4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 * Copyright (c) 2023, 2024, Klara Inc.
37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
48 #include <sys/spa_impl.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
56 #include <sys/sa_impl.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
67 #include <sys/zil_impl.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
76 #include <sys/arc_impl.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
91 #include <libnvpair.h>
93 #include <libzfs_core.h>
100 extern int reference_tracking_enable
;
101 extern int zfs_recover
;
102 extern uint_t zfs_vdev_async_read_max_active
;
103 extern boolean_t spa_load_verify_dryrun
;
104 extern boolean_t spa_mode_readable_spacemaps
;
105 extern uint_t zfs_reconstruct_indirect_combinations_max
;
106 extern uint_t zfs_btree_verify_intensity
;
108 static const char cmdname
[] = "zdb";
109 uint8_t dump_opt
[256];
111 typedef void object_viewer_t(objset_t
*, uint64_t, void *data
, size_t size
);
113 static uint64_t *zopt_metaslab
= NULL
;
114 static unsigned zopt_metaslab_args
= 0;
117 static zopt_object_range_t
*zopt_object_ranges
= NULL
;
118 static unsigned zopt_object_args
= 0;
120 static int flagbits
[256];
123 static uint64_t max_inflight_bytes
= 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects
= 0;
125 static range_tree_t
*mos_refd_objs
;
128 static boolean_t kernel_init_done
;
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t
*,
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg
, const blkptr_t
*bp
, boolean_t free
,
139 static void zdb_print_blkptr(const blkptr_t
*bp
, int flags
);
140 static void zdb_exit(int reason
);
142 typedef struct sublivelist_verify_block_refcnt
{
143 /* block pointer entry in livelist being verified */
147 * Refcount gets incremented to 1 when we encounter the first
148 * FREE entry for the svfbr block pointer and a node for it
149 * is created in our ZDB verification/tracking metadata.
151 * As we encounter more FREE entries we increment this counter
152 * and similarly decrement it whenever we find the respective
153 * ALLOC entries for this block.
155 * When the refcount gets to 0 it means that all the FREE and
156 * ALLOC entries of this block have paired up and we no longer
157 * need to track it in our verification logic (e.g. the node
158 * containing this struct in our verification data structure
161 * [refer to sublivelist_verify_blkptr() for the actual code]
163 uint32_t svbr_refcnt
;
164 } sublivelist_verify_block_refcnt_t
;
167 sublivelist_block_refcnt_compare(const void *larg
, const void *rarg
)
169 const sublivelist_verify_block_refcnt_t
*l
= larg
;
170 const sublivelist_verify_block_refcnt_t
*r
= rarg
;
171 return (livelist_compare(&l
->svbr_blk
, &r
->svbr_blk
));
175 sublivelist_verify_blkptr(void *arg
, const blkptr_t
*bp
, boolean_t free
,
178 ASSERT3P(tx
, ==, NULL
);
179 struct sublivelist_verify
*sv
= arg
;
180 sublivelist_verify_block_refcnt_t current
= {
184 * Start with 1 in case this is the first free entry.
185 * This field is not used for our B-Tree comparisons
191 zfs_btree_index_t where
;
192 sublivelist_verify_block_refcnt_t
*pair
=
193 zfs_btree_find(&sv
->sv_pair
, ¤t
, &where
);
196 /* first free entry for this block pointer */
197 zfs_btree_add(&sv
->sv_pair
, ¤t
);
203 /* block that is currently marked as allocated */
204 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
205 if (DVA_IS_EMPTY(&bp
->blk_dva
[i
]))
207 sublivelist_verify_block_t svb
= {
208 .svb_dva
= bp
->blk_dva
[i
],
210 BP_GET_LOGICAL_BIRTH(bp
)
213 if (zfs_btree_find(&sv
->sv_leftover
, &svb
,
215 zfs_btree_add_idx(&sv
->sv_leftover
,
220 /* alloc matches a free entry */
222 if (pair
->svbr_refcnt
== 0) {
223 /* all allocs and frees have been matched */
224 zfs_btree_remove_idx(&sv
->sv_pair
, &where
);
233 sublivelist_verify_func(void *args
, dsl_deadlist_entry_t
*dle
)
236 struct sublivelist_verify
*sv
= args
;
238 zfs_btree_create(&sv
->sv_pair
, sublivelist_block_refcnt_compare
, NULL
,
239 sizeof (sublivelist_verify_block_refcnt_t
));
241 err
= bpobj_iterate_nofree(&dle
->dle_bpobj
, sublivelist_verify_blkptr
,
244 sublivelist_verify_block_refcnt_t
*e
;
245 zfs_btree_index_t
*cookie
= NULL
;
246 while ((e
= zfs_btree_destroy_nodes(&sv
->sv_pair
, &cookie
)) != NULL
) {
247 char blkbuf
[BP_SPRINTF_LEN
];
248 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
),
249 &e
->svbr_blk
, B_TRUE
);
250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 e
->svbr_refcnt
, blkbuf
);
253 zfs_btree_destroy(&sv
->sv_pair
);
259 livelist_block_compare(const void *larg
, const void *rarg
)
261 const sublivelist_verify_block_t
*l
= larg
;
262 const sublivelist_verify_block_t
*r
= rarg
;
264 if (DVA_GET_VDEV(&l
->svb_dva
) < DVA_GET_VDEV(&r
->svb_dva
))
266 else if (DVA_GET_VDEV(&l
->svb_dva
) > DVA_GET_VDEV(&r
->svb_dva
))
269 if (DVA_GET_OFFSET(&l
->svb_dva
) < DVA_GET_OFFSET(&r
->svb_dva
))
271 else if (DVA_GET_OFFSET(&l
->svb_dva
) > DVA_GET_OFFSET(&r
->svb_dva
))
274 if (DVA_GET_ASIZE(&l
->svb_dva
) < DVA_GET_ASIZE(&r
->svb_dva
))
276 else if (DVA_GET_ASIZE(&l
->svb_dva
) > DVA_GET_ASIZE(&r
->svb_dva
))
283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284 * sublivelist_verify_t: sv->sv_leftover
287 livelist_verify(dsl_deadlist_t
*dl
, void *arg
)
289 sublivelist_verify_t
*sv
= arg
;
290 dsl_deadlist_iterate(dl
, sublivelist_verify_func
, sv
);
294 * Check for errors in the livelist entry and discard the intermediary
298 sublivelist_verify_lightweight(void *args
, dsl_deadlist_entry_t
*dle
)
301 sublivelist_verify_t sv
;
302 zfs_btree_create(&sv
.sv_leftover
, livelist_block_compare
, NULL
,
303 sizeof (sublivelist_verify_block_t
));
304 int err
= sublivelist_verify_func(&sv
, dle
);
305 zfs_btree_clear(&sv
.sv_leftover
);
306 zfs_btree_destroy(&sv
.sv_leftover
);
310 typedef struct metaslab_verify
{
312 * Tree containing all the leftover ALLOCs from the livelists
313 * that are part of this metaslab.
315 zfs_btree_t mv_livelist_allocs
;
318 * Metaslab information.
326 * What's currently allocated for this metaslab.
328 range_tree_t
*mv_allocated
;
331 typedef void ll_iter_t(dsl_deadlist_t
*ll
, void *arg
);
333 typedef int (*zdb_log_sm_cb_t
)(spa_t
*spa
, space_map_entry_t
*sme
, uint64_t txg
,
336 typedef struct unflushed_iter_cb_arg
{
340 zdb_log_sm_cb_t uic_cb
;
341 } unflushed_iter_cb_arg_t
;
344 iterate_through_spacemap_logs_cb(space_map_entry_t
*sme
, void *arg
)
346 unflushed_iter_cb_arg_t
*uic
= arg
;
347 return (uic
->uic_cb(uic
->uic_spa
, sme
, uic
->uic_txg
, uic
->uic_arg
));
351 iterate_through_spacemap_logs(spa_t
*spa
, zdb_log_sm_cb_t cb
, void *arg
)
353 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
356 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
357 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
358 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
)) {
359 space_map_t
*sm
= NULL
;
360 VERIFY0(space_map_open(&sm
, spa_meta_objset(spa
),
361 sls
->sls_sm_obj
, 0, UINT64_MAX
, SPA_MINBLOCKSHIFT
));
363 unflushed_iter_cb_arg_t uic
= {
365 .uic_txg
= sls
->sls_txg
,
369 VERIFY0(space_map_iterate(sm
, space_map_length(sm
),
370 iterate_through_spacemap_logs_cb
, &uic
));
373 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
377 verify_livelist_allocs(metaslab_verify_t
*mv
, uint64_t txg
,
378 uint64_t offset
, uint64_t size
)
380 sublivelist_verify_block_t svb
= {{{0}}};
381 DVA_SET_VDEV(&svb
.svb_dva
, mv
->mv_vdid
);
382 DVA_SET_OFFSET(&svb
.svb_dva
, offset
);
383 DVA_SET_ASIZE(&svb
.svb_dva
, size
);
384 zfs_btree_index_t where
;
385 uint64_t end_offset
= offset
+ size
;
388 * Look for an exact match for spacemap entry in the livelist entries.
389 * Then, look for other livelist entries that fall within the range
390 * of the spacemap entry as it may have been condensed
392 sublivelist_verify_block_t
*found
=
393 zfs_btree_find(&mv
->mv_livelist_allocs
, &svb
, &where
);
395 found
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
);
397 for (; found
!= NULL
&& DVA_GET_VDEV(&found
->svb_dva
) == mv
->mv_vdid
&&
398 DVA_GET_OFFSET(&found
->svb_dva
) < end_offset
;
399 found
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
)) {
400 if (found
->svb_allocated_txg
<= txg
) {
401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 "from TXG %llx FREED at TXG %llx\n",
403 (u_longlong_t
)DVA_GET_OFFSET(&found
->svb_dva
),
404 (u_longlong_t
)DVA_GET_ASIZE(&found
->svb_dva
),
405 (u_longlong_t
)found
->svb_allocated_txg
,
412 metaslab_spacemap_validation_cb(space_map_entry_t
*sme
, void *arg
)
414 metaslab_verify_t
*mv
= arg
;
415 uint64_t offset
= sme
->sme_offset
;
416 uint64_t size
= sme
->sme_run
;
417 uint64_t txg
= sme
->sme_txg
;
419 if (sme
->sme_type
== SM_ALLOC
) {
420 if (range_tree_contains(mv
->mv_allocated
,
422 (void) printf("ERROR: DOUBLE ALLOC: "
424 "%llu:%llu LOG_SM\n",
425 (u_longlong_t
)txg
, (u_longlong_t
)offset
,
426 (u_longlong_t
)size
, (u_longlong_t
)mv
->mv_vdid
,
427 (u_longlong_t
)mv
->mv_msid
);
429 range_tree_add(mv
->mv_allocated
,
433 if (!range_tree_contains(mv
->mv_allocated
,
435 (void) printf("ERROR: DOUBLE FREE: "
437 "%llu:%llu LOG_SM\n",
438 (u_longlong_t
)txg
, (u_longlong_t
)offset
,
439 (u_longlong_t
)size
, (u_longlong_t
)mv
->mv_vdid
,
440 (u_longlong_t
)mv
->mv_msid
);
442 range_tree_remove(mv
->mv_allocated
,
447 if (sme
->sme_type
!= SM_ALLOC
) {
449 * If something is freed in the spacemap, verify that
450 * it is not listed as allocated in the livelist.
452 verify_livelist_allocs(mv
, txg
, offset
, size
);
458 spacemap_check_sm_log_cb(spa_t
*spa
, space_map_entry_t
*sme
,
459 uint64_t txg
, void *arg
)
461 metaslab_verify_t
*mv
= arg
;
462 uint64_t offset
= sme
->sme_offset
;
463 uint64_t vdev_id
= sme
->sme_vdev
;
465 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
467 /* skip indirect vdevs */
468 if (!vdev_is_concrete(vd
))
471 if (vdev_id
!= mv
->mv_vdid
)
474 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
475 if (ms
->ms_id
!= mv
->mv_msid
)
478 if (txg
< metaslab_unflushed_txg(ms
))
482 ASSERT3U(txg
, ==, sme
->sme_txg
);
483 return (metaslab_spacemap_validation_cb(sme
, mv
));
487 spacemap_check_sm_log(spa_t
*spa
, metaslab_verify_t
*mv
)
489 iterate_through_spacemap_logs(spa
, spacemap_check_sm_log_cb
, mv
);
493 spacemap_check_ms_sm(space_map_t
*sm
, metaslab_verify_t
*mv
)
498 VERIFY0(space_map_iterate(sm
, space_map_length(sm
),
499 metaslab_spacemap_validation_cb
, mv
));
502 static void iterate_deleted_livelists(spa_t
*spa
, ll_iter_t func
, void *arg
);
505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506 * they are part of that metaslab (mv_msid).
509 mv_populate_livelist_allocs(metaslab_verify_t
*mv
, sublivelist_verify_t
*sv
)
511 zfs_btree_index_t where
;
512 sublivelist_verify_block_t
*svb
;
513 ASSERT3U(zfs_btree_numnodes(&mv
->mv_livelist_allocs
), ==, 0);
514 for (svb
= zfs_btree_first(&sv
->sv_leftover
, &where
);
516 svb
= zfs_btree_next(&sv
->sv_leftover
, &where
, &where
)) {
517 if (DVA_GET_VDEV(&svb
->svb_dva
) != mv
->mv_vdid
)
520 if (DVA_GET_OFFSET(&svb
->svb_dva
) < mv
->mv_start
&&
521 (DVA_GET_OFFSET(&svb
->svb_dva
) +
522 DVA_GET_ASIZE(&svb
->svb_dva
)) > mv
->mv_start
) {
523 (void) printf("ERROR: Found block that crosses "
524 "metaslab boundary: <%llu:%llx:%llx>\n",
525 (u_longlong_t
)DVA_GET_VDEV(&svb
->svb_dva
),
526 (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
527 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
));
531 if (DVA_GET_OFFSET(&svb
->svb_dva
) < mv
->mv_start
)
534 if (DVA_GET_OFFSET(&svb
->svb_dva
) >= mv
->mv_end
)
537 if ((DVA_GET_OFFSET(&svb
->svb_dva
) +
538 DVA_GET_ASIZE(&svb
->svb_dva
)) > mv
->mv_end
) {
539 (void) printf("ERROR: Found block that crosses "
540 "metaslab boundary: <%llu:%llx:%llx>\n",
541 (u_longlong_t
)DVA_GET_VDEV(&svb
->svb_dva
),
542 (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
543 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
));
547 zfs_btree_add(&mv
->mv_livelist_allocs
, svb
);
550 for (svb
= zfs_btree_first(&mv
->mv_livelist_allocs
, &where
);
552 svb
= zfs_btree_next(&mv
->mv_livelist_allocs
, &where
, &where
)) {
553 zfs_btree_remove(&sv
->sv_leftover
, svb
);
559 * Iterate through all the sublivelists and:
560 * - report leftover frees (**)
561 * - record leftover ALLOCs together with their TXG [see Cross Check]
563 * (**) Note: Double ALLOCs are valid in datasets that have dedup
564 * enabled. Similarly double FREEs are allowed as well but
565 * only if they pair up with a corresponding ALLOC entry once
566 * we our done with our sublivelist iteration.
570 * - iterate over spacemap and then the metaslab's entries in the
571 * spacemap log, then report any double FREEs and ALLOCs (do not
575 * After finishing the Livelist Check phase and while being in the
576 * Spacemap Check phase, we find all the recorded leftover ALLOCs
577 * of the livelist check that are part of the metaslab that we are
578 * currently looking at in the Spacemap Check. We report any entries
579 * that are marked as ALLOCs in the livelists but have been actually
580 * freed (and potentially allocated again) after their TXG stamp in
581 * the spacemaps. Also report any ALLOCs from the livelists that
582 * belong to indirect vdevs (e.g. their vdev completed removal).
584 * Note that this will miss Log Spacemap entries that cancelled each other
585 * out before being flushed to the metaslab, so we are not guaranteed
586 * to match all erroneous ALLOCs.
589 livelist_metaslab_validate(spa_t
*spa
)
591 (void) printf("Verifying deleted livelist entries\n");
593 sublivelist_verify_t sv
;
594 zfs_btree_create(&sv
.sv_leftover
, livelist_block_compare
, NULL
,
595 sizeof (sublivelist_verify_block_t
));
596 iterate_deleted_livelists(spa
, livelist_verify
, &sv
);
598 (void) printf("Verifying metaslab entries\n");
599 vdev_t
*rvd
= spa
->spa_root_vdev
;
600 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
601 vdev_t
*vd
= rvd
->vdev_child
[c
];
603 if (!vdev_is_concrete(vd
))
606 for (uint64_t mid
= 0; mid
< vd
->vdev_ms_count
; mid
++) {
607 metaslab_t
*m
= vd
->vdev_ms
[mid
];
609 (void) fprintf(stderr
,
610 "\rverifying concrete vdev %llu, "
611 "metaslab %llu of %llu ...",
612 (longlong_t
)vd
->vdev_id
,
614 (longlong_t
)vd
->vdev_ms_count
);
616 uint64_t shift
, start
;
617 range_seg_type_t type
=
618 metaslab_calculate_range_tree_type(vd
, m
,
620 metaslab_verify_t mv
;
621 mv
.mv_allocated
= range_tree_create(NULL
,
622 type
, NULL
, start
, shift
);
623 mv
.mv_vdid
= vd
->vdev_id
;
624 mv
.mv_msid
= m
->ms_id
;
625 mv
.mv_start
= m
->ms_start
;
626 mv
.mv_end
= m
->ms_start
+ m
->ms_size
;
627 zfs_btree_create(&mv
.mv_livelist_allocs
,
628 livelist_block_compare
, NULL
,
629 sizeof (sublivelist_verify_block_t
));
631 mv_populate_livelist_allocs(&mv
, &sv
);
633 spacemap_check_ms_sm(m
->ms_sm
, &mv
);
634 spacemap_check_sm_log(spa
, &mv
);
636 range_tree_vacate(mv
.mv_allocated
, NULL
, NULL
);
637 range_tree_destroy(mv
.mv_allocated
);
638 zfs_btree_clear(&mv
.mv_livelist_allocs
);
639 zfs_btree_destroy(&mv
.mv_livelist_allocs
);
642 (void) fprintf(stderr
, "\n");
645 * If there are any segments in the leftover tree after we walked
646 * through all the metaslabs in the concrete vdevs then this means
647 * that we have segments in the livelists that belong to indirect
648 * vdevs and are marked as allocated.
650 if (zfs_btree_numnodes(&sv
.sv_leftover
) == 0) {
651 zfs_btree_destroy(&sv
.sv_leftover
);
654 (void) printf("ERROR: Found livelist blocks marked as allocated "
655 "for indirect vdevs:\n");
657 zfs_btree_index_t
*where
= NULL
;
658 sublivelist_verify_block_t
*svb
;
659 while ((svb
= zfs_btree_destroy_nodes(&sv
.sv_leftover
, &where
)) !=
661 int vdev_id
= DVA_GET_VDEV(&svb
->svb_dva
);
662 ASSERT3U(vdev_id
, <, rvd
->vdev_children
);
663 vdev_t
*vd
= rvd
->vdev_child
[vdev_id
];
664 ASSERT(!vdev_is_concrete(vd
));
665 (void) printf("<%d:%llx:%llx> TXG %llx\n",
666 vdev_id
, (u_longlong_t
)DVA_GET_OFFSET(&svb
->svb_dva
),
667 (u_longlong_t
)DVA_GET_ASIZE(&svb
->svb_dva
),
668 (u_longlong_t
)svb
->svb_allocated_txg
);
671 zfs_btree_destroy(&sv
.sv_leftover
);
675 * These libumem hooks provide a reasonable set of defaults for the allocator's
676 * debugging facilities.
679 _umem_debug_init(void)
681 return ("default,verbose"); /* $UMEM_DEBUG setting */
685 _umem_logging_init(void)
687 return ("fail,contents"); /* $UMEM_LOGGING setting */
693 (void) fprintf(stderr
,
694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 "[-I <inflight I/Os>]\n"
696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 "\t%s [-v] <bookmark>\n"
705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 "\t%s -l [-Aqu] <device>\n"
707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 "\t%s -O [-K <key>] <dataset> <path>\n"
710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 "\t%s -E [-A] word0:word1:...:word15\n"
714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
716 cmdname
, cmdname
, cmdname
, cmdname
, cmdname
, cmdname
, cmdname
,
717 cmdname
, cmdname
, cmdname
, cmdname
, cmdname
);
719 (void) fprintf(stderr
, " Dataset name must include at least one "
720 "separator character '/' or '@'\n");
721 (void) fprintf(stderr
, " If dataset name is specified, only that "
722 "dataset is dumped\n");
723 (void) fprintf(stderr
, " If object numbers or object number "
724 "ranges are specified, only those\n"
725 " objects or ranges are dumped.\n\n");
726 (void) fprintf(stderr
,
727 " Object ranges take the form <start>:<end>[:<flags>]\n"
728 " start Starting object number\n"
729 " end Ending object number, or -1 for no upper bound\n"
730 " flags Optional flags to select object types:\n"
731 " A All objects (this is the default)\n"
732 " d ZFS directories\n"
734 " m SPA space maps\n"
736 " - Negate effect of next flag\n\n");
737 (void) fprintf(stderr
, " Options to control amount of output:\n");
738 (void) fprintf(stderr
, " -b --block-stats "
739 "block statistics\n");
740 (void) fprintf(stderr
, " -B --backup "
742 (void) fprintf(stderr
, " -c --checksum "
743 "checksum all metadata (twice for all data) blocks\n");
744 (void) fprintf(stderr
, " -C --config "
745 "config (or cachefile if alone)\n");
746 (void) fprintf(stderr
, " -d --datasets "
748 (void) fprintf(stderr
, " -D --dedup-stats "
749 "dedup statistics\n");
750 (void) fprintf(stderr
, " -E --embedded-block-pointer=INTEGER\n"
751 " decode and display block "
752 "from an embedded block pointer\n");
753 (void) fprintf(stderr
, " -h --history "
755 (void) fprintf(stderr
, " -i --intent-logs "
757 (void) fprintf(stderr
, " -l --label "
758 "read label contents\n");
759 (void) fprintf(stderr
, " -k --checkpointed-state "
760 "examine the checkpointed state of the pool\n");
761 (void) fprintf(stderr
, " -L --disable-leak-tracking "
762 "disable leak tracking (do not load spacemaps)\n");
763 (void) fprintf(stderr
, " -m --metaslabs "
765 (void) fprintf(stderr
, " -M --metaslab-groups "
766 "metaslab groups\n");
767 (void) fprintf(stderr
, " -O --object-lookups "
768 "perform object lookups by path\n");
769 (void) fprintf(stderr
, " -r --copy-object "
770 "copy an object by path to file\n");
771 (void) fprintf(stderr
, " -R --read-block "
772 "read and display block from a device\n");
773 (void) fprintf(stderr
, " -s --io-stats "
774 "report stats on zdb's I/O\n");
775 (void) fprintf(stderr
, " -S --simulate-dedup "
776 "simulate dedup to measure effect\n");
777 (void) fprintf(stderr
, " -v --verbose "
778 "verbose (applies to all others)\n");
779 (void) fprintf(stderr
, " -y --livelist "
780 "perform livelist and metaslab validation on any livelists being "
782 (void) fprintf(stderr
, " Below options are intended for use "
783 "with other options:\n");
784 (void) fprintf(stderr
, " -A --ignore-assertions "
785 "ignore assertions (-A), enable panic recovery (-AA) or both "
787 (void) fprintf(stderr
, " -e --exported "
788 "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 (void) fprintf(stderr
, " -F --automatic-rewind "
790 "attempt automatic rewind within safe range of transaction "
792 (void) fprintf(stderr
, " -G --dump-debug-msg "
793 "dump zfs_dbgmsg buffer before exiting\n");
794 (void) fprintf(stderr
, " -I --inflight=INTEGER "
795 "specify the maximum number of checksumming I/Os "
796 "[default is 200]\n");
797 (void) fprintf(stderr
, " -K --key=KEY "
798 "decryption key for encrypted dataset\n");
799 (void) fprintf(stderr
, " -o --option=\"OPTION=INTEGER\" "
800 "set global variable to an unsigned 32-bit integer\n");
801 (void) fprintf(stderr
, " -p --path==PATH "
802 "use one or more with -e to specify path to vdev dir\n");
803 (void) fprintf(stderr
, " -P --parseable "
804 "print numbers in parseable form\n");
805 (void) fprintf(stderr
, " -q --skip-label "
806 "don't print label contents\n");
807 (void) fprintf(stderr
, " -t --txg=INTEGER "
808 "highest txg to use when searching for uberblocks\n");
809 (void) fprintf(stderr
, " -T --brt-stats "
811 (void) fprintf(stderr
, " -u --uberblock "
813 (void) fprintf(stderr
, " -U --cachefile=PATH "
814 "use alternate cachefile\n");
815 (void) fprintf(stderr
, " -V --verbatim "
816 "do verbatim import\n");
817 (void) fprintf(stderr
, " -x --dump-blocks=PATH "
818 "dump all read blocks into specified directory\n");
819 (void) fprintf(stderr
, " -X --extreme-rewind "
820 "attempt extreme rewind (does not work with dataset)\n");
821 (void) fprintf(stderr
, " -Y --all-reconstruction "
822 "attempt all reconstruction combinations for split blocks\n");
823 (void) fprintf(stderr
, " -Z --zstd-headers "
824 "show ZSTD headers \n");
825 (void) fprintf(stderr
, "Specify an option more than once (e.g. -bb) "
826 "to make only that option verbose\n");
827 (void) fprintf(stderr
, "Default is to dump everything non-verbosely\n");
832 dump_debug_buffer(void)
834 ssize_t ret
__attribute__((unused
));
839 * We use write() instead of printf() so that this function
840 * is safe to call from a signal handler.
842 ret
= write(STDERR_FILENO
, "\n", 1);
843 zfs_dbgmsg_print(STDERR_FILENO
, "zdb");
846 static void sig_handler(int signo
)
848 struct sigaction action
;
850 libspl_backtrace(STDERR_FILENO
);
854 * Restore default action and re-raise signal so SIGSEGV and
855 * SIGABRT can trigger a core dump.
857 action
.sa_handler
= SIG_DFL
;
858 sigemptyset(&action
.sa_mask
);
860 (void) sigaction(signo
, &action
, NULL
);
865 * Called for usage errors that are discovered after a call to spa_open(),
866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
870 fatal(const char *fmt
, ...)
875 (void) fprintf(stderr
, "%s: ", cmdname
);
876 (void) vfprintf(stderr
, fmt
, ap
);
878 (void) fprintf(stderr
, "\n");
886 dump_packed_nvlist(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
890 size_t nvsize
= *(uint64_t *)data
;
891 char *packed
= umem_alloc(nvsize
, UMEM_NOFAIL
);
893 VERIFY(0 == dmu_read(os
, object
, 0, nvsize
, packed
, DMU_READ_PREFETCH
));
895 VERIFY(nvlist_unpack(packed
, nvsize
, &nv
, 0) == 0);
897 umem_free(packed
, nvsize
);
905 dump_history_offsets(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
907 (void) os
, (void) object
, (void) size
;
908 spa_history_phys_t
*shp
= data
;
913 (void) printf("\t\tpool_create_len = %llu\n",
914 (u_longlong_t
)shp
->sh_pool_create_len
);
915 (void) printf("\t\tphys_max_off = %llu\n",
916 (u_longlong_t
)shp
->sh_phys_max_off
);
917 (void) printf("\t\tbof = %llu\n",
918 (u_longlong_t
)shp
->sh_bof
);
919 (void) printf("\t\teof = %llu\n",
920 (u_longlong_t
)shp
->sh_eof
);
921 (void) printf("\t\trecords_lost = %llu\n",
922 (u_longlong_t
)shp
->sh_records_lost
);
926 zdb_nicenum(uint64_t num
, char *buf
, size_t buflen
)
929 (void) snprintf(buf
, buflen
, "%llu", (longlong_t
)num
);
931 nicenum(num
, buf
, buflen
);
935 zdb_nicebytes(uint64_t bytes
, char *buf
, size_t buflen
)
938 (void) snprintf(buf
, buflen
, "%llu", (longlong_t
)bytes
);
940 zfs_nicebytes(bytes
, buf
, buflen
);
943 static const char histo_stars
[] = "****************************************";
944 static const uint64_t histo_width
= sizeof (histo_stars
) - 1;
947 dump_histogram(const uint64_t *histo
, int size
, int offset
)
950 int minidx
= size
- 1;
954 for (i
= 0; i
< size
; i
++) {
965 if (max
< histo_width
)
968 for (i
= minidx
; i
<= maxidx
; i
++) {
969 (void) printf("\t\t\t%3u: %6llu %s\n",
970 i
+ offset
, (u_longlong_t
)histo
[i
],
971 &histo_stars
[(max
- histo
[i
]) * histo_width
/ max
]);
976 dump_zap_stats(objset_t
*os
, uint64_t object
)
981 error
= zap_get_stats(os
, object
, &zs
);
985 if (zs
.zs_ptrtbl_len
== 0) {
986 ASSERT(zs
.zs_num_blocks
== 1);
987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 (u_longlong_t
)zs
.zs_blocksize
,
989 (u_longlong_t
)zs
.zs_num_entries
);
993 (void) printf("\tFat ZAP stats:\n");
995 (void) printf("\t\tPointer table:\n");
996 (void) printf("\t\t\t%llu elements\n",
997 (u_longlong_t
)zs
.zs_ptrtbl_len
);
998 (void) printf("\t\t\tzt_blk: %llu\n",
999 (u_longlong_t
)zs
.zs_ptrtbl_zt_blk
);
1000 (void) printf("\t\t\tzt_numblks: %llu\n",
1001 (u_longlong_t
)zs
.zs_ptrtbl_zt_numblks
);
1002 (void) printf("\t\t\tzt_shift: %llu\n",
1003 (u_longlong_t
)zs
.zs_ptrtbl_zt_shift
);
1004 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 (u_longlong_t
)zs
.zs_ptrtbl_blks_copied
);
1006 (void) printf("\t\t\tzt_nextblk: %llu\n",
1007 (u_longlong_t
)zs
.zs_ptrtbl_nextblk
);
1009 (void) printf("\t\tZAP entries: %llu\n",
1010 (u_longlong_t
)zs
.zs_num_entries
);
1011 (void) printf("\t\tLeaf blocks: %llu\n",
1012 (u_longlong_t
)zs
.zs_num_leafs
);
1013 (void) printf("\t\tTotal blocks: %llu\n",
1014 (u_longlong_t
)zs
.zs_num_blocks
);
1015 (void) printf("\t\tzap_block_type: 0x%llx\n",
1016 (u_longlong_t
)zs
.zs_block_type
);
1017 (void) printf("\t\tzap_magic: 0x%llx\n",
1018 (u_longlong_t
)zs
.zs_magic
);
1019 (void) printf("\t\tzap_salt: 0x%llx\n",
1020 (u_longlong_t
)zs
.zs_salt
);
1022 (void) printf("\t\tLeafs with 2^n pointers:\n");
1023 dump_histogram(zs
.zs_leafs_with_2n_pointers
, ZAP_HISTOGRAM_SIZE
, 0);
1025 (void) printf("\t\tBlocks with n*5 entries:\n");
1026 dump_histogram(zs
.zs_blocks_with_n5_entries
, ZAP_HISTOGRAM_SIZE
, 0);
1028 (void) printf("\t\tBlocks n/10 full:\n");
1029 dump_histogram(zs
.zs_blocks_n_tenths_full
, ZAP_HISTOGRAM_SIZE
, 0);
1031 (void) printf("\t\tEntries with n chunks:\n");
1032 dump_histogram(zs
.zs_entries_using_n_chunks
, ZAP_HISTOGRAM_SIZE
, 0);
1034 (void) printf("\t\tBuckets with n entries:\n");
1035 dump_histogram(zs
.zs_buckets_with_n_entries
, ZAP_HISTOGRAM_SIZE
, 0);
1039 dump_none(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1041 (void) os
, (void) object
, (void) data
, (void) size
;
1045 dump_unknown(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1047 (void) os
, (void) object
, (void) data
, (void) size
;
1048 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1052 dump_uint8(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1054 (void) os
, (void) object
, (void) data
, (void) size
;
1058 dump_uint64(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1062 if (dump_opt
['d'] < 6)
1066 dmu_object_info_t doi
;
1068 VERIFY0(dmu_object_info(os
, object
, &doi
));
1069 size
= doi
.doi_max_offset
;
1071 * We cap the size at 1 mebibyte here to prevent
1072 * allocation failures and nigh-infinite printing if the
1073 * object is extremely large.
1075 oursize
= MIN(size
, 1 << 20);
1076 arr
= kmem_alloc(oursize
, KM_SLEEP
);
1078 int err
= dmu_read(os
, object
, 0, oursize
, arr
, 0);
1080 (void) printf("got error %u from dmu_read\n", err
);
1081 kmem_free(arr
, oursize
);
1086 * Even though the allocation is already done in this code path,
1087 * we still cap the size to prevent excessive printing.
1089 oursize
= MIN(size
, 1 << 20);
1095 kmem_free(arr
, oursize
);
1096 (void) printf("\t\t[]\n");
1100 (void) printf("\t\t[%0llx", (u_longlong_t
)arr
[0]);
1101 for (size_t i
= 1; i
* sizeof (uint64_t) < oursize
; i
++) {
1103 (void) printf(", %0llx", (u_longlong_t
)arr
[i
]);
1105 (void) printf(",\n\t\t%0llx", (u_longlong_t
)arr
[i
]);
1107 if (oursize
!= size
)
1108 (void) printf(", ... ");
1109 (void) printf("]\n");
1112 kmem_free(arr
, oursize
);
1116 dump_zap(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1118 (void) data
, (void) size
;
1120 zap_attribute_t
*attrp
= zap_attribute_long_alloc();
1124 dump_zap_stats(os
, object
);
1125 (void) printf("\n");
1127 for (zap_cursor_init(&zc
, os
, object
);
1128 zap_cursor_retrieve(&zc
, attrp
) == 0;
1129 zap_cursor_advance(&zc
)) {
1131 !!(zap_getflags(zc
.zc_zap
) & ZAP_FLAG_UINT64_KEY
);
1134 (void) printf("\t\t0x%010" PRIu64
"x = ",
1135 *(uint64_t *)attrp
->za_name
);
1137 (void) printf("\t\t%s = ", attrp
->za_name
);
1139 if (attrp
->za_num_integers
== 0) {
1140 (void) printf("\n");
1143 prop
= umem_zalloc(attrp
->za_num_integers
*
1144 attrp
->za_integer_length
, UMEM_NOFAIL
);
1147 (void) zap_lookup_uint64(os
, object
,
1148 (const uint64_t *)attrp
->za_name
, 1,
1149 attrp
->za_integer_length
, attrp
->za_num_integers
,
1152 (void) zap_lookup(os
, object
, attrp
->za_name
,
1153 attrp
->za_integer_length
, attrp
->za_num_integers
,
1156 if (attrp
->za_integer_length
== 1 && !key64
) {
1157 if (strcmp(attrp
->za_name
,
1158 DSL_CRYPTO_KEY_MASTER_KEY
) == 0 ||
1159 strcmp(attrp
->za_name
,
1160 DSL_CRYPTO_KEY_HMAC_KEY
) == 0 ||
1161 strcmp(attrp
->za_name
, DSL_CRYPTO_KEY_IV
) == 0 ||
1162 strcmp(attrp
->za_name
, DSL_CRYPTO_KEY_MAC
) == 0 ||
1163 strcmp(attrp
->za_name
,
1164 DMU_POOL_CHECKSUM_SALT
) == 0) {
1167 for (i
= 0; i
< attrp
->za_num_integers
; i
++) {
1168 (void) printf("%02x", u8
[i
]);
1171 (void) printf("%s", (char *)prop
);
1174 for (i
= 0; i
< attrp
->za_num_integers
; i
++) {
1175 switch (attrp
->za_integer_length
) {
1177 (void) printf("%u ",
1178 ((uint8_t *)prop
)[i
]);
1181 (void) printf("%u ",
1182 ((uint16_t *)prop
)[i
]);
1185 (void) printf("%u ",
1186 ((uint32_t *)prop
)[i
]);
1189 (void) printf("%lld ",
1190 (u_longlong_t
)((int64_t *)prop
)[i
]);
1195 (void) printf("\n");
1197 attrp
->za_num_integers
* attrp
->za_integer_length
);
1199 zap_cursor_fini(&zc
);
1200 zap_attribute_free(attrp
);
1204 dump_bpobj(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1206 bpobj_phys_t
*bpop
= data
;
1208 char bytes
[32], comp
[32], uncomp
[32];
1210 /* make sure the output won't get truncated */
1211 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
1212 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
1213 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
1218 zdb_nicenum(bpop
->bpo_bytes
, bytes
, sizeof (bytes
));
1219 zdb_nicenum(bpop
->bpo_comp
, comp
, sizeof (comp
));
1220 zdb_nicenum(bpop
->bpo_uncomp
, uncomp
, sizeof (uncomp
));
1222 (void) printf("\t\tnum_blkptrs = %llu\n",
1223 (u_longlong_t
)bpop
->bpo_num_blkptrs
);
1224 (void) printf("\t\tbytes = %s\n", bytes
);
1225 if (size
>= BPOBJ_SIZE_V1
) {
1226 (void) printf("\t\tcomp = %s\n", comp
);
1227 (void) printf("\t\tuncomp = %s\n", uncomp
);
1229 if (size
>= BPOBJ_SIZE_V2
) {
1230 (void) printf("\t\tsubobjs = %llu\n",
1231 (u_longlong_t
)bpop
->bpo_subobjs
);
1232 (void) printf("\t\tnum_subobjs = %llu\n",
1233 (u_longlong_t
)bpop
->bpo_num_subobjs
);
1235 if (size
>= sizeof (*bpop
)) {
1236 (void) printf("\t\tnum_freed = %llu\n",
1237 (u_longlong_t
)bpop
->bpo_num_freed
);
1240 if (dump_opt
['d'] < 5)
1243 for (i
= 0; i
< bpop
->bpo_num_blkptrs
; i
++) {
1244 char blkbuf
[BP_SPRINTF_LEN
];
1247 int err
= dmu_read(os
, object
,
1248 i
* sizeof (bp
), sizeof (bp
), &bp
, 0);
1250 (void) printf("got error %u from dmu_read\n", err
);
1253 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), &bp
,
1255 (void) printf("\t%s\n", blkbuf
);
1260 dump_bpobj_subobjs(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1262 (void) data
, (void) size
;
1263 dmu_object_info_t doi
;
1266 VERIFY0(dmu_object_info(os
, object
, &doi
));
1267 uint64_t *subobjs
= kmem_alloc(doi
.doi_max_offset
, KM_SLEEP
);
1269 int err
= dmu_read(os
, object
, 0, doi
.doi_max_offset
, subobjs
, 0);
1271 (void) printf("got error %u from dmu_read\n", err
);
1272 kmem_free(subobjs
, doi
.doi_max_offset
);
1276 int64_t last_nonzero
= -1;
1277 for (i
= 0; i
< doi
.doi_max_offset
/ 8; i
++) {
1278 if (subobjs
[i
] != 0)
1282 for (i
= 0; i
<= last_nonzero
; i
++) {
1283 (void) printf("\t%llu\n", (u_longlong_t
)subobjs
[i
]);
1285 kmem_free(subobjs
, doi
.doi_max_offset
);
1289 dump_ddt_zap(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1291 (void) data
, (void) size
;
1292 dump_zap_stats(os
, object
);
1293 /* contents are printed elsewhere, properly decoded */
1297 dump_sa_attrs(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1299 (void) data
, (void) size
;
1301 zap_attribute_t
*attrp
= zap_attribute_alloc();
1303 dump_zap_stats(os
, object
);
1304 (void) printf("\n");
1306 for (zap_cursor_init(&zc
, os
, object
);
1307 zap_cursor_retrieve(&zc
, attrp
) == 0;
1308 zap_cursor_advance(&zc
)) {
1309 (void) printf("\t\t%s = ", attrp
->za_name
);
1310 if (attrp
->za_num_integers
== 0) {
1311 (void) printf("\n");
1314 (void) printf(" %llx : [%d:%d:%d]\n",
1315 (u_longlong_t
)attrp
->za_first_integer
,
1316 (int)ATTR_LENGTH(attrp
->za_first_integer
),
1317 (int)ATTR_BSWAP(attrp
->za_first_integer
),
1318 (int)ATTR_NUM(attrp
->za_first_integer
));
1320 zap_cursor_fini(&zc
);
1321 zap_attribute_free(attrp
);
1325 dump_sa_layouts(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1327 (void) data
, (void) size
;
1329 zap_attribute_t
*attrp
= zap_attribute_alloc();
1330 uint16_t *layout_attrs
;
1333 dump_zap_stats(os
, object
);
1334 (void) printf("\n");
1336 for (zap_cursor_init(&zc
, os
, object
);
1337 zap_cursor_retrieve(&zc
, attrp
) == 0;
1338 zap_cursor_advance(&zc
)) {
1339 (void) printf("\t\t%s = [", attrp
->za_name
);
1340 if (attrp
->za_num_integers
== 0) {
1341 (void) printf("\n");
1345 VERIFY(attrp
->za_integer_length
== 2);
1346 layout_attrs
= umem_zalloc(attrp
->za_num_integers
*
1347 attrp
->za_integer_length
, UMEM_NOFAIL
);
1349 VERIFY(zap_lookup(os
, object
, attrp
->za_name
,
1350 attrp
->za_integer_length
,
1351 attrp
->za_num_integers
, layout_attrs
) == 0);
1353 for (i
= 0; i
!= attrp
->za_num_integers
; i
++)
1354 (void) printf(" %d ", (int)layout_attrs
[i
]);
1355 (void) printf("]\n");
1356 umem_free(layout_attrs
,
1357 attrp
->za_num_integers
* attrp
->za_integer_length
);
1359 zap_cursor_fini(&zc
);
1360 zap_attribute_free(attrp
);
1364 dump_zpldir(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
1366 (void) data
, (void) size
;
1368 zap_attribute_t
*attrp
= zap_attribute_long_alloc();
1369 const char *typenames
[] = {
1370 /* 0 */ "not specified",
1372 /* 2 */ "Character Device",
1373 /* 3 */ "3 (invalid)",
1374 /* 4 */ "Directory",
1375 /* 5 */ "5 (invalid)",
1376 /* 6 */ "Block Device",
1377 /* 7 */ "7 (invalid)",
1378 /* 8 */ "Regular File",
1379 /* 9 */ "9 (invalid)",
1380 /* 10 */ "Symbolic Link",
1381 /* 11 */ "11 (invalid)",
1384 /* 14 */ "Event Port",
1385 /* 15 */ "15 (invalid)",
1388 dump_zap_stats(os
, object
);
1389 (void) printf("\n");
1391 for (zap_cursor_init(&zc
, os
, object
);
1392 zap_cursor_retrieve(&zc
, attrp
) == 0;
1393 zap_cursor_advance(&zc
)) {
1394 (void) printf("\t\t%s = %lld (type: %s)\n",
1395 attrp
->za_name
, ZFS_DIRENT_OBJ(attrp
->za_first_integer
),
1396 typenames
[ZFS_DIRENT_TYPE(attrp
->za_first_integer
)]);
1398 zap_cursor_fini(&zc
);
1399 zap_attribute_free(attrp
);
1403 get_dtl_refcount(vdev_t
*vd
)
1407 if (vd
->vdev_ops
->vdev_op_leaf
) {
1408 space_map_t
*sm
= vd
->vdev_dtl_sm
;
1411 sm
->sm_dbuf
->db_size
== sizeof (space_map_phys_t
))
1416 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
1417 refcount
+= get_dtl_refcount(vd
->vdev_child
[c
]);
1422 get_metaslab_refcount(vdev_t
*vd
)
1426 if (vd
->vdev_top
== vd
) {
1427 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
1428 space_map_t
*sm
= vd
->vdev_ms
[m
]->ms_sm
;
1431 sm
->sm_dbuf
->db_size
== sizeof (space_map_phys_t
))
1435 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
1436 refcount
+= get_metaslab_refcount(vd
->vdev_child
[c
]);
1442 get_obsolete_refcount(vdev_t
*vd
)
1444 uint64_t obsolete_sm_object
;
1447 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1448 if (vd
->vdev_top
== vd
&& obsolete_sm_object
!= 0) {
1449 dmu_object_info_t doi
;
1450 VERIFY0(dmu_object_info(vd
->vdev_spa
->spa_meta_objset
,
1451 obsolete_sm_object
, &doi
));
1452 if (doi
.doi_bonus_size
== sizeof (space_map_phys_t
)) {
1456 ASSERT3P(vd
->vdev_obsolete_sm
, ==, NULL
);
1457 ASSERT3U(obsolete_sm_object
, ==, 0);
1459 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++) {
1460 refcount
+= get_obsolete_refcount(vd
->vdev_child
[c
]);
1467 get_prev_obsolete_spacemap_refcount(spa_t
*spa
)
1470 spa
->spa_condensing_indirect_phys
.scip_prev_obsolete_sm_object
;
1471 if (prev_obj
!= 0) {
1472 dmu_object_info_t doi
;
1473 VERIFY0(dmu_object_info(spa
->spa_meta_objset
, prev_obj
, &doi
));
1474 if (doi
.doi_bonus_size
== sizeof (space_map_phys_t
)) {
1482 get_checkpoint_refcount(vdev_t
*vd
)
1486 if (vd
->vdev_top
== vd
&& vd
->vdev_top_zap
!= 0 &&
1487 zap_contains(spa_meta_objset(vd
->vdev_spa
),
1488 vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) == 0)
1491 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++)
1492 refcount
+= get_checkpoint_refcount(vd
->vdev_child
[c
]);
1498 get_log_spacemap_refcount(spa_t
*spa
)
1500 return (avl_numnodes(&spa
->spa_sm_logs_by_txg
));
1504 verify_spacemap_refcounts(spa_t
*spa
)
1506 uint64_t expected_refcount
= 0;
1507 uint64_t actual_refcount
;
1509 (void) feature_get_refcount(spa
,
1510 &spa_feature_table
[SPA_FEATURE_SPACEMAP_HISTOGRAM
],
1511 &expected_refcount
);
1512 actual_refcount
= get_dtl_refcount(spa
->spa_root_vdev
);
1513 actual_refcount
+= get_metaslab_refcount(spa
->spa_root_vdev
);
1514 actual_refcount
+= get_obsolete_refcount(spa
->spa_root_vdev
);
1515 actual_refcount
+= get_prev_obsolete_spacemap_refcount(spa
);
1516 actual_refcount
+= get_checkpoint_refcount(spa
->spa_root_vdev
);
1517 actual_refcount
+= get_log_spacemap_refcount(spa
);
1519 if (expected_refcount
!= actual_refcount
) {
1520 (void) printf("space map refcount mismatch: expected %lld != "
1522 (longlong_t
)expected_refcount
,
1523 (longlong_t
)actual_refcount
);
1530 dump_spacemap(objset_t
*os
, space_map_t
*sm
)
1532 const char *ddata
[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 "INVALID", "INVALID", "INVALID", "INVALID" };
1538 (void) printf("space map object %llu:\n",
1539 (longlong_t
)sm
->sm_object
);
1540 (void) printf(" smp_length = 0x%llx\n",
1541 (longlong_t
)sm
->sm_phys
->smp_length
);
1542 (void) printf(" smp_alloc = 0x%llx\n",
1543 (longlong_t
)sm
->sm_phys
->smp_alloc
);
1545 if (dump_opt
['d'] < 6 && dump_opt
['m'] < 4)
1549 * Print out the freelist entries in both encoded and decoded form.
1551 uint8_t mapshift
= sm
->sm_shift
;
1553 uint64_t word
, entry_id
= 0;
1554 for (uint64_t offset
= 0; offset
< space_map_length(sm
);
1555 offset
+= sizeof (word
)) {
1557 VERIFY0(dmu_read(os
, space_map_object(sm
), offset
,
1558 sizeof (word
), &word
, DMU_READ_PREFETCH
));
1560 if (sm_entry_is_debug(word
)) {
1561 uint64_t de_txg
= SM_DEBUG_TXG_DECODE(word
);
1562 uint64_t de_sync_pass
= SM_DEBUG_SYNCPASS_DECODE(word
);
1565 "\t [%6llu] PADDING\n",
1566 (u_longlong_t
)entry_id
);
1569 "\t [%6llu] %s: txg %llu pass %llu\n",
1570 (u_longlong_t
)entry_id
,
1571 ddata
[SM_DEBUG_ACTION_DECODE(word
)],
1572 (u_longlong_t
)de_txg
,
1573 (u_longlong_t
)de_sync_pass
);
1581 uint64_t entry_off
, entry_run
, entry_vdev
= SM_NO_VDEVID
;
1583 if (sm_entry_is_single_word(word
)) {
1584 entry_type
= (SM_TYPE_DECODE(word
) == SM_ALLOC
) ?
1586 entry_off
= (SM_OFFSET_DECODE(word
) << mapshift
) +
1588 entry_run
= SM_RUN_DECODE(word
) << mapshift
;
1591 /* it is a two-word entry so we read another word */
1592 ASSERT(sm_entry_is_double_word(word
));
1594 uint64_t extra_word
;
1595 offset
+= sizeof (extra_word
);
1596 VERIFY0(dmu_read(os
, space_map_object(sm
), offset
,
1597 sizeof (extra_word
), &extra_word
,
1598 DMU_READ_PREFETCH
));
1600 ASSERT3U(offset
, <=, space_map_length(sm
));
1602 entry_run
= SM2_RUN_DECODE(word
) << mapshift
;
1603 entry_vdev
= SM2_VDEV_DECODE(word
);
1604 entry_type
= (SM2_TYPE_DECODE(extra_word
) == SM_ALLOC
) ?
1606 entry_off
= (SM2_OFFSET_DECODE(extra_word
) <<
1607 mapshift
) + sm
->sm_start
;
1611 (void) printf("\t [%6llu] %c range:"
1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1613 (u_longlong_t
)entry_id
,
1614 entry_type
, (u_longlong_t
)entry_off
,
1615 (u_longlong_t
)(entry_off
+ entry_run
),
1616 (u_longlong_t
)entry_run
,
1617 (u_longlong_t
)entry_vdev
, words
);
1619 if (entry_type
== 'A')
1625 if (alloc
!= space_map_allocated(sm
)) {
1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 "with space map summary (%lld)\n",
1628 (longlong_t
)space_map_allocated(sm
), (longlong_t
)alloc
);
1633 dump_metaslab_stats(metaslab_t
*msp
)
1636 range_tree_t
*rt
= msp
->ms_allocatable
;
1637 zfs_btree_t
*t
= &msp
->ms_allocatable_by_size
;
1638 int free_pct
= range_tree_space(rt
) * 100 / msp
->ms_size
;
1640 /* max sure nicenum has enough space */
1641 _Static_assert(sizeof (maxbuf
) >= NN_NUMBUF_SZ
, "maxbuf truncated");
1643 zdb_nicenum(metaslab_largest_allocatable(msp
), maxbuf
, sizeof (maxbuf
));
1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1646 "segments", zfs_btree_numnodes(t
), "maxsize", maxbuf
,
1647 "freepct", free_pct
);
1648 (void) printf("\tIn-memory histogram:\n");
1649 dump_histogram(rt
->rt_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1653 dump_metaslab(metaslab_t
*msp
)
1655 vdev_t
*vd
= msp
->ms_group
->mg_vd
;
1656 spa_t
*spa
= vd
->vdev_spa
;
1657 space_map_t
*sm
= msp
->ms_sm
;
1660 zdb_nicenum(msp
->ms_size
- space_map_allocated(sm
), freebuf
,
1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1665 (u_longlong_t
)msp
->ms_id
, (u_longlong_t
)msp
->ms_start
,
1666 (u_longlong_t
)space_map_object(sm
), freebuf
);
1668 if (dump_opt
['m'] > 2 && !dump_opt
['L']) {
1669 mutex_enter(&msp
->ms_lock
);
1670 VERIFY0(metaslab_load(msp
));
1671 range_tree_stat_verify(msp
->ms_allocatable
);
1672 dump_metaslab_stats(msp
);
1673 metaslab_unload(msp
);
1674 mutex_exit(&msp
->ms_lock
);
1677 if (dump_opt
['m'] > 1 && sm
!= NULL
&&
1678 spa_feature_is_active(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
)) {
1680 * The space map histogram represents free space in chunks
1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 (u_longlong_t
)msp
->ms_fragmentation
);
1685 dump_histogram(sm
->sm_phys
->smp_histogram
,
1686 SPACE_MAP_HISTOGRAM_SIZE
, sm
->sm_shift
);
1689 if (vd
->vdev_ops
== &vdev_draid_ops
)
1690 ASSERT3U(msp
->ms_size
, <=, 1ULL << vd
->vdev_ms_shift
);
1692 ASSERT3U(msp
->ms_size
, ==, 1ULL << vd
->vdev_ms_shift
);
1694 dump_spacemap(spa
->spa_meta_objset
, msp
->ms_sm
);
1696 if (spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
)) {
1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 (u_longlong_t
)metaslab_unflushed_txg(msp
));
1703 print_vdev_metaslab_header(vdev_t
*vd
)
1705 vdev_alloc_bias_t alloc_bias
= vd
->vdev_alloc_bias
;
1706 const char *bias_str
= "";
1707 if (alloc_bias
== VDEV_BIAS_LOG
|| vd
->vdev_islog
) {
1708 bias_str
= VDEV_ALLOC_BIAS_LOG
;
1709 } else if (alloc_bias
== VDEV_BIAS_SPECIAL
) {
1710 bias_str
= VDEV_ALLOC_BIAS_SPECIAL
;
1711 } else if (alloc_bias
== VDEV_BIAS_DEDUP
) {
1712 bias_str
= VDEV_ALLOC_BIAS_DEDUP
;
1715 uint64_t ms_flush_data_obj
= 0;
1716 if (vd
->vdev_top_zap
!= 0) {
1717 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
),
1718 vd
->vdev_top_zap
, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
,
1719 sizeof (uint64_t), 1, &ms_flush_data_obj
);
1720 if (error
!= ENOENT
) {
1725 (void) printf("\tvdev %10llu %s",
1726 (u_longlong_t
)vd
->vdev_id
, bias_str
);
1728 if (ms_flush_data_obj
!= 0) {
1729 (void) printf(" ms_unflushed_phys object %llu",
1730 (u_longlong_t
)ms_flush_data_obj
);
1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1734 "metaslabs", (u_longlong_t
)vd
->vdev_ms_count
,
1735 "offset", "spacemap", "free");
1736 (void) printf("\t%15s %19s %15s %12s\n",
1737 "---------------", "-------------------",
1738 "---------------", "------------");
1742 dump_metaslab_groups(spa_t
*spa
, boolean_t show_special
)
1744 vdev_t
*rvd
= spa
->spa_root_vdev
;
1745 metaslab_class_t
*mc
= spa_normal_class(spa
);
1746 metaslab_class_t
*smc
= spa_special_class(spa
);
1747 uint64_t fragmentation
;
1749 metaslab_class_histogram_verify(mc
);
1751 for (unsigned c
= 0; c
< rvd
->vdev_children
; c
++) {
1752 vdev_t
*tvd
= rvd
->vdev_child
[c
];
1753 metaslab_group_t
*mg
= tvd
->vdev_mg
;
1755 if (mg
== NULL
|| (mg
->mg_class
!= mc
&&
1756 (!show_special
|| mg
->mg_class
!= smc
)))
1759 metaslab_group_histogram_verify(mg
);
1760 mg
->mg_fragmentation
= metaslab_group_fragmentation(mg
);
1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1764 (u_longlong_t
)tvd
->vdev_id
,
1765 (u_longlong_t
)tvd
->vdev_ms_count
);
1766 if (mg
->mg_fragmentation
== ZFS_FRAG_INVALID
) {
1767 (void) printf("%3s\n", "-");
1769 (void) printf("%3llu%%\n",
1770 (u_longlong_t
)mg
->mg_fragmentation
);
1772 dump_histogram(mg
->mg_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa
));
1776 fragmentation
= metaslab_class_fragmentation(mc
);
1777 if (fragmentation
== ZFS_FRAG_INVALID
)
1778 (void) printf("\t%3s\n", "-");
1780 (void) printf("\t%3llu%%\n", (u_longlong_t
)fragmentation
);
1781 dump_histogram(mc
->mc_histogram
, RANGE_TREE_HISTOGRAM_SIZE
, 0);
1785 print_vdev_indirect(vdev_t
*vd
)
1787 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
1788 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
1789 vdev_indirect_births_t
*vib
= vd
->vdev_indirect_births
;
1792 ASSERT3P(vib
, ==, NULL
);
1796 ASSERT3U(vdev_indirect_mapping_object(vim
), ==,
1797 vic
->vic_mapping_object
);
1798 ASSERT3U(vdev_indirect_births_object(vib
), ==,
1799 vic
->vic_births_object
);
1801 (void) printf("indirect births obj %llu:\n",
1802 (longlong_t
)vic
->vic_births_object
);
1803 (void) printf(" vib_count = %llu\n",
1804 (longlong_t
)vdev_indirect_births_count(vib
));
1805 for (uint64_t i
= 0; i
< vdev_indirect_births_count(vib
); i
++) {
1806 vdev_indirect_birth_entry_phys_t
*cur_vibe
=
1807 &vib
->vib_entries
[i
];
1808 (void) printf("\toffset %llx -> txg %llu\n",
1809 (longlong_t
)cur_vibe
->vibe_offset
,
1810 (longlong_t
)cur_vibe
->vibe_phys_birth_txg
);
1812 (void) printf("\n");
1814 (void) printf("indirect mapping obj %llu:\n",
1815 (longlong_t
)vic
->vic_mapping_object
);
1816 (void) printf(" vim_max_offset = 0x%llx\n",
1817 (longlong_t
)vdev_indirect_mapping_max_offset(vim
));
1818 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1819 (longlong_t
)vdev_indirect_mapping_bytes_mapped(vim
));
1820 (void) printf(" vim_count = %llu\n",
1821 (longlong_t
)vdev_indirect_mapping_num_entries(vim
));
1823 if (dump_opt
['d'] <= 5 && dump_opt
['m'] <= 3)
1826 uint32_t *counts
= vdev_indirect_mapping_load_obsolete_counts(vim
);
1828 for (uint64_t i
= 0; i
< vdev_indirect_mapping_num_entries(vim
); i
++) {
1829 vdev_indirect_mapping_entry_phys_t
*vimep
=
1830 &vim
->vim_entries
[i
];
1831 (void) printf("\t<%llx:%llx:%llx> -> "
1832 "<%llx:%llx:%llx> (%x obsolete)\n",
1833 (longlong_t
)vd
->vdev_id
,
1834 (longlong_t
)DVA_MAPPING_GET_SRC_OFFSET(vimep
),
1835 (longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
1836 (longlong_t
)DVA_GET_VDEV(&vimep
->vimep_dst
),
1837 (longlong_t
)DVA_GET_OFFSET(&vimep
->vimep_dst
),
1838 (longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
1841 (void) printf("\n");
1843 uint64_t obsolete_sm_object
;
1844 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
1845 if (obsolete_sm_object
!= 0) {
1846 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
1847 (void) printf("obsolete space map object %llu:\n",
1848 (u_longlong_t
)obsolete_sm_object
);
1849 ASSERT(vd
->vdev_obsolete_sm
!= NULL
);
1850 ASSERT3U(space_map_object(vd
->vdev_obsolete_sm
), ==,
1851 obsolete_sm_object
);
1852 dump_spacemap(mos
, vd
->vdev_obsolete_sm
);
1853 (void) printf("\n");
1858 dump_metaslabs(spa_t
*spa
)
1860 vdev_t
*vd
, *rvd
= spa
->spa_root_vdev
;
1861 uint64_t m
, c
= 0, children
= rvd
->vdev_children
;
1863 (void) printf("\nMetaslabs:\n");
1865 if (!dump_opt
['d'] && zopt_metaslab_args
> 0) {
1866 c
= zopt_metaslab
[0];
1869 (void) fatal("bad vdev id: %llu", (u_longlong_t
)c
);
1871 if (zopt_metaslab_args
> 1) {
1872 vd
= rvd
->vdev_child
[c
];
1873 print_vdev_metaslab_header(vd
);
1875 for (m
= 1; m
< zopt_metaslab_args
; m
++) {
1876 if (zopt_metaslab
[m
] < vd
->vdev_ms_count
)
1878 vd
->vdev_ms
[zopt_metaslab
[m
]]);
1880 (void) fprintf(stderr
, "bad metaslab "
1882 (u_longlong_t
)zopt_metaslab
[m
]);
1884 (void) printf("\n");
1889 for (; c
< children
; c
++) {
1890 vd
= rvd
->vdev_child
[c
];
1891 print_vdev_metaslab_header(vd
);
1893 print_vdev_indirect(vd
);
1895 for (m
= 0; m
< vd
->vdev_ms_count
; m
++)
1896 dump_metaslab(vd
->vdev_ms
[m
]);
1897 (void) printf("\n");
1902 dump_log_spacemaps(spa_t
*spa
)
1904 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
1907 (void) printf("\nLog Space Maps in Pool:\n");
1908 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
1909 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
)) {
1910 space_map_t
*sm
= NULL
;
1911 VERIFY0(space_map_open(&sm
, spa_meta_objset(spa
),
1912 sls
->sls_sm_obj
, 0, UINT64_MAX
, SPA_MINBLOCKSHIFT
));
1914 (void) printf("Log Spacemap object %llu txg %llu\n",
1915 (u_longlong_t
)sls
->sls_sm_obj
, (u_longlong_t
)sls
->sls_txg
);
1916 dump_spacemap(spa
->spa_meta_objset
, sm
);
1917 space_map_close(sm
);
1919 (void) printf("\n");
1923 dump_ddt_entry(const ddt_t
*ddt
, const ddt_lightweight_entry_t
*ddlwe
,
1926 const ddt_key_t
*ddk
= &ddlwe
->ddlwe_key
;
1927 char blkbuf
[BP_SPRINTF_LEN
];
1931 for (p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
1932 const ddt_univ_phys_t
*ddp
= &ddlwe
->ddlwe_phys
;
1933 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
1935 if (ddt_phys_birth(ddp
, v
) == 0)
1937 ddt_bp_create(ddt
->ddt_checksum
, ddk
, ddp
, v
, &blk
);
1938 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &blk
);
1939 (void) printf("index %llx refcnt %llu phys %d %s\n",
1940 (u_longlong_t
)index
, (u_longlong_t
)ddt_phys_refcnt(ddp
, v
),
1946 dump_dedup_ratio(const ddt_stat_t
*dds
)
1948 double rL
, rP
, rD
, D
, dedup
, compress
, copies
;
1950 if (dds
->dds_blocks
== 0)
1953 rL
= (double)dds
->dds_ref_lsize
;
1954 rP
= (double)dds
->dds_ref_psize
;
1955 rD
= (double)dds
->dds_ref_dsize
;
1956 D
= (double)dds
->dds_dsize
;
1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1963 "dedup * compress / copies = %.2f\n\n",
1964 dedup
, compress
, copies
, dedup
* compress
/ copies
);
1968 dump_ddt_log(ddt_t
*ddt
)
1970 if (ddt
->ddt_version
!= DDT_VERSION_FDT
||
1971 !(ddt
->ddt_flags
& DDT_FLAG_LOG
))
1974 for (int n
= 0; n
< 2; n
++) {
1975 ddt_log_t
*ddl
= &ddt
->ddt_log
[n
];
1977 char flagstr
[64] = {0};
1978 if (ddl
->ddl_flags
> 0) {
1981 if (ddl
->ddl_flags
& DDL_FLAG_FLUSHING
)
1982 c
+= strlcpy(&flagstr
[c
], " FLUSHING",
1983 sizeof (flagstr
) - c
);
1984 if (ddl
->ddl_flags
& DDL_FLAG_CHECKPOINT
)
1985 c
+= strlcpy(&flagstr
[c
], " CHECKPOINT",
1986 sizeof (flagstr
) - c
);
1987 if (ddl
->ddl_flags
&
1988 ~(DDL_FLAG_FLUSHING
|DDL_FLAG_CHECKPOINT
))
1989 c
+= strlcpy(&flagstr
[c
], " UNKNOWN",
1990 sizeof (flagstr
) - c
);
1995 uint64_t count
= avl_numnodes(&ddl
->ddl_tree
);
1997 printf(DMU_POOL_DDT_LOG
": flags=0x%02x%s; obj=%llu; "
1998 "len=%llu; txg=%llu; entries=%llu\n",
1999 zio_checksum_table
[ddt
->ddt_checksum
].ci_name
, n
,
2000 ddl
->ddl_flags
, flagstr
,
2001 (u_longlong_t
)ddl
->ddl_object
,
2002 (u_longlong_t
)ddl
->ddl_length
,
2003 (u_longlong_t
)ddl
->ddl_first_txg
, (u_longlong_t
)count
);
2005 if (ddl
->ddl_flags
& DDL_FLAG_CHECKPOINT
) {
2006 const ddt_key_t
*ddk
= &ddl
->ddl_checkpoint
;
2007 printf(" checkpoint: "
2008 "%016llx:%016llx:%016llx:%016llx:%016llx\n",
2009 (u_longlong_t
)ddk
->ddk_cksum
.zc_word
[0],
2010 (u_longlong_t
)ddk
->ddk_cksum
.zc_word
[1],
2011 (u_longlong_t
)ddk
->ddk_cksum
.zc_word
[2],
2012 (u_longlong_t
)ddk
->ddk_cksum
.zc_word
[3],
2013 (u_longlong_t
)ddk
->ddk_prop
);
2016 if (count
== 0 || dump_opt
['D'] < 4)
2019 ddt_lightweight_entry_t ddlwe
;
2021 for (ddt_log_entry_t
*ddle
= avl_first(&ddl
->ddl_tree
);
2022 ddle
; ddle
= AVL_NEXT(&ddl
->ddl_tree
, ddle
)) {
2023 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt
, ddle
, &ddlwe
);
2024 dump_ddt_entry(ddt
, &ddlwe
, index
++);
2030 dump_ddt_object(ddt_t
*ddt
, ddt_type_t type
, ddt_class_t
class)
2032 char name
[DDT_NAMELEN
];
2033 ddt_lightweight_entry_t ddlwe
;
2035 dmu_object_info_t doi
;
2036 uint64_t count
, dspace
, mspace
;
2039 error
= ddt_object_info(ddt
, type
, class, &doi
);
2041 if (error
== ENOENT
)
2045 error
= ddt_object_count(ddt
, type
, class, &count
);
2050 dspace
= doi
.doi_physical_blocks_512
<< 9;
2051 mspace
= doi
.doi_fill_count
* doi
.doi_data_block_size
;
2053 ddt_object_name(ddt
, type
, class, name
);
2055 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name
,
2056 (u_longlong_t
)dspace
, (u_longlong_t
)mspace
, (u_longlong_t
)count
);
2058 if (dump_opt
['D'] < 3)
2061 zpool_dump_ddt(NULL
, &ddt
->ddt_histogram
[type
][class]);
2063 if (dump_opt
['D'] < 4)
2066 if (dump_opt
['D'] < 5 && class == DDT_CLASS_UNIQUE
)
2069 (void) printf("%s contents:\n\n", name
);
2071 while ((error
= ddt_object_walk(ddt
, type
, class, &walk
, &ddlwe
)) == 0)
2072 dump_ddt_entry(ddt
, &ddlwe
, walk
);
2074 ASSERT3U(error
, ==, ENOENT
);
2076 (void) printf("\n");
2080 dump_ddt(ddt_t
*ddt
)
2082 if (!ddt
|| ddt
->ddt_version
== DDT_VERSION_UNCONFIGURED
)
2085 char flagstr
[64] = {0};
2086 if (ddt
->ddt_flags
> 0) {
2089 if (ddt
->ddt_flags
& DDT_FLAG_FLAT
)
2090 c
+= strlcpy(&flagstr
[c
], " FLAT",
2091 sizeof (flagstr
) - c
);
2092 if (ddt
->ddt_flags
& DDT_FLAG_LOG
)
2093 c
+= strlcpy(&flagstr
[c
], " LOG",
2094 sizeof (flagstr
) - c
);
2095 if (ddt
->ddt_flags
& ~DDT_FLAG_MASK
)
2096 c
+= strlcpy(&flagstr
[c
], " UNKNOWN",
2097 sizeof (flagstr
) - c
);
2102 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n",
2103 zio_checksum_table
[ddt
->ddt_checksum
].ci_name
,
2104 (u_longlong_t
)ddt
->ddt_version
,
2105 (ddt
->ddt_version
== 0) ? "LEGACY" :
2106 (ddt
->ddt_version
== 1) ? "FDT" : "UNKNOWN",
2107 (u_longlong_t
)ddt
->ddt_flags
, flagstr
,
2108 (u_longlong_t
)ddt
->ddt_dir_object
);
2110 for (ddt_type_t type
= 0; type
< DDT_TYPES
; type
++)
2111 for (ddt_class_t
class = 0; class < DDT_CLASSES
; class++)
2112 dump_ddt_object(ddt
, type
, class);
2118 dump_all_ddts(spa_t
*spa
)
2120 ddt_histogram_t ddh_total
= {{{0}}};
2121 ddt_stat_t dds_total
= {0};
2123 for (enum zio_checksum c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++)
2124 dump_ddt(spa
->spa_ddt
[c
]);
2126 ddt_get_dedup_stats(spa
, &dds_total
);
2128 if (dds_total
.dds_blocks
== 0) {
2129 (void) printf("All DDTs are empty\n");
2133 (void) printf("\n");
2135 if (dump_opt
['D'] > 1) {
2136 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2137 ddt_get_dedup_histogram(spa
, &ddh_total
);
2138 zpool_dump_ddt(&dds_total
, &ddh_total
);
2141 dump_dedup_ratio(&dds_total
);
2144 * Dump a histogram of unique class entry age
2146 if (dump_opt
['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL
) {
2147 ddt_age_histo_t histogram
;
2149 (void) printf("DDT walk unique, building age histogram...\n");
2150 ddt_prune_walk(spa
, 0, &histogram
);
2153 * print out histogram for unique entry class birth
2155 if (histogram
.dah_entries
> 0) {
2156 (void) printf("%5s %9s %4s\n",
2157 "age", "blocks", "amnt");
2158 (void) printf("%5s %9s %4s\n",
2159 "-----", "---------", "----");
2160 for (int i
= 0; i
< HIST_BINS
; i
++) {
2161 (void) printf("%5d %9d %4d%%\n", 1 << i
,
2162 (int)histogram
.dah_age_histo
[i
],
2163 (int)((histogram
.dah_age_histo
[i
] * 100) /
2164 histogram
.dah_entries
));
2171 dump_brt(spa_t
*spa
)
2173 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
2174 printf("BRT: unsupported on this pool\n");
2178 if (!spa_feature_is_active(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
2179 printf("BRT: empty\n");
2183 char count
[32], used
[32], saved
[32];
2184 zdb_nicebytes(brt_get_used(spa
), used
, sizeof (used
));
2185 zdb_nicebytes(brt_get_saved(spa
), saved
, sizeof (saved
));
2186 uint64_t ratio
= brt_get_ratio(spa
);
2187 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used
, saved
,
2188 (u_longlong_t
)(ratio
/ 100), (u_longlong_t
)(ratio
% 100));
2190 if (dump_opt
['T'] < 2)
2193 for (uint64_t vdevid
= 0; vdevid
< spa
->spa_brt_nvdevs
; vdevid
++) {
2194 brt_vdev_t
*brtvd
= spa
->spa_brt_vdevs
[vdevid
];
2195 if (!brtvd
->bv_initiated
) {
2196 printf("BRT: vdev %" PRIu64
": empty\n", vdevid
);
2200 zdb_nicenum(brtvd
->bv_totalcount
, count
, sizeof (count
));
2201 zdb_nicebytes(brtvd
->bv_usedspace
, used
, sizeof (used
));
2202 zdb_nicebytes(brtvd
->bv_savedspace
, saved
, sizeof (saved
));
2203 printf("BRT: vdev %" PRIu64
": refcnt %s; used %s; saved %s\n",
2204 vdevid
, count
, used
, saved
);
2207 if (dump_opt
['T'] < 3)
2210 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */
2211 boolean_t do_histo
= dump_opt
['T'] == 3;
2216 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2218 for (uint64_t vdevid
= 0; vdevid
< spa
->spa_brt_nvdevs
; vdevid
++) {
2219 brt_vdev_t
*brtvd
= spa
->spa_brt_vdevs
[vdevid
];
2220 if (!brtvd
->bv_initiated
)
2223 uint64_t counts
[64] = {};
2226 zap_attribute_t
*za
= zap_attribute_alloc();
2227 for (zap_cursor_init(&zc
, spa
->spa_meta_objset
,
2228 brtvd
->bv_mos_entries
);
2229 zap_cursor_retrieve(&zc
, za
) == 0;
2230 zap_cursor_advance(&zc
)) {
2232 VERIFY0(zap_lookup_uint64(spa
->spa_meta_objset
,
2233 brtvd
->bv_mos_entries
,
2234 (const uint64_t *)za
->za_name
, 1,
2235 za
->za_integer_length
, za
->za_num_integers
,
2239 counts
[highbit64(refcnt
)]++;
2242 *(const uint64_t *)za
->za_name
;
2244 snprintf(dva
, sizeof (dva
), "%" PRIu64
":%llx",
2245 vdevid
, (u_longlong_t
)offset
);
2246 printf("%-16s %-10llu\n", dva
,
2247 (u_longlong_t
)refcnt
);
2250 zap_cursor_fini(&zc
);
2251 zap_attribute_free(za
);
2254 printf("\nBRT: vdev %" PRIu64
2255 ": DVAs with 2^n refcnts:\n", vdevid
);
2256 dump_histogram(counts
, 64, 0);
2262 dump_dtl_seg(void *arg
, uint64_t start
, uint64_t size
)
2266 (void) printf("%s [%llu,%llu) length %llu\n",
2268 (u_longlong_t
)start
,
2269 (u_longlong_t
)(start
+ size
),
2270 (u_longlong_t
)(size
));
2274 dump_dtl(vdev_t
*vd
, int indent
)
2276 spa_t
*spa
= vd
->vdev_spa
;
2278 const char *name
[DTL_TYPES
] = { "missing", "partial", "scrub",
2282 spa_vdev_state_enter(spa
, SCL_NONE
);
2283 required
= vdev_dtl_required(vd
);
2284 (void) spa_vdev_state_exit(spa
, NULL
, 0);
2287 (void) printf("\nDirty time logs:\n\n");
2289 (void) printf("\t%*s%s [%s]\n", indent
, "",
2290 vd
->vdev_path
? vd
->vdev_path
:
2291 vd
->vdev_parent
? vd
->vdev_ops
->vdev_op_type
: spa_name(spa
),
2292 required
? "DTL-required" : "DTL-expendable");
2294 for (int t
= 0; t
< DTL_TYPES
; t
++) {
2295 range_tree_t
*rt
= vd
->vdev_dtl
[t
];
2296 if (range_tree_space(rt
) == 0)
2298 (void) snprintf(prefix
, sizeof (prefix
), "\t%*s%s",
2299 indent
+ 2, "", name
[t
]);
2300 range_tree_walk(rt
, dump_dtl_seg
, prefix
);
2301 if (dump_opt
['d'] > 5 && vd
->vdev_children
== 0)
2302 dump_spacemap(spa
->spa_meta_objset
,
2306 for (unsigned c
= 0; c
< vd
->vdev_children
; c
++)
2307 dump_dtl(vd
->vdev_child
[c
], indent
+ 4);
2311 dump_history(spa_t
*spa
)
2313 nvlist_t
**events
= NULL
;
2315 uint64_t resid
, len
, off
= 0;
2320 if ((buf
= malloc(SPA_OLD_MAXBLOCKSIZE
)) == NULL
) {
2321 (void) fprintf(stderr
, "%s: unable to allocate I/O buffer\n",
2327 len
= SPA_OLD_MAXBLOCKSIZE
;
2329 if ((error
= spa_history_get(spa
, &off
, &len
, buf
)) != 0) {
2330 (void) fprintf(stderr
, "Unable to read history: "
2331 "error %d\n", error
);
2336 if (zpool_history_unpack(buf
, len
, &resid
, &events
, &num
) != 0)
2342 (void) printf("\nHistory:\n");
2343 for (unsigned i
= 0; i
< num
; i
++) {
2344 boolean_t printed
= B_FALSE
;
2346 if (nvlist_exists(events
[i
], ZPOOL_HIST_TIME
)) {
2350 tsec
= fnvlist_lookup_uint64(events
[i
],
2352 (void) localtime_r(&tsec
, &t
);
2353 (void) strftime(tbuf
, sizeof (tbuf
), "%F.%T", &t
);
2358 if (nvlist_exists(events
[i
], ZPOOL_HIST_CMD
)) {
2359 (void) printf("%s %s\n", tbuf
,
2360 fnvlist_lookup_string(events
[i
], ZPOOL_HIST_CMD
));
2361 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_INT_EVENT
)) {
2364 ievent
= fnvlist_lookup_uint64(events
[i
],
2365 ZPOOL_HIST_INT_EVENT
);
2366 if (ievent
>= ZFS_NUM_LEGACY_HISTORY_EVENTS
)
2369 (void) printf(" %s [internal %s txg:%ju] %s\n",
2371 zfs_history_event_names
[ievent
],
2372 fnvlist_lookup_uint64(events
[i
],
2374 fnvlist_lookup_string(events
[i
],
2375 ZPOOL_HIST_INT_STR
));
2376 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_INT_NAME
)) {
2377 (void) printf("%s [txg:%ju] %s", tbuf
,
2378 fnvlist_lookup_uint64(events
[i
],
2380 fnvlist_lookup_string(events
[i
],
2381 ZPOOL_HIST_INT_NAME
));
2383 if (nvlist_exists(events
[i
], ZPOOL_HIST_DSNAME
)) {
2384 (void) printf(" %s (%llu)",
2385 fnvlist_lookup_string(events
[i
],
2387 (u_longlong_t
)fnvlist_lookup_uint64(
2392 (void) printf(" %s\n", fnvlist_lookup_string(events
[i
],
2393 ZPOOL_HIST_INT_STR
));
2394 } else if (nvlist_exists(events
[i
], ZPOOL_HIST_IOCTL
)) {
2395 (void) printf("%s ioctl %s\n", tbuf
,
2396 fnvlist_lookup_string(events
[i
],
2399 if (nvlist_exists(events
[i
], ZPOOL_HIST_INPUT_NVL
)) {
2400 (void) printf(" input:\n");
2401 dump_nvlist(fnvlist_lookup_nvlist(events
[i
],
2402 ZPOOL_HIST_INPUT_NVL
), 8);
2404 if (nvlist_exists(events
[i
], ZPOOL_HIST_OUTPUT_NVL
)) {
2405 (void) printf(" output:\n");
2406 dump_nvlist(fnvlist_lookup_nvlist(events
[i
],
2407 ZPOOL_HIST_OUTPUT_NVL
), 8);
2409 if (nvlist_exists(events
[i
], ZPOOL_HIST_ERRNO
)) {
2410 (void) printf(" errno: %lld\n",
2411 (longlong_t
)fnvlist_lookup_int64(events
[i
],
2420 if (dump_opt
['h'] > 1) {
2422 (void) printf("unrecognized record:\n");
2423 dump_nvlist(events
[i
], 2);
2430 dump_dnode(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2432 (void) os
, (void) object
, (void) data
, (void) size
;
2436 blkid2offset(const dnode_phys_t
*dnp
, const blkptr_t
*bp
,
2437 const zbookmark_phys_t
*zb
)
2440 ASSERT(zb
->zb_level
< 0);
2441 if (zb
->zb_object
== 0)
2442 return (zb
->zb_blkid
);
2443 return (zb
->zb_blkid
* BP_GET_LSIZE(bp
));
2446 ASSERT(zb
->zb_level
>= 0);
2448 return ((zb
->zb_blkid
<<
2449 (zb
->zb_level
* (dnp
->dn_indblkshift
- SPA_BLKPTRSHIFT
))) *
2450 dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
);
2454 snprintf_zstd_header(spa_t
*spa
, char *blkbuf
, size_t buflen
,
2457 static abd_t
*pabd
= NULL
;
2460 zfs_zstdhdr_t zstd_hdr
;
2463 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_ZSTD
)
2469 if (BP_IS_EMBEDDED(bp
)) {
2470 buf
= malloc(SPA_MAXBLOCKSIZE
);
2472 (void) fprintf(stderr
, "out of memory\n");
2475 decode_embedded_bp_compressed(bp
, buf
);
2476 memcpy(&zstd_hdr
, buf
, sizeof (zstd_hdr
));
2478 zstd_hdr
.c_len
= BE_32(zstd_hdr
.c_len
);
2479 zstd_hdr
.raw_version_level
= BE_32(zstd_hdr
.raw_version_level
);
2480 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2481 buflen
- strlen(blkbuf
),
2482 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2483 zstd_hdr
.c_len
, zfs_get_hdrversion(&zstd_hdr
),
2484 zfs_get_hdrlevel(&zstd_hdr
));
2489 pabd
= abd_alloc_for_io(SPA_MAXBLOCKSIZE
, B_FALSE
);
2490 zio
= zio_root(spa
, NULL
, NULL
, 0);
2492 /* Decrypt but don't decompress so we can read the compression header */
2493 zio_nowait(zio_read(zio
, spa
, bp
, pabd
, BP_GET_PSIZE(bp
), NULL
, NULL
,
2494 ZIO_PRIORITY_SYNC_READ
, ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW_COMPRESS
,
2496 error
= zio_wait(zio
);
2498 (void) fprintf(stderr
, "read failed: %d\n", error
);
2501 buf
= abd_borrow_buf_copy(pabd
, BP_GET_LSIZE(bp
));
2502 memcpy(&zstd_hdr
, buf
, sizeof (zstd_hdr
));
2503 zstd_hdr
.c_len
= BE_32(zstd_hdr
.c_len
);
2504 zstd_hdr
.raw_version_level
= BE_32(zstd_hdr
.raw_version_level
);
2506 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2507 buflen
- strlen(blkbuf
),
2508 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2509 zstd_hdr
.c_len
, zfs_get_hdrversion(&zstd_hdr
),
2510 zfs_get_hdrlevel(&zstd_hdr
));
2512 abd_return_buf_copy(pabd
, buf
, BP_GET_LSIZE(bp
));
2516 snprintf_blkptr_compact(char *blkbuf
, size_t buflen
, const blkptr_t
*bp
,
2519 const dva_t
*dva
= bp
->blk_dva
;
2520 int ndvas
= dump_opt
['d'] > 5 ? BP_GET_NDVAS(bp
) : 1;
2523 if (dump_opt
['b'] >= 6) {
2524 snprintf_blkptr(blkbuf
, buflen
, bp
);
2526 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2527 buflen
- strlen(blkbuf
), " %s", "FREE");
2532 if (BP_IS_EMBEDDED(bp
)) {
2533 (void) sprintf(blkbuf
,
2534 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2535 (int)BPE_GET_ETYPE(bp
),
2536 (u_longlong_t
)BPE_GET_LSIZE(bp
),
2537 (u_longlong_t
)BPE_GET_PSIZE(bp
),
2538 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
));
2544 for (i
= 0; i
< ndvas
; i
++)
2545 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2546 buflen
- strlen(blkbuf
), "%llu:%llx:%llx ",
2547 (u_longlong_t
)DVA_GET_VDEV(&dva
[i
]),
2548 (u_longlong_t
)DVA_GET_OFFSET(&dva
[i
]),
2549 (u_longlong_t
)DVA_GET_ASIZE(&dva
[i
]));
2551 if (BP_IS_HOLE(bp
)) {
2552 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2553 buflen
- strlen(blkbuf
),
2555 (u_longlong_t
)BP_GET_LSIZE(bp
),
2556 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
));
2558 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2559 buflen
- strlen(blkbuf
),
2560 "%llxL/%llxP F=%llu B=%llu/%llu",
2561 (u_longlong_t
)BP_GET_LSIZE(bp
),
2562 (u_longlong_t
)BP_GET_PSIZE(bp
),
2563 (u_longlong_t
)BP_GET_FILL(bp
),
2564 (u_longlong_t
)BP_GET_LOGICAL_BIRTH(bp
),
2565 (u_longlong_t
)BP_GET_BIRTH(bp
));
2567 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2568 buflen
- strlen(blkbuf
), " %s", "FREE");
2569 (void) snprintf(blkbuf
+ strlen(blkbuf
),
2570 buflen
- strlen(blkbuf
),
2571 " cksum=%016llx:%016llx:%016llx:%016llx",
2572 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
2573 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
2574 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
2575 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
2580 print_indirect(spa_t
*spa
, blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2581 const dnode_phys_t
*dnp
)
2583 char blkbuf
[BP_SPRINTF_LEN
];
2586 if (!BP_IS_EMBEDDED(bp
)) {
2587 ASSERT3U(BP_GET_TYPE(bp
), ==, dnp
->dn_type
);
2588 ASSERT3U(BP_GET_LEVEL(bp
), ==, zb
->zb_level
);
2591 (void) printf("%16llx ", (u_longlong_t
)blkid2offset(dnp
, bp
, zb
));
2593 ASSERT(zb
->zb_level
>= 0);
2595 for (l
= dnp
->dn_nlevels
- 1; l
>= -1; l
--) {
2596 if (l
== zb
->zb_level
) {
2597 (void) printf("L%llx", (u_longlong_t
)zb
->zb_level
);
2603 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), bp
, B_FALSE
);
2604 if (dump_opt
['Z'] && BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_ZSTD
)
2605 snprintf_zstd_header(spa
, blkbuf
, sizeof (blkbuf
), bp
);
2606 (void) printf("%s\n", blkbuf
);
2610 visit_indirect(spa_t
*spa
, const dnode_phys_t
*dnp
,
2611 blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
2615 if (BP_GET_LOGICAL_BIRTH(bp
) == 0)
2618 print_indirect(spa
, bp
, zb
, dnp
);
2620 if (BP_GET_LEVEL(bp
) > 0 && !BP_IS_HOLE(bp
)) {
2621 arc_flags_t flags
= ARC_FLAG_WAIT
;
2624 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2627 ASSERT(!BP_IS_REDACTED(bp
));
2629 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2630 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
, &flags
, zb
);
2633 ASSERT(buf
->b_data
);
2635 /* recursively visit blocks below this */
2637 for (i
= 0; i
< epb
; i
++, cbp
++) {
2638 zbookmark_phys_t czb
;
2640 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2642 zb
->zb_blkid
* epb
+ i
);
2643 err
= visit_indirect(spa
, dnp
, cbp
, &czb
);
2646 fill
+= BP_GET_FILL(cbp
);
2649 ASSERT3U(fill
, ==, BP_GET_FILL(bp
));
2650 arc_buf_destroy(buf
, &buf
);
2657 dump_indirect(dnode_t
*dn
)
2659 dnode_phys_t
*dnp
= dn
->dn_phys
;
2660 zbookmark_phys_t czb
;
2662 (void) printf("Indirect blocks:\n");
2664 SET_BOOKMARK(&czb
, dmu_objset_id(dn
->dn_objset
),
2665 dn
->dn_object
, dnp
->dn_nlevels
- 1, 0);
2666 for (int j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
2668 (void) visit_indirect(dmu_objset_spa(dn
->dn_objset
), dnp
,
2669 &dnp
->dn_blkptr
[j
], &czb
);
2672 (void) printf("\n");
2676 dump_dsl_dir(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2678 (void) os
, (void) object
;
2679 dsl_dir_phys_t
*dd
= data
;
2683 /* make sure nicenum has enough space */
2684 _Static_assert(sizeof (nice
) >= NN_NUMBUF_SZ
, "nice truncated");
2689 ASSERT3U(size
, >=, sizeof (dsl_dir_phys_t
));
2691 crtime
= dd
->dd_creation_time
;
2692 (void) printf("\t\tcreation_time = %s", ctime(&crtime
));
2693 (void) printf("\t\thead_dataset_obj = %llu\n",
2694 (u_longlong_t
)dd
->dd_head_dataset_obj
);
2695 (void) printf("\t\tparent_dir_obj = %llu\n",
2696 (u_longlong_t
)dd
->dd_parent_obj
);
2697 (void) printf("\t\torigin_obj = %llu\n",
2698 (u_longlong_t
)dd
->dd_origin_obj
);
2699 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2700 (u_longlong_t
)dd
->dd_child_dir_zapobj
);
2701 zdb_nicenum(dd
->dd_used_bytes
, nice
, sizeof (nice
));
2702 (void) printf("\t\tused_bytes = %s\n", nice
);
2703 zdb_nicenum(dd
->dd_compressed_bytes
, nice
, sizeof (nice
));
2704 (void) printf("\t\tcompressed_bytes = %s\n", nice
);
2705 zdb_nicenum(dd
->dd_uncompressed_bytes
, nice
, sizeof (nice
));
2706 (void) printf("\t\tuncompressed_bytes = %s\n", nice
);
2707 zdb_nicenum(dd
->dd_quota
, nice
, sizeof (nice
));
2708 (void) printf("\t\tquota = %s\n", nice
);
2709 zdb_nicenum(dd
->dd_reserved
, nice
, sizeof (nice
));
2710 (void) printf("\t\treserved = %s\n", nice
);
2711 (void) printf("\t\tprops_zapobj = %llu\n",
2712 (u_longlong_t
)dd
->dd_props_zapobj
);
2713 (void) printf("\t\tdeleg_zapobj = %llu\n",
2714 (u_longlong_t
)dd
->dd_deleg_zapobj
);
2715 (void) printf("\t\tflags = %llx\n",
2716 (u_longlong_t
)dd
->dd_flags
);
2719 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2721 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2728 (void) printf("\t\tclones = %llu\n",
2729 (u_longlong_t
)dd
->dd_clones
);
2733 dump_dsl_dataset(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
2735 (void) os
, (void) object
;
2736 dsl_dataset_phys_t
*ds
= data
;
2738 char used
[32], compressed
[32], uncompressed
[32], unique
[32];
2739 char blkbuf
[BP_SPRINTF_LEN
];
2741 /* make sure nicenum has enough space */
2742 _Static_assert(sizeof (used
) >= NN_NUMBUF_SZ
, "used truncated");
2743 _Static_assert(sizeof (compressed
) >= NN_NUMBUF_SZ
,
2744 "compressed truncated");
2745 _Static_assert(sizeof (uncompressed
) >= NN_NUMBUF_SZ
,
2746 "uncompressed truncated");
2747 _Static_assert(sizeof (unique
) >= NN_NUMBUF_SZ
, "unique truncated");
2752 ASSERT(size
== sizeof (*ds
));
2753 crtime
= ds
->ds_creation_time
;
2754 zdb_nicenum(ds
->ds_referenced_bytes
, used
, sizeof (used
));
2755 zdb_nicenum(ds
->ds_compressed_bytes
, compressed
, sizeof (compressed
));
2756 zdb_nicenum(ds
->ds_uncompressed_bytes
, uncompressed
,
2757 sizeof (uncompressed
));
2758 zdb_nicenum(ds
->ds_unique_bytes
, unique
, sizeof (unique
));
2759 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ds
->ds_bp
);
2761 (void) printf("\t\tdir_obj = %llu\n",
2762 (u_longlong_t
)ds
->ds_dir_obj
);
2763 (void) printf("\t\tprev_snap_obj = %llu\n",
2764 (u_longlong_t
)ds
->ds_prev_snap_obj
);
2765 (void) printf("\t\tprev_snap_txg = %llu\n",
2766 (u_longlong_t
)ds
->ds_prev_snap_txg
);
2767 (void) printf("\t\tnext_snap_obj = %llu\n",
2768 (u_longlong_t
)ds
->ds_next_snap_obj
);
2769 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2770 (u_longlong_t
)ds
->ds_snapnames_zapobj
);
2771 (void) printf("\t\tnum_children = %llu\n",
2772 (u_longlong_t
)ds
->ds_num_children
);
2773 (void) printf("\t\tuserrefs_obj = %llu\n",
2774 (u_longlong_t
)ds
->ds_userrefs_obj
);
2775 (void) printf("\t\tcreation_time = %s", ctime(&crtime
));
2776 (void) printf("\t\tcreation_txg = %llu\n",
2777 (u_longlong_t
)ds
->ds_creation_txg
);
2778 (void) printf("\t\tdeadlist_obj = %llu\n",
2779 (u_longlong_t
)ds
->ds_deadlist_obj
);
2780 (void) printf("\t\tused_bytes = %s\n", used
);
2781 (void) printf("\t\tcompressed_bytes = %s\n", compressed
);
2782 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed
);
2783 (void) printf("\t\tunique = %s\n", unique
);
2784 (void) printf("\t\tfsid_guid = %llu\n",
2785 (u_longlong_t
)ds
->ds_fsid_guid
);
2786 (void) printf("\t\tguid = %llu\n",
2787 (u_longlong_t
)ds
->ds_guid
);
2788 (void) printf("\t\tflags = %llx\n",
2789 (u_longlong_t
)ds
->ds_flags
);
2790 (void) printf("\t\tnext_clones_obj = %llu\n",
2791 (u_longlong_t
)ds
->ds_next_clones_obj
);
2792 (void) printf("\t\tprops_obj = %llu\n",
2793 (u_longlong_t
)ds
->ds_props_obj
);
2794 (void) printf("\t\tbp = %s\n", blkbuf
);
2798 dump_bptree_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
2800 (void) arg
, (void) tx
;
2801 char blkbuf
[BP_SPRINTF_LEN
];
2803 if (BP_GET_LOGICAL_BIRTH(bp
) != 0) {
2804 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
2805 (void) printf("\t%s\n", blkbuf
);
2811 dump_bptree(objset_t
*os
, uint64_t obj
, const char *name
)
2817 /* make sure nicenum has enough space */
2818 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
2820 if (dump_opt
['d'] < 3)
2823 VERIFY3U(0, ==, dmu_bonus_hold(os
, obj
, FTAG
, &db
));
2825 zdb_nicenum(bt
->bt_bytes
, bytes
, sizeof (bytes
));
2826 (void) printf("\n %s: %llu datasets, %s\n",
2827 name
, (unsigned long long)(bt
->bt_end
- bt
->bt_begin
), bytes
);
2828 dmu_buf_rele(db
, FTAG
);
2830 if (dump_opt
['d'] < 5)
2833 (void) printf("\n");
2835 (void) bptree_iterate(os
, obj
, B_FALSE
, dump_bptree_cb
, NULL
, NULL
);
2839 dump_bpobj_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
, dmu_tx_t
*tx
)
2841 (void) arg
, (void) tx
;
2842 char blkbuf
[BP_SPRINTF_LEN
];
2844 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) != 0);
2845 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
), bp
, bp_freed
);
2846 (void) printf("\t%s\n", blkbuf
);
2851 dump_full_bpobj(bpobj_t
*bpo
, const char *name
, int indent
)
2858 /* make sure nicenum has enough space */
2859 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
2860 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
2861 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
2863 if (dump_opt
['d'] < 3)
2866 zdb_nicenum(bpo
->bpo_phys
->bpo_bytes
, bytes
, sizeof (bytes
));
2867 if (bpo
->bpo_havesubobj
&& bpo
->bpo_phys
->bpo_subobjs
!= 0) {
2868 zdb_nicenum(bpo
->bpo_phys
->bpo_comp
, comp
, sizeof (comp
));
2869 zdb_nicenum(bpo
->bpo_phys
->bpo_uncomp
, uncomp
, sizeof (uncomp
));
2870 if (bpo
->bpo_havefreed
) {
2871 (void) printf(" %*s: object %llu, %llu local "
2872 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2873 "%s (%s/%s comp)\n",
2875 (u_longlong_t
)bpo
->bpo_object
,
2876 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2877 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_freed
,
2878 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_subobjs
,
2879 (u_longlong_t
)bpo
->bpo_phys
->bpo_subobjs
,
2880 bytes
, comp
, uncomp
);
2882 (void) printf(" %*s: object %llu, %llu local "
2883 "blkptrs, %llu subobjs in object %llu, "
2884 "%s (%s/%s comp)\n",
2886 (u_longlong_t
)bpo
->bpo_object
,
2887 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2888 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_subobjs
,
2889 (u_longlong_t
)bpo
->bpo_phys
->bpo_subobjs
,
2890 bytes
, comp
, uncomp
);
2893 for (i
= 0; i
< bpo
->bpo_phys
->bpo_num_subobjs
; i
++) {
2897 VERIFY0(dmu_read(bpo
->bpo_os
,
2898 bpo
->bpo_phys
->bpo_subobjs
,
2899 i
* sizeof (subobj
), sizeof (subobj
), &subobj
, 0));
2900 error
= bpobj_open(&subbpo
, bpo
->bpo_os
, subobj
);
2902 (void) printf("ERROR %u while trying to open "
2904 error
, (u_longlong_t
)subobj
);
2907 dump_full_bpobj(&subbpo
, "subobj", indent
+ 1);
2908 bpobj_close(&subbpo
);
2911 if (bpo
->bpo_havefreed
) {
2912 (void) printf(" %*s: object %llu, %llu blkptrs, "
2915 (u_longlong_t
)bpo
->bpo_object
,
2916 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2917 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_freed
,
2920 (void) printf(" %*s: object %llu, %llu blkptrs, "
2923 (u_longlong_t
)bpo
->bpo_object
,
2924 (u_longlong_t
)bpo
->bpo_phys
->bpo_num_blkptrs
,
2929 if (dump_opt
['d'] < 5)
2934 (void) bpobj_iterate_nofree(bpo
, dump_bpobj_cb
, NULL
, NULL
);
2935 (void) printf("\n");
2940 dump_bookmark(dsl_pool_t
*dp
, char *name
, boolean_t print_redact
,
2941 boolean_t print_list
)
2944 zfs_bookmark_phys_t prop
;
2945 objset_t
*mos
= dp
->dp_spa
->spa_meta_objset
;
2946 err
= dsl_bookmark_lookup(dp
, name
, NULL
, &prop
);
2952 (void) printf("\t#%s: ", strchr(name
, '#') + 1);
2953 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2954 "%llu redaction_obj: %llu}\n", (u_longlong_t
)prop
.zbm_guid
,
2955 (u_longlong_t
)prop
.zbm_creation_txg
,
2956 (u_longlong_t
)prop
.zbm_creation_time
,
2957 (u_longlong_t
)prop
.zbm_redaction_obj
);
2959 IMPLY(print_list
, print_redact
);
2960 if (!print_redact
|| prop
.zbm_redaction_obj
== 0)
2963 redaction_list_t
*rl
;
2964 VERIFY0(dsl_redaction_list_hold_obj(dp
,
2965 prop
.zbm_redaction_obj
, FTAG
, &rl
));
2967 redaction_list_phys_t
*rlp
= rl
->rl_phys
;
2968 (void) printf("\tRedacted:\n\t\tProgress: ");
2969 if (rlp
->rlp_last_object
!= UINT64_MAX
||
2970 rlp
->rlp_last_blkid
!= UINT64_MAX
) {
2971 (void) printf("%llu %llu (incomplete)\n",
2972 (u_longlong_t
)rlp
->rlp_last_object
,
2973 (u_longlong_t
)rlp
->rlp_last_blkid
);
2975 (void) printf("complete\n");
2977 (void) printf("\t\tSnapshots: [");
2978 for (unsigned int i
= 0; i
< rlp
->rlp_num_snaps
; i
++) {
2980 (void) printf(", ");
2981 (void) printf("%0llu",
2982 (u_longlong_t
)rlp
->rlp_snaps
[i
]);
2984 (void) printf("]\n\t\tLength: %llu\n",
2985 (u_longlong_t
)rlp
->rlp_num_entries
);
2988 dsl_redaction_list_rele(rl
, FTAG
);
2992 if (rlp
->rlp_num_entries
== 0) {
2993 dsl_redaction_list_rele(rl
, FTAG
);
2994 (void) printf("\t\tRedaction List: []\n\n");
2998 redact_block_phys_t
*rbp_buf
;
3000 dmu_object_info_t doi
;
3002 VERIFY0(dmu_object_info(mos
, prop
.zbm_redaction_obj
, &doi
));
3003 size
= doi
.doi_max_offset
;
3004 rbp_buf
= kmem_alloc(size
, KM_SLEEP
);
3006 err
= dmu_read(mos
, prop
.zbm_redaction_obj
, 0, size
,
3009 dsl_redaction_list_rele(rl
, FTAG
);
3010 kmem_free(rbp_buf
, size
);
3014 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
3015 "%llx, blksz: %x, count: %llx}",
3016 (u_longlong_t
)rbp_buf
[0].rbp_object
,
3017 (u_longlong_t
)rbp_buf
[0].rbp_blkid
,
3018 (uint_t
)(redact_block_get_size(&rbp_buf
[0])),
3019 (u_longlong_t
)redact_block_get_count(&rbp_buf
[0]));
3021 for (size_t i
= 1; i
< rlp
->rlp_num_entries
; i
++) {
3022 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
3023 "blksz: %x, count: %llx}",
3024 (u_longlong_t
)rbp_buf
[i
].rbp_object
,
3025 (u_longlong_t
)rbp_buf
[i
].rbp_blkid
,
3026 (uint_t
)(redact_block_get_size(&rbp_buf
[i
])),
3027 (u_longlong_t
)redact_block_get_count(&rbp_buf
[i
]));
3029 dsl_redaction_list_rele(rl
, FTAG
);
3030 kmem_free(rbp_buf
, size
);
3031 (void) printf("]\n\n");
3036 dump_bookmarks(objset_t
*os
, int verbosity
)
3039 zap_attribute_t
*attrp
;
3040 dsl_dataset_t
*ds
= dmu_objset_ds(os
);
3041 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
3042 objset_t
*mos
= os
->os_spa
->spa_meta_objset
;
3045 attrp
= zap_attribute_alloc();
3046 dsl_pool_config_enter(dp
, FTAG
);
3048 for (zap_cursor_init(&zc
, mos
, ds
->ds_bookmarks_obj
);
3049 zap_cursor_retrieve(&zc
, attrp
) == 0;
3050 zap_cursor_advance(&zc
)) {
3051 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
3052 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
3054 dmu_objset_name(os
, osname
);
3055 len
= snprintf(buf
, sizeof (buf
), "%s#%s", osname
,
3057 VERIFY3S(len
, <, ZFS_MAX_DATASET_NAME_LEN
);
3058 (void) dump_bookmark(dp
, buf
, verbosity
>= 5, verbosity
>= 6);
3060 zap_cursor_fini(&zc
);
3061 dsl_pool_config_exit(dp
, FTAG
);
3062 zap_attribute_free(attrp
);
3066 bpobj_count_refd(bpobj_t
*bpo
)
3068 mos_obj_refd(bpo
->bpo_object
);
3070 if (bpo
->bpo_havesubobj
&& bpo
->bpo_phys
->bpo_subobjs
!= 0) {
3071 mos_obj_refd(bpo
->bpo_phys
->bpo_subobjs
);
3072 for (uint64_t i
= 0; i
< bpo
->bpo_phys
->bpo_num_subobjs
; i
++) {
3076 VERIFY0(dmu_read(bpo
->bpo_os
,
3077 bpo
->bpo_phys
->bpo_subobjs
,
3078 i
* sizeof (subobj
), sizeof (subobj
), &subobj
, 0));
3079 error
= bpobj_open(&subbpo
, bpo
->bpo_os
, subobj
);
3081 (void) printf("ERROR %u while trying to open "
3083 error
, (u_longlong_t
)subobj
);
3086 bpobj_count_refd(&subbpo
);
3087 bpobj_close(&subbpo
);
3093 dsl_deadlist_entry_count_refd(void *arg
, dsl_deadlist_entry_t
*dle
)
3096 uint64_t empty_bpobj
= spa
->spa_dsl_pool
->dp_empty_bpobj
;
3097 if (dle
->dle_bpobj
.bpo_object
!= empty_bpobj
)
3098 bpobj_count_refd(&dle
->dle_bpobj
);
3103 dsl_deadlist_entry_dump(void *arg
, dsl_deadlist_entry_t
*dle
)
3105 ASSERT(arg
== NULL
);
3106 if (dump_opt
['d'] >= 5) {
3108 (void) snprintf(buf
, sizeof (buf
),
3109 "mintxg %llu -> obj %llu",
3110 (longlong_t
)dle
->dle_mintxg
,
3111 (longlong_t
)dle
->dle_bpobj
.bpo_object
);
3113 dump_full_bpobj(&dle
->dle_bpobj
, buf
, 0);
3115 (void) printf("mintxg %llu -> obj %llu\n",
3116 (longlong_t
)dle
->dle_mintxg
,
3117 (longlong_t
)dle
->dle_bpobj
.bpo_object
);
3123 dump_blkptr_list(dsl_deadlist_t
*dl
, const char *name
)
3129 spa_t
*spa
= dmu_objset_spa(dl
->dl_os
);
3130 uint64_t empty_bpobj
= spa
->spa_dsl_pool
->dp_empty_bpobj
;
3132 if (dl
->dl_oldfmt
) {
3133 if (dl
->dl_bpobj
.bpo_object
!= empty_bpobj
)
3134 bpobj_count_refd(&dl
->dl_bpobj
);
3136 mos_obj_refd(dl
->dl_object
);
3137 dsl_deadlist_iterate(dl
, dsl_deadlist_entry_count_refd
, spa
);
3140 /* make sure nicenum has enough space */
3141 _Static_assert(sizeof (bytes
) >= NN_NUMBUF_SZ
, "bytes truncated");
3142 _Static_assert(sizeof (comp
) >= NN_NUMBUF_SZ
, "comp truncated");
3143 _Static_assert(sizeof (uncomp
) >= NN_NUMBUF_SZ
, "uncomp truncated");
3144 _Static_assert(sizeof (entries
) >= NN_NUMBUF_SZ
, "entries truncated");
3146 if (dump_opt
['d'] < 3)
3149 if (dl
->dl_oldfmt
) {
3150 dump_full_bpobj(&dl
->dl_bpobj
, "old-format deadlist", 0);
3154 zdb_nicenum(dl
->dl_phys
->dl_used
, bytes
, sizeof (bytes
));
3155 zdb_nicenum(dl
->dl_phys
->dl_comp
, comp
, sizeof (comp
));
3156 zdb_nicenum(dl
->dl_phys
->dl_uncomp
, uncomp
, sizeof (uncomp
));
3157 zdb_nicenum(avl_numnodes(&dl
->dl_tree
), entries
, sizeof (entries
));
3158 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3159 name
, bytes
, comp
, uncomp
, entries
);
3161 if (dump_opt
['d'] < 4)
3164 (void) putchar('\n');
3166 dsl_deadlist_iterate(dl
, dsl_deadlist_entry_dump
, NULL
);
3170 verify_dd_livelist(objset_t
*os
)
3172 uint64_t ll_used
, used
, ll_comp
, comp
, ll_uncomp
, uncomp
;
3173 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
3174 dsl_dir_t
*dd
= os
->os_dsl_dataset
->ds_dir
;
3176 ASSERT(!dmu_objset_is_snapshot(os
));
3177 if (!dsl_deadlist_is_open(&dd
->dd_livelist
))
3180 /* Iterate through the livelist to check for duplicates */
3181 dsl_deadlist_iterate(&dd
->dd_livelist
, sublivelist_verify_lightweight
,
3184 dsl_pool_config_enter(dp
, FTAG
);
3185 dsl_deadlist_space(&dd
->dd_livelist
, &ll_used
,
3186 &ll_comp
, &ll_uncomp
);
3188 dsl_dataset_t
*origin_ds
;
3189 ASSERT(dsl_pool_config_held(dp
));
3190 VERIFY0(dsl_dataset_hold_obj(dp
,
3191 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &origin_ds
));
3192 VERIFY0(dsl_dataset_space_written(origin_ds
, os
->os_dsl_dataset
,
3193 &used
, &comp
, &uncomp
));
3194 dsl_dataset_rele(origin_ds
, FTAG
);
3195 dsl_pool_config_exit(dp
, FTAG
);
3197 * It's possible that the dataset's uncomp space is larger than the
3198 * livelist's because livelists do not track embedded block pointers
3200 if (used
!= ll_used
|| comp
!= ll_comp
|| uncomp
< ll_uncomp
) {
3201 char nice_used
[32], nice_comp
[32], nice_uncomp
[32];
3202 (void) printf("Discrepancy in space accounting:\n");
3203 zdb_nicenum(used
, nice_used
, sizeof (nice_used
));
3204 zdb_nicenum(comp
, nice_comp
, sizeof (nice_comp
));
3205 zdb_nicenum(uncomp
, nice_uncomp
, sizeof (nice_uncomp
));
3206 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3207 nice_used
, nice_comp
, nice_uncomp
);
3208 zdb_nicenum(ll_used
, nice_used
, sizeof (nice_used
));
3209 zdb_nicenum(ll_comp
, nice_comp
, sizeof (nice_comp
));
3210 zdb_nicenum(ll_uncomp
, nice_uncomp
, sizeof (nice_uncomp
));
3211 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3212 nice_used
, nice_comp
, nice_uncomp
);
3218 static char *key_material
= NULL
;
3221 zdb_derive_key(dsl_dir_t
*dd
, uint8_t *key_out
)
3223 uint64_t keyformat
, salt
, iters
;
3227 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
3228 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), sizeof (uint64_t),
3231 switch (keyformat
) {
3232 case ZFS_KEYFORMAT_HEX
:
3233 for (i
= 0; i
< WRAPPING_KEY_LEN
* 2; i
+= 2) {
3234 if (!isxdigit(key_material
[i
]) ||
3235 !isxdigit(key_material
[i
+1]))
3237 if (sscanf(&key_material
[i
], "%02hhx", &c
) != 1)
3243 case ZFS_KEYFORMAT_PASSPHRASE
:
3244 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
,
3245 dd
->dd_crypto_obj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
3246 sizeof (uint64_t), 1, &salt
));
3247 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
,
3248 dd
->dd_crypto_obj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
3249 sizeof (uint64_t), 1, &iters
));
3251 if (PKCS5_PBKDF2_HMAC_SHA1(key_material
, strlen(key_material
),
3252 ((uint8_t *)&salt
), sizeof (uint64_t), iters
,
3253 WRAPPING_KEY_LEN
, key_out
) != 1)
3259 fatal("no support for key format %u\n",
3260 (unsigned int) keyformat
);
3266 static char encroot
[ZFS_MAX_DATASET_NAME_LEN
];
3267 static boolean_t key_loaded
= B_FALSE
;
3270 zdb_load_key(objset_t
*os
)
3273 dsl_dir_t
*dd
, *rdd
;
3274 uint8_t key
[WRAPPING_KEY_LEN
];
3278 dp
= spa_get_dsl(os
->os_spa
);
3279 dd
= os
->os_dsl_dataset
->ds_dir
;
3281 dsl_pool_config_enter(dp
, FTAG
);
3282 VERIFY0(zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
3283 DSL_CRYPTO_KEY_ROOT_DDOBJ
, sizeof (uint64_t), 1, &rddobj
));
3284 VERIFY0(dsl_dir_hold_obj(dd
->dd_pool
, rddobj
, NULL
, FTAG
, &rdd
));
3285 dsl_dir_name(rdd
, encroot
);
3286 dsl_dir_rele(rdd
, FTAG
);
3288 if (!zdb_derive_key(dd
, key
))
3289 fatal("couldn't derive encryption key");
3291 dsl_pool_config_exit(dp
, FTAG
);
3293 ASSERT3U(dsl_dataset_get_keystatus(dd
), ==, ZFS_KEYSTATUS_UNAVAILABLE
);
3295 dsl_crypto_params_t
*dcp
;
3296 nvlist_t
*crypto_args
;
3298 crypto_args
= fnvlist_alloc();
3299 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
3300 (uint8_t *)key
, WRAPPING_KEY_LEN
);
3301 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
,
3302 NULL
, crypto_args
, &dcp
));
3303 err
= spa_keystore_load_wkey(encroot
, dcp
, B_FALSE
);
3305 dsl_crypto_params_free(dcp
, (err
!= 0));
3306 fnvlist_free(crypto_args
);
3310 "couldn't load encryption key for %s: %s",
3311 encroot
, err
== ZFS_ERR_CRYPTO_NOTSUP
?
3312 "crypto params not supported" : strerror(err
));
3314 ASSERT3U(dsl_dataset_get_keystatus(dd
), ==, ZFS_KEYSTATUS_AVAILABLE
);
3316 printf("Unlocked encryption root: %s\n", encroot
);
3317 key_loaded
= B_TRUE
;
3321 zdb_unload_key(void)
3326 VERIFY0(spa_keystore_unload_wkey(encroot
));
3327 key_loaded
= B_FALSE
;
3330 static avl_tree_t idx_tree
;
3331 static avl_tree_t domain_tree
;
3332 static boolean_t fuid_table_loaded
;
3333 static objset_t
*sa_os
= NULL
;
3334 static sa_attr_type_t
*sa_attr_table
= NULL
;
3337 open_objset(const char *path
, const void *tag
, objset_t
**osp
)
3340 uint64_t sa_attrs
= 0;
3341 uint64_t version
= 0;
3343 VERIFY3P(sa_os
, ==, NULL
);
3346 * We can't own an objset if it's redacted. Therefore, we do this
3347 * dance: hold the objset, then acquire a long hold on its dataset, then
3348 * release the pool (which is held as part of holding the objset).
3351 if (dump_opt
['K']) {
3352 /* decryption requested, try to load keys */
3353 err
= dmu_objset_hold(path
, tag
, osp
);
3355 (void) fprintf(stderr
, "failed to hold dataset "
3357 path
, strerror(err
));
3360 dsl_dataset_long_hold(dmu_objset_ds(*osp
), tag
);
3361 dsl_pool_rele(dmu_objset_pool(*osp
), tag
);
3363 /* succeeds or dies */
3366 /* release it all */
3367 dsl_dataset_long_rele(dmu_objset_ds(*osp
), tag
);
3368 dsl_dataset_rele(dmu_objset_ds(*osp
), tag
);
3371 int ds_hold_flags
= key_loaded
? DS_HOLD_FLAG_DECRYPT
: 0;
3373 err
= dmu_objset_hold_flags(path
, ds_hold_flags
, tag
, osp
);
3375 (void) fprintf(stderr
, "failed to hold dataset '%s': %s\n",
3376 path
, strerror(err
));
3379 dsl_dataset_long_hold(dmu_objset_ds(*osp
), tag
);
3380 dsl_pool_rele(dmu_objset_pool(*osp
), tag
);
3382 if (dmu_objset_type(*osp
) == DMU_OST_ZFS
&&
3383 (key_loaded
|| !(*osp
)->os_encrypted
)) {
3384 (void) zap_lookup(*osp
, MASTER_NODE_OBJ
, ZPL_VERSION_STR
,
3386 if (version
>= ZPL_VERSION_SA
) {
3387 (void) zap_lookup(*osp
, MASTER_NODE_OBJ
, ZFS_SA_ATTRS
,
3390 err
= sa_setup(*osp
, sa_attrs
, zfs_attr_table
, ZPL_END
,
3393 (void) fprintf(stderr
, "sa_setup failed: %s\n",
3395 dsl_dataset_long_rele(dmu_objset_ds(*osp
), tag
);
3396 dsl_dataset_rele_flags(dmu_objset_ds(*osp
),
3397 ds_hold_flags
, tag
);
3407 close_objset(objset_t
*os
, const void *tag
)
3409 VERIFY3P(os
, ==, sa_os
);
3410 if (os
->os_sa
!= NULL
)
3412 dsl_dataset_long_rele(dmu_objset_ds(os
), tag
);
3413 dsl_dataset_rele_flags(dmu_objset_ds(os
),
3414 key_loaded
? DS_HOLD_FLAG_DECRYPT
: 0, tag
);
3415 sa_attr_table
= NULL
;
3422 fuid_table_destroy(void)
3424 if (fuid_table_loaded
) {
3425 zfs_fuid_table_destroy(&idx_tree
, &domain_tree
);
3426 fuid_table_loaded
= B_FALSE
;
3431 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3432 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3433 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3434 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3436 * Note that this is not a particularly efficient way to do this, but
3437 * ddt_remove() is the only public method that can do the work we need, and it
3438 * requires the right locks and etc to do the job. This is only ever called
3439 * during zdb shutdown so efficiency is not especially important.
3442 zdb_ddt_cleanup(spa_t
*spa
)
3444 for (enum zio_checksum c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
3445 ddt_t
*ddt
= spa
->spa_ddt
[c
];
3449 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3451 ddt_entry_t
*dde
= avl_first(&ddt
->ddt_tree
), *next
;
3453 next
= AVL_NEXT(&ddt
->ddt_tree
, dde
);
3455 ddt_remove(ddt
, dde
);
3459 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3464 zdb_exit(int reason
)
3467 zdb_ddt_cleanup(spa
);
3470 close_objset(os
, FTAG
);
3471 } else if (spa
!= NULL
) {
3472 spa_close(spa
, FTAG
);
3475 fuid_table_destroy();
3477 if (kernel_init_done
)
3484 * print uid or gid information.
3485 * For normal POSIX id just the id is printed in decimal format.
3486 * For CIFS files with FUID the fuid is printed in hex followed by
3487 * the domain-rid string.
3490 print_idstr(uint64_t id
, const char *id_type
)
3492 if (FUID_INDEX(id
)) {
3493 const char *domain
=
3494 zfs_fuid_idx_domain(&idx_tree
, FUID_INDEX(id
));
3495 (void) printf("\t%s %llx [%s-%d]\n", id_type
,
3496 (u_longlong_t
)id
, domain
, (int)FUID_RID(id
));
3498 (void) printf("\t%s %llu\n", id_type
, (u_longlong_t
)id
);
3504 dump_uidgid(objset_t
*os
, uint64_t uid
, uint64_t gid
)
3506 uint32_t uid_idx
, gid_idx
;
3508 uid_idx
= FUID_INDEX(uid
);
3509 gid_idx
= FUID_INDEX(gid
);
3511 /* Load domain table, if not already loaded */
3512 if (!fuid_table_loaded
&& (uid_idx
|| gid_idx
)) {
3515 /* first find the fuid object. It lives in the master node */
3516 VERIFY(zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_FUID_TABLES
,
3517 8, 1, &fuid_obj
) == 0);
3518 zfs_fuid_avl_tree_create(&idx_tree
, &domain_tree
);
3519 (void) zfs_fuid_table_load(os
, fuid_obj
,
3520 &idx_tree
, &domain_tree
);
3521 fuid_table_loaded
= B_TRUE
;
3524 print_idstr(uid
, "uid");
3525 print_idstr(gid
, "gid");
3529 dump_znode_sa_xattr(sa_handle_t
*hdl
)
3532 nvpair_t
*elem
= NULL
;
3533 int sa_xattr_size
= 0;
3534 int sa_xattr_entries
= 0;
3536 char *sa_xattr_packed
;
3538 error
= sa_size(hdl
, sa_attr_table
[ZPL_DXATTR
], &sa_xattr_size
);
3539 if (error
|| sa_xattr_size
== 0)
3542 sa_xattr_packed
= malloc(sa_xattr_size
);
3543 if (sa_xattr_packed
== NULL
)
3546 error
= sa_lookup(hdl
, sa_attr_table
[ZPL_DXATTR
],
3547 sa_xattr_packed
, sa_xattr_size
);
3549 free(sa_xattr_packed
);
3553 error
= nvlist_unpack(sa_xattr_packed
, sa_xattr_size
, &sa_xattr
, 0);
3555 free(sa_xattr_packed
);
3559 while ((elem
= nvlist_next_nvpair(sa_xattr
, elem
)) != NULL
)
3562 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3563 sa_xattr_size
, sa_xattr_entries
);
3564 while ((elem
= nvlist_next_nvpair(sa_xattr
, elem
)) != NULL
) {
3565 boolean_t can_print
= !dump_opt
['P'];
3569 (void) printf("\t\t%s = ", nvpair_name(elem
));
3570 nvpair_value_byte_array(elem
, &value
, &cnt
);
3572 for (idx
= 0; idx
< cnt
; ++idx
) {
3573 if (!isprint(value
[idx
])) {
3574 can_print
= B_FALSE
;
3579 for (idx
= 0; idx
< cnt
; ++idx
) {
3581 (void) putchar(value
[idx
]);
3583 (void) printf("\\%3.3o", value
[idx
]);
3585 (void) putchar('\n');
3588 nvlist_free(sa_xattr
);
3589 free(sa_xattr_packed
);
3593 dump_znode_symlink(sa_handle_t
*hdl
)
3595 int sa_symlink_size
= 0;
3596 char linktarget
[MAXPATHLEN
];
3599 error
= sa_size(hdl
, sa_attr_table
[ZPL_SYMLINK
], &sa_symlink_size
);
3600 if (error
|| sa_symlink_size
== 0) {
3603 if (sa_symlink_size
>= sizeof (linktarget
)) {
3604 (void) printf("symlink size %d is too large\n",
3608 linktarget
[sa_symlink_size
] = '\0';
3609 if (sa_lookup(hdl
, sa_attr_table
[ZPL_SYMLINK
],
3610 &linktarget
, sa_symlink_size
) == 0)
3611 (void) printf("\ttarget %s\n", linktarget
);
3615 dump_znode(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3617 (void) data
, (void) size
;
3618 char path
[MAXPATHLEN
* 2]; /* allow for xattr and failure prefix */
3620 uint64_t xattr
, rdev
, gen
;
3621 uint64_t uid
, gid
, mode
, fsize
, parent
, links
;
3623 uint64_t acctm
[2], modtm
[2], chgtm
[2], crtm
[2];
3624 time_t z_crtime
, z_atime
, z_mtime
, z_ctime
;
3625 sa_bulk_attr_t bulk
[12];
3629 VERIFY3P(os
, ==, sa_os
);
3630 if (sa_handle_get(os
, object
, NULL
, SA_HDL_PRIVATE
, &hdl
)) {
3631 (void) printf("Failed to get handle for SA znode\n");
3635 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_UID
], NULL
, &uid
, 8);
3636 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_GID
], NULL
, &gid
, 8);
3637 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_LINKS
], NULL
,
3639 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_GEN
], NULL
, &gen
, 8);
3640 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_MODE
], NULL
,
3642 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_PARENT
],
3644 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_SIZE
], NULL
,
3646 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_ATIME
], NULL
,
3648 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_MTIME
], NULL
,
3650 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_CRTIME
], NULL
,
3652 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_CTIME
], NULL
,
3654 SA_ADD_BULK_ATTR(bulk
, idx
, sa_attr_table
[ZPL_FLAGS
], NULL
,
3657 if (sa_bulk_lookup(hdl
, bulk
, idx
)) {
3658 (void) sa_handle_destroy(hdl
);
3662 z_crtime
= (time_t)crtm
[0];
3663 z_atime
= (time_t)acctm
[0];
3664 z_mtime
= (time_t)modtm
[0];
3665 z_ctime
= (time_t)chgtm
[0];
3667 if (dump_opt
['d'] > 4) {
3668 error
= zfs_obj_to_path(os
, object
, path
, sizeof (path
));
3669 if (error
== ESTALE
) {
3670 (void) snprintf(path
, sizeof (path
), "on delete queue");
3671 } else if (error
!= 0) {
3673 (void) snprintf(path
, sizeof (path
),
3674 "path not found, possibly leaked");
3676 (void) printf("\tpath %s\n", path
);
3680 dump_znode_symlink(hdl
);
3681 dump_uidgid(os
, uid
, gid
);
3682 (void) printf("\tatime %s", ctime(&z_atime
));
3683 (void) printf("\tmtime %s", ctime(&z_mtime
));
3684 (void) printf("\tctime %s", ctime(&z_ctime
));
3685 (void) printf("\tcrtime %s", ctime(&z_crtime
));
3686 (void) printf("\tgen %llu\n", (u_longlong_t
)gen
);
3687 (void) printf("\tmode %llo\n", (u_longlong_t
)mode
);
3688 (void) printf("\tsize %llu\n", (u_longlong_t
)fsize
);
3689 (void) printf("\tparent %llu\n", (u_longlong_t
)parent
);
3690 (void) printf("\tlinks %llu\n", (u_longlong_t
)links
);
3691 (void) printf("\tpflags %llx\n", (u_longlong_t
)pflags
);
3692 if (dmu_objset_projectquota_enabled(os
) && (pflags
& ZFS_PROJID
)) {
3695 if (sa_lookup(hdl
, sa_attr_table
[ZPL_PROJID
], &projid
,
3696 sizeof (uint64_t)) == 0)
3697 (void) printf("\tprojid %llu\n", (u_longlong_t
)projid
);
3699 if (sa_lookup(hdl
, sa_attr_table
[ZPL_XATTR
], &xattr
,
3700 sizeof (uint64_t)) == 0)
3701 (void) printf("\txattr %llu\n", (u_longlong_t
)xattr
);
3702 if (sa_lookup(hdl
, sa_attr_table
[ZPL_RDEV
], &rdev
,
3703 sizeof (uint64_t)) == 0)
3704 (void) printf("\trdev 0x%016llx\n", (u_longlong_t
)rdev
);
3705 dump_znode_sa_xattr(hdl
);
3706 sa_handle_destroy(hdl
);
3710 dump_acl(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3712 (void) os
, (void) object
, (void) data
, (void) size
;
3716 dump_dmu_objset(objset_t
*os
, uint64_t object
, void *data
, size_t size
)
3718 (void) os
, (void) object
, (void) data
, (void) size
;
3721 static object_viewer_t
*object_viewer
[DMU_OT_NUMTYPES
+ 1] = {
3722 dump_none
, /* unallocated */
3723 dump_zap
, /* object directory */
3724 dump_uint64
, /* object array */
3725 dump_none
, /* packed nvlist */
3726 dump_packed_nvlist
, /* packed nvlist size */
3727 dump_none
, /* bpobj */
3728 dump_bpobj
, /* bpobj header */
3729 dump_none
, /* SPA space map header */
3730 dump_none
, /* SPA space map */
3731 dump_none
, /* ZIL intent log */
3732 dump_dnode
, /* DMU dnode */
3733 dump_dmu_objset
, /* DMU objset */
3734 dump_dsl_dir
, /* DSL directory */
3735 dump_zap
, /* DSL directory child map */
3736 dump_zap
, /* DSL dataset snap map */
3737 dump_zap
, /* DSL props */
3738 dump_dsl_dataset
, /* DSL dataset */
3739 dump_znode
, /* ZFS znode */
3740 dump_acl
, /* ZFS V0 ACL */
3741 dump_uint8
, /* ZFS plain file */
3742 dump_zpldir
, /* ZFS directory */
3743 dump_zap
, /* ZFS master node */
3744 dump_zap
, /* ZFS delete queue */
3745 dump_uint8
, /* zvol object */
3746 dump_zap
, /* zvol prop */
3747 dump_uint8
, /* other uint8[] */
3748 dump_uint64
, /* other uint64[] */
3749 dump_zap
, /* other ZAP */
3750 dump_zap
, /* persistent error log */
3751 dump_uint8
, /* SPA history */
3752 dump_history_offsets
, /* SPA history offsets */
3753 dump_zap
, /* Pool properties */
3754 dump_zap
, /* DSL permissions */
3755 dump_acl
, /* ZFS ACL */
3756 dump_uint8
, /* ZFS SYSACL */
3757 dump_none
, /* FUID nvlist */
3758 dump_packed_nvlist
, /* FUID nvlist size */
3759 dump_zap
, /* DSL dataset next clones */
3760 dump_zap
, /* DSL scrub queue */
3761 dump_zap
, /* ZFS user/group/project used */
3762 dump_zap
, /* ZFS user/group/project quota */
3763 dump_zap
, /* snapshot refcount tags */
3764 dump_ddt_zap
, /* DDT ZAP object */
3765 dump_zap
, /* DDT statistics */
3766 dump_znode
, /* SA object */
3767 dump_zap
, /* SA Master Node */
3768 dump_sa_attrs
, /* SA attribute registration */
3769 dump_sa_layouts
, /* SA attribute layouts */
3770 dump_zap
, /* DSL scrub translations */
3771 dump_none
, /* fake dedup BP */
3772 dump_zap
, /* deadlist */
3773 dump_none
, /* deadlist hdr */
3774 dump_zap
, /* dsl clones */
3775 dump_bpobj_subobjs
, /* bpobj subobjs */
3776 dump_unknown
, /* Unknown type, must be last */
3780 match_object_type(dmu_object_type_t obj_type
, uint64_t flags
)
3782 boolean_t match
= B_TRUE
;
3785 case DMU_OT_DIRECTORY_CONTENTS
:
3786 if (!(flags
& ZOR_FLAG_DIRECTORY
))
3789 case DMU_OT_PLAIN_FILE_CONTENTS
:
3790 if (!(flags
& ZOR_FLAG_PLAIN_FILE
))
3793 case DMU_OT_SPACE_MAP
:
3794 if (!(flags
& ZOR_FLAG_SPACE_MAP
))
3798 if (strcmp(zdb_ot_name(obj_type
), "zap") == 0) {
3799 if (!(flags
& ZOR_FLAG_ZAP
))
3805 * If all bits except some of the supported flags are
3806 * set, the user combined the all-types flag (A) with
3807 * a negated flag to exclude some types (e.g. A-f to
3808 * show all object types except plain files).
3810 if ((flags
| ZOR_SUPPORTED_FLAGS
) != ZOR_FLAG_ALL_TYPES
)
3820 dump_object(objset_t
*os
, uint64_t object
, int verbosity
,
3821 boolean_t
*print_header
, uint64_t *dnode_slots_used
, uint64_t flags
)
3823 dmu_buf_t
*db
= NULL
;
3824 dmu_object_info_t doi
;
3826 boolean_t dnode_held
= B_FALSE
;
3829 char iblk
[32], dblk
[32], lsize
[32], asize
[32], fill
[32], dnsize
[32];
3830 char bonus_size
[32];
3834 /* make sure nicenum has enough space */
3835 _Static_assert(sizeof (iblk
) >= NN_NUMBUF_SZ
, "iblk truncated");
3836 _Static_assert(sizeof (dblk
) >= NN_NUMBUF_SZ
, "dblk truncated");
3837 _Static_assert(sizeof (lsize
) >= NN_NUMBUF_SZ
, "lsize truncated");
3838 _Static_assert(sizeof (asize
) >= NN_NUMBUF_SZ
, "asize truncated");
3839 _Static_assert(sizeof (bonus_size
) >= NN_NUMBUF_SZ
,
3840 "bonus_size truncated");
3842 if (*print_header
) {
3843 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3844 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3845 "lsize", "%full", "type");
3850 dn
= DMU_META_DNODE(os
);
3851 dmu_object_info_from_dnode(dn
, &doi
);
3854 * Encrypted datasets will have sensitive bonus buffers
3855 * encrypted. Therefore we cannot hold the bonus buffer and
3856 * must hold the dnode itself instead.
3858 error
= dmu_object_info(os
, object
, &doi
);
3860 fatal("dmu_object_info() failed, errno %u", error
);
3862 if (!key_loaded
&& os
->os_encrypted
&&
3863 DMU_OT_IS_ENCRYPTED(doi
.doi_bonus_type
)) {
3864 error
= dnode_hold(os
, object
, FTAG
, &dn
);
3866 fatal("dnode_hold() failed, errno %u", error
);
3867 dnode_held
= B_TRUE
;
3869 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
3871 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3873 bonus
= db
->db_data
;
3874 bsize
= db
->db_size
;
3875 dn
= DB_DNODE((dmu_buf_impl_t
*)db
);
3880 * Default to showing all object types if no flags were specified.
3882 if (flags
!= 0 && flags
!= ZOR_FLAG_ALL_TYPES
&&
3883 !match_object_type(doi
.doi_type
, flags
))
3886 if (dnode_slots_used
)
3887 *dnode_slots_used
= doi
.doi_dnodesize
/ DNODE_MIN_SIZE
;
3889 zdb_nicenum(doi
.doi_metadata_block_size
, iblk
, sizeof (iblk
));
3890 zdb_nicenum(doi
.doi_data_block_size
, dblk
, sizeof (dblk
));
3891 zdb_nicenum(doi
.doi_max_offset
, lsize
, sizeof (lsize
));
3892 zdb_nicenum(doi
.doi_physical_blocks_512
<< 9, asize
, sizeof (asize
));
3893 zdb_nicenum(doi
.doi_bonus_size
, bonus_size
, sizeof (bonus_size
));
3894 zdb_nicenum(doi
.doi_dnodesize
, dnsize
, sizeof (dnsize
));
3895 (void) snprintf(fill
, sizeof (fill
), "%6.2f", 100.0 *
3896 doi
.doi_fill_count
* doi
.doi_data_block_size
/ (object
== 0 ?
3897 DNODES_PER_BLOCK
: 1) / doi
.doi_max_offset
);
3901 if (doi
.doi_checksum
!= ZIO_CHECKSUM_INHERIT
|| verbosity
>= 6) {
3902 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3903 " (K=%s)", ZDB_CHECKSUM_NAME(doi
.doi_checksum
));
3906 if (doi
.doi_compress
== ZIO_COMPRESS_INHERIT
&&
3907 ZIO_COMPRESS_HASLEVEL(os
->os_compress
) && verbosity
>= 6) {
3908 const char *compname
= NULL
;
3909 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION
,
3910 ZIO_COMPRESS_RAW(os
->os_compress
, os
->os_complevel
),
3912 (void) snprintf(aux
+ strlen(aux
),
3913 sizeof (aux
) - strlen(aux
), " (Z=inherit=%s)",
3916 (void) snprintf(aux
+ strlen(aux
),
3917 sizeof (aux
) - strlen(aux
),
3918 " (Z=inherit=%s-unknown)",
3919 ZDB_COMPRESS_NAME(os
->os_compress
));
3921 } else if (doi
.doi_compress
== ZIO_COMPRESS_INHERIT
&& verbosity
>= 6) {
3922 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3923 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os
->os_compress
));
3924 } else if (doi
.doi_compress
!= ZIO_COMPRESS_INHERIT
|| verbosity
>= 6) {
3925 (void) snprintf(aux
+ strlen(aux
), sizeof (aux
) - strlen(aux
),
3926 " (Z=%s)", ZDB_COMPRESS_NAME(doi
.doi_compress
));
3929 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3930 (u_longlong_t
)object
, doi
.doi_indirection
, iblk
, dblk
,
3931 asize
, dnsize
, lsize
, fill
, zdb_ot_name(doi
.doi_type
), aux
);
3933 if (doi
.doi_bonus_type
!= DMU_OT_NONE
&& verbosity
> 3) {
3934 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3935 "", "", "", "", "", "", bonus_size
, "bonus",
3936 zdb_ot_name(doi
.doi_bonus_type
));
3939 if (verbosity
>= 4) {
3940 (void) printf("\tdnode flags: %s%s%s%s\n",
3941 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USED_BYTES
) ?
3943 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USERUSED_ACCOUNTED
) ?
3944 "USERUSED_ACCOUNTED " : "",
3945 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_USEROBJUSED_ACCOUNTED
) ?
3946 "USEROBJUSED_ACCOUNTED " : "",
3947 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) ?
3948 "SPILL_BLKPTR" : "");
3949 (void) printf("\tdnode maxblkid: %llu\n",
3950 (longlong_t
)dn
->dn_phys
->dn_maxblkid
);
3953 object_viewer
[ZDB_OT_TYPE(doi
.doi_bonus_type
)](os
,
3954 object
, bonus
, bsize
);
3956 (void) printf("\t\t(bonus encrypted)\n");
3960 (!os
->os_encrypted
|| !DMU_OT_IS_ENCRYPTED(doi
.doi_type
))) {
3961 object_viewer
[ZDB_OT_TYPE(doi
.doi_type
)](os
, object
,
3964 (void) printf("\t\t(object encrypted)\n");
3967 *print_header
= B_TRUE
;
3970 if (verbosity
>= 5) {
3971 if (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
3972 char blkbuf
[BP_SPRINTF_LEN
];
3973 snprintf_blkptr_compact(blkbuf
, sizeof (blkbuf
),
3974 DN_SPILL_BLKPTR(dn
->dn_phys
), B_FALSE
);
3975 (void) printf("\nSpill block: %s\n", blkbuf
);
3980 if (verbosity
>= 5) {
3982 * Report the list of segments that comprise the object.
3986 uint64_t blkfill
= 1;
3989 if (dn
->dn_type
== DMU_OT_DNODE
) {
3991 blkfill
= DNODES_PER_BLOCK
;
3996 /* make sure nicenum has enough space */
3997 _Static_assert(sizeof (segsize
) >= NN_NUMBUF_SZ
,
3998 "segsize truncated");
3999 error
= dnode_next_offset(dn
,
4000 0, &start
, minlvl
, blkfill
, 0);
4004 error
= dnode_next_offset(dn
,
4005 DNODE_FIND_HOLE
, &end
, minlvl
, blkfill
, 0);
4006 zdb_nicenum(end
- start
, segsize
, sizeof (segsize
));
4007 (void) printf("\t\tsegment [%016llx, %016llx)"
4008 " size %5s\n", (u_longlong_t
)start
,
4009 (u_longlong_t
)end
, segsize
);
4018 dmu_buf_rele(db
, FTAG
);
4020 dnode_rele(dn
, FTAG
);
4024 count_dir_mos_objects(dsl_dir_t
*dd
)
4026 mos_obj_refd(dd
->dd_object
);
4027 mos_obj_refd(dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
4028 mos_obj_refd(dsl_dir_phys(dd
)->dd_deleg_zapobj
);
4029 mos_obj_refd(dsl_dir_phys(dd
)->dd_props_zapobj
);
4030 mos_obj_refd(dsl_dir_phys(dd
)->dd_clones
);
4033 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
4034 * Ignore the references after the first one.
4036 mos_obj_refd_multiple(dd
->dd_crypto_obj
);
4040 count_ds_mos_objects(dsl_dataset_t
*ds
)
4042 mos_obj_refd(ds
->ds_object
);
4043 mos_obj_refd(dsl_dataset_phys(ds
)->ds_next_clones_obj
);
4044 mos_obj_refd(dsl_dataset_phys(ds
)->ds_props_obj
);
4045 mos_obj_refd(dsl_dataset_phys(ds
)->ds_userrefs_obj
);
4046 mos_obj_refd(dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
4047 mos_obj_refd(ds
->ds_bookmarks_obj
);
4049 if (!dsl_dataset_is_snapshot(ds
)) {
4050 count_dir_mos_objects(ds
->ds_dir
);
4054 static const char *const objset_types
[DMU_OST_NUMTYPES
] = {
4055 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
4058 * Parse a string denoting a range of object IDs of the form
4059 * <start>[:<end>[:flags]], and store the results in zor.
4060 * Return 0 on success. On error, return 1 and update the msg
4061 * pointer to point to a descriptive error message.
4064 parse_object_range(char *range
, zopt_object_range_t
*zor
, const char **msg
)
4067 char *p
, *s
, *dup
, *flagstr
, *tmp
= NULL
;
4072 if (strchr(range
, ':') == NULL
) {
4073 zor
->zor_obj_start
= strtoull(range
, &p
, 0);
4075 *msg
= "Invalid characters in object ID";
4078 zor
->zor_obj_start
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_start
);
4079 zor
->zor_obj_end
= zor
->zor_obj_start
;
4083 if (strchr(range
, ':') == range
) {
4084 *msg
= "Invalid leading colon";
4089 len
= strlen(range
);
4090 if (range
[len
- 1] == ':') {
4091 *msg
= "Invalid trailing colon";
4096 dup
= strdup(range
);
4097 s
= strtok_r(dup
, ":", &tmp
);
4098 zor
->zor_obj_start
= strtoull(s
, &p
, 0);
4101 *msg
= "Invalid characters in start object ID";
4106 s
= strtok_r(NULL
, ":", &tmp
);
4107 zor
->zor_obj_end
= strtoull(s
, &p
, 0);
4110 *msg
= "Invalid characters in end object ID";
4115 if (zor
->zor_obj_start
> zor
->zor_obj_end
) {
4116 *msg
= "Start object ID may not exceed end object ID";
4121 s
= strtok_r(NULL
, ":", &tmp
);
4123 zor
->zor_flags
= ZOR_FLAG_ALL_TYPES
;
4125 } else if (strtok_r(NULL
, ":", &tmp
) != NULL
) {
4126 *msg
= "Invalid colon-delimited field after flags";
4132 for (i
= 0; flagstr
[i
]; i
++) {
4134 boolean_t negation
= (flagstr
[i
] == '-');
4138 if (flagstr
[i
] == '\0') {
4139 *msg
= "Invalid trailing negation operator";
4144 bit
= flagbits
[(uchar_t
)flagstr
[i
]];
4146 *msg
= "Invalid flag";
4155 zor
->zor_flags
= flags
;
4157 zor
->zor_obj_start
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_start
);
4158 zor
->zor_obj_end
= ZDB_MAP_OBJECT_ID(zor
->zor_obj_end
);
4166 dump_objset(objset_t
*os
)
4168 dmu_objset_stats_t dds
= { 0 };
4169 uint64_t object
, object_count
;
4170 uint64_t refdbytes
, usedobjs
, scratch
;
4172 char blkbuf
[BP_SPRINTF_LEN
+ 20];
4173 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
4174 const char *type
= "UNKNOWN";
4175 int verbosity
= dump_opt
['d'];
4176 boolean_t print_header
;
4179 uint64_t total_slots_used
= 0;
4180 uint64_t max_slot_used
= 0;
4181 uint64_t dnode_slots
;
4186 /* make sure nicenum has enough space */
4187 _Static_assert(sizeof (numbuf
) >= NN_NUMBUF_SZ
, "numbuf truncated");
4189 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
4190 dmu_objset_fast_stat(os
, &dds
);
4191 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
4193 print_header
= B_TRUE
;
4195 if (dds
.dds_type
< DMU_OST_NUMTYPES
)
4196 type
= objset_types
[dds
.dds_type
];
4198 if (dds
.dds_type
== DMU_OST_META
) {
4199 dds
.dds_creation_txg
= TXG_INITIAL
;
4200 usedobjs
= BP_GET_FILL(os
->os_rootbp
);
4201 refdbytes
= dsl_dir_phys(os
->os_spa
->spa_dsl_pool
->dp_mos_dir
)->
4204 dmu_objset_space(os
, &refdbytes
, &scratch
, &usedobjs
, &scratch
);
4207 ASSERT3U(usedobjs
, ==, BP_GET_FILL(os
->os_rootbp
));
4209 zdb_nicenum(refdbytes
, numbuf
, sizeof (numbuf
));
4211 if (verbosity
>= 4) {
4212 (void) snprintf(blkbuf
, sizeof (blkbuf
), ", rootbp ");
4213 (void) snprintf_blkptr(blkbuf
+ strlen(blkbuf
),
4214 sizeof (blkbuf
) - strlen(blkbuf
), os
->os_rootbp
);
4219 dmu_objset_name(os
, osname
);
4221 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4222 "%s, %llu objects%s%s\n",
4223 osname
, type
, (u_longlong_t
)dmu_objset_id(os
),
4224 (u_longlong_t
)dds
.dds_creation_txg
,
4225 numbuf
, (u_longlong_t
)usedobjs
, blkbuf
,
4226 (dds
.dds_inconsistent
) ? " (inconsistent)" : "");
4228 for (i
= 0; i
< zopt_object_args
; i
++) {
4229 obj_start
= zopt_object_ranges
[i
].zor_obj_start
;
4230 obj_end
= zopt_object_ranges
[i
].zor_obj_end
;
4231 flags
= zopt_object_ranges
[i
].zor_flags
;
4234 if (object
== 0 || obj_start
== obj_end
)
4235 dump_object(os
, object
, verbosity
, &print_header
, NULL
,
4240 while ((dmu_object_next(os
, &object
, B_FALSE
, 0) == 0) &&
4241 object
<= obj_end
) {
4242 dump_object(os
, object
, verbosity
, &print_header
, NULL
,
4247 if (zopt_object_args
> 0) {
4248 (void) printf("\n");
4252 if (dump_opt
['i'] != 0 || verbosity
>= 2)
4253 dump_intent_log(dmu_objset_zil(os
));
4255 if (dmu_objset_ds(os
) != NULL
) {
4256 dsl_dataset_t
*ds
= dmu_objset_ds(os
);
4257 dump_blkptr_list(&ds
->ds_deadlist
, "Deadlist");
4258 if (dsl_deadlist_is_open(&ds
->ds_dir
->dd_livelist
) &&
4259 !dmu_objset_is_snapshot(os
)) {
4260 dump_blkptr_list(&ds
->ds_dir
->dd_livelist
, "Livelist");
4261 if (verify_dd_livelist(os
) != 0)
4262 fatal("livelist is incorrect");
4265 if (dsl_dataset_remap_deadlist_exists(ds
)) {
4266 (void) printf("ds_remap_deadlist:\n");
4267 dump_blkptr_list(&ds
->ds_remap_deadlist
, "Deadlist");
4269 count_ds_mos_objects(ds
);
4272 if (dmu_objset_ds(os
) != NULL
)
4273 dump_bookmarks(os
, verbosity
);
4278 if (BP_IS_HOLE(os
->os_rootbp
))
4281 dump_object(os
, 0, verbosity
, &print_header
, NULL
, 0);
4283 if (DMU_USERUSED_DNODE(os
) != NULL
&&
4284 DMU_USERUSED_DNODE(os
)->dn_type
!= 0) {
4285 dump_object(os
, DMU_USERUSED_OBJECT
, verbosity
, &print_header
,
4287 dump_object(os
, DMU_GROUPUSED_OBJECT
, verbosity
, &print_header
,
4291 if (DMU_PROJECTUSED_DNODE(os
) != NULL
&&
4292 DMU_PROJECTUSED_DNODE(os
)->dn_type
!= 0)
4293 dump_object(os
, DMU_PROJECTUSED_OBJECT
, verbosity
,
4294 &print_header
, NULL
, 0);
4297 while ((error
= dmu_object_next(os
, &object
, B_FALSE
, 0)) == 0) {
4298 dump_object(os
, object
, verbosity
, &print_header
, &dnode_slots
,
4301 total_slots_used
+= dnode_slots
;
4302 max_slot_used
= object
+ dnode_slots
- 1;
4305 (void) printf("\n");
4307 (void) printf(" Dnode slots:\n");
4308 (void) printf("\tTotal used: %10llu\n",
4309 (u_longlong_t
)total_slots_used
);
4310 (void) printf("\tMax used: %10llu\n",
4311 (u_longlong_t
)max_slot_used
);
4312 (void) printf("\tPercent empty: %10lf\n",
4313 (double)(max_slot_used
- total_slots_used
)*100 /
4314 (double)max_slot_used
);
4315 (void) printf("\n");
4317 if (error
!= ESRCH
) {
4318 (void) fprintf(stderr
, "dmu_object_next() = %d\n", error
);
4322 ASSERT3U(object_count
, ==, usedobjs
);
4324 if (leaked_objects
!= 0) {
4325 (void) printf("%d potentially leaked objects detected\n",
4332 dump_uberblock(uberblock_t
*ub
, const char *header
, const char *footer
)
4334 time_t timestamp
= ub
->ub_timestamp
;
4336 (void) printf("%s", header
? header
: "");
4337 (void) printf("\tmagic = %016llx\n", (u_longlong_t
)ub
->ub_magic
);
4338 (void) printf("\tversion = %llu\n", (u_longlong_t
)ub
->ub_version
);
4339 (void) printf("\ttxg = %llu\n", (u_longlong_t
)ub
->ub_txg
);
4340 (void) printf("\tguid_sum = %llu\n", (u_longlong_t
)ub
->ub_guid_sum
);
4341 (void) printf("\ttimestamp = %llu UTC = %s",
4342 (u_longlong_t
)ub
->ub_timestamp
, ctime(×tamp
));
4344 char blkbuf
[BP_SPRINTF_LEN
];
4345 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ub
->ub_rootbp
);
4346 (void) printf("\tbp = %s\n", blkbuf
);
4348 (void) printf("\tmmp_magic = %016llx\n",
4349 (u_longlong_t
)ub
->ub_mmp_magic
);
4350 if (MMP_VALID(ub
)) {
4351 (void) printf("\tmmp_delay = %0llu\n",
4352 (u_longlong_t
)ub
->ub_mmp_delay
);
4353 if (MMP_SEQ_VALID(ub
))
4354 (void) printf("\tmmp_seq = %u\n",
4355 (unsigned int) MMP_SEQ(ub
));
4356 if (MMP_FAIL_INT_VALID(ub
))
4357 (void) printf("\tmmp_fail = %u\n",
4358 (unsigned int) MMP_FAIL_INT(ub
));
4359 if (MMP_INTERVAL_VALID(ub
))
4360 (void) printf("\tmmp_write = %u\n",
4361 (unsigned int) MMP_INTERVAL(ub
));
4362 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4363 (void) printf("\tmmp_valid = %x\n",
4364 (unsigned int) ub
->ub_mmp_config
& 0xFF);
4367 if (dump_opt
['u'] >= 4) {
4368 char blkbuf
[BP_SPRINTF_LEN
];
4369 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), &ub
->ub_rootbp
);
4370 (void) printf("\trootbp = %s\n", blkbuf
);
4372 (void) printf("\tcheckpoint_txg = %llu\n",
4373 (u_longlong_t
)ub
->ub_checkpoint_txg
);
4375 (void) printf("\traidz_reflow state=%u off=%llu\n",
4376 (int)RRSS_GET_STATE(ub
),
4377 (u_longlong_t
)RRSS_GET_OFFSET(ub
));
4379 (void) printf("%s", footer
? footer
: "");
4383 dump_config(spa_t
*spa
)
4390 error
= dmu_bonus_hold(spa
->spa_meta_objset
,
4391 spa
->spa_config_object
, FTAG
, &db
);
4394 nvsize
= *(uint64_t *)db
->db_data
;
4395 dmu_buf_rele(db
, FTAG
);
4397 (void) printf("\nMOS Configuration:\n");
4398 dump_packed_nvlist(spa
->spa_meta_objset
,
4399 spa
->spa_config_object
, (void *)&nvsize
, 1);
4401 (void) fprintf(stderr
, "dmu_bonus_hold(%llu) failed, errno %d",
4402 (u_longlong_t
)spa
->spa_config_object
, error
);
4407 dump_cachefile(const char *cachefile
)
4410 struct stat64 statbuf
;
4414 if ((fd
= open64(cachefile
, O_RDONLY
)) < 0) {
4415 (void) printf("cannot open '%s': %s\n", cachefile
,
4420 if (fstat64(fd
, &statbuf
) != 0) {
4421 (void) printf("failed to stat '%s': %s\n", cachefile
,
4426 if ((buf
= malloc(statbuf
.st_size
)) == NULL
) {
4427 (void) fprintf(stderr
, "failed to allocate %llu bytes\n",
4428 (u_longlong_t
)statbuf
.st_size
);
4432 if (read(fd
, buf
, statbuf
.st_size
) != statbuf
.st_size
) {
4433 (void) fprintf(stderr
, "failed to read %llu bytes\n",
4434 (u_longlong_t
)statbuf
.st_size
);
4440 if (nvlist_unpack(buf
, statbuf
.st_size
, &config
, 0) != 0) {
4441 (void) fprintf(stderr
, "failed to unpack nvlist\n");
4447 dump_nvlist(config
, 0);
4449 nvlist_free(config
);
4453 * ZFS label nvlist stats
4455 typedef struct zdb_nvl_stats
{
4458 size_t zns_leaf_largest
;
4459 size_t zns_leaf_total
;
4460 nvlist_t
*zns_string
;
4461 nvlist_t
*zns_uint64
;
4462 nvlist_t
*zns_boolean
;
4466 collect_nvlist_stats(nvlist_t
*nvl
, zdb_nvl_stats_t
*stats
)
4468 nvlist_t
*list
, **array
;
4469 nvpair_t
*nvp
= NULL
;
4473 stats
->zns_list_count
++;
4475 while ((nvp
= nvlist_next_nvpair(nvl
, nvp
)) != NULL
) {
4476 name
= nvpair_name(nvp
);
4478 switch (nvpair_type(nvp
)) {
4479 case DATA_TYPE_STRING
:
4480 fnvlist_add_string(stats
->zns_string
, name
,
4481 fnvpair_value_string(nvp
));
4483 case DATA_TYPE_UINT64
:
4484 fnvlist_add_uint64(stats
->zns_uint64
, name
,
4485 fnvpair_value_uint64(nvp
));
4487 case DATA_TYPE_BOOLEAN
:
4488 fnvlist_add_boolean(stats
->zns_boolean
, name
);
4490 case DATA_TYPE_NVLIST
:
4491 if (nvpair_value_nvlist(nvp
, &list
) == 0)
4492 collect_nvlist_stats(list
, stats
);
4494 case DATA_TYPE_NVLIST_ARRAY
:
4495 if (nvpair_value_nvlist_array(nvp
, &array
, &items
) != 0)
4498 for (i
= 0; i
< items
; i
++) {
4499 collect_nvlist_stats(array
[i
], stats
);
4501 /* collect stats on leaf vdev */
4502 if (strcmp(name
, "children") == 0) {
4505 (void) nvlist_size(array
[i
], &size
,
4507 stats
->zns_leaf_total
+= size
;
4508 if (size
> stats
->zns_leaf_largest
)
4509 stats
->zns_leaf_largest
= size
;
4510 stats
->zns_leaf_count
++;
4515 (void) printf("skip type %d!\n", (int)nvpair_type(nvp
));
4521 dump_nvlist_stats(nvlist_t
*nvl
, size_t cap
)
4523 zdb_nvl_stats_t stats
= { 0 };
4524 size_t size
, sum
= 0, total
;
4527 /* requires nvlist with non-unique names for stat collection */
4528 VERIFY0(nvlist_alloc(&stats
.zns_string
, 0, 0));
4529 VERIFY0(nvlist_alloc(&stats
.zns_uint64
, 0, 0));
4530 VERIFY0(nvlist_alloc(&stats
.zns_boolean
, 0, 0));
4531 VERIFY0(nvlist_size(stats
.zns_boolean
, &noise
, NV_ENCODE_XDR
));
4533 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4535 VERIFY0(nvlist_size(nvl
, &total
, NV_ENCODE_XDR
));
4536 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4537 (int)total
, (int)(cap
- total
), 100.0 * total
/ cap
);
4539 collect_nvlist_stats(nvl
, &stats
);
4541 VERIFY0(nvlist_size(stats
.zns_uint64
, &size
, NV_ENCODE_XDR
));
4544 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4545 (int)fnvlist_num_pairs(stats
.zns_uint64
),
4546 (int)size
, 100.0 * size
/ total
);
4548 VERIFY0(nvlist_size(stats
.zns_string
, &size
, NV_ENCODE_XDR
));
4551 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4552 (int)fnvlist_num_pairs(stats
.zns_string
),
4553 (int)size
, 100.0 * size
/ total
);
4555 VERIFY0(nvlist_size(stats
.zns_boolean
, &size
, NV_ENCODE_XDR
));
4558 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4559 (int)fnvlist_num_pairs(stats
.zns_boolean
),
4560 (int)size
, 100.0 * size
/ total
);
4562 size
= total
- sum
; /* treat remainder as nvlist overhead */
4563 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4564 stats
.zns_list_count
, (int)size
, 100.0 * size
/ total
);
4566 if (stats
.zns_leaf_count
> 0) {
4567 size_t average
= stats
.zns_leaf_total
/ stats
.zns_leaf_count
;
4569 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4570 stats
.zns_leaf_count
, (int)average
);
4571 (void) printf("%24d bytes largest\n",
4572 (int)stats
.zns_leaf_largest
);
4574 if (dump_opt
['l'] >= 3 && average
> 0)
4575 (void) printf(" space for %d additional leaf vdevs\n",
4576 (int)((cap
- total
) / average
));
4578 (void) printf("\n");
4580 nvlist_free(stats
.zns_string
);
4581 nvlist_free(stats
.zns_uint64
);
4582 nvlist_free(stats
.zns_boolean
);
4585 typedef struct cksum_record
{
4587 boolean_t labels
[VDEV_LABELS
];
4592 cksum_record_compare(const void *x1
, const void *x2
)
4594 const cksum_record_t
*l
= (cksum_record_t
*)x1
;
4595 const cksum_record_t
*r
= (cksum_record_t
*)x2
;
4596 int arraysize
= ARRAY_SIZE(l
->cksum
.zc_word
);
4599 for (int i
= 0; i
< arraysize
; i
++) {
4600 difference
= TREE_CMP(l
->cksum
.zc_word
[i
], r
->cksum
.zc_word
[i
]);
4605 return (difference
);
4608 static cksum_record_t
*
4609 cksum_record_alloc(zio_cksum_t
*cksum
, int l
)
4611 cksum_record_t
*rec
;
4613 rec
= umem_zalloc(sizeof (*rec
), UMEM_NOFAIL
);
4614 rec
->cksum
= *cksum
;
4615 rec
->labels
[l
] = B_TRUE
;
4620 static cksum_record_t
*
4621 cksum_record_lookup(avl_tree_t
*tree
, zio_cksum_t
*cksum
)
4623 cksum_record_t lookup
= { .cksum
= *cksum
};
4626 return (avl_find(tree
, &lookup
, &where
));
4629 static cksum_record_t
*
4630 cksum_record_insert(avl_tree_t
*tree
, zio_cksum_t
*cksum
, int l
)
4632 cksum_record_t
*rec
;
4634 rec
= cksum_record_lookup(tree
, cksum
);
4636 rec
->labels
[l
] = B_TRUE
;
4638 rec
= cksum_record_alloc(cksum
, l
);
4646 first_label(cksum_record_t
*rec
)
4648 for (int i
= 0; i
< VDEV_LABELS
; i
++)
4656 print_label_numbers(const char *prefix
, const cksum_record_t
*rec
)
4658 fputs(prefix
, stdout
);
4659 for (int i
= 0; i
< VDEV_LABELS
; i
++)
4660 if (rec
->labels
[i
] == B_TRUE
)
4665 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4667 typedef struct zdb_label
{
4669 uint64_t label_offset
;
4670 nvlist_t
*config_nv
;
4671 cksum_record_t
*config
;
4672 cksum_record_t
*uberblocks
[MAX_UBERBLOCK_COUNT
];
4673 boolean_t header_printed
;
4674 boolean_t read_failed
;
4675 boolean_t cksum_valid
;
4679 print_label_header(zdb_label_t
*label
, int l
)
4685 if (label
->header_printed
== B_TRUE
)
4688 (void) printf("------------------------------------\n");
4689 (void) printf("LABEL %d %s\n", l
,
4690 label
->cksum_valid
? "" : "(Bad label cksum)");
4691 (void) printf("------------------------------------\n");
4693 label
->header_printed
= B_TRUE
;
4697 print_l2arc_header(void)
4699 (void) printf("------------------------------------\n");
4700 (void) printf("L2ARC device header\n");
4701 (void) printf("------------------------------------\n");
4705 print_l2arc_log_blocks(void)
4707 (void) printf("------------------------------------\n");
4708 (void) printf("L2ARC device log blocks\n");
4709 (void) printf("------------------------------------\n");
4713 dump_l2arc_log_entries(uint64_t log_entries
,
4714 l2arc_log_ent_phys_t
*le
, uint64_t i
)
4716 for (int j
= 0; j
< log_entries
; j
++) {
4717 dva_t dva
= le
[j
].le_dva
;
4718 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4719 "vdev: %llu, offset: %llu\n",
4720 (u_longlong_t
)i
, j
+ 1,
4721 (u_longlong_t
)DVA_GET_ASIZE(&dva
),
4722 (u_longlong_t
)DVA_GET_VDEV(&dva
),
4723 (u_longlong_t
)DVA_GET_OFFSET(&dva
));
4724 (void) printf("|\t\t\t\tbirth: %llu\n",
4725 (u_longlong_t
)le
[j
].le_birth
);
4726 (void) printf("|\t\t\t\tlsize: %llu\n",
4727 (u_longlong_t
)L2BLK_GET_LSIZE((&le
[j
])->le_prop
));
4728 (void) printf("|\t\t\t\tpsize: %llu\n",
4729 (u_longlong_t
)L2BLK_GET_PSIZE((&le
[j
])->le_prop
));
4730 (void) printf("|\t\t\t\tcompr: %llu\n",
4731 (u_longlong_t
)L2BLK_GET_COMPRESS((&le
[j
])->le_prop
));
4732 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4733 (u_longlong_t
)(&le
[j
])->le_complevel
);
4734 (void) printf("|\t\t\t\ttype: %llu\n",
4735 (u_longlong_t
)L2BLK_GET_TYPE((&le
[j
])->le_prop
));
4736 (void) printf("|\t\t\t\tprotected: %llu\n",
4737 (u_longlong_t
)L2BLK_GET_PROTECTED((&le
[j
])->le_prop
));
4738 (void) printf("|\t\t\t\tprefetch: %llu\n",
4739 (u_longlong_t
)L2BLK_GET_PREFETCH((&le
[j
])->le_prop
));
4740 (void) printf("|\t\t\t\taddress: %llu\n",
4741 (u_longlong_t
)le
[j
].le_daddr
);
4742 (void) printf("|\t\t\t\tARC state: %llu\n",
4743 (u_longlong_t
)L2BLK_GET_STATE((&le
[j
])->le_prop
));
4744 (void) printf("|\n");
4746 (void) printf("\n");
4750 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t
*lbps
)
4752 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t
)lbps
->lbp_daddr
);
4753 (void) printf("|\t\tpayload_asize: %llu\n",
4754 (u_longlong_t
)lbps
->lbp_payload_asize
);
4755 (void) printf("|\t\tpayload_start: %llu\n",
4756 (u_longlong_t
)lbps
->lbp_payload_start
);
4757 (void) printf("|\t\tlsize: %llu\n",
4758 (u_longlong_t
)L2BLK_GET_LSIZE(lbps
->lbp_prop
));
4759 (void) printf("|\t\tasize: %llu\n",
4760 (u_longlong_t
)L2BLK_GET_PSIZE(lbps
->lbp_prop
));
4761 (void) printf("|\t\tcompralgo: %llu\n",
4762 (u_longlong_t
)L2BLK_GET_COMPRESS(lbps
->lbp_prop
));
4763 (void) printf("|\t\tcksumalgo: %llu\n",
4764 (u_longlong_t
)L2BLK_GET_CHECKSUM(lbps
->lbp_prop
));
4765 (void) printf("|\n\n");
4769 dump_l2arc_log_blocks(int fd
, const l2arc_dev_hdr_phys_t
*l2dhdr
,
4770 l2arc_dev_hdr_phys_t
*rebuild
)
4772 l2arc_log_blk_phys_t this_lb
;
4774 l2arc_log_blkptr_t lbps
[2];
4780 print_l2arc_log_blocks();
4781 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
4783 dev
.l2ad_evict
= l2dhdr
->dh_evict
;
4784 dev
.l2ad_start
= l2dhdr
->dh_start
;
4785 dev
.l2ad_end
= l2dhdr
->dh_end
;
4787 if (l2dhdr
->dh_start_lbps
[0].lbp_daddr
== 0) {
4788 /* no log blocks to read */
4789 if (!dump_opt
['q']) {
4790 (void) printf("No log blocks to read\n");
4791 (void) printf("\n");
4795 dev
.l2ad_hand
= lbps
[0].lbp_daddr
+
4796 L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
4799 dev
.l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
4802 if (!l2arc_log_blkptr_valid(&dev
, &lbps
[0]))
4805 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4806 asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
4807 if (pread64(fd
, &this_lb
, asize
, lbps
[0].lbp_daddr
) != asize
) {
4808 if (!dump_opt
['q']) {
4809 (void) printf("Error while reading next log "
4815 fletcher_4_native_varsize(&this_lb
, asize
, &cksum
);
4816 if (!ZIO_CHECKSUM_EQUAL(cksum
, lbps
[0].lbp_cksum
)) {
4818 if (!dump_opt
['q']) {
4819 (void) printf("Invalid cksum\n");
4820 dump_l2arc_log_blkptr(&lbps
[0]);
4825 switch (L2BLK_GET_COMPRESS((&lbps
[0])->lbp_prop
)) {
4826 case ZIO_COMPRESS_OFF
:
4829 abd_t
*abd
= abd_alloc_linear(asize
, B_TRUE
);
4830 abd_copy_from_buf_off(abd
, &this_lb
, 0, asize
);
4832 abd_get_from_buf_struct(&dabd
, &this_lb
,
4834 int err
= zio_decompress_data(L2BLK_GET_COMPRESS(
4835 (&lbps
[0])->lbp_prop
), abd
, &dabd
,
4836 asize
, sizeof (this_lb
), NULL
);
4840 (void) printf("L2ARC block decompression "
4848 if (this_lb
.lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
4849 byteswap_uint64_array(&this_lb
, sizeof (this_lb
));
4850 if (this_lb
.lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
4852 (void) printf("Invalid log block magic\n\n");
4856 rebuild
->dh_lb_count
++;
4857 rebuild
->dh_lb_asize
+= asize
;
4858 if (dump_opt
['l'] > 1 && !dump_opt
['q']) {
4859 (void) printf("lb[%4llu]\tmagic: %llu\n",
4860 (u_longlong_t
)rebuild
->dh_lb_count
,
4861 (u_longlong_t
)this_lb
.lb_magic
);
4862 dump_l2arc_log_blkptr(&lbps
[0]);
4865 if (dump_opt
['l'] > 2 && !dump_opt
['q'])
4866 dump_l2arc_log_entries(l2dhdr
->dh_log_entries
,
4868 rebuild
->dh_lb_count
);
4870 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
4871 lbps
[0].lbp_payload_start
, dev
.l2ad_evict
) &&
4876 lbps
[1] = this_lb
.lb_prev_lbp
;
4879 if (!dump_opt
['q']) {
4880 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4881 (u_longlong_t
)rebuild
->dh_lb_count
);
4882 (void) printf("\t\t %d with invalid cksum\n", failed
);
4883 (void) printf("log_blk_asize:\t %llu\n\n",
4884 (u_longlong_t
)rebuild
->dh_lb_asize
);
4889 dump_l2arc_header(int fd
)
4891 l2arc_dev_hdr_phys_t l2dhdr
= {0}, rebuild
= {0};
4892 int error
= B_FALSE
;
4894 if (pread64(fd
, &l2dhdr
, sizeof (l2dhdr
),
4895 VDEV_LABEL_START_SIZE
) != sizeof (l2dhdr
)) {
4898 if (l2dhdr
.dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
4899 byteswap_uint64_array(&l2dhdr
, sizeof (l2dhdr
));
4901 if (l2dhdr
.dh_magic
!= L2ARC_DEV_HDR_MAGIC
)
4906 (void) printf("L2ARC device header not found\n\n");
4907 /* Do not return an error here for backward compatibility */
4909 } else if (!dump_opt
['q']) {
4910 print_l2arc_header();
4912 (void) printf(" magic: %llu\n",
4913 (u_longlong_t
)l2dhdr
.dh_magic
);
4914 (void) printf(" version: %llu\n",
4915 (u_longlong_t
)l2dhdr
.dh_version
);
4916 (void) printf(" pool_guid: %llu\n",
4917 (u_longlong_t
)l2dhdr
.dh_spa_guid
);
4918 (void) printf(" flags: %llu\n",
4919 (u_longlong_t
)l2dhdr
.dh_flags
);
4920 (void) printf(" start_lbps[0]: %llu\n",
4922 l2dhdr
.dh_start_lbps
[0].lbp_daddr
);
4923 (void) printf(" start_lbps[1]: %llu\n",
4925 l2dhdr
.dh_start_lbps
[1].lbp_daddr
);
4926 (void) printf(" log_blk_ent: %llu\n",
4927 (u_longlong_t
)l2dhdr
.dh_log_entries
);
4928 (void) printf(" start: %llu\n",
4929 (u_longlong_t
)l2dhdr
.dh_start
);
4930 (void) printf(" end: %llu\n",
4931 (u_longlong_t
)l2dhdr
.dh_end
);
4932 (void) printf(" evict: %llu\n",
4933 (u_longlong_t
)l2dhdr
.dh_evict
);
4934 (void) printf(" lb_asize_refcount: %llu\n",
4935 (u_longlong_t
)l2dhdr
.dh_lb_asize
);
4936 (void) printf(" lb_count_refcount: %llu\n",
4937 (u_longlong_t
)l2dhdr
.dh_lb_count
);
4938 (void) printf(" trim_action_time: %llu\n",
4939 (u_longlong_t
)l2dhdr
.dh_trim_action_time
);
4940 (void) printf(" trim_state: %llu\n\n",
4941 (u_longlong_t
)l2dhdr
.dh_trim_state
);
4944 dump_l2arc_log_blocks(fd
, &l2dhdr
, &rebuild
);
4946 * The total aligned size of log blocks and the number of log blocks
4947 * reported in the header of the device may be less than what zdb
4948 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4949 * This happens because dump_l2arc_log_blocks() lacks the memory
4950 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4951 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4952 * and dh_lb_count will be lower to begin with than what exists on the
4953 * device. This is normal and zdb should not exit with an error. The
4954 * opposite case should never happen though, the values reported in the
4955 * header should never be higher than what dump_l2arc_log_blocks() and
4956 * l2arc_rebuild() report. If this happens there is a leak in the
4957 * accounting of log blocks.
4959 if (l2dhdr
.dh_lb_asize
> rebuild
.dh_lb_asize
||
4960 l2dhdr
.dh_lb_count
> rebuild
.dh_lb_count
)
4967 dump_config_from_label(zdb_label_t
*label
, size_t buflen
, int l
)
4972 if ((dump_opt
['l'] < 3) && (first_label(label
->config
) != l
))
4975 print_label_header(label
, l
);
4976 dump_nvlist(label
->config_nv
, 4);
4977 print_label_numbers(" labels = ", label
->config
);
4979 if (dump_opt
['l'] >= 2)
4980 dump_nvlist_stats(label
->config_nv
, buflen
);
4983 #define ZDB_MAX_UB_HEADER_SIZE 32
4986 dump_label_uberblocks(zdb_label_t
*label
, uint64_t ashift
, int label_num
)
4990 char header
[ZDB_MAX_UB_HEADER_SIZE
];
4992 vd
.vdev_ashift
= ashift
;
4995 for (int i
= 0; i
< VDEV_UBERBLOCK_COUNT(&vd
); i
++) {
4996 uint64_t uoff
= VDEV_UBERBLOCK_OFFSET(&vd
, i
);
4997 uberblock_t
*ub
= (void *)((char *)&label
->label
+ uoff
);
4998 cksum_record_t
*rec
= label
->uberblocks
[i
];
5001 if (dump_opt
['u'] >= 2) {
5002 print_label_header(label
, label_num
);
5003 (void) printf(" Uberblock[%d] invalid\n", i
);
5008 if ((dump_opt
['u'] < 3) && (first_label(rec
) != label_num
))
5011 if ((dump_opt
['u'] < 4) &&
5012 (ub
->ub_mmp_magic
== MMP_MAGIC
) && ub
->ub_mmp_delay
&&
5013 (i
>= VDEV_UBERBLOCK_COUNT(&vd
) - MMP_BLOCKS_PER_LABEL
))
5016 print_label_header(label
, label_num
);
5017 (void) snprintf(header
, ZDB_MAX_UB_HEADER_SIZE
,
5018 " Uberblock[%d]\n", i
);
5019 dump_uberblock(ub
, header
, "");
5020 print_label_numbers(" labels = ", rec
);
5024 static char curpath
[PATH_MAX
];
5027 * Iterate through the path components, recursively passing
5028 * current one's obj and remaining path until we find the obj
5032 dump_path_impl(objset_t
*os
, uint64_t obj
, char *name
, uint64_t *retobj
)
5035 boolean_t header
= B_TRUE
;
5039 dmu_object_info_t doi
;
5041 if ((s
= strchr(name
, '/')) != NULL
)
5043 err
= zap_lookup(os
, obj
, name
, 8, 1, &child_obj
);
5045 (void) strlcat(curpath
, name
, sizeof (curpath
));
5048 (void) fprintf(stderr
, "failed to lookup %s: %s\n",
5049 curpath
, strerror(err
));
5053 child_obj
= ZFS_DIRENT_OBJ(child_obj
);
5054 err
= sa_buf_hold(os
, child_obj
, FTAG
, &db
);
5056 (void) fprintf(stderr
,
5057 "failed to get SA dbuf for obj %llu: %s\n",
5058 (u_longlong_t
)child_obj
, strerror(err
));
5061 dmu_object_info_from_db(db
, &doi
);
5062 sa_buf_rele(db
, FTAG
);
5064 if (doi
.doi_bonus_type
!= DMU_OT_SA
&&
5065 doi
.doi_bonus_type
!= DMU_OT_ZNODE
) {
5066 (void) fprintf(stderr
, "invalid bonus type %d for obj %llu\n",
5067 doi
.doi_bonus_type
, (u_longlong_t
)child_obj
);
5071 if (dump_opt
['v'] > 6) {
5072 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
5073 (u_longlong_t
)child_obj
, curpath
, doi
.doi_type
,
5074 doi
.doi_bonus_type
);
5077 (void) strlcat(curpath
, "/", sizeof (curpath
));
5079 switch (doi
.doi_type
) {
5080 case DMU_OT_DIRECTORY_CONTENTS
:
5081 if (s
!= NULL
&& *(s
+ 1) != '\0')
5082 return (dump_path_impl(os
, child_obj
, s
+ 1, retobj
));
5084 case DMU_OT_PLAIN_FILE_CONTENTS
:
5085 if (retobj
!= NULL
) {
5086 *retobj
= child_obj
;
5088 dump_object(os
, child_obj
, dump_opt
['v'], &header
,
5093 (void) fprintf(stderr
, "object %llu has non-file/directory "
5094 "type %d\n", (u_longlong_t
)obj
, doi
.doi_type
);
5102 * Dump the blocks for the object specified by path inside the dataset.
5105 dump_path(char *ds
, char *path
, uint64_t *retobj
)
5111 err
= open_objset(ds
, FTAG
, &os
);
5115 err
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_ROOT_OBJ
, 8, 1, &root_obj
);
5117 (void) fprintf(stderr
, "can't lookup root znode: %s\n",
5119 close_objset(os
, FTAG
);
5123 (void) snprintf(curpath
, sizeof (curpath
), "dataset=%s path=/", ds
);
5125 err
= dump_path_impl(os
, root_obj
, path
, retobj
);
5127 close_objset(os
, FTAG
);
5132 dump_backup_bytes(objset_t
*os
, void *buf
, int len
, void *arg
)
5134 const char *p
= (const char *)buf
;
5140 /* Write the data out, handling short writes and signals. */
5141 while ((nwritten
= write(STDOUT_FILENO
, p
, len
)) < len
) {
5155 dump_backup(const char *pool
, uint64_t objset_id
, const char *flagstr
)
5157 boolean_t embed
= B_FALSE
;
5158 boolean_t large_block
= B_FALSE
;
5159 boolean_t compress
= B_FALSE
;
5160 boolean_t raw
= B_FALSE
;
5163 for (c
= flagstr
; c
!= NULL
&& *c
!= '\0'; c
++) {
5169 large_block
= B_TRUE
;
5178 fprintf(stderr
, "dump_backup: invalid flag "
5184 if (isatty(STDOUT_FILENO
)) {
5185 fprintf(stderr
, "dump_backup: stream cannot be written "
5191 dmu_send_outparams_t out
= {
5192 .dso_outfunc
= dump_backup_bytes
,
5193 .dso_dryrun
= B_FALSE
,
5196 int err
= dmu_send_obj(pool
, objset_id
, /* fromsnap */0, embed
,
5197 large_block
, compress
, raw
, /* saved */ B_FALSE
, STDOUT_FILENO
,
5200 fprintf(stderr
, "dump_backup: dmu_send_obj: %s\n",
5207 zdb_copy_object(objset_t
*os
, uint64_t srcobj
, char *destfile
)
5210 uint64_t size
, readsize
, oursize
, offset
;
5214 (void) printf("Copying object %" PRIu64
" to file %s\n", srcobj
,
5217 VERIFY3P(os
, ==, sa_os
);
5218 if ((err
= sa_handle_get(os
, srcobj
, NULL
, SA_HDL_PRIVATE
, &hdl
))) {
5219 (void) printf("Failed to get handle for SA znode\n");
5222 if ((err
= sa_lookup(hdl
, sa_attr_table
[ZPL_SIZE
], &size
, 8))) {
5223 (void) sa_handle_destroy(hdl
);
5226 (void) sa_handle_destroy(hdl
);
5228 (void) printf("Object %" PRIu64
" is %" PRIu64
" bytes\n", srcobj
,
5234 int fd
= open(destfile
, O_WRONLY
| O_CREAT
| O_TRUNC
, 0644);
5238 * We cap the size at 1 mebibyte here to prevent
5239 * allocation failures and nigh-infinite printing if the
5240 * object is extremely large.
5242 oursize
= MIN(size
, 1 << 20);
5244 char *buf
= kmem_alloc(oursize
, KM_NOSLEEP
);
5250 while (offset
< size
) {
5251 readsize
= MIN(size
- offset
, 1 << 20);
5252 err
= dmu_read(os
, srcobj
, offset
, readsize
, buf
, 0);
5254 (void) printf("got error %u from dmu_read\n", err
);
5255 kmem_free(buf
, oursize
);
5259 if (dump_opt
['v'] > 3) {
5260 (void) printf("Read offset=%" PRIu64
" size=%" PRIu64
5261 " error=%d\n", offset
, readsize
, err
);
5264 writesize
= write(fd
, buf
, readsize
);
5265 if (writesize
< 0) {
5268 } else if (writesize
!= readsize
) {
5269 /* Incomplete write */
5270 (void) fprintf(stderr
, "Short write, only wrote %llu of"
5271 " %" PRIu64
" bytes, exiting...\n",
5272 (u_longlong_t
)writesize
, readsize
);
5282 kmem_free(buf
, oursize
);
5288 label_cksum_valid(vdev_label_t
*label
, uint64_t offset
)
5290 zio_checksum_info_t
*ci
= &zio_checksum_table
[ZIO_CHECKSUM_LABEL
];
5291 zio_cksum_t expected_cksum
;
5292 zio_cksum_t actual_cksum
;
5293 zio_cksum_t verifier
;
5297 void *data
= (char *)label
+ offsetof(vdev_label_t
, vl_vdev_phys
);
5298 eck
= (zio_eck_t
*)((char *)(data
) + VDEV_PHYS_SIZE
) - 1;
5300 offset
+= offsetof(vdev_label_t
, vl_vdev_phys
);
5301 ZIO_SET_CHECKSUM(&verifier
, offset
, 0, 0, 0);
5303 byteswap
= (eck
->zec_magic
== BSWAP_64(ZEC_MAGIC
));
5305 byteswap_uint64_array(&verifier
, sizeof (zio_cksum_t
));
5307 expected_cksum
= eck
->zec_cksum
;
5308 eck
->zec_cksum
= verifier
;
5310 abd_t
*abd
= abd_get_from_buf(data
, VDEV_PHYS_SIZE
);
5311 ci
->ci_func
[byteswap
](abd
, VDEV_PHYS_SIZE
, NULL
, &actual_cksum
);
5315 byteswap_uint64_array(&expected_cksum
, sizeof (zio_cksum_t
));
5317 if (ZIO_CHECKSUM_EQUAL(actual_cksum
, expected_cksum
))
5324 dump_label(const char *dev
)
5326 char path
[MAXPATHLEN
];
5327 zdb_label_t labels
[VDEV_LABELS
] = {{{{0}}}};
5328 uint64_t psize
, ashift
, l2cache
;
5329 struct stat64 statbuf
;
5330 boolean_t config_found
= B_FALSE
;
5331 boolean_t error
= B_FALSE
;
5332 boolean_t read_l2arc_header
= B_FALSE
;
5333 avl_tree_t config_tree
;
5334 avl_tree_t uberblock_tree
;
5335 void *node
, *cookie
;
5339 * Check if we were given absolute path and use it as is.
5340 * Otherwise if the provided vdev name doesn't point to a file,
5341 * try prepending expected disk paths and partition numbers.
5343 (void) strlcpy(path
, dev
, sizeof (path
));
5344 if (dev
[0] != '/' && stat64(path
, &statbuf
) != 0) {
5347 error
= zfs_resolve_shortname(dev
, path
, MAXPATHLEN
);
5348 if (error
== 0 && zfs_dev_is_whole_disk(path
)) {
5349 if (zfs_append_partition(path
, MAXPATHLEN
) == -1)
5353 if (error
|| (stat64(path
, &statbuf
) != 0)) {
5354 (void) printf("failed to find device %s, try "
5355 "specifying absolute path instead\n", dev
);
5360 if ((fd
= open64(path
, O_RDONLY
)) < 0) {
5361 (void) printf("cannot open '%s': %s\n", path
, strerror(errno
));
5365 if (fstat64_blk(fd
, &statbuf
) != 0) {
5366 (void) printf("failed to stat '%s': %s\n", path
,
5372 if (S_ISBLK(statbuf
.st_mode
) && zfs_dev_flush(fd
) != 0)
5373 (void) printf("failed to invalidate cache '%s' : %s\n", path
,
5376 avl_create(&config_tree
, cksum_record_compare
,
5377 sizeof (cksum_record_t
), offsetof(cksum_record_t
, link
));
5378 avl_create(&uberblock_tree
, cksum_record_compare
,
5379 sizeof (cksum_record_t
), offsetof(cksum_record_t
, link
));
5381 psize
= statbuf
.st_size
;
5382 psize
= P2ALIGN_TYPED(psize
, sizeof (vdev_label_t
), uint64_t);
5383 ashift
= SPA_MINBLOCKSHIFT
;
5386 * 1. Read the label from disk
5387 * 2. Verify label cksum
5388 * 3. Unpack the configuration and insert in config tree.
5389 * 4. Traverse all uberblocks and insert in uberblock tree.
5391 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
5392 zdb_label_t
*label
= &labels
[l
];
5393 char *buf
= label
->label
.vl_vdev_phys
.vp_nvlist
;
5394 size_t buflen
= sizeof (label
->label
.vl_vdev_phys
.vp_nvlist
);
5396 cksum_record_t
*rec
;
5400 label
->label_offset
= vdev_label_offset(psize
, l
, 0);
5402 if (pread64(fd
, &label
->label
, sizeof (label
->label
),
5403 label
->label_offset
) != sizeof (label
->label
)) {
5405 (void) printf("failed to read label %d\n", l
);
5406 label
->read_failed
= B_TRUE
;
5411 label
->read_failed
= B_FALSE
;
5412 label
->cksum_valid
= label_cksum_valid(&label
->label
,
5413 label
->label_offset
);
5415 if (nvlist_unpack(buf
, buflen
, &config
, 0) == 0) {
5416 nvlist_t
*vdev_tree
= NULL
;
5419 if ((nvlist_lookup_nvlist(config
,
5420 ZPOOL_CONFIG_VDEV_TREE
, &vdev_tree
) != 0) ||
5421 (nvlist_lookup_uint64(vdev_tree
,
5422 ZPOOL_CONFIG_ASHIFT
, &ashift
) != 0))
5423 ashift
= SPA_MINBLOCKSHIFT
;
5425 if (nvlist_size(config
, &size
, NV_ENCODE_XDR
) != 0)
5428 /* If the device is a cache device read the header. */
5429 if (!read_l2arc_header
) {
5430 if (nvlist_lookup_uint64(config
,
5431 ZPOOL_CONFIG_POOL_STATE
, &l2cache
) == 0 &&
5432 l2cache
== POOL_STATE_L2CACHE
) {
5433 read_l2arc_header
= B_TRUE
;
5437 fletcher_4_native_varsize(buf
, size
, &cksum
);
5438 rec
= cksum_record_insert(&config_tree
, &cksum
, l
);
5440 label
->config
= rec
;
5441 label
->config_nv
= config
;
5442 config_found
= B_TRUE
;
5447 vd
.vdev_ashift
= ashift
;
5450 for (int i
= 0; i
< VDEV_UBERBLOCK_COUNT(&vd
); i
++) {
5451 uint64_t uoff
= VDEV_UBERBLOCK_OFFSET(&vd
, i
);
5452 uberblock_t
*ub
= (void *)((char *)label
+ uoff
);
5454 if (uberblock_verify(ub
))
5457 fletcher_4_native_varsize(ub
, sizeof (*ub
), &cksum
);
5458 rec
= cksum_record_insert(&uberblock_tree
, &cksum
, l
);
5460 label
->uberblocks
[i
] = rec
;
5465 * Dump the label and uberblocks.
5467 for (int l
= 0; l
< VDEV_LABELS
; l
++) {
5468 zdb_label_t
*label
= &labels
[l
];
5469 size_t buflen
= sizeof (label
->label
.vl_vdev_phys
.vp_nvlist
);
5471 if (label
->read_failed
== B_TRUE
)
5474 if (label
->config_nv
) {
5475 dump_config_from_label(label
, buflen
, l
);
5478 (void) printf("failed to unpack label %d\n", l
);
5482 dump_label_uberblocks(label
, ashift
, l
);
5484 nvlist_free(label
->config_nv
);
5488 * Dump the L2ARC header, if existent.
5490 if (read_l2arc_header
)
5491 error
|= dump_l2arc_header(fd
);
5494 while ((node
= avl_destroy_nodes(&config_tree
, &cookie
)) != NULL
)
5495 umem_free(node
, sizeof (cksum_record_t
));
5498 while ((node
= avl_destroy_nodes(&uberblock_tree
, &cookie
)) != NULL
)
5499 umem_free(node
, sizeof (cksum_record_t
));
5501 avl_destroy(&config_tree
);
5502 avl_destroy(&uberblock_tree
);
5506 return (config_found
== B_FALSE
? 2 :
5507 (error
== B_TRUE
? 1 : 0));
5510 static uint64_t dataset_feature_count
[SPA_FEATURES
];
5511 static uint64_t global_feature_count
[SPA_FEATURES
];
5512 static uint64_t remap_deadlist_count
= 0;
5515 dump_one_objset(const char *dsname
, void *arg
)
5522 error
= open_objset(dsname
, FTAG
, &os
);
5526 for (f
= 0; f
< SPA_FEATURES
; f
++) {
5527 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os
), f
))
5529 ASSERT(spa_feature_table
[f
].fi_flags
&
5530 ZFEATURE_FLAG_PER_DATASET
);
5531 dataset_feature_count
[f
]++;
5534 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os
))) {
5535 remap_deadlist_count
++;
5538 for (dsl_bookmark_node_t
*dbn
=
5539 avl_first(&dmu_objset_ds(os
)->ds_bookmarks
); dbn
!= NULL
;
5540 dbn
= AVL_NEXT(&dmu_objset_ds(os
)->ds_bookmarks
, dbn
)) {
5541 mos_obj_refd(dbn
->dbn_phys
.zbm_redaction_obj
);
5542 if (dbn
->dbn_phys
.zbm_redaction_obj
!= 0) {
5543 global_feature_count
[
5544 SPA_FEATURE_REDACTION_BOOKMARKS
]++;
5545 objset_t
*mos
= os
->os_spa
->spa_meta_objset
;
5547 VERIFY0(dnode_hold(mos
,
5548 dbn
->dbn_phys
.zbm_redaction_obj
, FTAG
, &rl
));
5549 if (rl
->dn_have_spill
) {
5550 global_feature_count
[
5551 SPA_FEATURE_REDACTION_LIST_SPILL
]++;
5554 if (dbn
->dbn_phys
.zbm_flags
& ZBM_FLAG_HAS_FBN
)
5555 global_feature_count
[SPA_FEATURE_BOOKMARK_WRITTEN
]++;
5558 if (dsl_deadlist_is_open(&dmu_objset_ds(os
)->ds_dir
->dd_livelist
) &&
5559 !dmu_objset_is_snapshot(os
)) {
5560 global_feature_count
[SPA_FEATURE_LIVELIST
]++;
5564 close_objset(os
, FTAG
);
5565 fuid_table_destroy();
5572 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5573 typedef struct zdb_blkstats
{
5579 uint64_t zb_ditto_samevdev
;
5580 uint64_t zb_ditto_same_ms
;
5581 uint64_t zb_psize_histogram
[PSIZE_HISTO_SIZE
];
5585 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5587 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5588 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5589 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5590 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5592 static const char *zdb_ot_extname
[] = {
5599 #define ZB_TOTAL DN_MAX_LEVELS
5600 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5602 typedef struct zdb_brt_entry
{
5604 uint64_t zbre_refcount
;
5605 avl_node_t zbre_node
;
5608 typedef struct zdb_cb
{
5609 zdb_blkstats_t zcb_type
[ZB_TOTAL
+ 1][ZDB_OT_TOTAL
+ 1];
5610 uint64_t zcb_removing_size
;
5611 uint64_t zcb_checkpoint_size
;
5612 uint64_t zcb_dedup_asize
;
5613 uint64_t zcb_dedup_blocks
;
5614 uint64_t zcb_clone_asize
;
5615 uint64_t zcb_clone_blocks
;
5616 uint64_t zcb_psize_count
[SPA_MAX_FOR_16M
];
5617 uint64_t zcb_lsize_count
[SPA_MAX_FOR_16M
];
5618 uint64_t zcb_asize_count
[SPA_MAX_FOR_16M
];
5619 uint64_t zcb_psize_len
[SPA_MAX_FOR_16M
];
5620 uint64_t zcb_lsize_len
[SPA_MAX_FOR_16M
];
5621 uint64_t zcb_asize_len
[SPA_MAX_FOR_16M
];
5622 uint64_t zcb_psize_total
;
5623 uint64_t zcb_lsize_total
;
5624 uint64_t zcb_asize_total
;
5625 uint64_t zcb_embedded_blocks
[NUM_BP_EMBEDDED_TYPES
];
5626 uint64_t zcb_embedded_histogram
[NUM_BP_EMBEDDED_TYPES
]
5627 [BPE_PAYLOAD_SIZE
+ 1];
5629 hrtime_t zcb_lastprint
;
5630 uint64_t zcb_totalasize
;
5631 uint64_t zcb_errors
[256];
5635 uint32_t **zcb_vd_obsolete_counts
;
5637 boolean_t zcb_brt_is_active
;
5640 /* test if two DVA offsets from same vdev are within the same metaslab */
5642 same_metaslab(spa_t
*spa
, uint64_t vdev
, uint64_t off1
, uint64_t off2
)
5644 vdev_t
*vd
= vdev_lookup_top(spa
, vdev
);
5645 uint64_t ms_shift
= vd
->vdev_ms_shift
;
5647 return ((off1
>> ms_shift
) == (off2
>> ms_shift
));
5651 * Used to simplify reporting of the histogram data.
5653 typedef struct one_histo
{
5657 uint64_t cumulative
;
5661 * The number of separate histograms processed for psize, lsize and asize.
5666 * This routine will create a fixed column size output of three different
5667 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5668 * the count, length and cumulative length of the psize, lsize and
5671 * All three types of blocks are listed on a single line
5673 * By default the table is printed in nicenumber format (e.g. 123K) but
5674 * if the '-P' parameter is specified then the full raw number (parseable)
5678 dump_size_histograms(zdb_cb_t
*zcb
)
5681 * A temporary buffer that allows us to convert a number into
5682 * a string using zdb_nicenumber to allow either raw or human
5683 * readable numbers to be output.
5688 * Define titles which are used in the headers of the tables
5689 * printed by this routine.
5691 const char blocksize_title1
[] = "block";
5692 const char blocksize_title2
[] = "size";
5693 const char count_title
[] = "Count";
5694 const char length_title
[] = "Size";
5695 const char cumulative_title
[] = "Cum.";
5698 * Setup the histogram arrays (psize, lsize, and asize).
5700 one_histo_t parm_histo
[NUM_HISTO
];
5702 parm_histo
[0].name
= "psize";
5703 parm_histo
[0].count
= zcb
->zcb_psize_count
;
5704 parm_histo
[0].len
= zcb
->zcb_psize_len
;
5705 parm_histo
[0].cumulative
= 0;
5707 parm_histo
[1].name
= "lsize";
5708 parm_histo
[1].count
= zcb
->zcb_lsize_count
;
5709 parm_histo
[1].len
= zcb
->zcb_lsize_len
;
5710 parm_histo
[1].cumulative
= 0;
5712 parm_histo
[2].name
= "asize";
5713 parm_histo
[2].count
= zcb
->zcb_asize_count
;
5714 parm_histo
[2].len
= zcb
->zcb_asize_len
;
5715 parm_histo
[2].cumulative
= 0;
5718 (void) printf("\nBlock Size Histogram\n");
5720 * Print the first line titles
5723 (void) printf("\n%s\t", blocksize_title1
);
5725 (void) printf("\n%7s ", blocksize_title1
);
5727 for (int j
= 0; j
< NUM_HISTO
; j
++) {
5728 if (dump_opt
['P']) {
5729 if (j
< NUM_HISTO
- 1) {
5730 (void) printf("%s\t\t\t", parm_histo
[j
].name
);
5732 /* Don't print trailing spaces */
5733 (void) printf(" %s", parm_histo
[j
].name
);
5736 if (j
< NUM_HISTO
- 1) {
5737 /* Left aligned strings in the output */
5738 (void) printf("%-7s ",
5739 parm_histo
[j
].name
);
5741 /* Don't print trailing spaces */
5742 (void) printf("%s", parm_histo
[j
].name
);
5746 (void) printf("\n");
5749 * Print the second line titles
5751 if (dump_opt
['P']) {
5752 (void) printf("%s\t", blocksize_title2
);
5754 (void) printf("%7s ", blocksize_title2
);
5757 for (int i
= 0; i
< NUM_HISTO
; i
++) {
5758 if (dump_opt
['P']) {
5759 (void) printf("%s\t%s\t%s\t",
5760 count_title
, length_title
, cumulative_title
);
5762 (void) printf("%7s%7s%7s",
5763 count_title
, length_title
, cumulative_title
);
5766 (void) printf("\n");
5771 for (int i
= SPA_MINBLOCKSHIFT
; i
< SPA_MAX_FOR_16M
; i
++) {
5774 * Print the first column showing the blocksize
5776 zdb_nicenum((1ULL << i
), numbuf
, sizeof (numbuf
));
5778 if (dump_opt
['P']) {
5779 printf("%s", numbuf
);
5781 printf("%7s:", numbuf
);
5785 * Print the remaining set of 3 columns per size:
5786 * for psize, lsize and asize
5788 for (int j
= 0; j
< NUM_HISTO
; j
++) {
5789 parm_histo
[j
].cumulative
+= parm_histo
[j
].len
[i
];
5791 zdb_nicenum(parm_histo
[j
].count
[i
],
5792 numbuf
, sizeof (numbuf
));
5794 (void) printf("\t%s", numbuf
);
5796 (void) printf("%7s", numbuf
);
5798 zdb_nicenum(parm_histo
[j
].len
[i
],
5799 numbuf
, sizeof (numbuf
));
5801 (void) printf("\t%s", numbuf
);
5803 (void) printf("%7s", numbuf
);
5805 zdb_nicenum(parm_histo
[j
].cumulative
,
5806 numbuf
, sizeof (numbuf
));
5808 (void) printf("\t%s", numbuf
);
5810 (void) printf("%7s", numbuf
);
5812 (void) printf("\n");
5817 zdb_count_block(zdb_cb_t
*zcb
, zilog_t
*zilog
, const blkptr_t
*bp
,
5818 dmu_object_type_t type
)
5822 ASSERT(type
< ZDB_OT_TOTAL
);
5824 if (zilog
&& zil_bp_tree_add(zilog
, bp
) != 0)
5828 * This flag controls if we will issue a claim for the block while
5829 * counting it, to ensure that all blocks are referenced in space maps.
5830 * We don't issue claims if we're not doing leak tracking, because it's
5831 * expensive if the user isn't interested. We also don't claim the
5832 * second or later occurences of cloned or dedup'd blocks, because we
5833 * already claimed them the first time.
5835 boolean_t do_claim
= !dump_opt
['L'];
5837 spa_config_enter(zcb
->zcb_spa
, SCL_CONFIG
, FTAG
, RW_READER
);
5840 if (BP_GET_DEDUP(bp
)) {
5842 * Dedup'd blocks are special. We need to count them, so we can
5843 * later uncount them when reporting leaked space, and we must
5844 * only claim them once.
5846 * We use the existing dedup system to track what we've seen.
5847 * The first time we see a block, we do a ddt_lookup() to see
5848 * if it exists in the DDT. If we're doing leak tracking, we
5849 * claim the block at this time.
5851 * Each time we see a block, we reduce the refcount in the
5852 * entry by one, and add to the size and count of dedup'd
5853 * blocks to report at the end.
5856 ddt_t
*ddt
= ddt_select(zcb
->zcb_spa
, bp
);
5861 * Find the block. This will create the entry in memory, but
5862 * we'll know if that happened by its refcount.
5864 ddt_entry_t
*dde
= ddt_lookup(ddt
, bp
);
5867 * ddt_lookup() can return NULL if this block didn't exist
5868 * in the DDT and creating it would take the DDT over its
5869 * quota. Since we got the block from disk, it must exist in
5870 * the DDT, so this can't happen. However, when unique entries
5871 * are pruned, the dedup bit can be set with no corresponding
5879 /* Get the phys for this variant */
5880 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
5883 * This entry may have multiple sets of DVAs. We must claim
5884 * each set the first time we see them in a real block on disk,
5885 * or count them on subsequent occurences. We don't have a
5886 * convenient way to track the first time we see each variant,
5887 * so we repurpose dde_io as a set of "seen" flag bits. We can
5888 * do this safely in zdb because it never writes, so it will
5889 * never have a writing zio for this block in that pointer.
5891 boolean_t seen
= !!(((uintptr_t)dde
->dde_io
) & (1 << v
));
5894 (void *)(((uintptr_t)dde
->dde_io
) | (1 << v
));
5896 /* Consume a reference for this block. */
5897 if (ddt_phys_total_refcnt(ddt
, dde
->dde_phys
) > 0)
5898 ddt_phys_decref(dde
->dde_phys
, v
);
5901 * If this entry has a single flat phys, it may have been
5902 * extended with additional DVAs at some time in its life.
5903 * This block might be from before it was fully extended, and
5904 * so have fewer DVAs.
5906 * If this is the first time we've seen this block, and we
5907 * claimed it as-is, then we would miss the claim on some
5908 * number of DVAs, which would then be seen as leaked.
5910 * In all cases, if we've had fewer DVAs, then the asize would
5911 * be too small, and would lead to the pool apparently using
5912 * more space than allocated.
5914 * To handle this, we copy the canonical set of DVAs from the
5915 * entry back to the block pointer before we claim it.
5917 if (v
== DDT_PHYS_FLAT
) {
5918 ASSERT3U(BP_GET_BIRTH(bp
), ==,
5919 ddt_phys_birth(dde
->dde_phys
, v
));
5921 ddt_bp_fill(dde
->dde_phys
, v
, &tempbp
,
5928 * The second or later time we see this block,
5929 * it's a duplicate and we count it.
5931 zcb
->zcb_dedup_asize
+= BP_GET_ASIZE(bp
);
5932 zcb
->zcb_dedup_blocks
++;
5934 /* Already claimed, don't do it again. */
5939 } else if (zcb
->zcb_brt_is_active
&&
5940 brt_maybe_exists(zcb
->zcb_spa
, bp
)) {
5942 * Cloned blocks are special. We need to count them, so we can
5943 * later uncount them when reporting leaked space, and we must
5944 * only claim them once.
5946 * To do this, we keep our own in-memory BRT. For each block
5947 * we haven't seen before, we look it up in the real BRT and
5948 * if its there, we note it and its refcount then proceed as
5949 * normal. If we see the block again, we count it as a clone
5950 * and then give it no further consideration.
5952 zdb_brt_entry_t zbre_search
, *zbre
;
5955 zbre_search
.zbre_dva
= bp
->blk_dva
[0];
5956 zbre
= avl_find(&zcb
->zcb_brt
, &zbre_search
, &where
);
5958 /* Not seen before; track it */
5960 brt_entry_get_refcount(zcb
->zcb_spa
, bp
);
5962 zbre
= umem_zalloc(sizeof (zdb_brt_entry_t
),
5964 zbre
->zbre_dva
= bp
->blk_dva
[0];
5965 zbre
->zbre_refcount
= refcnt
;
5966 avl_insert(&zcb
->zcb_brt
, zbre
, where
);
5970 * Second or later occurrence, count it and take a
5973 zcb
->zcb_clone_asize
+= BP_GET_ASIZE(bp
);
5974 zcb
->zcb_clone_blocks
++;
5976 zbre
->zbre_refcount
--;
5977 if (zbre
->zbre_refcount
== 0) {
5978 avl_remove(&zcb
->zcb_brt
, zbre
);
5979 umem_free(zbre
, sizeof (zdb_brt_entry_t
));
5982 /* Already claimed, don't do it again. */
5988 for (i
= 0; i
< 4; i
++) {
5989 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : ZB_TOTAL
;
5990 int t
= (i
& 1) ? type
: ZDB_OT_TOTAL
;
5992 zdb_blkstats_t
*zb
= &zcb
->zcb_type
[l
][t
];
5994 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
5995 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
5996 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
6000 * The histogram is only big enough to record blocks up to
6001 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
6004 unsigned idx
= BP_GET_PSIZE(bp
) >> SPA_MINBLOCKSHIFT
;
6005 idx
= MIN(idx
, SPA_OLD_MAXBLOCKSIZE
/ SPA_MINBLOCKSIZE
+ 1);
6006 zb
->zb_psize_histogram
[idx
]++;
6008 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
6010 switch (BP_GET_NDVAS(bp
)) {
6012 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
6013 DVA_GET_VDEV(&bp
->blk_dva
[1])) {
6014 zb
->zb_ditto_samevdev
++;
6016 if (same_metaslab(zcb
->zcb_spa
,
6017 DVA_GET_VDEV(&bp
->blk_dva
[0]),
6018 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
6019 DVA_GET_OFFSET(&bp
->blk_dva
[1])))
6020 zb
->zb_ditto_same_ms
++;
6024 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
6025 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
6026 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
6027 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
6028 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
6029 DVA_GET_VDEV(&bp
->blk_dva
[2]));
6031 zb
->zb_ditto_samevdev
++;
6033 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
6034 DVA_GET_VDEV(&bp
->blk_dva
[1]) &&
6035 same_metaslab(zcb
->zcb_spa
,
6036 DVA_GET_VDEV(&bp
->blk_dva
[0]),
6037 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
6038 DVA_GET_OFFSET(&bp
->blk_dva
[1])))
6039 zb
->zb_ditto_same_ms
++;
6040 else if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
6041 DVA_GET_VDEV(&bp
->blk_dva
[2]) &&
6042 same_metaslab(zcb
->zcb_spa
,
6043 DVA_GET_VDEV(&bp
->blk_dva
[0]),
6044 DVA_GET_OFFSET(&bp
->blk_dva
[0]),
6045 DVA_GET_OFFSET(&bp
->blk_dva
[2])))
6046 zb
->zb_ditto_same_ms
++;
6047 else if (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
6048 DVA_GET_VDEV(&bp
->blk_dva
[2]) &&
6049 same_metaslab(zcb
->zcb_spa
,
6050 DVA_GET_VDEV(&bp
->blk_dva
[1]),
6051 DVA_GET_OFFSET(&bp
->blk_dva
[1]),
6052 DVA_GET_OFFSET(&bp
->blk_dva
[2])))
6053 zb
->zb_ditto_same_ms
++;
6059 spa_config_exit(zcb
->zcb_spa
, SCL_CONFIG
, FTAG
);
6061 if (BP_IS_EMBEDDED(bp
)) {
6062 zcb
->zcb_embedded_blocks
[BPE_GET_ETYPE(bp
)]++;
6063 zcb
->zcb_embedded_histogram
[BPE_GET_ETYPE(bp
)]
6064 [BPE_GET_PSIZE(bp
)]++;
6068 * The binning histogram bins by powers of two up to
6069 * SPA_MAXBLOCKSIZE rather than creating bins for
6070 * every possible blocksize found in the pool.
6072 int bin
= highbit64(BP_GET_PSIZE(bp
)) - 1;
6074 zcb
->zcb_psize_count
[bin
]++;
6075 zcb
->zcb_psize_len
[bin
] += BP_GET_PSIZE(bp
);
6076 zcb
->zcb_psize_total
+= BP_GET_PSIZE(bp
);
6078 bin
= highbit64(BP_GET_LSIZE(bp
)) - 1;
6080 zcb
->zcb_lsize_count
[bin
]++;
6081 zcb
->zcb_lsize_len
[bin
] += BP_GET_LSIZE(bp
);
6082 zcb
->zcb_lsize_total
+= BP_GET_LSIZE(bp
);
6084 bin
= highbit64(BP_GET_ASIZE(bp
)) - 1;
6086 zcb
->zcb_asize_count
[bin
]++;
6087 zcb
->zcb_asize_len
[bin
] += BP_GET_ASIZE(bp
);
6088 zcb
->zcb_asize_total
+= BP_GET_ASIZE(bp
);
6093 VERIFY0(zio_wait(zio_claim(NULL
, zcb
->zcb_spa
,
6094 spa_min_claim_txg(zcb
->zcb_spa
), bp
, NULL
, NULL
,
6095 ZIO_FLAG_CANFAIL
)));
6099 zdb_blkptr_done(zio_t
*zio
)
6101 spa_t
*spa
= zio
->io_spa
;
6102 blkptr_t
*bp
= zio
->io_bp
;
6103 int ioerr
= zio
->io_error
;
6104 zdb_cb_t
*zcb
= zio
->io_private
;
6105 zbookmark_phys_t
*zb
= &zio
->io_bookmark
;
6107 mutex_enter(&spa
->spa_scrub_lock
);
6108 spa
->spa_load_verify_bytes
-= BP_GET_PSIZE(bp
);
6109 cv_broadcast(&spa
->spa_scrub_io_cv
);
6111 if (ioerr
&& !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
6112 char blkbuf
[BP_SPRINTF_LEN
];
6114 zcb
->zcb_haderrors
= 1;
6115 zcb
->zcb_errors
[ioerr
]++;
6117 if (dump_opt
['b'] >= 2)
6118 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6122 (void) printf("zdb_blkptr_cb: "
6123 "Got error %d reading "
6124 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6126 (u_longlong_t
)zb
->zb_objset
,
6127 (u_longlong_t
)zb
->zb_object
,
6128 (u_longlong_t
)zb
->zb_level
,
6129 (u_longlong_t
)zb
->zb_blkid
,
6132 mutex_exit(&spa
->spa_scrub_lock
);
6134 abd_free(zio
->io_abd
);
6138 zdb_blkptr_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
6139 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
6141 zdb_cb_t
*zcb
= arg
;
6142 dmu_object_type_t type
;
6143 boolean_t is_metadata
;
6145 if (zb
->zb_level
== ZB_DNODE_LEVEL
)
6148 if (dump_opt
['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp
) > 0) {
6149 char blkbuf
[BP_SPRINTF_LEN
];
6150 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6151 (void) printf("objset %llu object %llu "
6152 "level %lld offset 0x%llx %s\n",
6153 (u_longlong_t
)zb
->zb_objset
,
6154 (u_longlong_t
)zb
->zb_object
,
6155 (longlong_t
)zb
->zb_level
,
6156 (u_longlong_t
)blkid2offset(dnp
, bp
, zb
),
6160 if (BP_IS_HOLE(bp
) || BP_IS_REDACTED(bp
))
6163 type
= BP_GET_TYPE(bp
);
6165 zdb_count_block(zcb
, zilog
, bp
,
6166 (type
& DMU_OT_NEWTYPE
) ? ZDB_OT_OTHER
: type
);
6168 is_metadata
= (BP_GET_LEVEL(bp
) != 0 || DMU_OT_IS_METADATA(type
));
6170 if (!BP_IS_EMBEDDED(bp
) &&
6171 (dump_opt
['c'] > 1 || (dump_opt
['c'] && is_metadata
))) {
6172 size_t size
= BP_GET_PSIZE(bp
);
6173 abd_t
*abd
= abd_alloc(size
, B_FALSE
);
6174 int flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCRUB
| ZIO_FLAG_RAW
;
6176 /* If it's an intent log block, failure is expected. */
6177 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
6178 flags
|= ZIO_FLAG_SPECULATIVE
;
6180 mutex_enter(&spa
->spa_scrub_lock
);
6181 while (spa
->spa_load_verify_bytes
> max_inflight_bytes
)
6182 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
6183 spa
->spa_load_verify_bytes
+= size
;
6184 mutex_exit(&spa
->spa_scrub_lock
);
6186 zio_nowait(zio_read(NULL
, spa
, bp
, abd
, size
,
6187 zdb_blkptr_done
, zcb
, ZIO_PRIORITY_ASYNC_READ
, flags
, zb
));
6190 zcb
->zcb_readfails
= 0;
6192 /* only call gethrtime() every 100 blocks */
6199 if (dump_opt
['b'] < 5 && gethrtime() > zcb
->zcb_lastprint
+ NANOSEC
) {
6200 uint64_t now
= gethrtime();
6202 uint64_t bytes
= zcb
->zcb_type
[ZB_TOTAL
][ZDB_OT_TOTAL
].zb_asize
;
6203 uint64_t kb_per_sec
=
6204 1 + bytes
/ (1 + ((now
- zcb
->zcb_start
) / 1000 / 1000));
6205 uint64_t sec_remaining
=
6206 (zcb
->zcb_totalasize
- bytes
) / 1024 / kb_per_sec
;
6208 /* make sure nicenum has enough space */
6209 _Static_assert(sizeof (buf
) >= NN_NUMBUF_SZ
, "buf truncated");
6211 zfs_nicebytes(bytes
, buf
, sizeof (buf
));
6212 (void) fprintf(stderr
,
6213 "\r%5s completed (%4"PRIu64
"MB/s) "
6214 "estimated time remaining: "
6215 "%"PRIu64
"hr %02"PRIu64
"min %02"PRIu64
"sec ",
6216 buf
, kb_per_sec
/ 1024,
6217 sec_remaining
/ 60 / 60,
6218 sec_remaining
/ 60 % 60,
6219 sec_remaining
% 60);
6221 zcb
->zcb_lastprint
= now
;
6228 zdb_leak(void *arg
, uint64_t start
, uint64_t size
)
6232 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6233 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)start
, (u_longlong_t
)size
);
6236 static metaslab_ops_t zdb_metaslab_ops
= {
6241 load_unflushed_svr_segs_cb(spa_t
*spa
, space_map_entry_t
*sme
,
6242 uint64_t txg
, void *arg
)
6244 spa_vdev_removal_t
*svr
= arg
;
6246 uint64_t offset
= sme
->sme_offset
;
6247 uint64_t size
= sme
->sme_run
;
6249 /* skip vdevs we don't care about */
6250 if (sme
->sme_vdev
!= svr
->svr_vdev_id
)
6253 vdev_t
*vd
= vdev_lookup_top(spa
, sme
->sme_vdev
);
6254 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6255 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6257 if (txg
< metaslab_unflushed_txg(ms
))
6260 if (sme
->sme_type
== SM_ALLOC
)
6261 range_tree_add(svr
->svr_allocd_segs
, offset
, size
);
6263 range_tree_remove(svr
->svr_allocd_segs
, offset
, size
);
6269 claim_segment_impl_cb(uint64_t inner_offset
, vdev_t
*vd
, uint64_t offset
,
6270 uint64_t size
, void *arg
)
6272 (void) inner_offset
, (void) arg
;
6275 * This callback was called through a remap from
6276 * a device being removed. Therefore, the vdev that
6277 * this callback is applied to is a concrete
6280 ASSERT(vdev_is_concrete(vd
));
6282 VERIFY0(metaslab_claim_impl(vd
, offset
, size
,
6283 spa_min_claim_txg(vd
->vdev_spa
)));
6287 claim_segment_cb(void *arg
, uint64_t offset
, uint64_t size
)
6291 vdev_indirect_ops
.vdev_op_remap(vd
, offset
, size
,
6292 claim_segment_impl_cb
, NULL
);
6296 * After accounting for all allocated blocks that are directly referenced,
6297 * we might have missed a reference to a block from a partially complete
6298 * (and thus unused) indirect mapping object. We perform a secondary pass
6299 * through the metaslabs we have already mapped and claim the destination
6303 zdb_claim_removing(spa_t
*spa
, zdb_cb_t
*zcb
)
6308 if (spa
->spa_vdev_removal
== NULL
)
6311 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
6313 spa_vdev_removal_t
*svr
= spa
->spa_vdev_removal
;
6314 vdev_t
*vd
= vdev_lookup_top(spa
, svr
->svr_vdev_id
);
6315 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6317 ASSERT0(range_tree_space(svr
->svr_allocd_segs
));
6319 range_tree_t
*allocs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
6320 for (uint64_t msi
= 0; msi
< vd
->vdev_ms_count
; msi
++) {
6321 metaslab_t
*msp
= vd
->vdev_ms
[msi
];
6323 ASSERT0(range_tree_space(allocs
));
6324 if (msp
->ms_sm
!= NULL
)
6325 VERIFY0(space_map_load(msp
->ms_sm
, allocs
, SM_ALLOC
));
6326 range_tree_vacate(allocs
, range_tree_add
, svr
->svr_allocd_segs
);
6328 range_tree_destroy(allocs
);
6330 iterate_through_spacemap_logs(spa
, load_unflushed_svr_segs_cb
, svr
);
6333 * Clear everything past what has been synced,
6334 * because we have not allocated mappings for
6337 range_tree_clear(svr
->svr_allocd_segs
,
6338 vdev_indirect_mapping_max_offset(vim
),
6339 vd
->vdev_asize
- vdev_indirect_mapping_max_offset(vim
));
6341 zcb
->zcb_removing_size
+= range_tree_space(svr
->svr_allocd_segs
);
6342 range_tree_vacate(svr
->svr_allocd_segs
, claim_segment_cb
, vd
);
6344 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
6348 increment_indirect_mapping_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
6352 zdb_cb_t
*zcb
= arg
;
6353 spa_t
*spa
= zcb
->zcb_spa
;
6355 const dva_t
*dva
= &bp
->blk_dva
[0];
6358 ASSERT(!dump_opt
['L']);
6359 ASSERT3U(BP_GET_NDVAS(bp
), ==, 1);
6361 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6362 vd
= vdev_lookup_top(zcb
->zcb_spa
, DVA_GET_VDEV(dva
));
6363 ASSERT3P(vd
, !=, NULL
);
6364 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6366 ASSERT(vd
->vdev_indirect_config
.vic_mapping_object
!= 0);
6367 ASSERT3P(zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
], !=, NULL
);
6369 vdev_indirect_mapping_increment_obsolete_count(
6370 vd
->vdev_indirect_mapping
,
6371 DVA_GET_OFFSET(dva
), DVA_GET_ASIZE(dva
),
6372 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
]);
6378 zdb_load_obsolete_counts(vdev_t
*vd
)
6380 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6381 spa_t
*spa
= vd
->vdev_spa
;
6382 spa_condensing_indirect_phys_t
*scip
=
6383 &spa
->spa_condensing_indirect_phys
;
6384 uint64_t obsolete_sm_object
;
6387 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
6388 EQUIV(obsolete_sm_object
!= 0, vd
->vdev_obsolete_sm
!= NULL
);
6389 counts
= vdev_indirect_mapping_load_obsolete_counts(vim
);
6390 if (vd
->vdev_obsolete_sm
!= NULL
) {
6391 vdev_indirect_mapping_load_obsolete_spacemap(vim
, counts
,
6392 vd
->vdev_obsolete_sm
);
6394 if (scip
->scip_vdev
== vd
->vdev_id
&&
6395 scip
->scip_prev_obsolete_sm_object
!= 0) {
6396 space_map_t
*prev_obsolete_sm
= NULL
;
6397 VERIFY0(space_map_open(&prev_obsolete_sm
, spa
->spa_meta_objset
,
6398 scip
->scip_prev_obsolete_sm_object
, 0, vd
->vdev_asize
, 0));
6399 vdev_indirect_mapping_load_obsolete_spacemap(vim
, counts
,
6401 space_map_close(prev_obsolete_sm
);
6406 typedef struct checkpoint_sm_exclude_entry_arg
{
6408 uint64_t cseea_checkpoint_size
;
6409 } checkpoint_sm_exclude_entry_arg_t
;
6412 checkpoint_sm_exclude_entry_cb(space_map_entry_t
*sme
, void *arg
)
6414 checkpoint_sm_exclude_entry_arg_t
*cseea
= arg
;
6415 vdev_t
*vd
= cseea
->cseea_vd
;
6416 metaslab_t
*ms
= vd
->vdev_ms
[sme
->sme_offset
>> vd
->vdev_ms_shift
];
6417 uint64_t end
= sme
->sme_offset
+ sme
->sme_run
;
6419 ASSERT(sme
->sme_type
== SM_FREE
);
6422 * Since the vdev_checkpoint_sm exists in the vdev level
6423 * and the ms_sm space maps exist in the metaslab level,
6424 * an entry in the checkpoint space map could theoretically
6425 * cross the boundaries of the metaslab that it belongs.
6427 * In reality, because of the way that we populate and
6428 * manipulate the checkpoint's space maps currently,
6429 * there shouldn't be any entries that cross metaslabs.
6430 * Hence the assertion below.
6432 * That said, there is no fundamental requirement that
6433 * the checkpoint's space map entries should not cross
6434 * metaslab boundaries. So if needed we could add code
6435 * that handles metaslab-crossing segments in the future.
6437 VERIFY3U(sme
->sme_offset
, >=, ms
->ms_start
);
6438 VERIFY3U(end
, <=, ms
->ms_start
+ ms
->ms_size
);
6441 * By removing the entry from the allocated segments we
6442 * also verify that the entry is there to begin with.
6444 mutex_enter(&ms
->ms_lock
);
6445 range_tree_remove(ms
->ms_allocatable
, sme
->sme_offset
, sme
->sme_run
);
6446 mutex_exit(&ms
->ms_lock
);
6448 cseea
->cseea_checkpoint_size
+= sme
->sme_run
;
6453 zdb_leak_init_vdev_exclude_checkpoint(vdev_t
*vd
, zdb_cb_t
*zcb
)
6455 spa_t
*spa
= vd
->vdev_spa
;
6456 space_map_t
*checkpoint_sm
= NULL
;
6457 uint64_t checkpoint_sm_obj
;
6460 * If there is no vdev_top_zap, we are in a pool whose
6461 * version predates the pool checkpoint feature.
6463 if (vd
->vdev_top_zap
== 0)
6467 * If there is no reference of the vdev_checkpoint_sm in
6468 * the vdev_top_zap, then one of the following scenarios
6471 * 1] There is no checkpoint
6472 * 2] There is a checkpoint, but no checkpointed blocks
6473 * have been freed yet
6474 * 3] The current vdev is indirect
6476 * In these cases we return immediately.
6478 if (zap_contains(spa_meta_objset(spa
), vd
->vdev_top_zap
,
6479 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
6482 VERIFY0(zap_lookup(spa_meta_objset(spa
), vd
->vdev_top_zap
,
6483 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
, sizeof (uint64_t), 1,
6484 &checkpoint_sm_obj
));
6486 checkpoint_sm_exclude_entry_arg_t cseea
;
6487 cseea
.cseea_vd
= vd
;
6488 cseea
.cseea_checkpoint_size
= 0;
6490 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(spa
),
6491 checkpoint_sm_obj
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
6493 VERIFY0(space_map_iterate(checkpoint_sm
,
6494 space_map_length(checkpoint_sm
),
6495 checkpoint_sm_exclude_entry_cb
, &cseea
));
6496 space_map_close(checkpoint_sm
);
6498 zcb
->zcb_checkpoint_size
+= cseea
.cseea_checkpoint_size
;
6502 zdb_leak_init_exclude_checkpoint(spa_t
*spa
, zdb_cb_t
*zcb
)
6504 ASSERT(!dump_opt
['L']);
6506 vdev_t
*rvd
= spa
->spa_root_vdev
;
6507 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
6508 ASSERT3U(c
, ==, rvd
->vdev_child
[c
]->vdev_id
);
6509 zdb_leak_init_vdev_exclude_checkpoint(rvd
->vdev_child
[c
], zcb
);
6514 count_unflushed_space_cb(spa_t
*spa
, space_map_entry_t
*sme
,
6515 uint64_t txg
, void *arg
)
6517 int64_t *ualloc_space
= arg
;
6519 uint64_t offset
= sme
->sme_offset
;
6520 uint64_t vdev_id
= sme
->sme_vdev
;
6522 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
6523 if (!vdev_is_concrete(vd
))
6526 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6527 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6529 if (txg
< metaslab_unflushed_txg(ms
))
6532 if (sme
->sme_type
== SM_ALLOC
)
6533 *ualloc_space
+= sme
->sme_run
;
6535 *ualloc_space
-= sme
->sme_run
;
6541 get_unflushed_alloc_space(spa_t
*spa
)
6546 int64_t ualloc_space
= 0;
6547 iterate_through_spacemap_logs(spa
, count_unflushed_space_cb
,
6549 return (ualloc_space
);
6553 load_unflushed_cb(spa_t
*spa
, space_map_entry_t
*sme
, uint64_t txg
, void *arg
)
6555 maptype_t
*uic_maptype
= arg
;
6557 uint64_t offset
= sme
->sme_offset
;
6558 uint64_t size
= sme
->sme_run
;
6559 uint64_t vdev_id
= sme
->sme_vdev
;
6561 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
6563 /* skip indirect vdevs */
6564 if (!vdev_is_concrete(vd
))
6567 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6569 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
6570 ASSERT(*uic_maptype
== SM_ALLOC
|| *uic_maptype
== SM_FREE
);
6572 if (txg
< metaslab_unflushed_txg(ms
))
6575 if (*uic_maptype
== sme
->sme_type
)
6576 range_tree_add(ms
->ms_allocatable
, offset
, size
);
6578 range_tree_remove(ms
->ms_allocatable
, offset
, size
);
6584 load_unflushed_to_ms_allocatables(spa_t
*spa
, maptype_t maptype
)
6586 iterate_through_spacemap_logs(spa
, load_unflushed_cb
, &maptype
);
6590 load_concrete_ms_allocatable_trees(spa_t
*spa
, maptype_t maptype
)
6592 vdev_t
*rvd
= spa
->spa_root_vdev
;
6593 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
6594 vdev_t
*vd
= rvd
->vdev_child
[i
];
6596 ASSERT3U(i
, ==, vd
->vdev_id
);
6598 if (vd
->vdev_ops
== &vdev_indirect_ops
)
6601 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6602 metaslab_t
*msp
= vd
->vdev_ms
[m
];
6604 (void) fprintf(stderr
,
6605 "\rloading concrete vdev %llu, "
6606 "metaslab %llu of %llu ...",
6607 (longlong_t
)vd
->vdev_id
,
6608 (longlong_t
)msp
->ms_id
,
6609 (longlong_t
)vd
->vdev_ms_count
);
6611 mutex_enter(&msp
->ms_lock
);
6612 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
6615 * We don't want to spend the CPU manipulating the
6616 * size-ordered tree, so clear the range_tree ops.
6618 msp
->ms_allocatable
->rt_ops
= NULL
;
6620 if (msp
->ms_sm
!= NULL
) {
6621 VERIFY0(space_map_load(msp
->ms_sm
,
6622 msp
->ms_allocatable
, maptype
));
6624 if (!msp
->ms_loaded
)
6625 msp
->ms_loaded
= B_TRUE
;
6626 mutex_exit(&msp
->ms_lock
);
6630 load_unflushed_to_ms_allocatables(spa
, maptype
);
6634 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6635 * index in vim_entries that has the first entry in this metaslab.
6636 * On return, it will be set to the first entry after this metaslab.
6639 load_indirect_ms_allocatable_tree(vdev_t
*vd
, metaslab_t
*msp
,
6642 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6644 mutex_enter(&msp
->ms_lock
);
6645 range_tree_vacate(msp
->ms_allocatable
, NULL
, NULL
);
6648 * We don't want to spend the CPU manipulating the
6649 * size-ordered tree, so clear the range_tree ops.
6651 msp
->ms_allocatable
->rt_ops
= NULL
;
6653 for (; *vim_idxp
< vdev_indirect_mapping_num_entries(vim
);
6655 vdev_indirect_mapping_entry_phys_t
*vimep
=
6656 &vim
->vim_entries
[*vim_idxp
];
6657 uint64_t ent_offset
= DVA_MAPPING_GET_SRC_OFFSET(vimep
);
6658 uint64_t ent_len
= DVA_GET_ASIZE(&vimep
->vimep_dst
);
6659 ASSERT3U(ent_offset
, >=, msp
->ms_start
);
6660 if (ent_offset
>= msp
->ms_start
+ msp
->ms_size
)
6664 * Mappings do not cross metaslab boundaries,
6665 * because we create them by walking the metaslabs.
6667 ASSERT3U(ent_offset
+ ent_len
, <=,
6668 msp
->ms_start
+ msp
->ms_size
);
6669 range_tree_add(msp
->ms_allocatable
, ent_offset
, ent_len
);
6672 if (!msp
->ms_loaded
)
6673 msp
->ms_loaded
= B_TRUE
;
6674 mutex_exit(&msp
->ms_lock
);
6678 zdb_leak_init_prepare_indirect_vdevs(spa_t
*spa
, zdb_cb_t
*zcb
)
6680 ASSERT(!dump_opt
['L']);
6682 vdev_t
*rvd
= spa
->spa_root_vdev
;
6683 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
6684 vdev_t
*vd
= rvd
->vdev_child
[c
];
6686 ASSERT3U(c
, ==, vd
->vdev_id
);
6688 if (vd
->vdev_ops
!= &vdev_indirect_ops
)
6692 * Note: we don't check for mapping leaks on
6693 * removing vdevs because their ms_allocatable's
6694 * are used to look for leaks in allocated space.
6696 zcb
->zcb_vd_obsolete_counts
[c
] = zdb_load_obsolete_counts(vd
);
6699 * Normally, indirect vdevs don't have any
6700 * metaslabs. We want to set them up for
6703 vdev_metaslab_group_create(vd
);
6704 VERIFY0(vdev_metaslab_init(vd
, 0));
6706 vdev_indirect_mapping_t
*vim __maybe_unused
=
6707 vd
->vdev_indirect_mapping
;
6708 uint64_t vim_idx
= 0;
6709 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6711 (void) fprintf(stderr
,
6712 "\rloading indirect vdev %llu, "
6713 "metaslab %llu of %llu ...",
6714 (longlong_t
)vd
->vdev_id
,
6715 (longlong_t
)vd
->vdev_ms
[m
]->ms_id
,
6716 (longlong_t
)vd
->vdev_ms_count
);
6718 load_indirect_ms_allocatable_tree(vd
, vd
->vdev_ms
[m
],
6721 ASSERT3U(vim_idx
, ==, vdev_indirect_mapping_num_entries(vim
));
6726 zdb_leak_init(spa_t
*spa
, zdb_cb_t
*zcb
)
6733 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
6734 vdev_t
*rvd
= spa
->spa_root_vdev
;
6737 * We are going to be changing the meaning of the metaslab's
6738 * ms_allocatable. Ensure that the allocator doesn't try to
6741 spa
->spa_normal_class
->mc_ops
= &zdb_metaslab_ops
;
6742 spa
->spa_log_class
->mc_ops
= &zdb_metaslab_ops
;
6743 spa
->spa_embedded_log_class
->mc_ops
= &zdb_metaslab_ops
;
6745 zcb
->zcb_vd_obsolete_counts
=
6746 umem_zalloc(rvd
->vdev_children
* sizeof (uint32_t *),
6750 * For leak detection, we overload the ms_allocatable trees
6751 * to contain allocated segments instead of free segments.
6752 * As a result, we can't use the normal metaslab_load/unload
6755 zdb_leak_init_prepare_indirect_vdevs(spa
, zcb
);
6756 load_concrete_ms_allocatable_trees(spa
, SM_ALLOC
);
6759 * On load_concrete_ms_allocatable_trees() we loaded all the
6760 * allocated entries from the ms_sm to the ms_allocatable for
6761 * each metaslab. If the pool has a checkpoint or is in the
6762 * middle of discarding a checkpoint, some of these blocks
6763 * may have been freed but their ms_sm may not have been
6764 * updated because they are referenced by the checkpoint. In
6765 * order to avoid false-positives during leak-detection, we
6766 * go through the vdev's checkpoint space map and exclude all
6767 * its entries from their relevant ms_allocatable.
6769 * We also aggregate the space held by the checkpoint and add
6770 * it to zcb_checkpoint_size.
6772 * Note that at this point we are also verifying that all the
6773 * entries on the checkpoint_sm are marked as allocated in
6774 * the ms_sm of their relevant metaslab.
6775 * [see comment in checkpoint_sm_exclude_entry_cb()]
6777 zdb_leak_init_exclude_checkpoint(spa
, zcb
);
6778 ASSERT3U(zcb
->zcb_checkpoint_size
, ==, spa_get_checkpoint_space(spa
));
6780 /* for cleaner progress output */
6781 (void) fprintf(stderr
, "\n");
6783 if (bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
6784 ASSERT(spa_feature_is_enabled(spa
,
6785 SPA_FEATURE_DEVICE_REMOVAL
));
6786 (void) bpobj_iterate_nofree(&dp
->dp_obsolete_bpobj
,
6787 increment_indirect_mapping_cb
, zcb
, NULL
);
6792 zdb_check_for_obsolete_leaks(vdev_t
*vd
, zdb_cb_t
*zcb
)
6794 boolean_t leaks
= B_FALSE
;
6795 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
6796 uint64_t total_leaked
= 0;
6797 boolean_t are_precise
= B_FALSE
;
6799 ASSERT(vim
!= NULL
);
6801 for (uint64_t i
= 0; i
< vdev_indirect_mapping_num_entries(vim
); i
++) {
6802 vdev_indirect_mapping_entry_phys_t
*vimep
=
6803 &vim
->vim_entries
[i
];
6804 uint64_t obsolete_bytes
= 0;
6805 uint64_t offset
= DVA_MAPPING_GET_SRC_OFFSET(vimep
);
6806 metaslab_t
*msp
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
6809 * This is not very efficient but it's easy to
6810 * verify correctness.
6812 for (uint64_t inner_offset
= 0;
6813 inner_offset
< DVA_GET_ASIZE(&vimep
->vimep_dst
);
6814 inner_offset
+= 1ULL << vd
->vdev_ashift
) {
6815 if (range_tree_contains(msp
->ms_allocatable
,
6816 offset
+ inner_offset
, 1ULL << vd
->vdev_ashift
)) {
6817 obsolete_bytes
+= 1ULL << vd
->vdev_ashift
;
6821 int64_t bytes_leaked
= obsolete_bytes
-
6822 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
][i
];
6823 ASSERT3U(DVA_GET_ASIZE(&vimep
->vimep_dst
), >=,
6824 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
][i
]);
6826 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
6827 if (bytes_leaked
!= 0 && (are_precise
|| dump_opt
['d'] >= 5)) {
6828 (void) printf("obsolete indirect mapping count "
6829 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6830 (u_longlong_t
)vd
->vdev_id
,
6831 (u_longlong_t
)DVA_MAPPING_GET_SRC_OFFSET(vimep
),
6832 (u_longlong_t
)DVA_GET_ASIZE(&vimep
->vimep_dst
),
6833 (u_longlong_t
)bytes_leaked
);
6835 total_leaked
+= ABS(bytes_leaked
);
6838 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
6839 if (!are_precise
&& total_leaked
> 0) {
6840 int pct_leaked
= total_leaked
* 100 /
6841 vdev_indirect_mapping_bytes_mapped(vim
);
6842 (void) printf("cannot verify obsolete indirect mapping "
6843 "counts of vdev %llu because precise feature was not "
6844 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6846 (u_longlong_t
)vd
->vdev_id
, pct_leaked
,
6847 (u_longlong_t
)total_leaked
);
6848 } else if (total_leaked
> 0) {
6849 (void) printf("obsolete indirect mapping count mismatch "
6850 "for vdev %llu -- %llx total bytes mismatched\n",
6851 (u_longlong_t
)vd
->vdev_id
,
6852 (u_longlong_t
)total_leaked
);
6856 vdev_indirect_mapping_free_obsolete_counts(vim
,
6857 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
]);
6858 zcb
->zcb_vd_obsolete_counts
[vd
->vdev_id
] = NULL
;
6864 zdb_leak_fini(spa_t
*spa
, zdb_cb_t
*zcb
)
6869 boolean_t leaks
= B_FALSE
;
6870 vdev_t
*rvd
= spa
->spa_root_vdev
;
6871 for (unsigned c
= 0; c
< rvd
->vdev_children
; c
++) {
6872 vdev_t
*vd
= rvd
->vdev_child
[c
];
6874 if (zcb
->zcb_vd_obsolete_counts
[c
] != NULL
) {
6875 leaks
|= zdb_check_for_obsolete_leaks(vd
, zcb
);
6878 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
6879 metaslab_t
*msp
= vd
->vdev_ms
[m
];
6880 ASSERT3P(msp
->ms_group
, ==, (msp
->ms_group
->mg_class
==
6881 spa_embedded_log_class(spa
)) ?
6882 vd
->vdev_log_mg
: vd
->vdev_mg
);
6885 * ms_allocatable has been overloaded
6886 * to contain allocated segments. Now that
6887 * we finished traversing all blocks, any
6888 * block that remains in the ms_allocatable
6889 * represents an allocated block that we
6890 * did not claim during the traversal.
6891 * Claimed blocks would have been removed
6892 * from the ms_allocatable. For indirect
6893 * vdevs, space remaining in the tree
6894 * represents parts of the mapping that are
6895 * not referenced, which is not a bug.
6897 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
6898 range_tree_vacate(msp
->ms_allocatable
,
6901 range_tree_vacate(msp
->ms_allocatable
,
6904 if (msp
->ms_loaded
) {
6905 msp
->ms_loaded
= B_FALSE
;
6910 umem_free(zcb
->zcb_vd_obsolete_counts
,
6911 rvd
->vdev_children
* sizeof (uint32_t *));
6912 zcb
->zcb_vd_obsolete_counts
= NULL
;
6918 count_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
6921 zdb_cb_t
*zcb
= arg
;
6923 if (dump_opt
['b'] >= 5) {
6924 char blkbuf
[BP_SPRINTF_LEN
];
6925 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
6926 (void) printf("[%s] %s\n",
6927 "deferred free", blkbuf
);
6929 zdb_count_block(zcb
, NULL
, bp
, ZDB_OT_DEFERRED
);
6934 * Iterate over livelists which have been destroyed by the user but
6935 * are still present in the MOS, waiting to be freed
6938 iterate_deleted_livelists(spa_t
*spa
, ll_iter_t func
, void *arg
)
6940 objset_t
*mos
= spa
->spa_meta_objset
;
6942 int err
= zap_lookup(mos
, DMU_POOL_DIRECTORY_OBJECT
,
6943 DMU_POOL_DELETED_CLONES
, sizeof (uint64_t), 1, &zap_obj
);
6949 zap_attribute_t
*attrp
= zap_attribute_alloc();
6951 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6953 for (zap_cursor_init(&zc
, mos
, zap_obj
);
6954 zap_cursor_retrieve(&zc
, attrp
) == 0;
6955 (void) zap_cursor_advance(&zc
)) {
6956 VERIFY0(dsl_deadlist_open(&ll
, mos
, attrp
->za_first_integer
));
6958 dsl_deadlist_close(&ll
);
6960 zap_cursor_fini(&zc
);
6961 zap_attribute_free(attrp
);
6965 bpobj_count_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
6969 return (count_block_cb(arg
, bp
, tx
));
6973 livelist_entry_count_blocks_cb(void *args
, dsl_deadlist_entry_t
*dle
)
6975 zdb_cb_t
*zbc
= args
;
6977 bplist_create(&blks
);
6978 /* determine which blocks have been alloc'd but not freed */
6979 VERIFY0(dsl_process_sub_livelist(&dle
->dle_bpobj
, &blks
, NULL
, NULL
));
6980 /* count those blocks */
6981 (void) bplist_iterate(&blks
, count_block_cb
, zbc
, NULL
);
6982 bplist_destroy(&blks
);
6987 livelist_count_blocks(dsl_deadlist_t
*ll
, void *arg
)
6989 dsl_deadlist_iterate(ll
, livelist_entry_count_blocks_cb
, arg
);
6993 * Count the blocks in the livelists that have been destroyed by the user
6994 * but haven't yet been freed.
6997 deleted_livelists_count_blocks(spa_t
*spa
, zdb_cb_t
*zbc
)
6999 iterate_deleted_livelists(spa
, livelist_count_blocks
, zbc
);
7003 dump_livelist_cb(dsl_deadlist_t
*ll
, void *arg
)
7005 ASSERT3P(arg
, ==, NULL
);
7006 global_feature_count
[SPA_FEATURE_LIVELIST
]++;
7007 dump_blkptr_list(ll
, "Deleted Livelist");
7008 dsl_deadlist_iterate(ll
, sublivelist_verify_lightweight
, NULL
);
7012 * Print out, register object references to, and increment feature counts for
7013 * livelists that have been destroyed by the user but haven't yet been freed.
7016 deleted_livelists_dump_mos(spa_t
*spa
)
7019 objset_t
*mos
= spa
->spa_meta_objset
;
7020 int err
= zap_lookup(mos
, DMU_POOL_DIRECTORY_OBJECT
,
7021 DMU_POOL_DELETED_CLONES
, sizeof (uint64_t), 1, &zap_obj
);
7024 mos_obj_refd(zap_obj
);
7025 iterate_deleted_livelists(spa
, dump_livelist_cb
, NULL
);
7029 zdb_brt_entry_compare(const void *zcn1
, const void *zcn2
)
7031 const dva_t
*dva1
= &((const zdb_brt_entry_t
*)zcn1
)->zbre_dva
;
7032 const dva_t
*dva2
= &((const zdb_brt_entry_t
*)zcn2
)->zbre_dva
;
7035 cmp
= TREE_CMP(DVA_GET_VDEV(dva1
), DVA_GET_VDEV(dva2
));
7037 cmp
= TREE_CMP(DVA_GET_OFFSET(dva1
), DVA_GET_OFFSET(dva2
));
7043 dump_block_stats(spa_t
*spa
)
7046 zdb_blkstats_t
*zb
, *tzb
;
7047 uint64_t norm_alloc
, norm_space
, total_alloc
, total_found
;
7048 int flags
= TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
|
7049 TRAVERSE_NO_DECRYPT
| TRAVERSE_HARD
;
7050 boolean_t leaks
= B_FALSE
;
7052 bp_embedded_type_t i
;
7054 ddt_prefetch_all(spa
);
7056 zcb
= umem_zalloc(sizeof (zdb_cb_t
), UMEM_NOFAIL
);
7058 if (spa_feature_is_active(spa
, SPA_FEATURE_BLOCK_CLONING
)) {
7059 avl_create(&zcb
->zcb_brt
, zdb_brt_entry_compare
,
7060 sizeof (zdb_brt_entry_t
),
7061 offsetof(zdb_brt_entry_t
, zbre_node
));
7062 zcb
->zcb_brt_is_active
= B_TRUE
;
7065 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
7066 (dump_opt
['c'] || !dump_opt
['L']) ? "to verify " : "",
7067 (dump_opt
['c'] == 1) ? "metadata " : "",
7068 dump_opt
['c'] ? "checksums " : "",
7069 (dump_opt
['c'] && !dump_opt
['L']) ? "and verify " : "",
7070 !dump_opt
['L'] ? "nothing leaked " : "");
7073 * When leak detection is enabled we load all space maps as SM_ALLOC
7074 * maps, then traverse the pool claiming each block we discover. If
7075 * the pool is perfectly consistent, the segment trees will be empty
7076 * when we're done. Anything left over is a leak; any block we can't
7077 * claim (because it's not part of any space map) is a double
7078 * allocation, reference to a freed block, or an unclaimed log block.
7080 * When leak detection is disabled (-L option) we still traverse the
7081 * pool claiming each block we discover, but we skip opening any space
7084 zdb_leak_init(spa
, zcb
);
7087 * If there's a deferred-free bplist, process that first.
7089 (void) bpobj_iterate_nofree(&spa
->spa_deferred_bpobj
,
7090 bpobj_count_block_cb
, zcb
, NULL
);
7092 if (spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
7093 (void) bpobj_iterate_nofree(&spa
->spa_dsl_pool
->dp_free_bpobj
,
7094 bpobj_count_block_cb
, zcb
, NULL
);
7097 zdb_claim_removing(spa
, zcb
);
7099 if (spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
7100 VERIFY3U(0, ==, bptree_iterate(spa
->spa_meta_objset
,
7101 spa
->spa_dsl_pool
->dp_bptree_obj
, B_FALSE
, count_block_cb
,
7105 deleted_livelists_count_blocks(spa
, zcb
);
7107 if (dump_opt
['c'] > 1)
7108 flags
|= TRAVERSE_PREFETCH_DATA
;
7110 zcb
->zcb_totalasize
= metaslab_class_get_alloc(spa_normal_class(spa
));
7111 zcb
->zcb_totalasize
+= metaslab_class_get_alloc(spa_special_class(spa
));
7112 zcb
->zcb_totalasize
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
7113 zcb
->zcb_totalasize
+=
7114 metaslab_class_get_alloc(spa_embedded_log_class(spa
));
7115 zcb
->zcb_start
= zcb
->zcb_lastprint
= gethrtime();
7116 err
= traverse_pool(spa
, 0, flags
, zdb_blkptr_cb
, zcb
);
7119 * If we've traversed the data blocks then we need to wait for those
7120 * I/Os to complete. We leverage "The Godfather" zio to wait on
7121 * all async I/Os to complete.
7123 if (dump_opt
['c']) {
7124 for (c
= 0; c
< max_ncpus
; c
++) {
7125 (void) zio_wait(spa
->spa_async_zio_root
[c
]);
7126 spa
->spa_async_zio_root
[c
] = zio_root(spa
, NULL
, NULL
,
7127 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
7128 ZIO_FLAG_GODFATHER
);
7131 ASSERT0(spa
->spa_load_verify_bytes
);
7134 * Done after zio_wait() since zcb_haderrors is modified in
7137 zcb
->zcb_haderrors
|= err
;
7139 if (zcb
->zcb_haderrors
) {
7140 (void) printf("\nError counts:\n\n");
7141 (void) printf("\t%5s %s\n", "errno", "count");
7142 for (e
= 0; e
< 256; e
++) {
7143 if (zcb
->zcb_errors
[e
] != 0) {
7144 (void) printf("\t%5d %llu\n",
7145 e
, (u_longlong_t
)zcb
->zcb_errors
[e
]);
7151 * Report any leaked segments.
7153 leaks
|= zdb_leak_fini(spa
, zcb
);
7155 tzb
= &zcb
->zcb_type
[ZB_TOTAL
][ZDB_OT_TOTAL
];
7157 norm_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
7158 norm_space
= metaslab_class_get_space(spa_normal_class(spa
));
7160 total_alloc
= norm_alloc
+
7161 metaslab_class_get_alloc(spa_log_class(spa
)) +
7162 metaslab_class_get_alloc(spa_embedded_log_class(spa
)) +
7163 metaslab_class_get_alloc(spa_special_class(spa
)) +
7164 metaslab_class_get_alloc(spa_dedup_class(spa
)) +
7165 get_unflushed_alloc_space(spa
);
7167 tzb
->zb_asize
- zcb
->zcb_dedup_asize
- zcb
->zcb_clone_asize
+
7168 zcb
->zcb_removing_size
+ zcb
->zcb_checkpoint_size
;
7170 if (total_found
== total_alloc
&& !dump_opt
['L']) {
7171 (void) printf("\n\tNo leaks (block sum matches space"
7172 " maps exactly)\n");
7173 } else if (!dump_opt
['L']) {
7174 (void) printf("block traversal size %llu != alloc %llu "
7176 (u_longlong_t
)total_found
,
7177 (u_longlong_t
)total_alloc
,
7178 (dump_opt
['L']) ? "unreachable" : "leaked",
7179 (longlong_t
)(total_alloc
- total_found
));
7182 if (tzb
->zb_count
== 0) {
7183 umem_free(zcb
, sizeof (zdb_cb_t
));
7187 (void) printf("\n");
7188 (void) printf("\t%-16s %14llu\n", "bp count:",
7189 (u_longlong_t
)tzb
->zb_count
);
7190 (void) printf("\t%-16s %14llu\n", "ganged count:",
7191 (longlong_t
)tzb
->zb_gangs
);
7192 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7193 (u_longlong_t
)tzb
->zb_lsize
,
7194 (u_longlong_t
)(tzb
->zb_lsize
/ tzb
->zb_count
));
7195 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7196 "bp physical:", (u_longlong_t
)tzb
->zb_psize
,
7197 (u_longlong_t
)(tzb
->zb_psize
/ tzb
->zb_count
),
7198 (double)tzb
->zb_lsize
/ tzb
->zb_psize
);
7199 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7200 "bp allocated:", (u_longlong_t
)tzb
->zb_asize
,
7201 (u_longlong_t
)(tzb
->zb_asize
/ tzb
->zb_count
),
7202 (double)tzb
->zb_lsize
/ tzb
->zb_asize
);
7203 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7204 "bp deduped:", (u_longlong_t
)zcb
->zcb_dedup_asize
,
7205 (u_longlong_t
)zcb
->zcb_dedup_blocks
,
7206 (double)zcb
->zcb_dedup_asize
/ tzb
->zb_asize
+ 1.0);
7207 (void) printf("\t%-16s %14llu count: %6llu\n",
7208 "bp cloned:", (u_longlong_t
)zcb
->zcb_clone_asize
,
7209 (u_longlong_t
)zcb
->zcb_clone_blocks
);
7210 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7211 (u_longlong_t
)norm_alloc
, 100.0 * norm_alloc
/ norm_space
);
7213 if (spa_special_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7214 uint64_t alloc
= metaslab_class_get_alloc(
7215 spa_special_class(spa
));
7216 uint64_t space
= metaslab_class_get_space(
7217 spa_special_class(spa
));
7219 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7220 "Special class", (u_longlong_t
)alloc
,
7221 100.0 * alloc
/ space
);
7224 if (spa_dedup_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7225 uint64_t alloc
= metaslab_class_get_alloc(
7226 spa_dedup_class(spa
));
7227 uint64_t space
= metaslab_class_get_space(
7228 spa_dedup_class(spa
));
7230 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7231 "Dedup class", (u_longlong_t
)alloc
,
7232 100.0 * alloc
/ space
);
7235 if (spa_embedded_log_class(spa
)->mc_allocator
[0].mca_rotor
!= NULL
) {
7236 uint64_t alloc
= metaslab_class_get_alloc(
7237 spa_embedded_log_class(spa
));
7238 uint64_t space
= metaslab_class_get_space(
7239 spa_embedded_log_class(spa
));
7241 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7242 "Embedded log class", (u_longlong_t
)alloc
,
7243 100.0 * alloc
/ space
);
7246 for (i
= 0; i
< NUM_BP_EMBEDDED_TYPES
; i
++) {
7247 if (zcb
->zcb_embedded_blocks
[i
] == 0)
7249 (void) printf("\n");
7250 (void) printf("\tadditional, non-pointer bps of type %u: "
7252 i
, (u_longlong_t
)zcb
->zcb_embedded_blocks
[i
]);
7254 if (dump_opt
['b'] >= 3) {
7255 (void) printf("\t number of (compressed) bytes: "
7257 dump_histogram(zcb
->zcb_embedded_histogram
[i
],
7258 sizeof (zcb
->zcb_embedded_histogram
[i
]) /
7259 sizeof (zcb
->zcb_embedded_histogram
[i
][0]), 0);
7263 if (tzb
->zb_ditto_samevdev
!= 0) {
7264 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7265 (longlong_t
)tzb
->zb_ditto_samevdev
);
7267 if (tzb
->zb_ditto_same_ms
!= 0) {
7268 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7269 (longlong_t
)tzb
->zb_ditto_same_ms
);
7272 for (uint64_t v
= 0; v
< spa
->spa_root_vdev
->vdev_children
; v
++) {
7273 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[v
];
7274 vdev_indirect_mapping_t
*vim
= vd
->vdev_indirect_mapping
;
7281 zdb_nicenum(vdev_indirect_mapping_num_entries(vim
),
7282 mem
, vdev_indirect_mapping_size(vim
));
7284 (void) printf("\tindirect vdev id %llu has %llu segments "
7286 (longlong_t
)vd
->vdev_id
,
7287 (longlong_t
)vdev_indirect_mapping_num_entries(vim
), mem
);
7290 if (dump_opt
['b'] >= 2) {
7292 char csize
[32], lsize
[32], psize
[32], asize
[32];
7293 char avg
[32], gang
[32];
7294 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7295 "\t avg\t comp\t%%Total\tType\n");
7297 zfs_blkstat_t
*mdstats
= umem_zalloc(sizeof (zfs_blkstat_t
),
7300 for (t
= 0; t
<= ZDB_OT_TOTAL
; t
++) {
7301 const char *typename
;
7303 /* make sure nicenum has enough space */
7304 _Static_assert(sizeof (csize
) >= NN_NUMBUF_SZ
,
7306 _Static_assert(sizeof (lsize
) >= NN_NUMBUF_SZ
,
7308 _Static_assert(sizeof (psize
) >= NN_NUMBUF_SZ
,
7310 _Static_assert(sizeof (asize
) >= NN_NUMBUF_SZ
,
7312 _Static_assert(sizeof (avg
) >= NN_NUMBUF_SZ
,
7314 _Static_assert(sizeof (gang
) >= NN_NUMBUF_SZ
,
7317 if (t
< DMU_OT_NUMTYPES
)
7318 typename
= dmu_ot
[t
].ot_name
;
7320 typename
= zdb_ot_extname
[t
- DMU_OT_NUMTYPES
];
7322 if (zcb
->zcb_type
[ZB_TOTAL
][t
].zb_asize
== 0) {
7323 (void) printf("%6s\t%5s\t%5s\t%5s"
7324 "\t%5s\t%5s\t%6s\t%s\n",
7336 for (l
= ZB_TOTAL
- 1; l
>= -1; l
--) {
7337 level
= (l
== -1 ? ZB_TOTAL
: l
);
7338 zb
= &zcb
->zcb_type
[level
][t
];
7340 if (zb
->zb_asize
== 0)
7343 if (level
!= ZB_TOTAL
&& t
< DMU_OT_NUMTYPES
&&
7344 (level
> 0 || DMU_OT_IS_METADATA(t
))) {
7345 mdstats
->zb_count
+= zb
->zb_count
;
7346 mdstats
->zb_lsize
+= zb
->zb_lsize
;
7347 mdstats
->zb_psize
+= zb
->zb_psize
;
7348 mdstats
->zb_asize
+= zb
->zb_asize
;
7349 mdstats
->zb_gangs
+= zb
->zb_gangs
;
7352 if (dump_opt
['b'] < 3 && level
!= ZB_TOTAL
)
7355 if (level
== 0 && zb
->zb_asize
==
7356 zcb
->zcb_type
[ZB_TOTAL
][t
].zb_asize
)
7359 zdb_nicenum(zb
->zb_count
, csize
,
7361 zdb_nicenum(zb
->zb_lsize
, lsize
,
7363 zdb_nicenum(zb
->zb_psize
, psize
,
7365 zdb_nicenum(zb
->zb_asize
, asize
,
7367 zdb_nicenum(zb
->zb_asize
/ zb
->zb_count
, avg
,
7369 zdb_nicenum(zb
->zb_gangs
, gang
, sizeof (gang
));
7371 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7373 csize
, lsize
, psize
, asize
, avg
,
7374 (double)zb
->zb_lsize
/ zb
->zb_psize
,
7375 100.0 * zb
->zb_asize
/ tzb
->zb_asize
);
7377 if (level
== ZB_TOTAL
)
7378 (void) printf("%s\n", typename
);
7380 (void) printf(" L%d %s\n",
7383 if (dump_opt
['b'] >= 3 && zb
->zb_gangs
> 0) {
7384 (void) printf("\t number of ganged "
7385 "blocks: %s\n", gang
);
7388 if (dump_opt
['b'] >= 4) {
7389 (void) printf("psize "
7390 "(in 512-byte sectors): "
7391 "number of blocks\n");
7392 dump_histogram(zb
->zb_psize_histogram
,
7393 PSIZE_HISTO_SIZE
, 0);
7397 zdb_nicenum(mdstats
->zb_count
, csize
,
7399 zdb_nicenum(mdstats
->zb_lsize
, lsize
,
7401 zdb_nicenum(mdstats
->zb_psize
, psize
,
7403 zdb_nicenum(mdstats
->zb_asize
, asize
,
7405 zdb_nicenum(mdstats
->zb_asize
/ mdstats
->zb_count
, avg
,
7407 zdb_nicenum(mdstats
->zb_gangs
, gang
, sizeof (gang
));
7409 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7411 csize
, lsize
, psize
, asize
, avg
,
7412 (double)mdstats
->zb_lsize
/ mdstats
->zb_psize
,
7413 100.0 * mdstats
->zb_asize
/ tzb
->zb_asize
);
7414 (void) printf("%s\n", "Metadata Total");
7416 /* Output a table summarizing block sizes in the pool */
7417 if (dump_opt
['b'] >= 2) {
7418 dump_size_histograms(zcb
);
7421 umem_free(mdstats
, sizeof (zfs_blkstat_t
));
7424 (void) printf("\n");
7427 umem_free(zcb
, sizeof (zdb_cb_t
));
7431 if (zcb
->zcb_haderrors
) {
7432 umem_free(zcb
, sizeof (zdb_cb_t
));
7436 umem_free(zcb
, sizeof (zdb_cb_t
));
7440 typedef struct zdb_ddt_entry
{
7441 /* key must be first for ddt_key_compare */
7443 uint64_t zdde_ref_blocks
;
7444 uint64_t zdde_ref_lsize
;
7445 uint64_t zdde_ref_psize
;
7446 uint64_t zdde_ref_dsize
;
7447 avl_node_t zdde_node
;
7451 zdb_ddt_add_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
7452 const zbookmark_phys_t
*zb
, const dnode_phys_t
*dnp
, void *arg
)
7454 (void) zilog
, (void) dnp
;
7455 avl_tree_t
*t
= arg
;
7457 zdb_ddt_entry_t
*zdde
, zdde_search
;
7459 if (zb
->zb_level
== ZB_DNODE_LEVEL
|| BP_IS_HOLE(bp
) ||
7463 if (dump_opt
['S'] > 1 && zb
->zb_level
== ZB_ROOT_LEVEL
) {
7464 (void) printf("traversing objset %llu, %llu objects, "
7465 "%lu blocks so far\n",
7466 (u_longlong_t
)zb
->zb_objset
,
7467 (u_longlong_t
)BP_GET_FILL(bp
),
7471 if (BP_IS_HOLE(bp
) || BP_GET_CHECKSUM(bp
) == ZIO_CHECKSUM_OFF
||
7472 BP_GET_LEVEL(bp
) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)))
7475 ddt_key_fill(&zdde_search
.zdde_key
, bp
);
7477 zdde
= avl_find(t
, &zdde_search
, &where
);
7480 zdde
= umem_zalloc(sizeof (*zdde
), UMEM_NOFAIL
);
7481 zdde
->zdde_key
= zdde_search
.zdde_key
;
7482 avl_insert(t
, zdde
, where
);
7485 zdde
->zdde_ref_blocks
+= 1;
7486 zdde
->zdde_ref_lsize
+= BP_GET_LSIZE(bp
);
7487 zdde
->zdde_ref_psize
+= BP_GET_PSIZE(bp
);
7488 zdde
->zdde_ref_dsize
+= bp_get_dsize_sync(spa
, bp
);
7494 dump_simulated_ddt(spa_t
*spa
)
7497 void *cookie
= NULL
;
7498 zdb_ddt_entry_t
*zdde
;
7499 ddt_histogram_t ddh_total
= {{{0}}};
7500 ddt_stat_t dds_total
= {0};
7502 avl_create(&t
, ddt_key_compare
,
7503 sizeof (zdb_ddt_entry_t
), offsetof(zdb_ddt_entry_t
, zdde_node
));
7505 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
7507 (void) traverse_pool(spa
, 0, TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
|
7508 TRAVERSE_NO_DECRYPT
, zdb_ddt_add_cb
, &t
);
7510 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
7512 while ((zdde
= avl_destroy_nodes(&t
, &cookie
)) != NULL
) {
7513 uint64_t refcnt
= zdde
->zdde_ref_blocks
;
7514 ASSERT(refcnt
!= 0);
7516 ddt_stat_t
*dds
= &ddh_total
.ddh_stat
[highbit64(refcnt
) - 1];
7518 dds
->dds_blocks
+= zdde
->zdde_ref_blocks
/ refcnt
;
7519 dds
->dds_lsize
+= zdde
->zdde_ref_lsize
/ refcnt
;
7520 dds
->dds_psize
+= zdde
->zdde_ref_psize
/ refcnt
;
7521 dds
->dds_dsize
+= zdde
->zdde_ref_dsize
/ refcnt
;
7523 dds
->dds_ref_blocks
+= zdde
->zdde_ref_blocks
;
7524 dds
->dds_ref_lsize
+= zdde
->zdde_ref_lsize
;
7525 dds
->dds_ref_psize
+= zdde
->zdde_ref_psize
;
7526 dds
->dds_ref_dsize
+= zdde
->zdde_ref_dsize
;
7528 umem_free(zdde
, sizeof (*zdde
));
7533 ddt_histogram_total(&dds_total
, &ddh_total
);
7535 (void) printf("Simulated DDT histogram:\n");
7537 zpool_dump_ddt(&dds_total
, &ddh_total
);
7539 dump_dedup_ratio(&dds_total
);
7543 verify_device_removal_feature_counts(spa_t
*spa
)
7545 uint64_t dr_feature_refcount
= 0;
7546 uint64_t oc_feature_refcount
= 0;
7547 uint64_t indirect_vdev_count
= 0;
7548 uint64_t precise_vdev_count
= 0;
7549 uint64_t obsolete_counts_object_count
= 0;
7550 uint64_t obsolete_sm_count
= 0;
7551 uint64_t obsolete_counts_count
= 0;
7552 uint64_t scip_count
= 0;
7553 uint64_t obsolete_bpobj_count
= 0;
7556 spa_condensing_indirect_phys_t
*scip
=
7557 &spa
->spa_condensing_indirect_phys
;
7558 if (scip
->scip_next_mapping_object
!= 0) {
7559 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[scip
->scip_vdev
];
7560 ASSERT(scip
->scip_prev_obsolete_sm_object
!= 0);
7561 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7563 (void) printf("Condensing indirect vdev %llu: new mapping "
7564 "object %llu, prev obsolete sm %llu\n",
7565 (u_longlong_t
)scip
->scip_vdev
,
7566 (u_longlong_t
)scip
->scip_next_mapping_object
,
7567 (u_longlong_t
)scip
->scip_prev_obsolete_sm_object
);
7568 if (scip
->scip_prev_obsolete_sm_object
!= 0) {
7569 space_map_t
*prev_obsolete_sm
= NULL
;
7570 VERIFY0(space_map_open(&prev_obsolete_sm
,
7571 spa
->spa_meta_objset
,
7572 scip
->scip_prev_obsolete_sm_object
,
7573 0, vd
->vdev_asize
, 0));
7574 dump_spacemap(spa
->spa_meta_objset
, prev_obsolete_sm
);
7575 (void) printf("\n");
7576 space_map_close(prev_obsolete_sm
);
7582 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
7583 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
7584 vdev_indirect_config_t
*vic
= &vd
->vdev_indirect_config
;
7586 if (vic
->vic_mapping_object
!= 0) {
7587 ASSERT(vd
->vdev_ops
== &vdev_indirect_ops
||
7589 indirect_vdev_count
++;
7591 if (vd
->vdev_indirect_mapping
->vim_havecounts
) {
7592 obsolete_counts_count
++;
7596 boolean_t are_precise
;
7597 VERIFY0(vdev_obsolete_counts_are_precise(vd
, &are_precise
));
7599 ASSERT(vic
->vic_mapping_object
!= 0);
7600 precise_vdev_count
++;
7603 uint64_t obsolete_sm_object
;
7604 VERIFY0(vdev_obsolete_sm_object(vd
, &obsolete_sm_object
));
7605 if (obsolete_sm_object
!= 0) {
7606 ASSERT(vic
->vic_mapping_object
!= 0);
7607 obsolete_sm_count
++;
7611 (void) feature_get_refcount(spa
,
7612 &spa_feature_table
[SPA_FEATURE_DEVICE_REMOVAL
],
7613 &dr_feature_refcount
);
7614 (void) feature_get_refcount(spa
,
7615 &spa_feature_table
[SPA_FEATURE_OBSOLETE_COUNTS
],
7616 &oc_feature_refcount
);
7618 if (dr_feature_refcount
!= indirect_vdev_count
) {
7620 (void) printf("Number of indirect vdevs (%llu) " \
7621 "does not match feature count (%llu)\n",
7622 (u_longlong_t
)indirect_vdev_count
,
7623 (u_longlong_t
)dr_feature_refcount
);
7625 (void) printf("Verified device_removal feature refcount " \
7626 "of %llu is correct\n",
7627 (u_longlong_t
)dr_feature_refcount
);
7630 if (zap_contains(spa_meta_objset(spa
), DMU_POOL_DIRECTORY_OBJECT
,
7631 DMU_POOL_OBSOLETE_BPOBJ
) == 0) {
7632 obsolete_bpobj_count
++;
7636 obsolete_counts_object_count
= precise_vdev_count
;
7637 obsolete_counts_object_count
+= obsolete_sm_count
;
7638 obsolete_counts_object_count
+= obsolete_counts_count
;
7639 obsolete_counts_object_count
+= scip_count
;
7640 obsolete_counts_object_count
+= obsolete_bpobj_count
;
7641 obsolete_counts_object_count
+= remap_deadlist_count
;
7643 if (oc_feature_refcount
!= obsolete_counts_object_count
) {
7645 (void) printf("Number of obsolete counts objects (%llu) " \
7646 "does not match feature count (%llu)\n",
7647 (u_longlong_t
)obsolete_counts_object_count
,
7648 (u_longlong_t
)oc_feature_refcount
);
7649 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7650 "ob:%llu rd:%llu\n",
7651 (u_longlong_t
)precise_vdev_count
,
7652 (u_longlong_t
)obsolete_sm_count
,
7653 (u_longlong_t
)obsolete_counts_count
,
7654 (u_longlong_t
)scip_count
,
7655 (u_longlong_t
)obsolete_bpobj_count
,
7656 (u_longlong_t
)remap_deadlist_count
);
7658 (void) printf("Verified indirect_refcount feature refcount " \
7659 "of %llu is correct\n",
7660 (u_longlong_t
)oc_feature_refcount
);
7666 zdb_set_skip_mmp(char *target
)
7671 * Disable the activity check to allow examination of
7674 mutex_enter(&spa_namespace_lock
);
7675 if ((spa
= spa_lookup(target
)) != NULL
) {
7676 spa
->spa_import_flags
|= ZFS_IMPORT_SKIP_MMP
;
7678 mutex_exit(&spa_namespace_lock
);
7681 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7683 * Import the checkpointed state of the pool specified by the target
7684 * parameter as readonly. The function also accepts a pool config
7685 * as an optional parameter, else it attempts to infer the config by
7686 * the name of the target pool.
7688 * Note that the checkpointed state's pool name will be the name of
7689 * the original pool with the above suffix appended to it. In addition,
7690 * if the target is not a pool name (e.g. a path to a dataset) then
7691 * the new_path parameter is populated with the updated path to
7692 * reflect the fact that we are looking into the checkpointed state.
7694 * The function returns a newly-allocated copy of the name of the
7695 * pool containing the checkpointed state. When this copy is no
7696 * longer needed it should be freed with free(3C). Same thing
7697 * applies to the new_path parameter if allocated.
7700 import_checkpointed_state(char *target
, nvlist_t
*cfg
, char **new_path
)
7703 char *poolname
, *bogus_name
= NULL
;
7704 boolean_t freecfg
= B_FALSE
;
7706 /* If the target is not a pool, the extract the pool name */
7707 char *path_start
= strchr(target
, '/');
7708 if (path_start
!= NULL
) {
7709 size_t poolname_len
= path_start
- target
;
7710 poolname
= strndup(target
, poolname_len
);
7716 zdb_set_skip_mmp(poolname
);
7717 error
= spa_get_stats(poolname
, &cfg
, NULL
, 0);
7719 fatal("Tried to read config of pool \"%s\" but "
7720 "spa_get_stats() failed with error %d\n",
7726 if (asprintf(&bogus_name
, "%s%s", poolname
, BOGUS_SUFFIX
) == -1) {
7727 if (target
!= poolname
)
7731 fnvlist_add_string(cfg
, ZPOOL_CONFIG_POOL_NAME
, bogus_name
);
7733 error
= spa_import(bogus_name
, cfg
, NULL
,
7734 ZFS_IMPORT_MISSING_LOG
| ZFS_IMPORT_CHECKPOINT
|
7735 ZFS_IMPORT_SKIP_MMP
);
7739 fatal("Tried to import pool \"%s\" but spa_import() failed "
7740 "with error %d\n", bogus_name
, error
);
7743 if (new_path
!= NULL
&& path_start
!= NULL
) {
7744 if (asprintf(new_path
, "%s%s", bogus_name
, path_start
) == -1) {
7746 if (path_start
!= NULL
)
7752 if (target
!= poolname
)
7755 return (bogus_name
);
7758 typedef struct verify_checkpoint_sm_entry_cb_arg
{
7761 /* the following fields are only used for printing progress */
7762 uint64_t vcsec_entryid
;
7763 uint64_t vcsec_num_entries
;
7764 } verify_checkpoint_sm_entry_cb_arg_t
;
7766 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7769 verify_checkpoint_sm_entry_cb(space_map_entry_t
*sme
, void *arg
)
7771 verify_checkpoint_sm_entry_cb_arg_t
*vcsec
= arg
;
7772 vdev_t
*vd
= vcsec
->vcsec_vd
;
7773 metaslab_t
*ms
= vd
->vdev_ms
[sme
->sme_offset
>> vd
->vdev_ms_shift
];
7774 uint64_t end
= sme
->sme_offset
+ sme
->sme_run
;
7776 ASSERT(sme
->sme_type
== SM_FREE
);
7778 if ((vcsec
->vcsec_entryid
% ENTRIES_PER_PROGRESS_UPDATE
) == 0) {
7779 (void) fprintf(stderr
,
7780 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7781 (longlong_t
)vd
->vdev_id
,
7782 (longlong_t
)vcsec
->vcsec_entryid
,
7783 (longlong_t
)vcsec
->vcsec_num_entries
);
7785 vcsec
->vcsec_entryid
++;
7788 * See comment in checkpoint_sm_exclude_entry_cb()
7790 VERIFY3U(sme
->sme_offset
, >=, ms
->ms_start
);
7791 VERIFY3U(end
, <=, ms
->ms_start
+ ms
->ms_size
);
7794 * The entries in the vdev_checkpoint_sm should be marked as
7795 * allocated in the checkpointed state of the pool, therefore
7796 * their respective ms_allocateable trees should not contain them.
7798 mutex_enter(&ms
->ms_lock
);
7799 range_tree_verify_not_present(ms
->ms_allocatable
,
7800 sme
->sme_offset
, sme
->sme_run
);
7801 mutex_exit(&ms
->ms_lock
);
7807 * Verify that all segments in the vdev_checkpoint_sm are allocated
7808 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7811 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7812 * each vdev in the current state of the pool to the metaslab space maps
7813 * (ms_sm) of the checkpointed state of the pool.
7815 * Note that the function changes the state of the ms_allocatable
7816 * trees of the current spa_t. The entries of these ms_allocatable
7817 * trees are cleared out and then repopulated from with the free
7818 * entries of their respective ms_sm space maps.
7821 verify_checkpoint_vdev_spacemaps(spa_t
*checkpoint
, spa_t
*current
)
7823 vdev_t
*ckpoint_rvd
= checkpoint
->spa_root_vdev
;
7824 vdev_t
*current_rvd
= current
->spa_root_vdev
;
7826 load_concrete_ms_allocatable_trees(checkpoint
, SM_FREE
);
7828 for (uint64_t c
= 0; c
< ckpoint_rvd
->vdev_children
; c
++) {
7829 vdev_t
*ckpoint_vd
= ckpoint_rvd
->vdev_child
[c
];
7830 vdev_t
*current_vd
= current_rvd
->vdev_child
[c
];
7832 space_map_t
*checkpoint_sm
= NULL
;
7833 uint64_t checkpoint_sm_obj
;
7835 if (ckpoint_vd
->vdev_ops
== &vdev_indirect_ops
) {
7837 * Since we don't allow device removal in a pool
7838 * that has a checkpoint, we expect that all removed
7839 * vdevs were removed from the pool before the
7842 ASSERT3P(current_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7847 * If the checkpoint space map doesn't exist, then nothing
7848 * here is checkpointed so there's nothing to verify.
7850 if (current_vd
->vdev_top_zap
== 0 ||
7851 zap_contains(spa_meta_objset(current
),
7852 current_vd
->vdev_top_zap
,
7853 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
7856 VERIFY0(zap_lookup(spa_meta_objset(current
),
7857 current_vd
->vdev_top_zap
, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
7858 sizeof (uint64_t), 1, &checkpoint_sm_obj
));
7860 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(current
),
7861 checkpoint_sm_obj
, 0, current_vd
->vdev_asize
,
7862 current_vd
->vdev_ashift
));
7864 verify_checkpoint_sm_entry_cb_arg_t vcsec
;
7865 vcsec
.vcsec_vd
= ckpoint_vd
;
7866 vcsec
.vcsec_entryid
= 0;
7867 vcsec
.vcsec_num_entries
=
7868 space_map_length(checkpoint_sm
) / sizeof (uint64_t);
7869 VERIFY0(space_map_iterate(checkpoint_sm
,
7870 space_map_length(checkpoint_sm
),
7871 verify_checkpoint_sm_entry_cb
, &vcsec
));
7872 if (dump_opt
['m'] > 3)
7873 dump_spacemap(current
->spa_meta_objset
, checkpoint_sm
);
7874 space_map_close(checkpoint_sm
);
7878 * If we've added vdevs since we took the checkpoint, ensure
7879 * that their checkpoint space maps are empty.
7881 if (ckpoint_rvd
->vdev_children
< current_rvd
->vdev_children
) {
7882 for (uint64_t c
= ckpoint_rvd
->vdev_children
;
7883 c
< current_rvd
->vdev_children
; c
++) {
7884 vdev_t
*current_vd
= current_rvd
->vdev_child
[c
];
7885 VERIFY3P(current_vd
->vdev_checkpoint_sm
, ==, NULL
);
7889 /* for cleaner progress output */
7890 (void) fprintf(stderr
, "\n");
7894 * Verifies that all space that's allocated in the checkpoint is
7895 * still allocated in the current version, by checking that everything
7896 * in checkpoint's ms_allocatable (which is actually allocated, not
7897 * allocatable/free) is not present in current's ms_allocatable.
7899 * Note that the function changes the state of the ms_allocatable
7900 * trees of both spas when called. The entries of all ms_allocatable
7901 * trees are cleared out and then repopulated from their respective
7902 * ms_sm space maps. In the checkpointed state we load the allocated
7903 * entries, and in the current state we load the free entries.
7906 verify_checkpoint_ms_spacemaps(spa_t
*checkpoint
, spa_t
*current
)
7908 vdev_t
*ckpoint_rvd
= checkpoint
->spa_root_vdev
;
7909 vdev_t
*current_rvd
= current
->spa_root_vdev
;
7911 load_concrete_ms_allocatable_trees(checkpoint
, SM_ALLOC
);
7912 load_concrete_ms_allocatable_trees(current
, SM_FREE
);
7914 for (uint64_t i
= 0; i
< ckpoint_rvd
->vdev_children
; i
++) {
7915 vdev_t
*ckpoint_vd
= ckpoint_rvd
->vdev_child
[i
];
7916 vdev_t
*current_vd
= current_rvd
->vdev_child
[i
];
7918 if (ckpoint_vd
->vdev_ops
== &vdev_indirect_ops
) {
7920 * See comment in verify_checkpoint_vdev_spacemaps()
7922 ASSERT3P(current_vd
->vdev_ops
, ==, &vdev_indirect_ops
);
7926 for (uint64_t m
= 0; m
< ckpoint_vd
->vdev_ms_count
; m
++) {
7927 metaslab_t
*ckpoint_msp
= ckpoint_vd
->vdev_ms
[m
];
7928 metaslab_t
*current_msp
= current_vd
->vdev_ms
[m
];
7930 (void) fprintf(stderr
,
7931 "\rverifying vdev %llu of %llu, "
7932 "metaslab %llu of %llu ...",
7933 (longlong_t
)current_vd
->vdev_id
,
7934 (longlong_t
)current_rvd
->vdev_children
,
7935 (longlong_t
)current_vd
->vdev_ms
[m
]->ms_id
,
7936 (longlong_t
)current_vd
->vdev_ms_count
);
7939 * We walk through the ms_allocatable trees that
7940 * are loaded with the allocated blocks from the
7941 * ms_sm spacemaps of the checkpoint. For each
7942 * one of these ranges we ensure that none of them
7943 * exists in the ms_allocatable trees of the
7944 * current state which are loaded with the ranges
7945 * that are currently free.
7947 * This way we ensure that none of the blocks that
7948 * are part of the checkpoint were freed by mistake.
7950 range_tree_walk(ckpoint_msp
->ms_allocatable
,
7951 (range_tree_func_t
*)range_tree_verify_not_present
,
7952 current_msp
->ms_allocatable
);
7956 /* for cleaner progress output */
7957 (void) fprintf(stderr
, "\n");
7961 verify_checkpoint_blocks(spa_t
*spa
)
7963 ASSERT(!dump_opt
['L']);
7965 spa_t
*checkpoint_spa
;
7966 char *checkpoint_pool
;
7970 * We import the checkpointed state of the pool (under a different
7971 * name) so we can do verification on it against the current state
7974 checkpoint_pool
= import_checkpointed_state(spa
->spa_name
, NULL
,
7976 ASSERT(strcmp(spa
->spa_name
, checkpoint_pool
) != 0);
7978 error
= spa_open(checkpoint_pool
, &checkpoint_spa
, FTAG
);
7980 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7981 "error %d\n", checkpoint_pool
, error
);
7985 * Ensure that ranges in the checkpoint space maps of each vdev
7986 * are allocated according to the checkpointed state's metaslab
7989 verify_checkpoint_vdev_spacemaps(checkpoint_spa
, spa
);
7992 * Ensure that allocated ranges in the checkpoint's metaslab
7993 * space maps remain allocated in the metaslab space maps of
7994 * the current state.
7996 verify_checkpoint_ms_spacemaps(checkpoint_spa
, spa
);
7999 * Once we are done, we get rid of the checkpointed state.
8001 spa_close(checkpoint_spa
, FTAG
);
8002 free(checkpoint_pool
);
8006 dump_leftover_checkpoint_blocks(spa_t
*spa
)
8008 vdev_t
*rvd
= spa
->spa_root_vdev
;
8010 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
8011 vdev_t
*vd
= rvd
->vdev_child
[i
];
8013 space_map_t
*checkpoint_sm
= NULL
;
8014 uint64_t checkpoint_sm_obj
;
8016 if (vd
->vdev_top_zap
== 0)
8019 if (zap_contains(spa_meta_objset(spa
), vd
->vdev_top_zap
,
8020 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
) != 0)
8023 VERIFY0(zap_lookup(spa_meta_objset(spa
), vd
->vdev_top_zap
,
8024 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM
,
8025 sizeof (uint64_t), 1, &checkpoint_sm_obj
));
8027 VERIFY0(space_map_open(&checkpoint_sm
, spa_meta_objset(spa
),
8028 checkpoint_sm_obj
, 0, vd
->vdev_asize
, vd
->vdev_ashift
));
8029 dump_spacemap(spa
->spa_meta_objset
, checkpoint_sm
);
8030 space_map_close(checkpoint_sm
);
8035 verify_checkpoint(spa_t
*spa
)
8037 uberblock_t checkpoint
;
8040 if (!spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
))
8043 error
= zap_lookup(spa
->spa_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
8044 DMU_POOL_ZPOOL_CHECKPOINT
, sizeof (uint64_t),
8045 sizeof (uberblock_t
) / sizeof (uint64_t), &checkpoint
);
8047 if (error
== ENOENT
&& !dump_opt
['L']) {
8049 * If the feature is active but the uberblock is missing
8050 * then we must be in the middle of discarding the
8053 (void) printf("\nPartially discarded checkpoint "
8055 if (dump_opt
['m'] > 3)
8056 dump_leftover_checkpoint_blocks(spa
);
8058 } else if (error
!= 0) {
8059 (void) printf("lookup error %d when looking for "
8060 "checkpointed uberblock in MOS\n", error
);
8063 dump_uberblock(&checkpoint
, "\nCheckpointed uberblock found:\n", "\n");
8065 if (checkpoint
.ub_checkpoint_txg
== 0) {
8066 (void) printf("\nub_checkpoint_txg not set in checkpointed "
8071 if (error
== 0 && !dump_opt
['L'])
8072 verify_checkpoint_blocks(spa
);
8078 mos_leaks_cb(void *arg
, uint64_t start
, uint64_t size
)
8081 for (uint64_t i
= start
; i
< size
; i
++) {
8082 (void) printf("MOS object %llu referenced but not allocated\n",
8088 mos_obj_refd(uint64_t obj
)
8090 if (obj
!= 0 && mos_refd_objs
!= NULL
)
8091 range_tree_add(mos_refd_objs
, obj
, 1);
8095 * Call on a MOS object that may already have been referenced.
8098 mos_obj_refd_multiple(uint64_t obj
)
8100 if (obj
!= 0 && mos_refd_objs
!= NULL
&&
8101 !range_tree_contains(mos_refd_objs
, obj
, 1))
8102 range_tree_add(mos_refd_objs
, obj
, 1);
8106 mos_leak_vdev_top_zap(vdev_t
*vd
)
8108 uint64_t ms_flush_data_obj
;
8109 int error
= zap_lookup(spa_meta_objset(vd
->vdev_spa
),
8110 vd
->vdev_top_zap
, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS
,
8111 sizeof (ms_flush_data_obj
), 1, &ms_flush_data_obj
);
8112 if (error
== ENOENT
)
8116 mos_obj_refd(ms_flush_data_obj
);
8120 mos_leak_vdev(vdev_t
*vd
)
8122 mos_obj_refd(vd
->vdev_dtl_object
);
8123 mos_obj_refd(vd
->vdev_ms_array
);
8124 mos_obj_refd(vd
->vdev_indirect_config
.vic_births_object
);
8125 mos_obj_refd(vd
->vdev_indirect_config
.vic_mapping_object
);
8126 mos_obj_refd(vd
->vdev_leaf_zap
);
8127 if (vd
->vdev_checkpoint_sm
!= NULL
)
8128 mos_obj_refd(vd
->vdev_checkpoint_sm
->sm_object
);
8129 if (vd
->vdev_indirect_mapping
!= NULL
) {
8130 mos_obj_refd(vd
->vdev_indirect_mapping
->
8131 vim_phys
->vimp_counts_object
);
8133 if (vd
->vdev_obsolete_sm
!= NULL
)
8134 mos_obj_refd(vd
->vdev_obsolete_sm
->sm_object
);
8136 for (uint64_t m
= 0; m
< vd
->vdev_ms_count
; m
++) {
8137 metaslab_t
*ms
= vd
->vdev_ms
[m
];
8138 mos_obj_refd(space_map_object(ms
->ms_sm
));
8141 if (vd
->vdev_root_zap
!= 0)
8142 mos_obj_refd(vd
->vdev_root_zap
);
8144 if (vd
->vdev_top_zap
!= 0) {
8145 mos_obj_refd(vd
->vdev_top_zap
);
8146 mos_leak_vdev_top_zap(vd
);
8149 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++) {
8150 mos_leak_vdev(vd
->vdev_child
[c
]);
8155 mos_leak_log_spacemaps(spa_t
*spa
)
8157 uint64_t spacemap_zap
;
8158 int error
= zap_lookup(spa_meta_objset(spa
),
8159 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_LOG_SPACEMAP_ZAP
,
8160 sizeof (spacemap_zap
), 1, &spacemap_zap
);
8161 if (error
== ENOENT
)
8165 mos_obj_refd(spacemap_zap
);
8166 for (spa_log_sm_t
*sls
= avl_first(&spa
->spa_sm_logs_by_txg
);
8167 sls
; sls
= AVL_NEXT(&spa
->spa_sm_logs_by_txg
, sls
))
8168 mos_obj_refd(sls
->sls_sm_obj
);
8172 errorlog_count_refd(objset_t
*mos
, uint64_t errlog
)
8175 zap_attribute_t
*za
= zap_attribute_alloc();
8176 for (zap_cursor_init(&zc
, mos
, errlog
);
8177 zap_cursor_retrieve(&zc
, za
) == 0;
8178 zap_cursor_advance(&zc
)) {
8179 mos_obj_refd(za
->za_first_integer
);
8181 zap_cursor_fini(&zc
);
8182 zap_attribute_free(za
);
8186 dump_mos_leaks(spa_t
*spa
)
8189 objset_t
*mos
= spa
->spa_meta_objset
;
8190 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
8192 /* Visit and mark all referenced objects in the MOS */
8194 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT
);
8195 mos_obj_refd(spa
->spa_pool_props_object
);
8196 mos_obj_refd(spa
->spa_config_object
);
8197 mos_obj_refd(spa
->spa_ddt_stat_object
);
8198 mos_obj_refd(spa
->spa_feat_desc_obj
);
8199 mos_obj_refd(spa
->spa_feat_enabled_txg_obj
);
8200 mos_obj_refd(spa
->spa_feat_for_read_obj
);
8201 mos_obj_refd(spa
->spa_feat_for_write_obj
);
8202 mos_obj_refd(spa
->spa_history
);
8203 mos_obj_refd(spa
->spa_errlog_last
);
8204 mos_obj_refd(spa
->spa_errlog_scrub
);
8206 if (spa_feature_is_enabled(spa
, SPA_FEATURE_HEAD_ERRLOG
)) {
8207 errorlog_count_refd(mos
, spa
->spa_errlog_last
);
8208 errorlog_count_refd(mos
, spa
->spa_errlog_scrub
);
8211 mos_obj_refd(spa
->spa_all_vdev_zaps
);
8212 mos_obj_refd(spa
->spa_dsl_pool
->dp_bptree_obj
);
8213 mos_obj_refd(spa
->spa_dsl_pool
->dp_tmp_userrefs_obj
);
8214 mos_obj_refd(spa
->spa_dsl_pool
->dp_scan
->scn_phys
.scn_queue_obj
);
8215 bpobj_count_refd(&spa
->spa_deferred_bpobj
);
8216 mos_obj_refd(dp
->dp_empty_bpobj
);
8217 bpobj_count_refd(&dp
->dp_obsolete_bpobj
);
8218 bpobj_count_refd(&dp
->dp_free_bpobj
);
8219 mos_obj_refd(spa
->spa_l2cache
.sav_object
);
8220 mos_obj_refd(spa
->spa_spares
.sav_object
);
8222 if (spa
->spa_syncing_log_sm
!= NULL
)
8223 mos_obj_refd(spa
->spa_syncing_log_sm
->sm_object
);
8224 mos_leak_log_spacemaps(spa
);
8226 mos_obj_refd(spa
->spa_condensing_indirect_phys
.
8227 scip_next_mapping_object
);
8228 mos_obj_refd(spa
->spa_condensing_indirect_phys
.
8229 scip_prev_obsolete_sm_object
);
8230 if (spa
->spa_condensing_indirect_phys
.scip_next_mapping_object
!= 0) {
8231 vdev_indirect_mapping_t
*vim
=
8232 vdev_indirect_mapping_open(mos
,
8233 spa
->spa_condensing_indirect_phys
.scip_next_mapping_object
);
8234 mos_obj_refd(vim
->vim_phys
->vimp_counts_object
);
8235 vdev_indirect_mapping_close(vim
);
8237 deleted_livelists_dump_mos(spa
);
8239 if (dp
->dp_origin_snap
!= NULL
) {
8242 dsl_pool_config_enter(dp
, FTAG
);
8243 VERIFY0(dsl_dataset_hold_obj(dp
,
8244 dsl_dataset_phys(dp
->dp_origin_snap
)->ds_next_snap_obj
,
8246 count_ds_mos_objects(ds
);
8247 dump_blkptr_list(&ds
->ds_deadlist
, "Deadlist");
8248 dsl_dataset_rele(ds
, FTAG
);
8249 dsl_pool_config_exit(dp
, FTAG
);
8251 count_ds_mos_objects(dp
->dp_origin_snap
);
8252 dump_blkptr_list(&dp
->dp_origin_snap
->ds_deadlist
, "Deadlist");
8254 count_dir_mos_objects(dp
->dp_mos_dir
);
8255 if (dp
->dp_free_dir
!= NULL
)
8256 count_dir_mos_objects(dp
->dp_free_dir
);
8257 if (dp
->dp_leak_dir
!= NULL
)
8258 count_dir_mos_objects(dp
->dp_leak_dir
);
8260 mos_leak_vdev(spa
->spa_root_vdev
);
8262 for (uint64_t c
= 0; c
< ZIO_CHECKSUM_FUNCTIONS
; c
++) {
8263 ddt_t
*ddt
= spa
->spa_ddt
[c
];
8264 if (!ddt
|| ddt
->ddt_version
== DDT_VERSION_UNCONFIGURED
)
8267 /* DDT store objects */
8268 for (ddt_type_t type
= 0; type
< DDT_TYPES
; type
++) {
8269 for (ddt_class_t
class = 0; class < DDT_CLASSES
;
8271 mos_obj_refd(ddt
->ddt_object
[type
][class]);
8276 if (ddt
->ddt_version
== DDT_VERSION_FDT
)
8277 mos_obj_refd(ddt
->ddt_dir_object
);
8279 /* FDT log objects */
8280 if (ddt
->ddt_flags
& DDT_FLAG_LOG
) {
8281 mos_obj_refd(ddt
->ddt_log
[0].ddl_object
);
8282 mos_obj_refd(ddt
->ddt_log
[1].ddl_object
);
8286 for (uint64_t vdevid
= 0; vdevid
< spa
->spa_brt_nvdevs
; vdevid
++) {
8287 brt_vdev_t
*brtvd
= spa
->spa_brt_vdevs
[vdevid
];
8288 if (brtvd
->bv_initiated
) {
8289 mos_obj_refd(brtvd
->bv_mos_brtvdev
);
8290 mos_obj_refd(brtvd
->bv_mos_entries
);
8295 * Visit all allocated objects and make sure they are referenced.
8297 uint64_t object
= 0;
8298 while (dmu_object_next(mos
, &object
, B_FALSE
, 0) == 0) {
8299 if (range_tree_contains(mos_refd_objs
, object
, 1)) {
8300 range_tree_remove(mos_refd_objs
, object
, 1);
8302 dmu_object_info_t doi
;
8304 VERIFY0(dmu_object_info(mos
, object
, &doi
));
8305 if (doi
.doi_type
& DMU_OT_NEWTYPE
) {
8306 dmu_object_byteswap_t bswap
=
8307 DMU_OT_BYTESWAP(doi
.doi_type
);
8308 name
= dmu_ot_byteswap
[bswap
].ob_name
;
8310 name
= dmu_ot
[doi
.doi_type
].ot_name
;
8313 (void) printf("MOS object %llu (%s) leaked\n",
8314 (u_longlong_t
)object
, name
);
8318 (void) range_tree_walk(mos_refd_objs
, mos_leaks_cb
, NULL
);
8319 if (!range_tree_is_empty(mos_refd_objs
))
8321 range_tree_vacate(mos_refd_objs
, NULL
, NULL
);
8322 range_tree_destroy(mos_refd_objs
);
8326 typedef struct log_sm_obsolete_stats_arg
{
8327 uint64_t lsos_current_txg
;
8329 uint64_t lsos_total_entries
;
8330 uint64_t lsos_valid_entries
;
8332 uint64_t lsos_sm_entries
;
8333 uint64_t lsos_valid_sm_entries
;
8334 } log_sm_obsolete_stats_arg_t
;
8337 log_spacemap_obsolete_stats_cb(spa_t
*spa
, space_map_entry_t
*sme
,
8338 uint64_t txg
, void *arg
)
8340 log_sm_obsolete_stats_arg_t
*lsos
= arg
;
8342 uint64_t offset
= sme
->sme_offset
;
8343 uint64_t vdev_id
= sme
->sme_vdev
;
8345 if (lsos
->lsos_current_txg
== 0) {
8346 /* this is the first log */
8347 lsos
->lsos_current_txg
= txg
;
8348 } else if (lsos
->lsos_current_txg
< txg
) {
8349 /* we just changed log - print stats and reset */
8350 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8351 (u_longlong_t
)lsos
->lsos_valid_sm_entries
,
8352 (u_longlong_t
)lsos
->lsos_sm_entries
,
8353 (u_longlong_t
)lsos
->lsos_current_txg
);
8354 lsos
->lsos_valid_sm_entries
= 0;
8355 lsos
->lsos_sm_entries
= 0;
8356 lsos
->lsos_current_txg
= txg
;
8358 ASSERT3U(lsos
->lsos_current_txg
, ==, txg
);
8360 lsos
->lsos_sm_entries
++;
8361 lsos
->lsos_total_entries
++;
8363 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
8364 if (!vdev_is_concrete(vd
))
8367 metaslab_t
*ms
= vd
->vdev_ms
[offset
>> vd
->vdev_ms_shift
];
8368 ASSERT(sme
->sme_type
== SM_ALLOC
|| sme
->sme_type
== SM_FREE
);
8370 if (txg
< metaslab_unflushed_txg(ms
))
8372 lsos
->lsos_valid_sm_entries
++;
8373 lsos
->lsos_valid_entries
++;
8378 dump_log_spacemap_obsolete_stats(spa_t
*spa
)
8380 if (!spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))
8383 log_sm_obsolete_stats_arg_t lsos
= {0};
8385 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8387 iterate_through_spacemap_logs(spa
,
8388 log_spacemap_obsolete_stats_cb
, &lsos
);
8390 /* print stats for latest log */
8391 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8392 (u_longlong_t
)lsos
.lsos_valid_sm_entries
,
8393 (u_longlong_t
)lsos
.lsos_sm_entries
,
8394 (u_longlong_t
)lsos
.lsos_current_txg
);
8396 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8397 (u_longlong_t
)lsos
.lsos_valid_entries
,
8398 (u_longlong_t
)lsos
.lsos_total_entries
);
8402 dump_zpool(spa_t
*spa
)
8404 dsl_pool_t
*dp
= spa_get_dsl(spa
);
8407 if (dump_opt
['y']) {
8408 livelist_metaslab_validate(spa
);
8411 if (dump_opt
['S']) {
8412 dump_simulated_ddt(spa
);
8416 if (!dump_opt
['e'] && dump_opt
['C'] > 1) {
8417 (void) printf("\nCached configuration:\n");
8418 dump_nvlist(spa
->spa_config
, 8);
8425 dump_uberblock(&spa
->spa_uberblock
, "\nUberblock:\n", "\n");
8433 if (dump_opt
['d'] > 2 || dump_opt
['m'])
8434 dump_metaslabs(spa
);
8436 dump_metaslab_groups(spa
, dump_opt
['M'] > 1);
8437 if (dump_opt
['d'] > 2 || dump_opt
['m']) {
8438 dump_log_spacemaps(spa
);
8439 dump_log_spacemap_obsolete_stats(spa
);
8442 if (dump_opt
['d'] || dump_opt
['i']) {
8444 mos_refd_objs
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0,
8446 dump_objset(dp
->dp_meta_objset
);
8448 if (dump_opt
['d'] >= 3) {
8449 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
8450 dump_full_bpobj(&spa
->spa_deferred_bpobj
,
8451 "Deferred frees", 0);
8452 if (spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
8453 dump_full_bpobj(&dp
->dp_free_bpobj
,
8454 "Pool snapshot frees", 0);
8456 if (bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
8457 ASSERT(spa_feature_is_enabled(spa
,
8458 SPA_FEATURE_DEVICE_REMOVAL
));
8459 dump_full_bpobj(&dp
->dp_obsolete_bpobj
,
8460 "Pool obsolete blocks", 0);
8463 if (spa_feature_is_active(spa
,
8464 SPA_FEATURE_ASYNC_DESTROY
)) {
8465 dump_bptree(spa
->spa_meta_objset
,
8467 "Pool dataset frees");
8469 dump_dtl(spa
->spa_root_vdev
, 0);
8472 for (spa_feature_t f
= 0; f
< SPA_FEATURES
; f
++)
8473 global_feature_count
[f
] = UINT64_MAX
;
8474 global_feature_count
[SPA_FEATURE_REDACTION_BOOKMARKS
] = 0;
8475 global_feature_count
[SPA_FEATURE_REDACTION_LIST_SPILL
] = 0;
8476 global_feature_count
[SPA_FEATURE_BOOKMARK_WRITTEN
] = 0;
8477 global_feature_count
[SPA_FEATURE_LIVELIST
] = 0;
8479 (void) dmu_objset_find(spa_name(spa
), dump_one_objset
,
8480 NULL
, DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
8482 if (rc
== 0 && !dump_opt
['L'])
8483 rc
= dump_mos_leaks(spa
);
8485 for (f
= 0; f
< SPA_FEATURES
; f
++) {
8489 if (!(spa_feature_table
[f
].fi_flags
&
8490 ZFEATURE_FLAG_PER_DATASET
)) {
8491 if (global_feature_count
[f
] == UINT64_MAX
)
8493 if (!spa_feature_is_enabled(spa
, f
)) {
8494 ASSERT0(global_feature_count
[f
]);
8497 arr
= global_feature_count
;
8499 if (!spa_feature_is_enabled(spa
, f
)) {
8500 ASSERT0(dataset_feature_count
[f
]);
8503 arr
= dataset_feature_count
;
8505 if (feature_get_refcount(spa
, &spa_feature_table
[f
],
8506 &refcount
) == ENOTSUP
)
8508 if (arr
[f
] != refcount
) {
8509 (void) printf("%s feature refcount mismatch: "
8510 "%lld consumers != %lld refcount\n",
8511 spa_feature_table
[f
].fi_uname
,
8512 (longlong_t
)arr
[f
], (longlong_t
)refcount
);
8515 (void) printf("Verified %s feature refcount "
8516 "of %llu is correct\n",
8517 spa_feature_table
[f
].fi_uname
,
8518 (longlong_t
)refcount
);
8523 rc
= verify_device_removal_feature_counts(spa
);
8526 if (rc
== 0 && (dump_opt
['b'] || dump_opt
['c']))
8527 rc
= dump_block_stats(spa
);
8530 rc
= verify_spacemap_refcounts(spa
);
8533 show_pool_stats(spa
);
8539 rc
= verify_checkpoint(spa
);
8542 dump_debug_buffer();
8547 #define ZDB_FLAG_CHECKSUM 0x0001
8548 #define ZDB_FLAG_DECOMPRESS 0x0002
8549 #define ZDB_FLAG_BSWAP 0x0004
8550 #define ZDB_FLAG_GBH 0x0008
8551 #define ZDB_FLAG_INDIRECT 0x0010
8552 #define ZDB_FLAG_RAW 0x0020
8553 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8554 #define ZDB_FLAG_VERBOSE 0x0080
8556 static int flagbits
[256];
8557 static char flagbitstr
[16];
8560 zdb_print_blkptr(const blkptr_t
*bp
, int flags
)
8562 char blkbuf
[BP_SPRINTF_LEN
];
8564 if (flags
& ZDB_FLAG_BSWAP
)
8565 byteswap_uint64_array((void *)bp
, sizeof (blkptr_t
));
8567 snprintf_blkptr(blkbuf
, sizeof (blkbuf
), bp
);
8568 (void) printf("%s\n", blkbuf
);
8572 zdb_dump_indirect(blkptr_t
*bp
, int nbps
, int flags
)
8576 for (i
= 0; i
< nbps
; i
++)
8577 zdb_print_blkptr(&bp
[i
], flags
);
8581 zdb_dump_gbh(void *buf
, int flags
)
8583 zdb_dump_indirect((blkptr_t
*)buf
, SPA_GBH_NBLKPTRS
, flags
);
8587 zdb_dump_block_raw(void *buf
, uint64_t size
, int flags
)
8589 if (flags
& ZDB_FLAG_BSWAP
)
8590 byteswap_uint64_array(buf
, size
);
8591 VERIFY(write(fileno(stdout
), buf
, size
) == size
);
8595 zdb_dump_block(char *label
, void *buf
, uint64_t size
, int flags
)
8597 uint64_t *d
= (uint64_t *)buf
;
8598 unsigned nwords
= size
/ sizeof (uint64_t);
8599 int do_bswap
= !!(flags
& ZDB_FLAG_BSWAP
);
8606 hdr
= " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8608 hdr
= " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8610 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label
, "", hdr
);
8612 #ifdef _ZFS_LITTLE_ENDIAN
8613 /* correct the endianness */
8614 do_bswap
= !do_bswap
;
8616 for (i
= 0; i
< nwords
; i
+= 2) {
8617 (void) printf("%06llx: %016llx %016llx ",
8618 (u_longlong_t
)(i
* sizeof (uint64_t)),
8619 (u_longlong_t
)(do_bswap
? BSWAP_64(d
[i
]) : d
[i
]),
8620 (u_longlong_t
)(do_bswap
? BSWAP_64(d
[i
+ 1]) : d
[i
+ 1]));
8623 for (j
= 0; j
< 2 * sizeof (uint64_t); j
++)
8624 (void) printf("%c", isprint(c
[j
]) ? c
[j
] : '.');
8625 (void) printf("\n");
8630 * There are two acceptable formats:
8631 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8632 * child[.child]* - For example: 0.1.1
8634 * The second form can be used to specify arbitrary vdevs anywhere
8635 * in the hierarchy. For example, in a pool with a mirror of
8636 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8639 zdb_vdev_lookup(vdev_t
*vdev
, const char *path
)
8647 /* First, assume the x.x.x.x format */
8648 i
= strtoul(path
, &s
, 10);
8649 if (s
== path
|| (s
&& *s
!= '.' && *s
!= '\0'))
8651 if (i
>= vdev
->vdev_children
)
8654 vdev
= vdev
->vdev_child
[i
];
8655 if (s
&& *s
== '\0')
8657 return (zdb_vdev_lookup(vdev
, s
+1));
8660 for (i
= 0; i
< vdev
->vdev_children
; i
++) {
8661 vdev_t
*vc
= vdev
->vdev_child
[i
];
8663 if (vc
->vdev_path
== NULL
) {
8664 vc
= zdb_vdev_lookup(vc
, path
);
8671 p
= strrchr(vc
->vdev_path
, '/');
8672 p
= p
? p
+ 1 : vc
->vdev_path
;
8673 q
= &vc
->vdev_path
[strlen(vc
->vdev_path
) - 2];
8675 if (strcmp(vc
->vdev_path
, path
) == 0)
8677 if (strcmp(p
, path
) == 0)
8679 if (strcmp(q
, "s0") == 0 && strncmp(p
, path
, q
- p
) == 0)
8687 name_from_objset_id(spa_t
*spa
, uint64_t objset_id
, char *outstr
)
8691 dsl_pool_config_enter(spa
->spa_dsl_pool
, FTAG
);
8692 int error
= dsl_dataset_hold_obj(spa
->spa_dsl_pool
, objset_id
,
8695 (void) fprintf(stderr
, "failed to hold objset %llu: %s\n",
8696 (u_longlong_t
)objset_id
, strerror(error
));
8697 dsl_pool_config_exit(spa
->spa_dsl_pool
, FTAG
);
8700 dsl_dataset_name(ds
, outstr
);
8701 dsl_dataset_rele(ds
, NULL
);
8702 dsl_pool_config_exit(spa
->spa_dsl_pool
, FTAG
);
8707 zdb_parse_block_sizes(char *sizes
, uint64_t *lsize
, uint64_t *psize
)
8709 char *s0
, *s1
, *tmp
= NULL
;
8714 s0
= strtok_r(sizes
, "/", &tmp
);
8717 s1
= strtok_r(NULL
, "/", &tmp
);
8718 *lsize
= strtoull(s0
, NULL
, 16);
8719 *psize
= s1
? strtoull(s1
, NULL
, 16) : *lsize
;
8720 return (*lsize
>= *psize
&& *psize
> 0);
8723 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8726 try_decompress_block(abd_t
*pabd
, uint64_t lsize
, uint64_t psize
,
8727 int flags
, int cfunc
, void *lbuf
, void *lbuf2
)
8729 if (flags
& ZDB_FLAG_VERBOSE
) {
8730 (void) fprintf(stderr
,
8731 "Trying %05llx -> %05llx (%s)\n",
8732 (u_longlong_t
)psize
,
8733 (u_longlong_t
)lsize
,
8734 zio_compress_table
[cfunc
].ci_name
);
8738 * We set lbuf to all zeros and lbuf2 to all
8739 * ones, then decompress to both buffers and
8740 * compare their contents. This way we can
8741 * know if decompression filled exactly to
8742 * lsize or if it left some bytes unwritten.
8745 memset(lbuf
, 0x00, lsize
);
8746 memset(lbuf2
, 0xff, lsize
);
8749 abd_get_from_buf_struct(&labd
, lbuf
, lsize
);
8750 abd_get_from_buf_struct(&labd2
, lbuf2
, lsize
);
8752 boolean_t ret
= B_FALSE
;
8753 if (zio_decompress_data(cfunc
, pabd
,
8754 &labd
, psize
, lsize
, NULL
) == 0 &&
8755 zio_decompress_data(cfunc
, pabd
,
8756 &labd2
, psize
, lsize
, NULL
) == 0 &&
8757 memcmp(lbuf
, lbuf2
, lsize
) == 0)
8767 zdb_decompress_block(abd_t
*pabd
, void *buf
, void *lbuf
, uint64_t lsize
,
8768 uint64_t psize
, int flags
)
8771 uint64_t orig_lsize
= lsize
;
8772 boolean_t tryzle
= ((getenv("ZDB_NO_ZLE") == NULL
));
8773 boolean_t found
= B_FALSE
;
8775 * We don't know how the data was compressed, so just try
8776 * every decompress function at every inflated blocksize.
8778 void *lbuf2
= umem_alloc(SPA_MAXBLOCKSIZE
, UMEM_NOFAIL
);
8779 int cfuncs
[ZIO_COMPRESS_FUNCTIONS
] = { 0 };
8780 int *cfuncp
= cfuncs
;
8781 uint64_t maxlsize
= SPA_MAXBLOCKSIZE
;
8782 uint64_t mask
= ZIO_COMPRESS_MASK(ON
) | ZIO_COMPRESS_MASK(OFF
) |
8783 ZIO_COMPRESS_MASK(INHERIT
) | ZIO_COMPRESS_MASK(EMPTY
) |
8784 ZIO_COMPRESS_MASK(ZLE
);
8785 *cfuncp
++ = ZIO_COMPRESS_LZ4
;
8786 *cfuncp
++ = ZIO_COMPRESS_LZJB
;
8787 mask
|= ZIO_COMPRESS_MASK(LZ4
) | ZIO_COMPRESS_MASK(LZJB
);
8789 * Every gzip level has the same decompressor, no need to
8790 * run it 9 times per bruteforce attempt.
8792 mask
|= ZIO_COMPRESS_MASK(GZIP_2
) | ZIO_COMPRESS_MASK(GZIP_3
);
8793 mask
|= ZIO_COMPRESS_MASK(GZIP_4
) | ZIO_COMPRESS_MASK(GZIP_5
);
8794 mask
|= ZIO_COMPRESS_MASK(GZIP_6
) | ZIO_COMPRESS_MASK(GZIP_7
);
8795 mask
|= ZIO_COMPRESS_MASK(GZIP_8
) | ZIO_COMPRESS_MASK(GZIP_9
);
8796 for (int c
= 0; c
< ZIO_COMPRESS_FUNCTIONS
; c
++)
8797 if (((1ULL << c
) & mask
) == 0)
8801 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8802 * could take a while and we should let the user know
8803 * we are not stuck. On the other hand, printing progress
8804 * info gets old after a while. User can specify 'v' flag
8805 * to see the progression.
8808 lsize
+= SPA_MINBLOCKSIZE
;
8812 for (; lsize
<= maxlsize
; lsize
+= SPA_MINBLOCKSIZE
) {
8813 for (cfuncp
= cfuncs
; *cfuncp
; cfuncp
++) {
8814 if (try_decompress_block(pabd
, lsize
, psize
, flags
,
8815 *cfuncp
, lbuf
, lbuf2
)) {
8823 if (!found
&& tryzle
) {
8824 for (lsize
= orig_lsize
; lsize
<= maxlsize
;
8825 lsize
+= SPA_MINBLOCKSIZE
) {
8826 if (try_decompress_block(pabd
, lsize
, psize
, flags
,
8827 ZIO_COMPRESS_ZLE
, lbuf
, lbuf2
)) {
8828 *cfuncp
= ZIO_COMPRESS_ZLE
;
8834 umem_free(lbuf2
, SPA_MAXBLOCKSIZE
);
8836 if (*cfuncp
== ZIO_COMPRESS_ZLE
) {
8837 printf("\nZLE decompression was selected. If you "
8838 "suspect the results are wrong,\ntry avoiding ZLE "
8839 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8842 return (lsize
> maxlsize
? -1 : lsize
);
8846 * Read a block from a pool and print it out. The syntax of the
8847 * block descriptor is:
8849 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8851 * pool - The name of the pool you wish to read from
8852 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8853 * offset - offset, in hex, in bytes
8854 * size - Amount of data to read, in hex, in bytes
8855 * flags - A string of characters specifying options
8856 * b: Decode a blkptr at given offset within block
8857 * c: Calculate and display checksums
8858 * d: Decompress data before dumping
8859 * e: Byteswap data before dumping
8860 * g: Display data as a gang block header
8861 * i: Display as an indirect block
8862 * r: Dump raw data to stdout
8867 zdb_read_block(char *thing
, spa_t
*spa
)
8869 blkptr_t blk
, *bp
= &blk
;
8870 dva_t
*dva
= bp
->blk_dva
;
8872 uint64_t offset
= 0, psize
= 0, lsize
= 0, blkptr_offset
= 0;
8877 char *s
, *p
, *dup
, *flagstr
, *sizes
, *tmp
= NULL
;
8878 const char *vdev
, *errmsg
= NULL
;
8880 boolean_t borrowed
= B_FALSE
, found
= B_FALSE
;
8882 dup
= strdup(thing
);
8883 s
= strtok_r(dup
, ":", &tmp
);
8885 s
= strtok_r(NULL
, ":", &tmp
);
8886 offset
= strtoull(s
? s
: "", NULL
, 16);
8887 sizes
= strtok_r(NULL
, ":", &tmp
);
8888 s
= strtok_r(NULL
, ":", &tmp
);
8889 flagstr
= strdup(s
?: "");
8891 if (!zdb_parse_block_sizes(sizes
, &lsize
, &psize
))
8892 errmsg
= "invalid size(s)";
8893 if (!IS_P2ALIGNED(psize
, DEV_BSIZE
) || !IS_P2ALIGNED(lsize
, DEV_BSIZE
))
8894 errmsg
= "size must be a multiple of sector size";
8895 if (!IS_P2ALIGNED(offset
, DEV_BSIZE
))
8896 errmsg
= "offset must be a multiple of sector size";
8898 (void) printf("Invalid block specifier: %s - %s\n",
8904 for (s
= strtok_r(flagstr
, ":", &tmp
);
8906 s
= strtok_r(NULL
, ":", &tmp
)) {
8907 len
= strlen(flagstr
);
8908 for (i
= 0; i
< len
; i
++) {
8909 int bit
= flagbits
[(uchar_t
)flagstr
[i
]];
8912 (void) printf("***Ignoring flag: %c\n",
8913 (uchar_t
)flagstr
[i
]);
8919 p
= &flagstr
[i
+ 1];
8920 if (*p
!= ':' && *p
!= '\0') {
8921 int j
= 0, nextbit
= flagbits
[(uchar_t
)*p
];
8922 char *end
, offstr
[8] = { 0 };
8923 if ((bit
== ZDB_FLAG_PRINT_BLKPTR
) &&
8925 /* look ahead to isolate the offset */
8926 while (nextbit
== 0 &&
8927 strchr(flagbitstr
, *p
) == NULL
) {
8930 if (i
+ j
> strlen(flagstr
))
8933 nextbit
= flagbits
[(uchar_t
)*p
];
8935 blkptr_offset
= strtoull(offstr
, &end
,
8938 } else if (nextbit
== 0) {
8939 (void) printf("***Ignoring flag arg:"
8940 " '%c'\n", (uchar_t
)*p
);
8945 if (blkptr_offset
% sizeof (blkptr_t
)) {
8946 printf("Block pointer offset 0x%llx "
8947 "must be divisible by 0x%x\n",
8948 (longlong_t
)blkptr_offset
, (int)sizeof (blkptr_t
));
8951 if (found
== B_FALSE
&& strlen(flagstr
) > 0) {
8952 printf("Invalid flag arg: '%s'\n", flagstr
);
8956 vd
= zdb_vdev_lookup(spa
->spa_root_vdev
, vdev
);
8958 (void) printf("***Invalid vdev: %s\n", vdev
);
8962 (void) fprintf(stderr
, "Found vdev: %s\n",
8965 (void) fprintf(stderr
, "Found vdev type: %s\n",
8966 vd
->vdev_ops
->vdev_op_type
);
8969 pabd
= abd_alloc_for_io(SPA_MAXBLOCKSIZE
, B_FALSE
);
8970 lbuf
= umem_alloc(SPA_MAXBLOCKSIZE
, UMEM_NOFAIL
);
8974 DVA_SET_VDEV(&dva
[0], vd
->vdev_id
);
8975 DVA_SET_OFFSET(&dva
[0], offset
);
8976 DVA_SET_GANG(&dva
[0], !!(flags
& ZDB_FLAG_GBH
));
8977 DVA_SET_ASIZE(&dva
[0], vdev_psize_to_asize(vd
, psize
));
8979 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
8981 BP_SET_LSIZE(bp
, lsize
);
8982 BP_SET_PSIZE(bp
, psize
);
8983 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
8984 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
8985 BP_SET_TYPE(bp
, DMU_OT_NONE
);
8986 BP_SET_LEVEL(bp
, 0);
8987 BP_SET_DEDUP(bp
, 0);
8988 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
8990 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
8991 zio
= zio_root(spa
, NULL
, NULL
, 0);
8993 if (vd
== vd
->vdev_top
) {
8995 * Treat this as a normal block read.
8997 zio_nowait(zio_read(zio
, spa
, bp
, pabd
, psize
, NULL
, NULL
,
8998 ZIO_PRIORITY_SYNC_READ
,
8999 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
, NULL
));
9002 * Treat this as a vdev child I/O.
9004 zio_nowait(zio_vdev_child_io(zio
, bp
, vd
, offset
, pabd
,
9005 psize
, ZIO_TYPE_READ
, ZIO_PRIORITY_SYNC_READ
,
9006 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
9007 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
| ZIO_FLAG_OPTIONAL
,
9011 error
= zio_wait(zio
);
9012 spa_config_exit(spa
, SCL_STATE
, FTAG
);
9015 (void) printf("Read of %s failed, error: %d\n", thing
, error
);
9019 uint64_t orig_lsize
= lsize
;
9021 if (flags
& ZDB_FLAG_DECOMPRESS
) {
9022 lsize
= zdb_decompress_block(pabd
, buf
, lbuf
,
9023 lsize
, psize
, flags
);
9025 (void) printf("Decompress of %s failed\n", thing
);
9029 buf
= abd_borrow_buf_copy(pabd
, lsize
);
9033 * Try to detect invalid block pointer. If invalid, try
9036 if ((flags
& ZDB_FLAG_PRINT_BLKPTR
|| flags
& ZDB_FLAG_INDIRECT
) &&
9037 !(flags
& ZDB_FLAG_DECOMPRESS
)) {
9038 const blkptr_t
*b
= (const blkptr_t
*)(void *)
9039 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
);
9040 if (zfs_blkptr_verify(spa
, b
,
9041 BLK_CONFIG_NEEDED
, BLK_VERIFY_ONLY
) == B_FALSE
) {
9042 abd_return_buf_copy(pabd
, buf
, lsize
);
9045 lsize
= zdb_decompress_block(pabd
, buf
,
9046 lbuf
, lsize
, psize
, flags
);
9047 b
= (const blkptr_t
*)(void *)
9048 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
);
9049 if (lsize
== -1 || zfs_blkptr_verify(spa
, b
,
9050 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
) == B_FALSE
) {
9051 printf("invalid block pointer at this DVA\n");
9057 if (flags
& ZDB_FLAG_PRINT_BLKPTR
)
9058 zdb_print_blkptr((blkptr_t
*)(void *)
9059 ((uintptr_t)buf
+ (uintptr_t)blkptr_offset
), flags
);
9060 else if (flags
& ZDB_FLAG_RAW
)
9061 zdb_dump_block_raw(buf
, lsize
, flags
);
9062 else if (flags
& ZDB_FLAG_INDIRECT
)
9063 zdb_dump_indirect((blkptr_t
*)buf
,
9064 orig_lsize
/ sizeof (blkptr_t
), flags
);
9065 else if (flags
& ZDB_FLAG_GBH
)
9066 zdb_dump_gbh(buf
, flags
);
9068 zdb_dump_block(thing
, buf
, lsize
, flags
);
9071 * If :c was specified, iterate through the checksum table to
9072 * calculate and display each checksum for our specified
9075 if ((flags
& ZDB_FLAG_CHECKSUM
) && !(flags
& ZDB_FLAG_RAW
) &&
9076 !(flags
& ZDB_FLAG_GBH
)) {
9078 (void) printf("\n");
9079 for (enum zio_checksum ck
= ZIO_CHECKSUM_LABEL
;
9080 ck
< ZIO_CHECKSUM_FUNCTIONS
; ck
++) {
9082 if ((zio_checksum_table
[ck
].ci_flags
&
9083 ZCHECKSUM_FLAG_EMBEDDED
) ||
9084 ck
== ZIO_CHECKSUM_NOPARITY
) {
9087 BP_SET_CHECKSUM(bp
, ck
);
9088 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
9089 czio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
9090 if (vd
== vd
->vdev_top
) {
9091 zio_nowait(zio_read(czio
, spa
, bp
, pabd
, psize
,
9093 ZIO_PRIORITY_SYNC_READ
,
9094 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
|
9095 ZIO_FLAG_DONT_RETRY
, NULL
));
9097 zio_nowait(zio_vdev_child_io(czio
, bp
, vd
,
9098 offset
, pabd
, psize
, ZIO_TYPE_READ
,
9099 ZIO_PRIORITY_SYNC_READ
,
9100 ZIO_FLAG_DONT_PROPAGATE
|
9101 ZIO_FLAG_DONT_RETRY
|
9102 ZIO_FLAG_CANFAIL
| ZIO_FLAG_RAW
|
9103 ZIO_FLAG_SPECULATIVE
|
9104 ZIO_FLAG_OPTIONAL
, NULL
, NULL
));
9106 error
= zio_wait(czio
);
9107 if (error
== 0 || error
== ECKSUM
) {
9108 zio_t
*ck_zio
= zio_null(NULL
, spa
, NULL
,
9111 DVA_GET_OFFSET(&bp
->blk_dva
[0]);
9113 zio_checksum_compute(ck_zio
, ck
, pabd
, lsize
);
9116 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9117 zio_checksum_table
[ck
].ci_name
,
9118 (u_longlong_t
)bp
->blk_cksum
.zc_word
[0],
9119 (u_longlong_t
)bp
->blk_cksum
.zc_word
[1],
9120 (u_longlong_t
)bp
->blk_cksum
.zc_word
[2],
9121 (u_longlong_t
)bp
->blk_cksum
.zc_word
[3]);
9124 printf("error %d reading block\n", error
);
9126 spa_config_exit(spa
, SCL_STATE
, FTAG
);
9131 abd_return_buf_copy(pabd
, buf
, lsize
);
9135 umem_free(lbuf
, SPA_MAXBLOCKSIZE
);
9142 zdb_embedded_block(char *thing
)
9144 blkptr_t bp
= {{{{0}}}};
9145 unsigned long long *words
= (void *)&bp
;
9149 err
= sscanf(thing
, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9150 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9151 words
+ 0, words
+ 1, words
+ 2, words
+ 3,
9152 words
+ 4, words
+ 5, words
+ 6, words
+ 7,
9153 words
+ 8, words
+ 9, words
+ 10, words
+ 11,
9154 words
+ 12, words
+ 13, words
+ 14, words
+ 15);
9156 (void) fprintf(stderr
, "invalid input format\n");
9159 ASSERT3U(BPE_GET_LSIZE(&bp
), <=, SPA_MAXBLOCKSIZE
);
9160 buf
= malloc(SPA_MAXBLOCKSIZE
);
9162 (void) fprintf(stderr
, "out of memory\n");
9165 err
= decode_embedded_bp(&bp
, buf
, BPE_GET_LSIZE(&bp
));
9167 (void) fprintf(stderr
, "decode failed: %u\n", err
);
9170 zdb_dump_block_raw(buf
, BPE_GET_LSIZE(&bp
), 0);
9174 /* check for valid hex or decimal numeric string */
9176 zdb_numeric(char *str
)
9183 if (strncmp(str
, "0x", 2) == 0 || strncmp(str
, "0X", 2) == 0)
9185 for (; i
< len
; i
++) {
9186 if (!isxdigit(str
[i
]))
9193 dummy_get_file_info(dmu_object_type_t bonustype
, const void *data
,
9194 zfs_file_info_t
*zoi
)
9196 (void) data
, (void) zoi
;
9198 if (bonustype
!= DMU_OT_ZNODE
&& bonustype
!= DMU_OT_SA
)
9201 (void) fprintf(stderr
, "dummy_get_file_info: not implemented");
9206 main(int argc
, char **argv
)
9212 char **searchdirs
= NULL
;
9214 char *target
, *target_pool
, dsname
[ZFS_MAX_DATASET_NAME_LEN
];
9215 nvlist_t
*policy
= NULL
;
9216 uint64_t max_txg
= UINT64_MAX
;
9217 int64_t objset_id
= -1;
9219 int flags
= ZFS_IMPORT_MISSING_LOG
;
9220 int rewind
= ZPOOL_NEVER_REWIND
;
9221 char *spa_config_path_env
, *objset_str
;
9222 boolean_t target_is_spa
= B_TRUE
, dataset_lookup
= B_FALSE
;
9223 nvlist_t
*cfg
= NULL
;
9224 struct sigaction action
;
9225 boolean_t force_import
= B_FALSE
;
9226 boolean_t config_path_console
= B_FALSE
;
9227 char pbuf
[MAXPATHLEN
];
9229 dprintf_setup(&argc
, argv
);
9232 * Set up signal handlers, so if we crash due to bad on-disk data we
9233 * can get more info. Unlike ztest, we don't bail out if we can't set
9234 * up signal handlers, because zdb is very useful without them.
9236 action
.sa_handler
= sig_handler
;
9237 sigemptyset(&action
.sa_mask
);
9238 action
.sa_flags
= 0;
9239 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
9240 (void) fprintf(stderr
, "zdb: cannot catch SIGSEGV: %s\n",
9243 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
9244 (void) fprintf(stderr
, "zdb: cannot catch SIGABRT: %s\n",
9249 * If there is an environment variable SPA_CONFIG_PATH it overrides
9250 * default spa_config_path setting. If -U flag is specified it will
9251 * override this environment variable settings once again.
9253 spa_config_path_env
= getenv("SPA_CONFIG_PATH");
9254 if (spa_config_path_env
!= NULL
)
9255 spa_config_path
= spa_config_path_env
;
9258 * For performance reasons, we set this tunable down. We do so before
9259 * the arg parsing section so that the user can override this value if
9262 zfs_btree_verify_intensity
= 3;
9264 struct option long_options
[] = {
9265 {"ignore-assertions", no_argument
, NULL
, 'A'},
9266 {"block-stats", no_argument
, NULL
, 'b'},
9267 {"backup", no_argument
, NULL
, 'B'},
9268 {"checksum", no_argument
, NULL
, 'c'},
9269 {"config", no_argument
, NULL
, 'C'},
9270 {"datasets", no_argument
, NULL
, 'd'},
9271 {"dedup-stats", no_argument
, NULL
, 'D'},
9272 {"exported", no_argument
, NULL
, 'e'},
9273 {"embedded-block-pointer", no_argument
, NULL
, 'E'},
9274 {"automatic-rewind", no_argument
, NULL
, 'F'},
9275 {"dump-debug-msg", no_argument
, NULL
, 'G'},
9276 {"history", no_argument
, NULL
, 'h'},
9277 {"intent-logs", no_argument
, NULL
, 'i'},
9278 {"inflight", required_argument
, NULL
, 'I'},
9279 {"checkpointed-state", no_argument
, NULL
, 'k'},
9280 {"key", required_argument
, NULL
, 'K'},
9281 {"label", no_argument
, NULL
, 'l'},
9282 {"disable-leak-tracking", no_argument
, NULL
, 'L'},
9283 {"metaslabs", no_argument
, NULL
, 'm'},
9284 {"metaslab-groups", no_argument
, NULL
, 'M'},
9285 {"numeric", no_argument
, NULL
, 'N'},
9286 {"option", required_argument
, NULL
, 'o'},
9287 {"object-lookups", no_argument
, NULL
, 'O'},
9288 {"path", required_argument
, NULL
, 'p'},
9289 {"parseable", no_argument
, NULL
, 'P'},
9290 {"skip-label", no_argument
, NULL
, 'q'},
9291 {"copy-object", no_argument
, NULL
, 'r'},
9292 {"read-block", no_argument
, NULL
, 'R'},
9293 {"io-stats", no_argument
, NULL
, 's'},
9294 {"simulate-dedup", no_argument
, NULL
, 'S'},
9295 {"txg", required_argument
, NULL
, 't'},
9296 {"brt-stats", no_argument
, NULL
, 'T'},
9297 {"uberblock", no_argument
, NULL
, 'u'},
9298 {"cachefile", required_argument
, NULL
, 'U'},
9299 {"verbose", no_argument
, NULL
, 'v'},
9300 {"verbatim", no_argument
, NULL
, 'V'},
9301 {"dump-blocks", required_argument
, NULL
, 'x'},
9302 {"extreme-rewind", no_argument
, NULL
, 'X'},
9303 {"all-reconstruction", no_argument
, NULL
, 'Y'},
9304 {"livelist", no_argument
, NULL
, 'y'},
9305 {"zstd-headers", no_argument
, NULL
, 'Z'},
9309 while ((c
= getopt_long(argc
, argv
,
9310 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9311 long_options
, NULL
)) != -1) {
9350 zfs_reconstruct_indirect_combinations_max
= INT_MAX
;
9351 zfs_deadman_enabled
= 0;
9353 /* NB: Sort single match options below. */
9355 max_inflight_bytes
= strtoull(optarg
, NULL
, 0);
9356 if (max_inflight_bytes
== 0) {
9357 (void) fprintf(stderr
, "maximum number "
9358 "of inflight bytes must be greater "
9365 key_material
= strdup(optarg
);
9366 /* redact key material in process table */
9367 while (*optarg
!= '\0') { *optarg
++ = '*'; }
9370 error
= set_global_var(optarg
);
9375 if (searchdirs
== NULL
) {
9376 searchdirs
= umem_alloc(sizeof (char *),
9379 char **tmp
= umem_alloc((nsearch
+ 1) *
9380 sizeof (char *), UMEM_NOFAIL
);
9381 memcpy(tmp
, searchdirs
, nsearch
*
9383 umem_free(searchdirs
,
9384 nsearch
* sizeof (char *));
9387 searchdirs
[nsearch
++] = optarg
;
9390 max_txg
= strtoull(optarg
, NULL
, 0);
9391 if (max_txg
< TXG_INITIAL
) {
9392 (void) fprintf(stderr
, "incorrect txg "
9393 "specified: %s\n", optarg
);
9398 config_path_console
= B_TRUE
;
9399 spa_config_path
= optarg
;
9400 if (spa_config_path
[0] != '/') {
9401 (void) fprintf(stderr
,
9402 "cachefile must be an absolute path "
9403 "(i.e. start with a slash)\n");
9411 flags
= ZFS_IMPORT_VERBATIM
;
9414 vn_dumpdir
= optarg
;
9422 if (!dump_opt
['e'] && searchdirs
!= NULL
) {
9423 (void) fprintf(stderr
, "-p option requires use of -e\n");
9428 * ZDB does not typically re-read blocks; therefore limit the ARC
9429 * to 256 MB, which can be used entirely for metadata.
9431 zfs_arc_min
= 2ULL << SPA_MAXBLOCKSHIFT
;
9432 zfs_arc_max
= 256 * 1024 * 1024;
9436 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9437 * "zdb -b" uses traversal prefetch which uses async reads.
9438 * For good performance, let several of them be active at once.
9440 zfs_vdev_async_read_max_active
= 10;
9443 * Disable reference tracking for better performance.
9445 reference_tracking_enable
= B_FALSE
;
9448 * Do not fail spa_load when spa_load_verify fails. This is needed
9449 * to load non-idle pools.
9451 spa_load_verify_dryrun
= B_TRUE
;
9454 * ZDB should have ability to read spacemaps.
9456 spa_mode_readable_spacemaps
= B_TRUE
;
9459 verbose
= MAX(verbose
, 1);
9461 for (c
= 0; c
< 256; c
++) {
9462 if (dump_all
&& strchr("ABeEFkKlLNOPrRSXy", c
) == NULL
)
9465 dump_opt
[c
] += verbose
;
9468 libspl_set_assert_ok((dump_opt
['A'] == 1) || (dump_opt
['A'] > 2));
9469 zfs_recover
= (dump_opt
['A'] > 1);
9473 if (argc
< 2 && dump_opt
['R'])
9479 * Automate cachefile
9481 if (!spa_config_path_env
&& !config_path_console
&& target
&&
9482 libzfs_core_init() == 0) {
9483 char *pname
= strdup(target
);
9485 nvlist_t
*pnvl
= NULL
;
9486 nvlist_t
*vnvl
= NULL
;
9488 if (strpbrk(pname
, "/@") != NULL
)
9489 *strpbrk(pname
, "/@") = '\0';
9491 if (pname
&& lzc_get_props(pname
, &pnvl
) == 0) {
9492 if (nvlist_lookup_nvlist(pnvl
, "cachefile",
9494 value
= fnvlist_lookup_string(vnvl
,
9499 strlcpy(pbuf
, value
, sizeof (pbuf
));
9500 if (pbuf
[0] != '\0') {
9501 if (pbuf
[0] == '/') {
9502 if (access(pbuf
, F_OK
) == 0)
9503 spa_config_path
= pbuf
;
9505 force_import
= B_TRUE
;
9506 } else if ((strcmp(pbuf
, "-") == 0 &&
9507 access(ZPOOL_CACHE
, F_OK
) != 0) ||
9508 strcmp(pbuf
, "none") == 0) {
9509 force_import
= B_TRUE
;
9520 dmu_objset_register_type(DMU_OST_ZFS
, dummy_get_file_info
);
9521 kernel_init(SPA_MODE_READ
);
9522 kernel_init_done
= B_TRUE
;
9524 if (dump_opt
['E']) {
9527 zdb_embedded_block(argv
[0]);
9533 if (!dump_opt
['e'] && dump_opt
['C']) {
9534 dump_cachefile(spa_config_path
);
9541 if (dump_opt
['l']) {
9542 error
= dump_label(argv
[0]);
9546 if (dump_opt
['X'] || dump_opt
['F'])
9547 rewind
= ZPOOL_DO_REWIND
|
9548 (dump_opt
['X'] ? ZPOOL_EXTREME_REWIND
: 0);
9551 if (dump_opt
['N'] && dump_opt
['d'] == 0)
9552 dump_opt
['d'] = dump_opt
['N'];
9554 if (nvlist_alloc(&policy
, NV_UNIQUE_NAME_TYPE
, 0) != 0 ||
9555 nvlist_add_uint64(policy
, ZPOOL_LOAD_REQUEST_TXG
, max_txg
) != 0 ||
9556 nvlist_add_uint32(policy
, ZPOOL_LOAD_REWIND_POLICY
, rewind
) != 0)
9557 fatal("internal error: %s", strerror(ENOMEM
));
9561 if (strpbrk(target
, "/@") != NULL
) {
9564 target_pool
= strdup(target
);
9565 *strpbrk(target_pool
, "/@") = '\0';
9567 target_is_spa
= B_FALSE
;
9568 targetlen
= strlen(target
);
9569 if (targetlen
&& target
[targetlen
- 1] == '/')
9570 target
[targetlen
- 1] = '\0';
9573 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9574 * To disambiguate tank/100, consider the 100 as objsetID
9575 * if -N was given, otherwise 100 is an objsetID iff
9576 * tank/100 as a named dataset fails on lookup.
9578 objset_str
= strchr(target
, '/');
9579 if (objset_str
&& strlen(objset_str
) > 1 &&
9580 zdb_numeric(objset_str
+ 1)) {
9584 objset_id
= strtoull(objset_str
, &endptr
, 0);
9585 /* dataset 0 is the same as opening the pool */
9586 if (errno
== 0 && endptr
!= objset_str
&&
9589 dataset_lookup
= B_TRUE
;
9591 /* normal dataset name not an objset ID */
9592 if (endptr
== objset_str
) {
9595 } else if (objset_str
&& !zdb_numeric(objset_str
+ 1) &&
9597 printf("Supply a numeric objset ID with -N\n");
9602 target_pool
= target
;
9605 if (dump_opt
['e'] || force_import
) {
9606 importargs_t args
= { 0 };
9609 * If path is not provided, search in /dev
9611 if (searchdirs
== NULL
) {
9612 searchdirs
= umem_alloc(sizeof (char *), UMEM_NOFAIL
);
9613 searchdirs
[nsearch
++] = (char *)ZFS_DEVDIR
;
9616 args
.paths
= nsearch
;
9617 args
.path
= searchdirs
;
9618 args
.can_be_active
= B_TRUE
;
9620 libpc_handle_t lpch
= {
9621 .lpc_lib_handle
= NULL
,
9622 .lpc_ops
= &libzpool_config_ops
,
9623 .lpc_printerr
= B_TRUE
9625 error
= zpool_find_config(&lpch
, target_pool
, &cfg
, &args
);
9629 if (nvlist_add_nvlist(cfg
,
9630 ZPOOL_LOAD_POLICY
, policy
) != 0) {
9631 fatal("can't open '%s': %s",
9632 target
, strerror(ENOMEM
));
9635 if (dump_opt
['C'] > 1) {
9636 (void) printf("\nConfiguration for import:\n");
9637 dump_nvlist(cfg
, 8);
9641 * Disable the activity check to allow examination of
9644 error
= spa_import(target_pool
, cfg
, NULL
,
9645 flags
| ZFS_IMPORT_SKIP_MMP
);
9649 if (searchdirs
!= NULL
) {
9650 umem_free(searchdirs
, nsearch
* sizeof (char *));
9655 * We need to make sure to process -O option or call
9656 * dump_path after the -e option has been processed,
9657 * which imports the pool to the namespace if it's
9658 * not in the cachefile.
9660 if (dump_opt
['O']) {
9663 dump_opt
['v'] = verbose
+ 3;
9664 error
= dump_path(argv
[0], argv
[1], NULL
);
9668 if (dump_opt
['r']) {
9669 target_is_spa
= B_FALSE
;
9672 dump_opt
['v'] = verbose
;
9673 error
= dump_path(argv
[0], argv
[1], &object
);
9675 fatal("internal error: %s", strerror(error
));
9679 * import_checkpointed_state makes the assumption that the
9680 * target pool that we pass it is already part of the spa
9681 * namespace. Because of that we need to make sure to call
9682 * it always after the -e option has been processed, which
9683 * imports the pool to the namespace if it's not in the
9686 char *checkpoint_pool
= NULL
;
9687 char *checkpoint_target
= NULL
;
9688 if (dump_opt
['k']) {
9689 checkpoint_pool
= import_checkpointed_state(target
, cfg
,
9690 &checkpoint_target
);
9692 if (checkpoint_target
!= NULL
)
9693 target
= checkpoint_target
;
9701 if (target_pool
!= target
)
9705 if (dump_opt
['k'] && (target_is_spa
|| dump_opt
['R'])) {
9706 ASSERT(checkpoint_pool
!= NULL
);
9707 ASSERT(checkpoint_target
== NULL
);
9709 error
= spa_open(checkpoint_pool
, &spa
, FTAG
);
9711 fatal("Tried to open pool \"%s\" but "
9712 "spa_open() failed with error %d\n",
9713 checkpoint_pool
, error
);
9716 } else if (target_is_spa
|| dump_opt
['R'] || dump_opt
['B'] ||
9718 zdb_set_skip_mmp(target
);
9719 error
= spa_open_rewind(target
, &spa
, FTAG
, policy
,
9723 * If we're missing the log device then
9724 * try opening the pool after clearing the
9727 mutex_enter(&spa_namespace_lock
);
9728 if ((spa
= spa_lookup(target
)) != NULL
&&
9729 spa
->spa_log_state
== SPA_LOG_MISSING
) {
9730 spa
->spa_log_state
= SPA_LOG_CLEAR
;
9733 mutex_exit(&spa_namespace_lock
);
9736 error
= spa_open_rewind(target
, &spa
,
9737 FTAG
, policy
, NULL
);
9740 } else if (strpbrk(target
, "#") != NULL
) {
9742 error
= dsl_pool_hold(target
, FTAG
, &dp
);
9744 fatal("can't dump '%s': %s", target
,
9747 error
= dump_bookmark(dp
, target
, B_TRUE
, verbose
> 1);
9748 dsl_pool_rele(dp
, FTAG
);
9750 fatal("can't dump '%s': %s", target
,
9755 target_pool
= strdup(target
);
9756 if (strpbrk(target
, "/@") != NULL
)
9757 *strpbrk(target_pool
, "/@") = '\0';
9759 zdb_set_skip_mmp(target
);
9761 * If -N was supplied, the user has indicated that
9762 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9763 * we first assume that the dataset string is the
9764 * dataset name. If dmu_objset_hold fails with the
9765 * dataset string, and we have an objset_id, retry the
9766 * lookup with the objsetID.
9768 boolean_t retry
= B_TRUE
;
9770 if (dataset_lookup
== B_TRUE
) {
9772 * Use the supplied id to get the name
9775 error
= spa_open(target_pool
, &spa
, FTAG
);
9777 error
= name_from_objset_id(spa
,
9779 spa_close(spa
, FTAG
);
9785 if (objset_id
> 0 && retry
) {
9786 int err
= dmu_objset_hold(target
, FTAG
,
9789 dataset_lookup
= B_TRUE
;
9793 dmu_objset_rele(os
, FTAG
);
9796 error
= open_objset(target
, FTAG
, &os
);
9799 spa
= dmu_objset_spa(os
);
9803 nvlist_free(policy
);
9806 fatal("can't open '%s': %s", target
, strerror(error
));
9809 * Set the pool failure mode to panic in order to prevent the pool
9810 * from suspending. A suspended I/O will have no way to resume and
9811 * can prevent the zdb(8) command from terminating as expected.
9814 spa
->spa_failmode
= ZIO_FAILURE_MODE_PANIC
;
9818 if (dump_opt
['r']) {
9819 error
= zdb_copy_object(os
, object
, argv
[1]);
9820 } else if (!dump_opt
['R']) {
9821 flagbits
['d'] = ZOR_FLAG_DIRECTORY
;
9822 flagbits
['f'] = ZOR_FLAG_PLAIN_FILE
;
9823 flagbits
['m'] = ZOR_FLAG_SPACE_MAP
;
9824 flagbits
['z'] = ZOR_FLAG_ZAP
;
9825 flagbits
['A'] = ZOR_FLAG_ALL_TYPES
;
9827 if (argc
> 0 && dump_opt
['d']) {
9828 zopt_object_args
= argc
;
9829 zopt_object_ranges
= calloc(zopt_object_args
,
9830 sizeof (zopt_object_range_t
));
9831 for (unsigned i
= 0; i
< zopt_object_args
; i
++) {
9833 const char *msg
= NULL
;
9835 err
= parse_object_range(argv
[i
],
9836 &zopt_object_ranges
[i
], &msg
);
9838 fatal("Bad object or range: '%s': %s\n",
9839 argv
[i
], msg
?: "");
9841 } else if (argc
> 0 && dump_opt
['m']) {
9842 zopt_metaslab_args
= argc
;
9843 zopt_metaslab
= calloc(zopt_metaslab_args
,
9845 for (unsigned i
= 0; i
< zopt_metaslab_args
; i
++) {
9847 zopt_metaslab
[i
] = strtoull(argv
[i
], NULL
, 0);
9848 if (zopt_metaslab
[i
] == 0 && errno
!= 0)
9849 fatal("bad number %s: %s", argv
[i
],
9853 if (dump_opt
['B']) {
9854 dump_backup(target
, objset_id
,
9855 argc
> 0 ? argv
[0] : NULL
);
9856 } else if (os
!= NULL
) {
9858 } else if (zopt_object_args
> 0 && !dump_opt
['m']) {
9859 dump_objset(spa
->spa_meta_objset
);
9864 flagbits
['b'] = ZDB_FLAG_PRINT_BLKPTR
;
9865 flagbits
['c'] = ZDB_FLAG_CHECKSUM
;
9866 flagbits
['d'] = ZDB_FLAG_DECOMPRESS
;
9867 flagbits
['e'] = ZDB_FLAG_BSWAP
;
9868 flagbits
['g'] = ZDB_FLAG_GBH
;
9869 flagbits
['i'] = ZDB_FLAG_INDIRECT
;
9870 flagbits
['r'] = ZDB_FLAG_RAW
;
9871 flagbits
['v'] = ZDB_FLAG_VERBOSE
;
9873 for (int i
= 0; i
< argc
; i
++)
9874 zdb_read_block(argv
[i
], spa
);
9877 if (dump_opt
['k']) {
9878 free(checkpoint_pool
);
9880 free(checkpoint_target
);
9885 zdb_ddt_cleanup(spa
);
9888 close_objset(os
, FTAG
);
9889 } else if (spa
!= NULL
) {
9890 spa_close(spa
, FTAG
);
9893 fuid_table_destroy();
9895 dump_debug_buffer();
9897 if (kernel_init_done
)