BRT should return EOPNOTSUPP
[zfs.git] / module / zfs / zfs_vnops.c
blob54ea43363bfcd139370d3d52c4b3d2680c0d856d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/uio_impl.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/cmn_err.h>
43 #include <sys/errno.h>
44 #include <sys/zfs_dir.h>
45 #include <sys/zfs_acl.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/spa.h>
51 #include <sys/txg.h>
52 #include <sys/dbuf.h>
53 #include <sys/policy.h>
54 #include <sys/zfeature.h>
55 #include <sys/zfs_vnops.h>
56 #include <sys/zfs_quota.h>
57 #include <sys/zfs_vfsops.h>
58 #include <sys/zfs_znode.h>
61 static ulong_t zfs_fsync_sync_cnt = 4;
63 int
64 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
66 int error = 0;
67 zfsvfs_t *zfsvfs = ZTOZSB(zp);
69 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
71 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
72 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
73 goto out;
74 atomic_inc_32(&zp->z_sync_writes_cnt);
75 zil_commit(zfsvfs->z_log, zp->z_id);
76 atomic_dec_32(&zp->z_sync_writes_cnt);
77 zfs_exit(zfsvfs, FTAG);
79 out:
80 tsd_set(zfs_fsyncer_key, NULL);
82 return (error);
86 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
88 * Lseek support for finding holes (cmd == SEEK_HOLE) and
89 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
91 static int
92 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
94 zfs_locked_range_t *lr;
95 uint64_t noff = (uint64_t)*off; /* new offset */
96 uint64_t file_sz;
97 int error;
98 boolean_t hole;
100 file_sz = zp->z_size;
101 if (noff >= file_sz) {
102 return (SET_ERROR(ENXIO));
105 if (cmd == F_SEEK_HOLE)
106 hole = B_TRUE;
107 else
108 hole = B_FALSE;
110 /* Flush any mmap()'d data to disk */
111 if (zn_has_cached_data(zp, 0, file_sz - 1))
112 zn_flush_cached_data(zp, B_FALSE);
114 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
115 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
116 zfs_rangelock_exit(lr);
118 if (error == ESRCH)
119 return (SET_ERROR(ENXIO));
121 /* File was dirty, so fall back to using generic logic */
122 if (error == EBUSY) {
123 if (hole)
124 *off = file_sz;
126 return (0);
130 * We could find a hole that begins after the logical end-of-file,
131 * because dmu_offset_next() only works on whole blocks. If the
132 * EOF falls mid-block, then indicate that the "virtual hole"
133 * at the end of the file begins at the logical EOF, rather than
134 * at the end of the last block.
136 if (noff > file_sz) {
137 ASSERT(hole);
138 noff = file_sz;
141 if (noff < *off)
142 return (error);
143 *off = noff;
144 return (error);
148 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
150 zfsvfs_t *zfsvfs = ZTOZSB(zp);
151 int error;
153 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
154 return (error);
156 error = zfs_holey_common(zp, cmd, off);
158 zfs_exit(zfsvfs, FTAG);
159 return (error);
161 #endif /* SEEK_HOLE && SEEK_DATA */
164 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
166 zfsvfs_t *zfsvfs = ZTOZSB(zp);
167 int error;
169 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
170 return (error);
172 if (flag & V_ACE_MASK)
173 #if defined(__linux__)
174 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
175 zfs_init_idmap);
176 #else
177 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
178 NULL);
179 #endif
180 else
181 #if defined(__linux__)
182 error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
183 #else
184 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
185 #endif
187 zfs_exit(zfsvfs, FTAG);
188 return (error);
191 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
194 * Read bytes from specified file into supplied buffer.
196 * IN: zp - inode of file to be read from.
197 * uio - structure supplying read location, range info,
198 * and return buffer.
199 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
200 * O_DIRECT flag; used to bypass page cache.
201 * cr - credentials of caller.
203 * OUT: uio - updated offset and range, buffer filled.
205 * RETURN: 0 on success, error code on failure.
207 * Side Effects:
208 * inode - atime updated if byte count > 0
211 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
213 (void) cr;
214 int error = 0;
215 boolean_t frsync = B_FALSE;
217 zfsvfs_t *zfsvfs = ZTOZSB(zp);
218 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 return (error);
221 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
222 zfs_exit(zfsvfs, FTAG);
223 return (SET_ERROR(EACCES));
226 /* We don't copy out anything useful for directories. */
227 if (Z_ISDIR(ZTOTYPE(zp))) {
228 zfs_exit(zfsvfs, FTAG);
229 return (SET_ERROR(EISDIR));
233 * Validate file offset
235 if (zfs_uio_offset(uio) < (offset_t)0) {
236 zfs_exit(zfsvfs, FTAG);
237 return (SET_ERROR(EINVAL));
241 * Fasttrack empty reads
243 if (zfs_uio_resid(uio) == 0) {
244 zfs_exit(zfsvfs, FTAG);
245 return (0);
248 #ifdef FRSYNC
250 * If we're in FRSYNC mode, sync out this znode before reading it.
251 * Only do this for non-snapshots.
253 * Some platforms do not support FRSYNC and instead map it
254 * to O_SYNC, which results in unnecessary calls to zil_commit. We
255 * only honor FRSYNC requests on platforms which support it.
257 frsync = !!(ioflag & FRSYNC);
258 #endif
259 if (zfsvfs->z_log &&
260 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
261 zil_commit(zfsvfs->z_log, zp->z_id);
264 * Lock the range against changes.
266 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
267 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
270 * If we are reading past end-of-file we can skip
271 * to the end; but we might still need to set atime.
273 if (zfs_uio_offset(uio) >= zp->z_size) {
274 error = 0;
275 goto out;
278 ASSERT(zfs_uio_offset(uio) < zp->z_size);
279 #if defined(__linux__)
280 ssize_t start_offset = zfs_uio_offset(uio);
281 #endif
282 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
283 ssize_t start_resid = n;
285 while (n > 0) {
286 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
287 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
288 #ifdef UIO_NOCOPY
289 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
290 error = mappedread_sf(zp, nbytes, uio);
291 else
292 #endif
293 if (zn_has_cached_data(zp, zfs_uio_offset(uio),
294 zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
295 error = mappedread(zp, nbytes, uio);
296 } else {
297 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
298 uio, nbytes);
301 if (error) {
302 /* convert checksum errors into IO errors */
303 if (error == ECKSUM)
304 error = SET_ERROR(EIO);
306 #if defined(__linux__)
308 * if we actually read some bytes, bubbling EFAULT
309 * up to become EAGAIN isn't what we want here...
311 * ...on Linux, at least. On FBSD, doing this breaks.
313 if (error == EFAULT &&
314 (zfs_uio_offset(uio) - start_offset) != 0)
315 error = 0;
316 #endif
317 break;
320 n -= nbytes;
323 int64_t nread = start_resid - n;
324 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
325 task_io_account_read(nread);
326 out:
327 zfs_rangelock_exit(lr);
329 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
330 zfs_exit(zfsvfs, FTAG);
331 return (error);
334 static void
335 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
336 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
338 zilog_t *zilog = zfsvfs->z_log;
339 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
341 ASSERT(clear_setid_bits_txgp != NULL);
342 ASSERT(tx != NULL);
345 * Clear Set-UID/Set-GID bits on successful write if not
346 * privileged and at least one of the execute bits is set.
348 * It would be nice to do this after all writes have
349 * been done, but that would still expose the ISUID/ISGID
350 * to another app after the partial write is committed.
352 * Note: we don't call zfs_fuid_map_id() here because
353 * user 0 is not an ephemeral uid.
355 mutex_enter(&zp->z_acl_lock);
356 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
357 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
358 secpolicy_vnode_setid_retain(zp, cr,
359 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
360 uint64_t newmode;
362 zp->z_mode &= ~(S_ISUID | S_ISGID);
363 newmode = zp->z_mode;
364 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
365 (void *)&newmode, sizeof (uint64_t), tx);
367 mutex_exit(&zp->z_acl_lock);
370 * Make sure SUID/SGID bits will be removed when we replay the
371 * log. If the setid bits are keep coming back, don't log more
372 * than one TX_SETATTR per transaction group.
374 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
375 vattr_t va = {0};
377 va.va_mask = ATTR_MODE;
378 va.va_nodeid = zp->z_id;
379 va.va_mode = newmode;
380 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
381 ATTR_MODE, NULL);
382 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
384 } else {
385 mutex_exit(&zp->z_acl_lock);
390 * Write the bytes to a file.
392 * IN: zp - znode of file to be written to.
393 * uio - structure supplying write location, range info,
394 * and data buffer.
395 * ioflag - O_APPEND flag set if in append mode.
396 * O_DIRECT flag; used to bypass page cache.
397 * cr - credentials of caller.
399 * OUT: uio - updated offset and range.
401 * RETURN: 0 if success
402 * error code if failure
404 * Timestamps:
405 * ip - ctime|mtime updated if byte count > 0
408 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
410 int error = 0, error1;
411 ssize_t start_resid = zfs_uio_resid(uio);
412 uint64_t clear_setid_bits_txg = 0;
415 * Fasttrack empty write
417 ssize_t n = start_resid;
418 if (n == 0)
419 return (0);
421 zfsvfs_t *zfsvfs = ZTOZSB(zp);
422 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
423 return (error);
425 sa_bulk_attr_t bulk[4];
426 int count = 0;
427 uint64_t mtime[2], ctime[2];
428 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
431 &zp->z_size, 8);
432 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
433 &zp->z_pflags, 8);
436 * Callers might not be able to detect properly that we are read-only,
437 * so check it explicitly here.
439 if (zfs_is_readonly(zfsvfs)) {
440 zfs_exit(zfsvfs, FTAG);
441 return (SET_ERROR(EROFS));
445 * If immutable or not appending then return EPERM.
446 * Intentionally allow ZFS_READONLY through here.
447 * See zfs_zaccess_common()
449 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
450 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
451 (zfs_uio_offset(uio) < zp->z_size))) {
452 zfs_exit(zfsvfs, FTAG);
453 return (SET_ERROR(EPERM));
457 * Validate file offset
459 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
460 if (woff < 0) {
461 zfs_exit(zfsvfs, FTAG);
462 return (SET_ERROR(EINVAL));
466 * Pre-fault the pages to ensure slow (eg NFS) pages
467 * don't hold up txg.
469 ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
470 if (zfs_uio_prefaultpages(pfbytes, uio)) {
471 zfs_exit(zfsvfs, FTAG);
472 return (SET_ERROR(EFAULT));
476 * If in append mode, set the io offset pointer to eof.
478 zfs_locked_range_t *lr;
479 if (ioflag & O_APPEND) {
481 * Obtain an appending range lock to guarantee file append
482 * semantics. We reset the write offset once we have the lock.
484 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
485 woff = lr->lr_offset;
486 if (lr->lr_length == UINT64_MAX) {
488 * We overlocked the file because this write will cause
489 * the file block size to increase.
490 * Note that zp_size cannot change with this lock held.
492 woff = zp->z_size;
494 zfs_uio_setoffset(uio, woff);
495 } else {
497 * Note that if the file block size will change as a result of
498 * this write, then this range lock will lock the entire file
499 * so that we can re-write the block safely.
501 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
504 if (zn_rlimit_fsize_uio(zp, uio)) {
505 zfs_rangelock_exit(lr);
506 zfs_exit(zfsvfs, FTAG);
507 return (SET_ERROR(EFBIG));
510 const rlim64_t limit = MAXOFFSET_T;
512 if (woff >= limit) {
513 zfs_rangelock_exit(lr);
514 zfs_exit(zfsvfs, FTAG);
515 return (SET_ERROR(EFBIG));
518 if (n > limit - woff)
519 n = limit - woff;
521 uint64_t end_size = MAX(zp->z_size, woff + n);
522 zilog_t *zilog = zfsvfs->z_log;
524 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
525 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
526 const uint64_t projid = zp->z_projid;
529 * Write the file in reasonable size chunks. Each chunk is written
530 * in a separate transaction; this keeps the intent log records small
531 * and allows us to do more fine-grained space accounting.
533 while (n > 0) {
534 woff = zfs_uio_offset(uio);
536 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
537 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
538 (projid != ZFS_DEFAULT_PROJID &&
539 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
540 projid))) {
541 error = SET_ERROR(EDQUOT);
542 break;
545 uint64_t blksz;
546 if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
547 if (zp->z_blksz > zfsvfs->z_max_blksz &&
548 !ISP2(zp->z_blksz)) {
550 * File's blocksize is already larger than the
551 * "recordsize" property. Only let it grow to
552 * the next power of 2.
554 blksz = 1 << highbit64(zp->z_blksz);
555 } else {
556 blksz = zfsvfs->z_max_blksz;
558 blksz = MIN(blksz, P2ROUNDUP(end_size,
559 SPA_MINBLOCKSIZE));
560 blksz = MAX(blksz, zp->z_blksz);
561 } else {
562 blksz = zp->z_blksz;
565 arc_buf_t *abuf = NULL;
566 ssize_t nbytes = n;
567 if (n >= blksz && woff >= zp->z_size &&
568 P2PHASE(woff, blksz) == 0 &&
569 (blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
571 * This write covers a full block. "Borrow" a buffer
572 * from the dmu so that we can fill it before we enter
573 * a transaction. This avoids the possibility of
574 * holding up the transaction if the data copy hangs
575 * up on a pagefault (e.g., from an NFS server mapping).
577 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
578 blksz);
579 ASSERT(abuf != NULL);
580 ASSERT(arc_buf_size(abuf) == blksz);
581 if ((error = zfs_uiocopy(abuf->b_data, blksz,
582 UIO_WRITE, uio, &nbytes))) {
583 dmu_return_arcbuf(abuf);
584 break;
586 ASSERT3S(nbytes, ==, blksz);
587 } else {
588 nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
589 P2PHASE(woff, blksz));
590 if (pfbytes < nbytes) {
591 if (zfs_uio_prefaultpages(nbytes, uio)) {
592 error = SET_ERROR(EFAULT);
593 break;
595 pfbytes = nbytes;
600 * Start a transaction.
602 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
603 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
604 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
605 DB_DNODE_ENTER(db);
606 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
607 DB_DNODE_EXIT(db);
608 zfs_sa_upgrade_txholds(tx, zp);
609 error = dmu_tx_assign(tx, TXG_WAIT);
610 if (error) {
611 dmu_tx_abort(tx);
612 if (abuf != NULL)
613 dmu_return_arcbuf(abuf);
614 break;
618 * NB: We must call zfs_clear_setid_bits_if_necessary before
619 * committing the transaction!
623 * If rangelock_enter() over-locked we grow the blocksize
624 * and then reduce the lock range. This will only happen
625 * on the first iteration since rangelock_reduce() will
626 * shrink down lr_length to the appropriate size.
628 if (lr->lr_length == UINT64_MAX) {
629 zfs_grow_blocksize(zp, blksz, tx);
630 zfs_rangelock_reduce(lr, woff, n);
633 ssize_t tx_bytes;
634 if (abuf == NULL) {
635 tx_bytes = zfs_uio_resid(uio);
636 zfs_uio_fault_disable(uio, B_TRUE);
637 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
638 uio, nbytes, tx);
639 zfs_uio_fault_disable(uio, B_FALSE);
640 #ifdef __linux__
641 if (error == EFAULT) {
642 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
643 cr, &clear_setid_bits_txg, tx);
644 dmu_tx_commit(tx);
646 * Account for partial writes before
647 * continuing the loop.
648 * Update needs to occur before the next
649 * zfs_uio_prefaultpages, or prefaultpages may
650 * error, and we may break the loop early.
652 n -= tx_bytes - zfs_uio_resid(uio);
653 pfbytes -= tx_bytes - zfs_uio_resid(uio);
654 continue;
656 #endif
658 * On FreeBSD, EFAULT should be propagated back to the
659 * VFS, which will handle faulting and will retry.
661 if (error != 0 && error != EFAULT) {
662 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
663 cr, &clear_setid_bits_txg, tx);
664 dmu_tx_commit(tx);
665 break;
667 tx_bytes -= zfs_uio_resid(uio);
668 } else {
670 * Thus, we're writing a full block at a block-aligned
671 * offset and extending the file past EOF.
673 * dmu_assign_arcbuf_by_dbuf() will directly assign the
674 * arc buffer to a dbuf.
676 error = dmu_assign_arcbuf_by_dbuf(
677 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
678 if (error != 0) {
680 * XXX This might not be necessary if
681 * dmu_assign_arcbuf_by_dbuf is guaranteed
682 * to be atomic.
684 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
685 cr, &clear_setid_bits_txg, tx);
686 dmu_return_arcbuf(abuf);
687 dmu_tx_commit(tx);
688 break;
690 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
691 zfs_uioskip(uio, nbytes);
692 tx_bytes = nbytes;
694 if (tx_bytes &&
695 zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
696 !(ioflag & O_DIRECT)) {
697 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
701 * If we made no progress, we're done. If we made even
702 * partial progress, update the znode and ZIL accordingly.
704 if (tx_bytes == 0) {
705 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
706 (void *)&zp->z_size, sizeof (uint64_t), tx);
707 dmu_tx_commit(tx);
708 ASSERT(error != 0);
709 break;
712 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
713 &clear_setid_bits_txg, tx);
715 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
718 * Update the file size (zp_size) if it has changed;
719 * account for possible concurrent updates.
721 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
722 (void) atomic_cas_64(&zp->z_size, end_size,
723 zfs_uio_offset(uio));
724 ASSERT(error == 0 || error == EFAULT);
727 * If we are replaying and eof is non zero then force
728 * the file size to the specified eof. Note, there's no
729 * concurrency during replay.
731 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
732 zp->z_size = zfsvfs->z_replay_eof;
734 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
735 if (error1 != 0)
736 /* Avoid clobbering EFAULT. */
737 error = error1;
740 * NB: During replay, the TX_SETATTR record logged by
741 * zfs_clear_setid_bits_if_necessary must precede any of
742 * the TX_WRITE records logged here.
744 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
745 NULL, NULL);
747 dmu_tx_commit(tx);
749 if (error != 0)
750 break;
751 ASSERT3S(tx_bytes, ==, nbytes);
752 n -= nbytes;
753 pfbytes -= nbytes;
756 zfs_znode_update_vfs(zp);
757 zfs_rangelock_exit(lr);
760 * If we're in replay mode, or we made no progress, or the
761 * uio data is inaccessible return an error. Otherwise, it's
762 * at least a partial write, so it's successful.
764 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
765 error == EFAULT) {
766 zfs_exit(zfsvfs, FTAG);
767 return (error);
770 if (ioflag & (O_SYNC | O_DSYNC) ||
771 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
772 zil_commit(zilog, zp->z_id);
774 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
775 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
776 task_io_account_write(nwritten);
778 zfs_exit(zfsvfs, FTAG);
779 return (0);
783 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
785 zfsvfs_t *zfsvfs = ZTOZSB(zp);
786 int error;
787 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
789 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
790 return (error);
791 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
792 zfs_exit(zfsvfs, FTAG);
794 return (error);
798 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
800 zfsvfs_t *zfsvfs = ZTOZSB(zp);
801 int error;
802 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
803 zilog_t *zilog = zfsvfs->z_log;
805 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
806 return (error);
808 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
810 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
811 zil_commit(zilog, 0);
813 zfs_exit(zfsvfs, FTAG);
814 return (error);
817 #ifdef ZFS_DEBUG
818 static int zil_fault_io = 0;
819 #endif
821 static void zfs_get_done(zgd_t *zgd, int error);
824 * Get data to generate a TX_WRITE intent log record.
827 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
828 struct lwb *lwb, zio_t *zio)
830 zfsvfs_t *zfsvfs = arg;
831 objset_t *os = zfsvfs->z_os;
832 znode_t *zp;
833 uint64_t object = lr->lr_foid;
834 uint64_t offset = lr->lr_offset;
835 uint64_t size = lr->lr_length;
836 dmu_buf_t *db;
837 zgd_t *zgd;
838 int error = 0;
839 uint64_t zp_gen;
841 ASSERT3P(lwb, !=, NULL);
842 ASSERT3P(zio, !=, NULL);
843 ASSERT3U(size, !=, 0);
846 * Nothing to do if the file has been removed
848 if (zfs_zget(zfsvfs, object, &zp) != 0)
849 return (SET_ERROR(ENOENT));
850 if (zp->z_unlinked) {
852 * Release the vnode asynchronously as we currently have the
853 * txg stopped from syncing.
855 zfs_zrele_async(zp);
856 return (SET_ERROR(ENOENT));
858 /* check if generation number matches */
859 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
860 sizeof (zp_gen)) != 0) {
861 zfs_zrele_async(zp);
862 return (SET_ERROR(EIO));
864 if (zp_gen != gen) {
865 zfs_zrele_async(zp);
866 return (SET_ERROR(ENOENT));
869 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
870 zgd->zgd_lwb = lwb;
871 zgd->zgd_private = zp;
874 * Write records come in two flavors: immediate and indirect.
875 * For small writes it's cheaper to store the data with the
876 * log record (immediate); for large writes it's cheaper to
877 * sync the data and get a pointer to it (indirect) so that
878 * we don't have to write the data twice.
880 if (buf != NULL) { /* immediate write */
881 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
882 offset, size, RL_READER);
883 /* test for truncation needs to be done while range locked */
884 if (offset >= zp->z_size) {
885 error = SET_ERROR(ENOENT);
886 } else {
887 error = dmu_read(os, object, offset, size, buf,
888 DMU_READ_NO_PREFETCH);
890 ASSERT(error == 0 || error == ENOENT);
891 } else { /* indirect write */
893 * Have to lock the whole block to ensure when it's
894 * written out and its checksum is being calculated
895 * that no one can change the data. We need to re-check
896 * blocksize after we get the lock in case it's changed!
898 for (;;) {
899 uint64_t blkoff;
900 size = zp->z_blksz;
901 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
902 offset -= blkoff;
903 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
904 offset, size, RL_READER);
905 if (zp->z_blksz == size)
906 break;
907 offset += blkoff;
908 zfs_rangelock_exit(zgd->zgd_lr);
910 /* test for truncation needs to be done while range locked */
911 if (lr->lr_offset >= zp->z_size)
912 error = SET_ERROR(ENOENT);
913 #ifdef ZFS_DEBUG
914 if (zil_fault_io) {
915 error = SET_ERROR(EIO);
916 zil_fault_io = 0;
918 #endif
919 if (error == 0)
920 error = dmu_buf_hold(os, object, offset, zgd, &db,
921 DMU_READ_NO_PREFETCH);
923 if (error == 0) {
924 blkptr_t *bp = &lr->lr_blkptr;
926 zgd->zgd_db = db;
927 zgd->zgd_bp = bp;
929 ASSERT(db->db_offset == offset);
930 ASSERT(db->db_size == size);
932 error = dmu_sync(zio, lr->lr_common.lrc_txg,
933 zfs_get_done, zgd);
934 ASSERT(error || lr->lr_length <= size);
937 * On success, we need to wait for the write I/O
938 * initiated by dmu_sync() to complete before we can
939 * release this dbuf. We will finish everything up
940 * in the zfs_get_done() callback.
942 if (error == 0)
943 return (0);
945 if (error == EALREADY) {
946 lr->lr_common.lrc_txtype = TX_WRITE2;
948 * TX_WRITE2 relies on the data previously
949 * written by the TX_WRITE that caused
950 * EALREADY. We zero out the BP because
951 * it is the old, currently-on-disk BP.
953 zgd->zgd_bp = NULL;
954 BP_ZERO(bp);
955 error = 0;
960 zfs_get_done(zgd, error);
962 return (error);
966 static void
967 zfs_get_done(zgd_t *zgd, int error)
969 (void) error;
970 znode_t *zp = zgd->zgd_private;
972 if (zgd->zgd_db)
973 dmu_buf_rele(zgd->zgd_db, zgd);
975 zfs_rangelock_exit(zgd->zgd_lr);
978 * Release the vnode asynchronously as we currently have the
979 * txg stopped from syncing.
981 zfs_zrele_async(zp);
983 kmem_free(zgd, sizeof (zgd_t));
986 static int
987 zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
989 int error;
991 /* Swap. Not sure if the order of zfs_enter()s is important. */
992 if (zfsvfs1 > zfsvfs2) {
993 zfsvfs_t *tmpzfsvfs;
995 tmpzfsvfs = zfsvfs2;
996 zfsvfs2 = zfsvfs1;
997 zfsvfs1 = tmpzfsvfs;
1000 error = zfs_enter(zfsvfs1, tag);
1001 if (error != 0)
1002 return (error);
1003 if (zfsvfs1 != zfsvfs2) {
1004 error = zfs_enter(zfsvfs2, tag);
1005 if (error != 0) {
1006 zfs_exit(zfsvfs1, tag);
1007 return (error);
1011 return (0);
1014 static void
1015 zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
1018 zfs_exit(zfsvfs1, tag);
1019 if (zfsvfs1 != zfsvfs2)
1020 zfs_exit(zfsvfs2, tag);
1024 * We split each clone request in chunks that can fit into a single ZIL
1025 * log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
1026 * operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
1027 * us room for storing 1022 block pointers.
1029 * On success, the function return the number of bytes copied in *lenp.
1030 * Note, it doesn't return how much bytes are left to be copied.
1033 zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
1034 uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
1036 zfsvfs_t *inzfsvfs, *outzfsvfs;
1037 objset_t *inos, *outos;
1038 zfs_locked_range_t *inlr, *outlr;
1039 dmu_buf_impl_t *db;
1040 dmu_tx_t *tx;
1041 zilog_t *zilog;
1042 uint64_t inoff, outoff, len, done;
1043 uint64_t outsize, size;
1044 int error;
1045 int count = 0;
1046 sa_bulk_attr_t bulk[3];
1047 uint64_t mtime[2], ctime[2];
1048 uint64_t uid, gid, projid;
1049 blkptr_t *bps;
1050 size_t maxblocks, nbps;
1051 uint_t inblksz;
1052 uint64_t clear_setid_bits_txg = 0;
1054 inoff = *inoffp;
1055 outoff = *outoffp;
1056 len = *lenp;
1057 done = 0;
1059 inzfsvfs = ZTOZSB(inzp);
1060 outzfsvfs = ZTOZSB(outzp);
1063 * We need to call zfs_enter() potentially on two different datasets,
1064 * so we need a dedicated function for that.
1066 error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
1067 if (error != 0)
1068 return (error);
1070 inos = inzfsvfs->z_os;
1071 outos = outzfsvfs->z_os;
1074 * Both source and destination have to belong to the same storage pool.
1076 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
1077 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1078 return (SET_ERROR(EXDEV));
1082 * outos and inos belongs to the same storage pool.
1083 * see a few lines above, only one check.
1085 if (!spa_feature_is_enabled(dmu_objset_spa(outos),
1086 SPA_FEATURE_BLOCK_CLONING)) {
1087 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1088 return (SET_ERROR(EOPNOTSUPP));
1091 ASSERT(!outzfsvfs->z_replay);
1093 error = zfs_verify_zp(inzp);
1094 if (error == 0)
1095 error = zfs_verify_zp(outzp);
1096 if (error != 0) {
1097 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1098 return (error);
1102 * We don't copy source file's flags that's why we don't allow to clone
1103 * files that are in quarantine.
1105 if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
1106 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1107 return (SET_ERROR(EACCES));
1110 if (inoff >= inzp->z_size) {
1111 *lenp = 0;
1112 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1113 return (0);
1115 if (len > inzp->z_size - inoff) {
1116 len = inzp->z_size - inoff;
1118 if (len == 0) {
1119 *lenp = 0;
1120 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1121 return (0);
1125 * Callers might not be able to detect properly that we are read-only,
1126 * so check it explicitly here.
1128 if (zfs_is_readonly(outzfsvfs)) {
1129 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1130 return (SET_ERROR(EROFS));
1134 * If immutable or not appending then return EPERM.
1135 * Intentionally allow ZFS_READONLY through here.
1136 * See zfs_zaccess_common()
1138 if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
1139 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1140 return (SET_ERROR(EPERM));
1144 * No overlapping if we are cloning within the same file.
1146 if (inzp == outzp) {
1147 if (inoff < outoff + len && outoff < inoff + len) {
1148 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1149 return (SET_ERROR(EINVAL));
1154 * Maintain predictable lock order.
1156 if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
1157 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1158 RL_READER);
1159 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1160 RL_WRITER);
1161 } else {
1162 outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
1163 RL_WRITER);
1164 inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
1165 RL_READER);
1168 inblksz = inzp->z_blksz;
1171 * We cannot clone into files with different block size.
1173 if (inblksz != outzp->z_blksz && outzp->z_size > inblksz) {
1174 error = SET_ERROR(EXDEV);
1175 goto unlock;
1179 * Offsets and len must be at block boundries.
1181 if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
1182 error = SET_ERROR(EXDEV);
1183 goto unlock;
1186 * Length must be multipe of blksz, except for the end of the file.
1188 if ((len % inblksz) != 0 &&
1189 (len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
1190 error = SET_ERROR(EXDEV);
1191 goto unlock;
1194 error = zn_rlimit_fsize(outoff + len);
1195 if (error != 0) {
1196 goto unlock;
1199 if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
1200 error = SET_ERROR(EFBIG);
1201 goto unlock;
1204 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
1205 &mtime, 16);
1206 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
1207 &ctime, 16);
1208 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
1209 &outzp->z_size, 8);
1211 zilog = outzfsvfs->z_log;
1212 maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
1213 sizeof (bps[0]);
1215 uid = KUID_TO_SUID(ZTOUID(outzp));
1216 gid = KGID_TO_SGID(ZTOGID(outzp));
1217 projid = outzp->z_projid;
1219 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
1222 * Clone the file in reasonable size chunks. Each chunk is cloned
1223 * in a separate transaction; this keeps the intent log records small
1224 * and allows us to do more fine-grained space accounting.
1226 while (len > 0) {
1227 size = MIN(inblksz * maxblocks, len);
1229 if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
1230 uid) ||
1231 zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
1232 gid) ||
1233 (projid != ZFS_DEFAULT_PROJID &&
1234 zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
1235 projid))) {
1236 error = SET_ERROR(EDQUOT);
1237 break;
1240 nbps = maxblocks;
1241 error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
1242 &nbps);
1243 if (error != 0) {
1245 * If we are tyring to clone a block that was created
1246 * in the current transaction group. Return an error,
1247 * so the caller can fallback to just copying the data.
1249 if (error == EAGAIN) {
1250 error = SET_ERROR(EXDEV);
1252 break;
1255 * Encrypted data is fine as long as it comes from the same
1256 * dataset.
1257 * TODO: We want to extend it in the future to allow cloning to
1258 * datasets with the same keys, like clones or to be able to
1259 * clone a file from a snapshot of an encrypted dataset into the
1260 * dataset itself.
1262 if (BP_IS_PROTECTED(&bps[0])) {
1263 if (inzfsvfs != outzfsvfs) {
1264 error = SET_ERROR(EXDEV);
1265 break;
1270 * Start a transaction.
1272 tx = dmu_tx_create(outos);
1273 dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
1274 db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
1275 DB_DNODE_ENTER(db);
1276 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
1277 DB_DNODE_EXIT(db);
1278 zfs_sa_upgrade_txholds(tx, outzp);
1279 error = dmu_tx_assign(tx, TXG_WAIT);
1280 if (error != 0) {
1281 dmu_tx_abort(tx);
1282 break;
1286 * Copy source znode's block size. This only happens on the
1287 * first iteration since zfs_rangelock_reduce() will shrink down
1288 * lr_len to the appropriate size.
1290 if (outlr->lr_length == UINT64_MAX) {
1291 zfs_grow_blocksize(outzp, inblksz, tx);
1293 * Round range lock up to the block boundary, so we
1294 * prevent appends until we are done.
1296 zfs_rangelock_reduce(outlr, outoff,
1297 ((len - 1) / inblksz + 1) * inblksz);
1300 error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
1301 bps, nbps, B_FALSE);
1302 if (error != 0) {
1303 dmu_tx_commit(tx);
1304 break;
1307 zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
1308 &clear_setid_bits_txg, tx);
1310 zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
1313 * Update the file size (zp_size) if it has changed;
1314 * account for possible concurrent updates.
1316 while ((outsize = outzp->z_size) < outoff + size) {
1317 (void) atomic_cas_64(&outzp->z_size, outsize,
1318 outoff + size);
1321 error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
1323 zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
1324 size, inblksz, bps, nbps);
1326 dmu_tx_commit(tx);
1328 if (error != 0)
1329 break;
1331 inoff += size;
1332 outoff += size;
1333 len -= size;
1334 done += size;
1337 vmem_free(bps, sizeof (bps[0]) * maxblocks);
1338 zfs_znode_update_vfs(outzp);
1340 unlock:
1341 zfs_rangelock_exit(outlr);
1342 zfs_rangelock_exit(inlr);
1344 if (done > 0) {
1346 * If we have made at least partial progress, reset the error.
1348 error = 0;
1350 ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
1352 if (outos->os_sync == ZFS_SYNC_ALWAYS) {
1353 zil_commit(zilog, outzp->z_id);
1356 *inoffp += done;
1357 *outoffp += done;
1358 *lenp = done;
1361 zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
1363 return (error);
1367 * Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
1368 * but we cannot do that, because when replaying we don't have source znode
1369 * available. This is why we need a dedicated replay function.
1372 zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
1373 const blkptr_t *bps, size_t nbps)
1375 zfsvfs_t *zfsvfs;
1376 dmu_buf_impl_t *db;
1377 dmu_tx_t *tx;
1378 int error;
1379 int count = 0;
1380 sa_bulk_attr_t bulk[3];
1381 uint64_t mtime[2], ctime[2];
1383 ASSERT3U(off, <, MAXOFFSET_T);
1384 ASSERT3U(len, >, 0);
1385 ASSERT3U(nbps, >, 0);
1387 zfsvfs = ZTOZSB(zp);
1389 ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
1390 SPA_FEATURE_BLOCK_CLONING));
1392 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1393 return (error);
1395 ASSERT(zfsvfs->z_replay);
1396 ASSERT(!zfs_is_readonly(zfsvfs));
1398 if ((off % blksz) != 0) {
1399 zfs_exit(zfsvfs, FTAG);
1400 return (SET_ERROR(EINVAL));
1403 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
1404 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
1405 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1406 &zp->z_size, 8);
1409 * Start a transaction.
1411 tx = dmu_tx_create(zfsvfs->z_os);
1413 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1414 db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
1415 DB_DNODE_ENTER(db);
1416 dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
1417 DB_DNODE_EXIT(db);
1418 zfs_sa_upgrade_txholds(tx, zp);
1419 error = dmu_tx_assign(tx, TXG_WAIT);
1420 if (error != 0) {
1421 dmu_tx_abort(tx);
1422 zfs_exit(zfsvfs, FTAG);
1423 return (error);
1426 if (zp->z_blksz < blksz)
1427 zfs_grow_blocksize(zp, blksz, tx);
1429 dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps, B_TRUE);
1431 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
1433 if (zp->z_size < off + len)
1434 zp->z_size = off + len;
1436 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1439 * zil_replaying() not only check if we are replaying ZIL, but also
1440 * updates the ZIL header to record replay progress.
1442 VERIFY(zil_replaying(zfsvfs->z_log, tx));
1444 dmu_tx_commit(tx);
1446 zfs_znode_update_vfs(zp);
1448 zfs_exit(zfsvfs, FTAG);
1450 return (error);
1453 EXPORT_SYMBOL(zfs_access);
1454 EXPORT_SYMBOL(zfs_fsync);
1455 EXPORT_SYMBOL(zfs_holey);
1456 EXPORT_SYMBOL(zfs_read);
1457 EXPORT_SYMBOL(zfs_write);
1458 EXPORT_SYMBOL(zfs_getsecattr);
1459 EXPORT_SYMBOL(zfs_setsecattr);
1460 EXPORT_SYMBOL(zfs_clone_range);
1461 EXPORT_SYMBOL(zfs_clone_range_replay);
1463 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1464 "Bytes to read per chunk");