4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, 2023, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34 * [1] Portions of this software were developed by Allan Jude
35 * under sponsorship from the FreeBSD Foundation.
39 * DVA-based Adjustable Replacement Cache
41 * While much of the theory of operation used here is
42 * based on the self-tuning, low overhead replacement cache
43 * presented by Megiddo and Modha at FAST 2003, there are some
44 * significant differences:
46 * 1. The Megiddo and Modha model assumes any page is evictable.
47 * Pages in its cache cannot be "locked" into memory. This makes
48 * the eviction algorithm simple: evict the last page in the list.
49 * This also make the performance characteristics easy to reason
50 * about. Our cache is not so simple. At any given moment, some
51 * subset of the blocks in the cache are un-evictable because we
52 * have handed out a reference to them. Blocks are only evictable
53 * when there are no external references active. This makes
54 * eviction far more problematic: we choose to evict the evictable
55 * blocks that are the "lowest" in the list.
57 * There are times when it is not possible to evict the requested
58 * space. In these circumstances we are unable to adjust the cache
59 * size. To prevent the cache growing unbounded at these times we
60 * implement a "cache throttle" that slows the flow of new data
61 * into the cache until we can make space available.
63 * 2. The Megiddo and Modha model assumes a fixed cache size.
64 * Pages are evicted when the cache is full and there is a cache
65 * miss. Our model has a variable sized cache. It grows with
66 * high use, but also tries to react to memory pressure from the
67 * operating system: decreasing its size when system memory is
70 * 3. The Megiddo and Modha model assumes a fixed page size. All
71 * elements of the cache are therefore exactly the same size. So
72 * when adjusting the cache size following a cache miss, its simply
73 * a matter of choosing a single page to evict. In our model, we
74 * have variable sized cache blocks (ranging from 512 bytes to
75 * 128K bytes). We therefore choose a set of blocks to evict to make
76 * space for a cache miss that approximates as closely as possible
77 * the space used by the new block.
79 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
80 * by N. Megiddo & D. Modha, FAST 2003
86 * A new reference to a cache buffer can be obtained in two
87 * ways: 1) via a hash table lookup using the DVA as a key,
88 * or 2) via one of the ARC lists. The arc_read() interface
89 * uses method 1, while the internal ARC algorithms for
90 * adjusting the cache use method 2. We therefore provide two
91 * types of locks: 1) the hash table lock array, and 2) the
94 * Buffers do not have their own mutexes, rather they rely on the
95 * hash table mutexes for the bulk of their protection (i.e. most
96 * fields in the arc_buf_hdr_t are protected by these mutexes).
98 * buf_hash_find() returns the appropriate mutex (held) when it
99 * locates the requested buffer in the hash table. It returns
100 * NULL for the mutex if the buffer was not in the table.
102 * buf_hash_remove() expects the appropriate hash mutex to be
103 * already held before it is invoked.
105 * Each ARC state also has a mutex which is used to protect the
106 * buffer list associated with the state. When attempting to
107 * obtain a hash table lock while holding an ARC list lock you
108 * must use: mutex_tryenter() to avoid deadlock. Also note that
109 * the active state mutex must be held before the ghost state mutex.
111 * It as also possible to register a callback which is run when the
112 * metadata limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed. For example, when using the ZPL each dentry
115 * holds a references on a znode. These dentries must be pruned before
116 * the arc buffer holding the znode can be safely evicted.
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
241 * uncompressed | | | |
244 * | uncompressed | | |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch
= B_FALSE
;
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t
*arc_reap_zthr
;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t
*arc_evict_zthr
;
331 static arc_buf_hdr_t
**arc_state_evict_markers
;
332 static int arc_state_evict_marker_count
;
334 static kmutex_t arc_evict_lock
;
335 static boolean_t arc_evict_needed
= B_FALSE
;
336 static clock_t arc_last_uncached_flush
;
339 * Count of bytes evicted since boot.
341 static uint64_t arc_evict_count
;
344 * List of arc_evict_waiter_t's, representing threads waiting for the
345 * arc_evict_count to reach specific values.
347 static list_t arc_evict_waiters
;
350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351 * the requested amount of data to be evicted. For example, by default for
352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353 * Since this is above 100%, it ensures that progress is made towards getting
354 * arc_size under arc_c. Since this is finite, it ensures that allocations
355 * can still happen, even during the potentially long time that arc_size is
358 static uint_t zfs_arc_eviction_pct
= 200;
361 * The number of headers to evict in arc_evict_state_impl() before
362 * dropping the sublist lock and evicting from another sublist. A lower
363 * value means we're more likely to evict the "correct" header (i.e. the
364 * oldest header in the arc state), but comes with higher overhead
365 * (i.e. more invocations of arc_evict_state_impl()).
367 static uint_t zfs_arc_evict_batch_limit
= 10;
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry
= 5;
373 * Minimum time between calls to arc_kmem_reap_soon().
375 static const int arc_kmem_cache_reap_retry_ms
= 1000;
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift
= 8;
380 /* log2(fraction of arc to reclaim) */
381 uint_t arc_shrink_shift
= 7;
383 /* percent of pagecache to reclaim arc to */
385 uint_t zfs_arc_pc_percent
= 0;
389 * log2(fraction of ARC which must be free to allow growing).
390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391 * when reading a new block into the ARC, we will evict an equal-sized block
394 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395 * we will still not allow it to grow.
397 uint_t arc_no_grow_shift
= 5;
401 * minimum lifespan of a prefetch block in clock ticks
402 * (initialized in arc_init())
404 static uint_t arc_min_prefetch_ms
;
405 static uint_t arc_min_prescient_prefetch_ms
;
408 * If this percent of memory is free, don't throttle.
410 uint_t arc_lotsfree_percent
= 10;
413 * The arc has filled available memory and has now warmed up.
418 * These tunables are for performance analysis.
420 uint64_t zfs_arc_max
= 0;
421 uint64_t zfs_arc_min
= 0;
422 static uint64_t zfs_arc_dnode_limit
= 0;
423 static uint_t zfs_arc_dnode_reduce_percent
= 10;
424 static uint_t zfs_arc_grow_retry
= 0;
425 static uint_t zfs_arc_shrink_shift
= 0;
426 uint_t zfs_arc_average_blocksize
= 8 * 1024; /* 8KB */
429 * ARC dirty data constraints for arc_tempreserve_space() throttle:
430 * * total dirty data limit
431 * * anon block dirty limit
432 * * each pool's anon allowance
434 static const unsigned long zfs_arc_dirty_limit_percent
= 50;
435 static const unsigned long zfs_arc_anon_limit_percent
= 25;
436 static const unsigned long zfs_arc_pool_dirty_percent
= 20;
439 * Enable or disable compressed arc buffers.
441 int zfs_compressed_arc_enabled
= B_TRUE
;
444 * Balance between metadata and data on ghost hits. Values above 100
445 * increase metadata caching by proportionally reducing effect of ghost
446 * data hits on target data/metadata rate.
448 static uint_t zfs_arc_meta_balance
= 500;
451 * Percentage that can be consumed by dnodes of ARC meta buffers.
453 static uint_t zfs_arc_dnode_limit_percent
= 10;
456 * These tunables are Linux-specific
458 static uint64_t zfs_arc_sys_free
= 0;
459 static uint_t zfs_arc_min_prefetch_ms
= 0;
460 static uint_t zfs_arc_min_prescient_prefetch_ms
= 0;
461 static uint_t zfs_arc_lotsfree_percent
= 10;
464 * Number of arc_prune threads
466 static int zfs_arc_prune_task_threads
= 1;
469 arc_state_t ARC_anon
;
471 arc_state_t ARC_mru_ghost
;
473 arc_state_t ARC_mfu_ghost
;
474 arc_state_t ARC_l2c_only
;
475 arc_state_t ARC_uncached
;
477 arc_stats_t arc_stats
= {
478 { "hits", KSTAT_DATA_UINT64
},
479 { "iohits", KSTAT_DATA_UINT64
},
480 { "misses", KSTAT_DATA_UINT64
},
481 { "demand_data_hits", KSTAT_DATA_UINT64
},
482 { "demand_data_iohits", KSTAT_DATA_UINT64
},
483 { "demand_data_misses", KSTAT_DATA_UINT64
},
484 { "demand_metadata_hits", KSTAT_DATA_UINT64
},
485 { "demand_metadata_iohits", KSTAT_DATA_UINT64
},
486 { "demand_metadata_misses", KSTAT_DATA_UINT64
},
487 { "prefetch_data_hits", KSTAT_DATA_UINT64
},
488 { "prefetch_data_iohits", KSTAT_DATA_UINT64
},
489 { "prefetch_data_misses", KSTAT_DATA_UINT64
},
490 { "prefetch_metadata_hits", KSTAT_DATA_UINT64
},
491 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64
},
492 { "prefetch_metadata_misses", KSTAT_DATA_UINT64
},
493 { "mru_hits", KSTAT_DATA_UINT64
},
494 { "mru_ghost_hits", KSTAT_DATA_UINT64
},
495 { "mfu_hits", KSTAT_DATA_UINT64
},
496 { "mfu_ghost_hits", KSTAT_DATA_UINT64
},
497 { "uncached_hits", KSTAT_DATA_UINT64
},
498 { "deleted", KSTAT_DATA_UINT64
},
499 { "mutex_miss", KSTAT_DATA_UINT64
},
500 { "access_skip", KSTAT_DATA_UINT64
},
501 { "evict_skip", KSTAT_DATA_UINT64
},
502 { "evict_not_enough", KSTAT_DATA_UINT64
},
503 { "evict_l2_cached", KSTAT_DATA_UINT64
},
504 { "evict_l2_eligible", KSTAT_DATA_UINT64
},
505 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64
},
506 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64
},
507 { "evict_l2_ineligible", KSTAT_DATA_UINT64
},
508 { "evict_l2_skip", KSTAT_DATA_UINT64
},
509 { "hash_elements", KSTAT_DATA_UINT64
},
510 { "hash_elements_max", KSTAT_DATA_UINT64
},
511 { "hash_collisions", KSTAT_DATA_UINT64
},
512 { "hash_chains", KSTAT_DATA_UINT64
},
513 { "hash_chain_max", KSTAT_DATA_UINT64
},
514 { "meta", KSTAT_DATA_UINT64
},
515 { "pd", KSTAT_DATA_UINT64
},
516 { "pm", KSTAT_DATA_UINT64
},
517 { "c", KSTAT_DATA_UINT64
},
518 { "c_min", KSTAT_DATA_UINT64
},
519 { "c_max", KSTAT_DATA_UINT64
},
520 { "size", KSTAT_DATA_UINT64
},
521 { "compressed_size", KSTAT_DATA_UINT64
},
522 { "uncompressed_size", KSTAT_DATA_UINT64
},
523 { "overhead_size", KSTAT_DATA_UINT64
},
524 { "hdr_size", KSTAT_DATA_UINT64
},
525 { "data_size", KSTAT_DATA_UINT64
},
526 { "metadata_size", KSTAT_DATA_UINT64
},
527 { "dbuf_size", KSTAT_DATA_UINT64
},
528 { "dnode_size", KSTAT_DATA_UINT64
},
529 { "bonus_size", KSTAT_DATA_UINT64
},
530 #if defined(COMPAT_FREEBSD11)
531 { "other_size", KSTAT_DATA_UINT64
},
533 { "anon_size", KSTAT_DATA_UINT64
},
534 { "anon_data", KSTAT_DATA_UINT64
},
535 { "anon_metadata", KSTAT_DATA_UINT64
},
536 { "anon_evictable_data", KSTAT_DATA_UINT64
},
537 { "anon_evictable_metadata", KSTAT_DATA_UINT64
},
538 { "mru_size", KSTAT_DATA_UINT64
},
539 { "mru_data", KSTAT_DATA_UINT64
},
540 { "mru_metadata", KSTAT_DATA_UINT64
},
541 { "mru_evictable_data", KSTAT_DATA_UINT64
},
542 { "mru_evictable_metadata", KSTAT_DATA_UINT64
},
543 { "mru_ghost_size", KSTAT_DATA_UINT64
},
544 { "mru_ghost_data", KSTAT_DATA_UINT64
},
545 { "mru_ghost_metadata", KSTAT_DATA_UINT64
},
546 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64
},
547 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
548 { "mfu_size", KSTAT_DATA_UINT64
},
549 { "mfu_data", KSTAT_DATA_UINT64
},
550 { "mfu_metadata", KSTAT_DATA_UINT64
},
551 { "mfu_evictable_data", KSTAT_DATA_UINT64
},
552 { "mfu_evictable_metadata", KSTAT_DATA_UINT64
},
553 { "mfu_ghost_size", KSTAT_DATA_UINT64
},
554 { "mfu_ghost_data", KSTAT_DATA_UINT64
},
555 { "mfu_ghost_metadata", KSTAT_DATA_UINT64
},
556 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64
},
557 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
558 { "uncached_size", KSTAT_DATA_UINT64
},
559 { "uncached_data", KSTAT_DATA_UINT64
},
560 { "uncached_metadata", KSTAT_DATA_UINT64
},
561 { "uncached_evictable_data", KSTAT_DATA_UINT64
},
562 { "uncached_evictable_metadata", KSTAT_DATA_UINT64
},
563 { "l2_hits", KSTAT_DATA_UINT64
},
564 { "l2_misses", KSTAT_DATA_UINT64
},
565 { "l2_prefetch_asize", KSTAT_DATA_UINT64
},
566 { "l2_mru_asize", KSTAT_DATA_UINT64
},
567 { "l2_mfu_asize", KSTAT_DATA_UINT64
},
568 { "l2_bufc_data_asize", KSTAT_DATA_UINT64
},
569 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64
},
570 { "l2_feeds", KSTAT_DATA_UINT64
},
571 { "l2_rw_clash", KSTAT_DATA_UINT64
},
572 { "l2_read_bytes", KSTAT_DATA_UINT64
},
573 { "l2_write_bytes", KSTAT_DATA_UINT64
},
574 { "l2_writes_sent", KSTAT_DATA_UINT64
},
575 { "l2_writes_done", KSTAT_DATA_UINT64
},
576 { "l2_writes_error", KSTAT_DATA_UINT64
},
577 { "l2_writes_lock_retry", KSTAT_DATA_UINT64
},
578 { "l2_evict_lock_retry", KSTAT_DATA_UINT64
},
579 { "l2_evict_reading", KSTAT_DATA_UINT64
},
580 { "l2_evict_l1cached", KSTAT_DATA_UINT64
},
581 { "l2_free_on_write", KSTAT_DATA_UINT64
},
582 { "l2_abort_lowmem", KSTAT_DATA_UINT64
},
583 { "l2_cksum_bad", KSTAT_DATA_UINT64
},
584 { "l2_io_error", KSTAT_DATA_UINT64
},
585 { "l2_size", KSTAT_DATA_UINT64
},
586 { "l2_asize", KSTAT_DATA_UINT64
},
587 { "l2_hdr_size", KSTAT_DATA_UINT64
},
588 { "l2_log_blk_writes", KSTAT_DATA_UINT64
},
589 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64
},
590 { "l2_log_blk_asize", KSTAT_DATA_UINT64
},
591 { "l2_log_blk_count", KSTAT_DATA_UINT64
},
592 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64
},
593 { "l2_rebuild_success", KSTAT_DATA_UINT64
},
594 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64
},
595 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64
},
596 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64
},
597 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64
},
598 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64
},
599 { "l2_rebuild_size", KSTAT_DATA_UINT64
},
600 { "l2_rebuild_asize", KSTAT_DATA_UINT64
},
601 { "l2_rebuild_bufs", KSTAT_DATA_UINT64
},
602 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64
},
603 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64
},
604 { "memory_throttle_count", KSTAT_DATA_UINT64
},
605 { "memory_direct_count", KSTAT_DATA_UINT64
},
606 { "memory_indirect_count", KSTAT_DATA_UINT64
},
607 { "memory_all_bytes", KSTAT_DATA_UINT64
},
608 { "memory_free_bytes", KSTAT_DATA_UINT64
},
609 { "memory_available_bytes", KSTAT_DATA_INT64
},
610 { "arc_no_grow", KSTAT_DATA_UINT64
},
611 { "arc_tempreserve", KSTAT_DATA_UINT64
},
612 { "arc_loaned_bytes", KSTAT_DATA_UINT64
},
613 { "arc_prune", KSTAT_DATA_UINT64
},
614 { "arc_meta_used", KSTAT_DATA_UINT64
},
615 { "arc_dnode_limit", KSTAT_DATA_UINT64
},
616 { "async_upgrade_sync", KSTAT_DATA_UINT64
},
617 { "predictive_prefetch", KSTAT_DATA_UINT64
},
618 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64
},
619 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64
},
620 { "prescient_prefetch", KSTAT_DATA_UINT64
},
621 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64
},
622 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64
},
623 { "arc_need_free", KSTAT_DATA_UINT64
},
624 { "arc_sys_free", KSTAT_DATA_UINT64
},
625 { "arc_raw_size", KSTAT_DATA_UINT64
},
626 { "cached_only_in_progress", KSTAT_DATA_UINT64
},
627 { "abd_chunk_waste_size", KSTAT_DATA_UINT64
},
632 #define ARCSTAT_MAX(stat, val) { \
634 while ((val) > (m = arc_stats.stat.value.ui64) && \
635 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
640 * We define a macro to allow ARC hits/misses to be easily broken down by
641 * two separate conditions, giving a total of four different subtypes for
642 * each of hits and misses (so eight statistics total).
644 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
647 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
649 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
653 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
655 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
660 * This macro allows us to use kstats as floating averages. Each time we
661 * update this kstat, we first factor it and the update value by
662 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
663 * average. This macro assumes that integer loads and stores are atomic, but
664 * is not safe for multiple writers updating the kstat in parallel (only the
665 * last writer's update will remain).
667 #define ARCSTAT_F_AVG_FACTOR 3
668 #define ARCSTAT_F_AVG(stat, value) \
670 uint64_t x = ARCSTAT(stat); \
671 x = x - x / ARCSTAT_F_AVG_FACTOR + \
672 (value) / ARCSTAT_F_AVG_FACTOR; \
676 static kstat_t
*arc_ksp
;
679 * There are several ARC variables that are critical to export as kstats --
680 * but we don't want to have to grovel around in the kstat whenever we wish to
681 * manipulate them. For these variables, we therefore define them to be in
682 * terms of the statistic variable. This assures that we are not introducing
683 * the possibility of inconsistency by having shadow copies of the variables,
684 * while still allowing the code to be readable.
686 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
687 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
688 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
689 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
691 hrtime_t arc_growtime
;
692 list_t arc_prune_list
;
693 kmutex_t arc_prune_mtx
;
694 taskq_t
*arc_prune_taskq
;
696 #define GHOST_STATE(state) \
697 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
698 (state) == arc_l2c_only)
700 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
701 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
702 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
703 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
704 #define HDR_PRESCIENT_PREFETCH(hdr) \
705 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
706 #define HDR_COMPRESSION_ENABLED(hdr) \
707 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
709 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
710 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
711 #define HDR_L2_READING(hdr) \
712 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
713 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
714 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
715 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
716 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
717 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
718 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
719 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
721 #define HDR_ISTYPE_METADATA(hdr) \
722 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
723 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
725 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
726 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
727 #define HDR_HAS_RABD(hdr) \
728 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
729 (hdr)->b_crypt_hdr.b_rabd != NULL)
730 #define HDR_ENCRYPTED(hdr) \
731 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
732 #define HDR_AUTHENTICATED(hdr) \
733 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
735 /* For storing compression mode in b_flags */
736 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
738 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
739 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
740 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
741 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
743 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
744 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
745 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
746 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
752 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
753 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
756 * Hash table routines
759 #define BUF_LOCKS 2048
760 typedef struct buf_hash_table
{
762 arc_buf_hdr_t
**ht_table
;
763 kmutex_t ht_locks
[BUF_LOCKS
] ____cacheline_aligned
;
766 static buf_hash_table_t buf_hash_table
;
768 #define BUF_HASH_INDEX(spa, dva, birth) \
769 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
770 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
771 #define HDR_LOCK(hdr) \
772 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
774 uint64_t zfs_crc64_table
[256];
780 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */
781 #define L2ARC_HEADROOM 8 /* num of writes */
784 * If we discover during ARC scan any buffers to be compressed, we boost
785 * our headroom for the next scanning cycle by this percentage multiple.
787 #define L2ARC_HEADROOM_BOOST 200
788 #define L2ARC_FEED_SECS 1 /* caching interval secs */
789 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
792 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
793 * and each of the state has two types: data and metadata.
795 #define L2ARC_FEED_TYPES 4
797 /* L2ARC Performance Tunables */
798 uint64_t l2arc_write_max
= L2ARC_WRITE_SIZE
; /* def max write size */
799 uint64_t l2arc_write_boost
= L2ARC_WRITE_SIZE
; /* extra warmup write */
800 uint64_t l2arc_headroom
= L2ARC_HEADROOM
; /* # of dev writes */
801 uint64_t l2arc_headroom_boost
= L2ARC_HEADROOM_BOOST
;
802 uint64_t l2arc_feed_secs
= L2ARC_FEED_SECS
; /* interval seconds */
803 uint64_t l2arc_feed_min_ms
= L2ARC_FEED_MIN_MS
; /* min interval msecs */
804 int l2arc_noprefetch
= B_TRUE
; /* don't cache prefetch bufs */
805 int l2arc_feed_again
= B_TRUE
; /* turbo warmup */
806 int l2arc_norw
= B_FALSE
; /* no reads during writes */
807 static uint_t l2arc_meta_percent
= 33; /* limit on headers size */
812 static list_t L2ARC_dev_list
; /* device list */
813 static list_t
*l2arc_dev_list
; /* device list pointer */
814 static kmutex_t l2arc_dev_mtx
; /* device list mutex */
815 static l2arc_dev_t
*l2arc_dev_last
; /* last device used */
816 static list_t L2ARC_free_on_write
; /* free after write buf list */
817 static list_t
*l2arc_free_on_write
; /* free after write list ptr */
818 static kmutex_t l2arc_free_on_write_mtx
; /* mutex for list */
819 static uint64_t l2arc_ndev
; /* number of devices */
821 typedef struct l2arc_read_callback
{
822 arc_buf_hdr_t
*l2rcb_hdr
; /* read header */
823 blkptr_t l2rcb_bp
; /* original blkptr */
824 zbookmark_phys_t l2rcb_zb
; /* original bookmark */
825 int l2rcb_flags
; /* original flags */
826 abd_t
*l2rcb_abd
; /* temporary buffer */
827 } l2arc_read_callback_t
;
829 typedef struct l2arc_data_free
{
830 /* protected by l2arc_free_on_write_mtx */
833 arc_buf_contents_t l2df_type
;
834 list_node_t l2df_list_node
;
837 typedef enum arc_fill_flags
{
838 ARC_FILL_LOCKED
= 1 << 0, /* hdr lock is held */
839 ARC_FILL_COMPRESSED
= 1 << 1, /* fill with compressed data */
840 ARC_FILL_ENCRYPTED
= 1 << 2, /* fill with encrypted data */
841 ARC_FILL_NOAUTH
= 1 << 3, /* don't attempt to authenticate */
842 ARC_FILL_IN_PLACE
= 1 << 4 /* fill in place (special case) */
845 typedef enum arc_ovf_level
{
846 ARC_OVF_NONE
, /* ARC within target size. */
847 ARC_OVF_SOME
, /* ARC is slightly overflowed. */
848 ARC_OVF_SEVERE
/* ARC is severely overflowed. */
851 static kmutex_t l2arc_feed_thr_lock
;
852 static kcondvar_t l2arc_feed_thr_cv
;
853 static uint8_t l2arc_thread_exit
;
855 static kmutex_t l2arc_rebuild_thr_lock
;
856 static kcondvar_t l2arc_rebuild_thr_cv
;
858 enum arc_hdr_alloc_flags
{
859 ARC_HDR_ALLOC_RDATA
= 0x1,
860 ARC_HDR_USE_RESERVE
= 0x4,
861 ARC_HDR_ALLOC_LINEAR
= 0x8,
865 static abd_t
*arc_get_data_abd(arc_buf_hdr_t
*, uint64_t, const void *, int);
866 static void *arc_get_data_buf(arc_buf_hdr_t
*, uint64_t, const void *);
867 static void arc_get_data_impl(arc_buf_hdr_t
*, uint64_t, const void *, int);
868 static void arc_free_data_abd(arc_buf_hdr_t
*, abd_t
*, uint64_t, const void *);
869 static void arc_free_data_buf(arc_buf_hdr_t
*, void *, uint64_t, const void *);
870 static void arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
,
872 static void arc_hdr_free_abd(arc_buf_hdr_t
*, boolean_t
);
873 static void arc_hdr_alloc_abd(arc_buf_hdr_t
*, int);
874 static void arc_hdr_destroy(arc_buf_hdr_t
*);
875 static void arc_access(arc_buf_hdr_t
*, arc_flags_t
, boolean_t
);
876 static void arc_buf_watch(arc_buf_t
*);
877 static void arc_change_state(arc_state_t
*, arc_buf_hdr_t
*);
879 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t
*);
880 static uint32_t arc_bufc_to_flags(arc_buf_contents_t
);
881 static inline void arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
882 static inline void arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
884 static boolean_t
l2arc_write_eligible(uint64_t, arc_buf_hdr_t
*);
885 static void l2arc_read_done(zio_t
*);
886 static void l2arc_do_free_on_write(void);
887 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
888 boolean_t state_only
);
890 static void arc_prune_async(uint64_t adjust
);
892 #define l2arc_hdr_arcstats_increment(hdr) \
893 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
894 #define l2arc_hdr_arcstats_decrement(hdr) \
895 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
896 #define l2arc_hdr_arcstats_increment_state(hdr) \
897 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
898 #define l2arc_hdr_arcstats_decrement_state(hdr) \
899 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
902 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
903 * present on special vdevs are eligibile for caching in L2ARC. If
904 * set to 1, exclude dbufs on special vdevs from being cached to
907 int l2arc_exclude_special
= 0;
910 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
911 * metadata and data are cached from ARC into L2ARC.
913 static int l2arc_mfuonly
= 0;
917 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
918 * the current write size (l2arc_write_max) we should TRIM if we
919 * have filled the device. It is defined as a percentage of the
920 * write size. If set to 100 we trim twice the space required to
921 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
922 * It also enables TRIM of the whole L2ARC device upon creation or
923 * addition to an existing pool or if the header of the device is
924 * invalid upon importing a pool or onlining a cache device. The
925 * default is 0, which disables TRIM on L2ARC altogether as it can
926 * put significant stress on the underlying storage devices. This
927 * will vary depending of how well the specific device handles
930 static uint64_t l2arc_trim_ahead
= 0;
933 * Performance tuning of L2ARC persistence:
935 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
936 * an L2ARC device (either at pool import or later) will attempt
937 * to rebuild L2ARC buffer contents.
938 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
939 * whether log blocks are written to the L2ARC device. If the L2ARC
940 * device is less than 1GB, the amount of data l2arc_evict()
941 * evicts is significant compared to the amount of restored L2ARC
942 * data. In this case do not write log blocks in L2ARC in order
943 * not to waste space.
945 static int l2arc_rebuild_enabled
= B_TRUE
;
946 static uint64_t l2arc_rebuild_blocks_min_l2size
= 1024 * 1024 * 1024;
948 /* L2ARC persistence rebuild control routines. */
949 void l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
);
950 static __attribute__((noreturn
)) void l2arc_dev_rebuild_thread(void *arg
);
951 static int l2arc_rebuild(l2arc_dev_t
*dev
);
953 /* L2ARC persistence read I/O routines. */
954 static int l2arc_dev_hdr_read(l2arc_dev_t
*dev
);
955 static int l2arc_log_blk_read(l2arc_dev_t
*dev
,
956 const l2arc_log_blkptr_t
*this_lp
, const l2arc_log_blkptr_t
*next_lp
,
957 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
958 zio_t
*this_io
, zio_t
**next_io
);
959 static zio_t
*l2arc_log_blk_fetch(vdev_t
*vd
,
960 const l2arc_log_blkptr_t
*lp
, l2arc_log_blk_phys_t
*lb
);
961 static void l2arc_log_blk_fetch_abort(zio_t
*zio
);
963 /* L2ARC persistence block restoration routines. */
964 static void l2arc_log_blk_restore(l2arc_dev_t
*dev
,
965 const l2arc_log_blk_phys_t
*lb
, uint64_t lb_asize
);
966 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
,
969 /* L2ARC persistence write I/O routines. */
970 static uint64_t l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
,
971 l2arc_write_callback_t
*cb
);
973 /* L2ARC persistence auxiliary routines. */
974 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t
*dev
,
975 const l2arc_log_blkptr_t
*lbp
);
976 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t
*dev
,
977 const arc_buf_hdr_t
*ab
);
978 boolean_t
l2arc_range_check_overlap(uint64_t bottom
,
979 uint64_t top
, uint64_t check
);
980 static void l2arc_blk_fetch_done(zio_t
*zio
);
981 static inline uint64_t
982 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
);
985 * We use Cityhash for this. It's fast, and has good hash properties without
986 * requiring any large static buffers.
989 buf_hash(uint64_t spa
, const dva_t
*dva
, uint64_t birth
)
991 return (cityhash4(spa
, dva
->dva_word
[0], dva
->dva_word
[1], birth
));
994 #define HDR_EMPTY(hdr) \
995 ((hdr)->b_dva.dva_word[0] == 0 && \
996 (hdr)->b_dva.dva_word[1] == 0)
998 #define HDR_EMPTY_OR_LOCKED(hdr) \
999 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1001 #define HDR_EQUAL(spa, dva, birth, hdr) \
1002 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1003 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1004 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1007 buf_discard_identity(arc_buf_hdr_t
*hdr
)
1009 hdr
->b_dva
.dva_word
[0] = 0;
1010 hdr
->b_dva
.dva_word
[1] = 0;
1014 static arc_buf_hdr_t
*
1015 buf_hash_find(uint64_t spa
, const blkptr_t
*bp
, kmutex_t
**lockp
)
1017 const dva_t
*dva
= BP_IDENTITY(bp
);
1018 uint64_t birth
= BP_GET_BIRTH(bp
);
1019 uint64_t idx
= BUF_HASH_INDEX(spa
, dva
, birth
);
1020 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1023 mutex_enter(hash_lock
);
1024 for (hdr
= buf_hash_table
.ht_table
[idx
]; hdr
!= NULL
;
1025 hdr
= hdr
->b_hash_next
) {
1026 if (HDR_EQUAL(spa
, dva
, birth
, hdr
)) {
1031 mutex_exit(hash_lock
);
1037 * Insert an entry into the hash table. If there is already an element
1038 * equal to elem in the hash table, then the already existing element
1039 * will be returned and the new element will not be inserted.
1040 * Otherwise returns NULL.
1041 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1043 static arc_buf_hdr_t
*
1044 buf_hash_insert(arc_buf_hdr_t
*hdr
, kmutex_t
**lockp
)
1046 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1047 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1048 arc_buf_hdr_t
*fhdr
;
1051 ASSERT(!DVA_IS_EMPTY(&hdr
->b_dva
));
1052 ASSERT(hdr
->b_birth
!= 0);
1053 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
1055 if (lockp
!= NULL
) {
1057 mutex_enter(hash_lock
);
1059 ASSERT(MUTEX_HELD(hash_lock
));
1062 for (fhdr
= buf_hash_table
.ht_table
[idx
], i
= 0; fhdr
!= NULL
;
1063 fhdr
= fhdr
->b_hash_next
, i
++) {
1064 if (HDR_EQUAL(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
, fhdr
))
1068 hdr
->b_hash_next
= buf_hash_table
.ht_table
[idx
];
1069 buf_hash_table
.ht_table
[idx
] = hdr
;
1070 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1072 /* collect some hash table performance data */
1074 ARCSTAT_BUMP(arcstat_hash_collisions
);
1076 ARCSTAT_BUMP(arcstat_hash_chains
);
1077 ARCSTAT_MAX(arcstat_hash_chain_max
, i
);
1079 ARCSTAT_BUMP(arcstat_hash_elements
);
1085 buf_hash_remove(arc_buf_hdr_t
*hdr
)
1087 arc_buf_hdr_t
*fhdr
, **hdrp
;
1088 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1090 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx
)));
1091 ASSERT(HDR_IN_HASH_TABLE(hdr
));
1093 hdrp
= &buf_hash_table
.ht_table
[idx
];
1094 while ((fhdr
= *hdrp
) != hdr
) {
1095 ASSERT3P(fhdr
, !=, NULL
);
1096 hdrp
= &fhdr
->b_hash_next
;
1098 *hdrp
= hdr
->b_hash_next
;
1099 hdr
->b_hash_next
= NULL
;
1100 arc_hdr_clear_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1102 /* collect some hash table performance data */
1103 ARCSTAT_BUMPDOWN(arcstat_hash_elements
);
1104 if (buf_hash_table
.ht_table
[idx
] &&
1105 buf_hash_table
.ht_table
[idx
]->b_hash_next
== NULL
)
1106 ARCSTAT_BUMPDOWN(arcstat_hash_chains
);
1110 * Global data structures and functions for the buf kmem cache.
1113 static kmem_cache_t
*hdr_full_cache
;
1114 static kmem_cache_t
*hdr_l2only_cache
;
1115 static kmem_cache_t
*buf_cache
;
1120 #if defined(_KERNEL)
1122 * Large allocations which do not require contiguous pages
1123 * should be using vmem_free() in the linux kernel\
1125 vmem_free(buf_hash_table
.ht_table
,
1126 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1128 kmem_free(buf_hash_table
.ht_table
,
1129 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1131 for (int i
= 0; i
< BUF_LOCKS
; i
++)
1132 mutex_destroy(BUF_HASH_LOCK(i
));
1133 kmem_cache_destroy(hdr_full_cache
);
1134 kmem_cache_destroy(hdr_l2only_cache
);
1135 kmem_cache_destroy(buf_cache
);
1139 * Constructor callback - called when the cache is empty
1140 * and a new buf is requested.
1143 hdr_full_cons(void *vbuf
, void *unused
, int kmflag
)
1145 (void) unused
, (void) kmflag
;
1146 arc_buf_hdr_t
*hdr
= vbuf
;
1148 memset(hdr
, 0, HDR_FULL_SIZE
);
1149 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
1150 zfs_refcount_create(&hdr
->b_l1hdr
.b_refcnt
);
1152 mutex_init(&hdr
->b_l1hdr
.b_freeze_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1154 multilist_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1155 list_link_init(&hdr
->b_l2hdr
.b_l2node
);
1156 arc_space_consume(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1162 hdr_l2only_cons(void *vbuf
, void *unused
, int kmflag
)
1164 (void) unused
, (void) kmflag
;
1165 arc_buf_hdr_t
*hdr
= vbuf
;
1167 memset(hdr
, 0, HDR_L2ONLY_SIZE
);
1168 arc_space_consume(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1174 buf_cons(void *vbuf
, void *unused
, int kmflag
)
1176 (void) unused
, (void) kmflag
;
1177 arc_buf_t
*buf
= vbuf
;
1179 memset(buf
, 0, sizeof (arc_buf_t
));
1180 arc_space_consume(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1186 * Destructor callback - called when a cached buf is
1187 * no longer required.
1190 hdr_full_dest(void *vbuf
, void *unused
)
1193 arc_buf_hdr_t
*hdr
= vbuf
;
1195 ASSERT(HDR_EMPTY(hdr
));
1196 zfs_refcount_destroy(&hdr
->b_l1hdr
.b_refcnt
);
1198 mutex_destroy(&hdr
->b_l1hdr
.b_freeze_lock
);
1200 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
1201 arc_space_return(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1205 hdr_l2only_dest(void *vbuf
, void *unused
)
1208 arc_buf_hdr_t
*hdr
= vbuf
;
1210 ASSERT(HDR_EMPTY(hdr
));
1211 arc_space_return(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1215 buf_dest(void *vbuf
, void *unused
)
1220 arc_space_return(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1226 uint64_t *ct
= NULL
;
1227 uint64_t hsize
= 1ULL << 12;
1231 * The hash table is big enough to fill all of physical memory
1232 * with an average block size of zfs_arc_average_blocksize (default 8K).
1233 * By default, the table will take up
1234 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1236 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory())
1239 buf_hash_table
.ht_mask
= hsize
- 1;
1240 #if defined(_KERNEL)
1242 * Large allocations which do not require contiguous pages
1243 * should be using vmem_alloc() in the linux kernel
1245 buf_hash_table
.ht_table
=
1246 vmem_zalloc(hsize
* sizeof (void*), KM_SLEEP
);
1248 buf_hash_table
.ht_table
=
1249 kmem_zalloc(hsize
* sizeof (void*), KM_NOSLEEP
);
1251 if (buf_hash_table
.ht_table
== NULL
) {
1252 ASSERT(hsize
> (1ULL << 8));
1257 hdr_full_cache
= kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE
,
1258 0, hdr_full_cons
, hdr_full_dest
, NULL
, NULL
, NULL
, KMC_RECLAIMABLE
);
1259 hdr_l2only_cache
= kmem_cache_create("arc_buf_hdr_t_l2only",
1260 HDR_L2ONLY_SIZE
, 0, hdr_l2only_cons
, hdr_l2only_dest
, NULL
,
1262 buf_cache
= kmem_cache_create("arc_buf_t", sizeof (arc_buf_t
),
1263 0, buf_cons
, buf_dest
, NULL
, NULL
, NULL
, 0);
1265 for (i
= 0; i
< 256; i
++)
1266 for (ct
= zfs_crc64_table
+ i
, *ct
= i
, j
= 8; j
> 0; j
--)
1267 *ct
= (*ct
>> 1) ^ (-(*ct
& 1) & ZFS_CRC64_POLY
);
1269 for (i
= 0; i
< BUF_LOCKS
; i
++)
1270 mutex_init(BUF_HASH_LOCK(i
), NULL
, MUTEX_DEFAULT
, NULL
);
1273 #define ARC_MINTIME (hz>>4) /* 62 ms */
1276 * This is the size that the buf occupies in memory. If the buf is compressed,
1277 * it will correspond to the compressed size. You should use this method of
1278 * getting the buf size unless you explicitly need the logical size.
1281 arc_buf_size(arc_buf_t
*buf
)
1283 return (ARC_BUF_COMPRESSED(buf
) ?
1284 HDR_GET_PSIZE(buf
->b_hdr
) : HDR_GET_LSIZE(buf
->b_hdr
));
1288 arc_buf_lsize(arc_buf_t
*buf
)
1290 return (HDR_GET_LSIZE(buf
->b_hdr
));
1294 * This function will return B_TRUE if the buffer is encrypted in memory.
1295 * This buffer can be decrypted by calling arc_untransform().
1298 arc_is_encrypted(arc_buf_t
*buf
)
1300 return (ARC_BUF_ENCRYPTED(buf
) != 0);
1304 * Returns B_TRUE if the buffer represents data that has not had its MAC
1308 arc_is_unauthenticated(arc_buf_t
*buf
)
1310 return (HDR_NOAUTH(buf
->b_hdr
) != 0);
1314 arc_get_raw_params(arc_buf_t
*buf
, boolean_t
*byteorder
, uint8_t *salt
,
1315 uint8_t *iv
, uint8_t *mac
)
1317 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1319 ASSERT(HDR_PROTECTED(hdr
));
1321 memcpy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
1322 memcpy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
1323 memcpy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
1324 *byteorder
= (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
1325 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
1329 * Indicates how this buffer is compressed in memory. If it is not compressed
1330 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1331 * arc_untransform() as long as it is also unencrypted.
1334 arc_get_compression(arc_buf_t
*buf
)
1336 return (ARC_BUF_COMPRESSED(buf
) ?
1337 HDR_GET_COMPRESS(buf
->b_hdr
) : ZIO_COMPRESS_OFF
);
1341 * Return the compression algorithm used to store this data in the ARC. If ARC
1342 * compression is enabled or this is an encrypted block, this will be the same
1343 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1345 static inline enum zio_compress
1346 arc_hdr_get_compress(arc_buf_hdr_t
*hdr
)
1348 return (HDR_COMPRESSION_ENABLED(hdr
) ?
1349 HDR_GET_COMPRESS(hdr
) : ZIO_COMPRESS_OFF
);
1353 arc_get_complevel(arc_buf_t
*buf
)
1355 return (buf
->b_hdr
->b_complevel
);
1358 static inline boolean_t
1359 arc_buf_is_shared(arc_buf_t
*buf
)
1361 boolean_t shared
= (buf
->b_data
!= NULL
&&
1362 buf
->b_hdr
->b_l1hdr
.b_pabd
!= NULL
&&
1363 abd_is_linear(buf
->b_hdr
->b_l1hdr
.b_pabd
) &&
1364 buf
->b_data
== abd_to_buf(buf
->b_hdr
->b_l1hdr
.b_pabd
));
1365 IMPLY(shared
, HDR_SHARED_DATA(buf
->b_hdr
));
1366 EQUIV(shared
, ARC_BUF_SHARED(buf
));
1367 IMPLY(shared
, ARC_BUF_COMPRESSED(buf
) || ARC_BUF_LAST(buf
));
1370 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1371 * already being shared" requirement prevents us from doing that.
1378 * Free the checksum associated with this header. If there is no checksum, this
1382 arc_cksum_free(arc_buf_hdr_t
*hdr
)
1385 ASSERT(HDR_HAS_L1HDR(hdr
));
1387 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1388 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1389 kmem_free(hdr
->b_l1hdr
.b_freeze_cksum
, sizeof (zio_cksum_t
));
1390 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
1392 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1397 * Return true iff at least one of the bufs on hdr is not compressed.
1398 * Encrypted buffers count as compressed.
1401 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t
*hdr
)
1403 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY_OR_LOCKED(hdr
));
1405 for (arc_buf_t
*b
= hdr
->b_l1hdr
.b_buf
; b
!= NULL
; b
= b
->b_next
) {
1406 if (!ARC_BUF_COMPRESSED(b
)) {
1415 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1416 * matches the checksum that is stored in the hdr. If there is no checksum,
1417 * or if the buf is compressed, this is a no-op.
1420 arc_cksum_verify(arc_buf_t
*buf
)
1423 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1426 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1429 if (ARC_BUF_COMPRESSED(buf
))
1432 ASSERT(HDR_HAS_L1HDR(hdr
));
1434 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1436 if (hdr
->b_l1hdr
.b_freeze_cksum
== NULL
|| HDR_IO_ERROR(hdr
)) {
1437 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1441 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
, &zc
);
1442 if (!ZIO_CHECKSUM_EQUAL(*hdr
->b_l1hdr
.b_freeze_cksum
, zc
))
1443 panic("buffer modified while frozen!");
1444 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1449 * This function makes the assumption that data stored in the L2ARC
1450 * will be transformed exactly as it is in the main pool. Because of
1451 * this we can verify the checksum against the reading process's bp.
1454 arc_cksum_is_equal(arc_buf_hdr_t
*hdr
, zio_t
*zio
)
1456 ASSERT(!BP_IS_EMBEDDED(zio
->io_bp
));
1457 VERIFY3U(BP_GET_PSIZE(zio
->io_bp
), ==, HDR_GET_PSIZE(hdr
));
1460 * Block pointers always store the checksum for the logical data.
1461 * If the block pointer has the gang bit set, then the checksum
1462 * it represents is for the reconstituted data and not for an
1463 * individual gang member. The zio pipeline, however, must be able to
1464 * determine the checksum of each of the gang constituents so it
1465 * treats the checksum comparison differently than what we need
1466 * for l2arc blocks. This prevents us from using the
1467 * zio_checksum_error() interface directly. Instead we must call the
1468 * zio_checksum_error_impl() so that we can ensure the checksum is
1469 * generated using the correct checksum algorithm and accounts for the
1470 * logical I/O size and not just a gang fragment.
1472 return (zio_checksum_error_impl(zio
->io_spa
, zio
->io_bp
,
1473 BP_GET_CHECKSUM(zio
->io_bp
), zio
->io_abd
, zio
->io_size
,
1474 zio
->io_offset
, NULL
) == 0);
1478 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1479 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1480 * isn't modified later on. If buf is compressed or there is already a checksum
1481 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1484 arc_cksum_compute(arc_buf_t
*buf
)
1486 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1490 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1491 ASSERT(HDR_HAS_L1HDR(hdr
));
1492 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1493 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
|| ARC_BUF_COMPRESSED(buf
)) {
1494 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1498 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
1499 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1500 hdr
->b_l1hdr
.b_freeze_cksum
= kmem_alloc(sizeof (zio_cksum_t
),
1502 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
,
1503 hdr
->b_l1hdr
.b_freeze_cksum
);
1504 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1511 arc_buf_sigsegv(int sig
, siginfo_t
*si
, void *unused
)
1513 (void) sig
, (void) unused
;
1514 panic("Got SIGSEGV at address: 0x%lx\n", (long)si
->si_addr
);
1519 arc_buf_unwatch(arc_buf_t
*buf
)
1523 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1524 PROT_READ
| PROT_WRITE
));
1532 arc_buf_watch(arc_buf_t
*buf
)
1536 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1543 static arc_buf_contents_t
1544 arc_buf_type(arc_buf_hdr_t
*hdr
)
1546 arc_buf_contents_t type
;
1547 if (HDR_ISTYPE_METADATA(hdr
)) {
1548 type
= ARC_BUFC_METADATA
;
1550 type
= ARC_BUFC_DATA
;
1552 VERIFY3U(hdr
->b_type
, ==, type
);
1557 arc_is_metadata(arc_buf_t
*buf
)
1559 return (HDR_ISTYPE_METADATA(buf
->b_hdr
) != 0);
1563 arc_bufc_to_flags(arc_buf_contents_t type
)
1567 /* metadata field is 0 if buffer contains normal data */
1569 case ARC_BUFC_METADATA
:
1570 return (ARC_FLAG_BUFC_METADATA
);
1574 panic("undefined ARC buffer type!");
1575 return ((uint32_t)-1);
1579 arc_buf_thaw(arc_buf_t
*buf
)
1581 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1583 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
1584 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
1586 arc_cksum_verify(buf
);
1589 * Compressed buffers do not manipulate the b_freeze_cksum.
1591 if (ARC_BUF_COMPRESSED(buf
))
1594 ASSERT(HDR_HAS_L1HDR(hdr
));
1595 arc_cksum_free(hdr
);
1596 arc_buf_unwatch(buf
);
1600 arc_buf_freeze(arc_buf_t
*buf
)
1602 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1605 if (ARC_BUF_COMPRESSED(buf
))
1608 ASSERT(HDR_HAS_L1HDR(buf
->b_hdr
));
1609 arc_cksum_compute(buf
);
1613 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1614 * the following functions should be used to ensure that the flags are
1615 * updated in a thread-safe way. When manipulating the flags either
1616 * the hash_lock must be held or the hdr must be undiscoverable. This
1617 * ensures that we're not racing with any other threads when updating
1621 arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1623 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1624 hdr
->b_flags
|= flags
;
1628 arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1630 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1631 hdr
->b_flags
&= ~flags
;
1635 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1636 * done in a special way since we have to clear and set bits
1637 * at the same time. Consumers that wish to set the compression bits
1638 * must use this function to ensure that the flags are updated in
1639 * thread-safe manner.
1642 arc_hdr_set_compress(arc_buf_hdr_t
*hdr
, enum zio_compress cmp
)
1644 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1647 * Holes and embedded blocks will always have a psize = 0 so
1648 * we ignore the compression of the blkptr and set the
1649 * want to uncompress them. Mark them as uncompressed.
1651 if (!zfs_compressed_arc_enabled
|| HDR_GET_PSIZE(hdr
) == 0) {
1652 arc_hdr_clear_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1653 ASSERT(!HDR_COMPRESSION_ENABLED(hdr
));
1655 arc_hdr_set_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1656 ASSERT(HDR_COMPRESSION_ENABLED(hdr
));
1659 HDR_SET_COMPRESS(hdr
, cmp
);
1660 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, cmp
);
1664 * Looks for another buf on the same hdr which has the data decompressed, copies
1665 * from it, and returns true. If no such buf exists, returns false.
1668 arc_buf_try_copy_decompressed_data(arc_buf_t
*buf
)
1670 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1671 boolean_t copied
= B_FALSE
;
1673 ASSERT(HDR_HAS_L1HDR(hdr
));
1674 ASSERT3P(buf
->b_data
, !=, NULL
);
1675 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1677 for (arc_buf_t
*from
= hdr
->b_l1hdr
.b_buf
; from
!= NULL
;
1678 from
= from
->b_next
) {
1679 /* can't use our own data buffer */
1684 if (!ARC_BUF_COMPRESSED(from
)) {
1685 memcpy(buf
->b_data
, from
->b_data
, arc_buf_size(buf
));
1693 * There were no decompressed bufs, so there should not be a
1694 * checksum on the hdr either.
1696 if (zfs_flags
& ZFS_DEBUG_MODIFY
)
1697 EQUIV(!copied
, hdr
->b_l1hdr
.b_freeze_cksum
== NULL
);
1704 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1705 * This is used during l2arc reconstruction to make empty ARC buffers
1706 * which circumvent the regular disk->arc->l2arc path and instead come
1707 * into being in the reverse order, i.e. l2arc->arc.
1709 static arc_buf_hdr_t
*
1710 arc_buf_alloc_l2only(size_t size
, arc_buf_contents_t type
, l2arc_dev_t
*dev
,
1711 dva_t dva
, uint64_t daddr
, int32_t psize
, uint64_t birth
,
1712 enum zio_compress compress
, uint8_t complevel
, boolean_t
protected,
1713 boolean_t prefetch
, arc_state_type_t arcs_state
)
1718 hdr
= kmem_cache_alloc(hdr_l2only_cache
, KM_SLEEP
);
1719 hdr
->b_birth
= birth
;
1722 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L2HDR
);
1723 HDR_SET_LSIZE(hdr
, size
);
1724 HDR_SET_PSIZE(hdr
, psize
);
1725 arc_hdr_set_compress(hdr
, compress
);
1726 hdr
->b_complevel
= complevel
;
1728 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
1730 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
1731 hdr
->b_spa
= spa_load_guid(dev
->l2ad_vdev
->vdev_spa
);
1735 hdr
->b_l2hdr
.b_dev
= dev
;
1736 hdr
->b_l2hdr
.b_daddr
= daddr
;
1737 hdr
->b_l2hdr
.b_arcs_state
= arcs_state
;
1743 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1746 arc_hdr_size(arc_buf_hdr_t
*hdr
)
1750 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
1751 HDR_GET_PSIZE(hdr
) > 0) {
1752 size
= HDR_GET_PSIZE(hdr
);
1754 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, 0);
1755 size
= HDR_GET_LSIZE(hdr
);
1761 arc_hdr_authenticate(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1765 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
1766 uint64_t psize
= HDR_GET_PSIZE(hdr
);
1767 abd_t
*abd
= hdr
->b_l1hdr
.b_pabd
;
1768 boolean_t free_abd
= B_FALSE
;
1770 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1771 ASSERT(HDR_AUTHENTICATED(hdr
));
1772 ASSERT3P(abd
, !=, NULL
);
1775 * The MAC is calculated on the compressed data that is stored on disk.
1776 * However, if compressed arc is disabled we will only have the
1777 * decompressed data available to us now. Compress it into a temporary
1778 * abd so we can verify the MAC. The performance overhead of this will
1779 * be relatively low, since most objects in an encrypted objset will
1780 * be encrypted (instead of authenticated) anyway.
1782 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1783 !HDR_COMPRESSION_ENABLED(hdr
)) {
1785 csize
= zio_compress_data(HDR_GET_COMPRESS(hdr
),
1786 hdr
->b_l1hdr
.b_pabd
, &abd
, lsize
, MIN(lsize
, psize
),
1788 if (csize
>= lsize
|| csize
> psize
) {
1789 ret
= SET_ERROR(EIO
);
1792 ASSERT3P(abd
, !=, NULL
);
1793 abd_zero_off(abd
, csize
, psize
- csize
);
1798 * Authentication is best effort. We authenticate whenever the key is
1799 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1801 if (hdr
->b_crypt_hdr
.b_ot
== DMU_OT_OBJSET
) {
1802 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, ZIO_COMPRESS_OFF
);
1803 ASSERT3U(lsize
, ==, psize
);
1804 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
, dsobj
, abd
,
1805 psize
, hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1807 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
, abd
, psize
,
1808 hdr
->b_crypt_hdr
.b_mac
);
1812 arc_hdr_clear_flags(hdr
, ARC_FLAG_NOAUTH
);
1813 else if (ret
== ENOENT
)
1823 * This function will take a header that only has raw encrypted data in
1824 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1825 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1826 * also decompress the data.
1829 arc_hdr_decrypt(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
)
1833 boolean_t no_crypt
= B_FALSE
;
1834 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1836 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1837 ASSERT(HDR_ENCRYPTED(hdr
));
1839 arc_hdr_alloc_abd(hdr
, 0);
1841 ret
= spa_do_crypt_abd(B_FALSE
, spa
, zb
, hdr
->b_crypt_hdr
.b_ot
,
1842 B_FALSE
, bswap
, hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_iv
,
1843 hdr
->b_crypt_hdr
.b_mac
, HDR_GET_PSIZE(hdr
), hdr
->b_l1hdr
.b_pabd
,
1844 hdr
->b_crypt_hdr
.b_rabd
, &no_crypt
);
1849 abd_copy(hdr
->b_l1hdr
.b_pabd
, hdr
->b_crypt_hdr
.b_rabd
,
1850 HDR_GET_PSIZE(hdr
));
1854 * If this header has disabled arc compression but the b_pabd is
1855 * compressed after decrypting it, we need to decompress the newly
1858 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1859 !HDR_COMPRESSION_ENABLED(hdr
)) {
1861 * We want to make sure that we are correctly honoring the
1862 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1863 * and then loan a buffer from it, rather than allocating a
1864 * linear buffer and wrapping it in an abd later.
1866 cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
, 0);
1868 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
1869 hdr
->b_l1hdr
.b_pabd
, cabd
, HDR_GET_PSIZE(hdr
),
1870 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
1875 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
1876 arc_hdr_size(hdr
), hdr
);
1877 hdr
->b_l1hdr
.b_pabd
= cabd
;
1883 arc_hdr_free_abd(hdr
, B_FALSE
);
1885 arc_free_data_buf(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
1891 * This function is called during arc_buf_fill() to prepare the header's
1892 * abd plaintext pointer for use. This involves authenticated protected
1893 * data and decrypting encrypted data into the plaintext abd.
1896 arc_fill_hdr_crypt(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, spa_t
*spa
,
1897 const zbookmark_phys_t
*zb
, boolean_t noauth
)
1901 ASSERT(HDR_PROTECTED(hdr
));
1903 if (hash_lock
!= NULL
)
1904 mutex_enter(hash_lock
);
1906 if (HDR_NOAUTH(hdr
) && !noauth
) {
1908 * The caller requested authenticated data but our data has
1909 * not been authenticated yet. Verify the MAC now if we can.
1911 ret
= arc_hdr_authenticate(hdr
, spa
, zb
->zb_objset
);
1914 } else if (HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
== NULL
) {
1916 * If we only have the encrypted version of the data, but the
1917 * unencrypted version was requested we take this opportunity
1918 * to store the decrypted version in the header for future use.
1920 ret
= arc_hdr_decrypt(hdr
, spa
, zb
);
1925 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1927 if (hash_lock
!= NULL
)
1928 mutex_exit(hash_lock
);
1933 if (hash_lock
!= NULL
)
1934 mutex_exit(hash_lock
);
1940 * This function is used by the dbuf code to decrypt bonus buffers in place.
1941 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1942 * block, so we use the hash lock here to protect against concurrent calls to
1946 arc_buf_untransform_in_place(arc_buf_t
*buf
)
1948 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1950 ASSERT(HDR_ENCRYPTED(hdr
));
1951 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
1952 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1953 ASSERT3PF(hdr
->b_l1hdr
.b_pabd
, !=, NULL
, "hdr %px buf %px", hdr
, buf
);
1955 zio_crypt_copy_dnode_bonus(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
1957 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
1958 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
1962 * Given a buf that has a data buffer attached to it, this function will
1963 * efficiently fill the buf with data of the specified compression setting from
1964 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1965 * are already sharing a data buf, no copy is performed.
1967 * If the buf is marked as compressed but uncompressed data was requested, this
1968 * will allocate a new data buffer for the buf, remove that flag, and fill the
1969 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1970 * uncompressed data, and (since we haven't added support for it yet) if you
1971 * want compressed data your buf must already be marked as compressed and have
1972 * the correct-sized data buffer.
1975 arc_buf_fill(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
1976 arc_fill_flags_t flags
)
1979 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1980 boolean_t hdr_compressed
=
1981 (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
1982 boolean_t compressed
= (flags
& ARC_FILL_COMPRESSED
) != 0;
1983 boolean_t encrypted
= (flags
& ARC_FILL_ENCRYPTED
) != 0;
1984 dmu_object_byteswap_t bswap
= hdr
->b_l1hdr
.b_byteswap
;
1985 kmutex_t
*hash_lock
= (flags
& ARC_FILL_LOCKED
) ? NULL
: HDR_LOCK(hdr
);
1987 ASSERT3P(buf
->b_data
, !=, NULL
);
1988 IMPLY(compressed
, hdr_compressed
|| ARC_BUF_ENCRYPTED(buf
));
1989 IMPLY(compressed
, ARC_BUF_COMPRESSED(buf
));
1990 IMPLY(encrypted
, HDR_ENCRYPTED(hdr
));
1991 IMPLY(encrypted
, ARC_BUF_ENCRYPTED(buf
));
1992 IMPLY(encrypted
, ARC_BUF_COMPRESSED(buf
));
1993 IMPLY(encrypted
, !arc_buf_is_shared(buf
));
1996 * If the caller wanted encrypted data we just need to copy it from
1997 * b_rabd and potentially byteswap it. We won't be able to do any
1998 * further transforms on it.
2001 ASSERT(HDR_HAS_RABD(hdr
));
2002 abd_copy_to_buf(buf
->b_data
, hdr
->b_crypt_hdr
.b_rabd
,
2003 HDR_GET_PSIZE(hdr
));
2008 * Adjust encrypted and authenticated headers to accommodate
2009 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2010 * allowed to fail decryption due to keys not being loaded
2011 * without being marked as an IO error.
2013 if (HDR_PROTECTED(hdr
)) {
2014 error
= arc_fill_hdr_crypt(hdr
, hash_lock
, spa
,
2015 zb
, !!(flags
& ARC_FILL_NOAUTH
));
2016 if (error
== EACCES
&& (flags
& ARC_FILL_IN_PLACE
) != 0) {
2018 } else if (error
!= 0) {
2019 if (hash_lock
!= NULL
)
2020 mutex_enter(hash_lock
);
2021 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2022 if (hash_lock
!= NULL
)
2023 mutex_exit(hash_lock
);
2029 * There is a special case here for dnode blocks which are
2030 * decrypting their bonus buffers. These blocks may request to
2031 * be decrypted in-place. This is necessary because there may
2032 * be many dnodes pointing into this buffer and there is
2033 * currently no method to synchronize replacing the backing
2034 * b_data buffer and updating all of the pointers. Here we use
2035 * the hash lock to ensure there are no races. If the need
2036 * arises for other types to be decrypted in-place, they must
2037 * add handling here as well.
2039 if ((flags
& ARC_FILL_IN_PLACE
) != 0) {
2040 ASSERT(!hdr_compressed
);
2041 ASSERT(!compressed
);
2044 if (HDR_ENCRYPTED(hdr
) && ARC_BUF_ENCRYPTED(buf
)) {
2045 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2047 if (hash_lock
!= NULL
)
2048 mutex_enter(hash_lock
);
2049 arc_buf_untransform_in_place(buf
);
2050 if (hash_lock
!= NULL
)
2051 mutex_exit(hash_lock
);
2053 /* Compute the hdr's checksum if necessary */
2054 arc_cksum_compute(buf
);
2060 if (hdr_compressed
== compressed
) {
2061 if (ARC_BUF_SHARED(buf
)) {
2062 ASSERT(arc_buf_is_shared(buf
));
2064 abd_copy_to_buf(buf
->b_data
, hdr
->b_l1hdr
.b_pabd
,
2068 ASSERT(hdr_compressed
);
2069 ASSERT(!compressed
);
2072 * If the buf is sharing its data with the hdr, unlink it and
2073 * allocate a new data buffer for the buf.
2075 if (ARC_BUF_SHARED(buf
)) {
2076 ASSERTF(ARC_BUF_COMPRESSED(buf
),
2077 "buf %p was uncompressed", buf
);
2079 /* We need to give the buf its own b_data */
2080 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2082 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2083 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2085 /* Previously overhead was 0; just add new overhead */
2086 ARCSTAT_INCR(arcstat_overhead_size
, HDR_GET_LSIZE(hdr
));
2087 } else if (ARC_BUF_COMPRESSED(buf
)) {
2088 ASSERT(!arc_buf_is_shared(buf
));
2090 /* We need to reallocate the buf's b_data */
2091 arc_free_data_buf(hdr
, buf
->b_data
, HDR_GET_PSIZE(hdr
),
2094 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2096 /* We increased the size of b_data; update overhead */
2097 ARCSTAT_INCR(arcstat_overhead_size
,
2098 HDR_GET_LSIZE(hdr
) - HDR_GET_PSIZE(hdr
));
2102 * Regardless of the buf's previous compression settings, it
2103 * should not be compressed at the end of this function.
2105 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2108 * Try copying the data from another buf which already has a
2109 * decompressed version. If that's not possible, it's time to
2110 * bite the bullet and decompress the data from the hdr.
2112 if (arc_buf_try_copy_decompressed_data(buf
)) {
2113 /* Skip byteswapping and checksumming (already done) */
2117 abd_get_from_buf_struct(&dabd
, buf
->b_data
,
2118 HDR_GET_LSIZE(hdr
));
2119 error
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
2120 hdr
->b_l1hdr
.b_pabd
, &dabd
,
2121 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
),
2126 * Absent hardware errors or software bugs, this should
2127 * be impossible, but log it anyway so we can debug it.
2131 "hdr %px, compress %d, psize %d, lsize %d",
2132 hdr
, arc_hdr_get_compress(hdr
),
2133 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2134 if (hash_lock
!= NULL
)
2135 mutex_enter(hash_lock
);
2136 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2137 if (hash_lock
!= NULL
)
2138 mutex_exit(hash_lock
);
2139 return (SET_ERROR(EIO
));
2145 /* Byteswap the buf's data if necessary */
2146 if (bswap
!= DMU_BSWAP_NUMFUNCS
) {
2147 ASSERT(!HDR_SHARED_DATA(hdr
));
2148 ASSERT3U(bswap
, <, DMU_BSWAP_NUMFUNCS
);
2149 dmu_ot_byteswap
[bswap
].ob_func(buf
->b_data
, HDR_GET_LSIZE(hdr
));
2152 /* Compute the hdr's checksum if necessary */
2153 arc_cksum_compute(buf
);
2159 * If this function is being called to decrypt an encrypted buffer or verify an
2160 * authenticated one, the key must be loaded and a mapping must be made
2161 * available in the keystore via spa_keystore_create_mapping() or one of its
2165 arc_untransform(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2169 arc_fill_flags_t flags
= 0;
2172 flags
|= ARC_FILL_IN_PLACE
;
2174 ret
= arc_buf_fill(buf
, spa
, zb
, flags
);
2175 if (ret
== ECKSUM
) {
2177 * Convert authentication and decryption errors to EIO
2178 * (and generate an ereport) before leaving the ARC.
2180 ret
= SET_ERROR(EIO
);
2181 spa_log_error(spa
, zb
, buf
->b_hdr
->b_birth
);
2182 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
2183 spa
, NULL
, zb
, NULL
, 0);
2190 * Increment the amount of evictable space in the arc_state_t's refcount.
2191 * We account for the space used by the hdr and the arc buf individually
2192 * so that we can add and remove them from the refcount individually.
2195 arc_evictable_space_increment(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2197 arc_buf_contents_t type
= arc_buf_type(hdr
);
2199 ASSERT(HDR_HAS_L1HDR(hdr
));
2201 if (GHOST_STATE(state
)) {
2202 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2203 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2204 ASSERT(!HDR_HAS_RABD(hdr
));
2205 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2206 HDR_GET_LSIZE(hdr
), hdr
);
2210 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2211 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2212 arc_hdr_size(hdr
), hdr
);
2214 if (HDR_HAS_RABD(hdr
)) {
2215 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2216 HDR_GET_PSIZE(hdr
), hdr
);
2219 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2220 buf
= buf
->b_next
) {
2221 if (ARC_BUF_SHARED(buf
))
2223 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2224 arc_buf_size(buf
), buf
);
2229 * Decrement the amount of evictable space in the arc_state_t's refcount.
2230 * We account for the space used by the hdr and the arc buf individually
2231 * so that we can add and remove them from the refcount individually.
2234 arc_evictable_space_decrement(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2236 arc_buf_contents_t type
= arc_buf_type(hdr
);
2238 ASSERT(HDR_HAS_L1HDR(hdr
));
2240 if (GHOST_STATE(state
)) {
2241 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2242 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2243 ASSERT(!HDR_HAS_RABD(hdr
));
2244 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2245 HDR_GET_LSIZE(hdr
), hdr
);
2249 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2250 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2251 arc_hdr_size(hdr
), hdr
);
2253 if (HDR_HAS_RABD(hdr
)) {
2254 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2255 HDR_GET_PSIZE(hdr
), hdr
);
2258 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2259 buf
= buf
->b_next
) {
2260 if (ARC_BUF_SHARED(buf
))
2262 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2263 arc_buf_size(buf
), buf
);
2268 * Add a reference to this hdr indicating that someone is actively
2269 * referencing that memory. When the refcount transitions from 0 to 1,
2270 * we remove it from the respective arc_state_t list to indicate that
2271 * it is not evictable.
2274 add_reference(arc_buf_hdr_t
*hdr
, const void *tag
)
2276 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2278 ASSERT(HDR_HAS_L1HDR(hdr
));
2279 if (!HDR_EMPTY(hdr
) && !MUTEX_HELD(HDR_LOCK(hdr
))) {
2280 ASSERT(state
== arc_anon
);
2281 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2282 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2285 if ((zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
) == 1) &&
2286 state
!= arc_anon
&& state
!= arc_l2c_only
) {
2287 /* We don't use the L2-only state list. */
2288 multilist_remove(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2289 arc_evictable_space_decrement(hdr
, state
);
2294 * Remove a reference from this hdr. When the reference transitions from
2295 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2296 * list making it eligible for eviction.
2299 remove_reference(arc_buf_hdr_t
*hdr
, const void *tag
)
2302 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2304 ASSERT(HDR_HAS_L1HDR(hdr
));
2305 ASSERT(state
== arc_anon
|| MUTEX_HELD(HDR_LOCK(hdr
)));
2306 ASSERT(!GHOST_STATE(state
)); /* arc_l2c_only counts as a ghost. */
2308 if ((cnt
= zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
)) != 0)
2311 if (state
== arc_anon
) {
2312 arc_hdr_destroy(hdr
);
2315 if (state
== arc_uncached
&& !HDR_PREFETCH(hdr
)) {
2316 arc_change_state(arc_anon
, hdr
);
2317 arc_hdr_destroy(hdr
);
2320 multilist_insert(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2321 arc_evictable_space_increment(hdr
, state
);
2326 * Returns detailed information about a specific arc buffer. When the
2327 * state_index argument is set the function will calculate the arc header
2328 * list position for its arc state. Since this requires a linear traversal
2329 * callers are strongly encourage not to do this. However, it can be helpful
2330 * for targeted analysis so the functionality is provided.
2333 arc_buf_info(arc_buf_t
*ab
, arc_buf_info_t
*abi
, int state_index
)
2336 arc_buf_hdr_t
*hdr
= ab
->b_hdr
;
2337 l1arc_buf_hdr_t
*l1hdr
= NULL
;
2338 l2arc_buf_hdr_t
*l2hdr
= NULL
;
2339 arc_state_t
*state
= NULL
;
2341 memset(abi
, 0, sizeof (arc_buf_info_t
));
2346 abi
->abi_flags
= hdr
->b_flags
;
2348 if (HDR_HAS_L1HDR(hdr
)) {
2349 l1hdr
= &hdr
->b_l1hdr
;
2350 state
= l1hdr
->b_state
;
2352 if (HDR_HAS_L2HDR(hdr
))
2353 l2hdr
= &hdr
->b_l2hdr
;
2356 abi
->abi_bufcnt
= 0;
2357 for (arc_buf_t
*buf
= l1hdr
->b_buf
; buf
; buf
= buf
->b_next
)
2359 abi
->abi_access
= l1hdr
->b_arc_access
;
2360 abi
->abi_mru_hits
= l1hdr
->b_mru_hits
;
2361 abi
->abi_mru_ghost_hits
= l1hdr
->b_mru_ghost_hits
;
2362 abi
->abi_mfu_hits
= l1hdr
->b_mfu_hits
;
2363 abi
->abi_mfu_ghost_hits
= l1hdr
->b_mfu_ghost_hits
;
2364 abi
->abi_holds
= zfs_refcount_count(&l1hdr
->b_refcnt
);
2368 abi
->abi_l2arc_dattr
= l2hdr
->b_daddr
;
2369 abi
->abi_l2arc_hits
= l2hdr
->b_hits
;
2372 abi
->abi_state_type
= state
? state
->arcs_state
: ARC_STATE_ANON
;
2373 abi
->abi_state_contents
= arc_buf_type(hdr
);
2374 abi
->abi_size
= arc_hdr_size(hdr
);
2378 * Move the supplied buffer to the indicated state. The hash lock
2379 * for the buffer must be held by the caller.
2382 arc_change_state(arc_state_t
*new_state
, arc_buf_hdr_t
*hdr
)
2384 arc_state_t
*old_state
;
2386 boolean_t update_old
, update_new
;
2387 arc_buf_contents_t type
= arc_buf_type(hdr
);
2390 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2391 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2392 * L1 hdr doesn't always exist when we change state to arc_anon before
2393 * destroying a header, in which case reallocating to add the L1 hdr is
2396 if (HDR_HAS_L1HDR(hdr
)) {
2397 old_state
= hdr
->b_l1hdr
.b_state
;
2398 refcnt
= zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
);
2399 update_old
= (hdr
->b_l1hdr
.b_buf
!= NULL
||
2400 hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
2402 IMPLY(GHOST_STATE(old_state
), hdr
->b_l1hdr
.b_buf
== NULL
);
2403 IMPLY(GHOST_STATE(new_state
), hdr
->b_l1hdr
.b_buf
== NULL
);
2404 IMPLY(old_state
== arc_anon
, hdr
->b_l1hdr
.b_buf
== NULL
||
2405 ARC_BUF_LAST(hdr
->b_l1hdr
.b_buf
));
2407 old_state
= arc_l2c_only
;
2409 update_old
= B_FALSE
;
2411 update_new
= update_old
;
2412 if (GHOST_STATE(old_state
))
2413 update_old
= B_TRUE
;
2414 if (GHOST_STATE(new_state
))
2415 update_new
= B_TRUE
;
2417 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
2418 ASSERT3P(new_state
, !=, old_state
);
2421 * If this buffer is evictable, transfer it from the
2422 * old state list to the new state list.
2425 if (old_state
!= arc_anon
&& old_state
!= arc_l2c_only
) {
2426 ASSERT(HDR_HAS_L1HDR(hdr
));
2427 /* remove_reference() saves on insert. */
2428 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2429 multilist_remove(&old_state
->arcs_list
[type
],
2431 arc_evictable_space_decrement(hdr
, old_state
);
2434 if (new_state
!= arc_anon
&& new_state
!= arc_l2c_only
) {
2436 * An L1 header always exists here, since if we're
2437 * moving to some L1-cached state (i.e. not l2c_only or
2438 * anonymous), we realloc the header to add an L1hdr
2441 ASSERT(HDR_HAS_L1HDR(hdr
));
2442 multilist_insert(&new_state
->arcs_list
[type
], hdr
);
2443 arc_evictable_space_increment(hdr
, new_state
);
2447 ASSERT(!HDR_EMPTY(hdr
));
2448 if (new_state
== arc_anon
&& HDR_IN_HASH_TABLE(hdr
))
2449 buf_hash_remove(hdr
);
2451 /* adjust state sizes (ignore arc_l2c_only) */
2453 if (update_new
&& new_state
!= arc_l2c_only
) {
2454 ASSERT(HDR_HAS_L1HDR(hdr
));
2455 if (GHOST_STATE(new_state
)) {
2458 * When moving a header to a ghost state, we first
2459 * remove all arc buffers. Thus, we'll have no arc
2460 * buffer to use for the reference. As a result, we
2461 * use the arc header pointer for the reference.
2463 (void) zfs_refcount_add_many(
2464 &new_state
->arcs_size
[type
],
2465 HDR_GET_LSIZE(hdr
), hdr
);
2466 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2467 ASSERT(!HDR_HAS_RABD(hdr
));
2471 * Each individual buffer holds a unique reference,
2472 * thus we must remove each of these references one
2475 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2476 buf
= buf
->b_next
) {
2479 * When the arc_buf_t is sharing the data
2480 * block with the hdr, the owner of the
2481 * reference belongs to the hdr. Only
2482 * add to the refcount if the arc_buf_t is
2485 if (ARC_BUF_SHARED(buf
))
2488 (void) zfs_refcount_add_many(
2489 &new_state
->arcs_size
[type
],
2490 arc_buf_size(buf
), buf
);
2493 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2494 (void) zfs_refcount_add_many(
2495 &new_state
->arcs_size
[type
],
2496 arc_hdr_size(hdr
), hdr
);
2499 if (HDR_HAS_RABD(hdr
)) {
2500 (void) zfs_refcount_add_many(
2501 &new_state
->arcs_size
[type
],
2502 HDR_GET_PSIZE(hdr
), hdr
);
2507 if (update_old
&& old_state
!= arc_l2c_only
) {
2508 ASSERT(HDR_HAS_L1HDR(hdr
));
2509 if (GHOST_STATE(old_state
)) {
2510 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2511 ASSERT(!HDR_HAS_RABD(hdr
));
2514 * When moving a header off of a ghost state,
2515 * the header will not contain any arc buffers.
2516 * We use the arc header pointer for the reference
2517 * which is exactly what we did when we put the
2518 * header on the ghost state.
2521 (void) zfs_refcount_remove_many(
2522 &old_state
->arcs_size
[type
],
2523 HDR_GET_LSIZE(hdr
), hdr
);
2527 * Each individual buffer holds a unique reference,
2528 * thus we must remove each of these references one
2531 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2532 buf
= buf
->b_next
) {
2535 * When the arc_buf_t is sharing the data
2536 * block with the hdr, the owner of the
2537 * reference belongs to the hdr. Only
2538 * add to the refcount if the arc_buf_t is
2541 if (ARC_BUF_SHARED(buf
))
2544 (void) zfs_refcount_remove_many(
2545 &old_state
->arcs_size
[type
],
2546 arc_buf_size(buf
), buf
);
2548 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
2551 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2552 (void) zfs_refcount_remove_many(
2553 &old_state
->arcs_size
[type
],
2554 arc_hdr_size(hdr
), hdr
);
2557 if (HDR_HAS_RABD(hdr
)) {
2558 (void) zfs_refcount_remove_many(
2559 &old_state
->arcs_size
[type
],
2560 HDR_GET_PSIZE(hdr
), hdr
);
2565 if (HDR_HAS_L1HDR(hdr
)) {
2566 hdr
->b_l1hdr
.b_state
= new_state
;
2568 if (HDR_HAS_L2HDR(hdr
) && new_state
!= arc_l2c_only
) {
2569 l2arc_hdr_arcstats_decrement_state(hdr
);
2570 hdr
->b_l2hdr
.b_arcs_state
= new_state
->arcs_state
;
2571 l2arc_hdr_arcstats_increment_state(hdr
);
2577 arc_space_consume(uint64_t space
, arc_space_type_t type
)
2579 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2584 case ARC_SPACE_DATA
:
2585 ARCSTAT_INCR(arcstat_data_size
, space
);
2587 case ARC_SPACE_META
:
2588 ARCSTAT_INCR(arcstat_metadata_size
, space
);
2590 case ARC_SPACE_BONUS
:
2591 ARCSTAT_INCR(arcstat_bonus_size
, space
);
2593 case ARC_SPACE_DNODE
:
2594 ARCSTAT_INCR(arcstat_dnode_size
, space
);
2596 case ARC_SPACE_DBUF
:
2597 ARCSTAT_INCR(arcstat_dbuf_size
, space
);
2599 case ARC_SPACE_HDRS
:
2600 ARCSTAT_INCR(arcstat_hdr_size
, space
);
2602 case ARC_SPACE_L2HDRS
:
2603 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, space
);
2605 case ARC_SPACE_ABD_CHUNK_WASTE
:
2607 * Note: this includes space wasted by all scatter ABD's, not
2608 * just those allocated by the ARC. But the vast majority of
2609 * scatter ABD's come from the ARC, because other users are
2612 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, space
);
2616 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2617 ARCSTAT_INCR(arcstat_meta_used
, space
);
2619 aggsum_add(&arc_sums
.arcstat_size
, space
);
2623 arc_space_return(uint64_t space
, arc_space_type_t type
)
2625 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2630 case ARC_SPACE_DATA
:
2631 ARCSTAT_INCR(arcstat_data_size
, -space
);
2633 case ARC_SPACE_META
:
2634 ARCSTAT_INCR(arcstat_metadata_size
, -space
);
2636 case ARC_SPACE_BONUS
:
2637 ARCSTAT_INCR(arcstat_bonus_size
, -space
);
2639 case ARC_SPACE_DNODE
:
2640 ARCSTAT_INCR(arcstat_dnode_size
, -space
);
2642 case ARC_SPACE_DBUF
:
2643 ARCSTAT_INCR(arcstat_dbuf_size
, -space
);
2645 case ARC_SPACE_HDRS
:
2646 ARCSTAT_INCR(arcstat_hdr_size
, -space
);
2648 case ARC_SPACE_L2HDRS
:
2649 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, -space
);
2651 case ARC_SPACE_ABD_CHUNK_WASTE
:
2652 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, -space
);
2656 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2657 ARCSTAT_INCR(arcstat_meta_used
, -space
);
2659 ASSERT(aggsum_compare(&arc_sums
.arcstat_size
, space
) >= 0);
2660 aggsum_add(&arc_sums
.arcstat_size
, -space
);
2664 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2665 * with the hdr's b_pabd.
2668 arc_can_share(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2671 * The criteria for sharing a hdr's data are:
2672 * 1. the buffer is not encrypted
2673 * 2. the hdr's compression matches the buf's compression
2674 * 3. the hdr doesn't need to be byteswapped
2675 * 4. the hdr isn't already being shared
2676 * 5. the buf is either compressed or it is the last buf in the hdr list
2678 * Criterion #5 maintains the invariant that shared uncompressed
2679 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2680 * might ask, "if a compressed buf is allocated first, won't that be the
2681 * last thing in the list?", but in that case it's impossible to create
2682 * a shared uncompressed buf anyway (because the hdr must be compressed
2683 * to have the compressed buf). You might also think that #3 is
2684 * sufficient to make this guarantee, however it's possible
2685 * (specifically in the rare L2ARC write race mentioned in
2686 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2687 * is shareable, but wasn't at the time of its allocation. Rather than
2688 * allow a new shared uncompressed buf to be created and then shuffle
2689 * the list around to make it the last element, this simply disallows
2690 * sharing if the new buf isn't the first to be added.
2692 ASSERT3P(buf
->b_hdr
, ==, hdr
);
2693 boolean_t hdr_compressed
=
2694 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
;
2695 boolean_t buf_compressed
= ARC_BUF_COMPRESSED(buf
) != 0;
2696 return (!ARC_BUF_ENCRYPTED(buf
) &&
2697 buf_compressed
== hdr_compressed
&&
2698 hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
&&
2699 !HDR_SHARED_DATA(hdr
) &&
2700 (ARC_BUF_LAST(buf
) || ARC_BUF_COMPRESSED(buf
)));
2704 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2705 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2706 * copy was made successfully, or an error code otherwise.
2709 arc_buf_alloc_impl(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2710 const void *tag
, boolean_t encrypted
, boolean_t compressed
,
2711 boolean_t noauth
, boolean_t fill
, arc_buf_t
**ret
)
2714 arc_fill_flags_t flags
= ARC_FILL_LOCKED
;
2716 ASSERT(HDR_HAS_L1HDR(hdr
));
2717 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
2718 VERIFY(hdr
->b_type
== ARC_BUFC_DATA
||
2719 hdr
->b_type
== ARC_BUFC_METADATA
);
2720 ASSERT3P(ret
, !=, NULL
);
2721 ASSERT3P(*ret
, ==, NULL
);
2722 IMPLY(encrypted
, compressed
);
2724 buf
= *ret
= kmem_cache_alloc(buf_cache
, KM_PUSHPAGE
);
2727 buf
->b_next
= hdr
->b_l1hdr
.b_buf
;
2730 add_reference(hdr
, tag
);
2733 * We're about to change the hdr's b_flags. We must either
2734 * hold the hash_lock or be undiscoverable.
2736 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2739 * Only honor requests for compressed bufs if the hdr is actually
2740 * compressed. This must be overridden if the buffer is encrypted since
2741 * encrypted buffers cannot be decompressed.
2744 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2745 buf
->b_flags
|= ARC_BUF_FLAG_ENCRYPTED
;
2746 flags
|= ARC_FILL_COMPRESSED
| ARC_FILL_ENCRYPTED
;
2747 } else if (compressed
&&
2748 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
2749 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2750 flags
|= ARC_FILL_COMPRESSED
;
2755 flags
|= ARC_FILL_NOAUTH
;
2759 * If the hdr's data can be shared then we share the data buffer and
2760 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2761 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2762 * buffer to store the buf's data.
2764 * There are two additional restrictions here because we're sharing
2765 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2766 * actively involved in an L2ARC write, because if this buf is used by
2767 * an arc_write() then the hdr's data buffer will be released when the
2768 * write completes, even though the L2ARC write might still be using it.
2769 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2770 * need to be ABD-aware. It must be allocated via
2771 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2772 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2773 * page" buffers because the ABD code needs to handle freeing them
2776 boolean_t can_share
= arc_can_share(hdr
, buf
) &&
2777 !HDR_L2_WRITING(hdr
) &&
2778 hdr
->b_l1hdr
.b_pabd
!= NULL
&&
2779 abd_is_linear(hdr
->b_l1hdr
.b_pabd
) &&
2780 !abd_is_linear_page(hdr
->b_l1hdr
.b_pabd
);
2782 /* Set up b_data and sharing */
2784 buf
->b_data
= abd_to_buf(hdr
->b_l1hdr
.b_pabd
);
2785 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2786 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2789 arc_get_data_buf(hdr
, arc_buf_size(buf
), buf
);
2790 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
2792 VERIFY3P(buf
->b_data
, !=, NULL
);
2794 hdr
->b_l1hdr
.b_buf
= buf
;
2797 * If the user wants the data from the hdr, we need to either copy or
2798 * decompress the data.
2801 ASSERT3P(zb
, !=, NULL
);
2802 return (arc_buf_fill(buf
, spa
, zb
, flags
));
2808 static const char *arc_onloan_tag
= "onloan";
2811 arc_loaned_bytes_update(int64_t delta
)
2813 atomic_add_64(&arc_loaned_bytes
, delta
);
2815 /* assert that it did not wrap around */
2816 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
2820 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2821 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2822 * buffers must be returned to the arc before they can be used by the DMU or
2826 arc_loan_buf(spa_t
*spa
, boolean_t is_metadata
, int size
)
2828 arc_buf_t
*buf
= arc_alloc_buf(spa
, arc_onloan_tag
,
2829 is_metadata
? ARC_BUFC_METADATA
: ARC_BUFC_DATA
, size
);
2831 arc_loaned_bytes_update(arc_buf_size(buf
));
2837 arc_loan_compressed_buf(spa_t
*spa
, uint64_t psize
, uint64_t lsize
,
2838 enum zio_compress compression_type
, uint8_t complevel
)
2840 arc_buf_t
*buf
= arc_alloc_compressed_buf(spa
, arc_onloan_tag
,
2841 psize
, lsize
, compression_type
, complevel
);
2843 arc_loaned_bytes_update(arc_buf_size(buf
));
2849 arc_loan_raw_buf(spa_t
*spa
, uint64_t dsobj
, boolean_t byteorder
,
2850 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
2851 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
2852 enum zio_compress compression_type
, uint8_t complevel
)
2854 arc_buf_t
*buf
= arc_alloc_raw_buf(spa
, arc_onloan_tag
, dsobj
,
2855 byteorder
, salt
, iv
, mac
, ot
, psize
, lsize
, compression_type
,
2858 atomic_add_64(&arc_loaned_bytes
, psize
);
2864 * Return a loaned arc buffer to the arc.
2867 arc_return_buf(arc_buf_t
*buf
, const void *tag
)
2869 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2871 ASSERT3P(buf
->b_data
, !=, NULL
);
2872 ASSERT(HDR_HAS_L1HDR(hdr
));
2873 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2874 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2876 arc_loaned_bytes_update(-arc_buf_size(buf
));
2879 /* Detach an arc_buf from a dbuf (tag) */
2881 arc_loan_inuse_buf(arc_buf_t
*buf
, const void *tag
)
2883 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2885 ASSERT3P(buf
->b_data
, !=, NULL
);
2886 ASSERT(HDR_HAS_L1HDR(hdr
));
2887 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2888 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2890 arc_loaned_bytes_update(arc_buf_size(buf
));
2894 l2arc_free_abd_on_write(abd_t
*abd
, size_t size
, arc_buf_contents_t type
)
2896 l2arc_data_free_t
*df
= kmem_alloc(sizeof (*df
), KM_SLEEP
);
2899 df
->l2df_size
= size
;
2900 df
->l2df_type
= type
;
2901 mutex_enter(&l2arc_free_on_write_mtx
);
2902 list_insert_head(l2arc_free_on_write
, df
);
2903 mutex_exit(&l2arc_free_on_write_mtx
);
2907 arc_hdr_free_on_write(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
2909 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2910 arc_buf_contents_t type
= arc_buf_type(hdr
);
2911 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
2913 /* protected by hash lock, if in the hash table */
2914 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2915 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2916 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
2918 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2921 (void) zfs_refcount_remove_many(&state
->arcs_size
[type
], size
, hdr
);
2922 if (type
== ARC_BUFC_METADATA
) {
2923 arc_space_return(size
, ARC_SPACE_META
);
2925 ASSERT(type
== ARC_BUFC_DATA
);
2926 arc_space_return(size
, ARC_SPACE_DATA
);
2930 l2arc_free_abd_on_write(hdr
->b_crypt_hdr
.b_rabd
, size
, type
);
2932 l2arc_free_abd_on_write(hdr
->b_l1hdr
.b_pabd
, size
, type
);
2937 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2938 * data buffer, we transfer the refcount ownership to the hdr and update
2939 * the appropriate kstats.
2942 arc_share_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2944 ASSERT(arc_can_share(hdr
, buf
));
2945 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2946 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
2947 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2950 * Start sharing the data buffer. We transfer the
2951 * refcount ownership to the hdr since it always owns
2952 * the refcount whenever an arc_buf_t is shared.
2954 zfs_refcount_transfer_ownership_many(
2955 &hdr
->b_l1hdr
.b_state
->arcs_size
[arc_buf_type(hdr
)],
2956 arc_hdr_size(hdr
), buf
, hdr
);
2957 hdr
->b_l1hdr
.b_pabd
= abd_get_from_buf(buf
->b_data
, arc_buf_size(buf
));
2958 abd_take_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
,
2959 HDR_ISTYPE_METADATA(hdr
));
2960 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2961 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2964 * Since we've transferred ownership to the hdr we need
2965 * to increment its compressed and uncompressed kstats and
2966 * decrement the overhead size.
2968 ARCSTAT_INCR(arcstat_compressed_size
, arc_hdr_size(hdr
));
2969 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
2970 ARCSTAT_INCR(arcstat_overhead_size
, -arc_buf_size(buf
));
2974 arc_unshare_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2976 ASSERT(arc_buf_is_shared(buf
));
2977 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
2978 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2981 * We are no longer sharing this buffer so we need
2982 * to transfer its ownership to the rightful owner.
2984 zfs_refcount_transfer_ownership_many(
2985 &hdr
->b_l1hdr
.b_state
->arcs_size
[arc_buf_type(hdr
)],
2986 arc_hdr_size(hdr
), hdr
, buf
);
2987 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2988 abd_release_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
);
2989 abd_free(hdr
->b_l1hdr
.b_pabd
);
2990 hdr
->b_l1hdr
.b_pabd
= NULL
;
2991 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2994 * Since the buffer is no longer shared between
2995 * the arc buf and the hdr, count it as overhead.
2997 ARCSTAT_INCR(arcstat_compressed_size
, -arc_hdr_size(hdr
));
2998 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
2999 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
3003 * Remove an arc_buf_t from the hdr's buf list and return the last
3004 * arc_buf_t on the list. If no buffers remain on the list then return
3008 arc_buf_remove(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3010 ASSERT(HDR_HAS_L1HDR(hdr
));
3011 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3013 arc_buf_t
**bufp
= &hdr
->b_l1hdr
.b_buf
;
3014 arc_buf_t
*lastbuf
= NULL
;
3017 * Remove the buf from the hdr list and locate the last
3018 * remaining buffer on the list.
3020 while (*bufp
!= NULL
) {
3022 *bufp
= buf
->b_next
;
3025 * If we've removed a buffer in the middle of
3026 * the list then update the lastbuf and update
3029 if (*bufp
!= NULL
) {
3031 bufp
= &(*bufp
)->b_next
;
3035 ASSERT3P(lastbuf
, !=, buf
);
3036 IMPLY(lastbuf
!= NULL
, ARC_BUF_LAST(lastbuf
));
3042 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3046 arc_buf_destroy_impl(arc_buf_t
*buf
)
3048 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3051 * Free up the data associated with the buf but only if we're not
3052 * sharing this with the hdr. If we are sharing it with the hdr, the
3053 * hdr is responsible for doing the free.
3055 if (buf
->b_data
!= NULL
) {
3057 * We're about to change the hdr's b_flags. We must either
3058 * hold the hash_lock or be undiscoverable.
3060 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3062 arc_cksum_verify(buf
);
3063 arc_buf_unwatch(buf
);
3065 if (ARC_BUF_SHARED(buf
)) {
3066 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3068 ASSERT(!arc_buf_is_shared(buf
));
3069 uint64_t size
= arc_buf_size(buf
);
3070 arc_free_data_buf(hdr
, buf
->b_data
, size
, buf
);
3071 ARCSTAT_INCR(arcstat_overhead_size
, -size
);
3076 * If we have no more encrypted buffers and we've already
3077 * gotten a copy of the decrypted data we can free b_rabd
3078 * to save some space.
3080 if (ARC_BUF_ENCRYPTED(buf
) && HDR_HAS_RABD(hdr
) &&
3081 hdr
->b_l1hdr
.b_pabd
!= NULL
&& !HDR_IO_IN_PROGRESS(hdr
)) {
3083 for (b
= hdr
->b_l1hdr
.b_buf
; b
; b
= b
->b_next
) {
3084 if (b
!= buf
&& ARC_BUF_ENCRYPTED(b
))
3088 arc_hdr_free_abd(hdr
, B_TRUE
);
3092 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
3094 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
3096 * If the current arc_buf_t is sharing its data buffer with the
3097 * hdr, then reassign the hdr's b_pabd to share it with the new
3098 * buffer at the end of the list. The shared buffer is always
3099 * the last one on the hdr's buffer list.
3101 * There is an equivalent case for compressed bufs, but since
3102 * they aren't guaranteed to be the last buf in the list and
3103 * that is an exceedingly rare case, we just allow that space be
3104 * wasted temporarily. We must also be careful not to share
3105 * encrypted buffers, since they cannot be shared.
3107 if (lastbuf
!= NULL
&& !ARC_BUF_ENCRYPTED(lastbuf
)) {
3108 /* Only one buf can be shared at once */
3109 ASSERT(!arc_buf_is_shared(lastbuf
));
3110 /* hdr is uncompressed so can't have compressed buf */
3111 ASSERT(!ARC_BUF_COMPRESSED(lastbuf
));
3113 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3114 arc_hdr_free_abd(hdr
, B_FALSE
);
3117 * We must setup a new shared block between the
3118 * last buffer and the hdr. The data would have
3119 * been allocated by the arc buf so we need to transfer
3120 * ownership to the hdr since it's now being shared.
3122 arc_share_buf(hdr
, lastbuf
);
3124 } else if (HDR_SHARED_DATA(hdr
)) {
3126 * Uncompressed shared buffers are always at the end
3127 * of the list. Compressed buffers don't have the
3128 * same requirements. This makes it hard to
3129 * simply assert that the lastbuf is shared so
3130 * we rely on the hdr's compression flags to determine
3131 * if we have a compressed, shared buffer.
3133 ASSERT3P(lastbuf
, !=, NULL
);
3134 ASSERT(arc_buf_is_shared(lastbuf
) ||
3135 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
3139 * Free the checksum if we're removing the last uncompressed buf from
3142 if (!arc_hdr_has_uncompressed_buf(hdr
)) {
3143 arc_cksum_free(hdr
);
3146 /* clean up the buf */
3148 kmem_cache_free(buf_cache
, buf
);
3152 arc_hdr_alloc_abd(arc_buf_hdr_t
*hdr
, int alloc_flags
)
3155 boolean_t alloc_rdata
= ((alloc_flags
& ARC_HDR_ALLOC_RDATA
) != 0);
3157 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
3158 ASSERT(HDR_HAS_L1HDR(hdr
));
3159 ASSERT(!HDR_SHARED_DATA(hdr
) || alloc_rdata
);
3160 IMPLY(alloc_rdata
, HDR_PROTECTED(hdr
));
3163 size
= HDR_GET_PSIZE(hdr
);
3164 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, ==, NULL
);
3165 hdr
->b_crypt_hdr
.b_rabd
= arc_get_data_abd(hdr
, size
, hdr
,
3167 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, !=, NULL
);
3168 ARCSTAT_INCR(arcstat_raw_size
, size
);
3170 size
= arc_hdr_size(hdr
);
3171 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3172 hdr
->b_l1hdr
.b_pabd
= arc_get_data_abd(hdr
, size
, hdr
,
3174 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3177 ARCSTAT_INCR(arcstat_compressed_size
, size
);
3178 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3182 arc_hdr_free_abd(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
3184 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
3186 ASSERT(HDR_HAS_L1HDR(hdr
));
3187 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
3188 IMPLY(free_rdata
, HDR_HAS_RABD(hdr
));
3191 * If the hdr is currently being written to the l2arc then
3192 * we defer freeing the data by adding it to the l2arc_free_on_write
3193 * list. The l2arc will free the data once it's finished
3194 * writing it to the l2arc device.
3196 if (HDR_L2_WRITING(hdr
)) {
3197 arc_hdr_free_on_write(hdr
, free_rdata
);
3198 ARCSTAT_BUMP(arcstat_l2_free_on_write
);
3199 } else if (free_rdata
) {
3200 arc_free_data_abd(hdr
, hdr
->b_crypt_hdr
.b_rabd
, size
, hdr
);
3202 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
, size
, hdr
);
3206 hdr
->b_crypt_hdr
.b_rabd
= NULL
;
3207 ARCSTAT_INCR(arcstat_raw_size
, -size
);
3209 hdr
->b_l1hdr
.b_pabd
= NULL
;
3212 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3213 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3215 ARCSTAT_INCR(arcstat_compressed_size
, -size
);
3216 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3220 * Allocate empty anonymous ARC header. The header will get its identity
3221 * assigned and buffers attached later as part of read or write operations.
3223 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3224 * inserts it into ARC hash to become globally visible and allocates physical
3225 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3226 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3227 * sharing one of them with the physical ABD buffer.
3229 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3230 * data. Then after compression and/or encryption arc_write_ready() allocates
3231 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3232 * buffer. On disk write completion arc_write_done() assigns the header its
3233 * new identity (b_dva + b_birth) and inserts into ARC hash.
3235 * In case of partial overwrite the old data is read first as described. Then
3236 * arc_release() either allocates new anonymous ARC header and moves the ARC
3237 * buffer to it, or reuses the old ARC header by discarding its identity and
3238 * removing it from ARC hash. After buffer modification normal write process
3239 * follows as described.
3241 static arc_buf_hdr_t
*
3242 arc_hdr_alloc(uint64_t spa
, int32_t psize
, int32_t lsize
,
3243 boolean_t
protected, enum zio_compress compression_type
, uint8_t complevel
,
3244 arc_buf_contents_t type
)
3248 VERIFY(type
== ARC_BUFC_DATA
|| type
== ARC_BUFC_METADATA
);
3249 hdr
= kmem_cache_alloc(hdr_full_cache
, KM_PUSHPAGE
);
3251 ASSERT(HDR_EMPTY(hdr
));
3253 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3255 HDR_SET_PSIZE(hdr
, psize
);
3256 HDR_SET_LSIZE(hdr
, lsize
);
3260 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L1HDR
);
3261 arc_hdr_set_compress(hdr
, compression_type
);
3262 hdr
->b_complevel
= complevel
;
3264 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3266 hdr
->b_l1hdr
.b_state
= arc_anon
;
3267 hdr
->b_l1hdr
.b_arc_access
= 0;
3268 hdr
->b_l1hdr
.b_mru_hits
= 0;
3269 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3270 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3271 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3272 hdr
->b_l1hdr
.b_buf
= NULL
;
3274 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3280 * Transition between the two allocation states for the arc_buf_hdr struct.
3281 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3282 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3283 * version is used when a cache buffer is only in the L2ARC in order to reduce
3286 static arc_buf_hdr_t
*
3287 arc_hdr_realloc(arc_buf_hdr_t
*hdr
, kmem_cache_t
*old
, kmem_cache_t
*new)
3289 ASSERT(HDR_HAS_L2HDR(hdr
));
3291 arc_buf_hdr_t
*nhdr
;
3292 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3294 ASSERT((old
== hdr_full_cache
&& new == hdr_l2only_cache
) ||
3295 (old
== hdr_l2only_cache
&& new == hdr_full_cache
));
3297 nhdr
= kmem_cache_alloc(new, KM_PUSHPAGE
);
3299 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3300 buf_hash_remove(hdr
);
3302 memcpy(nhdr
, hdr
, HDR_L2ONLY_SIZE
);
3304 if (new == hdr_full_cache
) {
3305 arc_hdr_set_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3307 * arc_access and arc_change_state need to be aware that a
3308 * header has just come out of L2ARC, so we set its state to
3309 * l2c_only even though it's about to change.
3311 nhdr
->b_l1hdr
.b_state
= arc_l2c_only
;
3313 /* Verify previous threads set to NULL before freeing */
3314 ASSERT3P(nhdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3315 ASSERT(!HDR_HAS_RABD(hdr
));
3317 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3319 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3323 * If we've reached here, We must have been called from
3324 * arc_evict_hdr(), as such we should have already been
3325 * removed from any ghost list we were previously on
3326 * (which protects us from racing with arc_evict_state),
3327 * thus no locking is needed during this check.
3329 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3332 * A buffer must not be moved into the arc_l2c_only
3333 * state if it's not finished being written out to the
3334 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3335 * might try to be accessed, even though it was removed.
3337 VERIFY(!HDR_L2_WRITING(hdr
));
3338 VERIFY3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3339 ASSERT(!HDR_HAS_RABD(hdr
));
3341 arc_hdr_clear_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3344 * The header has been reallocated so we need to re-insert it into any
3347 (void) buf_hash_insert(nhdr
, NULL
);
3349 ASSERT(list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3351 mutex_enter(&dev
->l2ad_mtx
);
3354 * We must place the realloc'ed header back into the list at
3355 * the same spot. Otherwise, if it's placed earlier in the list,
3356 * l2arc_write_buffers() could find it during the function's
3357 * write phase, and try to write it out to the l2arc.
3359 list_insert_after(&dev
->l2ad_buflist
, hdr
, nhdr
);
3360 list_remove(&dev
->l2ad_buflist
, hdr
);
3362 mutex_exit(&dev
->l2ad_mtx
);
3365 * Since we're using the pointer address as the tag when
3366 * incrementing and decrementing the l2ad_alloc refcount, we
3367 * must remove the old pointer (that we're about to destroy) and
3368 * add the new pointer to the refcount. Otherwise we'd remove
3369 * the wrong pointer address when calling arc_hdr_destroy() later.
3372 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
3373 arc_hdr_size(hdr
), hdr
);
3374 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
3375 arc_hdr_size(nhdr
), nhdr
);
3377 buf_discard_identity(hdr
);
3378 kmem_cache_free(old
, hdr
);
3384 * This function is used by the send / receive code to convert a newly
3385 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3386 * is also used to allow the root objset block to be updated without altering
3387 * its embedded MACs. Both block types will always be uncompressed so we do not
3388 * have to worry about compression type or psize.
3391 arc_convert_to_raw(arc_buf_t
*buf
, uint64_t dsobj
, boolean_t byteorder
,
3392 dmu_object_type_t ot
, const uint8_t *salt
, const uint8_t *iv
,
3395 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3397 ASSERT(ot
== DMU_OT_DNODE
|| ot
== DMU_OT_OBJSET
);
3398 ASSERT(HDR_HAS_L1HDR(hdr
));
3399 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3401 buf
->b_flags
|= (ARC_BUF_FLAG_COMPRESSED
| ARC_BUF_FLAG_ENCRYPTED
);
3402 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3403 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3404 hdr
->b_crypt_hdr
.b_ot
= ot
;
3405 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3406 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3407 if (!arc_hdr_has_uncompressed_buf(hdr
))
3408 arc_cksum_free(hdr
);
3411 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3413 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3415 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3419 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3420 * The buf is returned thawed since we expect the consumer to modify it.
3423 arc_alloc_buf(spa_t
*spa
, const void *tag
, arc_buf_contents_t type
,
3426 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), size
, size
,
3427 B_FALSE
, ZIO_COMPRESS_OFF
, 0, type
);
3429 arc_buf_t
*buf
= NULL
;
3430 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
, B_FALSE
,
3431 B_FALSE
, B_FALSE
, &buf
));
3438 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3439 * for bufs containing metadata.
3442 arc_alloc_compressed_buf(spa_t
*spa
, const void *tag
, uint64_t psize
,
3443 uint64_t lsize
, enum zio_compress compression_type
, uint8_t complevel
)
3445 ASSERT3U(lsize
, >, 0);
3446 ASSERT3U(lsize
, >=, psize
);
3447 ASSERT3U(compression_type
, >, ZIO_COMPRESS_OFF
);
3448 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3450 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
3451 B_FALSE
, compression_type
, complevel
, ARC_BUFC_DATA
);
3453 arc_buf_t
*buf
= NULL
;
3454 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
,
3455 B_TRUE
, B_FALSE
, B_FALSE
, &buf
));
3459 * To ensure that the hdr has the correct data in it if we call
3460 * arc_untransform() on this buf before it's been written to disk,
3461 * it's easiest if we just set up sharing between the buf and the hdr.
3463 arc_share_buf(hdr
, buf
);
3469 arc_alloc_raw_buf(spa_t
*spa
, const void *tag
, uint64_t dsobj
,
3470 boolean_t byteorder
, const uint8_t *salt
, const uint8_t *iv
,
3471 const uint8_t *mac
, dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
3472 enum zio_compress compression_type
, uint8_t complevel
)
3476 arc_buf_contents_t type
= DMU_OT_IS_METADATA(ot
) ?
3477 ARC_BUFC_METADATA
: ARC_BUFC_DATA
;
3479 ASSERT3U(lsize
, >, 0);
3480 ASSERT3U(lsize
, >=, psize
);
3481 ASSERT3U(compression_type
, >=, ZIO_COMPRESS_OFF
);
3482 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3484 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
, B_TRUE
,
3485 compression_type
, complevel
, type
);
3487 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3488 hdr
->b_crypt_hdr
.b_ot
= ot
;
3489 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3490 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3491 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3492 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3493 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3496 * This buffer will be considered encrypted even if the ot is not an
3497 * encrypted type. It will become authenticated instead in
3498 * arc_write_ready().
3501 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_TRUE
, B_TRUE
,
3502 B_FALSE
, B_FALSE
, &buf
));
3509 l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
3510 boolean_t state_only
)
3512 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3513 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3514 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
3515 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3516 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3517 arc_buf_contents_t type
= hdr
->b_type
;
3532 /* If the buffer is a prefetch, count it as such. */
3533 if (HDR_PREFETCH(hdr
)) {
3534 ARCSTAT_INCR(arcstat_l2_prefetch_asize
, asize_s
);
3537 * We use the value stored in the L2 header upon initial
3538 * caching in L2ARC. This value will be updated in case
3539 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3540 * metadata (log entry) cannot currently be updated. Having
3541 * the ARC state in the L2 header solves the problem of a
3542 * possibly absent L1 header (apparent in buffers restored
3543 * from persistent L2ARC).
3545 switch (hdr
->b_l2hdr
.b_arcs_state
) {
3546 case ARC_STATE_MRU_GHOST
:
3548 ARCSTAT_INCR(arcstat_l2_mru_asize
, asize_s
);
3550 case ARC_STATE_MFU_GHOST
:
3552 ARCSTAT_INCR(arcstat_l2_mfu_asize
, asize_s
);
3562 ARCSTAT_INCR(arcstat_l2_psize
, psize_s
);
3563 ARCSTAT_INCR(arcstat_l2_lsize
, lsize_s
);
3567 ARCSTAT_INCR(arcstat_l2_bufc_data_asize
, asize_s
);
3569 case ARC_BUFC_METADATA
:
3570 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize
, asize_s
);
3579 arc_hdr_l2hdr_destroy(arc_buf_hdr_t
*hdr
)
3581 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3582 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3583 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3584 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3586 ASSERT(MUTEX_HELD(&dev
->l2ad_mtx
));
3587 ASSERT(HDR_HAS_L2HDR(hdr
));
3589 list_remove(&dev
->l2ad_buflist
, hdr
);
3591 l2arc_hdr_arcstats_decrement(hdr
);
3592 vdev_space_update(dev
->l2ad_vdev
, -asize
, 0, 0);
3594 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
),
3596 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
3600 arc_hdr_destroy(arc_buf_hdr_t
*hdr
)
3602 if (HDR_HAS_L1HDR(hdr
)) {
3603 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3604 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3606 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3607 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
3609 if (HDR_HAS_L2HDR(hdr
)) {
3610 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3611 boolean_t buflist_held
= MUTEX_HELD(&dev
->l2ad_mtx
);
3614 mutex_enter(&dev
->l2ad_mtx
);
3617 * Even though we checked this conditional above, we
3618 * need to check this again now that we have the
3619 * l2ad_mtx. This is because we could be racing with
3620 * another thread calling l2arc_evict() which might have
3621 * destroyed this header's L2 portion as we were waiting
3622 * to acquire the l2ad_mtx. If that happens, we don't
3623 * want to re-destroy the header's L2 portion.
3625 if (HDR_HAS_L2HDR(hdr
)) {
3627 if (!HDR_EMPTY(hdr
))
3628 buf_discard_identity(hdr
);
3630 arc_hdr_l2hdr_destroy(hdr
);
3634 mutex_exit(&dev
->l2ad_mtx
);
3638 * The header's identify can only be safely discarded once it is no
3639 * longer discoverable. This requires removing it from the hash table
3640 * and the l2arc header list. After this point the hash lock can not
3641 * be used to protect the header.
3643 if (!HDR_EMPTY(hdr
))
3644 buf_discard_identity(hdr
);
3646 if (HDR_HAS_L1HDR(hdr
)) {
3647 arc_cksum_free(hdr
);
3649 while (hdr
->b_l1hdr
.b_buf
!= NULL
)
3650 arc_buf_destroy_impl(hdr
->b_l1hdr
.b_buf
);
3652 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3653 arc_hdr_free_abd(hdr
, B_FALSE
);
3655 if (HDR_HAS_RABD(hdr
))
3656 arc_hdr_free_abd(hdr
, B_TRUE
);
3659 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3660 if (HDR_HAS_L1HDR(hdr
)) {
3661 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3662 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
3664 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3666 kmem_cache_free(hdr_full_cache
, hdr
);
3668 kmem_cache_free(hdr_l2only_cache
, hdr
);
3673 arc_buf_destroy(arc_buf_t
*buf
, const void *tag
)
3675 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3677 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
3678 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, buf
);
3679 ASSERT(ARC_BUF_LAST(buf
));
3680 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3681 VERIFY0(remove_reference(hdr
, tag
));
3685 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
3686 mutex_enter(hash_lock
);
3688 ASSERT3P(hdr
, ==, buf
->b_hdr
);
3689 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
3690 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
3691 ASSERT3P(hdr
->b_l1hdr
.b_state
, !=, arc_anon
);
3692 ASSERT3P(buf
->b_data
, !=, NULL
);
3694 arc_buf_destroy_impl(buf
);
3695 (void) remove_reference(hdr
, tag
);
3696 mutex_exit(hash_lock
);
3700 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3701 * state of the header is dependent on its state prior to entering this
3702 * function. The following transitions are possible:
3704 * - arc_mru -> arc_mru_ghost
3705 * - arc_mfu -> arc_mfu_ghost
3706 * - arc_mru_ghost -> arc_l2c_only
3707 * - arc_mru_ghost -> deleted
3708 * - arc_mfu_ghost -> arc_l2c_only
3709 * - arc_mfu_ghost -> deleted
3710 * - arc_uncached -> deleted
3712 * Return total size of evicted data buffers for eviction progress tracking.
3713 * When evicting from ghost states return logical buffer size to make eviction
3714 * progress at the same (or at least comparable) rate as from non-ghost states.
3716 * Return *real_evicted for actual ARC size reduction to wake up threads
3717 * waiting for it. For non-ghost states it includes size of evicted data
3718 * buffers (the headers are not freed there). For ghost states it includes
3719 * only the evicted headers size.
3722 arc_evict_hdr(arc_buf_hdr_t
*hdr
, uint64_t *real_evicted
)
3724 arc_state_t
*evicted_state
, *state
;
3725 int64_t bytes_evicted
= 0;
3726 uint_t min_lifetime
= HDR_PRESCIENT_PREFETCH(hdr
) ?
3727 arc_min_prescient_prefetch_ms
: arc_min_prefetch_ms
;
3729 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3730 ASSERT(HDR_HAS_L1HDR(hdr
));
3731 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3732 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3733 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3736 state
= hdr
->b_l1hdr
.b_state
;
3737 if (GHOST_STATE(state
)) {
3740 * l2arc_write_buffers() relies on a header's L1 portion
3741 * (i.e. its b_pabd field) during it's write phase.
3742 * Thus, we cannot push a header onto the arc_l2c_only
3743 * state (removing its L1 piece) until the header is
3744 * done being written to the l2arc.
3746 if (HDR_HAS_L2HDR(hdr
) && HDR_L2_WRITING(hdr
)) {
3747 ARCSTAT_BUMP(arcstat_evict_l2_skip
);
3748 return (bytes_evicted
);
3751 ARCSTAT_BUMP(arcstat_deleted
);
3752 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3754 DTRACE_PROBE1(arc__delete
, arc_buf_hdr_t
*, hdr
);
3756 if (HDR_HAS_L2HDR(hdr
)) {
3757 ASSERT(hdr
->b_l1hdr
.b_pabd
== NULL
);
3758 ASSERT(!HDR_HAS_RABD(hdr
));
3760 * This buffer is cached on the 2nd Level ARC;
3761 * don't destroy the header.
3763 arc_change_state(arc_l2c_only
, hdr
);
3765 * dropping from L1+L2 cached to L2-only,
3766 * realloc to remove the L1 header.
3768 (void) arc_hdr_realloc(hdr
, hdr_full_cache
,
3770 *real_evicted
+= HDR_FULL_SIZE
- HDR_L2ONLY_SIZE
;
3772 arc_change_state(arc_anon
, hdr
);
3773 arc_hdr_destroy(hdr
);
3774 *real_evicted
+= HDR_FULL_SIZE
;
3776 return (bytes_evicted
);
3779 ASSERT(state
== arc_mru
|| state
== arc_mfu
|| state
== arc_uncached
);
3780 evicted_state
= (state
== arc_uncached
) ? arc_anon
:
3781 ((state
== arc_mru
) ? arc_mru_ghost
: arc_mfu_ghost
);
3783 /* prefetch buffers have a minimum lifespan */
3784 if ((hdr
->b_flags
& (ARC_FLAG_PREFETCH
| ARC_FLAG_INDIRECT
)) &&
3785 ddi_get_lbolt() - hdr
->b_l1hdr
.b_arc_access
<
3786 MSEC_TO_TICK(min_lifetime
)) {
3787 ARCSTAT_BUMP(arcstat_evict_skip
);
3788 return (bytes_evicted
);
3791 if (HDR_HAS_L2HDR(hdr
)) {
3792 ARCSTAT_INCR(arcstat_evict_l2_cached
, HDR_GET_LSIZE(hdr
));
3794 if (l2arc_write_eligible(hdr
->b_spa
, hdr
)) {
3795 ARCSTAT_INCR(arcstat_evict_l2_eligible
,
3796 HDR_GET_LSIZE(hdr
));
3798 switch (state
->arcs_state
) {
3801 arcstat_evict_l2_eligible_mru
,
3802 HDR_GET_LSIZE(hdr
));
3806 arcstat_evict_l2_eligible_mfu
,
3807 HDR_GET_LSIZE(hdr
));
3813 ARCSTAT_INCR(arcstat_evict_l2_ineligible
,
3814 HDR_GET_LSIZE(hdr
));
3818 bytes_evicted
+= arc_hdr_size(hdr
);
3819 *real_evicted
+= arc_hdr_size(hdr
);
3822 * If this hdr is being evicted and has a compressed buffer then we
3823 * discard it here before we change states. This ensures that the
3824 * accounting is updated correctly in arc_free_data_impl().
3826 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3827 arc_hdr_free_abd(hdr
, B_FALSE
);
3829 if (HDR_HAS_RABD(hdr
))
3830 arc_hdr_free_abd(hdr
, B_TRUE
);
3832 arc_change_state(evicted_state
, hdr
);
3833 DTRACE_PROBE1(arc__evict
, arc_buf_hdr_t
*, hdr
);
3834 if (evicted_state
== arc_anon
) {
3835 arc_hdr_destroy(hdr
);
3836 *real_evicted
+= HDR_FULL_SIZE
;
3838 ASSERT(HDR_IN_HASH_TABLE(hdr
));
3841 return (bytes_evicted
);
3845 arc_set_need_free(void)
3847 ASSERT(MUTEX_HELD(&arc_evict_lock
));
3848 int64_t remaining
= arc_free_memory() - arc_sys_free
/ 2;
3849 arc_evict_waiter_t
*aw
= list_tail(&arc_evict_waiters
);
3851 arc_need_free
= MAX(-remaining
, 0);
3854 MAX(-remaining
, (int64_t)(aw
->aew_count
- arc_evict_count
));
3859 arc_evict_state_impl(multilist_t
*ml
, int idx
, arc_buf_hdr_t
*marker
,
3860 uint64_t spa
, uint64_t bytes
)
3862 multilist_sublist_t
*mls
;
3863 uint64_t bytes_evicted
= 0, real_evicted
= 0;
3865 kmutex_t
*hash_lock
;
3866 uint_t evict_count
= zfs_arc_evict_batch_limit
;
3868 ASSERT3P(marker
, !=, NULL
);
3870 mls
= multilist_sublist_lock_idx(ml
, idx
);
3872 for (hdr
= multilist_sublist_prev(mls
, marker
); likely(hdr
!= NULL
);
3873 hdr
= multilist_sublist_prev(mls
, marker
)) {
3874 if ((evict_count
== 0) || (bytes_evicted
>= bytes
))
3878 * To keep our iteration location, move the marker
3879 * forward. Since we're not holding hdr's hash lock, we
3880 * must be very careful and not remove 'hdr' from the
3881 * sublist. Otherwise, other consumers might mistake the
3882 * 'hdr' as not being on a sublist when they call the
3883 * multilist_link_active() function (they all rely on
3884 * the hash lock protecting concurrent insertions and
3885 * removals). multilist_sublist_move_forward() was
3886 * specifically implemented to ensure this is the case
3887 * (only 'marker' will be removed and re-inserted).
3889 multilist_sublist_move_forward(mls
, marker
);
3892 * The only case where the b_spa field should ever be
3893 * zero, is the marker headers inserted by
3894 * arc_evict_state(). It's possible for multiple threads
3895 * to be calling arc_evict_state() concurrently (e.g.
3896 * dsl_pool_close() and zio_inject_fault()), so we must
3897 * skip any markers we see from these other threads.
3899 if (hdr
->b_spa
== 0)
3902 /* we're only interested in evicting buffers of a certain spa */
3903 if (spa
!= 0 && hdr
->b_spa
!= spa
) {
3904 ARCSTAT_BUMP(arcstat_evict_skip
);
3908 hash_lock
= HDR_LOCK(hdr
);
3911 * We aren't calling this function from any code path
3912 * that would already be holding a hash lock, so we're
3913 * asserting on this assumption to be defensive in case
3914 * this ever changes. Without this check, it would be
3915 * possible to incorrectly increment arcstat_mutex_miss
3916 * below (e.g. if the code changed such that we called
3917 * this function with a hash lock held).
3919 ASSERT(!MUTEX_HELD(hash_lock
));
3921 if (mutex_tryenter(hash_lock
)) {
3923 uint64_t evicted
= arc_evict_hdr(hdr
, &revicted
);
3924 mutex_exit(hash_lock
);
3926 bytes_evicted
+= evicted
;
3927 real_evicted
+= revicted
;
3930 * If evicted is zero, arc_evict_hdr() must have
3931 * decided to skip this header, don't increment
3932 * evict_count in this case.
3938 ARCSTAT_BUMP(arcstat_mutex_miss
);
3942 multilist_sublist_unlock(mls
);
3945 * Increment the count of evicted bytes, and wake up any threads that
3946 * are waiting for the count to reach this value. Since the list is
3947 * ordered by ascending aew_count, we pop off the beginning of the
3948 * list until we reach the end, or a waiter that's past the current
3949 * "count". Doing this outside the loop reduces the number of times
3950 * we need to acquire the global arc_evict_lock.
3952 * Only wake when there's sufficient free memory in the system
3953 * (specifically, arc_sys_free/2, which by default is a bit more than
3954 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
3956 mutex_enter(&arc_evict_lock
);
3957 arc_evict_count
+= real_evicted
;
3959 if (arc_free_memory() > arc_sys_free
/ 2) {
3960 arc_evict_waiter_t
*aw
;
3961 while ((aw
= list_head(&arc_evict_waiters
)) != NULL
&&
3962 aw
->aew_count
<= arc_evict_count
) {
3963 list_remove(&arc_evict_waiters
, aw
);
3964 cv_broadcast(&aw
->aew_cv
);
3967 arc_set_need_free();
3968 mutex_exit(&arc_evict_lock
);
3971 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3972 * if the average cached block is small), eviction can be on-CPU for
3973 * many seconds. To ensure that other threads that may be bound to
3974 * this CPU are able to make progress, make a voluntary preemption
3977 kpreempt(KPREEMPT_SYNC
);
3979 return (bytes_evicted
);
3982 static arc_buf_hdr_t
*
3983 arc_state_alloc_marker(void)
3985 arc_buf_hdr_t
*marker
= kmem_cache_alloc(hdr_full_cache
, KM_SLEEP
);
3988 * A b_spa of 0 is used to indicate that this header is
3989 * a marker. This fact is used in arc_evict_state_impl().
3997 arc_state_free_marker(arc_buf_hdr_t
*marker
)
3999 kmem_cache_free(hdr_full_cache
, marker
);
4003 * Allocate an array of buffer headers used as placeholders during arc state
4006 static arc_buf_hdr_t
**
4007 arc_state_alloc_markers(int count
)
4009 arc_buf_hdr_t
**markers
;
4011 markers
= kmem_zalloc(sizeof (*markers
) * count
, KM_SLEEP
);
4012 for (int i
= 0; i
< count
; i
++)
4013 markers
[i
] = arc_state_alloc_marker();
4018 arc_state_free_markers(arc_buf_hdr_t
**markers
, int count
)
4020 for (int i
= 0; i
< count
; i
++)
4021 arc_state_free_marker(markers
[i
]);
4022 kmem_free(markers
, sizeof (*markers
) * count
);
4026 * Evict buffers from the given arc state, until we've removed the
4027 * specified number of bytes. Move the removed buffers to the
4028 * appropriate evict state.
4030 * This function makes a "best effort". It skips over any buffers
4031 * it can't get a hash_lock on, and so, may not catch all candidates.
4032 * It may also return without evicting as much space as requested.
4034 * If bytes is specified using the special value ARC_EVICT_ALL, this
4035 * will evict all available (i.e. unlocked and evictable) buffers from
4036 * the given arc state; which is used by arc_flush().
4039 arc_evict_state(arc_state_t
*state
, arc_buf_contents_t type
, uint64_t spa
,
4042 uint64_t total_evicted
= 0;
4043 multilist_t
*ml
= &state
->arcs_list
[type
];
4045 arc_buf_hdr_t
**markers
;
4047 num_sublists
= multilist_get_num_sublists(ml
);
4050 * If we've tried to evict from each sublist, made some
4051 * progress, but still have not hit the target number of bytes
4052 * to evict, we want to keep trying. The markers allow us to
4053 * pick up where we left off for each individual sublist, rather
4054 * than starting from the tail each time.
4056 if (zthr_iscurthread(arc_evict_zthr
)) {
4057 markers
= arc_state_evict_markers
;
4058 ASSERT3S(num_sublists
, <=, arc_state_evict_marker_count
);
4060 markers
= arc_state_alloc_markers(num_sublists
);
4062 for (int i
= 0; i
< num_sublists
; i
++) {
4063 multilist_sublist_t
*mls
;
4065 mls
= multilist_sublist_lock_idx(ml
, i
);
4066 multilist_sublist_insert_tail(mls
, markers
[i
]);
4067 multilist_sublist_unlock(mls
);
4071 * While we haven't hit our target number of bytes to evict, or
4072 * we're evicting all available buffers.
4074 while (total_evicted
< bytes
) {
4075 int sublist_idx
= multilist_get_random_index(ml
);
4076 uint64_t scan_evicted
= 0;
4079 * Start eviction using a randomly selected sublist,
4080 * this is to try and evenly balance eviction across all
4081 * sublists. Always starting at the same sublist
4082 * (e.g. index 0) would cause evictions to favor certain
4083 * sublists over others.
4085 for (int i
= 0; i
< num_sublists
; i
++) {
4086 uint64_t bytes_remaining
;
4087 uint64_t bytes_evicted
;
4089 if (total_evicted
< bytes
)
4090 bytes_remaining
= bytes
- total_evicted
;
4094 bytes_evicted
= arc_evict_state_impl(ml
, sublist_idx
,
4095 markers
[sublist_idx
], spa
, bytes_remaining
);
4097 scan_evicted
+= bytes_evicted
;
4098 total_evicted
+= bytes_evicted
;
4100 /* we've reached the end, wrap to the beginning */
4101 if (++sublist_idx
>= num_sublists
)
4106 * If we didn't evict anything during this scan, we have
4107 * no reason to believe we'll evict more during another
4108 * scan, so break the loop.
4110 if (scan_evicted
== 0) {
4111 /* This isn't possible, let's make that obvious */
4112 ASSERT3S(bytes
, !=, 0);
4115 * When bytes is ARC_EVICT_ALL, the only way to
4116 * break the loop is when scan_evicted is zero.
4117 * In that case, we actually have evicted enough,
4118 * so we don't want to increment the kstat.
4120 if (bytes
!= ARC_EVICT_ALL
) {
4121 ASSERT3S(total_evicted
, <, bytes
);
4122 ARCSTAT_BUMP(arcstat_evict_not_enough
);
4129 for (int i
= 0; i
< num_sublists
; i
++) {
4130 multilist_sublist_t
*mls
= multilist_sublist_lock_idx(ml
, i
);
4131 multilist_sublist_remove(mls
, markers
[i
]);
4132 multilist_sublist_unlock(mls
);
4134 if (markers
!= arc_state_evict_markers
)
4135 arc_state_free_markers(markers
, num_sublists
);
4137 return (total_evicted
);
4141 * Flush all "evictable" data of the given type from the arc state
4142 * specified. This will not evict any "active" buffers (i.e. referenced).
4144 * When 'retry' is set to B_FALSE, the function will make a single pass
4145 * over the state and evict any buffers that it can. Since it doesn't
4146 * continually retry the eviction, it might end up leaving some buffers
4147 * in the ARC due to lock misses.
4149 * When 'retry' is set to B_TRUE, the function will continually retry the
4150 * eviction until *all* evictable buffers have been removed from the
4151 * state. As a result, if concurrent insertions into the state are
4152 * allowed (e.g. if the ARC isn't shutting down), this function might
4153 * wind up in an infinite loop, continually trying to evict buffers.
4156 arc_flush_state(arc_state_t
*state
, uint64_t spa
, arc_buf_contents_t type
,
4159 uint64_t evicted
= 0;
4161 while (zfs_refcount_count(&state
->arcs_esize
[type
]) != 0) {
4162 evicted
+= arc_evict_state(state
, type
, spa
, ARC_EVICT_ALL
);
4172 * Evict the specified number of bytes from the state specified. This
4173 * function prevents us from trying to evict more from a state's list
4174 * than is "evictable", and to skip evicting altogether when passed a
4175 * negative value for "bytes". In contrast, arc_evict_state() will
4176 * evict everything it can, when passed a negative value for "bytes".
4179 arc_evict_impl(arc_state_t
*state
, arc_buf_contents_t type
, int64_t bytes
)
4183 if (bytes
> 0 && zfs_refcount_count(&state
->arcs_esize
[type
]) > 0) {
4184 delta
= MIN(zfs_refcount_count(&state
->arcs_esize
[type
]),
4186 return (arc_evict_state(state
, type
, 0, delta
));
4193 * Adjust specified fraction, taking into account initial ghost state(s) size,
4194 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4195 * decreasing it, plus a balance factor, controlling the decrease rate, used
4196 * to balance metadata vs data.
4199 arc_evict_adj(uint64_t frac
, uint64_t total
, uint64_t up
, uint64_t down
,
4202 if (total
< 8 || up
+ down
== 0)
4206 * We should not have more ghost hits than ghost size, but they
4207 * may get close. Restrict maximum adjustment in that case.
4209 if (up
+ down
>= total
/ 4) {
4210 uint64_t scale
= (up
+ down
) / (total
/ 8);
4215 /* Get maximal dynamic range by choosing optimal shifts. */
4216 int s
= highbit64(total
);
4217 s
= MIN(64 - s
, 32);
4219 uint64_t ofrac
= (1ULL << 32) - frac
;
4221 if (frac
>= 4 * ofrac
)
4222 up
/= frac
/ (2 * ofrac
+ 1);
4223 up
= (up
<< s
) / (total
>> (32 - s
));
4224 if (ofrac
>= 4 * frac
)
4225 down
/= ofrac
/ (2 * frac
+ 1);
4226 down
= (down
<< s
) / (total
>> (32 - s
));
4227 down
= down
* 100 / balance
;
4229 return (frac
+ up
- down
);
4233 * Calculate (x * multiplier / divisor) without unnecesary overflows.
4236 arc_mf(uint64_t x
, uint64_t multiplier
, uint64_t divisor
)
4238 uint64_t q
= (x
/ divisor
);
4239 uint64_t r
= (x
% divisor
);
4241 return ((q
* multiplier
) + ((r
* multiplier
) / divisor
));
4245 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4250 uint64_t bytes
, total_evicted
= 0;
4251 int64_t e
, mrud
, mrum
, mfud
, mfum
, w
;
4252 static uint64_t ogrd
, ogrm
, ogfd
, ogfm
;
4253 static uint64_t gsrd
, gsrm
, gsfd
, gsfm
;
4254 uint64_t ngrd
, ngrm
, ngfd
, ngfm
;
4256 /* Get current size of ARC states we can evict from. */
4257 mrud
= zfs_refcount_count(&arc_mru
->arcs_size
[ARC_BUFC_DATA
]) +
4258 zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]);
4259 mrum
= zfs_refcount_count(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
]) +
4260 zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]);
4261 mfud
= zfs_refcount_count(&arc_mfu
->arcs_size
[ARC_BUFC_DATA
]);
4262 mfum
= zfs_refcount_count(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
]);
4263 uint64_t d
= mrud
+ mfud
;
4264 uint64_t m
= mrum
+ mfum
;
4267 /* Get ARC ghost hits since last eviction. */
4268 ngrd
= wmsum_value(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
4269 uint64_t grd
= ngrd
- ogrd
;
4271 ngrm
= wmsum_value(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
4272 uint64_t grm
= ngrm
- ogrm
;
4274 ngfd
= wmsum_value(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
4275 uint64_t gfd
= ngfd
- ogfd
;
4277 ngfm
= wmsum_value(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
4278 uint64_t gfm
= ngfm
- ogfm
;
4281 /* Adjust ARC states balance based on ghost hits. */
4282 arc_meta
= arc_evict_adj(arc_meta
, gsrd
+ gsrm
+ gsfd
+ gsfm
,
4283 grm
+ gfm
, grd
+ gfd
, zfs_arc_meta_balance
);
4284 arc_pd
= arc_evict_adj(arc_pd
, gsrd
+ gsfd
, grd
, gfd
, 100);
4285 arc_pm
= arc_evict_adj(arc_pm
, gsrm
+ gsfm
, grm
, gfm
, 100);
4287 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4288 uint64_t ac
= arc_c
;
4289 int64_t wt
= t
- (asize
- ac
);
4292 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4293 * target is not evictable or if they go over arc_dnode_limit.
4296 int64_t dn
= wmsum_value(&arc_sums
.arcstat_dnode_size
);
4297 int64_t nem
= zfs_refcount_count(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
])
4298 + zfs_refcount_count(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
])
4299 - zfs_refcount_count(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
])
4300 - zfs_refcount_count(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
4301 w
= wt
* (int64_t)(arc_meta
>> 16) >> 16;
4302 if (nem
> w
* 3 / 4) {
4303 prune
= dn
/ sizeof (dnode_t
) *
4304 zfs_arc_dnode_reduce_percent
/ 100;
4305 if (nem
< w
&& w
> 4)
4306 prune
= arc_mf(prune
, nem
- w
* 3 / 4, w
/ 4);
4308 if (dn
> arc_dnode_limit
) {
4309 prune
= MAX(prune
, (dn
- arc_dnode_limit
) / sizeof (dnode_t
) *
4310 zfs_arc_dnode_reduce_percent
/ 100);
4313 arc_prune_async(prune
);
4315 /* Evict MRU metadata. */
4316 w
= wt
* (int64_t)(arc_meta
* arc_pm
>> 48) >> 16;
4317 e
= MIN((int64_t)(asize
- ac
), (int64_t)(mrum
- w
));
4318 bytes
= arc_evict_impl(arc_mru
, ARC_BUFC_METADATA
, e
);
4319 total_evicted
+= bytes
;
4323 /* Evict MFU metadata. */
4324 w
= wt
* (int64_t)(arc_meta
>> 16) >> 16;
4325 e
= MIN((int64_t)(asize
- ac
), (int64_t)(m
- bytes
- w
));
4326 bytes
= arc_evict_impl(arc_mfu
, ARC_BUFC_METADATA
, e
);
4327 total_evicted
+= bytes
;
4331 /* Evict MRU data. */
4332 wt
-= m
- total_evicted
;
4333 w
= wt
* (int64_t)(arc_pd
>> 16) >> 16;
4334 e
= MIN((int64_t)(asize
- ac
), (int64_t)(mrud
- w
));
4335 bytes
= arc_evict_impl(arc_mru
, ARC_BUFC_DATA
, e
);
4336 total_evicted
+= bytes
;
4340 /* Evict MFU data. */
4342 bytes
= arc_evict_impl(arc_mfu
, ARC_BUFC_DATA
, e
);
4344 total_evicted
+= bytes
;
4349 * Size of each state's ghost list represents how much that state
4350 * may grow by shrinking the other states. Would it need to shrink
4351 * other states to zero (that is unlikely), its ghost size would be
4352 * equal to sum of other three state sizes. But excessive ghost
4353 * size may result in false ghost hits (too far back), that may
4354 * never result in real cache hits if several states are competing.
4355 * So choose some arbitraty point of 1/2 of other state sizes.
4357 gsrd
= (mrum
+ mfud
+ mfum
) / 2;
4358 e
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
[ARC_BUFC_DATA
]) -
4360 (void) arc_evict_impl(arc_mru_ghost
, ARC_BUFC_DATA
, e
);
4362 gsrm
= (mrud
+ mfud
+ mfum
) / 2;
4363 e
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
[ARC_BUFC_METADATA
]) -
4365 (void) arc_evict_impl(arc_mru_ghost
, ARC_BUFC_METADATA
, e
);
4367 gsfd
= (mrud
+ mrum
+ mfum
) / 2;
4368 e
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_DATA
]) -
4370 (void) arc_evict_impl(arc_mfu_ghost
, ARC_BUFC_DATA
, e
);
4372 gsfm
= (mrud
+ mrum
+ mfud
) / 2;
4373 e
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_METADATA
]) -
4375 (void) arc_evict_impl(arc_mfu_ghost
, ARC_BUFC_METADATA
, e
);
4377 return (total_evicted
);
4381 arc_flush(spa_t
*spa
, boolean_t retry
)
4386 * If retry is B_TRUE, a spa must not be specified since we have
4387 * no good way to determine if all of a spa's buffers have been
4388 * evicted from an arc state.
4390 ASSERT(!retry
|| spa
== NULL
);
4393 guid
= spa_load_guid(spa
);
4395 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_DATA
, retry
);
4396 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_METADATA
, retry
);
4398 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_DATA
, retry
);
4399 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_METADATA
, retry
);
4401 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4402 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4404 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4405 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4407 (void) arc_flush_state(arc_uncached
, guid
, ARC_BUFC_DATA
, retry
);
4408 (void) arc_flush_state(arc_uncached
, guid
, ARC_BUFC_METADATA
, retry
);
4412 arc_reduce_target_size(uint64_t to_free
)
4415 * Get the actual arc size. Even if we don't need it, this updates
4416 * the aggsum lower bound estimate for arc_is_overflowing().
4418 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4421 * All callers want the ARC to actually evict (at least) this much
4422 * memory. Therefore we reduce from the lower of the current size and
4423 * the target size. This way, even if arc_c is much higher than
4424 * arc_size (as can be the case after many calls to arc_freed(), we will
4425 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4429 if (c
> arc_c_min
) {
4430 c
= MIN(c
, MAX(asize
, arc_c_min
));
4431 to_free
= MIN(to_free
, c
- arc_c_min
);
4432 arc_c
= c
- to_free
;
4438 * Whether or not we reduced the target size, request eviction if the
4439 * current size is over it now, since caller obviously wants some RAM.
4441 if (asize
> arc_c
) {
4442 /* See comment in arc_evict_cb_check() on why lock+flag */
4443 mutex_enter(&arc_evict_lock
);
4444 arc_evict_needed
= B_TRUE
;
4445 mutex_exit(&arc_evict_lock
);
4446 zthr_wakeup(arc_evict_zthr
);
4453 * Determine if the system is under memory pressure and is asking
4454 * to reclaim memory. A return value of B_TRUE indicates that the system
4455 * is under memory pressure and that the arc should adjust accordingly.
4458 arc_reclaim_needed(void)
4460 return (arc_available_memory() < 0);
4464 arc_kmem_reap_soon(void)
4467 kmem_cache_t
*prev_cache
= NULL
;
4468 kmem_cache_t
*prev_data_cache
= NULL
;
4473 * Reclaim unused memory from all kmem caches.
4479 for (i
= 0; i
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; i
++) {
4481 /* reach upper limit of cache size on 32-bit */
4482 if (zio_buf_cache
[i
] == NULL
)
4485 if (zio_buf_cache
[i
] != prev_cache
) {
4486 prev_cache
= zio_buf_cache
[i
];
4487 kmem_cache_reap_now(zio_buf_cache
[i
]);
4489 if (zio_data_buf_cache
[i
] != prev_data_cache
) {
4490 prev_data_cache
= zio_data_buf_cache
[i
];
4491 kmem_cache_reap_now(zio_data_buf_cache
[i
]);
4494 kmem_cache_reap_now(buf_cache
);
4495 kmem_cache_reap_now(hdr_full_cache
);
4496 kmem_cache_reap_now(hdr_l2only_cache
);
4497 kmem_cache_reap_now(zfs_btree_leaf_cache
);
4498 abd_cache_reap_now();
4502 arc_evict_cb_check(void *arg
, zthr_t
*zthr
)
4504 (void) arg
, (void) zthr
;
4508 * This is necessary in order to keep the kstat information
4509 * up to date for tools that display kstat data such as the
4510 * mdb ::arc dcmd and the Linux crash utility. These tools
4511 * typically do not call kstat's update function, but simply
4512 * dump out stats from the most recent update. Without
4513 * this call, these commands may show stale stats for the
4514 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4515 * with this call, the data might be out of date if the
4516 * evict thread hasn't been woken recently; but that should
4517 * suffice. The arc_state_t structures can be queried
4518 * directly if more accurate information is needed.
4520 if (arc_ksp
!= NULL
)
4521 arc_ksp
->ks_update(arc_ksp
, KSTAT_READ
);
4525 * We have to rely on arc_wait_for_eviction() to tell us when to
4526 * evict, rather than checking if we are overflowing here, so that we
4527 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4528 * If we have become "not overflowing" since arc_wait_for_eviction()
4529 * checked, we need to wake it up. We could broadcast the CV here,
4530 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4531 * would need to use a mutex to ensure that this function doesn't
4532 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4533 * the arc_evict_lock). However, the lock ordering of such a lock
4534 * would necessarily be incorrect with respect to the zthr_lock,
4535 * which is held before this function is called, and is held by
4536 * arc_wait_for_eviction() when it calls zthr_wakeup().
4538 if (arc_evict_needed
)
4542 * If we have buffers in uncached state, evict them periodically.
4544 return ((zfs_refcount_count(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]) +
4545 zfs_refcount_count(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]) &&
4546 ddi_get_lbolt() - arc_last_uncached_flush
>
4547 MSEC_TO_TICK(arc_min_prefetch_ms
/ 2)));
4551 * Keep arc_size under arc_c by running arc_evict which evicts data
4555 arc_evict_cb(void *arg
, zthr_t
*zthr
)
4559 uint64_t evicted
= 0;
4560 fstrans_cookie_t cookie
= spl_fstrans_mark();
4562 /* Always try to evict from uncached state. */
4563 arc_last_uncached_flush
= ddi_get_lbolt();
4564 evicted
+= arc_flush_state(arc_uncached
, 0, ARC_BUFC_DATA
, B_FALSE
);
4565 evicted
+= arc_flush_state(arc_uncached
, 0, ARC_BUFC_METADATA
, B_FALSE
);
4567 /* Evict from other states only if told to. */
4568 if (arc_evict_needed
)
4569 evicted
+= arc_evict();
4572 * If evicted is zero, we couldn't evict anything
4573 * via arc_evict(). This could be due to hash lock
4574 * collisions, but more likely due to the majority of
4575 * arc buffers being unevictable. Therefore, even if
4576 * arc_size is above arc_c, another pass is unlikely to
4577 * be helpful and could potentially cause us to enter an
4578 * infinite loop. Additionally, zthr_iscancelled() is
4579 * checked here so that if the arc is shutting down, the
4580 * broadcast will wake any remaining arc evict waiters.
4582 * Note we cancel using zthr instead of arc_evict_zthr
4583 * because the latter may not yet be initializd when the
4584 * callback is first invoked.
4586 mutex_enter(&arc_evict_lock
);
4587 arc_evict_needed
= !zthr_iscancelled(zthr
) &&
4588 evicted
> 0 && aggsum_compare(&arc_sums
.arcstat_size
, arc_c
) > 0;
4589 if (!arc_evict_needed
) {
4591 * We're either no longer overflowing, or we
4592 * can't evict anything more, so we should wake
4593 * arc_get_data_impl() sooner.
4595 arc_evict_waiter_t
*aw
;
4596 while ((aw
= list_remove_head(&arc_evict_waiters
)) != NULL
) {
4597 cv_broadcast(&aw
->aew_cv
);
4599 arc_set_need_free();
4601 mutex_exit(&arc_evict_lock
);
4602 spl_fstrans_unmark(cookie
);
4606 arc_reap_cb_check(void *arg
, zthr_t
*zthr
)
4608 (void) arg
, (void) zthr
;
4610 int64_t free_memory
= arc_available_memory();
4611 static int reap_cb_check_counter
= 0;
4614 * If a kmem reap is already active, don't schedule more. We must
4615 * check for this because kmem_cache_reap_soon() won't actually
4616 * block on the cache being reaped (this is to prevent callers from
4617 * becoming implicitly blocked by a system-wide kmem reap -- which,
4618 * on a system with many, many full magazines, can take minutes).
4620 if (!kmem_cache_reap_active() && free_memory
< 0) {
4622 arc_no_grow
= B_TRUE
;
4625 * Wait at least zfs_grow_retry (default 5) seconds
4626 * before considering growing.
4628 arc_growtime
= gethrtime() + SEC2NSEC(arc_grow_retry
);
4630 } else if (free_memory
< arc_c
>> arc_no_grow_shift
) {
4631 arc_no_grow
= B_TRUE
;
4632 } else if (gethrtime() >= arc_growtime
) {
4633 arc_no_grow
= B_FALSE
;
4637 * Called unconditionally every 60 seconds to reclaim unused
4638 * zstd compression and decompression context. This is done
4639 * here to avoid the need for an independent thread.
4641 if (!((reap_cb_check_counter
++) % 60))
4642 zfs_zstd_cache_reap_now();
4648 * Keep enough free memory in the system by reaping the ARC's kmem
4649 * caches. To cause more slabs to be reapable, we may reduce the
4650 * target size of the cache (arc_c), causing the arc_evict_cb()
4651 * to free more buffers.
4654 arc_reap_cb(void *arg
, zthr_t
*zthr
)
4656 int64_t can_free
, free_memory
, to_free
;
4658 (void) arg
, (void) zthr
;
4659 fstrans_cookie_t cookie
= spl_fstrans_mark();
4662 * Kick off asynchronous kmem_reap()'s of all our caches.
4664 arc_kmem_reap_soon();
4667 * Wait at least arc_kmem_cache_reap_retry_ms between
4668 * arc_kmem_reap_soon() calls. Without this check it is possible to
4669 * end up in a situation where we spend lots of time reaping
4670 * caches, while we're near arc_c_min. Waiting here also gives the
4671 * subsequent free memory check a chance of finding that the
4672 * asynchronous reap has already freed enough memory, and we don't
4673 * need to call arc_reduce_target_size().
4675 delay((hz
* arc_kmem_cache_reap_retry_ms
+ 999) / 1000);
4678 * Reduce the target size as needed to maintain the amount of free
4679 * memory in the system at a fraction of the arc_size (1/128th by
4680 * default). If oversubscribed (free_memory < 0) then reduce the
4681 * target arc_size by the deficit amount plus the fractional
4682 * amount. If free memory is positive but less than the fractional
4683 * amount, reduce by what is needed to hit the fractional amount.
4685 free_memory
= arc_available_memory();
4686 can_free
= arc_c
- arc_c_min
;
4687 to_free
= (MAX(can_free
, 0) >> arc_shrink_shift
) - free_memory
;
4689 arc_reduce_target_size(to_free
);
4690 spl_fstrans_unmark(cookie
);
4695 * Determine the amount of memory eligible for eviction contained in the
4696 * ARC. All clean data reported by the ghost lists can always be safely
4697 * evicted. Due to arc_c_min, the same does not hold for all clean data
4698 * contained by the regular mru and mfu lists.
4700 * In the case of the regular mru and mfu lists, we need to report as
4701 * much clean data as possible, such that evicting that same reported
4702 * data will not bring arc_size below arc_c_min. Thus, in certain
4703 * circumstances, the total amount of clean data in the mru and mfu
4704 * lists might not actually be evictable.
4706 * The following two distinct cases are accounted for:
4708 * 1. The sum of the amount of dirty data contained by both the mru and
4709 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4710 * is greater than or equal to arc_c_min.
4711 * (i.e. amount of dirty data >= arc_c_min)
4713 * This is the easy case; all clean data contained by the mru and mfu
4714 * lists is evictable. Evicting all clean data can only drop arc_size
4715 * to the amount of dirty data, which is greater than arc_c_min.
4717 * 2. The sum of the amount of dirty data contained by both the mru and
4718 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4719 * is less than arc_c_min.
4720 * (i.e. arc_c_min > amount of dirty data)
4722 * 2.1. arc_size is greater than or equal arc_c_min.
4723 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4725 * In this case, not all clean data from the regular mru and mfu
4726 * lists is actually evictable; we must leave enough clean data
4727 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4728 * evictable data from the two lists combined, is exactly the
4729 * difference between arc_size and arc_c_min.
4731 * 2.2. arc_size is less than arc_c_min
4732 * (i.e. arc_c_min > arc_size > amount of dirty data)
4734 * In this case, none of the data contained in the mru and mfu
4735 * lists is evictable, even if it's clean. Since arc_size is
4736 * already below arc_c_min, evicting any more would only
4737 * increase this negative difference.
4740 #endif /* _KERNEL */
4743 * Adapt arc info given the number of bytes we are trying to add and
4744 * the state that we are coming from. This function is only called
4745 * when we are adding new content to the cache.
4748 arc_adapt(uint64_t bytes
)
4751 * Wake reap thread if we do not have any available memory
4753 if (arc_reclaim_needed()) {
4754 zthr_wakeup(arc_reap_zthr
);
4761 if (arc_c
>= arc_c_max
)
4765 * If we're within (2 * maxblocksize) bytes of the target
4766 * cache size, increment the target cache size
4768 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) +
4769 2 * SPA_MAXBLOCKSIZE
>= arc_c
) {
4770 uint64_t dc
= MAX(bytes
, SPA_OLD_MAXBLOCKSIZE
);
4771 if (atomic_add_64_nv(&arc_c
, dc
) > arc_c_max
)
4777 * Check if ARC current size has grown past our upper thresholds.
4779 static arc_ovf_level_t
4780 arc_is_overflowing(boolean_t lax
, boolean_t use_reserve
)
4783 * We just compare the lower bound here for performance reasons. Our
4784 * primary goals are to make sure that the arc never grows without
4785 * bound, and that it can reach its maximum size. This check
4786 * accomplishes both goals. The maximum amount we could run over by is
4787 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4788 * in the ARC. In practice, that's in the tens of MB, which is low
4789 * enough to be safe.
4791 int64_t over
= aggsum_lower_bound(&arc_sums
.arcstat_size
) - arc_c
-
4794 /* Always allow at least one block of overflow. */
4796 return (ARC_OVF_NONE
);
4798 /* If we are under memory pressure, report severe overflow. */
4800 return (ARC_OVF_SEVERE
);
4802 /* We are not under pressure, so be more or less relaxed. */
4803 int64_t overflow
= (arc_c
>> zfs_arc_overflow_shift
) / 2;
4806 return (over
< overflow
? ARC_OVF_SOME
: ARC_OVF_SEVERE
);
4810 arc_get_data_abd(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
,
4813 arc_buf_contents_t type
= arc_buf_type(hdr
);
4815 arc_get_data_impl(hdr
, size
, tag
, alloc_flags
);
4816 if (alloc_flags
& ARC_HDR_ALLOC_LINEAR
)
4817 return (abd_alloc_linear(size
, type
== ARC_BUFC_METADATA
));
4819 return (abd_alloc(size
, type
== ARC_BUFC_METADATA
));
4823 arc_get_data_buf(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
)
4825 arc_buf_contents_t type
= arc_buf_type(hdr
);
4827 arc_get_data_impl(hdr
, size
, tag
, 0);
4828 if (type
== ARC_BUFC_METADATA
) {
4829 return (zio_buf_alloc(size
));
4831 ASSERT(type
== ARC_BUFC_DATA
);
4832 return (zio_data_buf_alloc(size
));
4837 * Wait for the specified amount of data (in bytes) to be evicted from the
4838 * ARC, and for there to be sufficient free memory in the system.
4839 * The lax argument specifies that caller does not have a specific reason
4840 * to wait, not aware of any memory pressure. Low memory handlers though
4841 * should set it to B_FALSE to wait for all required evictions to complete.
4842 * The use_reserve argument allows some callers to wait less than others
4843 * to not block critical code paths, possibly blocking other resources.
4846 arc_wait_for_eviction(uint64_t amount
, boolean_t lax
, boolean_t use_reserve
)
4848 switch (arc_is_overflowing(lax
, use_reserve
)) {
4853 * This is a bit racy without taking arc_evict_lock, but the
4854 * worst that can happen is we either call zthr_wakeup() extra
4855 * time due to race with other thread here, or the set flag
4856 * get cleared by arc_evict_cb(), which is unlikely due to
4857 * big hysteresis, but also not important since at this level
4858 * of overflow the eviction is purely advisory. Same time
4859 * taking the global lock here every time without waiting for
4860 * the actual eviction creates a significant lock contention.
4862 if (!arc_evict_needed
) {
4863 arc_evict_needed
= B_TRUE
;
4864 zthr_wakeup(arc_evict_zthr
);
4867 case ARC_OVF_SEVERE
:
4870 arc_evict_waiter_t aw
;
4871 list_link_init(&aw
.aew_node
);
4872 cv_init(&aw
.aew_cv
, NULL
, CV_DEFAULT
, NULL
);
4874 uint64_t last_count
= 0;
4875 mutex_enter(&arc_evict_lock
);
4876 if (!list_is_empty(&arc_evict_waiters
)) {
4877 arc_evict_waiter_t
*last
=
4878 list_tail(&arc_evict_waiters
);
4879 last_count
= last
->aew_count
;
4880 } else if (!arc_evict_needed
) {
4881 arc_evict_needed
= B_TRUE
;
4882 zthr_wakeup(arc_evict_zthr
);
4885 * Note, the last waiter's count may be less than
4886 * arc_evict_count if we are low on memory in which
4887 * case arc_evict_state_impl() may have deferred
4888 * wakeups (but still incremented arc_evict_count).
4890 aw
.aew_count
= MAX(last_count
, arc_evict_count
) + amount
;
4892 list_insert_tail(&arc_evict_waiters
, &aw
);
4894 arc_set_need_free();
4896 DTRACE_PROBE3(arc__wait__for__eviction
,
4898 uint64_t, arc_evict_count
,
4899 uint64_t, aw
.aew_count
);
4902 * We will be woken up either when arc_evict_count reaches
4903 * aew_count, or when the ARC is no longer overflowing and
4904 * eviction completes.
4905 * In case of "false" wakeup, we will still be on the list.
4908 cv_wait(&aw
.aew_cv
, &arc_evict_lock
);
4909 } while (list_link_active(&aw
.aew_node
));
4910 mutex_exit(&arc_evict_lock
);
4912 cv_destroy(&aw
.aew_cv
);
4918 * Allocate a block and return it to the caller. If we are hitting the
4919 * hard limit for the cache size, we must sleep, waiting for the eviction
4920 * thread to catch up. If we're past the target size but below the hard
4921 * limit, we'll only signal the reclaim thread and continue on.
4924 arc_get_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
,
4930 * If arc_size is currently overflowing, we must be adding data
4931 * faster than we are evicting. To ensure we don't compound the
4932 * problem by adding more data and forcing arc_size to grow even
4933 * further past it's target size, we wait for the eviction thread to
4934 * make some progress. We also wait for there to be sufficient free
4935 * memory in the system, as measured by arc_free_memory().
4937 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4938 * requested size to be evicted. This should be more than 100%, to
4939 * ensure that that progress is also made towards getting arc_size
4940 * under arc_c. See the comment above zfs_arc_eviction_pct.
4942 arc_wait_for_eviction(size
* zfs_arc_eviction_pct
/ 100,
4943 B_TRUE
, alloc_flags
& ARC_HDR_USE_RESERVE
);
4945 arc_buf_contents_t type
= arc_buf_type(hdr
);
4946 if (type
== ARC_BUFC_METADATA
) {
4947 arc_space_consume(size
, ARC_SPACE_META
);
4949 arc_space_consume(size
, ARC_SPACE_DATA
);
4953 * Update the state size. Note that ghost states have a
4954 * "ghost size" and so don't need to be updated.
4956 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
4957 if (!GHOST_STATE(state
)) {
4959 (void) zfs_refcount_add_many(&state
->arcs_size
[type
], size
,
4963 * If this is reached via arc_read, the link is
4964 * protected by the hash lock. If reached via
4965 * arc_buf_alloc, the header should not be accessed by
4966 * any other thread. And, if reached via arc_read_done,
4967 * the hash lock will protect it if it's found in the
4968 * hash table; otherwise no other thread should be
4969 * trying to [add|remove]_reference it.
4971 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
4972 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
4973 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
4980 arc_free_data_abd(arc_buf_hdr_t
*hdr
, abd_t
*abd
, uint64_t size
,
4983 arc_free_data_impl(hdr
, size
, tag
);
4988 arc_free_data_buf(arc_buf_hdr_t
*hdr
, void *buf
, uint64_t size
, const void *tag
)
4990 arc_buf_contents_t type
= arc_buf_type(hdr
);
4992 arc_free_data_impl(hdr
, size
, tag
);
4993 if (type
== ARC_BUFC_METADATA
) {
4994 zio_buf_free(buf
, size
);
4996 ASSERT(type
== ARC_BUFC_DATA
);
4997 zio_data_buf_free(buf
, size
);
5002 * Free the arc data buffer.
5005 arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
)
5007 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5008 arc_buf_contents_t type
= arc_buf_type(hdr
);
5010 /* protected by hash lock, if in the hash table */
5011 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5012 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5013 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
5015 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
5018 (void) zfs_refcount_remove_many(&state
->arcs_size
[type
], size
, tag
);
5020 VERIFY3U(hdr
->b_type
, ==, type
);
5021 if (type
== ARC_BUFC_METADATA
) {
5022 arc_space_return(size
, ARC_SPACE_META
);
5024 ASSERT(type
== ARC_BUFC_DATA
);
5025 arc_space_return(size
, ARC_SPACE_DATA
);
5030 * This routine is called whenever a buffer is accessed.
5033 arc_access(arc_buf_hdr_t
*hdr
, arc_flags_t arc_flags
, boolean_t hit
)
5035 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
5036 ASSERT(HDR_HAS_L1HDR(hdr
));
5039 * Update buffer prefetch status.
5041 boolean_t was_prefetch
= HDR_PREFETCH(hdr
);
5042 boolean_t now_prefetch
= arc_flags
& ARC_FLAG_PREFETCH
;
5043 if (was_prefetch
!= now_prefetch
) {
5045 ARCSTAT_CONDSTAT(hit
, demand_hit
, demand_iohit
,
5046 HDR_PRESCIENT_PREFETCH(hdr
), prescient
, predictive
,
5049 if (HDR_HAS_L2HDR(hdr
))
5050 l2arc_hdr_arcstats_decrement_state(hdr
);
5052 arc_hdr_clear_flags(hdr
,
5053 ARC_FLAG_PREFETCH
| ARC_FLAG_PRESCIENT_PREFETCH
);
5055 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
5057 if (HDR_HAS_L2HDR(hdr
))
5058 l2arc_hdr_arcstats_increment_state(hdr
);
5061 if (arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
) {
5062 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
5063 ARCSTAT_BUMP(arcstat_prescient_prefetch
);
5065 ARCSTAT_BUMP(arcstat_predictive_prefetch
);
5068 if (arc_flags
& ARC_FLAG_L2CACHE
)
5069 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
5071 clock_t now
= ddi_get_lbolt();
5072 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
5073 arc_state_t
*new_state
;
5075 * This buffer is not in the cache, and does not appear in
5076 * our "ghost" lists. Add it to the MRU or uncached state.
5078 ASSERT0(hdr
->b_l1hdr
.b_arc_access
);
5079 hdr
->b_l1hdr
.b_arc_access
= now
;
5080 if (HDR_UNCACHED(hdr
)) {
5081 new_state
= arc_uncached
;
5082 DTRACE_PROBE1(new_state__uncached
, arc_buf_hdr_t
*,
5085 new_state
= arc_mru
;
5086 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5088 arc_change_state(new_state
, hdr
);
5089 } else if (hdr
->b_l1hdr
.b_state
== arc_mru
) {
5091 * This buffer has been accessed once recently and either
5092 * its read is still in progress or it is in the cache.
5094 if (HDR_IO_IN_PROGRESS(hdr
)) {
5095 hdr
->b_l1hdr
.b_arc_access
= now
;
5098 hdr
->b_l1hdr
.b_mru_hits
++;
5099 ARCSTAT_BUMP(arcstat_mru_hits
);
5102 * If the previous access was a prefetch, then it already
5103 * handled possible promotion, so nothing more to do for now.
5106 hdr
->b_l1hdr
.b_arc_access
= now
;
5111 * If more than ARC_MINTIME have passed from the previous
5112 * hit, promote the buffer to the MFU state.
5114 if (ddi_time_after(now
, hdr
->b_l1hdr
.b_arc_access
+
5116 hdr
->b_l1hdr
.b_arc_access
= now
;
5117 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5118 arc_change_state(arc_mfu
, hdr
);
5120 } else if (hdr
->b_l1hdr
.b_state
== arc_mru_ghost
) {
5121 arc_state_t
*new_state
;
5123 * This buffer has been accessed once recently, but was
5124 * evicted from the cache. Would we have bigger MRU, it
5125 * would be an MRU hit, so handle it the same way, except
5126 * we don't need to check the previous access time.
5128 hdr
->b_l1hdr
.b_mru_ghost_hits
++;
5129 ARCSTAT_BUMP(arcstat_mru_ghost_hits
);
5130 hdr
->b_l1hdr
.b_arc_access
= now
;
5131 wmsum_add(&arc_mru_ghost
->arcs_hits
[arc_buf_type(hdr
)],
5134 new_state
= arc_mru
;
5135 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5137 new_state
= arc_mfu
;
5138 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5140 arc_change_state(new_state
, hdr
);
5141 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu
) {
5143 * This buffer has been accessed more than once and either
5144 * still in the cache or being restored from one of ghosts.
5146 if (!HDR_IO_IN_PROGRESS(hdr
)) {
5147 hdr
->b_l1hdr
.b_mfu_hits
++;
5148 ARCSTAT_BUMP(arcstat_mfu_hits
);
5150 hdr
->b_l1hdr
.b_arc_access
= now
;
5151 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu_ghost
) {
5153 * This buffer has been accessed more than once recently, but
5154 * has been evicted from the cache. Would we have bigger MFU
5155 * it would stay in cache, so move it back to MFU state.
5157 hdr
->b_l1hdr
.b_mfu_ghost_hits
++;
5158 ARCSTAT_BUMP(arcstat_mfu_ghost_hits
);
5159 hdr
->b_l1hdr
.b_arc_access
= now
;
5160 wmsum_add(&arc_mfu_ghost
->arcs_hits
[arc_buf_type(hdr
)],
5162 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5163 arc_change_state(arc_mfu
, hdr
);
5164 } else if (hdr
->b_l1hdr
.b_state
== arc_uncached
) {
5166 * This buffer is uncacheable, but we got a hit. Probably
5167 * a demand read after prefetch. Nothing more to do here.
5169 if (!HDR_IO_IN_PROGRESS(hdr
))
5170 ARCSTAT_BUMP(arcstat_uncached_hits
);
5171 hdr
->b_l1hdr
.b_arc_access
= now
;
5172 } else if (hdr
->b_l1hdr
.b_state
== arc_l2c_only
) {
5174 * This buffer is on the 2nd Level ARC and was not accessed
5175 * for a long time, so treat it as new and put into MRU.
5177 hdr
->b_l1hdr
.b_arc_access
= now
;
5178 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5179 arc_change_state(arc_mru
, hdr
);
5181 cmn_err(CE_PANIC
, "invalid arc state 0x%p",
5182 hdr
->b_l1hdr
.b_state
);
5187 * This routine is called by dbuf_hold() to update the arc_access() state
5188 * which otherwise would be skipped for entries in the dbuf cache.
5191 arc_buf_access(arc_buf_t
*buf
)
5193 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
5196 * Avoid taking the hash_lock when possible as an optimization.
5197 * The header must be checked again under the hash_lock in order
5198 * to handle the case where it is concurrently being released.
5200 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
))
5203 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
5204 mutex_enter(hash_lock
);
5206 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5207 mutex_exit(hash_lock
);
5208 ARCSTAT_BUMP(arcstat_access_skip
);
5212 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5213 hdr
->b_l1hdr
.b_state
== arc_mfu
||
5214 hdr
->b_l1hdr
.b_state
== arc_uncached
);
5216 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5217 arc_access(hdr
, 0, B_TRUE
);
5218 mutex_exit(hash_lock
);
5220 ARCSTAT_BUMP(arcstat_hits
);
5221 ARCSTAT_CONDSTAT(B_TRUE
/* demand */, demand
, prefetch
,
5222 !HDR_ISTYPE_METADATA(hdr
), data
, metadata
, hits
);
5225 /* a generic arc_read_done_func_t which you can use */
5227 arc_bcopy_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5228 arc_buf_t
*buf
, void *arg
)
5230 (void) zio
, (void) zb
, (void) bp
;
5235 memcpy(arg
, buf
->b_data
, arc_buf_size(buf
));
5236 arc_buf_destroy(buf
, arg
);
5239 /* a generic arc_read_done_func_t */
5241 arc_getbuf_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5242 arc_buf_t
*buf
, void *arg
)
5244 (void) zb
, (void) bp
;
5245 arc_buf_t
**bufp
= arg
;
5248 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
5251 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
5253 ASSERT(buf
->b_data
!= NULL
);
5258 arc_hdr_verify(arc_buf_hdr_t
*hdr
, blkptr_t
*bp
)
5260 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
5261 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, 0);
5262 ASSERT3U(arc_hdr_get_compress(hdr
), ==, ZIO_COMPRESS_OFF
);
5264 if (HDR_COMPRESSION_ENABLED(hdr
)) {
5265 ASSERT3U(arc_hdr_get_compress(hdr
), ==,
5266 BP_GET_COMPRESS(bp
));
5268 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
5269 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, BP_GET_PSIZE(bp
));
5270 ASSERT3U(!!HDR_PROTECTED(hdr
), ==, BP_IS_PROTECTED(bp
));
5275 arc_read_done(zio_t
*zio
)
5277 blkptr_t
*bp
= zio
->io_bp
;
5278 arc_buf_hdr_t
*hdr
= zio
->io_private
;
5279 kmutex_t
*hash_lock
= NULL
;
5280 arc_callback_t
*callback_list
;
5281 arc_callback_t
*acb
;
5284 * The hdr was inserted into hash-table and removed from lists
5285 * prior to starting I/O. We should find this header, since
5286 * it's in the hash table, and it should be legit since it's
5287 * not possible to evict it during the I/O. The only possible
5288 * reason for it not to be found is if we were freed during the
5291 if (HDR_IN_HASH_TABLE(hdr
)) {
5292 arc_buf_hdr_t
*found
;
5294 ASSERT3U(hdr
->b_birth
, ==, BP_GET_BIRTH(zio
->io_bp
));
5295 ASSERT3U(hdr
->b_dva
.dva_word
[0], ==,
5296 BP_IDENTITY(zio
->io_bp
)->dva_word
[0]);
5297 ASSERT3U(hdr
->b_dva
.dva_word
[1], ==,
5298 BP_IDENTITY(zio
->io_bp
)->dva_word
[1]);
5300 found
= buf_hash_find(hdr
->b_spa
, zio
->io_bp
, &hash_lock
);
5302 ASSERT((found
== hdr
&&
5303 DVA_EQUAL(&hdr
->b_dva
, BP_IDENTITY(zio
->io_bp
))) ||
5304 (found
== hdr
&& HDR_L2_READING(hdr
)));
5305 ASSERT3P(hash_lock
, !=, NULL
);
5308 if (BP_IS_PROTECTED(bp
)) {
5309 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
5310 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
5311 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
5312 hdr
->b_crypt_hdr
.b_iv
);
5314 if (zio
->io_error
== 0) {
5315 if (BP_GET_TYPE(bp
) == DMU_OT_INTENT_LOG
) {
5318 tmpbuf
= abd_borrow_buf_copy(zio
->io_abd
,
5319 sizeof (zil_chain_t
));
5320 zio_crypt_decode_mac_zil(tmpbuf
,
5321 hdr
->b_crypt_hdr
.b_mac
);
5322 abd_return_buf(zio
->io_abd
, tmpbuf
,
5323 sizeof (zil_chain_t
));
5325 zio_crypt_decode_mac_bp(bp
,
5326 hdr
->b_crypt_hdr
.b_mac
);
5331 if (zio
->io_error
== 0) {
5332 /* byteswap if necessary */
5333 if (BP_SHOULD_BYTESWAP(zio
->io_bp
)) {
5334 if (BP_GET_LEVEL(zio
->io_bp
) > 0) {
5335 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
5337 hdr
->b_l1hdr
.b_byteswap
=
5338 DMU_OT_BYTESWAP(BP_GET_TYPE(zio
->io_bp
));
5341 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
5343 if (!HDR_L2_READING(hdr
)) {
5344 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
5348 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_EVICTED
);
5349 if (l2arc_noprefetch
&& HDR_PREFETCH(hdr
))
5350 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2CACHE
);
5352 callback_list
= hdr
->b_l1hdr
.b_acb
;
5353 ASSERT3P(callback_list
, !=, NULL
);
5354 hdr
->b_l1hdr
.b_acb
= NULL
;
5357 * If a read request has a callback (i.e. acb_done is not NULL), then we
5358 * make a buf containing the data according to the parameters which were
5359 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5360 * aren't needlessly decompressing the data multiple times.
5362 int callback_cnt
= 0;
5363 for (acb
= callback_list
; acb
!= NULL
; acb
= acb
->acb_next
) {
5365 /* We need the last one to call below in original order. */
5366 callback_list
= acb
;
5368 if (!acb
->acb_done
|| acb
->acb_nobuf
)
5373 if (zio
->io_error
!= 0)
5376 int error
= arc_buf_alloc_impl(hdr
, zio
->io_spa
,
5377 &acb
->acb_zb
, acb
->acb_private
, acb
->acb_encrypted
,
5378 acb
->acb_compressed
, acb
->acb_noauth
, B_TRUE
,
5382 * Assert non-speculative zios didn't fail because an
5383 * encryption key wasn't loaded
5385 ASSERT((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) ||
5389 * If we failed to decrypt, report an error now (as the zio
5390 * layer would have done if it had done the transforms).
5392 if (error
== ECKSUM
) {
5393 ASSERT(BP_IS_PROTECTED(bp
));
5394 error
= SET_ERROR(EIO
);
5395 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5396 spa_log_error(zio
->io_spa
, &acb
->acb_zb
,
5397 BP_GET_LOGICAL_BIRTH(zio
->io_bp
));
5398 (void) zfs_ereport_post(
5399 FM_EREPORT_ZFS_AUTHENTICATION
,
5400 zio
->io_spa
, NULL
, &acb
->acb_zb
, zio
, 0);
5406 * Decompression or decryption failed. Set
5407 * io_error so that when we call acb_done
5408 * (below), we will indicate that the read
5409 * failed. Note that in the unusual case
5410 * where one callback is compressed and another
5411 * uncompressed, we will mark all of them
5412 * as failed, even though the uncompressed
5413 * one can't actually fail. In this case,
5414 * the hdr will not be anonymous, because
5415 * if there are multiple callbacks, it's
5416 * because multiple threads found the same
5417 * arc buf in the hash table.
5419 zio
->io_error
= error
;
5424 * If there are multiple callbacks, we must have the hash lock,
5425 * because the only way for multiple threads to find this hdr is
5426 * in the hash table. This ensures that if there are multiple
5427 * callbacks, the hdr is not anonymous. If it were anonymous,
5428 * we couldn't use arc_buf_destroy() in the error case below.
5430 ASSERT(callback_cnt
< 2 || hash_lock
!= NULL
);
5432 if (zio
->io_error
== 0) {
5433 arc_hdr_verify(hdr
, zio
->io_bp
);
5435 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
5436 if (hdr
->b_l1hdr
.b_state
!= arc_anon
)
5437 arc_change_state(arc_anon
, hdr
);
5438 if (HDR_IN_HASH_TABLE(hdr
))
5439 buf_hash_remove(hdr
);
5442 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5443 (void) remove_reference(hdr
, hdr
);
5445 if (hash_lock
!= NULL
)
5446 mutex_exit(hash_lock
);
5448 /* execute each callback and free its structure */
5449 while ((acb
= callback_list
) != NULL
) {
5450 if (acb
->acb_done
!= NULL
) {
5451 if (zio
->io_error
!= 0 && acb
->acb_buf
!= NULL
) {
5453 * If arc_buf_alloc_impl() fails during
5454 * decompression, the buf will still be
5455 * allocated, and needs to be freed here.
5457 arc_buf_destroy(acb
->acb_buf
,
5459 acb
->acb_buf
= NULL
;
5461 acb
->acb_done(zio
, &zio
->io_bookmark
, zio
->io_bp
,
5462 acb
->acb_buf
, acb
->acb_private
);
5465 if (acb
->acb_zio_dummy
!= NULL
) {
5466 acb
->acb_zio_dummy
->io_error
= zio
->io_error
;
5467 zio_nowait(acb
->acb_zio_dummy
);
5470 callback_list
= acb
->acb_prev
;
5471 if (acb
->acb_wait
) {
5472 mutex_enter(&acb
->acb_wait_lock
);
5473 acb
->acb_wait_error
= zio
->io_error
;
5474 acb
->acb_wait
= B_FALSE
;
5475 cv_signal(&acb
->acb_wait_cv
);
5476 mutex_exit(&acb
->acb_wait_lock
);
5477 /* acb will be freed by the waiting thread. */
5479 kmem_free(acb
, sizeof (arc_callback_t
));
5485 * Lookup the block at the specified DVA (in bp), and return the manner in
5486 * which the block is cached. A zero return indicates not cached.
5489 arc_cached(spa_t
*spa
, const blkptr_t
*bp
)
5491 arc_buf_hdr_t
*hdr
= NULL
;
5492 kmutex_t
*hash_lock
= NULL
;
5493 uint64_t guid
= spa_load_guid(spa
);
5496 if (BP_IS_EMBEDDED(bp
))
5497 return (ARC_CACHED_EMBEDDED
);
5499 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5503 if (HDR_HAS_L1HDR(hdr
)) {
5504 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5506 * We switch to ensure that any future arc_state_type_t
5507 * changes are handled. This is just a shift to promote
5508 * more compile-time checking.
5510 switch (state
->arcs_state
) {
5511 case ARC_STATE_ANON
:
5514 flags
|= ARC_CACHED_IN_MRU
| ARC_CACHED_IN_L1
;
5517 flags
|= ARC_CACHED_IN_MFU
| ARC_CACHED_IN_L1
;
5519 case ARC_STATE_UNCACHED
:
5520 /* The header is still in L1, probably not for long */
5521 flags
|= ARC_CACHED_IN_L1
;
5527 if (HDR_HAS_L2HDR(hdr
))
5528 flags
|= ARC_CACHED_IN_L2
;
5530 mutex_exit(hash_lock
);
5536 * "Read" the block at the specified DVA (in bp) via the
5537 * cache. If the block is found in the cache, invoke the provided
5538 * callback immediately and return. Note that the `zio' parameter
5539 * in the callback will be NULL in this case, since no IO was
5540 * required. If the block is not in the cache pass the read request
5541 * on to the spa with a substitute callback function, so that the
5542 * requested block will be added to the cache.
5544 * If a read request arrives for a block that has a read in-progress,
5545 * either wait for the in-progress read to complete (and return the
5546 * results); or, if this is a read with a "done" func, add a record
5547 * to the read to invoke the "done" func when the read completes,
5548 * and return; or just return.
5550 * arc_read_done() will invoke all the requested "done" functions
5551 * for readers of this block.
5554 arc_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
5555 arc_read_done_func_t
*done
, void *private, zio_priority_t priority
,
5556 int zio_flags
, arc_flags_t
*arc_flags
, const zbookmark_phys_t
*zb
)
5558 arc_buf_hdr_t
*hdr
= NULL
;
5559 kmutex_t
*hash_lock
= NULL
;
5561 uint64_t guid
= spa_load_guid(spa
);
5562 boolean_t compressed_read
= (zio_flags
& ZIO_FLAG_RAW_COMPRESS
) != 0;
5563 boolean_t encrypted_read
= BP_IS_ENCRYPTED(bp
) &&
5564 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5565 boolean_t noauth_read
= BP_IS_AUTHENTICATED(bp
) &&
5566 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5567 boolean_t embedded_bp
= !!BP_IS_EMBEDDED(bp
);
5568 boolean_t no_buf
= *arc_flags
& ARC_FLAG_NO_BUF
;
5569 arc_buf_t
*buf
= NULL
;
5572 ASSERT(!embedded_bp
||
5573 BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
);
5574 ASSERT(!BP_IS_HOLE(bp
));
5575 ASSERT(!BP_IS_REDACTED(bp
));
5578 * Normally SPL_FSTRANS will already be set since kernel threads which
5579 * expect to call the DMU interfaces will set it when created. System
5580 * calls are similarly handled by setting/cleaning the bit in the
5581 * registered callback (module/os/.../zfs/zpl_*).
5583 * External consumers such as Lustre which call the exported DMU
5584 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5585 * on the hash_lock always set and clear the bit.
5587 fstrans_cookie_t cookie
= spl_fstrans_mark();
5591 * Embedded BP's have no DVA and require no I/O to "read".
5592 * Create an anonymous arc buf to back it.
5594 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5598 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5599 * we maintain encrypted data separately from compressed / uncompressed
5600 * data. If the user is requesting raw encrypted data and we don't have
5601 * that in the header we will read from disk to guarantee that we can
5602 * get it even if the encryption keys aren't loaded.
5604 if (hdr
!= NULL
&& HDR_HAS_L1HDR(hdr
) && (HDR_HAS_RABD(hdr
) ||
5605 (hdr
->b_l1hdr
.b_pabd
!= NULL
&& !encrypted_read
))) {
5606 boolean_t is_data
= !HDR_ISTYPE_METADATA(hdr
);
5609 * Verify the block pointer contents are reasonable. This
5610 * should always be the case since the blkptr is protected by
5613 if (!zfs_blkptr_verify(spa
, bp
, BLK_CONFIG_SKIP
,
5615 mutex_exit(hash_lock
);
5616 rc
= SET_ERROR(ECKSUM
);
5620 if (HDR_IO_IN_PROGRESS(hdr
)) {
5621 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
5622 mutex_exit(hash_lock
);
5623 ARCSTAT_BUMP(arcstat_cached_only_in_progress
);
5624 rc
= SET_ERROR(ENOENT
);
5628 zio_t
*head_zio
= hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
5629 ASSERT3P(head_zio
, !=, NULL
);
5630 if ((hdr
->b_flags
& ARC_FLAG_PRIO_ASYNC_READ
) &&
5631 priority
== ZIO_PRIORITY_SYNC_READ
) {
5633 * This is a sync read that needs to wait for
5634 * an in-flight async read. Request that the
5635 * zio have its priority upgraded.
5637 zio_change_priority(head_zio
, priority
);
5638 DTRACE_PROBE1(arc__async__upgrade__sync
,
5639 arc_buf_hdr_t
*, hdr
);
5640 ARCSTAT_BUMP(arcstat_async_upgrade_sync
);
5643 DTRACE_PROBE1(arc__iohit
, arc_buf_hdr_t
*, hdr
);
5644 arc_access(hdr
, *arc_flags
, B_FALSE
);
5647 * If there are multiple threads reading the same block
5648 * and that block is not yet in the ARC, then only one
5649 * thread will do the physical I/O and all other
5650 * threads will wait until that I/O completes.
5651 * Synchronous reads use the acb_wait_cv whereas nowait
5652 * reads register a callback. Both are signalled/called
5655 * Errors of the physical I/O may need to be propagated.
5656 * Synchronous read errors are returned here from
5657 * arc_read_done via acb_wait_error. Nowait reads
5658 * attach the acb_zio_dummy zio to pio and
5659 * arc_read_done propagates the physical I/O's io_error
5660 * to acb_zio_dummy, and thereby to pio.
5662 arc_callback_t
*acb
= NULL
;
5663 if (done
|| pio
|| *arc_flags
& ARC_FLAG_WAIT
) {
5664 acb
= kmem_zalloc(sizeof (arc_callback_t
),
5666 acb
->acb_done
= done
;
5667 acb
->acb_private
= private;
5668 acb
->acb_compressed
= compressed_read
;
5669 acb
->acb_encrypted
= encrypted_read
;
5670 acb
->acb_noauth
= noauth_read
;
5671 acb
->acb_nobuf
= no_buf
;
5672 if (*arc_flags
& ARC_FLAG_WAIT
) {
5673 acb
->acb_wait
= B_TRUE
;
5674 mutex_init(&acb
->acb_wait_lock
, NULL
,
5675 MUTEX_DEFAULT
, NULL
);
5676 cv_init(&acb
->acb_wait_cv
, NULL
,
5681 acb
->acb_zio_dummy
= zio_null(pio
,
5682 spa
, NULL
, NULL
, NULL
, zio_flags
);
5684 acb
->acb_zio_head
= head_zio
;
5685 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
5686 hdr
->b_l1hdr
.b_acb
->acb_prev
= acb
;
5687 hdr
->b_l1hdr
.b_acb
= acb
;
5689 mutex_exit(hash_lock
);
5691 ARCSTAT_BUMP(arcstat_iohits
);
5692 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
5693 demand
, prefetch
, is_data
, data
, metadata
, iohits
);
5695 if (*arc_flags
& ARC_FLAG_WAIT
) {
5696 mutex_enter(&acb
->acb_wait_lock
);
5697 while (acb
->acb_wait
) {
5698 cv_wait(&acb
->acb_wait_cv
,
5699 &acb
->acb_wait_lock
);
5701 rc
= acb
->acb_wait_error
;
5702 mutex_exit(&acb
->acb_wait_lock
);
5703 mutex_destroy(&acb
->acb_wait_lock
);
5704 cv_destroy(&acb
->acb_wait_cv
);
5705 kmem_free(acb
, sizeof (arc_callback_t
));
5710 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5711 hdr
->b_l1hdr
.b_state
== arc_mfu
||
5712 hdr
->b_l1hdr
.b_state
== arc_uncached
);
5714 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5715 arc_access(hdr
, *arc_flags
, B_TRUE
);
5717 if (done
&& !no_buf
) {
5718 ASSERT(!embedded_bp
|| !BP_IS_HOLE(bp
));
5720 /* Get a buf with the desired data in it. */
5721 rc
= arc_buf_alloc_impl(hdr
, spa
, zb
, private,
5722 encrypted_read
, compressed_read
, noauth_read
,
5726 * Convert authentication and decryption errors
5727 * to EIO (and generate an ereport if needed)
5728 * before leaving the ARC.
5730 rc
= SET_ERROR(EIO
);
5731 if ((zio_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5732 spa_log_error(spa
, zb
, hdr
->b_birth
);
5733 (void) zfs_ereport_post(
5734 FM_EREPORT_ZFS_AUTHENTICATION
,
5735 spa
, NULL
, zb
, NULL
, 0);
5739 arc_buf_destroy_impl(buf
);
5741 (void) remove_reference(hdr
, private);
5744 /* assert any errors weren't due to unloaded keys */
5745 ASSERT((zio_flags
& ZIO_FLAG_SPECULATIVE
) ||
5748 mutex_exit(hash_lock
);
5749 ARCSTAT_BUMP(arcstat_hits
);
5750 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
5751 demand
, prefetch
, is_data
, data
, metadata
, hits
);
5752 *arc_flags
|= ARC_FLAG_CACHED
;
5755 uint64_t lsize
= BP_GET_LSIZE(bp
);
5756 uint64_t psize
= BP_GET_PSIZE(bp
);
5757 arc_callback_t
*acb
;
5760 boolean_t devw
= B_FALSE
;
5763 int alloc_flags
= encrypted_read
? ARC_HDR_ALLOC_RDATA
: 0;
5764 arc_buf_contents_t type
= BP_GET_BUFC_TYPE(bp
);
5766 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
5767 if (hash_lock
!= NULL
)
5768 mutex_exit(hash_lock
);
5769 rc
= SET_ERROR(ENOENT
);
5774 * Verify the block pointer contents are reasonable. This
5775 * should always be the case since the blkptr is protected by
5778 if (!zfs_blkptr_verify(spa
, bp
,
5779 (zio_flags
& ZIO_FLAG_CONFIG_WRITER
) ?
5780 BLK_CONFIG_HELD
: BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
)) {
5781 if (hash_lock
!= NULL
)
5782 mutex_exit(hash_lock
);
5783 rc
= SET_ERROR(ECKSUM
);
5789 * This block is not in the cache or it has
5792 arc_buf_hdr_t
*exists
= NULL
;
5793 hdr
= arc_hdr_alloc(guid
, psize
, lsize
,
5794 BP_IS_PROTECTED(bp
), BP_GET_COMPRESS(bp
), 0, type
);
5797 hdr
->b_dva
= *BP_IDENTITY(bp
);
5798 hdr
->b_birth
= BP_GET_BIRTH(bp
);
5799 exists
= buf_hash_insert(hdr
, &hash_lock
);
5801 if (exists
!= NULL
) {
5802 /* somebody beat us to the hash insert */
5803 mutex_exit(hash_lock
);
5804 buf_discard_identity(hdr
);
5805 arc_hdr_destroy(hdr
);
5806 goto top
; /* restart the IO request */
5810 * This block is in the ghost cache or encrypted data
5811 * was requested and we didn't have it. If it was
5812 * L2-only (and thus didn't have an L1 hdr),
5813 * we realloc the header to add an L1 hdr.
5815 if (!HDR_HAS_L1HDR(hdr
)) {
5816 hdr
= arc_hdr_realloc(hdr
, hdr_l2only_cache
,
5820 if (GHOST_STATE(hdr
->b_l1hdr
.b_state
)) {
5821 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
5822 ASSERT(!HDR_HAS_RABD(hdr
));
5823 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
5824 ASSERT0(zfs_refcount_count(
5825 &hdr
->b_l1hdr
.b_refcnt
));
5826 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
5828 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
5830 } else if (HDR_IO_IN_PROGRESS(hdr
)) {
5832 * If this header already had an IO in progress
5833 * and we are performing another IO to fetch
5834 * encrypted data we must wait until the first
5835 * IO completes so as not to confuse
5836 * arc_read_done(). This should be very rare
5837 * and so the performance impact shouldn't
5840 arc_callback_t
*acb
= kmem_zalloc(
5841 sizeof (arc_callback_t
), KM_SLEEP
);
5842 acb
->acb_wait
= B_TRUE
;
5843 mutex_init(&acb
->acb_wait_lock
, NULL
,
5844 MUTEX_DEFAULT
, NULL
);
5845 cv_init(&acb
->acb_wait_cv
, NULL
, CV_DEFAULT
,
5848 hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
5849 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
5850 hdr
->b_l1hdr
.b_acb
->acb_prev
= acb
;
5851 hdr
->b_l1hdr
.b_acb
= acb
;
5852 mutex_exit(hash_lock
);
5853 mutex_enter(&acb
->acb_wait_lock
);
5854 while (acb
->acb_wait
) {
5855 cv_wait(&acb
->acb_wait_cv
,
5856 &acb
->acb_wait_lock
);
5858 mutex_exit(&acb
->acb_wait_lock
);
5859 mutex_destroy(&acb
->acb_wait_lock
);
5860 cv_destroy(&acb
->acb_wait_cv
);
5861 kmem_free(acb
, sizeof (arc_callback_t
));
5865 if (*arc_flags
& ARC_FLAG_UNCACHED
) {
5866 arc_hdr_set_flags(hdr
, ARC_FLAG_UNCACHED
);
5867 if (!encrypted_read
)
5868 alloc_flags
|= ARC_HDR_ALLOC_LINEAR
;
5872 * Take additional reference for IO_IN_PROGRESS. It stops
5873 * arc_access() from putting this header without any buffers
5874 * and so other references but obviously nonevictable onto
5875 * the evictable list of MRU or MFU state.
5877 add_reference(hdr
, hdr
);
5879 arc_access(hdr
, *arc_flags
, B_FALSE
);
5880 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5881 arc_hdr_alloc_abd(hdr
, alloc_flags
);
5882 if (encrypted_read
) {
5883 ASSERT(HDR_HAS_RABD(hdr
));
5884 size
= HDR_GET_PSIZE(hdr
);
5885 hdr_abd
= hdr
->b_crypt_hdr
.b_rabd
;
5886 zio_flags
|= ZIO_FLAG_RAW
;
5888 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
5889 size
= arc_hdr_size(hdr
);
5890 hdr_abd
= hdr
->b_l1hdr
.b_pabd
;
5892 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
5893 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
5897 * For authenticated bp's, we do not ask the ZIO layer
5898 * to authenticate them since this will cause the entire
5899 * IO to fail if the key isn't loaded. Instead, we
5900 * defer authentication until arc_buf_fill(), which will
5901 * verify the data when the key is available.
5903 if (BP_IS_AUTHENTICATED(bp
))
5904 zio_flags
|= ZIO_FLAG_RAW_ENCRYPT
;
5907 if (BP_IS_AUTHENTICATED(bp
))
5908 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
5909 if (BP_GET_LEVEL(bp
) > 0)
5910 arc_hdr_set_flags(hdr
, ARC_FLAG_INDIRECT
);
5911 ASSERT(!GHOST_STATE(hdr
->b_l1hdr
.b_state
));
5913 acb
= kmem_zalloc(sizeof (arc_callback_t
), KM_SLEEP
);
5914 acb
->acb_done
= done
;
5915 acb
->acb_private
= private;
5916 acb
->acb_compressed
= compressed_read
;
5917 acb
->acb_encrypted
= encrypted_read
;
5918 acb
->acb_noauth
= noauth_read
;
5921 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
5922 hdr
->b_l1hdr
.b_acb
= acb
;
5924 if (HDR_HAS_L2HDR(hdr
) &&
5925 (vd
= hdr
->b_l2hdr
.b_dev
->l2ad_vdev
) != NULL
) {
5926 devw
= hdr
->b_l2hdr
.b_dev
->l2ad_writing
;
5927 addr
= hdr
->b_l2hdr
.b_daddr
;
5929 * Lock out L2ARC device removal.
5931 if (vdev_is_dead(vd
) ||
5932 !spa_config_tryenter(spa
, SCL_L2ARC
, vd
, RW_READER
))
5937 * We count both async reads and scrub IOs as asynchronous so
5938 * that both can be upgraded in the event of a cache hit while
5939 * the read IO is still in-flight.
5941 if (priority
== ZIO_PRIORITY_ASYNC_READ
||
5942 priority
== ZIO_PRIORITY_SCRUB
)
5943 arc_hdr_set_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
5945 arc_hdr_clear_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
5948 * At this point, we have a level 1 cache miss or a blkptr
5949 * with embedded data. Try again in L2ARC if possible.
5951 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, lsize
);
5954 * Skip ARC stat bump for block pointers with embedded
5955 * data. The data are read from the blkptr itself via
5956 * decode_embedded_bp_compressed().
5959 DTRACE_PROBE4(arc__miss
, arc_buf_hdr_t
*, hdr
,
5960 blkptr_t
*, bp
, uint64_t, lsize
,
5961 zbookmark_phys_t
*, zb
);
5962 ARCSTAT_BUMP(arcstat_misses
);
5963 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
5964 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
,
5966 zfs_racct_read(spa
, size
, 1, 0);
5969 /* Check if the spa even has l2 configured */
5970 const boolean_t spa_has_l2
= l2arc_ndev
!= 0 &&
5971 spa
->spa_l2cache
.sav_count
> 0;
5973 if (vd
!= NULL
&& spa_has_l2
&& !(l2arc_norw
&& devw
)) {
5975 * Read from the L2ARC if the following are true:
5976 * 1. The L2ARC vdev was previously cached.
5977 * 2. This buffer still has L2ARC metadata.
5978 * 3. This buffer isn't currently writing to the L2ARC.
5979 * 4. The L2ARC entry wasn't evicted, which may
5980 * also have invalidated the vdev.
5982 if (HDR_HAS_L2HDR(hdr
) &&
5983 !HDR_L2_WRITING(hdr
) && !HDR_L2_EVICTED(hdr
)) {
5984 l2arc_read_callback_t
*cb
;
5988 DTRACE_PROBE1(l2arc__hit
, arc_buf_hdr_t
*, hdr
);
5989 ARCSTAT_BUMP(arcstat_l2_hits
);
5990 hdr
->b_l2hdr
.b_hits
++;
5992 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
),
5994 cb
->l2rcb_hdr
= hdr
;
5997 cb
->l2rcb_flags
= zio_flags
;
6000 * When Compressed ARC is disabled, but the
6001 * L2ARC block is compressed, arc_hdr_size()
6002 * will have returned LSIZE rather than PSIZE.
6004 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
6005 !HDR_COMPRESSION_ENABLED(hdr
) &&
6006 HDR_GET_PSIZE(hdr
) != 0) {
6007 size
= HDR_GET_PSIZE(hdr
);
6010 asize
= vdev_psize_to_asize(vd
, size
);
6011 if (asize
!= size
) {
6012 abd
= abd_alloc_for_io(asize
,
6013 HDR_ISTYPE_METADATA(hdr
));
6014 cb
->l2rcb_abd
= abd
;
6019 ASSERT(addr
>= VDEV_LABEL_START_SIZE
&&
6020 addr
+ asize
<= vd
->vdev_psize
-
6021 VDEV_LABEL_END_SIZE
);
6024 * l2arc read. The SCL_L2ARC lock will be
6025 * released by l2arc_read_done().
6026 * Issue a null zio if the underlying buffer
6027 * was squashed to zero size by compression.
6029 ASSERT3U(arc_hdr_get_compress(hdr
), !=,
6030 ZIO_COMPRESS_EMPTY
);
6031 rzio
= zio_read_phys(pio
, vd
, addr
,
6034 l2arc_read_done
, cb
, priority
,
6035 zio_flags
| ZIO_FLAG_CANFAIL
|
6036 ZIO_FLAG_DONT_PROPAGATE
|
6037 ZIO_FLAG_DONT_RETRY
, B_FALSE
);
6038 acb
->acb_zio_head
= rzio
;
6040 if (hash_lock
!= NULL
)
6041 mutex_exit(hash_lock
);
6043 DTRACE_PROBE2(l2arc__read
, vdev_t
*, vd
,
6045 ARCSTAT_INCR(arcstat_l2_read_bytes
,
6046 HDR_GET_PSIZE(hdr
));
6048 if (*arc_flags
& ARC_FLAG_NOWAIT
) {
6053 ASSERT(*arc_flags
& ARC_FLAG_WAIT
);
6054 if (zio_wait(rzio
) == 0)
6057 /* l2arc read error; goto zio_read() */
6058 if (hash_lock
!= NULL
)
6059 mutex_enter(hash_lock
);
6061 DTRACE_PROBE1(l2arc__miss
,
6062 arc_buf_hdr_t
*, hdr
);
6063 ARCSTAT_BUMP(arcstat_l2_misses
);
6064 if (HDR_L2_WRITING(hdr
))
6065 ARCSTAT_BUMP(arcstat_l2_rw_clash
);
6066 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6070 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6073 * Only a spa with l2 should contribute to l2
6074 * miss stats. (Including the case of having a
6075 * faulted cache device - that's also a miss.)
6079 * Skip ARC stat bump for block pointers with
6080 * embedded data. The data are read from the
6082 * decode_embedded_bp_compressed().
6085 DTRACE_PROBE1(l2arc__miss
,
6086 arc_buf_hdr_t
*, hdr
);
6087 ARCSTAT_BUMP(arcstat_l2_misses
);
6092 rzio
= zio_read(pio
, spa
, bp
, hdr_abd
, size
,
6093 arc_read_done
, hdr
, priority
, zio_flags
, zb
);
6094 acb
->acb_zio_head
= rzio
;
6096 if (hash_lock
!= NULL
)
6097 mutex_exit(hash_lock
);
6099 if (*arc_flags
& ARC_FLAG_WAIT
) {
6100 rc
= zio_wait(rzio
);
6104 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6109 /* embedded bps don't actually go to disk */
6111 spa_read_history_add(spa
, zb
, *arc_flags
);
6112 spl_fstrans_unmark(cookie
);
6117 done(NULL
, zb
, bp
, buf
, private);
6118 if (pio
&& rc
!= 0) {
6119 zio_t
*zio
= zio_null(pio
, spa
, NULL
, NULL
, NULL
, zio_flags
);
6127 arc_add_prune_callback(arc_prune_func_t
*func
, void *private)
6131 p
= kmem_alloc(sizeof (*p
), KM_SLEEP
);
6133 p
->p_private
= private;
6134 list_link_init(&p
->p_node
);
6135 zfs_refcount_create(&p
->p_refcnt
);
6137 mutex_enter(&arc_prune_mtx
);
6138 zfs_refcount_add(&p
->p_refcnt
, &arc_prune_list
);
6139 list_insert_head(&arc_prune_list
, p
);
6140 mutex_exit(&arc_prune_mtx
);
6146 arc_remove_prune_callback(arc_prune_t
*p
)
6148 boolean_t wait
= B_FALSE
;
6149 mutex_enter(&arc_prune_mtx
);
6150 list_remove(&arc_prune_list
, p
);
6151 if (zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
) > 0)
6153 mutex_exit(&arc_prune_mtx
);
6155 /* wait for arc_prune_task to finish */
6157 taskq_wait_outstanding(arc_prune_taskq
, 0);
6158 ASSERT0(zfs_refcount_count(&p
->p_refcnt
));
6159 zfs_refcount_destroy(&p
->p_refcnt
);
6160 kmem_free(p
, sizeof (*p
));
6164 * Helper function for arc_prune_async() it is responsible for safely
6165 * handling the execution of a registered arc_prune_func_t.
6168 arc_prune_task(void *ptr
)
6170 arc_prune_t
*ap
= (arc_prune_t
*)ptr
;
6171 arc_prune_func_t
*func
= ap
->p_pfunc
;
6174 func(ap
->p_adjust
, ap
->p_private
);
6176 (void) zfs_refcount_remove(&ap
->p_refcnt
, func
);
6180 * Notify registered consumers they must drop holds on a portion of the ARC
6181 * buffers they reference. This provides a mechanism to ensure the ARC can
6182 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6184 * This operation is performed asynchronously so it may be safely called
6185 * in the context of the arc_reclaim_thread(). A reference is taken here
6186 * for each registered arc_prune_t and the arc_prune_task() is responsible
6187 * for releasing it once the registered arc_prune_func_t has completed.
6190 arc_prune_async(uint64_t adjust
)
6194 mutex_enter(&arc_prune_mtx
);
6195 for (ap
= list_head(&arc_prune_list
); ap
!= NULL
;
6196 ap
= list_next(&arc_prune_list
, ap
)) {
6198 if (zfs_refcount_count(&ap
->p_refcnt
) >= 2)
6201 zfs_refcount_add(&ap
->p_refcnt
, ap
->p_pfunc
);
6202 ap
->p_adjust
= adjust
;
6203 if (taskq_dispatch(arc_prune_taskq
, arc_prune_task
,
6204 ap
, TQ_SLEEP
) == TASKQID_INVALID
) {
6205 (void) zfs_refcount_remove(&ap
->p_refcnt
, ap
->p_pfunc
);
6208 ARCSTAT_BUMP(arcstat_prune
);
6210 mutex_exit(&arc_prune_mtx
);
6214 * Notify the arc that a block was freed, and thus will never be used again.
6217 arc_freed(spa_t
*spa
, const blkptr_t
*bp
)
6220 kmutex_t
*hash_lock
;
6221 uint64_t guid
= spa_load_guid(spa
);
6223 ASSERT(!BP_IS_EMBEDDED(bp
));
6225 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6230 * We might be trying to free a block that is still doing I/O
6231 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6232 * dmu_sync-ed block). A block may also have a reference if it is
6233 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6234 * have written the new block to its final resting place on disk but
6235 * without the dedup flag set. This would have left the hdr in the MRU
6236 * state and discoverable. When the txg finally syncs it detects that
6237 * the block was overridden in open context and issues an override I/O.
6238 * Since this is a dedup block, the override I/O will determine if the
6239 * block is already in the DDT. If so, then it will replace the io_bp
6240 * with the bp from the DDT and allow the I/O to finish. When the I/O
6241 * reaches the done callback, dbuf_write_override_done, it will
6242 * check to see if the io_bp and io_bp_override are identical.
6243 * If they are not, then it indicates that the bp was replaced with
6244 * the bp in the DDT and the override bp is freed. This allows
6245 * us to arrive here with a reference on a block that is being
6246 * freed. So if we have an I/O in progress, or a reference to
6247 * this hdr, then we don't destroy the hdr.
6249 if (!HDR_HAS_L1HDR(hdr
) ||
6250 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6251 arc_change_state(arc_anon
, hdr
);
6252 arc_hdr_destroy(hdr
);
6253 mutex_exit(hash_lock
);
6255 mutex_exit(hash_lock
);
6261 * Release this buffer from the cache, making it an anonymous buffer. This
6262 * must be done after a read and prior to modifying the buffer contents.
6263 * If the buffer has more than one reference, we must make
6264 * a new hdr for the buffer.
6267 arc_release(arc_buf_t
*buf
, const void *tag
)
6269 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6272 * It would be nice to assert that if its DMU metadata (level >
6273 * 0 || it's the dnode file), then it must be syncing context.
6274 * But we don't know that information at this level.
6277 ASSERT(HDR_HAS_L1HDR(hdr
));
6280 * We don't grab the hash lock prior to this check, because if
6281 * the buffer's header is in the arc_anon state, it won't be
6282 * linked into the hash table.
6284 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
6285 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6286 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
6287 ASSERT(!HDR_HAS_L2HDR(hdr
));
6289 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, buf
);
6290 ASSERT(ARC_BUF_LAST(buf
));
6291 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), ==, 1);
6292 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6294 hdr
->b_l1hdr
.b_arc_access
= 0;
6297 * If the buf is being overridden then it may already
6298 * have a hdr that is not empty.
6300 buf_discard_identity(hdr
);
6306 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
6307 mutex_enter(hash_lock
);
6310 * This assignment is only valid as long as the hash_lock is
6311 * held, we must be careful not to reference state or the
6312 * b_state field after dropping the lock.
6314 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
6315 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
6316 ASSERT3P(state
, !=, arc_anon
);
6318 /* this buffer is not on any list */
6319 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), >, 0);
6321 if (HDR_HAS_L2HDR(hdr
)) {
6322 mutex_enter(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6325 * We have to recheck this conditional again now that
6326 * we're holding the l2ad_mtx to prevent a race with
6327 * another thread which might be concurrently calling
6328 * l2arc_evict(). In that case, l2arc_evict() might have
6329 * destroyed the header's L2 portion as we were waiting
6330 * to acquire the l2ad_mtx.
6332 if (HDR_HAS_L2HDR(hdr
))
6333 arc_hdr_l2hdr_destroy(hdr
);
6335 mutex_exit(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6339 * Do we have more than one buf?
6341 if (hdr
->b_l1hdr
.b_buf
!= buf
|| !ARC_BUF_LAST(buf
)) {
6342 arc_buf_hdr_t
*nhdr
;
6343 uint64_t spa
= hdr
->b_spa
;
6344 uint64_t psize
= HDR_GET_PSIZE(hdr
);
6345 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
6346 boolean_t
protected = HDR_PROTECTED(hdr
);
6347 enum zio_compress compress
= arc_hdr_get_compress(hdr
);
6348 arc_buf_contents_t type
= arc_buf_type(hdr
);
6349 VERIFY3U(hdr
->b_type
, ==, type
);
6351 ASSERT(hdr
->b_l1hdr
.b_buf
!= buf
|| buf
->b_next
!= NULL
);
6352 VERIFY3S(remove_reference(hdr
, tag
), >, 0);
6354 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
6355 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6356 ASSERT(ARC_BUF_LAST(buf
));
6360 * Pull the data off of this hdr and attach it to
6361 * a new anonymous hdr. Also find the last buffer
6362 * in the hdr's buffer list.
6364 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
6365 ASSERT3P(lastbuf
, !=, NULL
);
6368 * If the current arc_buf_t and the hdr are sharing their data
6369 * buffer, then we must stop sharing that block.
6371 if (ARC_BUF_SHARED(buf
)) {
6372 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6373 ASSERT(!arc_buf_is_shared(lastbuf
));
6376 * First, sever the block sharing relationship between
6377 * buf and the arc_buf_hdr_t.
6379 arc_unshare_buf(hdr
, buf
);
6382 * Now we need to recreate the hdr's b_pabd. Since we
6383 * have lastbuf handy, we try to share with it, but if
6384 * we can't then we allocate a new b_pabd and copy the
6385 * data from buf into it.
6387 if (arc_can_share(hdr
, lastbuf
)) {
6388 arc_share_buf(hdr
, lastbuf
);
6390 arc_hdr_alloc_abd(hdr
, 0);
6391 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
,
6392 buf
->b_data
, psize
);
6394 VERIFY3P(lastbuf
->b_data
, !=, NULL
);
6395 } else if (HDR_SHARED_DATA(hdr
)) {
6397 * Uncompressed shared buffers are always at the end
6398 * of the list. Compressed buffers don't have the
6399 * same requirements. This makes it hard to
6400 * simply assert that the lastbuf is shared so
6401 * we rely on the hdr's compression flags to determine
6402 * if we have a compressed, shared buffer.
6404 ASSERT(arc_buf_is_shared(lastbuf
) ||
6405 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
6406 ASSERT(!arc_buf_is_shared(buf
));
6409 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
6410 ASSERT3P(state
, !=, arc_l2c_only
);
6412 (void) zfs_refcount_remove_many(&state
->arcs_size
[type
],
6413 arc_buf_size(buf
), buf
);
6415 if (zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6416 ASSERT3P(state
, !=, arc_l2c_only
);
6417 (void) zfs_refcount_remove_many(
6418 &state
->arcs_esize
[type
],
6419 arc_buf_size(buf
), buf
);
6422 arc_cksum_verify(buf
);
6423 arc_buf_unwatch(buf
);
6425 /* if this is the last uncompressed buf free the checksum */
6426 if (!arc_hdr_has_uncompressed_buf(hdr
))
6427 arc_cksum_free(hdr
);
6429 mutex_exit(hash_lock
);
6431 nhdr
= arc_hdr_alloc(spa
, psize
, lsize
, protected,
6432 compress
, hdr
->b_complevel
, type
);
6433 ASSERT3P(nhdr
->b_l1hdr
.b_buf
, ==, NULL
);
6434 ASSERT0(zfs_refcount_count(&nhdr
->b_l1hdr
.b_refcnt
));
6435 VERIFY3U(nhdr
->b_type
, ==, type
);
6436 ASSERT(!HDR_SHARED_DATA(nhdr
));
6438 nhdr
->b_l1hdr
.b_buf
= buf
;
6439 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, tag
);
6442 (void) zfs_refcount_add_many(&arc_anon
->arcs_size
[type
],
6443 arc_buf_size(buf
), buf
);
6445 ASSERT(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 1);
6446 /* protected by hash lock, or hdr is on arc_anon */
6447 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6448 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6449 hdr
->b_l1hdr
.b_mru_hits
= 0;
6450 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6451 hdr
->b_l1hdr
.b_mfu_hits
= 0;
6452 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6453 arc_change_state(arc_anon
, hdr
);
6454 hdr
->b_l1hdr
.b_arc_access
= 0;
6456 mutex_exit(hash_lock
);
6457 buf_discard_identity(hdr
);
6463 arc_released(arc_buf_t
*buf
)
6465 return (buf
->b_data
!= NULL
&&
6466 buf
->b_hdr
->b_l1hdr
.b_state
== arc_anon
);
6471 arc_referenced(arc_buf_t
*buf
)
6473 return (zfs_refcount_count(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6478 arc_write_ready(zio_t
*zio
)
6480 arc_write_callback_t
*callback
= zio
->io_private
;
6481 arc_buf_t
*buf
= callback
->awcb_buf
;
6482 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6483 blkptr_t
*bp
= zio
->io_bp
;
6484 uint64_t psize
= BP_IS_HOLE(bp
) ? 0 : BP_GET_PSIZE(bp
);
6485 fstrans_cookie_t cookie
= spl_fstrans_mark();
6487 ASSERT(HDR_HAS_L1HDR(hdr
));
6488 ASSERT(!zfs_refcount_is_zero(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6489 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
6492 * If we're reexecuting this zio because the pool suspended, then
6493 * cleanup any state that was previously set the first time the
6494 * callback was invoked.
6496 if (zio
->io_flags
& ZIO_FLAG_REEXECUTED
) {
6497 arc_cksum_free(hdr
);
6498 arc_buf_unwatch(buf
);
6499 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6500 if (ARC_BUF_SHARED(buf
)) {
6501 arc_unshare_buf(hdr
, buf
);
6503 ASSERT(!arc_buf_is_shared(buf
));
6504 arc_hdr_free_abd(hdr
, B_FALSE
);
6508 if (HDR_HAS_RABD(hdr
))
6509 arc_hdr_free_abd(hdr
, B_TRUE
);
6511 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6512 ASSERT(!HDR_HAS_RABD(hdr
));
6513 ASSERT(!HDR_SHARED_DATA(hdr
));
6514 ASSERT(!arc_buf_is_shared(buf
));
6516 callback
->awcb_ready(zio
, buf
, callback
->awcb_private
);
6518 if (HDR_IO_IN_PROGRESS(hdr
)) {
6519 ASSERT(zio
->io_flags
& ZIO_FLAG_REEXECUTED
);
6521 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6522 add_reference(hdr
, hdr
); /* For IO_IN_PROGRESS. */
6525 if (BP_IS_PROTECTED(bp
)) {
6526 /* ZIL blocks are written through zio_rewrite */
6527 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
6529 if (BP_SHOULD_BYTESWAP(bp
)) {
6530 if (BP_GET_LEVEL(bp
) > 0) {
6531 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
6533 hdr
->b_l1hdr
.b_byteswap
=
6534 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
6537 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
6540 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
6541 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
6542 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
6543 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
6544 hdr
->b_crypt_hdr
.b_iv
);
6545 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
6547 arc_hdr_clear_flags(hdr
, ARC_FLAG_PROTECTED
);
6551 * If this block was written for raw encryption but the zio layer
6552 * ended up only authenticating it, adjust the buffer flags now.
6554 if (BP_IS_AUTHENTICATED(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6555 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6556 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6557 if (BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_OFF
)
6558 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6559 } else if (BP_IS_HOLE(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6560 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6561 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6564 /* this must be done after the buffer flags are adjusted */
6565 arc_cksum_compute(buf
);
6567 enum zio_compress compress
;
6568 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
6569 compress
= ZIO_COMPRESS_OFF
;
6571 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
6572 compress
= BP_GET_COMPRESS(bp
);
6574 HDR_SET_PSIZE(hdr
, psize
);
6575 arc_hdr_set_compress(hdr
, compress
);
6576 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
6578 if (zio
->io_error
!= 0 || psize
== 0)
6582 * Fill the hdr with data. If the buffer is encrypted we have no choice
6583 * but to copy the data into b_radb. If the hdr is compressed, the data
6584 * we want is available from the zio, otherwise we can take it from
6587 * We might be able to share the buf's data with the hdr here. However,
6588 * doing so would cause the ARC to be full of linear ABDs if we write a
6589 * lot of shareable data. As a compromise, we check whether scattered
6590 * ABDs are allowed, and assume that if they are then the user wants
6591 * the ARC to be primarily filled with them regardless of the data being
6592 * written. Therefore, if they're allowed then we allocate one and copy
6593 * the data into it; otherwise, we share the data directly if we can.
6595 if (ARC_BUF_ENCRYPTED(buf
)) {
6596 ASSERT3U(psize
, >, 0);
6597 ASSERT(ARC_BUF_COMPRESSED(buf
));
6598 arc_hdr_alloc_abd(hdr
, ARC_HDR_ALLOC_RDATA
|
6599 ARC_HDR_USE_RESERVE
);
6600 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6601 } else if (!(HDR_UNCACHED(hdr
) ||
6602 abd_size_alloc_linear(arc_buf_size(buf
))) ||
6603 !arc_can_share(hdr
, buf
)) {
6605 * Ideally, we would always copy the io_abd into b_pabd, but the
6606 * user may have disabled compressed ARC, thus we must check the
6607 * hdr's compression setting rather than the io_bp's.
6609 if (BP_IS_ENCRYPTED(bp
)) {
6610 ASSERT3U(psize
, >, 0);
6611 arc_hdr_alloc_abd(hdr
, ARC_HDR_ALLOC_RDATA
|
6612 ARC_HDR_USE_RESERVE
);
6613 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6614 } else if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
6615 !ARC_BUF_COMPRESSED(buf
)) {
6616 ASSERT3U(psize
, >, 0);
6617 arc_hdr_alloc_abd(hdr
, ARC_HDR_USE_RESERVE
);
6618 abd_copy(hdr
->b_l1hdr
.b_pabd
, zio
->io_abd
, psize
);
6620 ASSERT3U(zio
->io_orig_size
, ==, arc_hdr_size(hdr
));
6621 arc_hdr_alloc_abd(hdr
, ARC_HDR_USE_RESERVE
);
6622 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
6626 ASSERT3P(buf
->b_data
, ==, abd_to_buf(zio
->io_orig_abd
));
6627 ASSERT3U(zio
->io_orig_size
, ==, arc_buf_size(buf
));
6628 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, buf
);
6629 ASSERT(ARC_BUF_LAST(buf
));
6631 arc_share_buf(hdr
, buf
);
6635 arc_hdr_verify(hdr
, bp
);
6636 spl_fstrans_unmark(cookie
);
6640 arc_write_children_ready(zio_t
*zio
)
6642 arc_write_callback_t
*callback
= zio
->io_private
;
6643 arc_buf_t
*buf
= callback
->awcb_buf
;
6645 callback
->awcb_children_ready(zio
, buf
, callback
->awcb_private
);
6649 arc_write_done(zio_t
*zio
)
6651 arc_write_callback_t
*callback
= zio
->io_private
;
6652 arc_buf_t
*buf
= callback
->awcb_buf
;
6653 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6655 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6657 if (zio
->io_error
== 0) {
6658 arc_hdr_verify(hdr
, zio
->io_bp
);
6660 if (BP_IS_HOLE(zio
->io_bp
) || BP_IS_EMBEDDED(zio
->io_bp
)) {
6661 buf_discard_identity(hdr
);
6663 hdr
->b_dva
= *BP_IDENTITY(zio
->io_bp
);
6664 hdr
->b_birth
= BP_GET_BIRTH(zio
->io_bp
);
6667 ASSERT(HDR_EMPTY(hdr
));
6671 * If the block to be written was all-zero or compressed enough to be
6672 * embedded in the BP, no write was performed so there will be no
6673 * dva/birth/checksum. The buffer must therefore remain anonymous
6676 if (!HDR_EMPTY(hdr
)) {
6677 arc_buf_hdr_t
*exists
;
6678 kmutex_t
*hash_lock
;
6680 ASSERT3U(zio
->io_error
, ==, 0);
6682 arc_cksum_verify(buf
);
6684 exists
= buf_hash_insert(hdr
, &hash_lock
);
6685 if (exists
!= NULL
) {
6687 * This can only happen if we overwrite for
6688 * sync-to-convergence, because we remove
6689 * buffers from the hash table when we arc_free().
6691 if (zio
->io_flags
& ZIO_FLAG_IO_REWRITE
) {
6692 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6693 panic("bad overwrite, hdr=%p exists=%p",
6694 (void *)hdr
, (void *)exists
);
6695 ASSERT(zfs_refcount_is_zero(
6696 &exists
->b_l1hdr
.b_refcnt
));
6697 arc_change_state(arc_anon
, exists
);
6698 arc_hdr_destroy(exists
);
6699 mutex_exit(hash_lock
);
6700 exists
= buf_hash_insert(hdr
, &hash_lock
);
6701 ASSERT3P(exists
, ==, NULL
);
6702 } else if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
6704 ASSERT(zio
->io_prop
.zp_nopwrite
);
6705 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6706 panic("bad nopwrite, hdr=%p exists=%p",
6707 (void *)hdr
, (void *)exists
);
6710 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
6711 ASSERT(ARC_BUF_LAST(hdr
->b_l1hdr
.b_buf
));
6712 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
6713 ASSERT(BP_GET_DEDUP(zio
->io_bp
));
6714 ASSERT(BP_GET_LEVEL(zio
->io_bp
) == 0);
6717 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6718 VERIFY3S(remove_reference(hdr
, hdr
), >, 0);
6719 /* if it's not anon, we are doing a scrub */
6720 if (exists
== NULL
&& hdr
->b_l1hdr
.b_state
== arc_anon
)
6721 arc_access(hdr
, 0, B_FALSE
);
6722 mutex_exit(hash_lock
);
6724 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6725 VERIFY3S(remove_reference(hdr
, hdr
), >, 0);
6728 callback
->awcb_done(zio
, buf
, callback
->awcb_private
);
6730 abd_free(zio
->io_abd
);
6731 kmem_free(callback
, sizeof (arc_write_callback_t
));
6735 arc_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
,
6736 blkptr_t
*bp
, arc_buf_t
*buf
, boolean_t uncached
, boolean_t l2arc
,
6737 const zio_prop_t
*zp
, arc_write_done_func_t
*ready
,
6738 arc_write_done_func_t
*children_ready
, arc_write_done_func_t
*done
,
6739 void *private, zio_priority_t priority
, int zio_flags
,
6740 const zbookmark_phys_t
*zb
)
6742 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6743 arc_write_callback_t
*callback
;
6745 zio_prop_t localprop
= *zp
;
6747 ASSERT3P(ready
, !=, NULL
);
6748 ASSERT3P(done
, !=, NULL
);
6749 ASSERT(!HDR_IO_ERROR(hdr
));
6750 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6751 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6752 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
6754 arc_hdr_set_flags(hdr
, ARC_FLAG_UNCACHED
);
6756 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6758 if (ARC_BUF_ENCRYPTED(buf
)) {
6759 ASSERT(ARC_BUF_COMPRESSED(buf
));
6760 localprop
.zp_encrypt
= B_TRUE
;
6761 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
6762 localprop
.zp_complevel
= hdr
->b_complevel
;
6763 localprop
.zp_byteorder
=
6764 (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
6765 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
6766 memcpy(localprop
.zp_salt
, hdr
->b_crypt_hdr
.b_salt
,
6768 memcpy(localprop
.zp_iv
, hdr
->b_crypt_hdr
.b_iv
,
6770 memcpy(localprop
.zp_mac
, hdr
->b_crypt_hdr
.b_mac
,
6772 if (DMU_OT_IS_ENCRYPTED(localprop
.zp_type
)) {
6773 localprop
.zp_nopwrite
= B_FALSE
;
6774 localprop
.zp_copies
=
6775 MIN(localprop
.zp_copies
, SPA_DVAS_PER_BP
- 1);
6777 zio_flags
|= ZIO_FLAG_RAW
;
6778 } else if (ARC_BUF_COMPRESSED(buf
)) {
6779 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, arc_buf_size(buf
));
6780 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
6781 localprop
.zp_complevel
= hdr
->b_complevel
;
6782 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6784 callback
= kmem_zalloc(sizeof (arc_write_callback_t
), KM_SLEEP
);
6785 callback
->awcb_ready
= ready
;
6786 callback
->awcb_children_ready
= children_ready
;
6787 callback
->awcb_done
= done
;
6788 callback
->awcb_private
= private;
6789 callback
->awcb_buf
= buf
;
6792 * The hdr's b_pabd is now stale, free it now. A new data block
6793 * will be allocated when the zio pipeline calls arc_write_ready().
6795 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6797 * If the buf is currently sharing the data block with
6798 * the hdr then we need to break that relationship here.
6799 * The hdr will remain with a NULL data pointer and the
6800 * buf will take sole ownership of the block.
6802 if (ARC_BUF_SHARED(buf
)) {
6803 arc_unshare_buf(hdr
, buf
);
6805 ASSERT(!arc_buf_is_shared(buf
));
6806 arc_hdr_free_abd(hdr
, B_FALSE
);
6808 VERIFY3P(buf
->b_data
, !=, NULL
);
6811 if (HDR_HAS_RABD(hdr
))
6812 arc_hdr_free_abd(hdr
, B_TRUE
);
6814 if (!(zio_flags
& ZIO_FLAG_RAW
))
6815 arc_hdr_set_compress(hdr
, ZIO_COMPRESS_OFF
);
6817 ASSERT(!arc_buf_is_shared(buf
));
6818 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6820 zio
= zio_write(pio
, spa
, txg
, bp
,
6821 abd_get_from_buf(buf
->b_data
, HDR_GET_LSIZE(hdr
)),
6822 HDR_GET_LSIZE(hdr
), arc_buf_size(buf
), &localprop
, arc_write_ready
,
6823 (children_ready
!= NULL
) ? arc_write_children_ready
: NULL
,
6824 arc_write_done
, callback
, priority
, zio_flags
, zb
);
6830 arc_tempreserve_clear(uint64_t reserve
)
6832 atomic_add_64(&arc_tempreserve
, -reserve
);
6833 ASSERT((int64_t)arc_tempreserve
>= 0);
6837 arc_tempreserve_space(spa_t
*spa
, uint64_t reserve
, uint64_t txg
)
6843 reserve
> arc_c
/4 &&
6844 reserve
* 4 > (2ULL << SPA_MAXBLOCKSHIFT
))
6845 arc_c
= MIN(arc_c_max
, reserve
* 4);
6848 * Throttle when the calculated memory footprint for the TXG
6849 * exceeds the target ARC size.
6851 if (reserve
> arc_c
) {
6852 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve
);
6853 return (SET_ERROR(ERESTART
));
6857 * Don't count loaned bufs as in flight dirty data to prevent long
6858 * network delays from blocking transactions that are ready to be
6859 * assigned to a txg.
6862 /* assert that it has not wrapped around */
6863 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
6865 anon_size
= MAX((int64_t)
6866 (zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]) +
6867 zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]) -
6868 arc_loaned_bytes
), 0);
6871 * Writes will, almost always, require additional memory allocations
6872 * in order to compress/encrypt/etc the data. We therefore need to
6873 * make sure that there is sufficient available memory for this.
6875 error
= arc_memory_throttle(spa
, reserve
, txg
);
6880 * Throttle writes when the amount of dirty data in the cache
6881 * gets too large. We try to keep the cache less than half full
6882 * of dirty blocks so that our sync times don't grow too large.
6884 * In the case of one pool being built on another pool, we want
6885 * to make sure we don't end up throttling the lower (backing)
6886 * pool when the upper pool is the majority contributor to dirty
6887 * data. To insure we make forward progress during throttling, we
6888 * also check the current pool's net dirty data and only throttle
6889 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6890 * data in the cache.
6892 * Note: if two requests come in concurrently, we might let them
6893 * both succeed, when one of them should fail. Not a huge deal.
6895 uint64_t total_dirty
= reserve
+ arc_tempreserve
+ anon_size
;
6896 uint64_t spa_dirty_anon
= spa_dirty_data(spa
);
6897 uint64_t rarc_c
= arc_warm
? arc_c
: arc_c_max
;
6898 if (total_dirty
> rarc_c
* zfs_arc_dirty_limit_percent
/ 100 &&
6899 anon_size
> rarc_c
* zfs_arc_anon_limit_percent
/ 100 &&
6900 spa_dirty_anon
> anon_size
* zfs_arc_pool_dirty_percent
/ 100) {
6902 uint64_t meta_esize
= zfs_refcount_count(
6903 &arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
6904 uint64_t data_esize
=
6905 zfs_refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
6906 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6907 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6908 (u_longlong_t
)arc_tempreserve
>> 10,
6909 (u_longlong_t
)meta_esize
>> 10,
6910 (u_longlong_t
)data_esize
>> 10,
6911 (u_longlong_t
)reserve
>> 10,
6912 (u_longlong_t
)rarc_c
>> 10);
6914 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle
);
6915 return (SET_ERROR(ERESTART
));
6917 atomic_add_64(&arc_tempreserve
, reserve
);
6922 arc_kstat_update_state(arc_state_t
*state
, kstat_named_t
*size
,
6923 kstat_named_t
*data
, kstat_named_t
*metadata
,
6924 kstat_named_t
*evict_data
, kstat_named_t
*evict_metadata
)
6927 zfs_refcount_count(&state
->arcs_size
[ARC_BUFC_DATA
]);
6928 metadata
->value
.ui64
=
6929 zfs_refcount_count(&state
->arcs_size
[ARC_BUFC_METADATA
]);
6930 size
->value
.ui64
= data
->value
.ui64
+ metadata
->value
.ui64
;
6931 evict_data
->value
.ui64
=
6932 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_DATA
]);
6933 evict_metadata
->value
.ui64
=
6934 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_METADATA
]);
6938 arc_kstat_update(kstat_t
*ksp
, int rw
)
6940 arc_stats_t
*as
= ksp
->ks_data
;
6942 if (rw
== KSTAT_WRITE
)
6943 return (SET_ERROR(EACCES
));
6945 as
->arcstat_hits
.value
.ui64
=
6946 wmsum_value(&arc_sums
.arcstat_hits
);
6947 as
->arcstat_iohits
.value
.ui64
=
6948 wmsum_value(&arc_sums
.arcstat_iohits
);
6949 as
->arcstat_misses
.value
.ui64
=
6950 wmsum_value(&arc_sums
.arcstat_misses
);
6951 as
->arcstat_demand_data_hits
.value
.ui64
=
6952 wmsum_value(&arc_sums
.arcstat_demand_data_hits
);
6953 as
->arcstat_demand_data_iohits
.value
.ui64
=
6954 wmsum_value(&arc_sums
.arcstat_demand_data_iohits
);
6955 as
->arcstat_demand_data_misses
.value
.ui64
=
6956 wmsum_value(&arc_sums
.arcstat_demand_data_misses
);
6957 as
->arcstat_demand_metadata_hits
.value
.ui64
=
6958 wmsum_value(&arc_sums
.arcstat_demand_metadata_hits
);
6959 as
->arcstat_demand_metadata_iohits
.value
.ui64
=
6960 wmsum_value(&arc_sums
.arcstat_demand_metadata_iohits
);
6961 as
->arcstat_demand_metadata_misses
.value
.ui64
=
6962 wmsum_value(&arc_sums
.arcstat_demand_metadata_misses
);
6963 as
->arcstat_prefetch_data_hits
.value
.ui64
=
6964 wmsum_value(&arc_sums
.arcstat_prefetch_data_hits
);
6965 as
->arcstat_prefetch_data_iohits
.value
.ui64
=
6966 wmsum_value(&arc_sums
.arcstat_prefetch_data_iohits
);
6967 as
->arcstat_prefetch_data_misses
.value
.ui64
=
6968 wmsum_value(&arc_sums
.arcstat_prefetch_data_misses
);
6969 as
->arcstat_prefetch_metadata_hits
.value
.ui64
=
6970 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_hits
);
6971 as
->arcstat_prefetch_metadata_iohits
.value
.ui64
=
6972 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_iohits
);
6973 as
->arcstat_prefetch_metadata_misses
.value
.ui64
=
6974 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_misses
);
6975 as
->arcstat_mru_hits
.value
.ui64
=
6976 wmsum_value(&arc_sums
.arcstat_mru_hits
);
6977 as
->arcstat_mru_ghost_hits
.value
.ui64
=
6978 wmsum_value(&arc_sums
.arcstat_mru_ghost_hits
);
6979 as
->arcstat_mfu_hits
.value
.ui64
=
6980 wmsum_value(&arc_sums
.arcstat_mfu_hits
);
6981 as
->arcstat_mfu_ghost_hits
.value
.ui64
=
6982 wmsum_value(&arc_sums
.arcstat_mfu_ghost_hits
);
6983 as
->arcstat_uncached_hits
.value
.ui64
=
6984 wmsum_value(&arc_sums
.arcstat_uncached_hits
);
6985 as
->arcstat_deleted
.value
.ui64
=
6986 wmsum_value(&arc_sums
.arcstat_deleted
);
6987 as
->arcstat_mutex_miss
.value
.ui64
=
6988 wmsum_value(&arc_sums
.arcstat_mutex_miss
);
6989 as
->arcstat_access_skip
.value
.ui64
=
6990 wmsum_value(&arc_sums
.arcstat_access_skip
);
6991 as
->arcstat_evict_skip
.value
.ui64
=
6992 wmsum_value(&arc_sums
.arcstat_evict_skip
);
6993 as
->arcstat_evict_not_enough
.value
.ui64
=
6994 wmsum_value(&arc_sums
.arcstat_evict_not_enough
);
6995 as
->arcstat_evict_l2_cached
.value
.ui64
=
6996 wmsum_value(&arc_sums
.arcstat_evict_l2_cached
);
6997 as
->arcstat_evict_l2_eligible
.value
.ui64
=
6998 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible
);
6999 as
->arcstat_evict_l2_eligible_mfu
.value
.ui64
=
7000 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7001 as
->arcstat_evict_l2_eligible_mru
.value
.ui64
=
7002 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7003 as
->arcstat_evict_l2_ineligible
.value
.ui64
=
7004 wmsum_value(&arc_sums
.arcstat_evict_l2_ineligible
);
7005 as
->arcstat_evict_l2_skip
.value
.ui64
=
7006 wmsum_value(&arc_sums
.arcstat_evict_l2_skip
);
7007 as
->arcstat_hash_elements
.value
.ui64
=
7008 as
->arcstat_hash_elements_max
.value
.ui64
=
7009 wmsum_value(&arc_sums
.arcstat_hash_elements
);
7010 as
->arcstat_hash_collisions
.value
.ui64
=
7011 wmsum_value(&arc_sums
.arcstat_hash_collisions
);
7012 as
->arcstat_hash_chains
.value
.ui64
=
7013 wmsum_value(&arc_sums
.arcstat_hash_chains
);
7014 as
->arcstat_size
.value
.ui64
=
7015 aggsum_value(&arc_sums
.arcstat_size
);
7016 as
->arcstat_compressed_size
.value
.ui64
=
7017 wmsum_value(&arc_sums
.arcstat_compressed_size
);
7018 as
->arcstat_uncompressed_size
.value
.ui64
=
7019 wmsum_value(&arc_sums
.arcstat_uncompressed_size
);
7020 as
->arcstat_overhead_size
.value
.ui64
=
7021 wmsum_value(&arc_sums
.arcstat_overhead_size
);
7022 as
->arcstat_hdr_size
.value
.ui64
=
7023 wmsum_value(&arc_sums
.arcstat_hdr_size
);
7024 as
->arcstat_data_size
.value
.ui64
=
7025 wmsum_value(&arc_sums
.arcstat_data_size
);
7026 as
->arcstat_metadata_size
.value
.ui64
=
7027 wmsum_value(&arc_sums
.arcstat_metadata_size
);
7028 as
->arcstat_dbuf_size
.value
.ui64
=
7029 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7030 #if defined(COMPAT_FREEBSD11)
7031 as
->arcstat_other_size
.value
.ui64
=
7032 wmsum_value(&arc_sums
.arcstat_bonus_size
) +
7033 wmsum_value(&arc_sums
.arcstat_dnode_size
) +
7034 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7037 arc_kstat_update_state(arc_anon
,
7038 &as
->arcstat_anon_size
,
7039 &as
->arcstat_anon_data
,
7040 &as
->arcstat_anon_metadata
,
7041 &as
->arcstat_anon_evictable_data
,
7042 &as
->arcstat_anon_evictable_metadata
);
7043 arc_kstat_update_state(arc_mru
,
7044 &as
->arcstat_mru_size
,
7045 &as
->arcstat_mru_data
,
7046 &as
->arcstat_mru_metadata
,
7047 &as
->arcstat_mru_evictable_data
,
7048 &as
->arcstat_mru_evictable_metadata
);
7049 arc_kstat_update_state(arc_mru_ghost
,
7050 &as
->arcstat_mru_ghost_size
,
7051 &as
->arcstat_mru_ghost_data
,
7052 &as
->arcstat_mru_ghost_metadata
,
7053 &as
->arcstat_mru_ghost_evictable_data
,
7054 &as
->arcstat_mru_ghost_evictable_metadata
);
7055 arc_kstat_update_state(arc_mfu
,
7056 &as
->arcstat_mfu_size
,
7057 &as
->arcstat_mfu_data
,
7058 &as
->arcstat_mfu_metadata
,
7059 &as
->arcstat_mfu_evictable_data
,
7060 &as
->arcstat_mfu_evictable_metadata
);
7061 arc_kstat_update_state(arc_mfu_ghost
,
7062 &as
->arcstat_mfu_ghost_size
,
7063 &as
->arcstat_mfu_ghost_data
,
7064 &as
->arcstat_mfu_ghost_metadata
,
7065 &as
->arcstat_mfu_ghost_evictable_data
,
7066 &as
->arcstat_mfu_ghost_evictable_metadata
);
7067 arc_kstat_update_state(arc_uncached
,
7068 &as
->arcstat_uncached_size
,
7069 &as
->arcstat_uncached_data
,
7070 &as
->arcstat_uncached_metadata
,
7071 &as
->arcstat_uncached_evictable_data
,
7072 &as
->arcstat_uncached_evictable_metadata
);
7074 as
->arcstat_dnode_size
.value
.ui64
=
7075 wmsum_value(&arc_sums
.arcstat_dnode_size
);
7076 as
->arcstat_bonus_size
.value
.ui64
=
7077 wmsum_value(&arc_sums
.arcstat_bonus_size
);
7078 as
->arcstat_l2_hits
.value
.ui64
=
7079 wmsum_value(&arc_sums
.arcstat_l2_hits
);
7080 as
->arcstat_l2_misses
.value
.ui64
=
7081 wmsum_value(&arc_sums
.arcstat_l2_misses
);
7082 as
->arcstat_l2_prefetch_asize
.value
.ui64
=
7083 wmsum_value(&arc_sums
.arcstat_l2_prefetch_asize
);
7084 as
->arcstat_l2_mru_asize
.value
.ui64
=
7085 wmsum_value(&arc_sums
.arcstat_l2_mru_asize
);
7086 as
->arcstat_l2_mfu_asize
.value
.ui64
=
7087 wmsum_value(&arc_sums
.arcstat_l2_mfu_asize
);
7088 as
->arcstat_l2_bufc_data_asize
.value
.ui64
=
7089 wmsum_value(&arc_sums
.arcstat_l2_bufc_data_asize
);
7090 as
->arcstat_l2_bufc_metadata_asize
.value
.ui64
=
7091 wmsum_value(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7092 as
->arcstat_l2_feeds
.value
.ui64
=
7093 wmsum_value(&arc_sums
.arcstat_l2_feeds
);
7094 as
->arcstat_l2_rw_clash
.value
.ui64
=
7095 wmsum_value(&arc_sums
.arcstat_l2_rw_clash
);
7096 as
->arcstat_l2_read_bytes
.value
.ui64
=
7097 wmsum_value(&arc_sums
.arcstat_l2_read_bytes
);
7098 as
->arcstat_l2_write_bytes
.value
.ui64
=
7099 wmsum_value(&arc_sums
.arcstat_l2_write_bytes
);
7100 as
->arcstat_l2_writes_sent
.value
.ui64
=
7101 wmsum_value(&arc_sums
.arcstat_l2_writes_sent
);
7102 as
->arcstat_l2_writes_done
.value
.ui64
=
7103 wmsum_value(&arc_sums
.arcstat_l2_writes_done
);
7104 as
->arcstat_l2_writes_error
.value
.ui64
=
7105 wmsum_value(&arc_sums
.arcstat_l2_writes_error
);
7106 as
->arcstat_l2_writes_lock_retry
.value
.ui64
=
7107 wmsum_value(&arc_sums
.arcstat_l2_writes_lock_retry
);
7108 as
->arcstat_l2_evict_lock_retry
.value
.ui64
=
7109 wmsum_value(&arc_sums
.arcstat_l2_evict_lock_retry
);
7110 as
->arcstat_l2_evict_reading
.value
.ui64
=
7111 wmsum_value(&arc_sums
.arcstat_l2_evict_reading
);
7112 as
->arcstat_l2_evict_l1cached
.value
.ui64
=
7113 wmsum_value(&arc_sums
.arcstat_l2_evict_l1cached
);
7114 as
->arcstat_l2_free_on_write
.value
.ui64
=
7115 wmsum_value(&arc_sums
.arcstat_l2_free_on_write
);
7116 as
->arcstat_l2_abort_lowmem
.value
.ui64
=
7117 wmsum_value(&arc_sums
.arcstat_l2_abort_lowmem
);
7118 as
->arcstat_l2_cksum_bad
.value
.ui64
=
7119 wmsum_value(&arc_sums
.arcstat_l2_cksum_bad
);
7120 as
->arcstat_l2_io_error
.value
.ui64
=
7121 wmsum_value(&arc_sums
.arcstat_l2_io_error
);
7122 as
->arcstat_l2_lsize
.value
.ui64
=
7123 wmsum_value(&arc_sums
.arcstat_l2_lsize
);
7124 as
->arcstat_l2_psize
.value
.ui64
=
7125 wmsum_value(&arc_sums
.arcstat_l2_psize
);
7126 as
->arcstat_l2_hdr_size
.value
.ui64
=
7127 aggsum_value(&arc_sums
.arcstat_l2_hdr_size
);
7128 as
->arcstat_l2_log_blk_writes
.value
.ui64
=
7129 wmsum_value(&arc_sums
.arcstat_l2_log_blk_writes
);
7130 as
->arcstat_l2_log_blk_asize
.value
.ui64
=
7131 wmsum_value(&arc_sums
.arcstat_l2_log_blk_asize
);
7132 as
->arcstat_l2_log_blk_count
.value
.ui64
=
7133 wmsum_value(&arc_sums
.arcstat_l2_log_blk_count
);
7134 as
->arcstat_l2_rebuild_success
.value
.ui64
=
7135 wmsum_value(&arc_sums
.arcstat_l2_rebuild_success
);
7136 as
->arcstat_l2_rebuild_abort_unsupported
.value
.ui64
=
7137 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7138 as
->arcstat_l2_rebuild_abort_io_errors
.value
.ui64
=
7139 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7140 as
->arcstat_l2_rebuild_abort_dh_errors
.value
.ui64
=
7141 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7142 as
->arcstat_l2_rebuild_abort_cksum_lb_errors
.value
.ui64
=
7143 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7144 as
->arcstat_l2_rebuild_abort_lowmem
.value
.ui64
=
7145 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7146 as
->arcstat_l2_rebuild_size
.value
.ui64
=
7147 wmsum_value(&arc_sums
.arcstat_l2_rebuild_size
);
7148 as
->arcstat_l2_rebuild_asize
.value
.ui64
=
7149 wmsum_value(&arc_sums
.arcstat_l2_rebuild_asize
);
7150 as
->arcstat_l2_rebuild_bufs
.value
.ui64
=
7151 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs
);
7152 as
->arcstat_l2_rebuild_bufs_precached
.value
.ui64
=
7153 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7154 as
->arcstat_l2_rebuild_log_blks
.value
.ui64
=
7155 wmsum_value(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7156 as
->arcstat_memory_throttle_count
.value
.ui64
=
7157 wmsum_value(&arc_sums
.arcstat_memory_throttle_count
);
7158 as
->arcstat_memory_direct_count
.value
.ui64
=
7159 wmsum_value(&arc_sums
.arcstat_memory_direct_count
);
7160 as
->arcstat_memory_indirect_count
.value
.ui64
=
7161 wmsum_value(&arc_sums
.arcstat_memory_indirect_count
);
7163 as
->arcstat_memory_all_bytes
.value
.ui64
=
7165 as
->arcstat_memory_free_bytes
.value
.ui64
=
7167 as
->arcstat_memory_available_bytes
.value
.i64
=
7168 arc_available_memory();
7170 as
->arcstat_prune
.value
.ui64
=
7171 wmsum_value(&arc_sums
.arcstat_prune
);
7172 as
->arcstat_meta_used
.value
.ui64
=
7173 wmsum_value(&arc_sums
.arcstat_meta_used
);
7174 as
->arcstat_async_upgrade_sync
.value
.ui64
=
7175 wmsum_value(&arc_sums
.arcstat_async_upgrade_sync
);
7176 as
->arcstat_predictive_prefetch
.value
.ui64
=
7177 wmsum_value(&arc_sums
.arcstat_predictive_prefetch
);
7178 as
->arcstat_demand_hit_predictive_prefetch
.value
.ui64
=
7179 wmsum_value(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7180 as
->arcstat_demand_iohit_predictive_prefetch
.value
.ui64
=
7181 wmsum_value(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
);
7182 as
->arcstat_prescient_prefetch
.value
.ui64
=
7183 wmsum_value(&arc_sums
.arcstat_prescient_prefetch
);
7184 as
->arcstat_demand_hit_prescient_prefetch
.value
.ui64
=
7185 wmsum_value(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7186 as
->arcstat_demand_iohit_prescient_prefetch
.value
.ui64
=
7187 wmsum_value(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
);
7188 as
->arcstat_raw_size
.value
.ui64
=
7189 wmsum_value(&arc_sums
.arcstat_raw_size
);
7190 as
->arcstat_cached_only_in_progress
.value
.ui64
=
7191 wmsum_value(&arc_sums
.arcstat_cached_only_in_progress
);
7192 as
->arcstat_abd_chunk_waste_size
.value
.ui64
=
7193 wmsum_value(&arc_sums
.arcstat_abd_chunk_waste_size
);
7199 * This function *must* return indices evenly distributed between all
7200 * sublists of the multilist. This is needed due to how the ARC eviction
7201 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7202 * distributed between all sublists and uses this assumption when
7203 * deciding which sublist to evict from and how much to evict from it.
7206 arc_state_multilist_index_func(multilist_t
*ml
, void *obj
)
7208 arc_buf_hdr_t
*hdr
= obj
;
7211 * We rely on b_dva to generate evenly distributed index
7212 * numbers using buf_hash below. So, as an added precaution,
7213 * let's make sure we never add empty buffers to the arc lists.
7215 ASSERT(!HDR_EMPTY(hdr
));
7218 * The assumption here, is the hash value for a given
7219 * arc_buf_hdr_t will remain constant throughout its lifetime
7220 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7221 * Thus, we don't need to store the header's sublist index
7222 * on insertion, as this index can be recalculated on removal.
7224 * Also, the low order bits of the hash value are thought to be
7225 * distributed evenly. Otherwise, in the case that the multilist
7226 * has a power of two number of sublists, each sublists' usage
7227 * would not be evenly distributed. In this context full 64bit
7228 * division would be a waste of time, so limit it to 32 bits.
7230 return ((unsigned int)buf_hash(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
) %
7231 multilist_get_num_sublists(ml
));
7235 arc_state_l2c_multilist_index_func(multilist_t
*ml
, void *obj
)
7237 panic("Header %p insert into arc_l2c_only %p", obj
, ml
);
7240 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7241 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7243 "ignoring tunable %s (using %llu instead)", \
7244 (#tuning), (u_longlong_t)(value)); \
7249 * Called during module initialization and periodically thereafter to
7250 * apply reasonable changes to the exposed performance tunings. Can also be
7251 * called explicitly by param_set_arc_*() functions when ARC tunables are
7252 * updated manually. Non-zero zfs_* values which differ from the currently set
7253 * values will be applied.
7256 arc_tuning_update(boolean_t verbose
)
7258 uint64_t allmem
= arc_all_memory();
7260 /* Valid range: 32M - <arc_c_max> */
7261 if ((zfs_arc_min
) && (zfs_arc_min
!= arc_c_min
) &&
7262 (zfs_arc_min
>= 2ULL << SPA_MAXBLOCKSHIFT
) &&
7263 (zfs_arc_min
<= arc_c_max
)) {
7264 arc_c_min
= zfs_arc_min
;
7265 arc_c
= MAX(arc_c
, arc_c_min
);
7267 WARN_IF_TUNING_IGNORED(zfs_arc_min
, arc_c_min
, verbose
);
7269 /* Valid range: 64M - <all physical memory> */
7270 if ((zfs_arc_max
) && (zfs_arc_max
!= arc_c_max
) &&
7271 (zfs_arc_max
>= MIN_ARC_MAX
) && (zfs_arc_max
< allmem
) &&
7272 (zfs_arc_max
> arc_c_min
)) {
7273 arc_c_max
= zfs_arc_max
;
7274 arc_c
= MIN(arc_c
, arc_c_max
);
7275 if (arc_dnode_limit
> arc_c_max
)
7276 arc_dnode_limit
= arc_c_max
;
7278 WARN_IF_TUNING_IGNORED(zfs_arc_max
, arc_c_max
, verbose
);
7280 /* Valid range: 0 - <all physical memory> */
7281 arc_dnode_limit
= zfs_arc_dnode_limit
? zfs_arc_dnode_limit
:
7282 MIN(zfs_arc_dnode_limit_percent
, 100) * arc_c_max
/ 100;
7283 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit
, arc_dnode_limit
, verbose
);
7285 /* Valid range: 1 - N */
7286 if (zfs_arc_grow_retry
)
7287 arc_grow_retry
= zfs_arc_grow_retry
;
7289 /* Valid range: 1 - N */
7290 if (zfs_arc_shrink_shift
) {
7291 arc_shrink_shift
= zfs_arc_shrink_shift
;
7292 arc_no_grow_shift
= MIN(arc_no_grow_shift
, arc_shrink_shift
-1);
7295 /* Valid range: 1 - N ms */
7296 if (zfs_arc_min_prefetch_ms
)
7297 arc_min_prefetch_ms
= zfs_arc_min_prefetch_ms
;
7299 /* Valid range: 1 - N ms */
7300 if (zfs_arc_min_prescient_prefetch_ms
) {
7301 arc_min_prescient_prefetch_ms
=
7302 zfs_arc_min_prescient_prefetch_ms
;
7305 /* Valid range: 0 - 100 */
7306 if (zfs_arc_lotsfree_percent
<= 100)
7307 arc_lotsfree_percent
= zfs_arc_lotsfree_percent
;
7308 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent
, arc_lotsfree_percent
,
7311 /* Valid range: 0 - <all physical memory> */
7312 if ((zfs_arc_sys_free
) && (zfs_arc_sys_free
!= arc_sys_free
))
7313 arc_sys_free
= MIN(zfs_arc_sys_free
, allmem
);
7314 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free
, arc_sys_free
, verbose
);
7318 arc_state_multilist_init(multilist_t
*ml
,
7319 multilist_sublist_index_func_t
*index_func
, int *maxcountp
)
7321 multilist_create(ml
, sizeof (arc_buf_hdr_t
),
7322 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
), index_func
);
7323 *maxcountp
= MAX(*maxcountp
, multilist_get_num_sublists(ml
));
7327 arc_state_init(void)
7329 int num_sublists
= 0;
7331 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
],
7332 arc_state_multilist_index_func
, &num_sublists
);
7333 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_DATA
],
7334 arc_state_multilist_index_func
, &num_sublists
);
7335 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7336 arc_state_multilist_index_func
, &num_sublists
);
7337 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
],
7338 arc_state_multilist_index_func
, &num_sublists
);
7339 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
],
7340 arc_state_multilist_index_func
, &num_sublists
);
7341 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
],
7342 arc_state_multilist_index_func
, &num_sublists
);
7343 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7344 arc_state_multilist_index_func
, &num_sublists
);
7345 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
],
7346 arc_state_multilist_index_func
, &num_sublists
);
7347 arc_state_multilist_init(&arc_uncached
->arcs_list
[ARC_BUFC_METADATA
],
7348 arc_state_multilist_index_func
, &num_sublists
);
7349 arc_state_multilist_init(&arc_uncached
->arcs_list
[ARC_BUFC_DATA
],
7350 arc_state_multilist_index_func
, &num_sublists
);
7353 * L2 headers should never be on the L2 state list since they don't
7354 * have L1 headers allocated. Special index function asserts that.
7356 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
],
7357 arc_state_l2c_multilist_index_func
, &num_sublists
);
7358 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
],
7359 arc_state_l2c_multilist_index_func
, &num_sublists
);
7362 * Keep track of the number of markers needed to reclaim buffers from
7363 * any ARC state. The markers will be pre-allocated so as to minimize
7364 * the number of memory allocations performed by the eviction thread.
7366 arc_state_evict_marker_count
= num_sublists
;
7368 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7369 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7370 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7371 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7372 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7373 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7374 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7375 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7376 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7377 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7378 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7379 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7380 zfs_refcount_create(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]);
7381 zfs_refcount_create(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]);
7383 zfs_refcount_create(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]);
7384 zfs_refcount_create(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]);
7385 zfs_refcount_create(&arc_mru
->arcs_size
[ARC_BUFC_DATA
]);
7386 zfs_refcount_create(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
]);
7387 zfs_refcount_create(&arc_mru_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7388 zfs_refcount_create(&arc_mru_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7389 zfs_refcount_create(&arc_mfu
->arcs_size
[ARC_BUFC_DATA
]);
7390 zfs_refcount_create(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
]);
7391 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7392 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7393 zfs_refcount_create(&arc_l2c_only
->arcs_size
[ARC_BUFC_DATA
]);
7394 zfs_refcount_create(&arc_l2c_only
->arcs_size
[ARC_BUFC_METADATA
]);
7395 zfs_refcount_create(&arc_uncached
->arcs_size
[ARC_BUFC_DATA
]);
7396 zfs_refcount_create(&arc_uncached
->arcs_size
[ARC_BUFC_METADATA
]);
7398 wmsum_init(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_DATA
], 0);
7399 wmsum_init(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_METADATA
], 0);
7400 wmsum_init(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_DATA
], 0);
7401 wmsum_init(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_METADATA
], 0);
7403 wmsum_init(&arc_sums
.arcstat_hits
, 0);
7404 wmsum_init(&arc_sums
.arcstat_iohits
, 0);
7405 wmsum_init(&arc_sums
.arcstat_misses
, 0);
7406 wmsum_init(&arc_sums
.arcstat_demand_data_hits
, 0);
7407 wmsum_init(&arc_sums
.arcstat_demand_data_iohits
, 0);
7408 wmsum_init(&arc_sums
.arcstat_demand_data_misses
, 0);
7409 wmsum_init(&arc_sums
.arcstat_demand_metadata_hits
, 0);
7410 wmsum_init(&arc_sums
.arcstat_demand_metadata_iohits
, 0);
7411 wmsum_init(&arc_sums
.arcstat_demand_metadata_misses
, 0);
7412 wmsum_init(&arc_sums
.arcstat_prefetch_data_hits
, 0);
7413 wmsum_init(&arc_sums
.arcstat_prefetch_data_iohits
, 0);
7414 wmsum_init(&arc_sums
.arcstat_prefetch_data_misses
, 0);
7415 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_hits
, 0);
7416 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_iohits
, 0);
7417 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_misses
, 0);
7418 wmsum_init(&arc_sums
.arcstat_mru_hits
, 0);
7419 wmsum_init(&arc_sums
.arcstat_mru_ghost_hits
, 0);
7420 wmsum_init(&arc_sums
.arcstat_mfu_hits
, 0);
7421 wmsum_init(&arc_sums
.arcstat_mfu_ghost_hits
, 0);
7422 wmsum_init(&arc_sums
.arcstat_uncached_hits
, 0);
7423 wmsum_init(&arc_sums
.arcstat_deleted
, 0);
7424 wmsum_init(&arc_sums
.arcstat_mutex_miss
, 0);
7425 wmsum_init(&arc_sums
.arcstat_access_skip
, 0);
7426 wmsum_init(&arc_sums
.arcstat_evict_skip
, 0);
7427 wmsum_init(&arc_sums
.arcstat_evict_not_enough
, 0);
7428 wmsum_init(&arc_sums
.arcstat_evict_l2_cached
, 0);
7429 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible
, 0);
7430 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mfu
, 0);
7431 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mru
, 0);
7432 wmsum_init(&arc_sums
.arcstat_evict_l2_ineligible
, 0);
7433 wmsum_init(&arc_sums
.arcstat_evict_l2_skip
, 0);
7434 wmsum_init(&arc_sums
.arcstat_hash_elements
, 0);
7435 wmsum_init(&arc_sums
.arcstat_hash_collisions
, 0);
7436 wmsum_init(&arc_sums
.arcstat_hash_chains
, 0);
7437 aggsum_init(&arc_sums
.arcstat_size
, 0);
7438 wmsum_init(&arc_sums
.arcstat_compressed_size
, 0);
7439 wmsum_init(&arc_sums
.arcstat_uncompressed_size
, 0);
7440 wmsum_init(&arc_sums
.arcstat_overhead_size
, 0);
7441 wmsum_init(&arc_sums
.arcstat_hdr_size
, 0);
7442 wmsum_init(&arc_sums
.arcstat_data_size
, 0);
7443 wmsum_init(&arc_sums
.arcstat_metadata_size
, 0);
7444 wmsum_init(&arc_sums
.arcstat_dbuf_size
, 0);
7445 wmsum_init(&arc_sums
.arcstat_dnode_size
, 0);
7446 wmsum_init(&arc_sums
.arcstat_bonus_size
, 0);
7447 wmsum_init(&arc_sums
.arcstat_l2_hits
, 0);
7448 wmsum_init(&arc_sums
.arcstat_l2_misses
, 0);
7449 wmsum_init(&arc_sums
.arcstat_l2_prefetch_asize
, 0);
7450 wmsum_init(&arc_sums
.arcstat_l2_mru_asize
, 0);
7451 wmsum_init(&arc_sums
.arcstat_l2_mfu_asize
, 0);
7452 wmsum_init(&arc_sums
.arcstat_l2_bufc_data_asize
, 0);
7453 wmsum_init(&arc_sums
.arcstat_l2_bufc_metadata_asize
, 0);
7454 wmsum_init(&arc_sums
.arcstat_l2_feeds
, 0);
7455 wmsum_init(&arc_sums
.arcstat_l2_rw_clash
, 0);
7456 wmsum_init(&arc_sums
.arcstat_l2_read_bytes
, 0);
7457 wmsum_init(&arc_sums
.arcstat_l2_write_bytes
, 0);
7458 wmsum_init(&arc_sums
.arcstat_l2_writes_sent
, 0);
7459 wmsum_init(&arc_sums
.arcstat_l2_writes_done
, 0);
7460 wmsum_init(&arc_sums
.arcstat_l2_writes_error
, 0);
7461 wmsum_init(&arc_sums
.arcstat_l2_writes_lock_retry
, 0);
7462 wmsum_init(&arc_sums
.arcstat_l2_evict_lock_retry
, 0);
7463 wmsum_init(&arc_sums
.arcstat_l2_evict_reading
, 0);
7464 wmsum_init(&arc_sums
.arcstat_l2_evict_l1cached
, 0);
7465 wmsum_init(&arc_sums
.arcstat_l2_free_on_write
, 0);
7466 wmsum_init(&arc_sums
.arcstat_l2_abort_lowmem
, 0);
7467 wmsum_init(&arc_sums
.arcstat_l2_cksum_bad
, 0);
7468 wmsum_init(&arc_sums
.arcstat_l2_io_error
, 0);
7469 wmsum_init(&arc_sums
.arcstat_l2_lsize
, 0);
7470 wmsum_init(&arc_sums
.arcstat_l2_psize
, 0);
7471 aggsum_init(&arc_sums
.arcstat_l2_hdr_size
, 0);
7472 wmsum_init(&arc_sums
.arcstat_l2_log_blk_writes
, 0);
7473 wmsum_init(&arc_sums
.arcstat_l2_log_blk_asize
, 0);
7474 wmsum_init(&arc_sums
.arcstat_l2_log_blk_count
, 0);
7475 wmsum_init(&arc_sums
.arcstat_l2_rebuild_success
, 0);
7476 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
, 0);
7477 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
, 0);
7478 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
, 0);
7479 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
, 0);
7480 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
, 0);
7481 wmsum_init(&arc_sums
.arcstat_l2_rebuild_size
, 0);
7482 wmsum_init(&arc_sums
.arcstat_l2_rebuild_asize
, 0);
7483 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs
, 0);
7484 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs_precached
, 0);
7485 wmsum_init(&arc_sums
.arcstat_l2_rebuild_log_blks
, 0);
7486 wmsum_init(&arc_sums
.arcstat_memory_throttle_count
, 0);
7487 wmsum_init(&arc_sums
.arcstat_memory_direct_count
, 0);
7488 wmsum_init(&arc_sums
.arcstat_memory_indirect_count
, 0);
7489 wmsum_init(&arc_sums
.arcstat_prune
, 0);
7490 wmsum_init(&arc_sums
.arcstat_meta_used
, 0);
7491 wmsum_init(&arc_sums
.arcstat_async_upgrade_sync
, 0);
7492 wmsum_init(&arc_sums
.arcstat_predictive_prefetch
, 0);
7493 wmsum_init(&arc_sums
.arcstat_demand_hit_predictive_prefetch
, 0);
7494 wmsum_init(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
, 0);
7495 wmsum_init(&arc_sums
.arcstat_prescient_prefetch
, 0);
7496 wmsum_init(&arc_sums
.arcstat_demand_hit_prescient_prefetch
, 0);
7497 wmsum_init(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
, 0);
7498 wmsum_init(&arc_sums
.arcstat_raw_size
, 0);
7499 wmsum_init(&arc_sums
.arcstat_cached_only_in_progress
, 0);
7500 wmsum_init(&arc_sums
.arcstat_abd_chunk_waste_size
, 0);
7502 arc_anon
->arcs_state
= ARC_STATE_ANON
;
7503 arc_mru
->arcs_state
= ARC_STATE_MRU
;
7504 arc_mru_ghost
->arcs_state
= ARC_STATE_MRU_GHOST
;
7505 arc_mfu
->arcs_state
= ARC_STATE_MFU
;
7506 arc_mfu_ghost
->arcs_state
= ARC_STATE_MFU_GHOST
;
7507 arc_l2c_only
->arcs_state
= ARC_STATE_L2C_ONLY
;
7508 arc_uncached
->arcs_state
= ARC_STATE_UNCACHED
;
7512 arc_state_fini(void)
7514 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7515 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7516 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7517 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7518 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7519 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7520 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7521 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7522 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7523 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7524 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7525 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7526 zfs_refcount_destroy(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]);
7527 zfs_refcount_destroy(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]);
7529 zfs_refcount_destroy(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]);
7530 zfs_refcount_destroy(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]);
7531 zfs_refcount_destroy(&arc_mru
->arcs_size
[ARC_BUFC_DATA
]);
7532 zfs_refcount_destroy(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
]);
7533 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7534 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7535 zfs_refcount_destroy(&arc_mfu
->arcs_size
[ARC_BUFC_DATA
]);
7536 zfs_refcount_destroy(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
]);
7537 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7538 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7539 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
[ARC_BUFC_DATA
]);
7540 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
[ARC_BUFC_METADATA
]);
7541 zfs_refcount_destroy(&arc_uncached
->arcs_size
[ARC_BUFC_DATA
]);
7542 zfs_refcount_destroy(&arc_uncached
->arcs_size
[ARC_BUFC_METADATA
]);
7544 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
]);
7545 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7546 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
]);
7547 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7548 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_DATA
]);
7549 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7550 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
]);
7551 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7552 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]);
7553 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]);
7554 multilist_destroy(&arc_uncached
->arcs_list
[ARC_BUFC_METADATA
]);
7555 multilist_destroy(&arc_uncached
->arcs_list
[ARC_BUFC_DATA
]);
7557 wmsum_fini(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
7558 wmsum_fini(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
7559 wmsum_fini(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
7560 wmsum_fini(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
7562 wmsum_fini(&arc_sums
.arcstat_hits
);
7563 wmsum_fini(&arc_sums
.arcstat_iohits
);
7564 wmsum_fini(&arc_sums
.arcstat_misses
);
7565 wmsum_fini(&arc_sums
.arcstat_demand_data_hits
);
7566 wmsum_fini(&arc_sums
.arcstat_demand_data_iohits
);
7567 wmsum_fini(&arc_sums
.arcstat_demand_data_misses
);
7568 wmsum_fini(&arc_sums
.arcstat_demand_metadata_hits
);
7569 wmsum_fini(&arc_sums
.arcstat_demand_metadata_iohits
);
7570 wmsum_fini(&arc_sums
.arcstat_demand_metadata_misses
);
7571 wmsum_fini(&arc_sums
.arcstat_prefetch_data_hits
);
7572 wmsum_fini(&arc_sums
.arcstat_prefetch_data_iohits
);
7573 wmsum_fini(&arc_sums
.arcstat_prefetch_data_misses
);
7574 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_hits
);
7575 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_iohits
);
7576 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_misses
);
7577 wmsum_fini(&arc_sums
.arcstat_mru_hits
);
7578 wmsum_fini(&arc_sums
.arcstat_mru_ghost_hits
);
7579 wmsum_fini(&arc_sums
.arcstat_mfu_hits
);
7580 wmsum_fini(&arc_sums
.arcstat_mfu_ghost_hits
);
7581 wmsum_fini(&arc_sums
.arcstat_uncached_hits
);
7582 wmsum_fini(&arc_sums
.arcstat_deleted
);
7583 wmsum_fini(&arc_sums
.arcstat_mutex_miss
);
7584 wmsum_fini(&arc_sums
.arcstat_access_skip
);
7585 wmsum_fini(&arc_sums
.arcstat_evict_skip
);
7586 wmsum_fini(&arc_sums
.arcstat_evict_not_enough
);
7587 wmsum_fini(&arc_sums
.arcstat_evict_l2_cached
);
7588 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible
);
7589 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7590 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7591 wmsum_fini(&arc_sums
.arcstat_evict_l2_ineligible
);
7592 wmsum_fini(&arc_sums
.arcstat_evict_l2_skip
);
7593 wmsum_fini(&arc_sums
.arcstat_hash_elements
);
7594 wmsum_fini(&arc_sums
.arcstat_hash_collisions
);
7595 wmsum_fini(&arc_sums
.arcstat_hash_chains
);
7596 aggsum_fini(&arc_sums
.arcstat_size
);
7597 wmsum_fini(&arc_sums
.arcstat_compressed_size
);
7598 wmsum_fini(&arc_sums
.arcstat_uncompressed_size
);
7599 wmsum_fini(&arc_sums
.arcstat_overhead_size
);
7600 wmsum_fini(&arc_sums
.arcstat_hdr_size
);
7601 wmsum_fini(&arc_sums
.arcstat_data_size
);
7602 wmsum_fini(&arc_sums
.arcstat_metadata_size
);
7603 wmsum_fini(&arc_sums
.arcstat_dbuf_size
);
7604 wmsum_fini(&arc_sums
.arcstat_dnode_size
);
7605 wmsum_fini(&arc_sums
.arcstat_bonus_size
);
7606 wmsum_fini(&arc_sums
.arcstat_l2_hits
);
7607 wmsum_fini(&arc_sums
.arcstat_l2_misses
);
7608 wmsum_fini(&arc_sums
.arcstat_l2_prefetch_asize
);
7609 wmsum_fini(&arc_sums
.arcstat_l2_mru_asize
);
7610 wmsum_fini(&arc_sums
.arcstat_l2_mfu_asize
);
7611 wmsum_fini(&arc_sums
.arcstat_l2_bufc_data_asize
);
7612 wmsum_fini(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7613 wmsum_fini(&arc_sums
.arcstat_l2_feeds
);
7614 wmsum_fini(&arc_sums
.arcstat_l2_rw_clash
);
7615 wmsum_fini(&arc_sums
.arcstat_l2_read_bytes
);
7616 wmsum_fini(&arc_sums
.arcstat_l2_write_bytes
);
7617 wmsum_fini(&arc_sums
.arcstat_l2_writes_sent
);
7618 wmsum_fini(&arc_sums
.arcstat_l2_writes_done
);
7619 wmsum_fini(&arc_sums
.arcstat_l2_writes_error
);
7620 wmsum_fini(&arc_sums
.arcstat_l2_writes_lock_retry
);
7621 wmsum_fini(&arc_sums
.arcstat_l2_evict_lock_retry
);
7622 wmsum_fini(&arc_sums
.arcstat_l2_evict_reading
);
7623 wmsum_fini(&arc_sums
.arcstat_l2_evict_l1cached
);
7624 wmsum_fini(&arc_sums
.arcstat_l2_free_on_write
);
7625 wmsum_fini(&arc_sums
.arcstat_l2_abort_lowmem
);
7626 wmsum_fini(&arc_sums
.arcstat_l2_cksum_bad
);
7627 wmsum_fini(&arc_sums
.arcstat_l2_io_error
);
7628 wmsum_fini(&arc_sums
.arcstat_l2_lsize
);
7629 wmsum_fini(&arc_sums
.arcstat_l2_psize
);
7630 aggsum_fini(&arc_sums
.arcstat_l2_hdr_size
);
7631 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_writes
);
7632 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_asize
);
7633 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_count
);
7634 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_success
);
7635 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7636 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7637 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7638 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7639 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7640 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_size
);
7641 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_asize
);
7642 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs
);
7643 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7644 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7645 wmsum_fini(&arc_sums
.arcstat_memory_throttle_count
);
7646 wmsum_fini(&arc_sums
.arcstat_memory_direct_count
);
7647 wmsum_fini(&arc_sums
.arcstat_memory_indirect_count
);
7648 wmsum_fini(&arc_sums
.arcstat_prune
);
7649 wmsum_fini(&arc_sums
.arcstat_meta_used
);
7650 wmsum_fini(&arc_sums
.arcstat_async_upgrade_sync
);
7651 wmsum_fini(&arc_sums
.arcstat_predictive_prefetch
);
7652 wmsum_fini(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7653 wmsum_fini(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
);
7654 wmsum_fini(&arc_sums
.arcstat_prescient_prefetch
);
7655 wmsum_fini(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7656 wmsum_fini(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
);
7657 wmsum_fini(&arc_sums
.arcstat_raw_size
);
7658 wmsum_fini(&arc_sums
.arcstat_cached_only_in_progress
);
7659 wmsum_fini(&arc_sums
.arcstat_abd_chunk_waste_size
);
7663 arc_target_bytes(void)
7669 arc_set_limits(uint64_t allmem
)
7671 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7672 arc_c_min
= MAX(allmem
/ 32, 2ULL << SPA_MAXBLOCKSHIFT
);
7674 /* How to set default max varies by platform. */
7675 arc_c_max
= arc_default_max(arc_c_min
, allmem
);
7680 uint64_t percent
, allmem
= arc_all_memory();
7681 mutex_init(&arc_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7682 list_create(&arc_evict_waiters
, sizeof (arc_evict_waiter_t
),
7683 offsetof(arc_evict_waiter_t
, aew_node
));
7685 arc_min_prefetch_ms
= 1000;
7686 arc_min_prescient_prefetch_ms
= 6000;
7688 #if defined(_KERNEL)
7692 arc_set_limits(allmem
);
7696 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7697 * environment before the module was loaded, don't block setting the
7698 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7700 * zfs_arc_min will be handled by arc_tuning_update().
7702 if (zfs_arc_max
!= 0 && zfs_arc_max
>= MIN_ARC_MAX
&&
7703 zfs_arc_max
< allmem
) {
7704 arc_c_max
= zfs_arc_max
;
7705 if (arc_c_min
>= arc_c_max
) {
7706 arc_c_min
= MAX(zfs_arc_max
/ 2,
7707 2ULL << SPA_MAXBLOCKSHIFT
);
7712 * In userland, there's only the memory pressure that we artificially
7713 * create (see arc_available_memory()). Don't let arc_c get too
7714 * small, because it can cause transactions to be larger than
7715 * arc_c, causing arc_tempreserve_space() to fail.
7717 arc_c_min
= MAX(arc_c_max
/ 2, 2ULL << SPA_MAXBLOCKSHIFT
);
7722 * 32-bit fixed point fractions of metadata from total ARC size,
7723 * MRU data from all data and MRU metadata from all metadata.
7725 arc_meta
= (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
7726 arc_pd
= (1ULL << 32) / 2; /* Data MRU is 50% of data. */
7727 arc_pm
= (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
7729 percent
= MIN(zfs_arc_dnode_limit_percent
, 100);
7730 arc_dnode_limit
= arc_c_max
* percent
/ 100;
7732 /* Apply user specified tunings */
7733 arc_tuning_update(B_TRUE
);
7735 /* if kmem_flags are set, lets try to use less memory */
7736 if (kmem_debugging())
7738 if (arc_c
< arc_c_min
)
7741 arc_register_hotplug();
7747 list_create(&arc_prune_list
, sizeof (arc_prune_t
),
7748 offsetof(arc_prune_t
, p_node
));
7749 mutex_init(&arc_prune_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
7751 arc_prune_taskq
= taskq_create("arc_prune", zfs_arc_prune_task_threads
,
7752 defclsyspri
, 100, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
7754 arc_ksp
= kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED
,
7755 sizeof (arc_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
7757 if (arc_ksp
!= NULL
) {
7758 arc_ksp
->ks_data
= &arc_stats
;
7759 arc_ksp
->ks_update
= arc_kstat_update
;
7760 kstat_install(arc_ksp
);
7763 arc_state_evict_markers
=
7764 arc_state_alloc_markers(arc_state_evict_marker_count
);
7765 arc_evict_zthr
= zthr_create_timer("arc_evict",
7766 arc_evict_cb_check
, arc_evict_cb
, NULL
, SEC2NSEC(1), defclsyspri
);
7767 arc_reap_zthr
= zthr_create_timer("arc_reap",
7768 arc_reap_cb_check
, arc_reap_cb
, NULL
, SEC2NSEC(1), minclsyspri
);
7773 * Calculate maximum amount of dirty data per pool.
7775 * If it has been set by a module parameter, take that.
7776 * Otherwise, use a percentage of physical memory defined by
7777 * zfs_dirty_data_max_percent (default 10%) with a cap at
7778 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7781 if (zfs_dirty_data_max_max
== 0)
7782 zfs_dirty_data_max_max
= MIN(4ULL * 1024 * 1024 * 1024,
7783 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7785 if (zfs_dirty_data_max_max
== 0)
7786 zfs_dirty_data_max_max
= MIN(1ULL * 1024 * 1024 * 1024,
7787 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7790 if (zfs_dirty_data_max
== 0) {
7791 zfs_dirty_data_max
= allmem
*
7792 zfs_dirty_data_max_percent
/ 100;
7793 zfs_dirty_data_max
= MIN(zfs_dirty_data_max
,
7794 zfs_dirty_data_max_max
);
7797 if (zfs_wrlog_data_max
== 0) {
7800 * dp_wrlog_total is reduced for each txg at the end of
7801 * spa_sync(). However, dp_dirty_total is reduced every time
7802 * a block is written out. Thus under normal operation,
7803 * dp_wrlog_total could grow 2 times as big as
7804 * zfs_dirty_data_max.
7806 zfs_wrlog_data_max
= zfs_dirty_data_max
* 2;
7817 #endif /* _KERNEL */
7819 /* Use B_TRUE to ensure *all* buffers are evicted */
7820 arc_flush(NULL
, B_TRUE
);
7822 if (arc_ksp
!= NULL
) {
7823 kstat_delete(arc_ksp
);
7827 taskq_wait(arc_prune_taskq
);
7828 taskq_destroy(arc_prune_taskq
);
7830 mutex_enter(&arc_prune_mtx
);
7831 while ((p
= list_remove_head(&arc_prune_list
)) != NULL
) {
7832 (void) zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
);
7833 zfs_refcount_destroy(&p
->p_refcnt
);
7834 kmem_free(p
, sizeof (*p
));
7836 mutex_exit(&arc_prune_mtx
);
7838 list_destroy(&arc_prune_list
);
7839 mutex_destroy(&arc_prune_mtx
);
7841 (void) zthr_cancel(arc_evict_zthr
);
7842 (void) zthr_cancel(arc_reap_zthr
);
7843 arc_state_free_markers(arc_state_evict_markers
,
7844 arc_state_evict_marker_count
);
7846 mutex_destroy(&arc_evict_lock
);
7847 list_destroy(&arc_evict_waiters
);
7850 * Free any buffers that were tagged for destruction. This needs
7851 * to occur before arc_state_fini() runs and destroys the aggsum
7852 * values which are updated when freeing scatter ABDs.
7854 l2arc_do_free_on_write();
7857 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7858 * trigger the release of kmem magazines, which can callback to
7859 * arc_space_return() which accesses aggsums freed in act_state_fini().
7864 arc_unregister_hotplug();
7867 * We destroy the zthrs after all the ARC state has been
7868 * torn down to avoid the case of them receiving any
7869 * wakeup() signals after they are destroyed.
7871 zthr_destroy(arc_evict_zthr
);
7872 zthr_destroy(arc_reap_zthr
);
7874 ASSERT0(arc_loaned_bytes
);
7880 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7881 * It uses dedicated storage devices to hold cached data, which are populated
7882 * using large infrequent writes. The main role of this cache is to boost
7883 * the performance of random read workloads. The intended L2ARC devices
7884 * include short-stroked disks, solid state disks, and other media with
7885 * substantially faster read latency than disk.
7887 * +-----------------------+
7889 * +-----------------------+
7892 * l2arc_feed_thread() arc_read()
7896 * +---------------+ |
7898 * +---------------+ |
7903 * +-------+ +-------+
7905 * | cache | | cache |
7906 * +-------+ +-------+
7907 * +=========+ .-----.
7908 * : L2ARC : |-_____-|
7909 * : devices : | Disks |
7910 * +=========+ `-_____-'
7912 * Read requests are satisfied from the following sources, in order:
7915 * 2) vdev cache of L2ARC devices
7917 * 4) vdev cache of disks
7920 * Some L2ARC device types exhibit extremely slow write performance.
7921 * To accommodate for this there are some significant differences between
7922 * the L2ARC and traditional cache design:
7924 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7925 * the ARC behave as usual, freeing buffers and placing headers on ghost
7926 * lists. The ARC does not send buffers to the L2ARC during eviction as
7927 * this would add inflated write latencies for all ARC memory pressure.
7929 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7930 * It does this by periodically scanning buffers from the eviction-end of
7931 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7932 * not already there. It scans until a headroom of buffers is satisfied,
7933 * which itself is a buffer for ARC eviction. If a compressible buffer is
7934 * found during scanning and selected for writing to an L2ARC device, we
7935 * temporarily boost scanning headroom during the next scan cycle to make
7936 * sure we adapt to compression effects (which might significantly reduce
7937 * the data volume we write to L2ARC). The thread that does this is
7938 * l2arc_feed_thread(), illustrated below; example sizes are included to
7939 * provide a better sense of ratio than this diagram:
7942 * +---------------------+----------+
7943 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7944 * +---------------------+----------+ | o L2ARC eligible
7945 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7946 * +---------------------+----------+ |
7947 * 15.9 Gbytes ^ 32 Mbytes |
7949 * l2arc_feed_thread()
7951 * l2arc write hand <--[oooo]--'
7955 * +==============================+
7956 * L2ARC dev |####|#|###|###| |####| ... |
7957 * +==============================+
7960 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7961 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7962 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7963 * safe to say that this is an uncommon case, since buffers at the end of
7964 * the ARC lists have moved there due to inactivity.
7966 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7967 * then the L2ARC simply misses copying some buffers. This serves as a
7968 * pressure valve to prevent heavy read workloads from both stalling the ARC
7969 * with waits and clogging the L2ARC with writes. This also helps prevent
7970 * the potential for the L2ARC to churn if it attempts to cache content too
7971 * quickly, such as during backups of the entire pool.
7973 * 5. After system boot and before the ARC has filled main memory, there are
7974 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7975 * lists can remain mostly static. Instead of searching from tail of these
7976 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7977 * for eligible buffers, greatly increasing its chance of finding them.
7979 * The L2ARC device write speed is also boosted during this time so that
7980 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7981 * there are no L2ARC reads, and no fear of degrading read performance
7982 * through increased writes.
7984 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7985 * the vdev queue can aggregate them into larger and fewer writes. Each
7986 * device is written to in a rotor fashion, sweeping writes through
7987 * available space then repeating.
7989 * 7. The L2ARC does not store dirty content. It never needs to flush
7990 * write buffers back to disk based storage.
7992 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7993 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7995 * The performance of the L2ARC can be tweaked by a number of tunables, which
7996 * may be necessary for different workloads:
7998 * l2arc_write_max max write bytes per interval
7999 * l2arc_write_boost extra write bytes during device warmup
8000 * l2arc_noprefetch skip caching prefetched buffers
8001 * l2arc_headroom number of max device writes to precache
8002 * l2arc_headroom_boost when we find compressed buffers during ARC
8003 * scanning, we multiply headroom by this
8004 * percentage factor for the next scan cycle,
8005 * since more compressed buffers are likely to
8007 * l2arc_feed_secs seconds between L2ARC writing
8009 * Tunables may be removed or added as future performance improvements are
8010 * integrated, and also may become zpool properties.
8012 * There are three key functions that control how the L2ARC warms up:
8014 * l2arc_write_eligible() check if a buffer is eligible to cache
8015 * l2arc_write_size() calculate how much to write
8016 * l2arc_write_interval() calculate sleep delay between writes
8018 * These three functions determine what to write, how much, and how quickly
8021 * L2ARC persistence:
8023 * When writing buffers to L2ARC, we periodically add some metadata to
8024 * make sure we can pick them up after reboot, thus dramatically reducing
8025 * the impact that any downtime has on the performance of storage systems
8026 * with large caches.
8028 * The implementation works fairly simply by integrating the following two
8031 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8032 * which is an additional piece of metadata which describes what's been
8033 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8034 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8035 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8036 * time-wise and offset-wise interleaved, but that is an optimization rather
8037 * than for correctness. The log block also includes a pointer to the
8038 * previous block in its chain.
8040 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8041 * for our header bookkeeping purposes. This contains a device header,
8042 * which contains our top-level reference structures. We update it each
8043 * time we write a new log block, so that we're able to locate it in the
8044 * L2ARC device. If this write results in an inconsistent device header
8045 * (e.g. due to power failure), we detect this by verifying the header's
8046 * checksum and simply fail to reconstruct the L2ARC after reboot.
8048 * Implementation diagram:
8050 * +=== L2ARC device (not to scale) ======================================+
8051 * | ___two newest log block pointers__.__________ |
8052 * | / \dh_start_lbps[1] |
8053 * | / \ \dh_start_lbps[0]|
8055 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8056 * || hdr| ^ /^ /^ / / |
8057 * |+------+ ...--\-------/ \-----/--\------/ / |
8058 * | \--------------/ \--------------/ |
8059 * +======================================================================+
8061 * As can be seen on the diagram, rather than using a simple linked list,
8062 * we use a pair of linked lists with alternating elements. This is a
8063 * performance enhancement due to the fact that we only find out the
8064 * address of the next log block access once the current block has been
8065 * completely read in. Obviously, this hurts performance, because we'd be
8066 * keeping the device's I/O queue at only a 1 operation deep, thus
8067 * incurring a large amount of I/O round-trip latency. Having two lists
8068 * allows us to fetch two log blocks ahead of where we are currently
8069 * rebuilding L2ARC buffers.
8071 * On-device data structures:
8073 * L2ARC device header: l2arc_dev_hdr_phys_t
8074 * L2ARC log block: l2arc_log_blk_phys_t
8076 * L2ARC reconstruction:
8078 * When writing data, we simply write in the standard rotary fashion,
8079 * evicting buffers as we go and simply writing new data over them (writing
8080 * a new log block every now and then). This obviously means that once we
8081 * loop around the end of the device, we will start cutting into an already
8082 * committed log block (and its referenced data buffers), like so:
8084 * current write head__ __old tail
8087 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8088 * ^ ^^^^^^^^^___________________________________
8090 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8092 * When importing the pool, we detect this situation and use it to stop
8093 * our scanning process (see l2arc_rebuild).
8095 * There is one significant caveat to consider when rebuilding ARC contents
8096 * from an L2ARC device: what about invalidated buffers? Given the above
8097 * construction, we cannot update blocks which we've already written to amend
8098 * them to remove buffers which were invalidated. Thus, during reconstruction,
8099 * we might be populating the cache with buffers for data that's not on the
8100 * main pool anymore, or may have been overwritten!
8102 * As it turns out, this isn't a problem. Every arc_read request includes
8103 * both the DVA and, crucially, the birth TXG of the BP the caller is
8104 * looking for. So even if the cache were populated by completely rotten
8105 * blocks for data that had been long deleted and/or overwritten, we'll
8106 * never actually return bad data from the cache, since the DVA with the
8107 * birth TXG uniquely identify a block in space and time - once created,
8108 * a block is immutable on disk. The worst thing we have done is wasted
8109 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8110 * entries that will get dropped from the l2arc as it is being updated
8113 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8114 * hand are not restored. This is done by saving the offset (in bytes)
8115 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8116 * into account when restoring buffers.
8120 l2arc_write_eligible(uint64_t spa_guid
, arc_buf_hdr_t
*hdr
)
8123 * A buffer is *not* eligible for the L2ARC if it:
8124 * 1. belongs to a different spa.
8125 * 2. is already cached on the L2ARC.
8126 * 3. has an I/O in progress (it may be an incomplete read).
8127 * 4. is flagged not eligible (zfs property).
8129 if (hdr
->b_spa
!= spa_guid
|| HDR_HAS_L2HDR(hdr
) ||
8130 HDR_IO_IN_PROGRESS(hdr
) || !HDR_L2CACHE(hdr
))
8137 l2arc_write_size(l2arc_dev_t
*dev
)
8142 * Make sure our globals have meaningful values in case the user
8145 size
= l2arc_write_max
;
8147 cmn_err(CE_NOTE
, "l2arc_write_max must be greater than zero, "
8148 "resetting it to the default (%d)", L2ARC_WRITE_SIZE
);
8149 size
= l2arc_write_max
= L2ARC_WRITE_SIZE
;
8152 if (arc_warm
== B_FALSE
)
8153 size
+= l2arc_write_boost
;
8155 /* We need to add in the worst case scenario of log block overhead. */
8156 size
+= l2arc_log_blk_overhead(size
, dev
);
8157 if (dev
->l2ad_vdev
->vdev_has_trim
&& l2arc_trim_ahead
> 0) {
8159 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8160 * times the writesize, whichever is greater.
8162 size
+= MAX(64 * 1024 * 1024,
8163 (size
* l2arc_trim_ahead
) / 100);
8167 * Make sure the write size does not exceed the size of the cache
8168 * device. This is important in l2arc_evict(), otherwise infinite
8169 * iteration can occur.
8171 size
= MIN(size
, (dev
->l2ad_end
- dev
->l2ad_start
) / 4);
8173 size
= P2ROUNDUP(size
, 1ULL << dev
->l2ad_vdev
->vdev_ashift
);
8180 l2arc_write_interval(clock_t began
, uint64_t wanted
, uint64_t wrote
)
8182 clock_t interval
, next
, now
;
8185 * If the ARC lists are busy, increase our write rate; if the
8186 * lists are stale, idle back. This is achieved by checking
8187 * how much we previously wrote - if it was more than half of
8188 * what we wanted, schedule the next write much sooner.
8190 if (l2arc_feed_again
&& wrote
> (wanted
/ 2))
8191 interval
= (hz
* l2arc_feed_min_ms
) / 1000;
8193 interval
= hz
* l2arc_feed_secs
;
8195 now
= ddi_get_lbolt();
8196 next
= MAX(now
, MIN(now
+ interval
, began
+ interval
));
8202 * Cycle through L2ARC devices. This is how L2ARC load balances.
8203 * If a device is returned, this also returns holding the spa config lock.
8205 static l2arc_dev_t
*
8206 l2arc_dev_get_next(void)
8208 l2arc_dev_t
*first
, *next
= NULL
;
8211 * Lock out the removal of spas (spa_namespace_lock), then removal
8212 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8213 * both locks will be dropped and a spa config lock held instead.
8215 mutex_enter(&spa_namespace_lock
);
8216 mutex_enter(&l2arc_dev_mtx
);
8218 /* if there are no vdevs, there is nothing to do */
8219 if (l2arc_ndev
== 0)
8223 next
= l2arc_dev_last
;
8225 /* loop around the list looking for a non-faulted vdev */
8227 next
= list_head(l2arc_dev_list
);
8229 next
= list_next(l2arc_dev_list
, next
);
8231 next
= list_head(l2arc_dev_list
);
8234 /* if we have come back to the start, bail out */
8237 else if (next
== first
)
8240 ASSERT3P(next
, !=, NULL
);
8241 } while (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8242 next
->l2ad_trim_all
|| next
->l2ad_spa
->spa_is_exporting
);
8244 /* if we were unable to find any usable vdevs, return NULL */
8245 if (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8246 next
->l2ad_trim_all
|| next
->l2ad_spa
->spa_is_exporting
)
8249 l2arc_dev_last
= next
;
8252 mutex_exit(&l2arc_dev_mtx
);
8255 * Grab the config lock to prevent the 'next' device from being
8256 * removed while we are writing to it.
8259 spa_config_enter(next
->l2ad_spa
, SCL_L2ARC
, next
, RW_READER
);
8260 mutex_exit(&spa_namespace_lock
);
8266 * Free buffers that were tagged for destruction.
8269 l2arc_do_free_on_write(void)
8271 l2arc_data_free_t
*df
;
8273 mutex_enter(&l2arc_free_on_write_mtx
);
8274 while ((df
= list_remove_head(l2arc_free_on_write
)) != NULL
) {
8275 ASSERT3P(df
->l2df_abd
, !=, NULL
);
8276 abd_free(df
->l2df_abd
);
8277 kmem_free(df
, sizeof (l2arc_data_free_t
));
8279 mutex_exit(&l2arc_free_on_write_mtx
);
8283 * A write to a cache device has completed. Update all headers to allow
8284 * reads from these buffers to begin.
8287 l2arc_write_done(zio_t
*zio
)
8289 l2arc_write_callback_t
*cb
;
8290 l2arc_lb_abd_buf_t
*abd_buf
;
8291 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
8293 l2arc_dev_hdr_phys_t
*l2dhdr
;
8295 arc_buf_hdr_t
*head
, *hdr
, *hdr_prev
;
8296 kmutex_t
*hash_lock
;
8297 int64_t bytes_dropped
= 0;
8299 cb
= zio
->io_private
;
8300 ASSERT3P(cb
, !=, NULL
);
8301 dev
= cb
->l2wcb_dev
;
8302 l2dhdr
= dev
->l2ad_dev_hdr
;
8303 ASSERT3P(dev
, !=, NULL
);
8304 head
= cb
->l2wcb_head
;
8305 ASSERT3P(head
, !=, NULL
);
8306 buflist
= &dev
->l2ad_buflist
;
8307 ASSERT3P(buflist
, !=, NULL
);
8308 DTRACE_PROBE2(l2arc__iodone
, zio_t
*, zio
,
8309 l2arc_write_callback_t
*, cb
);
8312 * All writes completed, or an error was hit.
8315 mutex_enter(&dev
->l2ad_mtx
);
8316 for (hdr
= list_prev(buflist
, head
); hdr
; hdr
= hdr_prev
) {
8317 hdr_prev
= list_prev(buflist
, hdr
);
8319 hash_lock
= HDR_LOCK(hdr
);
8322 * We cannot use mutex_enter or else we can deadlock
8323 * with l2arc_write_buffers (due to swapping the order
8324 * the hash lock and l2ad_mtx are taken).
8326 if (!mutex_tryenter(hash_lock
)) {
8328 * Missed the hash lock. We must retry so we
8329 * don't leave the ARC_FLAG_L2_WRITING bit set.
8331 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry
);
8334 * We don't want to rescan the headers we've
8335 * already marked as having been written out, so
8336 * we reinsert the head node so we can pick up
8337 * where we left off.
8339 list_remove(buflist
, head
);
8340 list_insert_after(buflist
, hdr
, head
);
8342 mutex_exit(&dev
->l2ad_mtx
);
8345 * We wait for the hash lock to become available
8346 * to try and prevent busy waiting, and increase
8347 * the chance we'll be able to acquire the lock
8348 * the next time around.
8350 mutex_enter(hash_lock
);
8351 mutex_exit(hash_lock
);
8356 * We could not have been moved into the arc_l2c_only
8357 * state while in-flight due to our ARC_FLAG_L2_WRITING
8358 * bit being set. Let's just ensure that's being enforced.
8360 ASSERT(HDR_HAS_L1HDR(hdr
));
8363 * Skipped - drop L2ARC entry and mark the header as no
8364 * longer L2 eligibile.
8366 if (zio
->io_error
!= 0) {
8368 * Error - drop L2ARC entry.
8370 list_remove(buflist
, hdr
);
8371 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
8373 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8374 l2arc_hdr_arcstats_decrement(hdr
);
8377 vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
8378 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
8379 arc_hdr_size(hdr
), hdr
);
8383 * Allow ARC to begin reads and ghost list evictions to
8386 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_WRITING
);
8388 mutex_exit(hash_lock
);
8392 * Free the allocated abd buffers for writing the log blocks.
8393 * If the zio failed reclaim the allocated space and remove the
8394 * pointers to these log blocks from the log block pointer list
8395 * of the L2ARC device.
8397 while ((abd_buf
= list_remove_tail(&cb
->l2wcb_abd_list
)) != NULL
) {
8398 abd_free(abd_buf
->abd
);
8399 zio_buf_free(abd_buf
, sizeof (*abd_buf
));
8400 if (zio
->io_error
!= 0) {
8401 lb_ptr_buf
= list_remove_head(&dev
->l2ad_lbptr_list
);
8403 * L2BLK_GET_PSIZE returns aligned size for log
8407 L2BLK_GET_PSIZE((lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8408 bytes_dropped
+= asize
;
8409 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8410 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8411 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8413 (void) zfs_refcount_remove(&dev
->l2ad_lb_count
,
8415 kmem_free(lb_ptr_buf
->lb_ptr
,
8416 sizeof (l2arc_log_blkptr_t
));
8417 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8420 list_destroy(&cb
->l2wcb_abd_list
);
8422 if (zio
->io_error
!= 0) {
8423 ARCSTAT_BUMP(arcstat_l2_writes_error
);
8426 * Restore the lbps array in the header to its previous state.
8427 * If the list of log block pointers is empty, zero out the
8428 * log block pointers in the device header.
8430 lb_ptr_buf
= list_head(&dev
->l2ad_lbptr_list
);
8431 for (int i
= 0; i
< 2; i
++) {
8432 if (lb_ptr_buf
== NULL
) {
8434 * If the list is empty zero out the device
8435 * header. Otherwise zero out the second log
8436 * block pointer in the header.
8440 dev
->l2ad_dev_hdr_asize
);
8442 memset(&l2dhdr
->dh_start_lbps
[i
], 0,
8443 sizeof (l2arc_log_blkptr_t
));
8447 memcpy(&l2dhdr
->dh_start_lbps
[i
], lb_ptr_buf
->lb_ptr
,
8448 sizeof (l2arc_log_blkptr_t
));
8449 lb_ptr_buf
= list_next(&dev
->l2ad_lbptr_list
,
8454 ARCSTAT_BUMP(arcstat_l2_writes_done
);
8455 list_remove(buflist
, head
);
8456 ASSERT(!HDR_HAS_L1HDR(head
));
8457 kmem_cache_free(hdr_l2only_cache
, head
);
8458 mutex_exit(&dev
->l2ad_mtx
);
8460 ASSERT(dev
->l2ad_vdev
!= NULL
);
8461 vdev_space_update(dev
->l2ad_vdev
, -bytes_dropped
, 0, 0);
8463 l2arc_do_free_on_write();
8465 kmem_free(cb
, sizeof (l2arc_write_callback_t
));
8469 l2arc_untransform(zio_t
*zio
, l2arc_read_callback_t
*cb
)
8472 spa_t
*spa
= zio
->io_spa
;
8473 arc_buf_hdr_t
*hdr
= cb
->l2rcb_hdr
;
8474 blkptr_t
*bp
= zio
->io_bp
;
8475 uint8_t salt
[ZIO_DATA_SALT_LEN
];
8476 uint8_t iv
[ZIO_DATA_IV_LEN
];
8477 uint8_t mac
[ZIO_DATA_MAC_LEN
];
8478 boolean_t no_crypt
= B_FALSE
;
8481 * ZIL data is never be written to the L2ARC, so we don't need
8482 * special handling for its unique MAC storage.
8484 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
8485 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
8486 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8489 * If the data was encrypted, decrypt it now. Note that
8490 * we must check the bp here and not the hdr, since the
8491 * hdr does not have its encryption parameters updated
8492 * until arc_read_done().
8494 if (BP_IS_ENCRYPTED(bp
)) {
8495 abd_t
*eabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8496 ARC_HDR_USE_RESERVE
);
8498 zio_crypt_decode_params_bp(bp
, salt
, iv
);
8499 zio_crypt_decode_mac_bp(bp
, mac
);
8501 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &cb
->l2rcb_zb
,
8502 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
8503 salt
, iv
, mac
, HDR_GET_PSIZE(hdr
), eabd
,
8504 hdr
->b_l1hdr
.b_pabd
, &no_crypt
);
8506 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8511 * If we actually performed decryption, replace b_pabd
8512 * with the decrypted data. Otherwise we can just throw
8513 * our decryption buffer away.
8516 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8517 arc_hdr_size(hdr
), hdr
);
8518 hdr
->b_l1hdr
.b_pabd
= eabd
;
8521 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8526 * If the L2ARC block was compressed, but ARC compression
8527 * is disabled we decompress the data into a new buffer and
8528 * replace the existing data.
8530 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8531 !HDR_COMPRESSION_ENABLED(hdr
)) {
8532 abd_t
*cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8533 ARC_HDR_USE_RESERVE
);
8535 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
8536 hdr
->b_l1hdr
.b_pabd
, cabd
, HDR_GET_PSIZE(hdr
),
8537 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
8539 arc_free_data_abd(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
8543 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8544 arc_hdr_size(hdr
), hdr
);
8545 hdr
->b_l1hdr
.b_pabd
= cabd
;
8547 zio
->io_size
= HDR_GET_LSIZE(hdr
);
8558 * A read to a cache device completed. Validate buffer contents before
8559 * handing over to the regular ARC routines.
8562 l2arc_read_done(zio_t
*zio
)
8565 l2arc_read_callback_t
*cb
= zio
->io_private
;
8567 kmutex_t
*hash_lock
;
8568 boolean_t valid_cksum
;
8569 boolean_t using_rdata
= (BP_IS_ENCRYPTED(&cb
->l2rcb_bp
) &&
8570 (cb
->l2rcb_flags
& ZIO_FLAG_RAW_ENCRYPT
));
8572 ASSERT3P(zio
->io_vd
, !=, NULL
);
8573 ASSERT(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
);
8575 spa_config_exit(zio
->io_spa
, SCL_L2ARC
, zio
->io_vd
);
8577 ASSERT3P(cb
, !=, NULL
);
8578 hdr
= cb
->l2rcb_hdr
;
8579 ASSERT3P(hdr
, !=, NULL
);
8581 hash_lock
= HDR_LOCK(hdr
);
8582 mutex_enter(hash_lock
);
8583 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
8586 * If the data was read into a temporary buffer,
8587 * move it and free the buffer.
8589 if (cb
->l2rcb_abd
!= NULL
) {
8590 ASSERT3U(arc_hdr_size(hdr
), <, zio
->io_size
);
8591 if (zio
->io_error
== 0) {
8593 abd_copy(hdr
->b_crypt_hdr
.b_rabd
,
8594 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8596 abd_copy(hdr
->b_l1hdr
.b_pabd
,
8597 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8602 * The following must be done regardless of whether
8603 * there was an error:
8604 * - free the temporary buffer
8605 * - point zio to the real ARC buffer
8606 * - set zio size accordingly
8607 * These are required because zio is either re-used for
8608 * an I/O of the block in the case of the error
8609 * or the zio is passed to arc_read_done() and it
8612 abd_free(cb
->l2rcb_abd
);
8613 zio
->io_size
= zio
->io_orig_size
= arc_hdr_size(hdr
);
8616 ASSERT(HDR_HAS_RABD(hdr
));
8617 zio
->io_abd
= zio
->io_orig_abd
=
8618 hdr
->b_crypt_hdr
.b_rabd
;
8620 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8621 zio
->io_abd
= zio
->io_orig_abd
= hdr
->b_l1hdr
.b_pabd
;
8625 ASSERT3P(zio
->io_abd
, !=, NULL
);
8628 * Check this survived the L2ARC journey.
8630 ASSERT(zio
->io_abd
== hdr
->b_l1hdr
.b_pabd
||
8631 (HDR_HAS_RABD(hdr
) && zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
));
8632 zio
->io_bp_copy
= cb
->l2rcb_bp
; /* XXX fix in L2ARC 2.0 */
8633 zio
->io_bp
= &zio
->io_bp_copy
; /* XXX fix in L2ARC 2.0 */
8634 zio
->io_prop
.zp_complevel
= hdr
->b_complevel
;
8636 valid_cksum
= arc_cksum_is_equal(hdr
, zio
);
8639 * b_rabd will always match the data as it exists on disk if it is
8640 * being used. Therefore if we are reading into b_rabd we do not
8641 * attempt to untransform the data.
8643 if (valid_cksum
&& !using_rdata
)
8644 tfm_error
= l2arc_untransform(zio
, cb
);
8646 if (valid_cksum
&& tfm_error
== 0 && zio
->io_error
== 0 &&
8647 !HDR_L2_EVICTED(hdr
)) {
8648 mutex_exit(hash_lock
);
8649 zio
->io_private
= hdr
;
8653 * Buffer didn't survive caching. Increment stats and
8654 * reissue to the original storage device.
8656 if (zio
->io_error
!= 0) {
8657 ARCSTAT_BUMP(arcstat_l2_io_error
);
8659 zio
->io_error
= SET_ERROR(EIO
);
8661 if (!valid_cksum
|| tfm_error
!= 0)
8662 ARCSTAT_BUMP(arcstat_l2_cksum_bad
);
8665 * If there's no waiter, issue an async i/o to the primary
8666 * storage now. If there *is* a waiter, the caller must
8667 * issue the i/o in a context where it's OK to block.
8669 if (zio
->io_waiter
== NULL
) {
8670 zio_t
*pio
= zio_unique_parent(zio
);
8671 void *abd
= (using_rdata
) ?
8672 hdr
->b_crypt_hdr
.b_rabd
: hdr
->b_l1hdr
.b_pabd
;
8674 ASSERT(!pio
|| pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
8676 zio
= zio_read(pio
, zio
->io_spa
, zio
->io_bp
,
8677 abd
, zio
->io_size
, arc_read_done
,
8678 hdr
, zio
->io_priority
, cb
->l2rcb_flags
,
8682 * Original ZIO will be freed, so we need to update
8683 * ARC header with the new ZIO pointer to be used
8684 * by zio_change_priority() in arc_read().
8686 for (struct arc_callback
*acb
= hdr
->b_l1hdr
.b_acb
;
8687 acb
!= NULL
; acb
= acb
->acb_next
)
8688 acb
->acb_zio_head
= zio
;
8690 mutex_exit(hash_lock
);
8693 mutex_exit(hash_lock
);
8697 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
8701 * This is the list priority from which the L2ARC will search for pages to
8702 * cache. This is used within loops (0..3) to cycle through lists in the
8703 * desired order. This order can have a significant effect on cache
8706 * Currently the metadata lists are hit first, MFU then MRU, followed by
8707 * the data lists. This function returns a locked list, and also returns
8710 static multilist_sublist_t
*
8711 l2arc_sublist_lock(int list_num
)
8713 multilist_t
*ml
= NULL
;
8716 ASSERT(list_num
>= 0 && list_num
< L2ARC_FEED_TYPES
);
8720 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_METADATA
];
8723 ml
= &arc_mru
->arcs_list
[ARC_BUFC_METADATA
];
8726 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_DATA
];
8729 ml
= &arc_mru
->arcs_list
[ARC_BUFC_DATA
];
8736 * Return a randomly-selected sublist. This is acceptable
8737 * because the caller feeds only a little bit of data for each
8738 * call (8MB). Subsequent calls will result in different
8739 * sublists being selected.
8741 idx
= multilist_get_random_index(ml
);
8742 return (multilist_sublist_lock_idx(ml
, idx
));
8746 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8747 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8748 * overhead in processing to make sure there is enough headroom available
8749 * when writing buffers.
8751 static inline uint64_t
8752 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
)
8754 if (dev
->l2ad_log_entries
== 0) {
8757 uint64_t log_entries
= write_sz
>> SPA_MINBLOCKSHIFT
;
8759 uint64_t log_blocks
= (log_entries
+
8760 dev
->l2ad_log_entries
- 1) /
8761 dev
->l2ad_log_entries
;
8763 return (vdev_psize_to_asize(dev
->l2ad_vdev
,
8764 sizeof (l2arc_log_blk_phys_t
)) * log_blocks
);
8769 * Evict buffers from the device write hand to the distance specified in
8770 * bytes. This distance may span populated buffers, it may span nothing.
8771 * This is clearing a region on the L2ARC device ready for writing.
8772 * If the 'all' boolean is set, every buffer is evicted.
8775 l2arc_evict(l2arc_dev_t
*dev
, uint64_t distance
, boolean_t all
)
8778 arc_buf_hdr_t
*hdr
, *hdr_prev
;
8779 kmutex_t
*hash_lock
;
8781 l2arc_lb_ptr_buf_t
*lb_ptr_buf
, *lb_ptr_buf_prev
;
8782 vdev_t
*vd
= dev
->l2ad_vdev
;
8785 buflist
= &dev
->l2ad_buflist
;
8789 if (dev
->l2ad_hand
+ distance
> dev
->l2ad_end
) {
8791 * When there is no space to accommodate upcoming writes,
8792 * evict to the end. Then bump the write and evict hands
8793 * to the start and iterate. This iteration does not
8794 * happen indefinitely as we make sure in
8795 * l2arc_write_size() that when the write hand is reset,
8796 * the write size does not exceed the end of the device.
8799 taddr
= dev
->l2ad_end
;
8801 taddr
= dev
->l2ad_hand
+ distance
;
8803 DTRACE_PROBE4(l2arc__evict
, l2arc_dev_t
*, dev
, list_t
*, buflist
,
8804 uint64_t, taddr
, boolean_t
, all
);
8808 * This check has to be placed after deciding whether to
8811 if (dev
->l2ad_first
) {
8813 * This is the first sweep through the device. There is
8814 * nothing to evict. We have already trimmmed the
8820 * Trim the space to be evicted.
8822 if (vd
->vdev_has_trim
&& dev
->l2ad_evict
< taddr
&&
8823 l2arc_trim_ahead
> 0) {
8825 * We have to drop the spa_config lock because
8826 * vdev_trim_range() will acquire it.
8827 * l2ad_evict already accounts for the label
8828 * size. To prevent vdev_trim_ranges() from
8829 * adding it again, we subtract it from
8832 spa_config_exit(dev
->l2ad_spa
, SCL_L2ARC
, dev
);
8833 vdev_trim_simple(vd
,
8834 dev
->l2ad_evict
- VDEV_LABEL_START_SIZE
,
8835 taddr
- dev
->l2ad_evict
);
8836 spa_config_enter(dev
->l2ad_spa
, SCL_L2ARC
, dev
,
8841 * When rebuilding L2ARC we retrieve the evict hand
8842 * from the header of the device. Of note, l2arc_evict()
8843 * does not actually delete buffers from the cache
8844 * device, but trimming may do so depending on the
8845 * hardware implementation. Thus keeping track of the
8846 * evict hand is useful.
8848 dev
->l2ad_evict
= MAX(dev
->l2ad_evict
, taddr
);
8853 mutex_enter(&dev
->l2ad_mtx
);
8855 * We have to account for evicted log blocks. Run vdev_space_update()
8856 * on log blocks whose offset (in bytes) is before the evicted offset
8857 * (in bytes) by searching in the list of pointers to log blocks
8858 * present in the L2ARC device.
8860 for (lb_ptr_buf
= list_tail(&dev
->l2ad_lbptr_list
); lb_ptr_buf
;
8861 lb_ptr_buf
= lb_ptr_buf_prev
) {
8863 lb_ptr_buf_prev
= list_prev(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
8865 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8866 uint64_t asize
= L2BLK_GET_PSIZE(
8867 (lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8870 * We don't worry about log blocks left behind (ie
8871 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8872 * will never write more than l2arc_evict() evicts.
8874 if (!all
&& l2arc_log_blkptr_valid(dev
, lb_ptr_buf
->lb_ptr
)) {
8877 vdev_space_update(vd
, -asize
, 0, 0);
8878 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8879 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8880 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8882 (void) zfs_refcount_remove(&dev
->l2ad_lb_count
,
8884 list_remove(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
8885 kmem_free(lb_ptr_buf
->lb_ptr
,
8886 sizeof (l2arc_log_blkptr_t
));
8887 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8891 for (hdr
= list_tail(buflist
); hdr
; hdr
= hdr_prev
) {
8892 hdr_prev
= list_prev(buflist
, hdr
);
8894 ASSERT(!HDR_EMPTY(hdr
));
8895 hash_lock
= HDR_LOCK(hdr
);
8898 * We cannot use mutex_enter or else we can deadlock
8899 * with l2arc_write_buffers (due to swapping the order
8900 * the hash lock and l2ad_mtx are taken).
8902 if (!mutex_tryenter(hash_lock
)) {
8904 * Missed the hash lock. Retry.
8906 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry
);
8907 mutex_exit(&dev
->l2ad_mtx
);
8908 mutex_enter(hash_lock
);
8909 mutex_exit(hash_lock
);
8914 * A header can't be on this list if it doesn't have L2 header.
8916 ASSERT(HDR_HAS_L2HDR(hdr
));
8918 /* Ensure this header has finished being written. */
8919 ASSERT(!HDR_L2_WRITING(hdr
));
8920 ASSERT(!HDR_L2_WRITE_HEAD(hdr
));
8922 if (!all
&& (hdr
->b_l2hdr
.b_daddr
>= dev
->l2ad_evict
||
8923 hdr
->b_l2hdr
.b_daddr
< dev
->l2ad_hand
)) {
8925 * We've evicted to the target address,
8926 * or the end of the device.
8928 mutex_exit(hash_lock
);
8932 if (!HDR_HAS_L1HDR(hdr
)) {
8933 ASSERT(!HDR_L2_READING(hdr
));
8935 * This doesn't exist in the ARC. Destroy.
8936 * arc_hdr_destroy() will call list_remove()
8937 * and decrement arcstat_l2_lsize.
8939 arc_change_state(arc_anon
, hdr
);
8940 arc_hdr_destroy(hdr
);
8942 ASSERT(hdr
->b_l1hdr
.b_state
!= arc_l2c_only
);
8943 ARCSTAT_BUMP(arcstat_l2_evict_l1cached
);
8945 * Invalidate issued or about to be issued
8946 * reads, since we may be about to write
8947 * over this location.
8949 if (HDR_L2_READING(hdr
)) {
8950 ARCSTAT_BUMP(arcstat_l2_evict_reading
);
8951 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_EVICTED
);
8954 arc_hdr_l2hdr_destroy(hdr
);
8956 mutex_exit(hash_lock
);
8958 mutex_exit(&dev
->l2ad_mtx
);
8962 * We need to check if we evict all buffers, otherwise we may iterate
8965 if (!all
&& rerun
) {
8967 * Bump device hand to the device start if it is approaching the
8968 * end. l2arc_evict() has already evicted ahead for this case.
8970 dev
->l2ad_hand
= dev
->l2ad_start
;
8971 dev
->l2ad_evict
= dev
->l2ad_start
;
8972 dev
->l2ad_first
= B_FALSE
;
8978 * In case of cache device removal (all) the following
8979 * assertions may be violated without functional consequences
8980 * as the device is about to be removed.
8982 ASSERT3U(dev
->l2ad_hand
+ distance
, <=, dev
->l2ad_end
);
8983 if (!dev
->l2ad_first
)
8984 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
8989 * Handle any abd transforms that might be required for writing to the L2ARC.
8990 * If successful, this function will always return an abd with the data
8991 * transformed as it is on disk in a new abd of asize bytes.
8994 l2arc_apply_transforms(spa_t
*spa
, arc_buf_hdr_t
*hdr
, uint64_t asize
,
8998 abd_t
*cabd
= NULL
, *eabd
= NULL
, *to_write
= hdr
->b_l1hdr
.b_pabd
;
8999 enum zio_compress compress
= HDR_GET_COMPRESS(hdr
);
9000 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9001 uint64_t size
= arc_hdr_size(hdr
);
9002 boolean_t ismd
= HDR_ISTYPE_METADATA(hdr
);
9003 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
9004 dsl_crypto_key_t
*dck
= NULL
;
9005 uint8_t mac
[ZIO_DATA_MAC_LEN
] = { 0 };
9006 boolean_t no_crypt
= B_FALSE
;
9008 ASSERT((HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
9009 !HDR_COMPRESSION_ENABLED(hdr
)) ||
9010 HDR_ENCRYPTED(hdr
) || HDR_SHARED_DATA(hdr
) || psize
!= asize
);
9011 ASSERT3U(psize
, <=, asize
);
9014 * If this data simply needs its own buffer, we simply allocate it
9015 * and copy the data. This may be done to eliminate a dependency on a
9016 * shared buffer or to reallocate the buffer to match asize.
9018 if (HDR_HAS_RABD(hdr
)) {
9019 ASSERT3U(asize
, >, psize
);
9020 to_write
= abd_alloc_for_io(asize
, ismd
);
9021 abd_copy(to_write
, hdr
->b_crypt_hdr
.b_rabd
, psize
);
9022 abd_zero_off(to_write
, psize
, asize
- psize
);
9026 if ((compress
== ZIO_COMPRESS_OFF
|| HDR_COMPRESSION_ENABLED(hdr
)) &&
9027 !HDR_ENCRYPTED(hdr
)) {
9028 ASSERT3U(size
, ==, psize
);
9029 to_write
= abd_alloc_for_io(asize
, ismd
);
9030 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
9032 abd_zero_off(to_write
, size
, asize
- size
);
9036 if (compress
!= ZIO_COMPRESS_OFF
&& !HDR_COMPRESSION_ENABLED(hdr
)) {
9037 cabd
= abd_alloc_for_io(MAX(size
, asize
), ismd
);
9038 uint64_t csize
= zio_compress_data(compress
, to_write
, &cabd
,
9039 size
, MIN(size
, psize
), hdr
->b_complevel
);
9040 if (csize
>= size
|| csize
> psize
) {
9042 * We can't re-compress the block into the original
9043 * psize. Even if it fits into asize, it does not
9044 * matter, since checksum will never match on read.
9047 return (SET_ERROR(EIO
));
9050 abd_zero_off(cabd
, csize
, asize
- csize
);
9054 if (HDR_ENCRYPTED(hdr
)) {
9055 eabd
= abd_alloc_for_io(asize
, ismd
);
9058 * If the dataset was disowned before the buffer
9059 * made it to this point, the key to re-encrypt
9060 * it won't be available. In this case we simply
9061 * won't write the buffer to the L2ARC.
9063 ret
= spa_keystore_lookup_key(spa
, hdr
->b_crypt_hdr
.b_dsobj
,
9068 ret
= zio_do_crypt_abd(B_TRUE
, &dck
->dck_key
,
9069 hdr
->b_crypt_hdr
.b_ot
, bswap
, hdr
->b_crypt_hdr
.b_salt
,
9070 hdr
->b_crypt_hdr
.b_iv
, mac
, psize
, to_write
, eabd
,
9076 abd_copy(eabd
, to_write
, psize
);
9079 abd_zero_off(eabd
, psize
, asize
- psize
);
9081 /* assert that the MAC we got here matches the one we saved */
9082 ASSERT0(memcmp(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
));
9083 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9085 if (to_write
== cabd
)
9092 ASSERT3P(to_write
, !=, hdr
->b_l1hdr
.b_pabd
);
9093 *abd_out
= to_write
;
9098 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9109 l2arc_blk_fetch_done(zio_t
*zio
)
9111 l2arc_read_callback_t
*cb
;
9113 cb
= zio
->io_private
;
9114 if (cb
->l2rcb_abd
!= NULL
)
9115 abd_free(cb
->l2rcb_abd
);
9116 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
9120 * Find and write ARC buffers to the L2ARC device.
9122 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9123 * for reading until they have completed writing.
9124 * The headroom_boost is an in-out parameter used to maintain headroom boost
9125 * state between calls to this function.
9127 * Returns the number of bytes actually written (which may be smaller than
9128 * the delta by which the device hand has changed due to alignment and the
9129 * writing of log blocks).
9132 l2arc_write_buffers(spa_t
*spa
, l2arc_dev_t
*dev
, uint64_t target_sz
)
9134 arc_buf_hdr_t
*hdr
, *head
, *marker
;
9135 uint64_t write_asize
, write_psize
, headroom
;
9136 boolean_t full
, from_head
= !arc_warm
;
9137 l2arc_write_callback_t
*cb
= NULL
;
9139 uint64_t guid
= spa_load_guid(spa
);
9140 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9142 ASSERT3P(dev
->l2ad_vdev
, !=, NULL
);
9145 write_asize
= write_psize
= 0;
9147 head
= kmem_cache_alloc(hdr_l2only_cache
, KM_PUSHPAGE
);
9148 arc_hdr_set_flags(head
, ARC_FLAG_L2_WRITE_HEAD
| ARC_FLAG_HAS_L2HDR
);
9149 marker
= arc_state_alloc_marker();
9152 * Copy buffers for L2ARC writing.
9154 for (int pass
= 0; pass
< L2ARC_FEED_TYPES
; pass
++) {
9156 * pass == 0: MFU meta
9157 * pass == 1: MRU meta
9158 * pass == 2: MFU data
9159 * pass == 3: MRU data
9161 if (l2arc_mfuonly
== 1) {
9162 if (pass
== 1 || pass
== 3)
9164 } else if (l2arc_mfuonly
> 1) {
9169 uint64_t passed_sz
= 0;
9170 headroom
= target_sz
* l2arc_headroom
;
9171 if (zfs_compressed_arc_enabled
)
9172 headroom
= (headroom
* l2arc_headroom_boost
) / 100;
9175 * Until the ARC is warm and starts to evict, read from the
9176 * head of the ARC lists rather than the tail.
9178 multilist_sublist_t
*mls
= l2arc_sublist_lock(pass
);
9179 ASSERT3P(mls
, !=, NULL
);
9181 hdr
= multilist_sublist_head(mls
);
9183 hdr
= multilist_sublist_tail(mls
);
9185 while (hdr
!= NULL
) {
9186 kmutex_t
*hash_lock
;
9187 abd_t
*to_write
= NULL
;
9189 hash_lock
= HDR_LOCK(hdr
);
9190 if (!mutex_tryenter(hash_lock
)) {
9192 /* Skip this buffer rather than waiting. */
9194 hdr
= multilist_sublist_next(mls
, hdr
);
9196 hdr
= multilist_sublist_prev(mls
, hdr
);
9200 passed_sz
+= HDR_GET_LSIZE(hdr
);
9201 if (l2arc_headroom
!= 0 && passed_sz
> headroom
) {
9205 mutex_exit(hash_lock
);
9209 if (!l2arc_write_eligible(guid
, hdr
)) {
9210 mutex_exit(hash_lock
);
9214 ASSERT(HDR_HAS_L1HDR(hdr
));
9215 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
9216 ASSERT3U(arc_hdr_size(hdr
), >, 0);
9217 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
9219 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9220 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
9224 * If the allocated size of this buffer plus the max
9225 * size for the pending log block exceeds the evicted
9226 * target size, terminate writing buffers for this run.
9228 if (write_asize
+ asize
+
9229 sizeof (l2arc_log_blk_phys_t
) > target_sz
) {
9231 mutex_exit(hash_lock
);
9236 * We should not sleep with sublist lock held or it
9237 * may block ARC eviction. Insert a marker to save
9238 * the position and drop the lock.
9241 multilist_sublist_insert_after(mls
, hdr
,
9244 multilist_sublist_insert_before(mls
, hdr
,
9247 multilist_sublist_unlock(mls
);
9250 * If this header has b_rabd, we can use this since it
9251 * must always match the data exactly as it exists on
9252 * disk. Otherwise, the L2ARC can normally use the
9253 * hdr's data, but if we're sharing data between the
9254 * hdr and one of its bufs, L2ARC needs its own copy of
9255 * the data so that the ZIO below can't race with the
9256 * buf consumer. To ensure that this copy will be
9257 * available for the lifetime of the ZIO and be cleaned
9258 * up afterwards, we add it to the l2arc_free_on_write
9259 * queue. If we need to apply any transforms to the
9260 * data (compression, encryption) we will also need the
9263 if (HDR_HAS_RABD(hdr
) && psize
== asize
) {
9264 to_write
= hdr
->b_crypt_hdr
.b_rabd
;
9265 } else if ((HDR_COMPRESSION_ENABLED(hdr
) ||
9266 HDR_GET_COMPRESS(hdr
) == ZIO_COMPRESS_OFF
) &&
9267 !HDR_ENCRYPTED(hdr
) && !HDR_SHARED_DATA(hdr
) &&
9269 to_write
= hdr
->b_l1hdr
.b_pabd
;
9272 arc_buf_contents_t type
= arc_buf_type(hdr
);
9274 ret
= l2arc_apply_transforms(spa
, hdr
, asize
,
9277 arc_hdr_clear_flags(hdr
,
9279 mutex_exit(hash_lock
);
9283 l2arc_free_abd_on_write(to_write
, asize
, type
);
9286 hdr
->b_l2hdr
.b_dev
= dev
;
9287 hdr
->b_l2hdr
.b_daddr
= dev
->l2ad_hand
;
9288 hdr
->b_l2hdr
.b_hits
= 0;
9289 hdr
->b_l2hdr
.b_arcs_state
=
9290 hdr
->b_l1hdr
.b_state
->arcs_state
;
9291 arc_hdr_set_flags(hdr
, ARC_FLAG_HAS_L2HDR
|
9292 ARC_FLAG_L2_WRITING
);
9294 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
9295 arc_hdr_size(hdr
), hdr
);
9296 l2arc_hdr_arcstats_increment(hdr
);
9297 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
9299 mutex_enter(&dev
->l2ad_mtx
);
9302 * Insert a dummy header on the buflist so
9303 * l2arc_write_done() can find where the
9304 * write buffers begin without searching.
9306 list_insert_head(&dev
->l2ad_buflist
, head
);
9308 list_insert_head(&dev
->l2ad_buflist
, hdr
);
9309 mutex_exit(&dev
->l2ad_mtx
);
9311 boolean_t commit
= l2arc_log_blk_insert(dev
, hdr
);
9312 mutex_exit(hash_lock
);
9316 sizeof (l2arc_write_callback_t
), KM_SLEEP
);
9317 cb
->l2wcb_dev
= dev
;
9318 cb
->l2wcb_head
= head
;
9319 list_create(&cb
->l2wcb_abd_list
,
9320 sizeof (l2arc_lb_abd_buf_t
),
9321 offsetof(l2arc_lb_abd_buf_t
, node
));
9322 pio
= zio_root(spa
, l2arc_write_done
, cb
,
9326 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
,
9327 dev
->l2ad_hand
, asize
, to_write
,
9328 ZIO_CHECKSUM_OFF
, NULL
, hdr
,
9329 ZIO_PRIORITY_ASYNC_WRITE
,
9330 ZIO_FLAG_CANFAIL
, B_FALSE
);
9332 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
,
9336 write_psize
+= psize
;
9337 write_asize
+= asize
;
9338 dev
->l2ad_hand
+= asize
;
9341 /* l2ad_hand will be adjusted inside. */
9343 l2arc_log_blk_commit(dev
, pio
, cb
);
9347 multilist_sublist_lock(mls
);
9349 hdr
= multilist_sublist_next(mls
, marker
);
9351 hdr
= multilist_sublist_prev(mls
, marker
);
9352 multilist_sublist_remove(mls
, marker
);
9355 multilist_sublist_unlock(mls
);
9361 arc_state_free_marker(marker
);
9363 /* No buffers selected for writing? */
9365 ASSERT0(write_psize
);
9366 ASSERT(!HDR_HAS_L1HDR(head
));
9367 kmem_cache_free(hdr_l2only_cache
, head
);
9370 * Although we did not write any buffers l2ad_evict may
9373 if (dev
->l2ad_evict
!= l2dhdr
->dh_evict
)
9374 l2arc_dev_hdr_update(dev
);
9379 if (!dev
->l2ad_first
)
9380 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
9382 ASSERT3U(write_asize
, <=, target_sz
);
9383 ARCSTAT_BUMP(arcstat_l2_writes_sent
);
9384 ARCSTAT_INCR(arcstat_l2_write_bytes
, write_psize
);
9386 dev
->l2ad_writing
= B_TRUE
;
9387 (void) zio_wait(pio
);
9388 dev
->l2ad_writing
= B_FALSE
;
9391 * Update the device header after the zio completes as
9392 * l2arc_write_done() may have updated the memory holding the log block
9393 * pointers in the device header.
9395 l2arc_dev_hdr_update(dev
);
9397 return (write_asize
);
9401 l2arc_hdr_limit_reached(void)
9403 int64_t s
= aggsum_upper_bound(&arc_sums
.arcstat_l2_hdr_size
);
9405 return (arc_reclaim_needed() ||
9406 (s
> (arc_warm
? arc_c
: arc_c_max
) * l2arc_meta_percent
/ 100));
9410 * This thread feeds the L2ARC at regular intervals. This is the beating
9411 * heart of the L2ARC.
9413 static __attribute__((noreturn
)) void
9414 l2arc_feed_thread(void *unused
)
9420 uint64_t size
, wrote
;
9421 clock_t begin
, next
= ddi_get_lbolt();
9422 fstrans_cookie_t cookie
;
9424 CALLB_CPR_INIT(&cpr
, &l2arc_feed_thr_lock
, callb_generic_cpr
, FTAG
);
9426 mutex_enter(&l2arc_feed_thr_lock
);
9428 cookie
= spl_fstrans_mark();
9429 while (l2arc_thread_exit
== 0) {
9430 CALLB_CPR_SAFE_BEGIN(&cpr
);
9431 (void) cv_timedwait_idle(&l2arc_feed_thr_cv
,
9432 &l2arc_feed_thr_lock
, next
);
9433 CALLB_CPR_SAFE_END(&cpr
, &l2arc_feed_thr_lock
);
9434 next
= ddi_get_lbolt() + hz
;
9437 * Quick check for L2ARC devices.
9439 mutex_enter(&l2arc_dev_mtx
);
9440 if (l2arc_ndev
== 0) {
9441 mutex_exit(&l2arc_dev_mtx
);
9444 mutex_exit(&l2arc_dev_mtx
);
9445 begin
= ddi_get_lbolt();
9448 * This selects the next l2arc device to write to, and in
9449 * doing so the next spa to feed from: dev->l2ad_spa. This
9450 * will return NULL if there are now no l2arc devices or if
9451 * they are all faulted.
9453 * If a device is returned, its spa's config lock is also
9454 * held to prevent device removal. l2arc_dev_get_next()
9455 * will grab and release l2arc_dev_mtx.
9457 if ((dev
= l2arc_dev_get_next()) == NULL
)
9460 spa
= dev
->l2ad_spa
;
9461 ASSERT3P(spa
, !=, NULL
);
9464 * If the pool is read-only then force the feed thread to
9465 * sleep a little longer.
9467 if (!spa_writeable(spa
)) {
9468 next
= ddi_get_lbolt() + 5 * l2arc_feed_secs
* hz
;
9469 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9474 * Avoid contributing to memory pressure.
9476 if (l2arc_hdr_limit_reached()) {
9477 ARCSTAT_BUMP(arcstat_l2_abort_lowmem
);
9478 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9482 ARCSTAT_BUMP(arcstat_l2_feeds
);
9484 size
= l2arc_write_size(dev
);
9487 * Evict L2ARC buffers that will be overwritten.
9489 l2arc_evict(dev
, size
, B_FALSE
);
9492 * Write ARC buffers.
9494 wrote
= l2arc_write_buffers(spa
, dev
, size
);
9497 * Calculate interval between writes.
9499 next
= l2arc_write_interval(begin
, size
, wrote
);
9500 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9502 spl_fstrans_unmark(cookie
);
9504 l2arc_thread_exit
= 0;
9505 cv_broadcast(&l2arc_feed_thr_cv
);
9506 CALLB_CPR_EXIT(&cpr
); /* drops l2arc_feed_thr_lock */
9511 l2arc_vdev_present(vdev_t
*vd
)
9513 return (l2arc_vdev_get(vd
) != NULL
);
9517 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9518 * the vdev_t isn't an L2ARC device.
9521 l2arc_vdev_get(vdev_t
*vd
)
9525 mutex_enter(&l2arc_dev_mtx
);
9526 for (dev
= list_head(l2arc_dev_list
); dev
!= NULL
;
9527 dev
= list_next(l2arc_dev_list
, dev
)) {
9528 if (dev
->l2ad_vdev
== vd
)
9531 mutex_exit(&l2arc_dev_mtx
);
9537 l2arc_rebuild_dev(l2arc_dev_t
*dev
, boolean_t reopen
)
9539 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9540 uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
9541 spa_t
*spa
= dev
->l2ad_spa
;
9544 * The L2ARC has to hold at least the payload of one log block for
9545 * them to be restored (persistent L2ARC). The payload of a log block
9546 * depends on the amount of its log entries. We always write log blocks
9547 * with 1022 entries. How many of them are committed or restored depends
9548 * on the size of the L2ARC device. Thus the maximum payload of
9549 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9550 * is less than that, we reduce the amount of committed and restored
9551 * log entries per block so as to enable persistence.
9553 if (dev
->l2ad_end
< l2arc_rebuild_blocks_min_l2size
) {
9554 dev
->l2ad_log_entries
= 0;
9556 dev
->l2ad_log_entries
= MIN((dev
->l2ad_end
-
9557 dev
->l2ad_start
) >> SPA_MAXBLOCKSHIFT
,
9558 L2ARC_LOG_BLK_MAX_ENTRIES
);
9562 * Read the device header, if an error is returned do not rebuild L2ARC.
9564 if (l2arc_dev_hdr_read(dev
) == 0 && dev
->l2ad_log_entries
> 0) {
9566 * If we are onlining a cache device (vdev_reopen) that was
9567 * still present (l2arc_vdev_present()) and rebuild is enabled,
9568 * we should evict all ARC buffers and pointers to log blocks
9569 * and reclaim their space before restoring its contents to
9573 if (!l2arc_rebuild_enabled
) {
9576 l2arc_evict(dev
, 0, B_TRUE
);
9577 /* start a new log block */
9578 dev
->l2ad_log_ent_idx
= 0;
9579 dev
->l2ad_log_blk_payload_asize
= 0;
9580 dev
->l2ad_log_blk_payload_start
= 0;
9584 * Just mark the device as pending for a rebuild. We won't
9585 * be starting a rebuild in line here as it would block pool
9586 * import. Instead spa_load_impl will hand that off to an
9587 * async task which will call l2arc_spa_rebuild_start.
9589 dev
->l2ad_rebuild
= B_TRUE
;
9590 } else if (spa_writeable(spa
)) {
9592 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9593 * otherwise create a new header. We zero out the memory holding
9594 * the header to reset dh_start_lbps. If we TRIM the whole
9595 * device the new header will be written by
9596 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9597 * trim_state in the header too. When reading the header, if
9598 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9599 * we opt to TRIM the whole device again.
9601 if (l2arc_trim_ahead
> 0) {
9602 dev
->l2ad_trim_all
= B_TRUE
;
9604 memset(l2dhdr
, 0, l2dhdr_asize
);
9605 l2arc_dev_hdr_update(dev
);
9611 * Add a vdev for use by the L2ARC. By this point the spa has already
9612 * validated the vdev and opened it.
9615 l2arc_add_vdev(spa_t
*spa
, vdev_t
*vd
)
9617 l2arc_dev_t
*adddev
;
9618 uint64_t l2dhdr_asize
;
9620 ASSERT(!l2arc_vdev_present(vd
));
9623 * Create a new l2arc device entry.
9625 adddev
= vmem_zalloc(sizeof (l2arc_dev_t
), KM_SLEEP
);
9626 adddev
->l2ad_spa
= spa
;
9627 adddev
->l2ad_vdev
= vd
;
9628 /* leave extra size for an l2arc device header */
9629 l2dhdr_asize
= adddev
->l2ad_dev_hdr_asize
=
9630 MAX(sizeof (*adddev
->l2ad_dev_hdr
), 1 << vd
->vdev_ashift
);
9631 adddev
->l2ad_start
= VDEV_LABEL_START_SIZE
+ l2dhdr_asize
;
9632 adddev
->l2ad_end
= VDEV_LABEL_START_SIZE
+ vdev_get_min_asize(vd
);
9633 ASSERT3U(adddev
->l2ad_start
, <, adddev
->l2ad_end
);
9634 adddev
->l2ad_hand
= adddev
->l2ad_start
;
9635 adddev
->l2ad_evict
= adddev
->l2ad_start
;
9636 adddev
->l2ad_first
= B_TRUE
;
9637 adddev
->l2ad_writing
= B_FALSE
;
9638 adddev
->l2ad_trim_all
= B_FALSE
;
9639 list_link_init(&adddev
->l2ad_node
);
9640 adddev
->l2ad_dev_hdr
= kmem_zalloc(l2dhdr_asize
, KM_SLEEP
);
9642 mutex_init(&adddev
->l2ad_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9644 * This is a list of all ARC buffers that are still valid on the
9647 list_create(&adddev
->l2ad_buflist
, sizeof (arc_buf_hdr_t
),
9648 offsetof(arc_buf_hdr_t
, b_l2hdr
.b_l2node
));
9651 * This is a list of pointers to log blocks that are still present
9654 list_create(&adddev
->l2ad_lbptr_list
, sizeof (l2arc_lb_ptr_buf_t
),
9655 offsetof(l2arc_lb_ptr_buf_t
, node
));
9657 vdev_space_update(vd
, 0, 0, adddev
->l2ad_end
- adddev
->l2ad_hand
);
9658 zfs_refcount_create(&adddev
->l2ad_alloc
);
9659 zfs_refcount_create(&adddev
->l2ad_lb_asize
);
9660 zfs_refcount_create(&adddev
->l2ad_lb_count
);
9663 * Decide if dev is eligible for L2ARC rebuild or whole device
9664 * trimming. This has to happen before the device is added in the
9665 * cache device list and l2arc_dev_mtx is released. Otherwise
9666 * l2arc_feed_thread() might already start writing on the
9669 l2arc_rebuild_dev(adddev
, B_FALSE
);
9672 * Add device to global list
9674 mutex_enter(&l2arc_dev_mtx
);
9675 list_insert_head(l2arc_dev_list
, adddev
);
9676 atomic_inc_64(&l2arc_ndev
);
9677 mutex_exit(&l2arc_dev_mtx
);
9681 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9682 * in case of onlining a cache device.
9685 l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
)
9687 l2arc_dev_t
*dev
= NULL
;
9689 dev
= l2arc_vdev_get(vd
);
9690 ASSERT3P(dev
, !=, NULL
);
9693 * In contrast to l2arc_add_vdev() we do not have to worry about
9694 * l2arc_feed_thread() invalidating previous content when onlining a
9695 * cache device. The device parameters (l2ad*) are not cleared when
9696 * offlining the device and writing new buffers will not invalidate
9697 * all previous content. In worst case only buffers that have not had
9698 * their log block written to the device will be lost.
9699 * When onlining the cache device (ie offline->online without exporting
9700 * the pool in between) this happens:
9701 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9703 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9704 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9705 * is set to B_TRUE we might write additional buffers to the device.
9707 l2arc_rebuild_dev(dev
, reopen
);
9711 * Remove a vdev from the L2ARC.
9714 l2arc_remove_vdev(vdev_t
*vd
)
9716 l2arc_dev_t
*remdev
= NULL
;
9719 * Find the device by vdev
9721 remdev
= l2arc_vdev_get(vd
);
9722 ASSERT3P(remdev
, !=, NULL
);
9725 * Cancel any ongoing or scheduled rebuild.
9727 mutex_enter(&l2arc_rebuild_thr_lock
);
9728 if (remdev
->l2ad_rebuild_began
== B_TRUE
) {
9729 remdev
->l2ad_rebuild_cancel
= B_TRUE
;
9730 while (remdev
->l2ad_rebuild
== B_TRUE
)
9731 cv_wait(&l2arc_rebuild_thr_cv
, &l2arc_rebuild_thr_lock
);
9733 mutex_exit(&l2arc_rebuild_thr_lock
);
9736 * Remove device from global list
9738 mutex_enter(&l2arc_dev_mtx
);
9739 list_remove(l2arc_dev_list
, remdev
);
9740 l2arc_dev_last
= NULL
; /* may have been invalidated */
9741 atomic_dec_64(&l2arc_ndev
);
9742 mutex_exit(&l2arc_dev_mtx
);
9745 * Clear all buflists and ARC references. L2ARC device flush.
9747 l2arc_evict(remdev
, 0, B_TRUE
);
9748 list_destroy(&remdev
->l2ad_buflist
);
9749 ASSERT(list_is_empty(&remdev
->l2ad_lbptr_list
));
9750 list_destroy(&remdev
->l2ad_lbptr_list
);
9751 mutex_destroy(&remdev
->l2ad_mtx
);
9752 zfs_refcount_destroy(&remdev
->l2ad_alloc
);
9753 zfs_refcount_destroy(&remdev
->l2ad_lb_asize
);
9754 zfs_refcount_destroy(&remdev
->l2ad_lb_count
);
9755 kmem_free(remdev
->l2ad_dev_hdr
, remdev
->l2ad_dev_hdr_asize
);
9756 vmem_free(remdev
, sizeof (l2arc_dev_t
));
9762 l2arc_thread_exit
= 0;
9765 mutex_init(&l2arc_feed_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
9766 cv_init(&l2arc_feed_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
9767 mutex_init(&l2arc_rebuild_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
9768 cv_init(&l2arc_rebuild_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
9769 mutex_init(&l2arc_dev_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9770 mutex_init(&l2arc_free_on_write_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9772 l2arc_dev_list
= &L2ARC_dev_list
;
9773 l2arc_free_on_write
= &L2ARC_free_on_write
;
9774 list_create(l2arc_dev_list
, sizeof (l2arc_dev_t
),
9775 offsetof(l2arc_dev_t
, l2ad_node
));
9776 list_create(l2arc_free_on_write
, sizeof (l2arc_data_free_t
),
9777 offsetof(l2arc_data_free_t
, l2df_list_node
));
9783 mutex_destroy(&l2arc_feed_thr_lock
);
9784 cv_destroy(&l2arc_feed_thr_cv
);
9785 mutex_destroy(&l2arc_rebuild_thr_lock
);
9786 cv_destroy(&l2arc_rebuild_thr_cv
);
9787 mutex_destroy(&l2arc_dev_mtx
);
9788 mutex_destroy(&l2arc_free_on_write_mtx
);
9790 list_destroy(l2arc_dev_list
);
9791 list_destroy(l2arc_free_on_write
);
9797 if (!(spa_mode_global
& SPA_MODE_WRITE
))
9800 (void) thread_create(NULL
, 0, l2arc_feed_thread
, NULL
, 0, &p0
,
9801 TS_RUN
, defclsyspri
);
9807 if (!(spa_mode_global
& SPA_MODE_WRITE
))
9810 mutex_enter(&l2arc_feed_thr_lock
);
9811 cv_signal(&l2arc_feed_thr_cv
); /* kick thread out of startup */
9812 l2arc_thread_exit
= 1;
9813 while (l2arc_thread_exit
!= 0)
9814 cv_wait(&l2arc_feed_thr_cv
, &l2arc_feed_thr_lock
);
9815 mutex_exit(&l2arc_feed_thr_lock
);
9819 * Punches out rebuild threads for the L2ARC devices in a spa. This should
9820 * be called after pool import from the spa async thread, since starting
9821 * these threads directly from spa_import() will make them part of the
9822 * "zpool import" context and delay process exit (and thus pool import).
9825 l2arc_spa_rebuild_start(spa_t
*spa
)
9827 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
9830 * Locate the spa's l2arc devices and kick off rebuild threads.
9832 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
9834 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
9836 /* Don't attempt a rebuild if the vdev is UNAVAIL */
9839 mutex_enter(&l2arc_rebuild_thr_lock
);
9840 if (dev
->l2ad_rebuild
&& !dev
->l2ad_rebuild_cancel
) {
9841 dev
->l2ad_rebuild_began
= B_TRUE
;
9842 (void) thread_create(NULL
, 0, l2arc_dev_rebuild_thread
,
9843 dev
, 0, &p0
, TS_RUN
, minclsyspri
);
9845 mutex_exit(&l2arc_rebuild_thr_lock
);
9850 l2arc_spa_rebuild_stop(spa_t
*spa
)
9852 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
9853 spa
->spa_export_thread
== curthread
);
9855 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
9857 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
9860 mutex_enter(&l2arc_rebuild_thr_lock
);
9861 dev
->l2ad_rebuild_cancel
= B_TRUE
;
9862 mutex_exit(&l2arc_rebuild_thr_lock
);
9864 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
9866 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
9869 mutex_enter(&l2arc_rebuild_thr_lock
);
9870 if (dev
->l2ad_rebuild_began
== B_TRUE
) {
9871 while (dev
->l2ad_rebuild
== B_TRUE
) {
9872 cv_wait(&l2arc_rebuild_thr_cv
,
9873 &l2arc_rebuild_thr_lock
);
9876 mutex_exit(&l2arc_rebuild_thr_lock
);
9881 * Main entry point for L2ARC rebuilding.
9883 static __attribute__((noreturn
)) void
9884 l2arc_dev_rebuild_thread(void *arg
)
9886 l2arc_dev_t
*dev
= arg
;
9888 VERIFY(dev
->l2ad_rebuild
);
9889 (void) l2arc_rebuild(dev
);
9890 mutex_enter(&l2arc_rebuild_thr_lock
);
9891 dev
->l2ad_rebuild_began
= B_FALSE
;
9892 dev
->l2ad_rebuild
= B_FALSE
;
9893 cv_signal(&l2arc_rebuild_thr_cv
);
9894 mutex_exit(&l2arc_rebuild_thr_lock
);
9900 * This function implements the actual L2ARC metadata rebuild. It:
9901 * starts reading the log block chain and restores each block's contents
9902 * to memory (reconstructing arc_buf_hdr_t's).
9904 * Operation stops under any of the following conditions:
9906 * 1) We reach the end of the log block chain.
9907 * 2) We encounter *any* error condition (cksum errors, io errors)
9910 l2arc_rebuild(l2arc_dev_t
*dev
)
9912 vdev_t
*vd
= dev
->l2ad_vdev
;
9913 spa_t
*spa
= vd
->vdev_spa
;
9915 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9916 l2arc_log_blk_phys_t
*this_lb
, *next_lb
;
9917 zio_t
*this_io
= NULL
, *next_io
= NULL
;
9918 l2arc_log_blkptr_t lbps
[2];
9919 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
9920 boolean_t lock_held
;
9922 this_lb
= vmem_zalloc(sizeof (*this_lb
), KM_SLEEP
);
9923 next_lb
= vmem_zalloc(sizeof (*next_lb
), KM_SLEEP
);
9926 * We prevent device removal while issuing reads to the device,
9927 * then during the rebuilding phases we drop this lock again so
9928 * that a spa_unload or device remove can be initiated - this is
9929 * safe, because the spa will signal us to stop before removing
9930 * our device and wait for us to stop.
9932 spa_config_enter(spa
, SCL_L2ARC
, vd
, RW_READER
);
9936 * Retrieve the persistent L2ARC device state.
9937 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9939 dev
->l2ad_evict
= MAX(l2dhdr
->dh_evict
, dev
->l2ad_start
);
9940 dev
->l2ad_hand
= MAX(l2dhdr
->dh_start_lbps
[0].lbp_daddr
+
9941 L2BLK_GET_PSIZE((&l2dhdr
->dh_start_lbps
[0])->lbp_prop
),
9943 dev
->l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
9945 vd
->vdev_trim_action_time
= l2dhdr
->dh_trim_action_time
;
9946 vd
->vdev_trim_state
= l2dhdr
->dh_trim_state
;
9949 * In case the zfs module parameter l2arc_rebuild_enabled is false
9950 * we do not start the rebuild process.
9952 if (!l2arc_rebuild_enabled
)
9955 /* Prepare the rebuild process */
9956 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
9958 /* Start the rebuild process */
9960 if (!l2arc_log_blkptr_valid(dev
, &lbps
[0]))
9963 if ((err
= l2arc_log_blk_read(dev
, &lbps
[0], &lbps
[1],
9964 this_lb
, next_lb
, this_io
, &next_io
)) != 0)
9968 * Our memory pressure valve. If the system is running low
9969 * on memory, rather than swamping memory with new ARC buf
9970 * hdrs, we opt not to rebuild the L2ARC. At this point,
9971 * however, we have already set up our L2ARC dev to chain in
9972 * new metadata log blocks, so the user may choose to offline/
9973 * online the L2ARC dev at a later time (or re-import the pool)
9974 * to reconstruct it (when there's less memory pressure).
9976 if (l2arc_hdr_limit_reached()) {
9977 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem
);
9978 cmn_err(CE_NOTE
, "System running low on memory, "
9979 "aborting L2ARC rebuild.");
9980 err
= SET_ERROR(ENOMEM
);
9984 spa_config_exit(spa
, SCL_L2ARC
, vd
);
9985 lock_held
= B_FALSE
;
9988 * Now that we know that the next_lb checks out alright, we
9989 * can start reconstruction from this log block.
9990 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9992 uint64_t asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
9993 l2arc_log_blk_restore(dev
, this_lb
, asize
);
9996 * log block restored, include its pointer in the list of
9997 * pointers to log blocks present in the L2ARC device.
9999 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10000 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
),
10002 memcpy(lb_ptr_buf
->lb_ptr
, &lbps
[0],
10003 sizeof (l2arc_log_blkptr_t
));
10004 mutex_enter(&dev
->l2ad_mtx
);
10005 list_insert_tail(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10006 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10007 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10008 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10009 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10010 mutex_exit(&dev
->l2ad_mtx
);
10011 vdev_space_update(vd
, asize
, 0, 0);
10014 * Protection against loops of log blocks:
10016 * l2ad_hand l2ad_evict
10018 * l2ad_start |=======================================| l2ad_end
10019 * -----|||----|||---|||----|||
10021 * ---|||---|||----|||---|||
10024 * In this situation the pointer of log block (4) passes
10025 * l2arc_log_blkptr_valid() but the log block should not be
10026 * restored as it is overwritten by the payload of log block
10027 * (0). Only log blocks (0)-(3) should be restored. We check
10028 * whether l2ad_evict lies in between the payload starting
10029 * offset of the next log block (lbps[1].lbp_payload_start)
10030 * and the payload starting offset of the present log block
10031 * (lbps[0].lbp_payload_start). If true and this isn't the
10032 * first pass, we are looping from the beginning and we should
10035 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
10036 lbps
[0].lbp_payload_start
, dev
->l2ad_evict
) &&
10040 kpreempt(KPREEMPT_SYNC
);
10042 mutex_enter(&l2arc_rebuild_thr_lock
);
10043 if (dev
->l2ad_rebuild_cancel
) {
10044 mutex_exit(&l2arc_rebuild_thr_lock
);
10045 err
= SET_ERROR(ECANCELED
);
10048 mutex_exit(&l2arc_rebuild_thr_lock
);
10049 if (spa_config_tryenter(spa
, SCL_L2ARC
, vd
,
10051 lock_held
= B_TRUE
;
10055 * L2ARC config lock held by somebody in writer,
10056 * possibly due to them trying to remove us. They'll
10057 * likely to want us to shut down, so after a little
10058 * delay, we check l2ad_rebuild_cancel and retry
10065 * Continue with the next log block.
10068 lbps
[1] = this_lb
->lb_prev_lbp
;
10069 PTR_SWAP(this_lb
, next_lb
);
10074 if (this_io
!= NULL
)
10075 l2arc_log_blk_fetch_abort(this_io
);
10077 if (next_io
!= NULL
)
10078 l2arc_log_blk_fetch_abort(next_io
);
10079 vmem_free(this_lb
, sizeof (*this_lb
));
10080 vmem_free(next_lb
, sizeof (*next_lb
));
10082 if (!l2arc_rebuild_enabled
) {
10083 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10085 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) > 0) {
10086 ARCSTAT_BUMP(arcstat_l2_rebuild_success
);
10087 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10088 "successful, restored %llu blocks",
10089 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10090 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) == 0) {
10092 * No error but also nothing restored, meaning the lbps array
10093 * in the device header points to invalid/non-present log
10094 * blocks. Reset the header.
10096 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10097 "no valid log blocks");
10098 memset(l2dhdr
, 0, dev
->l2ad_dev_hdr_asize
);
10099 l2arc_dev_hdr_update(dev
);
10100 } else if (err
== ECANCELED
) {
10102 * In case the rebuild was canceled do not log to spa history
10103 * log as the pool may be in the process of being removed.
10105 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10106 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10107 } else if (err
!= 0) {
10108 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10109 "aborted, restored %llu blocks",
10110 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10114 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10120 * Attempts to read the device header on the provided L2ARC device and writes
10121 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10122 * error code is returned.
10125 l2arc_dev_hdr_read(l2arc_dev_t
*dev
)
10129 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10130 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10133 guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10135 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10137 err
= zio_wait(zio_read_phys(NULL
, dev
->l2ad_vdev
,
10138 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
,
10139 ZIO_CHECKSUM_LABEL
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
10140 ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
10141 ZIO_FLAG_SPECULATIVE
, B_FALSE
));
10146 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors
);
10147 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10148 "vdev guid: %llu", err
,
10149 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10153 if (l2dhdr
->dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
10154 byteswap_uint64_array(l2dhdr
, sizeof (*l2dhdr
));
10156 if (l2dhdr
->dh_magic
!= L2ARC_DEV_HDR_MAGIC
||
10157 l2dhdr
->dh_spa_guid
!= guid
||
10158 l2dhdr
->dh_vdev_guid
!= dev
->l2ad_vdev
->vdev_guid
||
10159 l2dhdr
->dh_version
!= L2ARC_PERSISTENT_VERSION
||
10160 l2dhdr
->dh_log_entries
!= dev
->l2ad_log_entries
||
10161 l2dhdr
->dh_end
!= dev
->l2ad_end
||
10162 !l2arc_range_check_overlap(dev
->l2ad_start
, dev
->l2ad_end
,
10163 l2dhdr
->dh_evict
) ||
10164 (l2dhdr
->dh_trim_state
!= VDEV_TRIM_COMPLETE
&&
10165 l2arc_trim_ahead
> 0)) {
10167 * Attempt to rebuild a device containing no actual dev hdr
10168 * or containing a header from some other pool or from another
10169 * version of persistent L2ARC.
10171 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported
);
10172 return (SET_ERROR(ENOTSUP
));
10179 * Reads L2ARC log blocks from storage and validates their contents.
10181 * This function implements a simple fetcher to make sure that while
10182 * we're processing one buffer the L2ARC is already fetching the next
10183 * one in the chain.
10185 * The arguments this_lp and next_lp point to the current and next log block
10186 * address in the block chain. Similarly, this_lb and next_lb hold the
10187 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10189 * The `this_io' and `next_io' arguments are used for block fetching.
10190 * When issuing the first blk IO during rebuild, you should pass NULL for
10191 * `this_io'. This function will then issue a sync IO to read the block and
10192 * also issue an async IO to fetch the next block in the block chain. The
10193 * fetched IO is returned in `next_io'. On subsequent calls to this
10194 * function, pass the value returned in `next_io' from the previous call
10195 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10196 * Prior to the call, you should initialize your `next_io' pointer to be
10197 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10199 * On success, this function returns 0, otherwise it returns an appropriate
10200 * error code. On error the fetching IO is aborted and cleared before
10201 * returning from this function. Therefore, if we return `success', the
10202 * caller can assume that we have taken care of cleanup of fetch IOs.
10205 l2arc_log_blk_read(l2arc_dev_t
*dev
,
10206 const l2arc_log_blkptr_t
*this_lbp
, const l2arc_log_blkptr_t
*next_lbp
,
10207 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
10208 zio_t
*this_io
, zio_t
**next_io
)
10214 ASSERT(this_lbp
!= NULL
&& next_lbp
!= NULL
);
10215 ASSERT(this_lb
!= NULL
&& next_lb
!= NULL
);
10216 ASSERT(next_io
!= NULL
&& *next_io
== NULL
);
10217 ASSERT(l2arc_log_blkptr_valid(dev
, this_lbp
));
10220 * Check to see if we have issued the IO for this log block in a
10221 * previous run. If not, this is the first call, so issue it now.
10223 if (this_io
== NULL
) {
10224 this_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, this_lbp
,
10229 * Peek to see if we can start issuing the next IO immediately.
10231 if (l2arc_log_blkptr_valid(dev
, next_lbp
)) {
10233 * Start issuing IO for the next log block early - this
10234 * should help keep the L2ARC device busy while we
10235 * decompress and restore this log block.
10237 *next_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, next_lbp
,
10241 /* Wait for the IO to read this log block to complete */
10242 if ((err
= zio_wait(this_io
)) != 0) {
10243 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors
);
10244 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10245 "offset: %llu, vdev guid: %llu", err
,
10246 (u_longlong_t
)this_lbp
->lbp_daddr
,
10247 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10252 * Make sure the buffer checks out.
10253 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10255 asize
= L2BLK_GET_PSIZE((this_lbp
)->lbp_prop
);
10256 fletcher_4_native(this_lb
, asize
, NULL
, &cksum
);
10257 if (!ZIO_CHECKSUM_EQUAL(cksum
, this_lbp
->lbp_cksum
)) {
10258 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors
);
10259 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10260 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10261 (u_longlong_t
)this_lbp
->lbp_daddr
,
10262 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
,
10263 (u_longlong_t
)dev
->l2ad_hand
,
10264 (u_longlong_t
)dev
->l2ad_evict
);
10265 err
= SET_ERROR(ECKSUM
);
10269 /* Now we can take our time decoding this buffer */
10270 switch (L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
)) {
10271 case ZIO_COMPRESS_OFF
:
10273 case ZIO_COMPRESS_LZ4
: {
10274 abd_t
*abd
= abd_alloc_linear(asize
, B_TRUE
);
10275 abd_copy_from_buf_off(abd
, this_lb
, 0, asize
);
10277 abd_get_from_buf_struct(&dabd
, this_lb
, sizeof (*this_lb
));
10278 err
= zio_decompress_data(
10279 L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
),
10280 abd
, &dabd
, asize
, sizeof (*this_lb
), NULL
);
10284 err
= SET_ERROR(EINVAL
);
10290 err
= SET_ERROR(EINVAL
);
10293 if (this_lb
->lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
10294 byteswap_uint64_array(this_lb
, sizeof (*this_lb
));
10295 if (this_lb
->lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
10296 err
= SET_ERROR(EINVAL
);
10300 /* Abort an in-flight fetch I/O in case of error */
10301 if (err
!= 0 && *next_io
!= NULL
) {
10302 l2arc_log_blk_fetch_abort(*next_io
);
10309 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10310 * entries which only contain an l2arc hdr, essentially restoring the
10311 * buffers to their L2ARC evicted state. This function also updates space
10312 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10315 l2arc_log_blk_restore(l2arc_dev_t
*dev
, const l2arc_log_blk_phys_t
*lb
,
10318 uint64_t size
= 0, asize
= 0;
10319 uint64_t log_entries
= dev
->l2ad_log_entries
;
10322 * Usually arc_adapt() is called only for data, not headers, but
10323 * since we may allocate significant amount of memory here, let ARC
10326 arc_adapt(log_entries
* HDR_L2ONLY_SIZE
);
10328 for (int i
= log_entries
- 1; i
>= 0; i
--) {
10330 * Restore goes in the reverse temporal direction to preserve
10331 * correct temporal ordering of buffers in the l2ad_buflist.
10332 * l2arc_hdr_restore also does a list_insert_tail instead of
10333 * list_insert_head on the l2ad_buflist:
10335 * LIST l2ad_buflist LIST
10336 * HEAD <------ (time) ------ TAIL
10337 * direction +-----+-----+-----+-----+-----+ direction
10338 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10339 * fill +-----+-----+-----+-----+-----+
10343 * l2arc_feed_thread l2arc_rebuild
10344 * will place new bufs here restores bufs here
10346 * During l2arc_rebuild() the device is not used by
10347 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10349 size
+= L2BLK_GET_LSIZE((&lb
->lb_entries
[i
])->le_prop
);
10350 asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10351 L2BLK_GET_PSIZE((&lb
->lb_entries
[i
])->le_prop
));
10352 l2arc_hdr_restore(&lb
->lb_entries
[i
], dev
);
10356 * Record rebuild stats:
10357 * size Logical size of restored buffers in the L2ARC
10358 * asize Aligned size of restored buffers in the L2ARC
10360 ARCSTAT_INCR(arcstat_l2_rebuild_size
, size
);
10361 ARCSTAT_INCR(arcstat_l2_rebuild_asize
, asize
);
10362 ARCSTAT_INCR(arcstat_l2_rebuild_bufs
, log_entries
);
10363 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, lb_asize
);
10364 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
, asize
/ lb_asize
);
10365 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks
);
10369 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10370 * into a state indicating that it has been evicted to L2ARC.
10373 l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
, l2arc_dev_t
*dev
)
10375 arc_buf_hdr_t
*hdr
, *exists
;
10376 kmutex_t
*hash_lock
;
10377 arc_buf_contents_t type
= L2BLK_GET_TYPE((le
)->le_prop
);
10381 * Do all the allocation before grabbing any locks, this lets us
10382 * sleep if memory is full and we don't have to deal with failed
10385 hdr
= arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le
)->le_prop
), type
,
10386 dev
, le
->le_dva
, le
->le_daddr
,
10387 L2BLK_GET_PSIZE((le
)->le_prop
), le
->le_birth
,
10388 L2BLK_GET_COMPRESS((le
)->le_prop
), le
->le_complevel
,
10389 L2BLK_GET_PROTECTED((le
)->le_prop
),
10390 L2BLK_GET_PREFETCH((le
)->le_prop
),
10391 L2BLK_GET_STATE((le
)->le_prop
));
10392 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
10393 L2BLK_GET_PSIZE((le
)->le_prop
));
10396 * vdev_space_update() has to be called before arc_hdr_destroy() to
10397 * avoid underflow since the latter also calls vdev_space_update().
10399 l2arc_hdr_arcstats_increment(hdr
);
10400 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10402 mutex_enter(&dev
->l2ad_mtx
);
10403 list_insert_tail(&dev
->l2ad_buflist
, hdr
);
10404 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
), hdr
);
10405 mutex_exit(&dev
->l2ad_mtx
);
10407 exists
= buf_hash_insert(hdr
, &hash_lock
);
10409 /* Buffer was already cached, no need to restore it. */
10410 arc_hdr_destroy(hdr
);
10412 * If the buffer is already cached, check whether it has
10413 * L2ARC metadata. If not, enter them and update the flag.
10414 * This is important is case of onlining a cache device, since
10415 * we previously evicted all L2ARC metadata from ARC.
10417 if (!HDR_HAS_L2HDR(exists
)) {
10418 arc_hdr_set_flags(exists
, ARC_FLAG_HAS_L2HDR
);
10419 exists
->b_l2hdr
.b_dev
= dev
;
10420 exists
->b_l2hdr
.b_daddr
= le
->le_daddr
;
10421 exists
->b_l2hdr
.b_arcs_state
=
10422 L2BLK_GET_STATE((le
)->le_prop
);
10423 mutex_enter(&dev
->l2ad_mtx
);
10424 list_insert_tail(&dev
->l2ad_buflist
, exists
);
10425 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
10426 arc_hdr_size(exists
), exists
);
10427 mutex_exit(&dev
->l2ad_mtx
);
10428 l2arc_hdr_arcstats_increment(exists
);
10429 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10431 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached
);
10434 mutex_exit(hash_lock
);
10438 * Starts an asynchronous read IO to read a log block. This is used in log
10439 * block reconstruction to start reading the next block before we are done
10440 * decoding and reconstructing the current block, to keep the l2arc device
10441 * nice and hot with read IO to process.
10442 * The returned zio will contain a newly allocated memory buffers for the IO
10443 * data which should then be freed by the caller once the zio is no longer
10444 * needed (i.e. due to it having completed). If you wish to abort this
10445 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10446 * care of disposing of the allocated buffers correctly.
10449 l2arc_log_blk_fetch(vdev_t
*vd
, const l2arc_log_blkptr_t
*lbp
,
10450 l2arc_log_blk_phys_t
*lb
)
10454 l2arc_read_callback_t
*cb
;
10456 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10457 asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10458 ASSERT(asize
<= sizeof (l2arc_log_blk_phys_t
));
10460 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
), KM_SLEEP
);
10461 cb
->l2rcb_abd
= abd_get_from_buf(lb
, asize
);
10462 pio
= zio_root(vd
->vdev_spa
, l2arc_blk_fetch_done
, cb
,
10463 ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
);
10464 (void) zio_nowait(zio_read_phys(pio
, vd
, lbp
->lbp_daddr
, asize
,
10465 cb
->l2rcb_abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10466 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
|
10467 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
, B_FALSE
));
10473 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10474 * buffers allocated for it.
10477 l2arc_log_blk_fetch_abort(zio_t
*zio
)
10479 (void) zio_wait(zio
);
10483 * Creates a zio to update the device header on an l2arc device.
10486 l2arc_dev_hdr_update(l2arc_dev_t
*dev
)
10488 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10489 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10493 VERIFY(spa_config_held(dev
->l2ad_spa
, SCL_STATE_ALL
, RW_READER
));
10495 l2dhdr
->dh_magic
= L2ARC_DEV_HDR_MAGIC
;
10496 l2dhdr
->dh_version
= L2ARC_PERSISTENT_VERSION
;
10497 l2dhdr
->dh_spa_guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10498 l2dhdr
->dh_vdev_guid
= dev
->l2ad_vdev
->vdev_guid
;
10499 l2dhdr
->dh_log_entries
= dev
->l2ad_log_entries
;
10500 l2dhdr
->dh_evict
= dev
->l2ad_evict
;
10501 l2dhdr
->dh_start
= dev
->l2ad_start
;
10502 l2dhdr
->dh_end
= dev
->l2ad_end
;
10503 l2dhdr
->dh_lb_asize
= zfs_refcount_count(&dev
->l2ad_lb_asize
);
10504 l2dhdr
->dh_lb_count
= zfs_refcount_count(&dev
->l2ad_lb_count
);
10505 l2dhdr
->dh_flags
= 0;
10506 l2dhdr
->dh_trim_action_time
= dev
->l2ad_vdev
->vdev_trim_action_time
;
10507 l2dhdr
->dh_trim_state
= dev
->l2ad_vdev
->vdev_trim_state
;
10508 if (dev
->l2ad_first
)
10509 l2dhdr
->dh_flags
|= L2ARC_DEV_HDR_EVICT_FIRST
;
10511 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10513 err
= zio_wait(zio_write_phys(NULL
, dev
->l2ad_vdev
,
10514 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
, ZIO_CHECKSUM_LABEL
, NULL
,
10515 NULL
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
));
10520 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10521 "vdev guid: %llu", err
,
10522 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10527 * Commits a log block to the L2ARC device. This routine is invoked from
10528 * l2arc_write_buffers when the log block fills up.
10529 * This function allocates some memory to temporarily hold the serialized
10530 * buffer to be written. This is then released in l2arc_write_done.
10533 l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
, l2arc_write_callback_t
*cb
)
10535 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10536 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10537 uint64_t psize
, asize
;
10539 l2arc_lb_abd_buf_t
*abd_buf
;
10541 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10543 VERIFY3S(dev
->l2ad_log_ent_idx
, ==, dev
->l2ad_log_entries
);
10545 abd_buf
= zio_buf_alloc(sizeof (*abd_buf
));
10546 abd_buf
->abd
= abd_get_from_buf(lb
, sizeof (*lb
));
10547 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10548 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
), KM_SLEEP
);
10550 /* link the buffer into the block chain */
10551 lb
->lb_prev_lbp
= l2dhdr
->dh_start_lbps
[1];
10552 lb
->lb_magic
= L2ARC_LOG_BLK_MAGIC
;
10555 * l2arc_log_blk_commit() may be called multiple times during a single
10556 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10557 * so we can free them in l2arc_write_done() later on.
10559 list_insert_tail(&cb
->l2wcb_abd_list
, abd_buf
);
10561 /* try to compress the buffer, at least one sector to save */
10562 psize
= zio_compress_data(ZIO_COMPRESS_LZ4
,
10563 abd_buf
->abd
, &abd
, sizeof (*lb
),
10564 zio_get_compression_max_size(ZIO_COMPRESS_LZ4
,
10565 dev
->l2ad_vdev
->vdev_ashift
,
10566 dev
->l2ad_vdev
->vdev_ashift
, sizeof (*lb
)), 0);
10568 /* a log block is never entirely zero */
10569 ASSERT(psize
!= 0);
10570 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
10571 ASSERT(asize
<= sizeof (*lb
));
10574 * Update the start log block pointer in the device header to point
10575 * to the log block we're about to write.
10577 l2dhdr
->dh_start_lbps
[1] = l2dhdr
->dh_start_lbps
[0];
10578 l2dhdr
->dh_start_lbps
[0].lbp_daddr
= dev
->l2ad_hand
;
10579 l2dhdr
->dh_start_lbps
[0].lbp_payload_asize
=
10580 dev
->l2ad_log_blk_payload_asize
;
10581 l2dhdr
->dh_start_lbps
[0].lbp_payload_start
=
10582 dev
->l2ad_log_blk_payload_start
;
10584 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, sizeof (*lb
));
10586 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, asize
);
10587 L2BLK_SET_CHECKSUM(
10588 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10589 ZIO_CHECKSUM_FLETCHER_4
);
10590 if (asize
< sizeof (*lb
)) {
10591 /* compression succeeded */
10592 abd_zero_off(abd
, psize
, asize
- psize
);
10593 L2BLK_SET_COMPRESS(
10594 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10597 /* compression failed */
10598 abd_copy_from_buf_off(abd
, lb
, 0, sizeof (*lb
));
10599 L2BLK_SET_COMPRESS(
10600 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10604 /* checksum what we're about to write */
10605 abd_fletcher_4_native(abd
, asize
, NULL
,
10606 &l2dhdr
->dh_start_lbps
[0].lbp_cksum
);
10608 abd_free(abd_buf
->abd
);
10610 /* perform the write itself */
10611 abd_buf
->abd
= abd
;
10612 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
, dev
->l2ad_hand
,
10613 asize
, abd_buf
->abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10614 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
);
10615 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
, zio_t
*, wzio
);
10616 (void) zio_nowait(wzio
);
10618 dev
->l2ad_hand
+= asize
;
10619 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10622 * Include the committed log block's pointer in the list of pointers
10623 * to log blocks present in the L2ARC device.
10625 memcpy(lb_ptr_buf
->lb_ptr
, &l2dhdr
->dh_start_lbps
[0],
10626 sizeof (l2arc_log_blkptr_t
));
10627 mutex_enter(&dev
->l2ad_mtx
);
10628 list_insert_head(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10629 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10630 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10631 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10632 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10633 mutex_exit(&dev
->l2ad_mtx
);
10635 /* bump the kstats */
10636 ARCSTAT_INCR(arcstat_l2_write_bytes
, asize
);
10637 ARCSTAT_BUMP(arcstat_l2_log_blk_writes
);
10638 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, asize
);
10639 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
,
10640 dev
->l2ad_log_blk_payload_asize
/ asize
);
10642 /* start a new log block */
10643 dev
->l2ad_log_ent_idx
= 0;
10644 dev
->l2ad_log_blk_payload_asize
= 0;
10645 dev
->l2ad_log_blk_payload_start
= 0;
10651 * Validates an L2ARC log block address to make sure that it can be read
10652 * from the provided L2ARC device.
10655 l2arc_log_blkptr_valid(l2arc_dev_t
*dev
, const l2arc_log_blkptr_t
*lbp
)
10657 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10658 uint64_t asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10659 uint64_t end
= lbp
->lbp_daddr
+ asize
- 1;
10660 uint64_t start
= lbp
->lbp_payload_start
;
10661 boolean_t evicted
= B_FALSE
;
10664 * A log block is valid if all of the following conditions are true:
10665 * - it fits entirely (including its payload) between l2ad_start and
10667 * - it has a valid size
10668 * - neither the log block itself nor part of its payload was evicted
10669 * by l2arc_evict():
10671 * l2ad_hand l2ad_evict
10676 * l2ad_start ============================================ l2ad_end
10677 * --------------------------||||
10684 l2arc_range_check_overlap(start
, end
, dev
->l2ad_hand
) ||
10685 l2arc_range_check_overlap(start
, end
, dev
->l2ad_evict
) ||
10686 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, start
) ||
10687 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, end
);
10689 return (start
>= dev
->l2ad_start
&& end
<= dev
->l2ad_end
&&
10690 asize
> 0 && asize
<= sizeof (l2arc_log_blk_phys_t
) &&
10691 (!evicted
|| dev
->l2ad_first
));
10695 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10696 * the device. The buffer being inserted must be present in L2ARC.
10697 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10698 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10701 l2arc_log_blk_insert(l2arc_dev_t
*dev
, const arc_buf_hdr_t
*hdr
)
10703 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10704 l2arc_log_ent_phys_t
*le
;
10706 if (dev
->l2ad_log_entries
== 0)
10709 int index
= dev
->l2ad_log_ent_idx
++;
10711 ASSERT3S(index
, <, dev
->l2ad_log_entries
);
10712 ASSERT(HDR_HAS_L2HDR(hdr
));
10714 le
= &lb
->lb_entries
[index
];
10715 memset(le
, 0, sizeof (*le
));
10716 le
->le_dva
= hdr
->b_dva
;
10717 le
->le_birth
= hdr
->b_birth
;
10718 le
->le_daddr
= hdr
->b_l2hdr
.b_daddr
;
10720 dev
->l2ad_log_blk_payload_start
= le
->le_daddr
;
10721 L2BLK_SET_LSIZE((le
)->le_prop
, HDR_GET_LSIZE(hdr
));
10722 L2BLK_SET_PSIZE((le
)->le_prop
, HDR_GET_PSIZE(hdr
));
10723 L2BLK_SET_COMPRESS((le
)->le_prop
, HDR_GET_COMPRESS(hdr
));
10724 le
->le_complevel
= hdr
->b_complevel
;
10725 L2BLK_SET_TYPE((le
)->le_prop
, hdr
->b_type
);
10726 L2BLK_SET_PROTECTED((le
)->le_prop
, !!(HDR_PROTECTED(hdr
)));
10727 L2BLK_SET_PREFETCH((le
)->le_prop
, !!(HDR_PREFETCH(hdr
)));
10728 L2BLK_SET_STATE((le
)->le_prop
, hdr
->b_l2hdr
.b_arcs_state
);
10730 dev
->l2ad_log_blk_payload_asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10731 HDR_GET_PSIZE(hdr
));
10733 return (dev
->l2ad_log_ent_idx
== dev
->l2ad_log_entries
);
10737 * Checks whether a given L2ARC device address sits in a time-sequential
10738 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10739 * just do a range comparison, we need to handle the situation in which the
10740 * range wraps around the end of the L2ARC device. Arguments:
10741 * bottom -- Lower end of the range to check (written to earlier).
10742 * top -- Upper end of the range to check (written to later).
10743 * check -- The address for which we want to determine if it sits in
10744 * between the top and bottom.
10746 * The 3-way conditional below represents the following cases:
10748 * bottom < top : Sequentially ordered case:
10749 * <check>--------+-------------------+
10750 * | (overlap here?) |
10752 * |---------------<bottom>============<top>--------------|
10754 * bottom > top: Looped-around case:
10755 * <check>--------+------------------+
10756 * | (overlap here?) |
10758 * |===============<top>---------------<bottom>===========|
10761 * +---------------+---------<check>
10763 * top == bottom : Just a single address comparison.
10766 l2arc_range_check_overlap(uint64_t bottom
, uint64_t top
, uint64_t check
)
10769 return (bottom
<= check
&& check
<= top
);
10770 else if (bottom
> top
)
10771 return (check
<= top
|| bottom
<= check
);
10773 return (check
== top
);
10776 EXPORT_SYMBOL(arc_buf_size
);
10777 EXPORT_SYMBOL(arc_write
);
10778 EXPORT_SYMBOL(arc_read
);
10779 EXPORT_SYMBOL(arc_buf_info
);
10780 EXPORT_SYMBOL(arc_getbuf_func
);
10781 EXPORT_SYMBOL(arc_add_prune_callback
);
10782 EXPORT_SYMBOL(arc_remove_prune_callback
);
10784 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min
, param_set_arc_min
,
10785 spl_param_get_u64
, ZMOD_RW
, "Minimum ARC size in bytes");
10787 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, max
, param_set_arc_max
,
10788 spl_param_get_u64
, ZMOD_RW
, "Maximum ARC size in bytes");
10790 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_balance
, UINT
, ZMOD_RW
,
10791 "Balance between metadata and data on ghost hits.");
10793 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, grow_retry
, param_set_arc_int
,
10794 param_get_uint
, ZMOD_RW
, "Seconds before growing ARC size");
10796 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, shrink_shift
, param_set_arc_int
,
10797 param_get_uint
, ZMOD_RW
, "log2(fraction of ARC to reclaim)");
10799 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, pc_percent
, UINT
, ZMOD_RW
,
10800 "Percent of pagecache to reclaim ARC to");
10802 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, average_blocksize
, UINT
, ZMOD_RD
,
10803 "Target average block size");
10805 ZFS_MODULE_PARAM(zfs
, zfs_
, compressed_arc_enabled
, INT
, ZMOD_RW
,
10806 "Disable compressed ARC buffers");
10808 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prefetch_ms
, param_set_arc_int
,
10809 param_get_uint
, ZMOD_RW
, "Min life of prefetch block in ms");
10811 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prescient_prefetch_ms
,
10812 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
10813 "Min life of prescient prefetched block in ms");
10815 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_max
, U64
, ZMOD_RW
,
10816 "Max write bytes per interval");
10818 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_boost
, U64
, ZMOD_RW
,
10819 "Extra write bytes during device warmup");
10821 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom
, U64
, ZMOD_RW
,
10822 "Number of max device writes to precache");
10824 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom_boost
, U64
, ZMOD_RW
,
10825 "Compressed l2arc_headroom multiplier");
10827 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, trim_ahead
, U64
, ZMOD_RW
,
10828 "TRIM ahead L2ARC write size multiplier");
10830 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_secs
, U64
, ZMOD_RW
,
10831 "Seconds between L2ARC writing");
10833 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_min_ms
, U64
, ZMOD_RW
,
10834 "Min feed interval in milliseconds");
10836 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, noprefetch
, INT
, ZMOD_RW
,
10837 "Skip caching prefetched buffers");
10839 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_again
, INT
, ZMOD_RW
,
10840 "Turbo L2ARC warmup");
10842 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, norw
, INT
, ZMOD_RW
,
10843 "No reads during writes");
10845 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, meta_percent
, UINT
, ZMOD_RW
,
10846 "Percent of ARC size allowed for L2ARC-only headers");
10848 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_enabled
, INT
, ZMOD_RW
,
10849 "Rebuild the L2ARC when importing a pool");
10851 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_blocks_min_l2size
, U64
, ZMOD_RW
,
10852 "Min size in bytes to write rebuild log blocks in L2ARC");
10854 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, mfuonly
, INT
, ZMOD_RW
,
10855 "Cache only MFU data from ARC into L2ARC");
10857 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, exclude_special
, INT
, ZMOD_RW
,
10858 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10860 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, lotsfree_percent
, param_set_arc_int
,
10861 param_get_uint
, ZMOD_RW
, "System free memory I/O throttle in bytes");
10863 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, sys_free
, param_set_arc_u64
,
10864 spl_param_get_u64
, ZMOD_RW
, "System free memory target size in bytes");
10866 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit
, param_set_arc_u64
,
10867 spl_param_get_u64
, ZMOD_RW
, "Minimum bytes of dnodes in ARC");
10869 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit_percent
,
10870 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
10871 "Percent of ARC meta buffers for dnodes");
10873 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, dnode_reduce_percent
, UINT
, ZMOD_RW
,
10874 "Percentage of excess dnodes to try to unpin");
10876 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, eviction_pct
, UINT
, ZMOD_RW
,
10877 "When full, ARC allocation waits for eviction of this % of alloc size");
10879 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, evict_batch_limit
, UINT
, ZMOD_RW
,
10880 "The number of headers to evict per sublist before moving to the next");
10882 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, prune_task_threads
, INT
, ZMOD_RW
,
10883 "Number of arc_prune threads");