639 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR
,
640 DATA_TYPE_INT32
, zio
->io_error
, NULL
);
641 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS
,
642 DATA_TYPE_INT32
, zio
->io_flags
, NULL
);
643 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE
,
644 DATA_TYPE_UINT32
, zio
->io_stage
, NULL
);
645 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE
,
646 DATA_TYPE_UINT32
, zio
->io_pipeline
, NULL
);
647 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY
,
648 DATA_TYPE_UINT64
, zio
->io_delay
, NULL
);
649 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP
,
650 DATA_TYPE_UINT64
, zio
->io_timestamp
, NULL
);
651 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA
,
652 DATA_TYPE_UINT64
, zio
->io_delta
, NULL
);
653 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY
,
654 DATA_TYPE_UINT32
, zio
->io_priority
, NULL
);
657 * If the 'size' parameter is non-zero, it indicates this is a
658 * RAID-Z or other I/O where the physical offset and length are
659 * provided for us, instead of within the zio_t.
663 fm_payload_set(ereport
,
664 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
665 DATA_TYPE_UINT64
, stateoroffset
,
666 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
667 DATA_TYPE_UINT64
, size
, NULL
);
669 fm_payload_set(ereport
,
670 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
671 DATA_TYPE_UINT64
, zio
->io_offset
,
672 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
673 DATA_TYPE_UINT64
, zio
->io_size
, NULL
);
675 } else if (vd
!= NULL
) {
677 * If we have a vdev but no zio, this is a device fault, and the
678 * 'stateoroffset' parameter indicates the previous state of the
681 fm_payload_set(ereport
,
682 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE
,
683 DATA_TYPE_UINT64
, stateoroffset
, NULL
);
687 * Payload for I/Os with corresponding logical information.
689 if (zb
!= NULL
&& (zio
== NULL
|| zio
->io_logical
!= NULL
)) {
690 fm_payload_set(ereport
,
691 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET
,
692 DATA_TYPE_UINT64
, zb
->zb_objset
,
693 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT
,
694 DATA_TYPE_UINT64
, zb
->zb_object
,
695 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL
,
696 DATA_TYPE_INT64
, zb
->zb_level
,
697 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID
,
698 DATA_TYPE_UINT64
, zb
->zb_blkid
, NULL
);
702 * Payload for tuning the zed
704 if (vd
!= NULL
&& strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0) {
705 uint64_t cksum_n
, cksum_t
;
707 cksum_n
= vdev_prop_get_inherited(vd
, VDEV_PROP_CHECKSUM_N
);
708 if (cksum_n
!= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N
))
709 fm_payload_set(ereport
,
710 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N
,
715 cksum_t
= vdev_prop_get_inherited(vd
, VDEV_PROP_CHECKSUM_T
);
716 if (cksum_t
!= vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T
))
717 fm_payload_set(ereport
,
718 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T
,
724 if (vd
!= NULL
&& strcmp(subclass
, FM_EREPORT_ZFS_IO
) == 0) {
727 io_n
= vdev_prop_get_inherited(vd
, VDEV_PROP_IO_N
);
728 if (io_n
!= vdev_prop_default_numeric(VDEV_PROP_IO_N
))
729 fm_payload_set(ereport
,
730 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N
,
735 io_t
= vdev_prop_get_inherited(vd
, VDEV_PROP_IO_T
);
736 if (io_t
!= vdev_prop_default_numeric(VDEV_PROP_IO_T
))
737 fm_payload_set(ereport
,
738 FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T
,
744 mutex_exit(&spa
->spa_errlist_lock
);
746 *ereport_out
= ereport
;
747 *detector_out
= detector
;
751 /* if it's <= 128 bytes, save the corruption directly */
752 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
754 #define MAX_RANGES 16
756 typedef struct zfs_ecksum_info
{
757 /* inline arrays of bits set and cleared. */
758 uint64_t zei_bits_set
[ZFM_MAX_INLINE
];
759 uint64_t zei_bits_cleared
[ZFM_MAX_INLINE
];
762 * for each range, the number of bits set and cleared. The Hamming
763 * distance between the good and bad buffers is the sum of them all.
765 uint32_t zei_range_sets
[MAX_RANGES
];
766 uint32_t zei_range_clears
[MAX_RANGES
];
771 } zei_ranges
[MAX_RANGES
];
773 size_t zei_range_count
;
775 uint32_t zei_allowed_mingap
;
780 update_bad_bits(uint64_t value_arg
, uint32_t *count
)
784 uint64_t value
= BE_64(value_arg
);
786 /* We store the bits in big-endian (largest-first) order */
787 for (i
= 0; i
< 64; i
++) {
788 if (value
& (1ull << i
))
791 /* update the count of bits changed */
796 * We've now filled up the range array, and need to increase "mingap" and
797 * shrink the range list accordingly. zei_mingap is always the smallest
798 * distance between array entries, so we set the new_allowed_gap to be
799 * one greater than that. We then go through the list, joining together
800 * any ranges which are closer than the new_allowed_gap.
802 * By construction, there will be at least one. We also update zei_mingap
803 * to the new smallest gap, to prepare for our next invocation.
806 zei_shrink_ranges(zfs_ecksum_info_t
*eip
)
808 uint32_t mingap
= UINT32_MAX
;
809 uint32_t new_allowed_gap
= eip
->zei_mingap
+ 1;
812 size_t max
= eip
->zei_range_count
;
814 struct zei_ranges
*r
= eip
->zei_ranges
;
816 ASSERT3U(eip
->zei_range_count
, >, 0);
817 ASSERT3U(eip
->zei_range_count
, <=, MAX_RANGES
);
820 while (idx
< max
- 1) {
821 uint32_t start
= r
[idx
].zr_start
;
822 uint32_t end
= r
[idx
].zr_end
;
824 while (idx
< max
- 1) {
827 uint32_t nstart
= r
[idx
].zr_start
;
828 uint32_t nend
= r
[idx
].zr_end
;
830 uint32_t gap
= nstart
- end
;
831 if (gap
< new_allowed_gap
) {
839 r
[output
].zr_start
= start
;
840 r
[output
].zr_end
= end
;
843 ASSERT3U(output
, <, eip
->zei_range_count
);
844 eip
->zei_range_count
= output
;
845 eip
->zei_mingap
= mingap
;
846 eip
->zei_allowed_mingap
= new_allowed_gap
;
850 zei_add_range(zfs_ecksum_info_t
*eip
, int start
, int end
)
852 struct zei_ranges
*r
= eip
->zei_ranges
;
853 size_t count
= eip
->zei_range_count
;
855 if (count
>= MAX_RANGES
) {
856 zei_shrink_ranges(eip
);
857 count
= eip
->zei_range_count
;
860 eip
->zei_mingap
= UINT32_MAX
;
861 eip
->zei_allowed_mingap
= 1;
863 int gap
= start
- r
[count
- 1].zr_end
;
865 if (gap
< eip
->zei_allowed_mingap
) {
866 r
[count
- 1].zr_end
= end
;
869 if (gap
< eip
->zei_mingap
)
870 eip
->zei_mingap
= gap
;
872 r
[count
].zr_start
= start
;
873 r
[count
].zr_end
= end
;
874 eip
->zei_range_count
++;
878 zei_range_total_size(zfs_ecksum_info_t
*eip
)
880 struct zei_ranges
*r
= eip
->zei_ranges
;
881 size_t count
= eip
->zei_range_count
;
885 for (idx
= 0; idx
< count
; idx
++)
886 result
+= (r
[idx
].zr_end
- r
[idx
].zr_start
);
891 static zfs_ecksum_info_t
*
892 annotate_ecksum(nvlist_t
*ereport
, zio_bad_cksum_t
*info
,
893 const abd_t
*goodabd
, const abd_t
*badabd
, size_t size
,
894 boolean_t drop_if_identical
)
896 const uint64_t *good
;
899 size_t nui64s
= size
/ sizeof (uint64_t);
909 zfs_ecksum_info_t
*eip
= kmem_zalloc(sizeof (*eip
), KM_SLEEP
);
911 /* don't do any annotation for injected checksum errors */
912 if (info
!= NULL
&& info
->zbc_injected
)
915 if (info
!= NULL
&& info
->zbc_has_cksum
) {
916 fm_payload_set(ereport
,
917 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO
,
919 info
->zbc_checksum_name
,
922 if (info
->zbc_byteswapped
) {
923 fm_payload_set(ereport
,
924 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP
,
925 DATA_TYPE_BOOLEAN
, 1,
930 if (badabd
== NULL
|| goodabd
== NULL
)
933 ASSERT3U(nui64s
, <=, UINT32_MAX
);
934 ASSERT3U(size
, ==, nui64s
* sizeof (uint64_t));
935 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
936 ASSERT3U(size
, <=, UINT32_MAX
);
938 good
= (const uint64_t *) abd_borrow_buf_copy((abd_t
*)goodabd
, size
);
939 bad
= (const uint64_t *) abd_borrow_buf_copy((abd_t
*)badabd
, size
);
941 /* build up the range list by comparing the two buffers. */
942 for (idx
= 0; idx
< nui64s
; idx
++) {
943 if (good
[idx
] == bad
[idx
]) {
947 zei_add_range(eip
, start
, idx
);
957 zei_add_range(eip
, start
, idx
);
959 /* See if it will fit in our inline buffers */
960 inline_size
= zei_range_total_size(eip
);
961 if (inline_size
> ZFM_MAX_INLINE
)
965 * If there is no change and we want to drop if the buffers are
968 if (inline_size
== 0 && drop_if_identical
) {
969 kmem_free(eip
, sizeof (*eip
));
970 abd_return_buf((abd_t
*)goodabd
, (void *)good
, size
);
971 abd_return_buf((abd_t
*)badabd
, (void *)bad
, size
);
976 * Now walk through the ranges, filling in the details of the
977 * differences. Also convert our uint64_t-array offsets to byte
980 for (range
= 0; range
< eip
->zei_range_count
; range
++) {
981 size_t start
= eip
->zei_ranges
[range
].zr_start
;
982 size_t end
= eip
->zei_ranges
[range
].zr_end
;
984 for (idx
= start
; idx
< end
; idx
++) {
985 uint64_t set
, cleared
;
987 // bits set in bad, but not in good
988 set
= ((~good
[idx
]) & bad
[idx
]);
989 // bits set in good, but not in bad
990 cleared
= (good
[idx
] & (~bad
[idx
]));
993 ASSERT3U(offset
, <, inline_size
);
994 eip
->zei_bits_set
[offset
] = set
;
995 eip
->zei_bits_cleared
[offset
] = cleared
;
999 update_bad_bits(set
, &eip
->zei_range_sets
[range
]);
1000 update_bad_bits(cleared
, &eip
->zei_range_clears
[range
]);
1003 /* convert to byte offsets */
1004 eip
->zei_ranges
[range
].zr_start
*= sizeof (uint64_t);
1005 eip
->zei_ranges
[range
].zr_end
*= sizeof (uint64_t);
1008 abd_return_buf((abd_t
*)goodabd
, (void *)good
, size
);
1009 abd_return_buf((abd_t
*)badabd
, (void *)bad
, size
);
1011 eip
->zei_allowed_mingap
*= sizeof (uint64_t);
1012 inline_size
*= sizeof (uint64_t);
1014 /* fill in ereport */
1015 fm_payload_set(ereport
,
1016 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES
,
1017 DATA_TYPE_UINT32_ARRAY
, 2 * eip
->zei_range_count
,
1018 (uint32_t *)eip
->zei_ranges
,
1019 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP
,
1020 DATA_TYPE_UINT32
, eip
->zei_allowed_mingap
,
1021 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS
,
1022 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_sets
,
1023 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS
,
1024 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_clears
,
1028 fm_payload_set(ereport
,
1029 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS
,
1030 DATA_TYPE_UINT8_ARRAY
,
1031 inline_size
, (uint8_t *)eip
->zei_bits_set
,
1032 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS
,
1033 DATA_TYPE_UINT8_ARRAY
,
1034 inline_size
, (uint8_t *)eip
->zei_bits_cleared
,
1041 zfs_ereport_clear(spa_t
*spa
, vdev_t
*vd
)
1043 (void) spa
, (void) vd
;
1048 * Make sure our event is still valid for the given zio/vdev/pool. For example,
1049 * we don't want to keep logging events for a faulted or missing vdev.
1052 zfs_ereport_is_valid(const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
)
1056 * If we are doing a spa_tryimport() or in recovery mode,
1059 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
||
1060 spa_load_state(spa
) == SPA_LOAD_RECOVER
)
1064 * If we are in the middle of opening a pool, and the previous attempt
1065 * failed, don't bother logging any new ereports - we're just going to
1066 * get the same diagnosis anyway.
1068 if (spa_load_state(spa
) != SPA_LOAD_NONE
&&
1069 spa
->spa_last_open_failed
)
1074 * If this is not a read or write zio, ignore the error. This
1075 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1077 if (zio
->io_type
!= ZIO_TYPE_READ
&&
1078 zio
->io_type
!= ZIO_TYPE_WRITE
)
1083 * If the vdev has already been marked as failing due
1084 * to a failed probe, then ignore any subsequent I/O
1085 * errors, as the DE will automatically fault the vdev
1086 * on the first such failure. This also catches cases
1087 * where vdev_remove_wanted is set and the device has
1088 * not yet been asynchronously placed into the REMOVED
1091 if (zio
->io_vd
== vd
&& !vdev_accessible(vd
, zio
))
1095 * Ignore checksum errors for reads from DTL regions of
1098 if (zio
->io_type
== ZIO_TYPE_READ
&&
1099 zio
->io_error
== ECKSUM
&&
1100 vd
->vdev_ops
->vdev_op_leaf
&&
1101 vdev_dtl_contains(vd
, DTL_MISSING
, zio
->io_txg
, 1))
1107 * For probe failure, we want to avoid posting ereports if we've
1108 * already removed the device in the meantime.
1111 strcmp(subclass
, FM_EREPORT_ZFS_PROBE_FAILURE
) == 0 &&
1112 (vd
->vdev_remove_wanted
|| vd
->vdev_state
== VDEV_STATE_REMOVED
))
1115 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1116 if ((strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) &&
1117 (zio
!= NULL
) && (!zio
->io_timestamp
)) {
1121 (void) subclass
, (void) spa
, (void) vd
, (void) zio
;
1127 * Post an ereport for the given subclass
1130 * - 0 if an event was posted
1131 * - EINVAL if there was a problem posting event
1132 * - EBUSY if the event was rate limited
1133 * - EALREADY if the event was already posted (duplicate)
1136 zfs_ereport_post(const char *subclass
, spa_t
*spa
, vdev_t
*vd
,
1137 const zbookmark_phys_t
*zb
, zio_t
*zio
, uint64_t state
)
1141 nvlist_t
*ereport
= NULL
;
1142 nvlist_t
*detector
= NULL
;
1144 if (!zfs_ereport_is_valid(subclass
, spa
, vd
, zio
))
1147 if (zfs_ereport_is_duplicate(subclass
, spa
, vd
, zb
, zio
, 0, 0))
1148 return (SET_ERROR(EALREADY
));
1150 if (zfs_is_ratelimiting_event(subclass
, vd
))
1151 return (SET_ERROR(EBUSY
));
1153 if (!zfs_ereport_start(&ereport
, &detector
, subclass
, spa
, vd
,
1155 return (SET_ERROR(EINVAL
)); /* couldn't post event */
1157 if (ereport
== NULL
)
1158 return (SET_ERROR(EINVAL
));
1160 /* Cleanup is handled by the callback function */
1161 rc
= zfs_zevent_post(ereport
, detector
, zfs_zevent_post_cb
);
1163 (void) subclass
, (void) spa
, (void) vd
, (void) zb
, (void) zio
,
1170 * Prepare a checksum ereport
1173 * - 0 if an event was posted
1174 * - EINVAL if there was a problem posting event
1175 * - EBUSY if the event was rate limited
1176 * - EALREADY if the event was already posted (duplicate)
1179 zfs_ereport_start_checksum(spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
1180 struct zio
*zio
, uint64_t offset
, uint64_t length
, zio_bad_cksum_t
*info
)
1182 zio_cksum_report_t
*report
;
1185 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
))
1186 return (SET_ERROR(EINVAL
));
1188 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
,
1190 return (SET_ERROR(EALREADY
));
1192 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM
, vd
))
1193 return (SET_ERROR(EBUSY
));
1195 (void) zb
, (void) offset
;
1198 report
= kmem_zalloc(sizeof (*report
), KM_SLEEP
);
1200 zio_vsd_default_cksum_report(zio
, report
);
1202 /* copy the checksum failure information if it was provided */
1204 report
->zcr_ckinfo
= kmem_zalloc(sizeof (*info
), KM_SLEEP
);
1205 memcpy(report
->zcr_ckinfo
, info
, sizeof (*info
));
1208 report
->zcr_sector
= 1ULL << vd
->vdev_top
->vdev_ashift
;
1210 vdev_psize_to_asize(vd
->vdev_top
, report
->zcr_sector
);
1211 report
->zcr_length
= length
;
1214 (void) zfs_ereport_start(&report
->zcr_ereport
, &report
->zcr_detector
,
1215 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
, offset
, length
);
1217 if (report
->zcr_ereport
== NULL
) {
1218 zfs_ereport_free_checksum(report
);
1223 mutex_enter(&spa
->spa_errlist_lock
);
1224 report
->zcr_next
= zio
->io_logical
->io_cksum_report
;
1225 zio
->io_logical
->io_cksum_report
= report
;
1226 mutex_exit(&spa
->spa_errlist_lock
);
1231 zfs_ereport_finish_checksum(zio_cksum_report_t
*report
, const abd_t
*good_data
,
1232 const abd_t
*bad_data
, boolean_t drop_if_identical
)
1235 zfs_ecksum_info_t
*info
;
1237 info
= annotate_ecksum(report
->zcr_ereport
, report
->zcr_ckinfo
,
1238 good_data
, bad_data
, report
->zcr_length
, drop_if_identical
);
1240 zfs_zevent_post(report
->zcr_ereport
,
1241 report
->zcr_detector
, zfs_zevent_post_cb
);
1243 zfs_zevent_post_cb(report
->zcr_ereport
, report
->zcr_detector
);
1245 report
->zcr_ereport
= report
->zcr_detector
= NULL
;
1247 kmem_free(info
, sizeof (*info
));
1249 (void) report
, (void) good_data
, (void) bad_data
,
1250 (void) drop_if_identical
;
1255 zfs_ereport_free_checksum(zio_cksum_report_t
*rpt
)
1258 if (rpt
->zcr_ereport
!= NULL
) {
1259 fm_nvlist_destroy(rpt
->zcr_ereport
,
1261 fm_nvlist_destroy(rpt
->zcr_detector
,
1265 rpt
->zcr_free(rpt
->zcr_cbdata
, rpt
->zcr_cbinfo
);
1267 if (rpt
->zcr_ckinfo
!= NULL
)
1268 kmem_free(rpt
->zcr_ckinfo
, sizeof (*rpt
->zcr_ckinfo
));
1270 kmem_free(rpt
, sizeof (*rpt
));
1274 * Post a checksum ereport
1277 * - 0 if an event was posted
1278 * - EINVAL if there was a problem posting event
1279 * - EBUSY if the event was rate limited
1280 * - EALREADY if the event was already posted (duplicate)
1283 zfs_ereport_post_checksum(spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
1284 struct zio
*zio
, uint64_t offset
, uint64_t length
,
1285 const abd_t
*good_data
, const abd_t
*bad_data
, zio_bad_cksum_t
*zbc
)
1289 nvlist_t
*ereport
= NULL
;
1290 nvlist_t
*detector
= NULL
;
1291 zfs_ecksum_info_t
*info
;
1293 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
))
1294 return (SET_ERROR(EINVAL
));
1296 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
,
1298 return (SET_ERROR(EALREADY
));
1300 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM
, vd
))
1301 return (SET_ERROR(EBUSY
));
1303 if (!zfs_ereport_start(&ereport
, &detector
, FM_EREPORT_ZFS_CHECKSUM
,
1304 spa
, vd
, zb
, zio
, offset
, length
) || (ereport
== NULL
)) {
1305 return (SET_ERROR(EINVAL
));
1308 info
= annotate_ecksum(ereport
, zbc
, good_data
, bad_data
, length
,
1312 rc
= zfs_zevent_post(ereport
, detector
, zfs_zevent_post_cb
);
1313 kmem_free(info
, sizeof (*info
));
1316 (void) spa
, (void) vd
, (void) zb
, (void) zio
, (void) offset
,
1317 (void) length
, (void) good_data
, (void) bad_data
, (void) zbc
;
1323 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1324 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1325 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1326 * additional details refer to the zed(8) man page.
1329 zfs_event_create(spa_t
*spa
, vdev_t
*vd
, const char *type
, const char *name
,
1332 nvlist_t
*resource
= NULL
;
1336 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
)
1339 if ((resource
= fm_nvlist_create(NULL
)) == NULL
)
1342 (void) snprintf(class, sizeof (class), "%s.%s.%s", type
,
1343 ZFS_ERROR_CLASS
, name
);
1344 VERIFY0(nvlist_add_uint8(resource
, FM_VERSION
, FM_RSRC_VERSION
));
1345 VERIFY0(nvlist_add_string(resource
, FM_CLASS
, class));
1346 VERIFY0(nvlist_add_string(resource
,
1347 FM_EREPORT_PAYLOAD_ZFS_POOL
, spa_name(spa
)));
1348 VERIFY0(nvlist_add_uint64(resource
,
1349 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, spa_guid(spa
)));
1350 VERIFY0(nvlist_add_uint64(resource
,
1351 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE
, spa_state(spa
)));
1352 VERIFY0(nvlist_add_int32(resource
,
1353 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, spa_load_state(spa
)));
1356 VERIFY0(nvlist_add_uint64(resource
,
1357 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
, vd
->vdev_guid
));
1358 VERIFY0(nvlist_add_uint64(resource
,
1359 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE
, vd
->vdev_state
));
1360 if (vd
->vdev_path
!= NULL
)
1361 VERIFY0(nvlist_add_string(resource
,
1362 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
, vd
->vdev_path
));
1363 if (vd
->vdev_devid
!= NULL
)
1364 VERIFY0(nvlist_add_string(resource
,
1365 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
, vd
->vdev_devid
));
1366 if (vd
->vdev_fru
!= NULL
)
1367 VERIFY0(nvlist_add_string(resource
,
1368 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
, vd
->vdev_fru
));
1369 if (vd
->vdev_enc_sysfs_path
!= NULL
)
1370 VERIFY0(nvlist_add_string(resource
,
1371 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
1372 vd
->vdev_enc_sysfs_path
));
1375 /* also copy any optional payload data */
1377 nvpair_t
*elem
= NULL
;
1379 while ((elem
= nvlist_next_nvpair(aux
, elem
)) != NULL
)
1380 (void) nvlist_add_nvpair(resource
, elem
);
1383 (void) spa
, (void) vd
, (void) type
, (void) name
, (void) aux
;
1389 zfs_post_common(spa_t
*spa
, vdev_t
*vd
, const char *type
, const char *name
,
1395 resource
= zfs_event_create(spa
, vd
, type
, name
, aux
);
1397 zfs_zevent_post(resource
, NULL
, zfs_zevent_post_cb
);
1399 (void) spa
, (void) vd
, (void) type
, (void) name
, (void) aux
;
1404 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1405 * has been removed from the system. This will cause the DE to ignore any
1406 * recent I/O errors, inferring that they are due to the asynchronous device
1410 zfs_post_remove(spa_t
*spa
, vdev_t
*vd
)
1412 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_REMOVED
, NULL
);
1416 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1417 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1418 * handled by higher level logic, and no vdev fault should be generated.
1421 zfs_post_autoreplace(spa_t
*spa
, vdev_t
*vd
)
1423 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_AUTOREPLACE
, NULL
);
1427 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1428 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1429 * cause the retire agent to repair any outstanding fault management cases
1430 * open because the device was not found (fault.fs.zfs.device).
1433 zfs_post_state_change(spa_t
*spa
, vdev_t
*vd
, uint64_t laststate
)
1439 * Add optional supplemental keys to payload
1441 aux
= fm_nvlist_create(NULL
);
1443 if (vd
->vdev_physpath
) {
1444 fnvlist_add_string(aux
,
1445 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH
,
1448 if (vd
->vdev_enc_sysfs_path
) {
1449 fnvlist_add_string(aux
,
1450 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
1451 vd
->vdev_enc_sysfs_path
);
1454 fnvlist_add_uint64(aux
,
1455 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE
, laststate
);
1458 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_STATECHANGE
,
1462 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1464 (void) spa
, (void) vd
, (void) laststate
;
1470 zfs_ereport_init(void)
1472 mutex_init(&recent_events_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1473 list_create(&recent_events_list
, sizeof (recent_events_node_t
),
1474 offsetof(recent_events_node_t
, re_list_link
));
1475 avl_create(&recent_events_tree
, recent_events_compare
,
1476 sizeof (recent_events_node_t
), offsetof(recent_events_node_t
,
1481 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1482 * for the system_delay_taskq to drain.
1485 zfs_ereport_taskq_fini(void)
1487 mutex_enter(&recent_events_lock
);
1488 if (recent_events_cleaner_tqid
!= 0) {
1489 taskq_cancel_id(system_delay_taskq
, recent_events_cleaner_tqid
);
1490 recent_events_cleaner_tqid
= 0;
1492 mutex_exit(&recent_events_lock
);
1496 zfs_ereport_fini(void)
1498 recent_events_node_t
*entry
;
1500 while ((entry
= list_remove_head(&recent_events_list
)) != NULL
) {
1501 avl_remove(&recent_events_tree
, entry
);
1502 kmem_free(entry
, sizeof (*entry
));
1504 avl_destroy(&recent_events_tree
);
1505 list_destroy(&recent_events_list
);
1506 mutex_destroy(&recent_events_lock
);
1510 zfs_ereport_snapshot_post(const char *subclass
, spa_t
*spa
, const char *name
)
1514 aux
= fm_nvlist_create(NULL
);
1515 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_SNAPSHOT_NAME
, name
);
1517 zfs_post_common(spa
, NULL
, FM_RSRC_CLASS
, subclass
, aux
);
1518 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1522 * Post when a event when a zvol is created or removed
1524 * This is currently only used by macOS, since it uses the event to create
1525 * symlinks between the volume name (mypool/myvol) and the actual /dev
1526 * device (/dev/disk3). For example:
1528 * /var/run/zfs/dsk/mypool/myvol -> /dev/disk3
1530 * name: The full name of the zvol ("mypool/myvol")
1531 * dev_name: The full /dev name for the zvol ("/dev/disk3")
1532 * raw_name: The raw /dev name for the zvol ("/dev/rdisk3")
1535 zfs_ereport_zvol_post(const char *subclass
, const char *name
,
1536 const char *dev_name
, const char *raw_name
)
1541 boolean_t locked
= mutex_owned(&spa_namespace_lock
);
1542 if (!locked
) mutex_enter(&spa_namespace_lock
);
1543 spa_t
*spa
= spa_lookup(name
);
1544 if (!locked
) mutex_exit(&spa_namespace_lock
);
1549 aux
= fm_nvlist_create(NULL
);
1550 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_DEVICE_NAME
, dev_name
);
1551 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_RAW_DEVICE_NAME
,
1553 r
= strchr(name
, '/');
1555 fnvlist_add_string(aux
, FM_EREPORT_PAYLOAD_ZFS_VOLUME
, &r
[1]);
1557 zfs_post_common(spa
, NULL
, FM_RSRC_CLASS
, subclass
, aux
);
1558 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1561 EXPORT_SYMBOL(zfs_ereport_post
);
1562 EXPORT_SYMBOL(zfs_ereport_is_valid
);
1563 EXPORT_SYMBOL(zfs_ereport_post_checksum
);
1564 EXPORT_SYMBOL(zfs_post_remove
);
1565 EXPORT_SYMBOL(zfs_post_autoreplace
);
1566 EXPORT_SYMBOL(zfs_post_state_change
);
1568 ZFS_MODULE_PARAM(zfs_zevent
, zfs_zevent_
, retain_max
, UINT
, ZMOD_RW
,
1569 "Maximum recent zevents records to retain for duplicate checking");
1570 ZFS_MODULE_PARAM(zfs_zevent
, zfs_zevent_
, retain_expire_secs
, UINT
, ZMOD_RW
,
1571 "Expiration time for recent zevents records");
1572 #endif /* _KERNEL */