BRT should return EOPNOTSUPP
[zfs.git] / module / zfs / zio.c
blob3f5e6a08d89ce41dcff3063145bc7644441fa096
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
57 * ==========================================================================
58 * I/O type descriptions
59 * ==========================================================================
61 const char *const zio_type_name[ZIO_TYPES] = {
63 * Note: Linux kernel thread name length is limited
64 * so these names will differ from upstream open zfs.
66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
73 * ==========================================================================
74 * I/O kmem caches
75 * ==========================================================================
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
89 #define BP_SPANB(indblkshift, level) \
90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define COMPARE_META_LEVEL 0x80000000ul
93 * The following actions directly effect the spa's sync-to-convergence logic.
94 * The values below define the sync pass when we start performing the action.
95 * Care should be taken when changing these values as they directly impact
96 * spa_sync() performance. Tuning these values may introduce subtle performance
97 * pathologies and should only be done in the context of performance analysis.
98 * These tunables will eventually be removed and replaced with #defines once
99 * enough analysis has been done to determine optimal values.
101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102 * regular blocks are not deferred.
104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105 * compression (including of metadata). In practice, we don't have this
106 * many sync passes, so this has no effect.
108 * The original intent was that disabling compression would help the sync
109 * passes to converge. However, in practice disabling compression increases
110 * the average number of sync passes, because when we turn compression off, a
111 * lot of block's size will change and thus we have to re-allocate (not
112 * overwrite) them. It also increases the number of 128KB allocations (e.g.
113 * for indirect blocks and spacemaps) because these will not be compressed.
114 * The 128K allocations are especially detrimental to performance on highly
115 * fragmented systems, which may have very few free segments of this size,
116 * and may need to load new metaslabs to satisfy 128K allocations.
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
129 * An allocating zio is one that either currently has the DVA allocate
130 * stage set or will have it later in its lifetime.
132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
135 * Enable smaller cores by excluding metadata
136 * allocations as well.
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
147 static inline void __zio_execute(zio_t *zio);
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
151 void
152 zio_init(void)
154 size_t c;
156 zio_cache = kmem_cache_create("zio_cache",
157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 zio_link_cache = kmem_cache_create("zio_link_cache",
159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
162 * For small buffers, we want a cache for each multiple of
163 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
164 * for each quarter-power of 2.
166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 size_t p2 = size;
169 size_t align = 0;
170 size_t data_cflags, cflags;
172 data_cflags = KMC_NODEBUG;
173 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 KMC_NODEBUG : 0;
176 while (!ISP2(p2))
177 p2 &= p2 - 1;
179 #ifndef _KERNEL
181 * If we are using watchpoints, put each buffer on its own page,
182 * to eliminate the performance overhead of trapping to the
183 * kernel when modifying a non-watched buffer that shares the
184 * page with a watched buffer.
186 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 continue;
189 * Here's the problem - on 4K native devices in userland on
190 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 * will fail with EINVAL, causing zdb (and others) to coredump.
192 * Since userland probably doesn't need optimized buffer caches,
193 * we just force 4K alignment on everything.
195 align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 if (size < PAGESIZE) {
198 align = SPA_MINBLOCKSIZE;
199 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 align = PAGESIZE;
202 #endif
204 if (align != 0) {
205 char name[36];
206 if (cflags == data_cflags) {
208 * Resulting kmem caches would be identical.
209 * Save memory by creating only one.
211 (void) snprintf(name, sizeof (name),
212 "zio_buf_comb_%lu", (ulong_t)size);
213 zio_buf_cache[c] = kmem_cache_create(name,
214 size, align, NULL, NULL, NULL, NULL, NULL,
215 cflags);
216 zio_data_buf_cache[c] = zio_buf_cache[c];
217 continue;
219 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 (ulong_t)size);
221 zio_buf_cache[c] = kmem_cache_create(name, size,
222 align, NULL, NULL, NULL, NULL, NULL, cflags);
224 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 (ulong_t)size);
226 zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
231 while (--c != 0) {
232 ASSERT(zio_buf_cache[c] != NULL);
233 if (zio_buf_cache[c - 1] == NULL)
234 zio_buf_cache[c - 1] = zio_buf_cache[c];
236 ASSERT(zio_data_buf_cache[c] != NULL);
237 if (zio_data_buf_cache[c - 1] == NULL)
238 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
241 zio_inject_init();
243 lz4_init();
246 void
247 zio_fini(void)
249 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 for (size_t i = 0; i < n; i++) {
253 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 (void) printf("zio_fini: [%d] %llu != %llu\n",
255 (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 (long long unsigned)zio_buf_cache_allocs[i],
257 (long long unsigned)zio_buf_cache_frees[i]);
259 #endif
262 * The same kmem cache can show up multiple times in both zio_buf_cache
263 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 * sort it out.
266 for (size_t i = 0; i < n; i++) {
267 kmem_cache_t *cache = zio_buf_cache[i];
268 if (cache == NULL)
269 continue;
270 for (size_t j = i; j < n; j++) {
271 if (cache == zio_buf_cache[j])
272 zio_buf_cache[j] = NULL;
273 if (cache == zio_data_buf_cache[j])
274 zio_data_buf_cache[j] = NULL;
276 kmem_cache_destroy(cache);
279 for (size_t i = 0; i < n; i++) {
280 kmem_cache_t *cache = zio_data_buf_cache[i];
281 if (cache == NULL)
282 continue;
283 for (size_t j = i; j < n; j++) {
284 if (cache == zio_data_buf_cache[j])
285 zio_data_buf_cache[j] = NULL;
287 kmem_cache_destroy(cache);
290 for (size_t i = 0; i < n; i++) {
291 VERIFY3P(zio_buf_cache[i], ==, NULL);
292 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
295 kmem_cache_destroy(zio_link_cache);
296 kmem_cache_destroy(zio_cache);
298 zio_inject_fini();
300 lz4_fini();
304 * ==========================================================================
305 * Allocate and free I/O buffers
306 * ==========================================================================
310 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
311 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
312 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
313 * excess / transient data in-core during a crashdump.
315 void *
316 zio_buf_alloc(size_t size)
318 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
320 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
322 atomic_add_64(&zio_buf_cache_allocs[c], 1);
323 #endif
325 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
329 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
330 * crashdump if the kernel panics. This exists so that we will limit the amount
331 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
332 * of kernel heap dumped to disk when the kernel panics)
334 void *
335 zio_data_buf_alloc(size_t size)
337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
341 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
344 void
345 zio_buf_free(void *buf, size_t size)
347 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
349 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
350 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
351 atomic_add_64(&zio_buf_cache_frees[c], 1);
352 #endif
354 kmem_cache_free(zio_buf_cache[c], buf);
357 void
358 zio_data_buf_free(void *buf, size_t size)
360 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
362 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
364 kmem_cache_free(zio_data_buf_cache[c], buf);
367 static void
368 zio_abd_free(void *abd, size_t size)
370 (void) size;
371 abd_free((abd_t *)abd);
375 * ==========================================================================
376 * Push and pop I/O transform buffers
377 * ==========================================================================
379 void
380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
381 zio_transform_func_t *transform)
383 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
385 zt->zt_orig_abd = zio->io_abd;
386 zt->zt_orig_size = zio->io_size;
387 zt->zt_bufsize = bufsize;
388 zt->zt_transform = transform;
390 zt->zt_next = zio->io_transform_stack;
391 zio->io_transform_stack = zt;
393 zio->io_abd = data;
394 zio->io_size = size;
397 void
398 zio_pop_transforms(zio_t *zio)
400 zio_transform_t *zt;
402 while ((zt = zio->io_transform_stack) != NULL) {
403 if (zt->zt_transform != NULL)
404 zt->zt_transform(zio,
405 zt->zt_orig_abd, zt->zt_orig_size);
407 if (zt->zt_bufsize != 0)
408 abd_free(zio->io_abd);
410 zio->io_abd = zt->zt_orig_abd;
411 zio->io_size = zt->zt_orig_size;
412 zio->io_transform_stack = zt->zt_next;
414 kmem_free(zt, sizeof (zio_transform_t));
419 * ==========================================================================
420 * I/O transform callbacks for subblocks, decompression, and decryption
421 * ==========================================================================
423 static void
424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
426 ASSERT(zio->io_size > size);
428 if (zio->io_type == ZIO_TYPE_READ)
429 abd_copy(data, zio->io_abd, size);
432 static void
433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
435 if (zio->io_error == 0) {
436 void *tmp = abd_borrow_buf(data, size);
437 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
438 zio->io_abd, tmp, zio->io_size, size,
439 &zio->io_prop.zp_complevel);
440 abd_return_buf_copy(data, tmp, size);
442 if (zio_injection_enabled && ret == 0)
443 ret = zio_handle_fault_injection(zio, EINVAL);
445 if (ret != 0)
446 zio->io_error = SET_ERROR(EIO);
450 static void
451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
453 int ret;
454 void *tmp;
455 blkptr_t *bp = zio->io_bp;
456 spa_t *spa = zio->io_spa;
457 uint64_t dsobj = zio->io_bookmark.zb_objset;
458 uint64_t lsize = BP_GET_LSIZE(bp);
459 dmu_object_type_t ot = BP_GET_TYPE(bp);
460 uint8_t salt[ZIO_DATA_SALT_LEN];
461 uint8_t iv[ZIO_DATA_IV_LEN];
462 uint8_t mac[ZIO_DATA_MAC_LEN];
463 boolean_t no_crypt = B_FALSE;
465 ASSERT(BP_USES_CRYPT(bp));
466 ASSERT3U(size, !=, 0);
468 if (zio->io_error != 0)
469 return;
472 * Verify the cksum of MACs stored in an indirect bp. It will always
473 * be possible to verify this since it does not require an encryption
474 * key.
476 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
477 zio_crypt_decode_mac_bp(bp, mac);
479 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
481 * We haven't decompressed the data yet, but
482 * zio_crypt_do_indirect_mac_checksum() requires
483 * decompressed data to be able to parse out the MACs
484 * from the indirect block. We decompress it now and
485 * throw away the result after we are finished.
487 tmp = zio_buf_alloc(lsize);
488 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
489 zio->io_abd, tmp, zio->io_size, lsize,
490 &zio->io_prop.zp_complevel);
491 if (ret != 0) {
492 ret = SET_ERROR(EIO);
493 goto error;
495 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
496 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
497 zio_buf_free(tmp, lsize);
498 } else {
499 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
500 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
502 abd_copy(data, zio->io_abd, size);
504 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
505 ret = zio_handle_decrypt_injection(spa,
506 &zio->io_bookmark, ot, ECKSUM);
508 if (ret != 0)
509 goto error;
511 return;
515 * If this is an authenticated block, just check the MAC. It would be
516 * nice to separate this out into its own flag, but when this was done,
517 * we had run out of bits in what is now zio_flag_t. Future cleanup
518 * could make this a flag bit.
520 if (BP_IS_AUTHENTICATED(bp)) {
521 if (ot == DMU_OT_OBJSET) {
522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 } else {
525 zio_crypt_decode_mac_bp(bp, mac);
526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 zio->io_abd, size, mac);
528 if (zio_injection_enabled && ret == 0) {
529 ret = zio_handle_decrypt_injection(spa,
530 &zio->io_bookmark, ot, ECKSUM);
533 abd_copy(data, zio->io_abd, size);
535 if (ret != 0)
536 goto error;
538 return;
541 zio_crypt_decode_params_bp(bp, salt, iv);
543 if (ot == DMU_OT_INTENT_LOG) {
544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 zio_crypt_decode_mac_zil(tmp, mac);
546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 } else {
548 zio_crypt_decode_mac_bp(bp, mac);
551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 zio->io_abd, &no_crypt);
554 if (no_crypt)
555 abd_copy(data, zio->io_abd, size);
557 if (ret != 0)
558 goto error;
560 return;
562 error:
563 /* assert that the key was found unless this was speculative */
564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
567 * If there was a decryption / authentication error return EIO as
568 * the io_error. If this was not a speculative zio, create an ereport.
570 if (ret == ECKSUM) {
571 zio->io_error = SET_ERROR(EIO);
572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 spa_log_error(spa, &zio->io_bookmark,
574 &zio->io_bp->blk_birth);
575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
576 spa, NULL, &zio->io_bookmark, zio, 0);
578 } else {
579 zio->io_error = ret;
584 * ==========================================================================
585 * I/O parent/child relationships and pipeline interlocks
586 * ==========================================================================
588 zio_t *
589 zio_walk_parents(zio_t *cio, zio_link_t **zl)
591 list_t *pl = &cio->io_parent_list;
593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
594 if (*zl == NULL)
595 return (NULL);
597 ASSERT((*zl)->zl_child == cio);
598 return ((*zl)->zl_parent);
601 zio_t *
602 zio_walk_children(zio_t *pio, zio_link_t **zl)
604 list_t *cl = &pio->io_child_list;
606 ASSERT(MUTEX_HELD(&pio->io_lock));
608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
609 if (*zl == NULL)
610 return (NULL);
612 ASSERT((*zl)->zl_parent == pio);
613 return ((*zl)->zl_child);
616 zio_t *
617 zio_unique_parent(zio_t *cio)
619 zio_link_t *zl = NULL;
620 zio_t *pio = zio_walk_parents(cio, &zl);
622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
623 return (pio);
626 void
627 zio_add_child(zio_t *pio, zio_t *cio)
630 * Logical I/Os can have logical, gang, or vdev children.
631 * Gang I/Os can have gang or vdev children.
632 * Vdev I/Os can only have vdev children.
633 * The following ASSERT captures all of these constraints.
635 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
637 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
638 zl->zl_parent = pio;
639 zl->zl_child = cio;
641 mutex_enter(&pio->io_lock);
642 mutex_enter(&cio->io_lock);
644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
646 uint64_t *countp = pio->io_children[cio->io_child_type];
647 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
648 countp[w] += !cio->io_state[w];
650 list_insert_head(&pio->io_child_list, zl);
651 list_insert_head(&cio->io_parent_list, zl);
653 mutex_exit(&cio->io_lock);
654 mutex_exit(&pio->io_lock);
657 void
658 zio_add_child_first(zio_t *pio, zio_t *cio)
661 * Logical I/Os can have logical, gang, or vdev children.
662 * Gang I/Os can have gang or vdev children.
663 * Vdev I/Os can only have vdev children.
664 * The following ASSERT captures all of these constraints.
666 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
668 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
669 zl->zl_parent = pio;
670 zl->zl_child = cio;
672 ASSERT(list_is_empty(&cio->io_parent_list));
673 list_insert_head(&cio->io_parent_list, zl);
675 mutex_enter(&pio->io_lock);
677 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
679 uint64_t *countp = pio->io_children[cio->io_child_type];
680 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
681 countp[w] += !cio->io_state[w];
683 list_insert_head(&pio->io_child_list, zl);
685 mutex_exit(&pio->io_lock);
688 static void
689 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
691 ASSERT(zl->zl_parent == pio);
692 ASSERT(zl->zl_child == cio);
694 mutex_enter(&pio->io_lock);
695 mutex_enter(&cio->io_lock);
697 list_remove(&pio->io_child_list, zl);
698 list_remove(&cio->io_parent_list, zl);
700 mutex_exit(&cio->io_lock);
701 mutex_exit(&pio->io_lock);
702 kmem_cache_free(zio_link_cache, zl);
705 static boolean_t
706 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
708 boolean_t waiting = B_FALSE;
710 mutex_enter(&zio->io_lock);
711 ASSERT(zio->io_stall == NULL);
712 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
713 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
714 continue;
716 uint64_t *countp = &zio->io_children[c][wait];
717 if (*countp != 0) {
718 zio->io_stage >>= 1;
719 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
720 zio->io_stall = countp;
721 waiting = B_TRUE;
722 break;
725 mutex_exit(&zio->io_lock);
726 return (waiting);
729 __attribute__((always_inline))
730 static inline void
731 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
732 zio_t **next_to_executep)
734 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
735 int *errorp = &pio->io_child_error[zio->io_child_type];
737 mutex_enter(&pio->io_lock);
738 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
739 *errorp = zio_worst_error(*errorp, zio->io_error);
740 pio->io_reexecute |= zio->io_reexecute;
741 ASSERT3U(*countp, >, 0);
743 (*countp)--;
745 if (*countp == 0 && pio->io_stall == countp) {
746 zio_taskq_type_t type =
747 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
748 ZIO_TASKQ_INTERRUPT;
749 pio->io_stall = NULL;
750 mutex_exit(&pio->io_lock);
753 * If we can tell the caller to execute this parent next, do
754 * so. We only do this if the parent's zio type matches the
755 * child's type. Otherwise dispatch the parent zio in its
756 * own taskq.
758 * Having the caller execute the parent when possible reduces
759 * locking on the zio taskq's, reduces context switch
760 * overhead, and has no recursion penalty. Note that one
761 * read from disk typically causes at least 3 zio's: a
762 * zio_null(), the logical zio_read(), and then a physical
763 * zio. When the physical ZIO completes, we are able to call
764 * zio_done() on all 3 of these zio's from one invocation of
765 * zio_execute() by returning the parent back to
766 * zio_execute(). Since the parent isn't executed until this
767 * thread returns back to zio_execute(), the caller should do
768 * so promptly.
770 * In other cases, dispatching the parent prevents
771 * overflowing the stack when we have deeply nested
772 * parent-child relationships, as we do with the "mega zio"
773 * of writes for spa_sync(), and the chain of ZIL blocks.
775 if (next_to_executep != NULL && *next_to_executep == NULL &&
776 pio->io_type == zio->io_type) {
777 *next_to_executep = pio;
778 } else {
779 zio_taskq_dispatch(pio, type, B_FALSE);
781 } else {
782 mutex_exit(&pio->io_lock);
786 static void
787 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
789 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
790 zio->io_error = zio->io_child_error[c];
794 zio_bookmark_compare(const void *x1, const void *x2)
796 const zio_t *z1 = x1;
797 const zio_t *z2 = x2;
799 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
800 return (-1);
801 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
802 return (1);
804 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
805 return (-1);
806 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
807 return (1);
809 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
810 return (-1);
811 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
812 return (1);
814 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
815 return (-1);
816 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
817 return (1);
819 if (z1 < z2)
820 return (-1);
821 if (z1 > z2)
822 return (1);
824 return (0);
828 * ==========================================================================
829 * Create the various types of I/O (read, write, free, etc)
830 * ==========================================================================
832 static zio_t *
833 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
834 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
835 void *private, zio_type_t type, zio_priority_t priority,
836 zio_flag_t flags, vdev_t *vd, uint64_t offset,
837 const zbookmark_phys_t *zb, enum zio_stage stage,
838 enum zio_stage pipeline)
840 zio_t *zio;
842 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
843 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
844 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
846 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
847 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
848 ASSERT(vd || stage == ZIO_STAGE_OPEN);
850 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
852 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
853 memset(zio, 0, sizeof (zio_t));
855 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
856 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
858 list_create(&zio->io_parent_list, sizeof (zio_link_t),
859 offsetof(zio_link_t, zl_parent_node));
860 list_create(&zio->io_child_list, sizeof (zio_link_t),
861 offsetof(zio_link_t, zl_child_node));
862 metaslab_trace_init(&zio->io_alloc_list);
864 if (vd != NULL)
865 zio->io_child_type = ZIO_CHILD_VDEV;
866 else if (flags & ZIO_FLAG_GANG_CHILD)
867 zio->io_child_type = ZIO_CHILD_GANG;
868 else if (flags & ZIO_FLAG_DDT_CHILD)
869 zio->io_child_type = ZIO_CHILD_DDT;
870 else
871 zio->io_child_type = ZIO_CHILD_LOGICAL;
873 if (bp != NULL) {
874 if (type != ZIO_TYPE_WRITE ||
875 zio->io_child_type == ZIO_CHILD_DDT) {
876 zio->io_bp_copy = *bp;
877 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
878 } else {
879 zio->io_bp = (blkptr_t *)bp;
881 zio->io_bp_orig = *bp;
882 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
883 zio->io_logical = zio;
884 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
885 pipeline |= ZIO_GANG_STAGES;
888 zio->io_spa = spa;
889 zio->io_txg = txg;
890 zio->io_done = done;
891 zio->io_private = private;
892 zio->io_type = type;
893 zio->io_priority = priority;
894 zio->io_vd = vd;
895 zio->io_offset = offset;
896 zio->io_orig_abd = zio->io_abd = data;
897 zio->io_orig_size = zio->io_size = psize;
898 zio->io_lsize = lsize;
899 zio->io_orig_flags = zio->io_flags = flags;
900 zio->io_orig_stage = zio->io_stage = stage;
901 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
902 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
904 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
905 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
907 if (zb != NULL)
908 zio->io_bookmark = *zb;
910 if (pio != NULL) {
911 zio->io_metaslab_class = pio->io_metaslab_class;
912 if (zio->io_logical == NULL)
913 zio->io_logical = pio->io_logical;
914 if (zio->io_child_type == ZIO_CHILD_GANG)
915 zio->io_gang_leader = pio->io_gang_leader;
916 zio_add_child_first(pio, zio);
919 taskq_init_ent(&zio->io_tqent);
921 return (zio);
924 void
925 zio_destroy(zio_t *zio)
927 metaslab_trace_fini(&zio->io_alloc_list);
928 list_destroy(&zio->io_parent_list);
929 list_destroy(&zio->io_child_list);
930 mutex_destroy(&zio->io_lock);
931 cv_destroy(&zio->io_cv);
932 kmem_cache_free(zio_cache, zio);
935 zio_t *
936 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
937 void *private, zio_flag_t flags)
939 zio_t *zio;
941 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
942 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
943 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
945 return (zio);
948 zio_t *
949 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
951 return (zio_null(NULL, spa, NULL, done, private, flags));
954 static int
955 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
956 enum blk_verify_flag blk_verify, const char *fmt, ...)
958 va_list adx;
959 char buf[256];
961 va_start(adx, fmt);
962 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
963 va_end(adx);
965 zfs_dbgmsg("bad blkptr at %px: "
966 "DVA[0]=%#llx/%#llx "
967 "DVA[1]=%#llx/%#llx "
968 "DVA[2]=%#llx/%#llx "
969 "prop=%#llx "
970 "pad=%#llx,%#llx "
971 "phys_birth=%#llx "
972 "birth=%#llx "
973 "fill=%#llx "
974 "cksum=%#llx/%#llx/%#llx/%#llx",
976 (long long)bp->blk_dva[0].dva_word[0],
977 (long long)bp->blk_dva[0].dva_word[1],
978 (long long)bp->blk_dva[1].dva_word[0],
979 (long long)bp->blk_dva[1].dva_word[1],
980 (long long)bp->blk_dva[2].dva_word[0],
981 (long long)bp->blk_dva[2].dva_word[1],
982 (long long)bp->blk_prop,
983 (long long)bp->blk_pad[0],
984 (long long)bp->blk_pad[1],
985 (long long)bp->blk_phys_birth,
986 (long long)bp->blk_birth,
987 (long long)bp->blk_fill,
988 (long long)bp->blk_cksum.zc_word[0],
989 (long long)bp->blk_cksum.zc_word[1],
990 (long long)bp->blk_cksum.zc_word[2],
991 (long long)bp->blk_cksum.zc_word[3]);
992 switch (blk_verify) {
993 case BLK_VERIFY_HALT:
994 zfs_panic_recover("%s: %s", spa_name(spa), buf);
995 break;
996 case BLK_VERIFY_LOG:
997 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
998 break;
999 case BLK_VERIFY_ONLY:
1000 break;
1003 return (1);
1007 * Verify the block pointer fields contain reasonable values. This means
1008 * it only contains known object types, checksum/compression identifiers,
1009 * block sizes within the maximum allowed limits, valid DVAs, etc.
1011 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
1012 * argument controls the behavior when an invalid field is detected.
1014 * Values for blk_verify_flag:
1015 * BLK_VERIFY_ONLY: evaluate the block
1016 * BLK_VERIFY_LOG: evaluate the block and log problems
1017 * BLK_VERIFY_HALT: call zfs_panic_recover on error
1019 * Values for blk_config_flag:
1020 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1021 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1022 * obtained for reader
1023 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1024 * performance
1026 boolean_t
1027 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1028 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1030 int errors = 0;
1032 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1033 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1034 "blkptr at %px has invalid TYPE %llu",
1035 bp, (longlong_t)BP_GET_TYPE(bp));
1037 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1038 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1039 "blkptr at %px has invalid CHECKSUM %llu",
1040 bp, (longlong_t)BP_GET_CHECKSUM(bp));
1042 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1043 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1044 "blkptr at %px has invalid COMPRESS %llu",
1045 bp, (longlong_t)BP_GET_COMPRESS(bp));
1047 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1048 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1049 "blkptr at %px has invalid LSIZE %llu",
1050 bp, (longlong_t)BP_GET_LSIZE(bp));
1052 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1053 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1054 "blkptr at %px has invalid PSIZE %llu",
1055 bp, (longlong_t)BP_GET_PSIZE(bp));
1058 if (BP_IS_EMBEDDED(bp)) {
1059 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1060 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1061 "blkptr at %px has invalid ETYPE %llu",
1062 bp, (longlong_t)BPE_GET_ETYPE(bp));
1067 * Do not verify individual DVAs if the config is not trusted. This
1068 * will be done once the zio is executed in vdev_mirror_map_alloc.
1070 if (!spa->spa_trust_config)
1071 return (errors == 0);
1073 switch (blk_config) {
1074 case BLK_CONFIG_HELD:
1075 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1076 break;
1077 case BLK_CONFIG_NEEDED:
1078 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1079 break;
1080 case BLK_CONFIG_SKIP:
1081 return (errors == 0);
1082 default:
1083 panic("invalid blk_config %u", blk_config);
1087 * Pool-specific checks.
1089 * Note: it would be nice to verify that the blk_birth and
1090 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1091 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1092 * that are in the log) to be arbitrarily large.
1094 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1095 const dva_t *dva = &bp->blk_dva[i];
1096 uint64_t vdevid = DVA_GET_VDEV(dva);
1098 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1099 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1100 "blkptr at %px DVA %u has invalid VDEV %llu",
1101 bp, i, (longlong_t)vdevid);
1102 continue;
1104 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1105 if (vd == NULL) {
1106 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1107 "blkptr at %px DVA %u has invalid VDEV %llu",
1108 bp, i, (longlong_t)vdevid);
1109 continue;
1111 if (vd->vdev_ops == &vdev_hole_ops) {
1112 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1113 "blkptr at %px DVA %u has hole VDEV %llu",
1114 bp, i, (longlong_t)vdevid);
1115 continue;
1117 if (vd->vdev_ops == &vdev_missing_ops) {
1119 * "missing" vdevs are valid during import, but we
1120 * don't have their detailed info (e.g. asize), so
1121 * we can't perform any more checks on them.
1123 continue;
1125 uint64_t offset = DVA_GET_OFFSET(dva);
1126 uint64_t asize = DVA_GET_ASIZE(dva);
1127 if (DVA_GET_GANG(dva))
1128 asize = vdev_gang_header_asize(vd);
1129 if (offset + asize > vd->vdev_asize) {
1130 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1131 "blkptr at %px DVA %u has invalid OFFSET %llu",
1132 bp, i, (longlong_t)offset);
1135 if (blk_config == BLK_CONFIG_NEEDED)
1136 spa_config_exit(spa, SCL_VDEV, bp);
1138 return (errors == 0);
1141 boolean_t
1142 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1144 (void) bp;
1145 uint64_t vdevid = DVA_GET_VDEV(dva);
1147 if (vdevid >= spa->spa_root_vdev->vdev_children)
1148 return (B_FALSE);
1150 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1151 if (vd == NULL)
1152 return (B_FALSE);
1154 if (vd->vdev_ops == &vdev_hole_ops)
1155 return (B_FALSE);
1157 if (vd->vdev_ops == &vdev_missing_ops) {
1158 return (B_FALSE);
1161 uint64_t offset = DVA_GET_OFFSET(dva);
1162 uint64_t asize = DVA_GET_ASIZE(dva);
1164 if (DVA_GET_GANG(dva))
1165 asize = vdev_gang_header_asize(vd);
1166 if (offset + asize > vd->vdev_asize)
1167 return (B_FALSE);
1169 return (B_TRUE);
1172 zio_t *
1173 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1174 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1175 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1177 zio_t *zio;
1179 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1180 data, size, size, done, private,
1181 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1182 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1183 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1185 return (zio);
1188 zio_t *
1189 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1190 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1191 zio_done_func_t *ready, zio_done_func_t *children_ready,
1192 zio_done_func_t *done, void *private, zio_priority_t priority,
1193 zio_flag_t flags, const zbookmark_phys_t *zb)
1195 zio_t *zio;
1197 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1198 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1199 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1200 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1201 DMU_OT_IS_VALID(zp->zp_type) &&
1202 zp->zp_level < 32 &&
1203 zp->zp_copies > 0 &&
1204 zp->zp_copies <= spa_max_replication(spa));
1206 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1207 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1208 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1209 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1211 zio->io_ready = ready;
1212 zio->io_children_ready = children_ready;
1213 zio->io_prop = *zp;
1216 * Data can be NULL if we are going to call zio_write_override() to
1217 * provide the already-allocated BP. But we may need the data to
1218 * verify a dedup hit (if requested). In this case, don't try to
1219 * dedup (just take the already-allocated BP verbatim). Encrypted
1220 * dedup blocks need data as well so we also disable dedup in this
1221 * case.
1223 if (data == NULL &&
1224 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1225 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1228 return (zio);
1231 zio_t *
1232 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1233 uint64_t size, zio_done_func_t *done, void *private,
1234 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1236 zio_t *zio;
1238 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1239 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1240 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1242 return (zio);
1245 void
1246 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1247 boolean_t brtwrite)
1249 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1250 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1251 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1252 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1253 ASSERT(!brtwrite || !nopwrite);
1256 * We must reset the io_prop to match the values that existed
1257 * when the bp was first written by dmu_sync() keeping in mind
1258 * that nopwrite and dedup are mutually exclusive.
1260 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1261 zio->io_prop.zp_nopwrite = nopwrite;
1262 zio->io_prop.zp_brtwrite = brtwrite;
1263 zio->io_prop.zp_copies = copies;
1264 zio->io_bp_override = bp;
1267 void
1268 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1271 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1274 * The check for EMBEDDED is a performance optimization. We
1275 * process the free here (by ignoring it) rather than
1276 * putting it on the list and then processing it in zio_free_sync().
1278 if (BP_IS_EMBEDDED(bp))
1279 return;
1282 * Frees that are for the currently-syncing txg, are not going to be
1283 * deferred, and which will not need to do a read (i.e. not GANG or
1284 * DEDUP), can be processed immediately. Otherwise, put them on the
1285 * in-memory list for later processing.
1287 * Note that we only defer frees after zfs_sync_pass_deferred_free
1288 * when the log space map feature is disabled. [see relevant comment
1289 * in spa_sync_iterate_to_convergence()]
1291 if (BP_IS_GANG(bp) ||
1292 BP_GET_DEDUP(bp) ||
1293 txg != spa->spa_syncing_txg ||
1294 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1295 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1296 brt_maybe_exists(spa, bp)) {
1297 metaslab_check_free(spa, bp);
1298 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1299 } else {
1300 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1305 * To improve performance, this function may return NULL if we were able
1306 * to do the free immediately. This avoids the cost of creating a zio
1307 * (and linking it to the parent, etc).
1309 zio_t *
1310 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1311 zio_flag_t flags)
1313 ASSERT(!BP_IS_HOLE(bp));
1314 ASSERT(spa_syncing_txg(spa) == txg);
1316 if (BP_IS_EMBEDDED(bp))
1317 return (NULL);
1319 metaslab_check_free(spa, bp);
1320 arc_freed(spa, bp);
1321 dsl_scan_freed(spa, bp);
1323 if (BP_IS_GANG(bp) ||
1324 BP_GET_DEDUP(bp) ||
1325 brt_maybe_exists(spa, bp)) {
1327 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1328 * block header, the DDT or the BRT), so issue them
1329 * asynchronously so that this thread is not tied up.
1331 enum zio_stage stage =
1332 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1334 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1335 BP_GET_PSIZE(bp), NULL, NULL,
1336 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1337 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1338 } else {
1339 metaslab_free(spa, bp, txg, B_FALSE);
1340 return (NULL);
1344 zio_t *
1345 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1346 zio_done_func_t *done, void *private, zio_flag_t flags)
1348 zio_t *zio;
1350 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1351 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1353 if (BP_IS_EMBEDDED(bp))
1354 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1357 * A claim is an allocation of a specific block. Claims are needed
1358 * to support immediate writes in the intent log. The issue is that
1359 * immediate writes contain committed data, but in a txg that was
1360 * *not* committed. Upon opening the pool after an unclean shutdown,
1361 * the intent log claims all blocks that contain immediate write data
1362 * so that the SPA knows they're in use.
1364 * All claims *must* be resolved in the first txg -- before the SPA
1365 * starts allocating blocks -- so that nothing is allocated twice.
1366 * If txg == 0 we just verify that the block is claimable.
1368 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1369 spa_min_claim_txg(spa));
1370 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1371 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1373 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1374 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1375 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1376 ASSERT0(zio->io_queued_timestamp);
1378 return (zio);
1381 zio_t *
1382 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1383 zio_done_func_t *done, void *private, zio_flag_t flags)
1385 zio_t *zio;
1386 int c;
1388 if (vd->vdev_children == 0) {
1389 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1390 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1391 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1393 zio->io_cmd = cmd;
1394 } else {
1395 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1397 for (c = 0; c < vd->vdev_children; c++)
1398 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1399 done, private, flags));
1402 return (zio);
1405 zio_t *
1406 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1407 zio_done_func_t *done, void *private, zio_priority_t priority,
1408 zio_flag_t flags, enum trim_flag trim_flags)
1410 zio_t *zio;
1412 ASSERT0(vd->vdev_children);
1413 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1414 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1415 ASSERT3U(size, !=, 0);
1417 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1418 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1419 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1420 zio->io_trim_flags = trim_flags;
1422 return (zio);
1425 zio_t *
1426 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1427 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1428 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1430 zio_t *zio;
1432 ASSERT(vd->vdev_children == 0);
1433 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1434 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1435 ASSERT3U(offset + size, <=, vd->vdev_psize);
1437 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1438 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1439 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1441 zio->io_prop.zp_checksum = checksum;
1443 return (zio);
1446 zio_t *
1447 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1448 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1449 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1451 zio_t *zio;
1453 ASSERT(vd->vdev_children == 0);
1454 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1455 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1456 ASSERT3U(offset + size, <=, vd->vdev_psize);
1458 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1459 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1460 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1462 zio->io_prop.zp_checksum = checksum;
1464 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1466 * zec checksums are necessarily destructive -- they modify
1467 * the end of the write buffer to hold the verifier/checksum.
1468 * Therefore, we must make a local copy in case the data is
1469 * being written to multiple places in parallel.
1471 abd_t *wbuf = abd_alloc_sametype(data, size);
1472 abd_copy(wbuf, data, size);
1474 zio_push_transform(zio, wbuf, size, size, NULL);
1477 return (zio);
1481 * Create a child I/O to do some work for us.
1483 zio_t *
1484 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1485 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1486 zio_flag_t flags, zio_done_func_t *done, void *private)
1488 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1489 zio_t *zio;
1492 * vdev child I/Os do not propagate their error to the parent.
1493 * Therefore, for correct operation the caller *must* check for
1494 * and handle the error in the child i/o's done callback.
1495 * The only exceptions are i/os that we don't care about
1496 * (OPTIONAL or REPAIR).
1498 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1499 done != NULL);
1501 if (type == ZIO_TYPE_READ && bp != NULL) {
1503 * If we have the bp, then the child should perform the
1504 * checksum and the parent need not. This pushes error
1505 * detection as close to the leaves as possible and
1506 * eliminates redundant checksums in the interior nodes.
1508 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1509 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1512 if (vd->vdev_ops->vdev_op_leaf) {
1513 ASSERT0(vd->vdev_children);
1514 offset += VDEV_LABEL_START_SIZE;
1517 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1520 * If we've decided to do a repair, the write is not speculative --
1521 * even if the original read was.
1523 if (flags & ZIO_FLAG_IO_REPAIR)
1524 flags &= ~ZIO_FLAG_SPECULATIVE;
1527 * If we're creating a child I/O that is not associated with a
1528 * top-level vdev, then the child zio is not an allocating I/O.
1529 * If this is a retried I/O then we ignore it since we will
1530 * have already processed the original allocating I/O.
1532 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1533 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1534 ASSERT(pio->io_metaslab_class != NULL);
1535 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1536 ASSERT(type == ZIO_TYPE_WRITE);
1537 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1538 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1539 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1540 pio->io_child_type == ZIO_CHILD_GANG);
1542 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1545 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1546 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1547 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1548 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1550 return (zio);
1553 zio_t *
1554 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1555 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1556 zio_done_func_t *done, void *private)
1558 zio_t *zio;
1560 ASSERT(vd->vdev_ops->vdev_op_leaf);
1562 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1563 data, size, size, done, private, type, priority,
1564 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1565 vd, offset, NULL,
1566 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1568 return (zio);
1571 void
1572 zio_flush(zio_t *zio, vdev_t *vd)
1574 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1575 NULL, NULL,
1576 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1579 void
1580 zio_shrink(zio_t *zio, uint64_t size)
1582 ASSERT3P(zio->io_executor, ==, NULL);
1583 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1584 ASSERT3U(size, <=, zio->io_size);
1587 * We don't shrink for raidz because of problems with the
1588 * reconstruction when reading back less than the block size.
1589 * Note, BP_IS_RAIDZ() assumes no compression.
1591 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1592 if (!BP_IS_RAIDZ(zio->io_bp)) {
1593 /* we are not doing a raw write */
1594 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1595 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1600 * Round provided allocation size up to a value that can be allocated
1601 * by at least some vdev(s) in the pool with minimum or no additional
1602 * padding and without extra space usage on others
1604 static uint64_t
1605 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1607 if (size > spa->spa_min_alloc)
1608 return (roundup(size, spa->spa_gcd_alloc));
1609 return (spa->spa_min_alloc);
1613 * ==========================================================================
1614 * Prepare to read and write logical blocks
1615 * ==========================================================================
1618 static zio_t *
1619 zio_read_bp_init(zio_t *zio)
1621 blkptr_t *bp = zio->io_bp;
1622 uint64_t psize =
1623 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1625 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1627 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1628 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1629 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1630 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1631 psize, psize, zio_decompress);
1634 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1635 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1636 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1637 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1638 psize, psize, zio_decrypt);
1641 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1642 int psize = BPE_GET_PSIZE(bp);
1643 void *data = abd_borrow_buf(zio->io_abd, psize);
1645 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1646 decode_embedded_bp_compressed(bp, data);
1647 abd_return_buf_copy(zio->io_abd, data, psize);
1648 } else {
1649 ASSERT(!BP_IS_EMBEDDED(bp));
1652 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1653 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1655 return (zio);
1658 static zio_t *
1659 zio_write_bp_init(zio_t *zio)
1661 if (!IO_IS_ALLOCATING(zio))
1662 return (zio);
1664 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1666 if (zio->io_bp_override) {
1667 blkptr_t *bp = zio->io_bp;
1668 zio_prop_t *zp = &zio->io_prop;
1670 ASSERT(bp->blk_birth != zio->io_txg);
1672 *bp = *zio->io_bp_override;
1673 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1675 if (zp->zp_brtwrite)
1676 return (zio);
1678 ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1680 if (BP_IS_EMBEDDED(bp))
1681 return (zio);
1684 * If we've been overridden and nopwrite is set then
1685 * set the flag accordingly to indicate that a nopwrite
1686 * has already occurred.
1688 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1689 ASSERT(!zp->zp_dedup);
1690 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1691 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1692 return (zio);
1695 ASSERT(!zp->zp_nopwrite);
1697 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1698 return (zio);
1700 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1701 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1703 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1704 !zp->zp_encrypt) {
1705 BP_SET_DEDUP(bp, 1);
1706 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1707 return (zio);
1711 * We were unable to handle this as an override bp, treat
1712 * it as a regular write I/O.
1714 zio->io_bp_override = NULL;
1715 *bp = zio->io_bp_orig;
1716 zio->io_pipeline = zio->io_orig_pipeline;
1719 return (zio);
1722 static zio_t *
1723 zio_write_compress(zio_t *zio)
1725 spa_t *spa = zio->io_spa;
1726 zio_prop_t *zp = &zio->io_prop;
1727 enum zio_compress compress = zp->zp_compress;
1728 blkptr_t *bp = zio->io_bp;
1729 uint64_t lsize = zio->io_lsize;
1730 uint64_t psize = zio->io_size;
1731 uint32_t pass = 1;
1734 * If our children haven't all reached the ready stage,
1735 * wait for them and then repeat this pipeline stage.
1737 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1738 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1739 return (NULL);
1742 if (!IO_IS_ALLOCATING(zio))
1743 return (zio);
1745 if (zio->io_children_ready != NULL) {
1747 * Now that all our children are ready, run the callback
1748 * associated with this zio in case it wants to modify the
1749 * data to be written.
1751 ASSERT3U(zp->zp_level, >, 0);
1752 zio->io_children_ready(zio);
1755 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1756 ASSERT(zio->io_bp_override == NULL);
1758 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1760 * We're rewriting an existing block, which means we're
1761 * working on behalf of spa_sync(). For spa_sync() to
1762 * converge, it must eventually be the case that we don't
1763 * have to allocate new blocks. But compression changes
1764 * the blocksize, which forces a reallocate, and makes
1765 * convergence take longer. Therefore, after the first
1766 * few passes, stop compressing to ensure convergence.
1768 pass = spa_sync_pass(spa);
1770 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1771 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1772 ASSERT(!BP_GET_DEDUP(bp));
1774 if (pass >= zfs_sync_pass_dont_compress)
1775 compress = ZIO_COMPRESS_OFF;
1777 /* Make sure someone doesn't change their mind on overwrites */
1778 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1779 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1782 /* If it's a compressed write that is not raw, compress the buffer. */
1783 if (compress != ZIO_COMPRESS_OFF &&
1784 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1785 void *cbuf = NULL;
1786 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1787 zp->zp_complevel);
1788 if (psize == 0) {
1789 compress = ZIO_COMPRESS_OFF;
1790 } else if (psize >= lsize) {
1791 compress = ZIO_COMPRESS_OFF;
1792 if (cbuf != NULL)
1793 zio_buf_free(cbuf, lsize);
1794 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1795 psize <= BPE_PAYLOAD_SIZE &&
1796 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1797 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1798 encode_embedded_bp_compressed(bp,
1799 cbuf, compress, lsize, psize);
1800 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1801 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1802 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1803 zio_buf_free(cbuf, lsize);
1804 bp->blk_birth = zio->io_txg;
1805 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1806 ASSERT(spa_feature_is_active(spa,
1807 SPA_FEATURE_EMBEDDED_DATA));
1808 return (zio);
1809 } else {
1811 * Round compressed size up to the minimum allocation
1812 * size of the smallest-ashift device, and zero the
1813 * tail. This ensures that the compressed size of the
1814 * BP (and thus compressratio property) are correct,
1815 * in that we charge for the padding used to fill out
1816 * the last sector.
1818 size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1819 psize);
1820 if (rounded >= lsize) {
1821 compress = ZIO_COMPRESS_OFF;
1822 zio_buf_free(cbuf, lsize);
1823 psize = lsize;
1824 } else {
1825 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1826 abd_take_ownership_of_buf(cdata, B_TRUE);
1827 abd_zero_off(cdata, psize, rounded - psize);
1828 psize = rounded;
1829 zio_push_transform(zio, cdata,
1830 psize, lsize, NULL);
1835 * We were unable to handle this as an override bp, treat
1836 * it as a regular write I/O.
1838 zio->io_bp_override = NULL;
1839 *bp = zio->io_bp_orig;
1840 zio->io_pipeline = zio->io_orig_pipeline;
1842 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1843 zp->zp_type == DMU_OT_DNODE) {
1845 * The DMU actually relies on the zio layer's compression
1846 * to free metadnode blocks that have had all contained
1847 * dnodes freed. As a result, even when doing a raw
1848 * receive, we must check whether the block can be compressed
1849 * to a hole.
1851 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1852 zio->io_abd, NULL, lsize, zp->zp_complevel);
1853 if (psize == 0 || psize >= lsize)
1854 compress = ZIO_COMPRESS_OFF;
1855 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1856 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1858 * If we are raw receiving an encrypted dataset we should not
1859 * take this codepath because it will change the on-disk block
1860 * and decryption will fail.
1862 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1863 lsize);
1865 if (rounded != psize) {
1866 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1867 abd_zero_off(cdata, psize, rounded - psize);
1868 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1869 psize = rounded;
1870 zio_push_transform(zio, cdata,
1871 psize, rounded, NULL);
1873 } else {
1874 ASSERT3U(psize, !=, 0);
1878 * The final pass of spa_sync() must be all rewrites, but the first
1879 * few passes offer a trade-off: allocating blocks defers convergence,
1880 * but newly allocated blocks are sequential, so they can be written
1881 * to disk faster. Therefore, we allow the first few passes of
1882 * spa_sync() to allocate new blocks, but force rewrites after that.
1883 * There should only be a handful of blocks after pass 1 in any case.
1885 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1886 BP_GET_PSIZE(bp) == psize &&
1887 pass >= zfs_sync_pass_rewrite) {
1888 VERIFY3U(psize, !=, 0);
1889 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1891 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1892 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1893 } else {
1894 BP_ZERO(bp);
1895 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1898 if (psize == 0) {
1899 if (zio->io_bp_orig.blk_birth != 0 &&
1900 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1901 BP_SET_LSIZE(bp, lsize);
1902 BP_SET_TYPE(bp, zp->zp_type);
1903 BP_SET_LEVEL(bp, zp->zp_level);
1904 BP_SET_BIRTH(bp, zio->io_txg, 0);
1906 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1907 } else {
1908 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1909 BP_SET_LSIZE(bp, lsize);
1910 BP_SET_TYPE(bp, zp->zp_type);
1911 BP_SET_LEVEL(bp, zp->zp_level);
1912 BP_SET_PSIZE(bp, psize);
1913 BP_SET_COMPRESS(bp, compress);
1914 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1915 BP_SET_DEDUP(bp, zp->zp_dedup);
1916 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1917 if (zp->zp_dedup) {
1918 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1919 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1920 ASSERT(!zp->zp_encrypt ||
1921 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1922 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1924 if (zp->zp_nopwrite) {
1925 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1926 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1927 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1930 return (zio);
1933 static zio_t *
1934 zio_free_bp_init(zio_t *zio)
1936 blkptr_t *bp = zio->io_bp;
1938 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1939 if (BP_GET_DEDUP(bp))
1940 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1943 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1945 return (zio);
1949 * ==========================================================================
1950 * Execute the I/O pipeline
1951 * ==========================================================================
1954 static void
1955 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1957 spa_t *spa = zio->io_spa;
1958 zio_type_t t = zio->io_type;
1959 int flags = (cutinline ? TQ_FRONT : 0);
1962 * If we're a config writer or a probe, the normal issue and
1963 * interrupt threads may all be blocked waiting for the config lock.
1964 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1966 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1967 t = ZIO_TYPE_NULL;
1970 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1972 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1973 t = ZIO_TYPE_NULL;
1976 * If this is a high priority I/O, then use the high priority taskq if
1977 * available.
1979 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1980 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1981 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1982 q++;
1984 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1987 * NB: We are assuming that the zio can only be dispatched
1988 * to a single taskq at a time. It would be a grievous error
1989 * to dispatch the zio to another taskq at the same time.
1991 ASSERT(taskq_empty_ent(&zio->io_tqent));
1992 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1993 &zio->io_tqent);
1996 static boolean_t
1997 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1999 spa_t *spa = zio->io_spa;
2001 taskq_t *tq = taskq_of_curthread();
2003 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2004 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2005 uint_t i;
2006 for (i = 0; i < tqs->stqs_count; i++) {
2007 if (tqs->stqs_taskq[i] == tq)
2008 return (B_TRUE);
2012 return (B_FALSE);
2015 static zio_t *
2016 zio_issue_async(zio_t *zio)
2018 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2020 return (NULL);
2023 void
2024 zio_interrupt(void *zio)
2026 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2029 void
2030 zio_delay_interrupt(zio_t *zio)
2033 * The timeout_generic() function isn't defined in userspace, so
2034 * rather than trying to implement the function, the zio delay
2035 * functionality has been disabled for userspace builds.
2038 #ifdef _KERNEL
2040 * If io_target_timestamp is zero, then no delay has been registered
2041 * for this IO, thus jump to the end of this function and "skip" the
2042 * delay; issuing it directly to the zio layer.
2044 if (zio->io_target_timestamp != 0) {
2045 hrtime_t now = gethrtime();
2047 if (now >= zio->io_target_timestamp) {
2049 * This IO has already taken longer than the target
2050 * delay to complete, so we don't want to delay it
2051 * any longer; we "miss" the delay and issue it
2052 * directly to the zio layer. This is likely due to
2053 * the target latency being set to a value less than
2054 * the underlying hardware can satisfy (e.g. delay
2055 * set to 1ms, but the disks take 10ms to complete an
2056 * IO request).
2059 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2060 hrtime_t, now);
2062 zio_interrupt(zio);
2063 } else {
2064 taskqid_t tid;
2065 hrtime_t diff = zio->io_target_timestamp - now;
2066 clock_t expire_at_tick = ddi_get_lbolt() +
2067 NSEC_TO_TICK(diff);
2069 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2070 hrtime_t, now, hrtime_t, diff);
2072 if (NSEC_TO_TICK(diff) == 0) {
2073 /* Our delay is less than a jiffy - just spin */
2074 zfs_sleep_until(zio->io_target_timestamp);
2075 zio_interrupt(zio);
2076 } else {
2078 * Use taskq_dispatch_delay() in the place of
2079 * OpenZFS's timeout_generic().
2081 tid = taskq_dispatch_delay(system_taskq,
2082 zio_interrupt, zio, TQ_NOSLEEP,
2083 expire_at_tick);
2084 if (tid == TASKQID_INVALID) {
2086 * Couldn't allocate a task. Just
2087 * finish the zio without a delay.
2089 zio_interrupt(zio);
2093 return;
2095 #endif
2096 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2097 zio_interrupt(zio);
2100 static void
2101 zio_deadman_impl(zio_t *pio, int ziodepth)
2103 zio_t *cio, *cio_next;
2104 zio_link_t *zl = NULL;
2105 vdev_t *vd = pio->io_vd;
2107 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2108 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2109 zbookmark_phys_t *zb = &pio->io_bookmark;
2110 uint64_t delta = gethrtime() - pio->io_timestamp;
2111 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2113 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2114 "delta=%llu queued=%llu io=%llu "
2115 "path=%s "
2116 "last=%llu type=%d "
2117 "priority=%d flags=0x%llx stage=0x%x "
2118 "pipeline=0x%x pipeline-trace=0x%x "
2119 "objset=%llu object=%llu "
2120 "level=%llu blkid=%llu "
2121 "offset=%llu size=%llu "
2122 "error=%d",
2123 ziodepth, pio, pio->io_timestamp,
2124 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2125 vd ? vd->vdev_path : "NULL",
2126 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2127 pio->io_priority, (u_longlong_t)pio->io_flags,
2128 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2129 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2130 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2131 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2132 pio->io_error);
2133 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2134 pio->io_spa, vd, zb, pio, 0);
2136 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2137 taskq_empty_ent(&pio->io_tqent)) {
2138 zio_interrupt(pio);
2142 mutex_enter(&pio->io_lock);
2143 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2144 cio_next = zio_walk_children(pio, &zl);
2145 zio_deadman_impl(cio, ziodepth + 1);
2147 mutex_exit(&pio->io_lock);
2151 * Log the critical information describing this zio and all of its children
2152 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2154 void
2155 zio_deadman(zio_t *pio, const char *tag)
2157 spa_t *spa = pio->io_spa;
2158 char *name = spa_name(spa);
2160 if (!zfs_deadman_enabled || spa_suspended(spa))
2161 return;
2163 zio_deadman_impl(pio, 0);
2165 switch (spa_get_deadman_failmode(spa)) {
2166 case ZIO_FAILURE_MODE_WAIT:
2167 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2168 break;
2170 case ZIO_FAILURE_MODE_CONTINUE:
2171 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2172 break;
2174 case ZIO_FAILURE_MODE_PANIC:
2175 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2176 break;
2181 * Execute the I/O pipeline until one of the following occurs:
2182 * (1) the I/O completes; (2) the pipeline stalls waiting for
2183 * dependent child I/Os; (3) the I/O issues, so we're waiting
2184 * for an I/O completion interrupt; (4) the I/O is delegated by
2185 * vdev-level caching or aggregation; (5) the I/O is deferred
2186 * due to vdev-level queueing; (6) the I/O is handed off to
2187 * another thread. In all cases, the pipeline stops whenever
2188 * there's no CPU work; it never burns a thread in cv_wait_io().
2190 * There's no locking on io_stage because there's no legitimate way
2191 * for multiple threads to be attempting to process the same I/O.
2193 static zio_pipe_stage_t *zio_pipeline[];
2196 * zio_execute() is a wrapper around the static function
2197 * __zio_execute() so that we can force __zio_execute() to be
2198 * inlined. This reduces stack overhead which is important
2199 * because __zio_execute() is called recursively in several zio
2200 * code paths. zio_execute() itself cannot be inlined because
2201 * it is externally visible.
2203 void
2204 zio_execute(void *zio)
2206 fstrans_cookie_t cookie;
2208 cookie = spl_fstrans_mark();
2209 __zio_execute(zio);
2210 spl_fstrans_unmark(cookie);
2214 * Used to determine if in the current context the stack is sized large
2215 * enough to allow zio_execute() to be called recursively. A minimum
2216 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2218 static boolean_t
2219 zio_execute_stack_check(zio_t *zio)
2221 #if !defined(HAVE_LARGE_STACKS)
2222 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2224 /* Executing in txg_sync_thread() context. */
2225 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2226 return (B_TRUE);
2228 /* Pool initialization outside of zio_taskq context. */
2229 if (dp && spa_is_initializing(dp->dp_spa) &&
2230 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2231 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2232 return (B_TRUE);
2233 #else
2234 (void) zio;
2235 #endif /* HAVE_LARGE_STACKS */
2237 return (B_FALSE);
2240 __attribute__((always_inline))
2241 static inline void
2242 __zio_execute(zio_t *zio)
2244 ASSERT3U(zio->io_queued_timestamp, >, 0);
2246 while (zio->io_stage < ZIO_STAGE_DONE) {
2247 enum zio_stage pipeline = zio->io_pipeline;
2248 enum zio_stage stage = zio->io_stage;
2250 zio->io_executor = curthread;
2252 ASSERT(!MUTEX_HELD(&zio->io_lock));
2253 ASSERT(ISP2(stage));
2254 ASSERT(zio->io_stall == NULL);
2256 do {
2257 stage <<= 1;
2258 } while ((stage & pipeline) == 0);
2260 ASSERT(stage <= ZIO_STAGE_DONE);
2263 * If we are in interrupt context and this pipeline stage
2264 * will grab a config lock that is held across I/O,
2265 * or may wait for an I/O that needs an interrupt thread
2266 * to complete, issue async to avoid deadlock.
2268 * For VDEV_IO_START, we cut in line so that the io will
2269 * be sent to disk promptly.
2271 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2272 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2273 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2274 zio_requeue_io_start_cut_in_line : B_FALSE;
2275 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2276 return;
2280 * If the current context doesn't have large enough stacks
2281 * the zio must be issued asynchronously to prevent overflow.
2283 if (zio_execute_stack_check(zio)) {
2284 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2285 zio_requeue_io_start_cut_in_line : B_FALSE;
2286 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2287 return;
2290 zio->io_stage = stage;
2291 zio->io_pipeline_trace |= zio->io_stage;
2294 * The zio pipeline stage returns the next zio to execute
2295 * (typically the same as this one), or NULL if we should
2296 * stop.
2298 zio = zio_pipeline[highbit64(stage) - 1](zio);
2300 if (zio == NULL)
2301 return;
2307 * ==========================================================================
2308 * Initiate I/O, either sync or async
2309 * ==========================================================================
2312 zio_wait(zio_t *zio)
2315 * Some routines, like zio_free_sync(), may return a NULL zio
2316 * to avoid the performance overhead of creating and then destroying
2317 * an unneeded zio. For the callers' simplicity, we accept a NULL
2318 * zio and ignore it.
2320 if (zio == NULL)
2321 return (0);
2323 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2324 int error;
2326 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2327 ASSERT3P(zio->io_executor, ==, NULL);
2329 zio->io_waiter = curthread;
2330 ASSERT0(zio->io_queued_timestamp);
2331 zio->io_queued_timestamp = gethrtime();
2333 __zio_execute(zio);
2335 mutex_enter(&zio->io_lock);
2336 while (zio->io_executor != NULL) {
2337 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2338 ddi_get_lbolt() + timeout);
2340 if (zfs_deadman_enabled && error == -1 &&
2341 gethrtime() - zio->io_queued_timestamp >
2342 spa_deadman_ziotime(zio->io_spa)) {
2343 mutex_exit(&zio->io_lock);
2344 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2345 zio_deadman(zio, FTAG);
2346 mutex_enter(&zio->io_lock);
2349 mutex_exit(&zio->io_lock);
2351 error = zio->io_error;
2352 zio_destroy(zio);
2354 return (error);
2357 void
2358 zio_nowait(zio_t *zio)
2361 * See comment in zio_wait().
2363 if (zio == NULL)
2364 return;
2366 ASSERT3P(zio->io_executor, ==, NULL);
2368 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2369 list_is_empty(&zio->io_parent_list)) {
2370 zio_t *pio;
2373 * This is a logical async I/O with no parent to wait for it.
2374 * We add it to the spa_async_root_zio "Godfather" I/O which
2375 * will ensure they complete prior to unloading the pool.
2377 spa_t *spa = zio->io_spa;
2378 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2380 zio_add_child(pio, zio);
2383 ASSERT0(zio->io_queued_timestamp);
2384 zio->io_queued_timestamp = gethrtime();
2385 __zio_execute(zio);
2389 * ==========================================================================
2390 * Reexecute, cancel, or suspend/resume failed I/O
2391 * ==========================================================================
2394 static void
2395 zio_reexecute(void *arg)
2397 zio_t *pio = arg;
2398 zio_t *cio, *cio_next;
2400 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2401 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2402 ASSERT(pio->io_gang_leader == NULL);
2403 ASSERT(pio->io_gang_tree == NULL);
2405 pio->io_flags = pio->io_orig_flags;
2406 pio->io_stage = pio->io_orig_stage;
2407 pio->io_pipeline = pio->io_orig_pipeline;
2408 pio->io_reexecute = 0;
2409 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2410 pio->io_pipeline_trace = 0;
2411 pio->io_error = 0;
2412 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2413 pio->io_state[w] = 0;
2414 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2415 pio->io_child_error[c] = 0;
2417 if (IO_IS_ALLOCATING(pio))
2418 BP_ZERO(pio->io_bp);
2421 * As we reexecute pio's children, new children could be created.
2422 * New children go to the head of pio's io_child_list, however,
2423 * so we will (correctly) not reexecute them. The key is that
2424 * the remainder of pio's io_child_list, from 'cio_next' onward,
2425 * cannot be affected by any side effects of reexecuting 'cio'.
2427 zio_link_t *zl = NULL;
2428 mutex_enter(&pio->io_lock);
2429 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2430 cio_next = zio_walk_children(pio, &zl);
2431 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2432 pio->io_children[cio->io_child_type][w]++;
2433 mutex_exit(&pio->io_lock);
2434 zio_reexecute(cio);
2435 mutex_enter(&pio->io_lock);
2437 mutex_exit(&pio->io_lock);
2440 * Now that all children have been reexecuted, execute the parent.
2441 * We don't reexecute "The Godfather" I/O here as it's the
2442 * responsibility of the caller to wait on it.
2444 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2445 pio->io_queued_timestamp = gethrtime();
2446 __zio_execute(pio);
2450 void
2451 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2453 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2454 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2455 "failure and the failure mode property for this pool "
2456 "is set to panic.", spa_name(spa));
2458 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2459 "failure and has been suspended.\n", spa_name(spa));
2461 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2462 NULL, NULL, 0);
2464 mutex_enter(&spa->spa_suspend_lock);
2466 if (spa->spa_suspend_zio_root == NULL)
2467 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2468 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2469 ZIO_FLAG_GODFATHER);
2471 spa->spa_suspended = reason;
2473 if (zio != NULL) {
2474 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2475 ASSERT(zio != spa->spa_suspend_zio_root);
2476 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2477 ASSERT(zio_unique_parent(zio) == NULL);
2478 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2479 zio_add_child(spa->spa_suspend_zio_root, zio);
2482 mutex_exit(&spa->spa_suspend_lock);
2486 zio_resume(spa_t *spa)
2488 zio_t *pio;
2491 * Reexecute all previously suspended i/o.
2493 mutex_enter(&spa->spa_suspend_lock);
2494 spa->spa_suspended = ZIO_SUSPEND_NONE;
2495 cv_broadcast(&spa->spa_suspend_cv);
2496 pio = spa->spa_suspend_zio_root;
2497 spa->spa_suspend_zio_root = NULL;
2498 mutex_exit(&spa->spa_suspend_lock);
2500 if (pio == NULL)
2501 return (0);
2503 zio_reexecute(pio);
2504 return (zio_wait(pio));
2507 void
2508 zio_resume_wait(spa_t *spa)
2510 mutex_enter(&spa->spa_suspend_lock);
2511 while (spa_suspended(spa))
2512 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2513 mutex_exit(&spa->spa_suspend_lock);
2517 * ==========================================================================
2518 * Gang blocks.
2520 * A gang block is a collection of small blocks that looks to the DMU
2521 * like one large block. When zio_dva_allocate() cannot find a block
2522 * of the requested size, due to either severe fragmentation or the pool
2523 * being nearly full, it calls zio_write_gang_block() to construct the
2524 * block from smaller fragments.
2526 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2527 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2528 * an indirect block: it's an array of block pointers. It consumes
2529 * only one sector and hence is allocatable regardless of fragmentation.
2530 * The gang header's bps point to its gang members, which hold the data.
2532 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2533 * as the verifier to ensure uniqueness of the SHA256 checksum.
2534 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2535 * not the gang header. This ensures that data block signatures (needed for
2536 * deduplication) are independent of how the block is physically stored.
2538 * Gang blocks can be nested: a gang member may itself be a gang block.
2539 * Thus every gang block is a tree in which root and all interior nodes are
2540 * gang headers, and the leaves are normal blocks that contain user data.
2541 * The root of the gang tree is called the gang leader.
2543 * To perform any operation (read, rewrite, free, claim) on a gang block,
2544 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2545 * in the io_gang_tree field of the original logical i/o by recursively
2546 * reading the gang leader and all gang headers below it. This yields
2547 * an in-core tree containing the contents of every gang header and the
2548 * bps for every constituent of the gang block.
2550 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2551 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2552 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2553 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2554 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2555 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2556 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2557 * of the gang header plus zio_checksum_compute() of the data to update the
2558 * gang header's blk_cksum as described above.
2560 * The two-phase assemble/issue model solves the problem of partial failure --
2561 * what if you'd freed part of a gang block but then couldn't read the
2562 * gang header for another part? Assembling the entire gang tree first
2563 * ensures that all the necessary gang header I/O has succeeded before
2564 * starting the actual work of free, claim, or write. Once the gang tree
2565 * is assembled, free and claim are in-memory operations that cannot fail.
2567 * In the event that a gang write fails, zio_dva_unallocate() walks the
2568 * gang tree to immediately free (i.e. insert back into the space map)
2569 * everything we've allocated. This ensures that we don't get ENOSPC
2570 * errors during repeated suspend/resume cycles due to a flaky device.
2572 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2573 * the gang tree, we won't modify the block, so we can safely defer the free
2574 * (knowing that the block is still intact). If we *can* assemble the gang
2575 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2576 * each constituent bp and we can allocate a new block on the next sync pass.
2578 * In all cases, the gang tree allows complete recovery from partial failure.
2579 * ==========================================================================
2582 static void
2583 zio_gang_issue_func_done(zio_t *zio)
2585 abd_free(zio->io_abd);
2588 static zio_t *
2589 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2590 uint64_t offset)
2592 if (gn != NULL)
2593 return (pio);
2595 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2596 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2597 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2598 &pio->io_bookmark));
2601 static zio_t *
2602 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2603 uint64_t offset)
2605 zio_t *zio;
2607 if (gn != NULL) {
2608 abd_t *gbh_abd =
2609 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2610 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2611 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2612 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2613 &pio->io_bookmark);
2615 * As we rewrite each gang header, the pipeline will compute
2616 * a new gang block header checksum for it; but no one will
2617 * compute a new data checksum, so we do that here. The one
2618 * exception is the gang leader: the pipeline already computed
2619 * its data checksum because that stage precedes gang assembly.
2620 * (Presently, nothing actually uses interior data checksums;
2621 * this is just good hygiene.)
2623 if (gn != pio->io_gang_leader->io_gang_tree) {
2624 abd_t *buf = abd_get_offset(data, offset);
2626 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2627 buf, BP_GET_PSIZE(bp));
2629 abd_free(buf);
2632 * If we are here to damage data for testing purposes,
2633 * leave the GBH alone so that we can detect the damage.
2635 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2636 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2637 } else {
2638 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2639 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2640 zio_gang_issue_func_done, NULL, pio->io_priority,
2641 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2644 return (zio);
2647 static zio_t *
2648 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2649 uint64_t offset)
2651 (void) gn, (void) data, (void) offset;
2653 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2654 ZIO_GANG_CHILD_FLAGS(pio));
2655 if (zio == NULL) {
2656 zio = zio_null(pio, pio->io_spa,
2657 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2659 return (zio);
2662 static zio_t *
2663 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2664 uint64_t offset)
2666 (void) gn, (void) data, (void) offset;
2667 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2668 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2671 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2672 NULL,
2673 zio_read_gang,
2674 zio_rewrite_gang,
2675 zio_free_gang,
2676 zio_claim_gang,
2677 NULL
2680 static void zio_gang_tree_assemble_done(zio_t *zio);
2682 static zio_gang_node_t *
2683 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2685 zio_gang_node_t *gn;
2687 ASSERT(*gnpp == NULL);
2689 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2690 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2691 *gnpp = gn;
2693 return (gn);
2696 static void
2697 zio_gang_node_free(zio_gang_node_t **gnpp)
2699 zio_gang_node_t *gn = *gnpp;
2701 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2702 ASSERT(gn->gn_child[g] == NULL);
2704 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2705 kmem_free(gn, sizeof (*gn));
2706 *gnpp = NULL;
2709 static void
2710 zio_gang_tree_free(zio_gang_node_t **gnpp)
2712 zio_gang_node_t *gn = *gnpp;
2714 if (gn == NULL)
2715 return;
2717 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2718 zio_gang_tree_free(&gn->gn_child[g]);
2720 zio_gang_node_free(gnpp);
2723 static void
2724 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2726 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2727 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2729 ASSERT(gio->io_gang_leader == gio);
2730 ASSERT(BP_IS_GANG(bp));
2732 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2733 zio_gang_tree_assemble_done, gn, gio->io_priority,
2734 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2737 static void
2738 zio_gang_tree_assemble_done(zio_t *zio)
2740 zio_t *gio = zio->io_gang_leader;
2741 zio_gang_node_t *gn = zio->io_private;
2742 blkptr_t *bp = zio->io_bp;
2744 ASSERT(gio == zio_unique_parent(zio));
2745 ASSERT(list_is_empty(&zio->io_child_list));
2747 if (zio->io_error)
2748 return;
2750 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2751 if (BP_SHOULD_BYTESWAP(bp))
2752 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2754 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2755 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2756 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2758 abd_free(zio->io_abd);
2760 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2761 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2762 if (!BP_IS_GANG(gbp))
2763 continue;
2764 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2768 static void
2769 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2770 uint64_t offset)
2772 zio_t *gio = pio->io_gang_leader;
2773 zio_t *zio;
2775 ASSERT(BP_IS_GANG(bp) == !!gn);
2776 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2777 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2780 * If you're a gang header, your data is in gn->gn_gbh.
2781 * If you're a gang member, your data is in 'data' and gn == NULL.
2783 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2785 if (gn != NULL) {
2786 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2788 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2789 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2790 if (BP_IS_HOLE(gbp))
2791 continue;
2792 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2793 offset);
2794 offset += BP_GET_PSIZE(gbp);
2798 if (gn == gio->io_gang_tree)
2799 ASSERT3U(gio->io_size, ==, offset);
2801 if (zio != pio)
2802 zio_nowait(zio);
2805 static zio_t *
2806 zio_gang_assemble(zio_t *zio)
2808 blkptr_t *bp = zio->io_bp;
2810 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2811 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2813 zio->io_gang_leader = zio;
2815 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2817 return (zio);
2820 static zio_t *
2821 zio_gang_issue(zio_t *zio)
2823 blkptr_t *bp = zio->io_bp;
2825 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2826 return (NULL);
2829 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2830 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2832 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2833 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2835 else
2836 zio_gang_tree_free(&zio->io_gang_tree);
2838 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2840 return (zio);
2843 static void
2844 zio_write_gang_member_ready(zio_t *zio)
2846 zio_t *pio = zio_unique_parent(zio);
2847 dva_t *cdva = zio->io_bp->blk_dva;
2848 dva_t *pdva = pio->io_bp->blk_dva;
2849 uint64_t asize;
2850 zio_t *gio __maybe_unused = zio->io_gang_leader;
2852 if (BP_IS_HOLE(zio->io_bp))
2853 return;
2855 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2857 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2858 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2859 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2860 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2861 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2863 mutex_enter(&pio->io_lock);
2864 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2865 ASSERT(DVA_GET_GANG(&pdva[d]));
2866 asize = DVA_GET_ASIZE(&pdva[d]);
2867 asize += DVA_GET_ASIZE(&cdva[d]);
2868 DVA_SET_ASIZE(&pdva[d], asize);
2870 mutex_exit(&pio->io_lock);
2873 static void
2874 zio_write_gang_done(zio_t *zio)
2877 * The io_abd field will be NULL for a zio with no data. The io_flags
2878 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2879 * check for it here as it is cleared in zio_ready.
2881 if (zio->io_abd != NULL)
2882 abd_free(zio->io_abd);
2885 static zio_t *
2886 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2888 spa_t *spa = pio->io_spa;
2889 blkptr_t *bp = pio->io_bp;
2890 zio_t *gio = pio->io_gang_leader;
2891 zio_t *zio;
2892 zio_gang_node_t *gn, **gnpp;
2893 zio_gbh_phys_t *gbh;
2894 abd_t *gbh_abd;
2895 uint64_t txg = pio->io_txg;
2896 uint64_t resid = pio->io_size;
2897 uint64_t lsize;
2898 int copies = gio->io_prop.zp_copies;
2899 zio_prop_t zp;
2900 int error;
2901 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2904 * If one copy was requested, store 2 copies of the GBH, so that we
2905 * can still traverse all the data (e.g. to free or scrub) even if a
2906 * block is damaged. Note that we can't store 3 copies of the GBH in
2907 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2909 int gbh_copies = copies;
2910 if (gbh_copies == 1) {
2911 gbh_copies = MIN(2, spa_max_replication(spa));
2914 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2915 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2916 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2917 ASSERT(has_data);
2919 flags |= METASLAB_ASYNC_ALLOC;
2920 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2921 mca_alloc_slots, pio));
2924 * The logical zio has already placed a reservation for
2925 * 'copies' allocation slots but gang blocks may require
2926 * additional copies. These additional copies
2927 * (i.e. gbh_copies - copies) are guaranteed to succeed
2928 * since metaslab_class_throttle_reserve() always allows
2929 * additional reservations for gang blocks.
2931 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2932 pio->io_allocator, pio, flags));
2935 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2936 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2937 &pio->io_alloc_list, pio, pio->io_allocator);
2938 if (error) {
2939 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2940 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2941 ASSERT(has_data);
2944 * If we failed to allocate the gang block header then
2945 * we remove any additional allocation reservations that
2946 * we placed here. The original reservation will
2947 * be removed when the logical I/O goes to the ready
2948 * stage.
2950 metaslab_class_throttle_unreserve(mc,
2951 gbh_copies - copies, pio->io_allocator, pio);
2954 pio->io_error = error;
2955 return (pio);
2958 if (pio == gio) {
2959 gnpp = &gio->io_gang_tree;
2960 } else {
2961 gnpp = pio->io_private;
2962 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2965 gn = zio_gang_node_alloc(gnpp);
2966 gbh = gn->gn_gbh;
2967 memset(gbh, 0, SPA_GANGBLOCKSIZE);
2968 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2971 * Create the gang header.
2973 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2974 zio_write_gang_done, NULL, pio->io_priority,
2975 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2978 * Create and nowait the gang children.
2980 for (int g = 0; resid != 0; resid -= lsize, g++) {
2981 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2982 SPA_MINBLOCKSIZE);
2983 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2985 zp.zp_checksum = gio->io_prop.zp_checksum;
2986 zp.zp_compress = ZIO_COMPRESS_OFF;
2987 zp.zp_complevel = gio->io_prop.zp_complevel;
2988 zp.zp_type = DMU_OT_NONE;
2989 zp.zp_level = 0;
2990 zp.zp_copies = gio->io_prop.zp_copies;
2991 zp.zp_dedup = B_FALSE;
2992 zp.zp_dedup_verify = B_FALSE;
2993 zp.zp_nopwrite = B_FALSE;
2994 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2995 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2996 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2997 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2998 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3000 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3001 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3002 resid) : NULL, lsize, lsize, &zp,
3003 zio_write_gang_member_ready, NULL,
3004 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3005 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3007 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3008 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3009 ASSERT(has_data);
3012 * Gang children won't throttle but we should
3013 * account for their work, so reserve an allocation
3014 * slot for them here.
3016 VERIFY(metaslab_class_throttle_reserve(mc,
3017 zp.zp_copies, cio->io_allocator, cio, flags));
3019 zio_nowait(cio);
3023 * Set pio's pipeline to just wait for zio to finish.
3025 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3028 * We didn't allocate this bp, so make sure it doesn't get unmarked.
3030 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
3032 zio_nowait(zio);
3034 return (pio);
3038 * The zio_nop_write stage in the pipeline determines if allocating a
3039 * new bp is necessary. The nopwrite feature can handle writes in
3040 * either syncing or open context (i.e. zil writes) and as a result is
3041 * mutually exclusive with dedup.
3043 * By leveraging a cryptographically secure checksum, such as SHA256, we
3044 * can compare the checksums of the new data and the old to determine if
3045 * allocating a new block is required. Note that our requirements for
3046 * cryptographic strength are fairly weak: there can't be any accidental
3047 * hash collisions, but we don't need to be secure against intentional
3048 * (malicious) collisions. To trigger a nopwrite, you have to be able
3049 * to write the file to begin with, and triggering an incorrect (hash
3050 * collision) nopwrite is no worse than simply writing to the file.
3051 * That said, there are no known attacks against the checksum algorithms
3052 * used for nopwrite, assuming that the salt and the checksums
3053 * themselves remain secret.
3055 static zio_t *
3056 zio_nop_write(zio_t *zio)
3058 blkptr_t *bp = zio->io_bp;
3059 blkptr_t *bp_orig = &zio->io_bp_orig;
3060 zio_prop_t *zp = &zio->io_prop;
3062 ASSERT(BP_IS_HOLE(bp));
3063 ASSERT(BP_GET_LEVEL(bp) == 0);
3064 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3065 ASSERT(zp->zp_nopwrite);
3066 ASSERT(!zp->zp_dedup);
3067 ASSERT(zio->io_bp_override == NULL);
3068 ASSERT(IO_IS_ALLOCATING(zio));
3071 * Check to see if the original bp and the new bp have matching
3072 * characteristics (i.e. same checksum, compression algorithms, etc).
3073 * If they don't then just continue with the pipeline which will
3074 * allocate a new bp.
3076 if (BP_IS_HOLE(bp_orig) ||
3077 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3078 ZCHECKSUM_FLAG_NOPWRITE) ||
3079 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3080 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3081 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3082 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3083 zp->zp_copies != BP_GET_NDVAS(bp_orig))
3084 return (zio);
3087 * If the checksums match then reset the pipeline so that we
3088 * avoid allocating a new bp and issuing any I/O.
3090 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3091 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3092 ZCHECKSUM_FLAG_NOPWRITE);
3093 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3094 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3095 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3096 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3099 * If we're overwriting a block that is currently on an
3100 * indirect vdev, then ignore the nopwrite request and
3101 * allow a new block to be allocated on a concrete vdev.
3103 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3104 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3105 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3106 DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3107 if (tvd->vdev_ops == &vdev_indirect_ops) {
3108 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3109 return (zio);
3112 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3114 *bp = *bp_orig;
3115 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3116 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3119 return (zio);
3123 * ==========================================================================
3124 * Block Reference Table
3125 * ==========================================================================
3127 static zio_t *
3128 zio_brt_free(zio_t *zio)
3130 blkptr_t *bp;
3132 bp = zio->io_bp;
3134 if (BP_GET_LEVEL(bp) > 0 ||
3135 BP_IS_METADATA(bp) ||
3136 !brt_maybe_exists(zio->io_spa, bp)) {
3137 return (zio);
3140 if (!brt_entry_decref(zio->io_spa, bp)) {
3142 * This isn't the last reference, so we cannot free
3143 * the data yet.
3145 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3148 return (zio);
3152 * ==========================================================================
3153 * Dedup
3154 * ==========================================================================
3156 static void
3157 zio_ddt_child_read_done(zio_t *zio)
3159 blkptr_t *bp = zio->io_bp;
3160 ddt_entry_t *dde = zio->io_private;
3161 ddt_phys_t *ddp;
3162 zio_t *pio = zio_unique_parent(zio);
3164 mutex_enter(&pio->io_lock);
3165 ddp = ddt_phys_select(dde, bp);
3166 if (zio->io_error == 0)
3167 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3169 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3170 dde->dde_repair_abd = zio->io_abd;
3171 else
3172 abd_free(zio->io_abd);
3173 mutex_exit(&pio->io_lock);
3176 static zio_t *
3177 zio_ddt_read_start(zio_t *zio)
3179 blkptr_t *bp = zio->io_bp;
3181 ASSERT(BP_GET_DEDUP(bp));
3182 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3183 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3185 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3186 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3187 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3188 ddt_phys_t *ddp = dde->dde_phys;
3189 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3190 blkptr_t blk;
3192 ASSERT(zio->io_vsd == NULL);
3193 zio->io_vsd = dde;
3195 if (ddp_self == NULL)
3196 return (zio);
3198 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3199 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3200 continue;
3201 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3202 &blk);
3203 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3204 abd_alloc_for_io(zio->io_size, B_TRUE),
3205 zio->io_size, zio_ddt_child_read_done, dde,
3206 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3207 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3209 return (zio);
3212 zio_nowait(zio_read(zio, zio->io_spa, bp,
3213 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3214 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3216 return (zio);
3219 static zio_t *
3220 zio_ddt_read_done(zio_t *zio)
3222 blkptr_t *bp = zio->io_bp;
3224 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3225 return (NULL);
3228 ASSERT(BP_GET_DEDUP(bp));
3229 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3230 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3232 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3233 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3234 ddt_entry_t *dde = zio->io_vsd;
3235 if (ddt == NULL) {
3236 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3237 return (zio);
3239 if (dde == NULL) {
3240 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3241 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3242 return (NULL);
3244 if (dde->dde_repair_abd != NULL) {
3245 abd_copy(zio->io_abd, dde->dde_repair_abd,
3246 zio->io_size);
3247 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3249 ddt_repair_done(ddt, dde);
3250 zio->io_vsd = NULL;
3253 ASSERT(zio->io_vsd == NULL);
3255 return (zio);
3258 static boolean_t
3259 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3261 spa_t *spa = zio->io_spa;
3262 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3264 ASSERT(!(zio->io_bp_override && do_raw));
3267 * Note: we compare the original data, not the transformed data,
3268 * because when zio->io_bp is an override bp, we will not have
3269 * pushed the I/O transforms. That's an important optimization
3270 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3271 * However, we should never get a raw, override zio so in these
3272 * cases we can compare the io_abd directly. This is useful because
3273 * it allows us to do dedup verification even if we don't have access
3274 * to the original data (for instance, if the encryption keys aren't
3275 * loaded).
3278 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3279 zio_t *lio = dde->dde_lead_zio[p];
3281 if (lio != NULL && do_raw) {
3282 return (lio->io_size != zio->io_size ||
3283 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3284 } else if (lio != NULL) {
3285 return (lio->io_orig_size != zio->io_orig_size ||
3286 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3290 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3291 ddt_phys_t *ddp = &dde->dde_phys[p];
3293 if (ddp->ddp_phys_birth != 0 && do_raw) {
3294 blkptr_t blk = *zio->io_bp;
3295 uint64_t psize;
3296 abd_t *tmpabd;
3297 int error;
3299 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3300 psize = BP_GET_PSIZE(&blk);
3302 if (psize != zio->io_size)
3303 return (B_TRUE);
3305 ddt_exit(ddt);
3307 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3309 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3310 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3311 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3312 ZIO_FLAG_RAW, &zio->io_bookmark));
3314 if (error == 0) {
3315 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3316 error = SET_ERROR(ENOENT);
3319 abd_free(tmpabd);
3320 ddt_enter(ddt);
3321 return (error != 0);
3322 } else if (ddp->ddp_phys_birth != 0) {
3323 arc_buf_t *abuf = NULL;
3324 arc_flags_t aflags = ARC_FLAG_WAIT;
3325 blkptr_t blk = *zio->io_bp;
3326 int error;
3328 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3330 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3331 return (B_TRUE);
3333 ddt_exit(ddt);
3335 error = arc_read(NULL, spa, &blk,
3336 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3337 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3338 &aflags, &zio->io_bookmark);
3340 if (error == 0) {
3341 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3342 zio->io_orig_size) != 0)
3343 error = SET_ERROR(ENOENT);
3344 arc_buf_destroy(abuf, &abuf);
3347 ddt_enter(ddt);
3348 return (error != 0);
3352 return (B_FALSE);
3355 static void
3356 zio_ddt_child_write_ready(zio_t *zio)
3358 int p = zio->io_prop.zp_copies;
3359 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3360 ddt_entry_t *dde = zio->io_private;
3361 ddt_phys_t *ddp = &dde->dde_phys[p];
3362 zio_t *pio;
3364 if (zio->io_error)
3365 return;
3367 ddt_enter(ddt);
3369 ASSERT(dde->dde_lead_zio[p] == zio);
3371 ddt_phys_fill(ddp, zio->io_bp);
3373 zio_link_t *zl = NULL;
3374 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3375 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3377 ddt_exit(ddt);
3380 static void
3381 zio_ddt_child_write_done(zio_t *zio)
3383 int p = zio->io_prop.zp_copies;
3384 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3385 ddt_entry_t *dde = zio->io_private;
3386 ddt_phys_t *ddp = &dde->dde_phys[p];
3388 ddt_enter(ddt);
3390 ASSERT(ddp->ddp_refcnt == 0);
3391 ASSERT(dde->dde_lead_zio[p] == zio);
3392 dde->dde_lead_zio[p] = NULL;
3394 if (zio->io_error == 0) {
3395 zio_link_t *zl = NULL;
3396 while (zio_walk_parents(zio, &zl) != NULL)
3397 ddt_phys_addref(ddp);
3398 } else {
3399 ddt_phys_clear(ddp);
3402 ddt_exit(ddt);
3405 static zio_t *
3406 zio_ddt_write(zio_t *zio)
3408 spa_t *spa = zio->io_spa;
3409 blkptr_t *bp = zio->io_bp;
3410 uint64_t txg = zio->io_txg;
3411 zio_prop_t *zp = &zio->io_prop;
3412 int p = zp->zp_copies;
3413 zio_t *cio = NULL;
3414 ddt_t *ddt = ddt_select(spa, bp);
3415 ddt_entry_t *dde;
3416 ddt_phys_t *ddp;
3418 ASSERT(BP_GET_DEDUP(bp));
3419 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3420 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3421 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3423 ddt_enter(ddt);
3424 dde = ddt_lookup(ddt, bp, B_TRUE);
3425 ddp = &dde->dde_phys[p];
3427 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3429 * If we're using a weak checksum, upgrade to a strong checksum
3430 * and try again. If we're already using a strong checksum,
3431 * we can't resolve it, so just convert to an ordinary write.
3432 * (And automatically e-mail a paper to Nature?)
3434 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3435 ZCHECKSUM_FLAG_DEDUP)) {
3436 zp->zp_checksum = spa_dedup_checksum(spa);
3437 zio_pop_transforms(zio);
3438 zio->io_stage = ZIO_STAGE_OPEN;
3439 BP_ZERO(bp);
3440 } else {
3441 zp->zp_dedup = B_FALSE;
3442 BP_SET_DEDUP(bp, B_FALSE);
3444 ASSERT(!BP_GET_DEDUP(bp));
3445 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3446 ddt_exit(ddt);
3447 return (zio);
3450 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3451 if (ddp->ddp_phys_birth != 0)
3452 ddt_bp_fill(ddp, bp, txg);
3453 if (dde->dde_lead_zio[p] != NULL)
3454 zio_add_child(zio, dde->dde_lead_zio[p]);
3455 else
3456 ddt_phys_addref(ddp);
3457 } else if (zio->io_bp_override) {
3458 ASSERT(bp->blk_birth == txg);
3459 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3460 ddt_phys_fill(ddp, bp);
3461 ddt_phys_addref(ddp);
3462 } else {
3463 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3464 zio->io_orig_size, zio->io_orig_size, zp,
3465 zio_ddt_child_write_ready, NULL,
3466 zio_ddt_child_write_done, dde, zio->io_priority,
3467 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3469 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3470 dde->dde_lead_zio[p] = cio;
3473 ddt_exit(ddt);
3475 zio_nowait(cio);
3477 return (zio);
3480 static ddt_entry_t *freedde; /* for debugging */
3482 static zio_t *
3483 zio_ddt_free(zio_t *zio)
3485 spa_t *spa = zio->io_spa;
3486 blkptr_t *bp = zio->io_bp;
3487 ddt_t *ddt = ddt_select(spa, bp);
3488 ddt_entry_t *dde;
3489 ddt_phys_t *ddp;
3491 ASSERT(BP_GET_DEDUP(bp));
3492 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3494 ddt_enter(ddt);
3495 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3496 if (dde) {
3497 ddp = ddt_phys_select(dde, bp);
3498 if (ddp)
3499 ddt_phys_decref(ddp);
3501 ddt_exit(ddt);
3503 return (zio);
3507 * ==========================================================================
3508 * Allocate and free blocks
3509 * ==========================================================================
3512 static zio_t *
3513 zio_io_to_allocate(spa_t *spa, int allocator)
3515 zio_t *zio;
3517 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3519 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3520 if (zio == NULL)
3521 return (NULL);
3523 ASSERT(IO_IS_ALLOCATING(zio));
3526 * Try to place a reservation for this zio. If we're unable to
3527 * reserve then we throttle.
3529 ASSERT3U(zio->io_allocator, ==, allocator);
3530 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3531 zio->io_prop.zp_copies, allocator, zio, 0)) {
3532 return (NULL);
3535 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3536 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3538 return (zio);
3541 static zio_t *
3542 zio_dva_throttle(zio_t *zio)
3544 spa_t *spa = zio->io_spa;
3545 zio_t *nio;
3546 metaslab_class_t *mc;
3548 /* locate an appropriate allocation class */
3549 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3550 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3552 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3553 !mc->mc_alloc_throttle_enabled ||
3554 zio->io_child_type == ZIO_CHILD_GANG ||
3555 zio->io_flags & ZIO_FLAG_NODATA) {
3556 return (zio);
3559 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3560 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3561 ASSERT3U(zio->io_queued_timestamp, >, 0);
3562 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3564 zbookmark_phys_t *bm = &zio->io_bookmark;
3566 * We want to try to use as many allocators as possible to help improve
3567 * performance, but we also want logically adjacent IOs to be physically
3568 * adjacent to improve sequential read performance. We chunk each object
3569 * into 2^20 block regions, and then hash based on the objset, object,
3570 * level, and region to accomplish both of these goals.
3572 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3573 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3574 zio->io_allocator = allocator;
3575 zio->io_metaslab_class = mc;
3576 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3577 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3578 nio = zio_io_to_allocate(spa, allocator);
3579 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3580 return (nio);
3583 static void
3584 zio_allocate_dispatch(spa_t *spa, int allocator)
3586 zio_t *zio;
3588 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3589 zio = zio_io_to_allocate(spa, allocator);
3590 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3591 if (zio == NULL)
3592 return;
3594 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3595 ASSERT0(zio->io_error);
3596 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3599 static zio_t *
3600 zio_dva_allocate(zio_t *zio)
3602 spa_t *spa = zio->io_spa;
3603 metaslab_class_t *mc;
3604 blkptr_t *bp = zio->io_bp;
3605 int error;
3606 int flags = 0;
3608 if (zio->io_gang_leader == NULL) {
3609 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3610 zio->io_gang_leader = zio;
3613 ASSERT(BP_IS_HOLE(bp));
3614 ASSERT0(BP_GET_NDVAS(bp));
3615 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3616 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3617 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3619 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3620 if (zio->io_flags & ZIO_FLAG_NODATA)
3621 flags |= METASLAB_DONT_THROTTLE;
3622 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3623 flags |= METASLAB_GANG_CHILD;
3624 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3625 flags |= METASLAB_ASYNC_ALLOC;
3628 * if not already chosen, locate an appropriate allocation class
3630 mc = zio->io_metaslab_class;
3631 if (mc == NULL) {
3632 mc = spa_preferred_class(spa, zio->io_size,
3633 zio->io_prop.zp_type, zio->io_prop.zp_level,
3634 zio->io_prop.zp_zpl_smallblk);
3635 zio->io_metaslab_class = mc;
3639 * Try allocating the block in the usual metaslab class.
3640 * If that's full, allocate it in the normal class.
3641 * If that's full, allocate as a gang block,
3642 * and if all are full, the allocation fails (which shouldn't happen).
3644 * Note that we do not fall back on embedded slog (ZIL) space, to
3645 * preserve unfragmented slog space, which is critical for decent
3646 * sync write performance. If a log allocation fails, we will fall
3647 * back to spa_sync() which is abysmal for performance.
3649 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3650 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3651 &zio->io_alloc_list, zio, zio->io_allocator);
3654 * Fallback to normal class when an alloc class is full
3656 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3658 * If throttling, transfer reservation over to normal class.
3659 * The io_allocator slot can remain the same even though we
3660 * are switching classes.
3662 if (mc->mc_alloc_throttle_enabled &&
3663 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3664 metaslab_class_throttle_unreserve(mc,
3665 zio->io_prop.zp_copies, zio->io_allocator, zio);
3666 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3668 VERIFY(metaslab_class_throttle_reserve(
3669 spa_normal_class(spa),
3670 zio->io_prop.zp_copies, zio->io_allocator, zio,
3671 flags | METASLAB_MUST_RESERVE));
3673 zio->io_metaslab_class = mc = spa_normal_class(spa);
3674 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3675 zfs_dbgmsg("%s: metaslab allocation failure, "
3676 "trying normal class: zio %px, size %llu, error %d",
3677 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3678 error);
3681 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3682 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3683 &zio->io_alloc_list, zio, zio->io_allocator);
3686 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3687 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3688 zfs_dbgmsg("%s: metaslab allocation failure, "
3689 "trying ganging: zio %px, size %llu, error %d",
3690 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3691 error);
3693 return (zio_write_gang_block(zio, mc));
3695 if (error != 0) {
3696 if (error != ENOSPC ||
3697 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3698 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3699 "size %llu, error %d",
3700 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3701 error);
3703 zio->io_error = error;
3706 return (zio);
3709 static zio_t *
3710 zio_dva_free(zio_t *zio)
3712 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3714 return (zio);
3717 static zio_t *
3718 zio_dva_claim(zio_t *zio)
3720 int error;
3722 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3723 if (error)
3724 zio->io_error = error;
3726 return (zio);
3730 * Undo an allocation. This is used by zio_done() when an I/O fails
3731 * and we want to give back the block we just allocated.
3732 * This handles both normal blocks and gang blocks.
3734 static void
3735 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3737 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3738 ASSERT(zio->io_bp_override == NULL);
3740 if (!BP_IS_HOLE(bp))
3741 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3743 if (gn != NULL) {
3744 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3745 zio_dva_unallocate(zio, gn->gn_child[g],
3746 &gn->gn_gbh->zg_blkptr[g]);
3752 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3755 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3756 uint64_t size, boolean_t *slog)
3758 int error = 1;
3759 zio_alloc_list_t io_alloc_list;
3761 ASSERT(txg > spa_syncing_txg(spa));
3763 metaslab_trace_init(&io_alloc_list);
3766 * Block pointer fields are useful to metaslabs for stats and debugging.
3767 * Fill in the obvious ones before calling into metaslab_alloc().
3769 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3770 BP_SET_PSIZE(new_bp, size);
3771 BP_SET_LEVEL(new_bp, 0);
3774 * When allocating a zil block, we don't have information about
3775 * the final destination of the block except the objset it's part
3776 * of, so we just hash the objset ID to pick the allocator to get
3777 * some parallelism.
3779 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3780 int allocator = (uint_t)cityhash4(0, 0, 0,
3781 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3782 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3783 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3784 *slog = (error == 0);
3785 if (error != 0) {
3786 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3787 new_bp, 1, txg, NULL, flags,
3788 &io_alloc_list, NULL, allocator);
3790 if (error != 0) {
3791 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3792 new_bp, 1, txg, NULL, flags,
3793 &io_alloc_list, NULL, allocator);
3795 metaslab_trace_fini(&io_alloc_list);
3797 if (error == 0) {
3798 BP_SET_LSIZE(new_bp, size);
3799 BP_SET_PSIZE(new_bp, size);
3800 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3801 BP_SET_CHECKSUM(new_bp,
3802 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3803 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3804 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3805 BP_SET_LEVEL(new_bp, 0);
3806 BP_SET_DEDUP(new_bp, 0);
3807 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3810 * encrypted blocks will require an IV and salt. We generate
3811 * these now since we will not be rewriting the bp at
3812 * rewrite time.
3814 if (os->os_encrypted) {
3815 uint8_t iv[ZIO_DATA_IV_LEN];
3816 uint8_t salt[ZIO_DATA_SALT_LEN];
3818 BP_SET_CRYPT(new_bp, B_TRUE);
3819 VERIFY0(spa_crypt_get_salt(spa,
3820 dmu_objset_id(os), salt));
3821 VERIFY0(zio_crypt_generate_iv(iv));
3823 zio_crypt_encode_params_bp(new_bp, salt, iv);
3825 } else {
3826 zfs_dbgmsg("%s: zil block allocation failure: "
3827 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3828 error);
3831 return (error);
3835 * ==========================================================================
3836 * Read and write to physical devices
3837 * ==========================================================================
3841 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3842 * stops after this stage and will resume upon I/O completion.
3843 * However, there are instances where the vdev layer may need to
3844 * continue the pipeline when an I/O was not issued. Since the I/O
3845 * that was sent to the vdev layer might be different than the one
3846 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3847 * force the underlying vdev layers to call either zio_execute() or
3848 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3850 static zio_t *
3851 zio_vdev_io_start(zio_t *zio)
3853 vdev_t *vd = zio->io_vd;
3854 uint64_t align;
3855 spa_t *spa = zio->io_spa;
3857 zio->io_delay = 0;
3859 ASSERT(zio->io_error == 0);
3860 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3862 if (vd == NULL) {
3863 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3864 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3867 * The mirror_ops handle multiple DVAs in a single BP.
3869 vdev_mirror_ops.vdev_op_io_start(zio);
3870 return (NULL);
3873 ASSERT3P(zio->io_logical, !=, zio);
3874 if (zio->io_type == ZIO_TYPE_WRITE) {
3875 ASSERT(spa->spa_trust_config);
3878 * Note: the code can handle other kinds of writes,
3879 * but we don't expect them.
3881 if (zio->io_vd->vdev_noalloc) {
3882 ASSERT(zio->io_flags &
3883 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3884 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3888 align = 1ULL << vd->vdev_top->vdev_ashift;
3890 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3891 P2PHASE(zio->io_size, align) != 0) {
3892 /* Transform logical writes to be a full physical block size. */
3893 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3894 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3895 ASSERT(vd == vd->vdev_top);
3896 if (zio->io_type == ZIO_TYPE_WRITE) {
3897 abd_copy(abuf, zio->io_abd, zio->io_size);
3898 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3900 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3904 * If this is not a physical io, make sure that it is properly aligned
3905 * before proceeding.
3907 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3908 ASSERT0(P2PHASE(zio->io_offset, align));
3909 ASSERT0(P2PHASE(zio->io_size, align));
3910 } else {
3912 * For physical writes, we allow 512b aligned writes and assume
3913 * the device will perform a read-modify-write as necessary.
3915 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3916 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3919 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3922 * If this is a repair I/O, and there's no self-healing involved --
3923 * that is, we're just resilvering what we expect to resilver --
3924 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3925 * This prevents spurious resilvering.
3927 * There are a few ways that we can end up creating these spurious
3928 * resilver i/os:
3930 * 1. A resilver i/o will be issued if any DVA in the BP has a
3931 * dirty DTL. The mirror code will issue resilver writes to
3932 * each DVA, including the one(s) that are not on vdevs with dirty
3933 * DTLs.
3935 * 2. With nested replication, which happens when we have a
3936 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3937 * For example, given mirror(replacing(A+B), C), it's likely that
3938 * only A is out of date (it's the new device). In this case, we'll
3939 * read from C, then use the data to resilver A+B -- but we don't
3940 * actually want to resilver B, just A. The top-level mirror has no
3941 * way to know this, so instead we just discard unnecessary repairs
3942 * as we work our way down the vdev tree.
3944 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3945 * The same logic applies to any form of nested replication: ditto
3946 * + mirror, RAID-Z + replacing, etc.
3948 * However, indirect vdevs point off to other vdevs which may have
3949 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3950 * will be properly bypassed instead.
3952 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3953 * a dRAID spare vdev. For example, when a dRAID spare is first
3954 * used, its spare blocks need to be written to but the leaf vdev's
3955 * of such blocks can have empty DTL_PARTIAL.
3957 * There seemed no clean way to allow such writes while bypassing
3958 * spurious ones. At this point, just avoid all bypassing for dRAID
3959 * for correctness.
3961 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3962 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3963 zio->io_txg != 0 && /* not a delegated i/o */
3964 vd->vdev_ops != &vdev_indirect_ops &&
3965 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3966 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3967 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3968 zio_vdev_io_bypass(zio);
3969 return (zio);
3973 * Select the next best leaf I/O to process. Distributed spares are
3974 * excluded since they dispatch the I/O directly to a leaf vdev after
3975 * applying the dRAID mapping.
3977 if (vd->vdev_ops->vdev_op_leaf &&
3978 vd->vdev_ops != &vdev_draid_spare_ops &&
3979 (zio->io_type == ZIO_TYPE_READ ||
3980 zio->io_type == ZIO_TYPE_WRITE ||
3981 zio->io_type == ZIO_TYPE_TRIM)) {
3983 if ((zio = vdev_queue_io(zio)) == NULL)
3984 return (NULL);
3986 if (!vdev_accessible(vd, zio)) {
3987 zio->io_error = SET_ERROR(ENXIO);
3988 zio_interrupt(zio);
3989 return (NULL);
3991 zio->io_delay = gethrtime();
3994 vd->vdev_ops->vdev_op_io_start(zio);
3995 return (NULL);
3998 static zio_t *
3999 zio_vdev_io_done(zio_t *zio)
4001 vdev_t *vd = zio->io_vd;
4002 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4003 boolean_t unexpected_error = B_FALSE;
4005 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4006 return (NULL);
4009 ASSERT(zio->io_type == ZIO_TYPE_READ ||
4010 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
4012 if (zio->io_delay)
4013 zio->io_delay = gethrtime() - zio->io_delay;
4015 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4016 vd->vdev_ops != &vdev_draid_spare_ops) {
4017 vdev_queue_io_done(zio);
4019 if (zio_injection_enabled && zio->io_error == 0)
4020 zio->io_error = zio_handle_device_injections(vd, zio,
4021 EIO, EILSEQ);
4023 if (zio_injection_enabled && zio->io_error == 0)
4024 zio->io_error = zio_handle_label_injection(zio, EIO);
4026 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
4027 if (!vdev_accessible(vd, zio)) {
4028 zio->io_error = SET_ERROR(ENXIO);
4029 } else {
4030 unexpected_error = B_TRUE;
4035 ops->vdev_op_io_done(zio);
4037 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4038 VERIFY(vdev_probe(vd, zio) == NULL);
4040 return (zio);
4044 * This function is used to change the priority of an existing zio that is
4045 * currently in-flight. This is used by the arc to upgrade priority in the
4046 * event that a demand read is made for a block that is currently queued
4047 * as a scrub or async read IO. Otherwise, the high priority read request
4048 * would end up having to wait for the lower priority IO.
4050 void
4051 zio_change_priority(zio_t *pio, zio_priority_t priority)
4053 zio_t *cio, *cio_next;
4054 zio_link_t *zl = NULL;
4056 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4058 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4059 vdev_queue_change_io_priority(pio, priority);
4060 } else {
4061 pio->io_priority = priority;
4064 mutex_enter(&pio->io_lock);
4065 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4066 cio_next = zio_walk_children(pio, &zl);
4067 zio_change_priority(cio, priority);
4069 mutex_exit(&pio->io_lock);
4073 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4074 * disk, and use that to finish the checksum ereport later.
4076 static void
4077 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4078 const abd_t *good_buf)
4080 /* no processing needed */
4081 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4084 void
4085 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4087 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4089 abd_copy(abd, zio->io_abd, zio->io_size);
4091 zcr->zcr_cbinfo = zio->io_size;
4092 zcr->zcr_cbdata = abd;
4093 zcr->zcr_finish = zio_vsd_default_cksum_finish;
4094 zcr->zcr_free = zio_abd_free;
4097 static zio_t *
4098 zio_vdev_io_assess(zio_t *zio)
4100 vdev_t *vd = zio->io_vd;
4102 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4103 return (NULL);
4106 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4107 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4109 if (zio->io_vsd != NULL) {
4110 zio->io_vsd_ops->vsd_free(zio);
4111 zio->io_vsd = NULL;
4114 if (zio_injection_enabled && zio->io_error == 0)
4115 zio->io_error = zio_handle_fault_injection(zio, EIO);
4118 * If the I/O failed, determine whether we should attempt to retry it.
4120 * On retry, we cut in line in the issue queue, since we don't want
4121 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4123 if (zio->io_error && vd == NULL &&
4124 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4125 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4126 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4127 zio->io_error = 0;
4128 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4129 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4130 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4131 zio_requeue_io_start_cut_in_line);
4132 return (NULL);
4136 * If we got an error on a leaf device, convert it to ENXIO
4137 * if the device is not accessible at all.
4139 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4140 !vdev_accessible(vd, zio))
4141 zio->io_error = SET_ERROR(ENXIO);
4144 * If we can't write to an interior vdev (mirror or RAID-Z),
4145 * set vdev_cant_write so that we stop trying to allocate from it.
4147 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4148 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4149 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4150 "cant_write=TRUE due to write failure with ENXIO",
4151 zio);
4152 vd->vdev_cant_write = B_TRUE;
4156 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4157 * attempts will ever succeed. In this case we set a persistent
4158 * boolean flag so that we don't bother with it in the future.
4160 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4161 zio->io_type == ZIO_TYPE_IOCTL &&
4162 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4163 vd->vdev_nowritecache = B_TRUE;
4165 if (zio->io_error)
4166 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4168 return (zio);
4171 void
4172 zio_vdev_io_reissue(zio_t *zio)
4174 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4175 ASSERT(zio->io_error == 0);
4177 zio->io_stage >>= 1;
4180 void
4181 zio_vdev_io_redone(zio_t *zio)
4183 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4185 zio->io_stage >>= 1;
4188 void
4189 zio_vdev_io_bypass(zio_t *zio)
4191 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4192 ASSERT(zio->io_error == 0);
4194 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4195 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4199 * ==========================================================================
4200 * Encrypt and store encryption parameters
4201 * ==========================================================================
4206 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4207 * managing the storage of encryption parameters and passing them to the
4208 * lower-level encryption functions.
4210 static zio_t *
4211 zio_encrypt(zio_t *zio)
4213 zio_prop_t *zp = &zio->io_prop;
4214 spa_t *spa = zio->io_spa;
4215 blkptr_t *bp = zio->io_bp;
4216 uint64_t psize = BP_GET_PSIZE(bp);
4217 uint64_t dsobj = zio->io_bookmark.zb_objset;
4218 dmu_object_type_t ot = BP_GET_TYPE(bp);
4219 void *enc_buf = NULL;
4220 abd_t *eabd = NULL;
4221 uint8_t salt[ZIO_DATA_SALT_LEN];
4222 uint8_t iv[ZIO_DATA_IV_LEN];
4223 uint8_t mac[ZIO_DATA_MAC_LEN];
4224 boolean_t no_crypt = B_FALSE;
4226 /* the root zio already encrypted the data */
4227 if (zio->io_child_type == ZIO_CHILD_GANG)
4228 return (zio);
4230 /* only ZIL blocks are re-encrypted on rewrite */
4231 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4232 return (zio);
4234 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4235 BP_SET_CRYPT(bp, B_FALSE);
4236 return (zio);
4239 /* if we are doing raw encryption set the provided encryption params */
4240 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4241 ASSERT0(BP_GET_LEVEL(bp));
4242 BP_SET_CRYPT(bp, B_TRUE);
4243 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4244 if (ot != DMU_OT_OBJSET)
4245 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4247 /* dnode blocks must be written out in the provided byteorder */
4248 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4249 ot == DMU_OT_DNODE) {
4250 void *bswap_buf = zio_buf_alloc(psize);
4251 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4253 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4254 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4255 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4256 psize);
4258 abd_take_ownership_of_buf(babd, B_TRUE);
4259 zio_push_transform(zio, babd, psize, psize, NULL);
4262 if (DMU_OT_IS_ENCRYPTED(ot))
4263 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4264 return (zio);
4267 /* indirect blocks only maintain a cksum of the lower level MACs */
4268 if (BP_GET_LEVEL(bp) > 0) {
4269 BP_SET_CRYPT(bp, B_TRUE);
4270 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4271 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4272 mac));
4273 zio_crypt_encode_mac_bp(bp, mac);
4274 return (zio);
4278 * Objset blocks are a special case since they have 2 256-bit MACs
4279 * embedded within them.
4281 if (ot == DMU_OT_OBJSET) {
4282 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4283 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4284 BP_SET_CRYPT(bp, B_TRUE);
4285 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4286 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4287 return (zio);
4290 /* unencrypted object types are only authenticated with a MAC */
4291 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4292 BP_SET_CRYPT(bp, B_TRUE);
4293 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4294 zio->io_abd, psize, mac));
4295 zio_crypt_encode_mac_bp(bp, mac);
4296 return (zio);
4300 * Later passes of sync-to-convergence may decide to rewrite data
4301 * in place to avoid more disk reallocations. This presents a problem
4302 * for encryption because this constitutes rewriting the new data with
4303 * the same encryption key and IV. However, this only applies to blocks
4304 * in the MOS (particularly the spacemaps) and we do not encrypt the
4305 * MOS. We assert that the zio is allocating or an intent log write
4306 * to enforce this.
4308 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4309 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4310 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4311 ASSERT3U(psize, !=, 0);
4313 enc_buf = zio_buf_alloc(psize);
4314 eabd = abd_get_from_buf(enc_buf, psize);
4315 abd_take_ownership_of_buf(eabd, B_TRUE);
4318 * For an explanation of what encryption parameters are stored
4319 * where, see the block comment in zio_crypt.c.
4321 if (ot == DMU_OT_INTENT_LOG) {
4322 zio_crypt_decode_params_bp(bp, salt, iv);
4323 } else {
4324 BP_SET_CRYPT(bp, B_TRUE);
4327 /* Perform the encryption. This should not fail */
4328 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4329 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4330 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4332 /* encode encryption metadata into the bp */
4333 if (ot == DMU_OT_INTENT_LOG) {
4335 * ZIL blocks store the MAC in the embedded checksum, so the
4336 * transform must always be applied.
4338 zio_crypt_encode_mac_zil(enc_buf, mac);
4339 zio_push_transform(zio, eabd, psize, psize, NULL);
4340 } else {
4341 BP_SET_CRYPT(bp, B_TRUE);
4342 zio_crypt_encode_params_bp(bp, salt, iv);
4343 zio_crypt_encode_mac_bp(bp, mac);
4345 if (no_crypt) {
4346 ASSERT3U(ot, ==, DMU_OT_DNODE);
4347 abd_free(eabd);
4348 } else {
4349 zio_push_transform(zio, eabd, psize, psize, NULL);
4353 return (zio);
4357 * ==========================================================================
4358 * Generate and verify checksums
4359 * ==========================================================================
4361 static zio_t *
4362 zio_checksum_generate(zio_t *zio)
4364 blkptr_t *bp = zio->io_bp;
4365 enum zio_checksum checksum;
4367 if (bp == NULL) {
4369 * This is zio_write_phys().
4370 * We're either generating a label checksum, or none at all.
4372 checksum = zio->io_prop.zp_checksum;
4374 if (checksum == ZIO_CHECKSUM_OFF)
4375 return (zio);
4377 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4378 } else {
4379 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4380 ASSERT(!IO_IS_ALLOCATING(zio));
4381 checksum = ZIO_CHECKSUM_GANG_HEADER;
4382 } else {
4383 checksum = BP_GET_CHECKSUM(bp);
4387 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4389 return (zio);
4392 static zio_t *
4393 zio_checksum_verify(zio_t *zio)
4395 zio_bad_cksum_t info;
4396 blkptr_t *bp = zio->io_bp;
4397 int error;
4399 ASSERT(zio->io_vd != NULL);
4401 if (bp == NULL) {
4403 * This is zio_read_phys().
4404 * We're either verifying a label checksum, or nothing at all.
4406 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4407 return (zio);
4409 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4412 if ((error = zio_checksum_error(zio, &info)) != 0) {
4413 zio->io_error = error;
4414 if (error == ECKSUM &&
4415 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4416 mutex_enter(&zio->io_vd->vdev_stat_lock);
4417 zio->io_vd->vdev_stat.vs_checksum_errors++;
4418 mutex_exit(&zio->io_vd->vdev_stat_lock);
4419 (void) zfs_ereport_start_checksum(zio->io_spa,
4420 zio->io_vd, &zio->io_bookmark, zio,
4421 zio->io_offset, zio->io_size, &info);
4425 return (zio);
4429 * Called by RAID-Z to ensure we don't compute the checksum twice.
4431 void
4432 zio_checksum_verified(zio_t *zio)
4434 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4438 * ==========================================================================
4439 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4440 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4441 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4442 * indicate errors that are specific to one I/O, and most likely permanent.
4443 * Any other error is presumed to be worse because we weren't expecting it.
4444 * ==========================================================================
4447 zio_worst_error(int e1, int e2)
4449 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4450 int r1, r2;
4452 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4453 if (e1 == zio_error_rank[r1])
4454 break;
4456 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4457 if (e2 == zio_error_rank[r2])
4458 break;
4460 return (r1 > r2 ? e1 : e2);
4464 * ==========================================================================
4465 * I/O completion
4466 * ==========================================================================
4468 static zio_t *
4469 zio_ready(zio_t *zio)
4471 blkptr_t *bp = zio->io_bp;
4472 zio_t *pio, *pio_next;
4473 zio_link_t *zl = NULL;
4475 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4476 ZIO_WAIT_READY)) {
4477 return (NULL);
4480 if (zio->io_ready) {
4481 ASSERT(IO_IS_ALLOCATING(zio));
4482 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4483 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4484 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4486 zio->io_ready(zio);
4489 #ifdef ZFS_DEBUG
4490 if (bp != NULL && bp != &zio->io_bp_copy)
4491 zio->io_bp_copy = *bp;
4492 #endif
4494 if (zio->io_error != 0) {
4495 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4497 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4498 ASSERT(IO_IS_ALLOCATING(zio));
4499 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4500 ASSERT(zio->io_metaslab_class != NULL);
4503 * We were unable to allocate anything, unreserve and
4504 * issue the next I/O to allocate.
4506 metaslab_class_throttle_unreserve(
4507 zio->io_metaslab_class, zio->io_prop.zp_copies,
4508 zio->io_allocator, zio);
4509 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4513 mutex_enter(&zio->io_lock);
4514 zio->io_state[ZIO_WAIT_READY] = 1;
4515 pio = zio_walk_parents(zio, &zl);
4516 mutex_exit(&zio->io_lock);
4519 * As we notify zio's parents, new parents could be added.
4520 * New parents go to the head of zio's io_parent_list, however,
4521 * so we will (correctly) not notify them. The remainder of zio's
4522 * io_parent_list, from 'pio_next' onward, cannot change because
4523 * all parents must wait for us to be done before they can be done.
4525 for (; pio != NULL; pio = pio_next) {
4526 pio_next = zio_walk_parents(zio, &zl);
4527 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4530 if (zio->io_flags & ZIO_FLAG_NODATA) {
4531 if (bp != NULL && BP_IS_GANG(bp)) {
4532 zio->io_flags &= ~ZIO_FLAG_NODATA;
4533 } else {
4534 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4535 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4539 if (zio_injection_enabled &&
4540 zio->io_spa->spa_syncing_txg == zio->io_txg)
4541 zio_handle_ignored_writes(zio);
4543 return (zio);
4547 * Update the allocation throttle accounting.
4549 static void
4550 zio_dva_throttle_done(zio_t *zio)
4552 zio_t *lio __maybe_unused = zio->io_logical;
4553 zio_t *pio = zio_unique_parent(zio);
4554 vdev_t *vd = zio->io_vd;
4555 int flags = METASLAB_ASYNC_ALLOC;
4557 ASSERT3P(zio->io_bp, !=, NULL);
4558 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4559 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4560 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4561 ASSERT(vd != NULL);
4562 ASSERT3P(vd, ==, vd->vdev_top);
4563 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4564 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4565 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4566 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4567 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4570 * Parents of gang children can have two flavors -- ones that
4571 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4572 * and ones that allocated the constituent blocks. The allocation
4573 * throttle needs to know the allocating parent zio so we must find
4574 * it here.
4576 if (pio->io_child_type == ZIO_CHILD_GANG) {
4578 * If our parent is a rewrite gang child then our grandparent
4579 * would have been the one that performed the allocation.
4581 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4582 pio = zio_unique_parent(pio);
4583 flags |= METASLAB_GANG_CHILD;
4586 ASSERT(IO_IS_ALLOCATING(pio));
4587 ASSERT3P(zio, !=, zio->io_logical);
4588 ASSERT(zio->io_logical != NULL);
4589 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4590 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4591 ASSERT(zio->io_metaslab_class != NULL);
4593 mutex_enter(&pio->io_lock);
4594 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4595 pio->io_allocator, B_TRUE);
4596 mutex_exit(&pio->io_lock);
4598 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4599 pio->io_allocator, pio);
4602 * Call into the pipeline to see if there is more work that
4603 * needs to be done. If there is work to be done it will be
4604 * dispatched to another taskq thread.
4606 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4609 static zio_t *
4610 zio_done(zio_t *zio)
4613 * Always attempt to keep stack usage minimal here since
4614 * we can be called recursively up to 19 levels deep.
4616 const uint64_t psize = zio->io_size;
4617 zio_t *pio, *pio_next;
4618 zio_link_t *zl = NULL;
4621 * If our children haven't all completed,
4622 * wait for them and then repeat this pipeline stage.
4624 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4625 return (NULL);
4629 * If the allocation throttle is enabled, then update the accounting.
4630 * We only track child I/Os that are part of an allocating async
4631 * write. We must do this since the allocation is performed
4632 * by the logical I/O but the actual write is done by child I/Os.
4634 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4635 zio->io_child_type == ZIO_CHILD_VDEV) {
4636 ASSERT(zio->io_metaslab_class != NULL);
4637 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4638 zio_dva_throttle_done(zio);
4642 * If the allocation throttle is enabled, verify that
4643 * we have decremented the refcounts for every I/O that was throttled.
4645 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4646 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4647 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4648 ASSERT(zio->io_bp != NULL);
4650 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4651 zio->io_allocator);
4652 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4653 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4657 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4658 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4659 ASSERT(zio->io_children[c][w] == 0);
4661 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4662 ASSERT(zio->io_bp->blk_pad[0] == 0);
4663 ASSERT(zio->io_bp->blk_pad[1] == 0);
4664 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4665 sizeof (blkptr_t)) == 0 ||
4666 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4667 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4668 zio->io_bp_override == NULL &&
4669 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4670 ASSERT3U(zio->io_prop.zp_copies, <=,
4671 BP_GET_NDVAS(zio->io_bp));
4672 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4673 (BP_COUNT_GANG(zio->io_bp) ==
4674 BP_GET_NDVAS(zio->io_bp)));
4676 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4677 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4681 * If there were child vdev/gang/ddt errors, they apply to us now.
4683 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4684 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4685 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4688 * If the I/O on the transformed data was successful, generate any
4689 * checksum reports now while we still have the transformed data.
4691 if (zio->io_error == 0) {
4692 while (zio->io_cksum_report != NULL) {
4693 zio_cksum_report_t *zcr = zio->io_cksum_report;
4694 uint64_t align = zcr->zcr_align;
4695 uint64_t asize = P2ROUNDUP(psize, align);
4696 abd_t *adata = zio->io_abd;
4698 if (adata != NULL && asize != psize) {
4699 adata = abd_alloc(asize, B_TRUE);
4700 abd_copy(adata, zio->io_abd, psize);
4701 abd_zero_off(adata, psize, asize - psize);
4704 zio->io_cksum_report = zcr->zcr_next;
4705 zcr->zcr_next = NULL;
4706 zcr->zcr_finish(zcr, adata);
4707 zfs_ereport_free_checksum(zcr);
4709 if (adata != NULL && asize != psize)
4710 abd_free(adata);
4714 zio_pop_transforms(zio); /* note: may set zio->io_error */
4716 vdev_stat_update(zio, psize);
4719 * If this I/O is attached to a particular vdev is slow, exceeding
4720 * 30 seconds to complete, post an error described the I/O delay.
4721 * We ignore these errors if the device is currently unavailable.
4723 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4724 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4726 * We want to only increment our slow IO counters if
4727 * the IO is valid (i.e. not if the drive is removed).
4729 * zfs_ereport_post() will also do these checks, but
4730 * it can also ratelimit and have other failures, so we
4731 * need to increment the slow_io counters independent
4732 * of it.
4734 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4735 zio->io_spa, zio->io_vd, zio)) {
4736 mutex_enter(&zio->io_vd->vdev_stat_lock);
4737 zio->io_vd->vdev_stat.vs_slow_ios++;
4738 mutex_exit(&zio->io_vd->vdev_stat_lock);
4740 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4741 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4742 zio, 0);
4747 if (zio->io_error) {
4749 * If this I/O is attached to a particular vdev,
4750 * generate an error message describing the I/O failure
4751 * at the block level. We ignore these errors if the
4752 * device is currently unavailable.
4754 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4755 !vdev_is_dead(zio->io_vd)) {
4756 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4757 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4758 if (ret != EALREADY) {
4759 mutex_enter(&zio->io_vd->vdev_stat_lock);
4760 if (zio->io_type == ZIO_TYPE_READ)
4761 zio->io_vd->vdev_stat.vs_read_errors++;
4762 else if (zio->io_type == ZIO_TYPE_WRITE)
4763 zio->io_vd->vdev_stat.vs_write_errors++;
4764 mutex_exit(&zio->io_vd->vdev_stat_lock);
4768 if ((zio->io_error == EIO || !(zio->io_flags &
4769 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4770 zio == zio->io_logical) {
4772 * For logical I/O requests, tell the SPA to log the
4773 * error and generate a logical data ereport.
4775 spa_log_error(zio->io_spa, &zio->io_bookmark,
4776 &zio->io_bp->blk_birth);
4777 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4778 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4782 if (zio->io_error && zio == zio->io_logical) {
4784 * Determine whether zio should be reexecuted. This will
4785 * propagate all the way to the root via zio_notify_parent().
4787 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4788 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4790 if (IO_IS_ALLOCATING(zio) &&
4791 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4792 if (zio->io_error != ENOSPC)
4793 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4794 else
4795 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4798 if ((zio->io_type == ZIO_TYPE_READ ||
4799 zio->io_type == ZIO_TYPE_FREE) &&
4800 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4801 zio->io_error == ENXIO &&
4802 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4803 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4804 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4806 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4807 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4810 * Here is a possibly good place to attempt to do
4811 * either combinatorial reconstruction or error correction
4812 * based on checksums. It also might be a good place
4813 * to send out preliminary ereports before we suspend
4814 * processing.
4819 * If there were logical child errors, they apply to us now.
4820 * We defer this until now to avoid conflating logical child
4821 * errors with errors that happened to the zio itself when
4822 * updating vdev stats and reporting FMA events above.
4824 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4826 if ((zio->io_error || zio->io_reexecute) &&
4827 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4828 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4829 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4831 zio_gang_tree_free(&zio->io_gang_tree);
4834 * Godfather I/Os should never suspend.
4836 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4837 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4838 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4840 if (zio->io_reexecute) {
4842 * This is a logical I/O that wants to reexecute.
4844 * Reexecute is top-down. When an i/o fails, if it's not
4845 * the root, it simply notifies its parent and sticks around.
4846 * The parent, seeing that it still has children in zio_done(),
4847 * does the same. This percolates all the way up to the root.
4848 * The root i/o will reexecute or suspend the entire tree.
4850 * This approach ensures that zio_reexecute() honors
4851 * all the original i/o dependency relationships, e.g.
4852 * parents not executing until children are ready.
4854 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4856 zio->io_gang_leader = NULL;
4858 mutex_enter(&zio->io_lock);
4859 zio->io_state[ZIO_WAIT_DONE] = 1;
4860 mutex_exit(&zio->io_lock);
4863 * "The Godfather" I/O monitors its children but is
4864 * not a true parent to them. It will track them through
4865 * the pipeline but severs its ties whenever they get into
4866 * trouble (e.g. suspended). This allows "The Godfather"
4867 * I/O to return status without blocking.
4869 zl = NULL;
4870 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4871 pio = pio_next) {
4872 zio_link_t *remove_zl = zl;
4873 pio_next = zio_walk_parents(zio, &zl);
4875 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4876 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4877 zio_remove_child(pio, zio, remove_zl);
4879 * This is a rare code path, so we don't
4880 * bother with "next_to_execute".
4882 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4883 NULL);
4887 if ((pio = zio_unique_parent(zio)) != NULL) {
4889 * We're not a root i/o, so there's nothing to do
4890 * but notify our parent. Don't propagate errors
4891 * upward since we haven't permanently failed yet.
4893 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4894 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4896 * This is a rare code path, so we don't bother with
4897 * "next_to_execute".
4899 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4900 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4902 * We'd fail again if we reexecuted now, so suspend
4903 * until conditions improve (e.g. device comes online).
4905 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4906 } else {
4908 * Reexecution is potentially a huge amount of work.
4909 * Hand it off to the otherwise-unused claim taskq.
4911 ASSERT(taskq_empty_ent(&zio->io_tqent));
4912 spa_taskq_dispatch_ent(zio->io_spa,
4913 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4914 zio_reexecute, zio, 0, &zio->io_tqent);
4916 return (NULL);
4919 ASSERT(list_is_empty(&zio->io_child_list));
4920 ASSERT(zio->io_reexecute == 0);
4921 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4924 * Report any checksum errors, since the I/O is complete.
4926 while (zio->io_cksum_report != NULL) {
4927 zio_cksum_report_t *zcr = zio->io_cksum_report;
4928 zio->io_cksum_report = zcr->zcr_next;
4929 zcr->zcr_next = NULL;
4930 zcr->zcr_finish(zcr, NULL);
4931 zfs_ereport_free_checksum(zcr);
4934 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4935 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4936 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4937 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4941 * It is the responsibility of the done callback to ensure that this
4942 * particular zio is no longer discoverable for adoption, and as
4943 * such, cannot acquire any new parents.
4945 if (zio->io_done)
4946 zio->io_done(zio);
4948 mutex_enter(&zio->io_lock);
4949 zio->io_state[ZIO_WAIT_DONE] = 1;
4950 mutex_exit(&zio->io_lock);
4953 * We are done executing this zio. We may want to execute a parent
4954 * next. See the comment in zio_notify_parent().
4956 zio_t *next_to_execute = NULL;
4957 zl = NULL;
4958 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4959 zio_link_t *remove_zl = zl;
4960 pio_next = zio_walk_parents(zio, &zl);
4961 zio_remove_child(pio, zio, remove_zl);
4962 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4965 if (zio->io_waiter != NULL) {
4966 mutex_enter(&zio->io_lock);
4967 zio->io_executor = NULL;
4968 cv_broadcast(&zio->io_cv);
4969 mutex_exit(&zio->io_lock);
4970 } else {
4971 zio_destroy(zio);
4974 return (next_to_execute);
4978 * ==========================================================================
4979 * I/O pipeline definition
4980 * ==========================================================================
4982 static zio_pipe_stage_t *zio_pipeline[] = {
4983 NULL,
4984 zio_read_bp_init,
4985 zio_write_bp_init,
4986 zio_free_bp_init,
4987 zio_issue_async,
4988 zio_write_compress,
4989 zio_encrypt,
4990 zio_checksum_generate,
4991 zio_nop_write,
4992 zio_brt_free,
4993 zio_ddt_read_start,
4994 zio_ddt_read_done,
4995 zio_ddt_write,
4996 zio_ddt_free,
4997 zio_gang_assemble,
4998 zio_gang_issue,
4999 zio_dva_throttle,
5000 zio_dva_allocate,
5001 zio_dva_free,
5002 zio_dva_claim,
5003 zio_ready,
5004 zio_vdev_io_start,
5005 zio_vdev_io_done,
5006 zio_vdev_io_assess,
5007 zio_checksum_verify,
5008 zio_done
5015 * Compare two zbookmark_phys_t's to see which we would reach first in a
5016 * pre-order traversal of the object tree.
5018 * This is simple in every case aside from the meta-dnode object. For all other
5019 * objects, we traverse them in order (object 1 before object 2, and so on).
5020 * However, all of these objects are traversed while traversing object 0, since
5021 * the data it points to is the list of objects. Thus, we need to convert to a
5022 * canonical representation so we can compare meta-dnode bookmarks to
5023 * non-meta-dnode bookmarks.
5025 * We do this by calculating "equivalents" for each field of the zbookmark.
5026 * zbookmarks outside of the meta-dnode use their own object and level, and
5027 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5028 * blocks this bookmark refers to) by multiplying their blkid by their span
5029 * (the number of L0 blocks contained within one block at their level).
5030 * zbookmarks inside the meta-dnode calculate their object equivalent
5031 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5032 * level + 1<<31 (any value larger than a level could ever be) for their level.
5033 * This causes them to always compare before a bookmark in their object
5034 * equivalent, compare appropriately to bookmarks in other objects, and to
5035 * compare appropriately to other bookmarks in the meta-dnode.
5038 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5039 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5042 * These variables represent the "equivalent" values for the zbookmark,
5043 * after converting zbookmarks inside the meta dnode to their
5044 * normal-object equivalents.
5046 uint64_t zb1obj, zb2obj;
5047 uint64_t zb1L0, zb2L0;
5048 uint64_t zb1level, zb2level;
5050 if (zb1->zb_object == zb2->zb_object &&
5051 zb1->zb_level == zb2->zb_level &&
5052 zb1->zb_blkid == zb2->zb_blkid)
5053 return (0);
5055 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5056 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5059 * BP_SPANB calculates the span in blocks.
5061 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5062 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5064 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5065 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5066 zb1L0 = 0;
5067 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5068 } else {
5069 zb1obj = zb1->zb_object;
5070 zb1level = zb1->zb_level;
5073 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5074 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5075 zb2L0 = 0;
5076 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5077 } else {
5078 zb2obj = zb2->zb_object;
5079 zb2level = zb2->zb_level;
5082 /* Now that we have a canonical representation, do the comparison. */
5083 if (zb1obj != zb2obj)
5084 return (zb1obj < zb2obj ? -1 : 1);
5085 else if (zb1L0 != zb2L0)
5086 return (zb1L0 < zb2L0 ? -1 : 1);
5087 else if (zb1level != zb2level)
5088 return (zb1level > zb2level ? -1 : 1);
5090 * This can (theoretically) happen if the bookmarks have the same object
5091 * and level, but different blkids, if the block sizes are not the same.
5092 * There is presently no way to change the indirect block sizes
5094 return (0);
5098 * This function checks the following: given that last_block is the place that
5099 * our traversal stopped last time, does that guarantee that we've visited
5100 * every node under subtree_root? Therefore, we can't just use the raw output
5101 * of zbookmark_compare. We have to pass in a modified version of
5102 * subtree_root; by incrementing the block id, and then checking whether
5103 * last_block is before or equal to that, we can tell whether or not having
5104 * visited last_block implies that all of subtree_root's children have been
5105 * visited.
5107 boolean_t
5108 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5109 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5111 zbookmark_phys_t mod_zb = *subtree_root;
5112 mod_zb.zb_blkid++;
5113 ASSERT0(last_block->zb_level);
5115 /* The objset_phys_t isn't before anything. */
5116 if (dnp == NULL)
5117 return (B_FALSE);
5120 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5121 * data block size in sectors, because that variable is only used if
5122 * the bookmark refers to a block in the meta-dnode. Since we don't
5123 * know without examining it what object it refers to, and there's no
5124 * harm in passing in this value in other cases, we always pass it in.
5126 * We pass in 0 for the indirect block size shift because zb2 must be
5127 * level 0. The indirect block size is only used to calculate the span
5128 * of the bookmark, but since the bookmark must be level 0, the span is
5129 * always 1, so the math works out.
5131 * If you make changes to how the zbookmark_compare code works, be sure
5132 * to make sure that this code still works afterwards.
5134 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5135 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5136 last_block) <= 0);
5140 * This function is similar to zbookmark_subtree_completed(), but returns true
5141 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5143 boolean_t
5144 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5145 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5147 ASSERT0(last_block->zb_level);
5148 if (dnp == NULL)
5149 return (B_FALSE);
5150 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5151 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5152 last_block) >= 0);
5155 EXPORT_SYMBOL(zio_type_name);
5156 EXPORT_SYMBOL(zio_buf_alloc);
5157 EXPORT_SYMBOL(zio_data_buf_alloc);
5158 EXPORT_SYMBOL(zio_buf_free);
5159 EXPORT_SYMBOL(zio_data_buf_free);
5161 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5162 "Max I/O completion time (milliseconds) before marking it as slow");
5164 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5165 "Prioritize requeued I/O");
5167 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5168 "Defer frees starting in this pass");
5170 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5171 "Don't compress starting in this pass");
5173 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5174 "Rewrite new bps starting in this pass");
5176 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5177 "Throttle block allocations in the ZIO pipeline");
5179 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5180 "Log all slow ZIOs, not just those with vdevs");