Linux 5.19 compat: aops->read_folio()
[zfs.git] / module / os / linux / zfs / zpl_file.c
blob9a640fb40b678f313894cc4aecc9420fcce7026c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <sys/file.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/zfs_znode.h>
33 #include <sys/zfs_vfsops.h>
34 #include <sys/zfs_vnops.h>
35 #include <sys/zfs_project.h>
36 #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
37 defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
38 #include <linux/pagemap.h>
39 #endif
40 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
41 #include <linux/writeback.h>
42 #endif
45 * When using fallocate(2) to preallocate space, inflate the requested
46 * capacity check by 10% to account for the required metadata blocks.
48 static unsigned int zfs_fallocate_reserve_percent = 110;
50 static int
51 zpl_open(struct inode *ip, struct file *filp)
53 cred_t *cr = CRED();
54 int error;
55 fstrans_cookie_t cookie;
57 error = generic_file_open(ip, filp);
58 if (error)
59 return (error);
61 crhold(cr);
62 cookie = spl_fstrans_mark();
63 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
64 spl_fstrans_unmark(cookie);
65 crfree(cr);
66 ASSERT3S(error, <=, 0);
68 return (error);
71 static int
72 zpl_release(struct inode *ip, struct file *filp)
74 cred_t *cr = CRED();
75 int error;
76 fstrans_cookie_t cookie;
78 cookie = spl_fstrans_mark();
79 if (ITOZ(ip)->z_atime_dirty)
80 zfs_mark_inode_dirty(ip);
82 crhold(cr);
83 error = -zfs_close(ip, filp->f_flags, cr);
84 spl_fstrans_unmark(cookie);
85 crfree(cr);
86 ASSERT3S(error, <=, 0);
88 return (error);
91 static int
92 zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
94 cred_t *cr = CRED();
95 int error;
96 fstrans_cookie_t cookie;
98 crhold(cr);
99 cookie = spl_fstrans_mark();
100 error = -zfs_readdir(file_inode(filp), ctx, cr);
101 spl_fstrans_unmark(cookie);
102 crfree(cr);
103 ASSERT3S(error, <=, 0);
105 return (error);
108 #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
109 static int
110 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
112 zpl_dir_context_t ctx =
113 ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
114 int error;
116 error = zpl_iterate(filp, &ctx);
117 filp->f_pos = ctx.pos;
119 return (error);
121 #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
123 #if defined(HAVE_FSYNC_WITHOUT_DENTRY)
125 * Linux 2.6.35 - 3.0 API,
126 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
127 * redundant. The dentry is still accessible via filp->f_path.dentry,
128 * and we are guaranteed that filp will never be NULL.
130 static int
131 zpl_fsync(struct file *filp, int datasync)
133 struct inode *inode = filp->f_mapping->host;
134 cred_t *cr = CRED();
135 int error;
136 fstrans_cookie_t cookie;
138 crhold(cr);
139 cookie = spl_fstrans_mark();
140 error = -zfs_fsync(ITOZ(inode), datasync, cr);
141 spl_fstrans_unmark(cookie);
142 crfree(cr);
143 ASSERT3S(error, <=, 0);
145 return (error);
148 #ifdef HAVE_FILE_AIO_FSYNC
149 static int
150 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
152 return (zpl_fsync(kiocb->ki_filp, datasync));
154 #endif
156 #elif defined(HAVE_FSYNC_RANGE)
158 * Linux 3.1 API,
159 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
160 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
161 * lock is no longer held by the caller, for zfs we don't require the lock
162 * to be held so we don't acquire it.
164 static int
165 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
167 struct inode *inode = filp->f_mapping->host;
168 znode_t *zp = ITOZ(inode);
169 zfsvfs_t *zfsvfs = ITOZSB(inode);
170 cred_t *cr = CRED();
171 int error;
172 fstrans_cookie_t cookie;
175 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
176 * tandem so that sync writes can detect if there are any non-sync
177 * writes going on and vice-versa. The "vice-versa" part to this logic
178 * is located in zfs_putpage() where non-sync writes check if there are
179 * any ongoing sync writes. If any sync and non-sync writes overlap,
180 * we do a commit to complete the non-sync writes since the latter can
181 * potentially take several seconds to complete and thus block sync
182 * writes in the upcoming call to filemap_write_and_wait_range().
184 atomic_inc_32(&zp->z_sync_writes_cnt);
186 * If the following check does not detect an overlapping non-sync write
187 * (say because it's just about to start), then it is guaranteed that
188 * the non-sync write will detect this sync write. This is because we
189 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
190 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
191 * zfs_putpage() respectively.
193 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
194 ZPL_ENTER(zfsvfs);
195 zil_commit(zfsvfs->z_log, zp->z_id);
196 ZPL_EXIT(zfsvfs);
199 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
202 * The sync write is not complete yet but we decrement
203 * z_sync_writes_cnt since zfs_fsync() increments and decrements
204 * it internally. If a non-sync write starts just after the decrement
205 * operation but before we call zfs_fsync(), it may not detect this
206 * overlapping sync write but it does not matter since we have already
207 * gone past filemap_write_and_wait_range() and we won't block due to
208 * the non-sync write.
210 atomic_dec_32(&zp->z_sync_writes_cnt);
212 if (error)
213 return (error);
215 crhold(cr);
216 cookie = spl_fstrans_mark();
217 error = -zfs_fsync(zp, datasync, cr);
218 spl_fstrans_unmark(cookie);
219 crfree(cr);
220 ASSERT3S(error, <=, 0);
222 return (error);
225 #ifdef HAVE_FILE_AIO_FSYNC
226 static int
227 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
229 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
231 #endif
233 #else
234 #error "Unsupported fops->fsync() implementation"
235 #endif
237 static inline int
238 zfs_io_flags(struct kiocb *kiocb)
240 int flags = 0;
242 #if defined(IOCB_DSYNC)
243 if (kiocb->ki_flags & IOCB_DSYNC)
244 flags |= O_DSYNC;
245 #endif
246 #if defined(IOCB_SYNC)
247 if (kiocb->ki_flags & IOCB_SYNC)
248 flags |= O_SYNC;
249 #endif
250 #if defined(IOCB_APPEND)
251 if (kiocb->ki_flags & IOCB_APPEND)
252 flags |= O_APPEND;
253 #endif
254 #if defined(IOCB_DIRECT)
255 if (kiocb->ki_flags & IOCB_DIRECT)
256 flags |= O_DIRECT;
257 #endif
258 return (flags);
262 * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
263 * is true. This is needed since datasets with inherited "relatime" property
264 * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
265 * `zfs set relatime=...`), which is what relatime test in VFS by
266 * relatime_need_update() is based on.
268 static inline void
269 zpl_file_accessed(struct file *filp)
271 struct inode *ip = filp->f_mapping->host;
273 if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
274 if (zfs_relatime_need_update(ip))
275 file_accessed(filp);
276 } else {
277 file_accessed(filp);
281 #if defined(HAVE_VFS_RW_ITERATE)
284 * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
285 * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
286 * manipulate the iov_iter are available. In which case the full iov_iter
287 * can be attached to the uio and correctly handled in the lower layers.
288 * Otherwise, for older kernels extract the iovec and pass it instead.
290 static void
291 zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
292 loff_t pos, ssize_t count, size_t skip)
294 #if defined(HAVE_VFS_IOV_ITER)
295 zfs_uio_iov_iter_init(uio, to, pos, count, skip);
296 #else
297 #ifdef HAVE_IOV_ITER_TYPE
298 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
299 iov_iter_type(to) & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
300 count, skip);
301 #else
302 zfs_uio_iovec_init(uio, to->iov, to->nr_segs, pos,
303 to->type & ITER_KVEC ? UIO_SYSSPACE : UIO_USERSPACE,
304 count, skip);
305 #endif
306 #endif
309 static ssize_t
310 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
312 cred_t *cr = CRED();
313 fstrans_cookie_t cookie;
314 struct file *filp = kiocb->ki_filp;
315 ssize_t count = iov_iter_count(to);
316 zfs_uio_t uio;
318 zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
320 crhold(cr);
321 cookie = spl_fstrans_mark();
323 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
324 filp->f_flags | zfs_io_flags(kiocb), cr);
326 spl_fstrans_unmark(cookie);
327 crfree(cr);
329 if (error < 0)
330 return (error);
332 ssize_t read = count - uio.uio_resid;
333 kiocb->ki_pos += read;
335 zpl_file_accessed(filp);
337 return (read);
340 static inline ssize_t
341 zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
342 size_t *countp)
344 #ifdef HAVE_GENERIC_WRITE_CHECKS_KIOCB
345 ssize_t ret = generic_write_checks(kiocb, from);
346 if (ret <= 0)
347 return (ret);
349 *countp = ret;
350 #else
351 struct file *file = kiocb->ki_filp;
352 struct address_space *mapping = file->f_mapping;
353 struct inode *ip = mapping->host;
354 int isblk = S_ISBLK(ip->i_mode);
356 *countp = iov_iter_count(from);
357 ssize_t ret = generic_write_checks(file, &kiocb->ki_pos, countp, isblk);
358 if (ret)
359 return (ret);
360 #endif
362 return (0);
365 static ssize_t
366 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
368 cred_t *cr = CRED();
369 fstrans_cookie_t cookie;
370 struct file *filp = kiocb->ki_filp;
371 struct inode *ip = filp->f_mapping->host;
372 zfs_uio_t uio;
373 size_t count = 0;
374 ssize_t ret;
376 ret = zpl_generic_write_checks(kiocb, from, &count);
377 if (ret)
378 return (ret);
380 zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
382 crhold(cr);
383 cookie = spl_fstrans_mark();
385 int error = -zfs_write(ITOZ(ip), &uio,
386 filp->f_flags | zfs_io_flags(kiocb), cr);
388 spl_fstrans_unmark(cookie);
389 crfree(cr);
391 if (error < 0)
392 return (error);
394 ssize_t wrote = count - uio.uio_resid;
395 kiocb->ki_pos += wrote;
397 return (wrote);
400 #else /* !HAVE_VFS_RW_ITERATE */
402 static ssize_t
403 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iov,
404 unsigned long nr_segs, loff_t pos)
406 cred_t *cr = CRED();
407 fstrans_cookie_t cookie;
408 struct file *filp = kiocb->ki_filp;
409 size_t count;
410 ssize_t ret;
412 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
413 if (ret)
414 return (ret);
416 zfs_uio_t uio;
417 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
418 count, 0);
420 crhold(cr);
421 cookie = spl_fstrans_mark();
423 int error = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
424 filp->f_flags | zfs_io_flags(kiocb), cr);
426 spl_fstrans_unmark(cookie);
427 crfree(cr);
429 if (error < 0)
430 return (error);
432 ssize_t read = count - uio.uio_resid;
433 kiocb->ki_pos += read;
435 zpl_file_accessed(filp);
437 return (read);
440 static ssize_t
441 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iov,
442 unsigned long nr_segs, loff_t pos)
444 cred_t *cr = CRED();
445 fstrans_cookie_t cookie;
446 struct file *filp = kiocb->ki_filp;
447 struct inode *ip = filp->f_mapping->host;
448 size_t count;
449 ssize_t ret;
451 ret = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
452 if (ret)
453 return (ret);
455 ret = generic_write_checks(filp, &pos, &count, S_ISBLK(ip->i_mode));
456 if (ret)
457 return (ret);
459 kiocb->ki_pos = pos;
461 zfs_uio_t uio;
462 zfs_uio_iovec_init(&uio, iov, nr_segs, kiocb->ki_pos, UIO_USERSPACE,
463 count, 0);
465 crhold(cr);
466 cookie = spl_fstrans_mark();
468 int error = -zfs_write(ITOZ(ip), &uio,
469 filp->f_flags | zfs_io_flags(kiocb), cr);
471 spl_fstrans_unmark(cookie);
472 crfree(cr);
474 if (error < 0)
475 return (error);
477 ssize_t wrote = count - uio.uio_resid;
478 kiocb->ki_pos += wrote;
480 return (wrote);
482 #endif /* HAVE_VFS_RW_ITERATE */
484 #if defined(HAVE_VFS_RW_ITERATE)
485 static ssize_t
486 zpl_direct_IO_impl(int rw, struct kiocb *kiocb, struct iov_iter *iter)
488 if (rw == WRITE)
489 return (zpl_iter_write(kiocb, iter));
490 else
491 return (zpl_iter_read(kiocb, iter));
493 #if defined(HAVE_VFS_DIRECT_IO_ITER)
494 static ssize_t
495 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
497 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
499 #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
500 static ssize_t
501 zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
503 ASSERT3S(pos, ==, kiocb->ki_pos);
504 return (zpl_direct_IO_impl(iov_iter_rw(iter), kiocb, iter));
506 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
507 static ssize_t
508 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
510 ASSERT3S(pos, ==, kiocb->ki_pos);
511 return (zpl_direct_IO_impl(rw, kiocb, iter));
513 #else
514 #error "Unknown direct IO interface"
515 #endif
517 #else /* HAVE_VFS_RW_ITERATE */
519 #if defined(HAVE_VFS_DIRECT_IO_IOVEC)
520 static ssize_t
521 zpl_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov,
522 loff_t pos, unsigned long nr_segs)
524 if (rw == WRITE)
525 return (zpl_aio_write(kiocb, iov, nr_segs, pos));
526 else
527 return (zpl_aio_read(kiocb, iov, nr_segs, pos));
529 #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
530 static ssize_t
531 zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
533 const struct iovec *iovp = iov_iter_iovec(iter);
534 unsigned long nr_segs = iter->nr_segs;
536 ASSERT3S(pos, ==, kiocb->ki_pos);
537 if (rw == WRITE)
538 return (zpl_aio_write(kiocb, iovp, nr_segs, pos));
539 else
540 return (zpl_aio_read(kiocb, iovp, nr_segs, pos));
542 #else
543 #error "Unknown direct IO interface"
544 #endif
546 #endif /* HAVE_VFS_RW_ITERATE */
548 static loff_t
549 zpl_llseek(struct file *filp, loff_t offset, int whence)
551 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
552 fstrans_cookie_t cookie;
554 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
555 struct inode *ip = filp->f_mapping->host;
556 loff_t maxbytes = ip->i_sb->s_maxbytes;
557 loff_t error;
559 spl_inode_lock_shared(ip);
560 cookie = spl_fstrans_mark();
561 error = -zfs_holey(ITOZ(ip), whence, &offset);
562 spl_fstrans_unmark(cookie);
563 if (error == 0)
564 error = lseek_execute(filp, ip, offset, maxbytes);
565 spl_inode_unlock_shared(ip);
567 return (error);
569 #endif /* SEEK_HOLE && SEEK_DATA */
571 return (generic_file_llseek(filp, offset, whence));
575 * It's worth taking a moment to describe how mmap is implemented
576 * for zfs because it differs considerably from other Linux filesystems.
577 * However, this issue is handled the same way under OpenSolaris.
579 * The issue is that by design zfs bypasses the Linux page cache and
580 * leaves all caching up to the ARC. This has been shown to work
581 * well for the common read(2)/write(2) case. However, mmap(2)
582 * is problem because it relies on being tightly integrated with the
583 * page cache. To handle this we cache mmap'ed files twice, once in
584 * the ARC and a second time in the page cache. The code is careful
585 * to keep both copies synchronized.
587 * When a file with an mmap'ed region is written to using write(2)
588 * both the data in the ARC and existing pages in the page cache
589 * are updated. For a read(2) data will be read first from the page
590 * cache then the ARC if needed. Neither a write(2) or read(2) will
591 * will ever result in new pages being added to the page cache.
593 * New pages are added to the page cache only via .readpage() which
594 * is called when the vfs needs to read a page off disk to back the
595 * virtual memory region. These pages may be modified without
596 * notifying the ARC and will be written out periodically via
597 * .writepage(). This will occur due to either a sync or the usual
598 * page aging behavior. Note because a read(2) of a mmap'ed file
599 * will always check the page cache first even when the ARC is out
600 * of date correct data will still be returned.
602 * While this implementation ensures correct behavior it does have
603 * have some drawbacks. The most obvious of which is that it
604 * increases the required memory footprint when access mmap'ed
605 * files. It also adds additional complexity to the code keeping
606 * both caches synchronized.
608 * Longer term it may be possible to cleanly resolve this wart by
609 * mapping page cache pages directly on to the ARC buffers. The
610 * Linux address space operations are flexible enough to allow
611 * selection of which pages back a particular index. The trick
612 * would be working out the details of which subsystem is in
613 * charge, the ARC, the page cache, or both. It may also prove
614 * helpful to move the ARC buffers to a scatter-gather lists
615 * rather than a vmalloc'ed region.
617 static int
618 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
620 struct inode *ip = filp->f_mapping->host;
621 znode_t *zp = ITOZ(ip);
622 int error;
623 fstrans_cookie_t cookie;
625 cookie = spl_fstrans_mark();
626 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
627 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
628 spl_fstrans_unmark(cookie);
629 if (error)
630 return (error);
632 error = generic_file_mmap(filp, vma);
633 if (error)
634 return (error);
636 mutex_enter(&zp->z_lock);
637 zp->z_is_mapped = B_TRUE;
638 mutex_exit(&zp->z_lock);
640 return (error);
644 * Populate a page with data for the Linux page cache. This function is
645 * only used to support mmap(2). There will be an identical copy of the
646 * data in the ARC which is kept up to date via .write() and .writepage().
648 static inline int
649 zpl_readpage_common(struct page *pp)
651 struct inode *ip;
652 struct page *pl[1];
653 int error = 0;
654 fstrans_cookie_t cookie;
656 ASSERT(PageLocked(pp));
657 ip = pp->mapping->host;
658 pl[0] = pp;
660 cookie = spl_fstrans_mark();
661 error = -zfs_getpage(ip, pl, 1);
662 spl_fstrans_unmark(cookie);
664 if (error) {
665 SetPageError(pp);
666 ClearPageUptodate(pp);
667 } else {
668 ClearPageError(pp);
669 SetPageUptodate(pp);
670 flush_dcache_page(pp);
673 unlock_page(pp);
674 return (error);
677 #ifdef HAVE_VFS_READ_FOLIO
678 static int
679 zpl_read_folio(struct file *filp, struct folio *folio)
681 return (zpl_readpage_common(&folio->page));
683 #else
684 static int
685 zpl_readpage(struct file *filp, struct page *pp)
687 return (zpl_readpage_common(pp));
689 #endif
691 static int
692 zpl_readpage_filler(void *data, struct page *pp)
694 return (zpl_readpage_common(pp));
698 * Populate a set of pages with data for the Linux page cache. This
699 * function will only be called for read ahead and never for demand
700 * paging. For simplicity, the code relies on read_cache_pages() to
701 * correctly lock each page for IO and call zpl_readpage().
703 #ifdef HAVE_VFS_READPAGES
704 static int
705 zpl_readpages(struct file *filp, struct address_space *mapping,
706 struct list_head *pages, unsigned nr_pages)
708 return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
710 #else
711 static void
712 zpl_readahead(struct readahead_control *ractl)
714 struct page *page;
716 while ((page = readahead_page(ractl)) != NULL) {
717 int ret;
719 ret = zpl_readpage_filler(NULL, page);
720 put_page(page);
721 if (ret)
722 break;
725 #endif
727 static int
728 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
730 boolean_t *for_sync = data;
731 fstrans_cookie_t cookie;
733 ASSERT(PageLocked(pp));
734 ASSERT(!PageWriteback(pp));
736 cookie = spl_fstrans_mark();
737 (void) zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
738 spl_fstrans_unmark(cookie);
740 return (0);
743 static int
744 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
746 znode_t *zp = ITOZ(mapping->host);
747 zfsvfs_t *zfsvfs = ITOZSB(mapping->host);
748 enum writeback_sync_modes sync_mode;
749 int result;
751 ZPL_ENTER(zfsvfs);
752 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
753 wbc->sync_mode = WB_SYNC_ALL;
754 ZPL_EXIT(zfsvfs);
755 sync_mode = wbc->sync_mode;
758 * We don't want to run write_cache_pages() in SYNC mode here, because
759 * that would make putpage() wait for a single page to be committed to
760 * disk every single time, resulting in atrocious performance. Instead
761 * we run it once in non-SYNC mode so that the ZIL gets all the data,
762 * and then we commit it all in one go.
764 boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
765 wbc->sync_mode = WB_SYNC_NONE;
766 result = write_cache_pages(mapping, wbc, zpl_putpage, &for_sync);
767 if (sync_mode != wbc->sync_mode) {
768 ZPL_ENTER(zfsvfs);
769 ZPL_VERIFY_ZP(zp);
770 if (zfsvfs->z_log != NULL)
771 zil_commit(zfsvfs->z_log, zp->z_id);
772 ZPL_EXIT(zfsvfs);
775 * We need to call write_cache_pages() again (we can't just
776 * return after the commit) because the previous call in
777 * non-SYNC mode does not guarantee that we got all the dirty
778 * pages (see the implementation of write_cache_pages() for
779 * details). That being said, this is a no-op in most cases.
781 wbc->sync_mode = sync_mode;
782 result = write_cache_pages(mapping, wbc, zpl_putpage,
783 &for_sync);
785 return (result);
789 * Write out dirty pages to the ARC, this function is only required to
790 * support mmap(2). Mapped pages may be dirtied by memory operations
791 * which never call .write(). These dirty pages are kept in sync with
792 * the ARC buffers via this hook.
794 static int
795 zpl_writepage(struct page *pp, struct writeback_control *wbc)
797 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
798 wbc->sync_mode = WB_SYNC_ALL;
800 boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
802 return (zpl_putpage(pp, wbc, &for_sync));
806 * The flag combination which matches the behavior of zfs_space() is
807 * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
808 * flag was introduced in the 2.6.38 kernel.
810 * The original mode=0 (allocate space) behavior can be reasonably emulated
811 * by checking if enough space exists and creating a sparse file, as real
812 * persistent space reservation is not possible due to COW, snapshots, etc.
814 static long
815 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
817 cred_t *cr = CRED();
818 loff_t olen;
819 fstrans_cookie_t cookie;
820 int error = 0;
822 int test_mode = FALLOC_FL_PUNCH_HOLE;
823 #ifdef HAVE_FALLOC_FL_ZERO_RANGE
824 test_mode |= FALLOC_FL_ZERO_RANGE;
825 #endif
827 if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
828 return (-EOPNOTSUPP);
830 if (offset < 0 || len <= 0)
831 return (-EINVAL);
833 spl_inode_lock(ip);
834 olen = i_size_read(ip);
836 crhold(cr);
837 cookie = spl_fstrans_mark();
838 if (mode & (test_mode)) {
839 flock64_t bf;
841 if (mode & FALLOC_FL_KEEP_SIZE) {
842 if (offset > olen)
843 goto out_unmark;
845 if (offset + len > olen)
846 len = olen - offset;
848 bf.l_type = F_WRLCK;
849 bf.l_whence = SEEK_SET;
850 bf.l_start = offset;
851 bf.l_len = len;
852 bf.l_pid = 0;
854 error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
855 } else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
856 unsigned int percent = zfs_fallocate_reserve_percent;
857 struct kstatfs statfs;
859 /* Legacy mode, disable fallocate compatibility. */
860 if (percent == 0) {
861 error = -EOPNOTSUPP;
862 goto out_unmark;
866 * Use zfs_statvfs() instead of dmu_objset_space() since it
867 * also checks project quota limits, which are relevant here.
869 error = zfs_statvfs(ip, &statfs);
870 if (error)
871 goto out_unmark;
874 * Shrink available space a bit to account for overhead/races.
875 * We know the product previously fit into availbytes from
876 * dmu_objset_space(), so the smaller product will also fit.
878 if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
879 error = -ENOSPC;
880 goto out_unmark;
882 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
883 error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
885 out_unmark:
886 spl_fstrans_unmark(cookie);
887 spl_inode_unlock(ip);
889 crfree(cr);
891 return (error);
894 static long
895 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
897 return zpl_fallocate_common(file_inode(filp),
898 mode, offset, len);
901 static int
902 zpl_ioctl_getversion(struct file *filp, void __user *arg)
904 uint32_t generation = file_inode(filp)->i_generation;
906 return (copy_to_user(arg, &generation, sizeof (generation)));
909 #define ZFS_FL_USER_VISIBLE (FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
910 #define ZFS_FL_USER_MODIFIABLE (FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
912 static uint32_t
913 __zpl_ioctl_getflags(struct inode *ip)
915 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
916 uint32_t ioctl_flags = 0;
918 if (zfs_flags & ZFS_IMMUTABLE)
919 ioctl_flags |= FS_IMMUTABLE_FL;
921 if (zfs_flags & ZFS_APPENDONLY)
922 ioctl_flags |= FS_APPEND_FL;
924 if (zfs_flags & ZFS_NODUMP)
925 ioctl_flags |= FS_NODUMP_FL;
927 if (zfs_flags & ZFS_PROJINHERIT)
928 ioctl_flags |= ZFS_PROJINHERIT_FL;
930 return (ioctl_flags & ZFS_FL_USER_VISIBLE);
934 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
935 * attributes common to both Linux and Solaris are mapped.
937 static int
938 zpl_ioctl_getflags(struct file *filp, void __user *arg)
940 uint32_t flags;
941 int err;
943 flags = __zpl_ioctl_getflags(file_inode(filp));
944 err = copy_to_user(arg, &flags, sizeof (flags));
946 return (err);
950 * fchange() is a helper macro to detect if we have been asked to change a
951 * flag. This is ugly, but the requirement that we do this is a consequence of
952 * how the Linux file attribute interface was designed. Another consequence is
953 * that concurrent modification of files suffers from a TOCTOU race. Neither
954 * are things we can fix without modifying the kernel-userland interface, which
955 * is outside of our jurisdiction.
958 #define fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
960 static int
961 __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
963 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
964 xoptattr_t *xoap;
966 if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
967 ZFS_PROJINHERIT_FL))
968 return (-EOPNOTSUPP);
970 if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
971 return (-EACCES);
973 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
974 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
975 !capable(CAP_LINUX_IMMUTABLE))
976 return (-EPERM);
978 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
979 return (-EACCES);
981 xva_init(xva);
982 xoap = xva_getxoptattr(xva);
984 #define FLAG_CHANGE(iflag, zflag, xflag, xfield) do { \
985 if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) || \
986 ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) { \
987 XVA_SET_REQ(xva, (xflag)); \
988 (xfield) = ((ioctl_flags & (iflag)) != 0); \
990 } while (0)
992 FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
993 xoap->xoa_immutable);
994 FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
995 xoap->xoa_appendonly);
996 FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
997 xoap->xoa_nodump);
998 FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
999 xoap->xoa_projinherit);
1001 #undef FLAG_CHANGE
1003 return (0);
1006 static int
1007 zpl_ioctl_setflags(struct file *filp, void __user *arg)
1009 struct inode *ip = file_inode(filp);
1010 uint32_t flags;
1011 cred_t *cr = CRED();
1012 xvattr_t xva;
1013 int err;
1014 fstrans_cookie_t cookie;
1016 if (copy_from_user(&flags, arg, sizeof (flags)))
1017 return (-EFAULT);
1019 err = __zpl_ioctl_setflags(ip, flags, &xva);
1020 if (err)
1021 return (err);
1023 crhold(cr);
1024 cookie = spl_fstrans_mark();
1025 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
1026 spl_fstrans_unmark(cookie);
1027 crfree(cr);
1029 return (err);
1032 static int
1033 zpl_ioctl_getxattr(struct file *filp, void __user *arg)
1035 zfsxattr_t fsx = { 0 };
1036 struct inode *ip = file_inode(filp);
1037 int err;
1039 fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
1040 fsx.fsx_projid = ITOZ(ip)->z_projid;
1041 err = copy_to_user(arg, &fsx, sizeof (fsx));
1043 return (err);
1046 static int
1047 zpl_ioctl_setxattr(struct file *filp, void __user *arg)
1049 struct inode *ip = file_inode(filp);
1050 zfsxattr_t fsx;
1051 cred_t *cr = CRED();
1052 xvattr_t xva;
1053 xoptattr_t *xoap;
1054 int err;
1055 fstrans_cookie_t cookie;
1057 if (copy_from_user(&fsx, arg, sizeof (fsx)))
1058 return (-EFAULT);
1060 if (!zpl_is_valid_projid(fsx.fsx_projid))
1061 return (-EINVAL);
1063 err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
1064 if (err)
1065 return (err);
1067 xoap = xva_getxoptattr(&xva);
1068 XVA_SET_REQ(&xva, XAT_PROJID);
1069 xoap->xoa_projid = fsx.fsx_projid;
1071 crhold(cr);
1072 cookie = spl_fstrans_mark();
1073 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
1074 spl_fstrans_unmark(cookie);
1075 crfree(cr);
1077 return (err);
1081 * Expose Additional File Level Attributes of ZFS.
1083 static int
1084 zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
1086 struct inode *ip = file_inode(filp);
1087 uint64_t dosflags = ITOZ(ip)->z_pflags;
1088 dosflags &= ZFS_DOS_FL_USER_VISIBLE;
1089 int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
1091 return (err);
1094 static int
1095 __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
1097 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
1098 xoptattr_t *xoap;
1100 if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
1101 return (-EOPNOTSUPP);
1103 if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
1104 fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
1105 !capable(CAP_LINUX_IMMUTABLE))
1106 return (-EPERM);
1108 if (!zpl_inode_owner_or_capable(kcred->user_ns, ip))
1109 return (-EACCES);
1111 xva_init(xva);
1112 xoap = xva_getxoptattr(xva);
1114 #define FLAG_CHANGE(iflag, xflag, xfield) do { \
1115 if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) || \
1116 ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) { \
1117 XVA_SET_REQ(xva, (xflag)); \
1118 (xfield) = ((ioctl_flags & (iflag)) != 0); \
1120 } while (0)
1122 FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
1123 FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
1124 FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
1125 FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
1126 FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
1127 FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
1128 FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
1129 FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
1130 FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
1131 FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
1132 FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
1134 #undef FLAG_CHANGE
1136 return (0);
1140 * Set Additional File Level Attributes of ZFS.
1142 static int
1143 zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
1145 struct inode *ip = file_inode(filp);
1146 uint64_t dosflags;
1147 cred_t *cr = CRED();
1148 xvattr_t xva;
1149 int err;
1150 fstrans_cookie_t cookie;
1152 if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
1153 return (-EFAULT);
1155 err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
1156 if (err)
1157 return (err);
1159 crhold(cr);
1160 cookie = spl_fstrans_mark();
1161 err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr);
1162 spl_fstrans_unmark(cookie);
1163 crfree(cr);
1165 return (err);
1168 static long
1169 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1171 switch (cmd) {
1172 case FS_IOC_GETVERSION:
1173 return (zpl_ioctl_getversion(filp, (void *)arg));
1174 case FS_IOC_GETFLAGS:
1175 return (zpl_ioctl_getflags(filp, (void *)arg));
1176 case FS_IOC_SETFLAGS:
1177 return (zpl_ioctl_setflags(filp, (void *)arg));
1178 case ZFS_IOC_FSGETXATTR:
1179 return (zpl_ioctl_getxattr(filp, (void *)arg));
1180 case ZFS_IOC_FSSETXATTR:
1181 return (zpl_ioctl_setxattr(filp, (void *)arg));
1182 case ZFS_IOC_GETDOSFLAGS:
1183 return (zpl_ioctl_getdosflags(filp, (void *)arg));
1184 case ZFS_IOC_SETDOSFLAGS:
1185 return (zpl_ioctl_setdosflags(filp, (void *)arg));
1186 default:
1187 return (-ENOTTY);
1191 #ifdef CONFIG_COMPAT
1192 static long
1193 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1195 switch (cmd) {
1196 case FS_IOC32_GETVERSION:
1197 cmd = FS_IOC_GETVERSION;
1198 break;
1199 case FS_IOC32_GETFLAGS:
1200 cmd = FS_IOC_GETFLAGS;
1201 break;
1202 case FS_IOC32_SETFLAGS:
1203 cmd = FS_IOC_SETFLAGS;
1204 break;
1205 default:
1206 return (-ENOTTY);
1208 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
1210 #endif /* CONFIG_COMPAT */
1213 const struct address_space_operations zpl_address_space_operations = {
1214 #ifdef HAVE_VFS_READPAGES
1215 .readpages = zpl_readpages,
1216 #else
1217 .readahead = zpl_readahead,
1218 #endif
1219 #ifdef HAVE_VFS_READ_FOLIO
1220 .read_folio = zpl_read_folio,
1221 #else
1222 .readpage = zpl_readpage,
1223 #endif
1224 .writepage = zpl_writepage,
1225 .writepages = zpl_writepages,
1226 .direct_IO = zpl_direct_IO,
1227 #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
1228 .set_page_dirty = __set_page_dirty_nobuffers,
1229 #endif
1230 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
1231 .dirty_folio = filemap_dirty_folio,
1232 #endif
1235 const struct file_operations zpl_file_operations = {
1236 .open = zpl_open,
1237 .release = zpl_release,
1238 .llseek = zpl_llseek,
1239 #ifdef HAVE_VFS_RW_ITERATE
1240 #ifdef HAVE_NEW_SYNC_READ
1241 .read = new_sync_read,
1242 .write = new_sync_write,
1243 #endif
1244 .read_iter = zpl_iter_read,
1245 .write_iter = zpl_iter_write,
1246 #ifdef HAVE_VFS_IOV_ITER
1247 .splice_read = generic_file_splice_read,
1248 .splice_write = iter_file_splice_write,
1249 #endif
1250 #else
1251 .read = do_sync_read,
1252 .write = do_sync_write,
1253 .aio_read = zpl_aio_read,
1254 .aio_write = zpl_aio_write,
1255 #endif
1256 .mmap = zpl_mmap,
1257 .fsync = zpl_fsync,
1258 #ifdef HAVE_FILE_AIO_FSYNC
1259 .aio_fsync = zpl_aio_fsync,
1260 #endif
1261 .fallocate = zpl_fallocate,
1262 .unlocked_ioctl = zpl_ioctl,
1263 #ifdef CONFIG_COMPAT
1264 .compat_ioctl = zpl_compat_ioctl,
1265 #endif
1268 const struct file_operations zpl_dir_file_operations = {
1269 .llseek = generic_file_llseek,
1270 .read = generic_read_dir,
1271 #if defined(HAVE_VFS_ITERATE_SHARED)
1272 .iterate_shared = zpl_iterate,
1273 #elif defined(HAVE_VFS_ITERATE)
1274 .iterate = zpl_iterate,
1275 #else
1276 .readdir = zpl_readdir,
1277 #endif
1278 .fsync = zpl_fsync,
1279 .unlocked_ioctl = zpl_ioctl,
1280 #ifdef CONFIG_COMPAT
1281 .compat_ioctl = zpl_compat_ioctl,
1282 #endif
1285 /* CSTYLED */
1286 module_param(zfs_fallocate_reserve_percent, uint, 0644);
1287 MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
1288 "Percentage of length to use for the available capacity check");