Allow dsl_deadlist_open() return errors
[zfs.git] / module / zfs / rrwlock.c
bloba8c438bb6ebd7a0bbe1cd9fa7e2270ab62df702c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright (c) 2012 by Delphix. All rights reserved.
29 #include <sys/rrwlock.h>
30 #include <sys/trace_zfs.h>
33 * This file contains the implementation of a re-entrant read
34 * reader/writer lock (aka "rrwlock").
36 * This is a normal reader/writer lock with the additional feature
37 * of allowing threads who have already obtained a read lock to
38 * re-enter another read lock (re-entrant read) - even if there are
39 * waiting writers.
41 * Callers who have not obtained a read lock give waiting writers priority.
43 * The rrwlock_t lock does not allow re-entrant writers, nor does it
44 * allow a re-entrant mix of reads and writes (that is, it does not
45 * allow a caller who has already obtained a read lock to be able to
46 * then grab a write lock without first dropping all read locks, and
47 * vice versa).
49 * The rrwlock_t uses tsd (thread specific data) to keep a list of
50 * nodes (rrw_node_t), where each node keeps track of which specific
51 * lock (rrw_node_t::rn_rrl) the thread has grabbed. Since re-entering
52 * should be rare, a thread that grabs multiple reads on the same rrwlock_t
53 * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the
54 * tsd list can represent a different rrwlock_t. This allows a thread
55 * to enter multiple and unique rrwlock_ts for read locks at the same time.
57 * Since using tsd exposes some overhead, the rrwlock_t only needs to
58 * keep tsd data when writers are waiting. If no writers are waiting, then
59 * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd
60 * is needed. Once a writer attempts to grab the lock, readers then
61 * keep tsd data and bump the linked readers count (rr_linked_rcount).
63 * If there are waiting writers and there are anonymous readers, then a
64 * reader doesn't know if it is a re-entrant lock. But since it may be one,
65 * we allow the read to proceed (otherwise it could deadlock). Since once
66 * waiting writers are active, readers no longer bump the anonymous count,
67 * the anonymous readers will eventually flush themselves out. At this point,
68 * readers will be able to tell if they are a re-entrant lock (have a
69 * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then
70 * we must let the proceed. If they are not, then the reader blocks for the
71 * waiting writers. Hence, we do not starve writers.
74 /* global key for TSD */
75 uint_t rrw_tsd_key;
77 typedef struct rrw_node {
78 struct rrw_node *rn_next;
79 rrwlock_t *rn_rrl;
80 const void *rn_tag;
81 } rrw_node_t;
83 static rrw_node_t *
84 rrn_find(rrwlock_t *rrl)
86 rrw_node_t *rn;
88 if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0)
89 return (NULL);
91 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
92 if (rn->rn_rrl == rrl)
93 return (rn);
95 return (NULL);
99 * Add a node to the head of the singly linked list.
101 static void
102 rrn_add(rrwlock_t *rrl, const void *tag)
104 rrw_node_t *rn;
106 rn = kmem_alloc(sizeof (*rn), KM_SLEEP);
107 rn->rn_rrl = rrl;
108 rn->rn_next = tsd_get(rrw_tsd_key);
109 rn->rn_tag = tag;
110 VERIFY(tsd_set(rrw_tsd_key, rn) == 0);
114 * If a node is found for 'rrl', then remove the node from this
115 * thread's list and return TRUE; otherwise return FALSE.
117 static boolean_t
118 rrn_find_and_remove(rrwlock_t *rrl, const void *tag)
120 rrw_node_t *rn;
121 rrw_node_t *prev = NULL;
123 if (zfs_refcount_count(&rrl->rr_linked_rcount) == 0)
124 return (B_FALSE);
126 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) {
127 if (rn->rn_rrl == rrl && rn->rn_tag == tag) {
128 if (prev)
129 prev->rn_next = rn->rn_next;
130 else
131 VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0);
132 kmem_free(rn, sizeof (*rn));
133 return (B_TRUE);
135 prev = rn;
137 return (B_FALSE);
140 void
141 rrw_init(rrwlock_t *rrl, boolean_t track_all)
143 mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL);
144 cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL);
145 rrl->rr_writer = NULL;
146 zfs_refcount_create(&rrl->rr_anon_rcount);
147 zfs_refcount_create(&rrl->rr_linked_rcount);
148 rrl->rr_writer_wanted = B_FALSE;
149 rrl->rr_track_all = track_all;
152 void
153 rrw_destroy(rrwlock_t *rrl)
155 mutex_destroy(&rrl->rr_lock);
156 cv_destroy(&rrl->rr_cv);
157 ASSERT(rrl->rr_writer == NULL);
158 zfs_refcount_destroy(&rrl->rr_anon_rcount);
159 zfs_refcount_destroy(&rrl->rr_linked_rcount);
162 static void
163 rrw_enter_read_impl(rrwlock_t *rrl, boolean_t prio, const void *tag)
165 mutex_enter(&rrl->rr_lock);
166 #if !defined(ZFS_DEBUG) && defined(_KERNEL)
167 if (rrl->rr_writer == NULL && !rrl->rr_writer_wanted &&
168 !rrl->rr_track_all) {
169 rrl->rr_anon_rcount.rc_count++;
170 mutex_exit(&rrl->rr_lock);
171 return;
173 DTRACE_PROBE(zfs__rrwfastpath__rdmiss);
174 #endif
175 ASSERT(rrl->rr_writer != curthread);
176 ASSERT(zfs_refcount_count(&rrl->rr_anon_rcount) >= 0);
178 while (rrl->rr_writer != NULL || (rrl->rr_writer_wanted &&
179 zfs_refcount_is_zero(&rrl->rr_anon_rcount) && !prio &&
180 rrn_find(rrl) == NULL))
181 cv_wait(&rrl->rr_cv, &rrl->rr_lock);
183 if (rrl->rr_writer_wanted || rrl->rr_track_all) {
184 /* may or may not be a re-entrant enter */
185 rrn_add(rrl, tag);
186 (void) zfs_refcount_add(&rrl->rr_linked_rcount, tag);
187 } else {
188 (void) zfs_refcount_add(&rrl->rr_anon_rcount, tag);
190 ASSERT(rrl->rr_writer == NULL);
191 mutex_exit(&rrl->rr_lock);
194 void
195 rrw_enter_read(rrwlock_t *rrl, const void *tag)
197 rrw_enter_read_impl(rrl, B_FALSE, tag);
201 * take a read lock even if there are pending write lock requests. if we want
202 * to take a lock reentrantly, but from different threads (that have a
203 * relationship to each other), the normal detection mechanism to overrule
204 * the pending writer does not work, so we have to give an explicit hint here.
206 void
207 rrw_enter_read_prio(rrwlock_t *rrl, const void *tag)
209 rrw_enter_read_impl(rrl, B_TRUE, tag);
213 void
214 rrw_enter_write(rrwlock_t *rrl)
216 mutex_enter(&rrl->rr_lock);
217 ASSERT(rrl->rr_writer != curthread);
219 while (zfs_refcount_count(&rrl->rr_anon_rcount) > 0 ||
220 zfs_refcount_count(&rrl->rr_linked_rcount) > 0 ||
221 rrl->rr_writer != NULL) {
222 rrl->rr_writer_wanted = B_TRUE;
223 cv_wait(&rrl->rr_cv, &rrl->rr_lock);
225 rrl->rr_writer_wanted = B_FALSE;
226 rrl->rr_writer = curthread;
227 mutex_exit(&rrl->rr_lock);
230 void
231 rrw_enter(rrwlock_t *rrl, krw_t rw, const void *tag)
233 if (rw == RW_READER)
234 rrw_enter_read(rrl, tag);
235 else
236 rrw_enter_write(rrl);
239 void
240 rrw_exit(rrwlock_t *rrl, const void *tag)
242 mutex_enter(&rrl->rr_lock);
243 #if !defined(ZFS_DEBUG) && defined(_KERNEL)
244 if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) {
245 rrl->rr_anon_rcount.rc_count--;
246 if (rrl->rr_anon_rcount.rc_count == 0)
247 cv_broadcast(&rrl->rr_cv);
248 mutex_exit(&rrl->rr_lock);
249 return;
251 DTRACE_PROBE(zfs__rrwfastpath__exitmiss);
252 #endif
253 ASSERT(!zfs_refcount_is_zero(&rrl->rr_anon_rcount) ||
254 !zfs_refcount_is_zero(&rrl->rr_linked_rcount) ||
255 rrl->rr_writer != NULL);
257 if (rrl->rr_writer == NULL) {
258 int64_t count;
259 if (rrn_find_and_remove(rrl, tag)) {
260 count = zfs_refcount_remove(
261 &rrl->rr_linked_rcount, tag);
262 } else {
263 ASSERT(!rrl->rr_track_all);
264 count = zfs_refcount_remove(&rrl->rr_anon_rcount, tag);
266 if (count == 0)
267 cv_broadcast(&rrl->rr_cv);
268 } else {
269 ASSERT(rrl->rr_writer == curthread);
270 ASSERT(zfs_refcount_is_zero(&rrl->rr_anon_rcount) &&
271 zfs_refcount_is_zero(&rrl->rr_linked_rcount));
272 rrl->rr_writer = NULL;
273 cv_broadcast(&rrl->rr_cv);
275 mutex_exit(&rrl->rr_lock);
279 * If the lock was created with track_all, rrw_held(RW_READER) will return
280 * B_TRUE iff the current thread has the lock for reader. Otherwise it may
281 * return B_TRUE if any thread has the lock for reader.
283 boolean_t
284 rrw_held(rrwlock_t *rrl, krw_t rw)
286 boolean_t held;
288 mutex_enter(&rrl->rr_lock);
289 if (rw == RW_WRITER) {
290 held = (rrl->rr_writer == curthread);
291 } else {
292 held = (!zfs_refcount_is_zero(&rrl->rr_anon_rcount) ||
293 rrn_find(rrl) != NULL);
295 mutex_exit(&rrl->rr_lock);
297 return (held);
300 void
301 rrw_tsd_destroy(void *arg)
303 rrw_node_t *rn = arg;
304 if (rn != NULL) {
305 panic("thread %p terminating with rrw lock %p held",
306 (void *)curthread, (void *)rn->rn_rrl);
311 * A reader-mostly lock implementation, tuning above reader-writer locks
312 * for hightly parallel read acquisitions, while pessimizing writes.
314 * The idea is to split single busy lock into array of locks, so that
315 * each reader can lock only one of them for read, depending on result
316 * of simple hash function. That proportionally reduces lock congestion.
317 * Writer at the same time has to sequentially acquire write on all the locks.
318 * That makes write acquisition proportionally slower, but in places where
319 * it is used (filesystem unmount) performance is not critical.
321 * All the functions below are direct wrappers around functions above.
323 void
324 rrm_init(rrmlock_t *rrl, boolean_t track_all)
326 int i;
328 for (i = 0; i < RRM_NUM_LOCKS; i++)
329 rrw_init(&rrl->locks[i], track_all);
332 void
333 rrm_destroy(rrmlock_t *rrl)
335 int i;
337 for (i = 0; i < RRM_NUM_LOCKS; i++)
338 rrw_destroy(&rrl->locks[i]);
341 void
342 rrm_enter(rrmlock_t *rrl, krw_t rw, const void *tag)
344 if (rw == RW_READER)
345 rrm_enter_read(rrl, tag);
346 else
347 rrm_enter_write(rrl);
351 * This maps the current thread to a specific lock. Note that the lock
352 * must be released by the same thread that acquired it. We do this
353 * mapping by taking the thread pointer mod a prime number. We examine
354 * only the low 32 bits of the thread pointer, because 32-bit division
355 * is faster than 64-bit division, and the high 32 bits have little
356 * entropy anyway.
358 #define RRM_TD_LOCK() (((uint32_t)(uintptr_t)(curthread)) % RRM_NUM_LOCKS)
360 void
361 rrm_enter_read(rrmlock_t *rrl, const void *tag)
363 rrw_enter_read(&rrl->locks[RRM_TD_LOCK()], tag);
366 void
367 rrm_enter_write(rrmlock_t *rrl)
369 int i;
371 for (i = 0; i < RRM_NUM_LOCKS; i++)
372 rrw_enter_write(&rrl->locks[i]);
375 void
376 rrm_exit(rrmlock_t *rrl, const void *tag)
378 int i;
380 if (rrl->locks[0].rr_writer == curthread) {
381 for (i = 0; i < RRM_NUM_LOCKS; i++)
382 rrw_exit(&rrl->locks[i], tag);
383 } else {
384 rrw_exit(&rrl->locks[RRM_TD_LOCK()], tag);
388 boolean_t
389 rrm_held(rrmlock_t *rrl, krw_t rw)
391 if (rw == RW_WRITER) {
392 return (rrw_held(&rrl->locks[0], rw));
393 } else {
394 return (rrw_held(&rrl->locks[RRM_TD_LOCK()], rw));