Allow dsl_deadlist_open() return errors
[zfs.git] / module / zfs / vdev_raidz_math_impl.h
blob5d77c5d046d5e876090bd7c93b6e46a7e7ef05c0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
25 #ifndef _VDEV_RAIDZ_MATH_IMPL_H
26 #define _VDEV_RAIDZ_MATH_IMPL_H
28 #include <sys/types.h>
29 #include <sys/vdev_raidz_impl.h>
31 #define raidz_inline inline __attribute__((always_inline))
32 #ifndef noinline
33 #define noinline __attribute__((noinline))
34 #endif
37 * Functions calculate multiplication constants for data reconstruction.
38 * Coefficients depend on RAIDZ geometry, indexes of failed child vdevs, and
39 * used parity columns for reconstruction.
40 * @rr RAIDZ row
41 * @tgtidx array of missing data indexes
42 * @coeff output array of coefficients. Array must be provided by
43 * user and must hold minimum MUL_CNT values.
45 static noinline void
46 raidz_rec_q_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
48 const unsigned ncols = rr->rr_cols;
49 const unsigned x = tgtidx[TARGET_X];
51 coeff[MUL_Q_X] = gf_exp2(255 - (ncols - x - 1));
54 static noinline void
55 raidz_rec_r_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
57 const unsigned ncols = rr->rr_cols;
58 const unsigned x = tgtidx[TARGET_X];
60 coeff[MUL_R_X] = gf_exp4(255 - (ncols - x - 1));
63 static noinline void
64 raidz_rec_pq_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
66 const unsigned ncols = rr->rr_cols;
67 const unsigned x = tgtidx[TARGET_X];
68 const unsigned y = tgtidx[TARGET_Y];
69 gf_t a, b, e;
71 a = gf_exp2(x + 255 - y);
72 b = gf_exp2(255 - (ncols - x - 1));
73 e = a ^ 0x01;
75 coeff[MUL_PQ_X] = gf_div(a, e);
76 coeff[MUL_PQ_Y] = gf_div(b, e);
79 static noinline void
80 raidz_rec_pr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
82 const unsigned ncols = rr->rr_cols;
83 const unsigned x = tgtidx[TARGET_X];
84 const unsigned y = tgtidx[TARGET_Y];
86 gf_t a, b, e;
88 a = gf_exp4(x + 255 - y);
89 b = gf_exp4(255 - (ncols - x - 1));
90 e = a ^ 0x01;
92 coeff[MUL_PR_X] = gf_div(a, e);
93 coeff[MUL_PR_Y] = gf_div(b, e);
96 static noinline void
97 raidz_rec_qr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
99 const unsigned ncols = rr->rr_cols;
100 const unsigned x = tgtidx[TARGET_X];
101 const unsigned y = tgtidx[TARGET_Y];
103 gf_t nx, ny, nxxy, nxyy, d;
105 nx = gf_exp2(ncols - x - 1);
106 ny = gf_exp2(ncols - y - 1);
107 nxxy = gf_mul(gf_mul(nx, nx), ny);
108 nxyy = gf_mul(gf_mul(nx, ny), ny);
109 d = nxxy ^ nxyy;
111 coeff[MUL_QR_XQ] = ny;
112 coeff[MUL_QR_X] = gf_div(ny, d);
113 coeff[MUL_QR_YQ] = nx;
114 coeff[MUL_QR_Y] = gf_div(nx, d);
117 static noinline void
118 raidz_rec_pqr_coeff(const raidz_row_t *rr, const int *tgtidx, unsigned *coeff)
120 const unsigned ncols = rr->rr_cols;
121 const unsigned x = tgtidx[TARGET_X];
122 const unsigned y = tgtidx[TARGET_Y];
123 const unsigned z = tgtidx[TARGET_Z];
125 gf_t nx, ny, nz, nxx, nyy, nzz, nyyz, nyzz, xd, yd;
127 nx = gf_exp2(ncols - x - 1);
128 ny = gf_exp2(ncols - y - 1);
129 nz = gf_exp2(ncols - z - 1);
131 nxx = gf_exp4(ncols - x - 1);
132 nyy = gf_exp4(ncols - y - 1);
133 nzz = gf_exp4(ncols - z - 1);
135 nyyz = gf_mul(gf_mul(ny, nz), ny);
136 nyzz = gf_mul(nzz, ny);
138 xd = gf_mul(nxx, ny) ^ gf_mul(nx, nyy) ^ nyyz ^
139 gf_mul(nxx, nz) ^ gf_mul(nzz, nx) ^ nyzz;
141 yd = gf_inv(ny ^ nz);
143 coeff[MUL_PQR_XP] = gf_div(nyyz ^ nyzz, xd);
144 coeff[MUL_PQR_XQ] = gf_div(nyy ^ nzz, xd);
145 coeff[MUL_PQR_XR] = gf_div(ny ^ nz, xd);
146 coeff[MUL_PQR_YU] = nx;
147 coeff[MUL_PQR_YP] = gf_mul(nz, yd);
148 coeff[MUL_PQR_YQ] = yd;
152 * Method for zeroing a buffer (can be implemented using SIMD).
153 * This method is used by multiple for gen/rec functions.
155 * @dc Destination buffer
156 * @dsize Destination buffer size
157 * @private Unused
159 static int
160 raidz_zero_abd_cb(void *dc, size_t dsize, void *private)
162 v_t *dst = (v_t *)dc;
163 size_t i;
165 ZERO_DEFINE();
167 (void) private; /* unused */
169 ZERO(ZERO_D);
171 for (i = 0; i < dsize / sizeof (v_t); i += (2 * ZERO_STRIDE)) {
172 STORE(dst + i, ZERO_D);
173 STORE(dst + i + ZERO_STRIDE, ZERO_D);
176 return (0);
179 #define raidz_zero(dabd, size) \
181 abd_iterate_func(dabd, 0, size, raidz_zero_abd_cb, NULL); \
185 * Method for copying two buffers (can be implemented using SIMD).
186 * This method is used by multiple for gen/rec functions.
188 * @dc Destination buffer
189 * @sc Source buffer
190 * @dsize Destination buffer size
191 * @ssize Source buffer size
192 * @private Unused
194 static int
195 raidz_copy_abd_cb(void *dc, void *sc, size_t size, void *private)
197 v_t *dst = (v_t *)dc;
198 const v_t *src = (v_t *)sc;
199 size_t i;
201 COPY_DEFINE();
203 (void) private; /* unused */
205 for (i = 0; i < size / sizeof (v_t); i += (2 * COPY_STRIDE)) {
206 LOAD(src + i, COPY_D);
207 STORE(dst + i, COPY_D);
209 LOAD(src + i + COPY_STRIDE, COPY_D);
210 STORE(dst + i + COPY_STRIDE, COPY_D);
213 return (0);
217 #define raidz_copy(dabd, sabd, off, size) \
219 abd_iterate_func2(dabd, sabd, off, off, size, raidz_copy_abd_cb, \
220 NULL); \
224 * Method for adding (XORing) two buffers.
225 * Source and destination are XORed together and result is stored in
226 * destination buffer. This method is used by multiple for gen/rec functions.
228 * @dc Destination buffer
229 * @sc Source buffer
230 * @dsize Destination buffer size
231 * @ssize Source buffer size
232 * @private Unused
234 static int
235 raidz_add_abd_cb(void *dc, void *sc, size_t size, void *private)
237 v_t *dst = (v_t *)dc;
238 const v_t *src = (v_t *)sc;
239 size_t i;
241 ADD_DEFINE();
243 (void) private; /* unused */
245 for (i = 0; i < size / sizeof (v_t); i += (2 * ADD_STRIDE)) {
246 LOAD(dst + i, ADD_D);
247 XOR_ACC(src + i, ADD_D);
248 STORE(dst + i, ADD_D);
250 LOAD(dst + i + ADD_STRIDE, ADD_D);
251 XOR_ACC(src + i + ADD_STRIDE, ADD_D);
252 STORE(dst + i + ADD_STRIDE, ADD_D);
255 return (0);
258 #define raidz_add(dabd, sabd, off, size) \
260 abd_iterate_func2(dabd, sabd, off, off, size, raidz_add_abd_cb, \
261 NULL); \
265 * Method for multiplying a buffer with a constant in GF(2^8).
266 * Symbols from buffer are multiplied by a constant and result is stored
267 * back in the same buffer.
269 * @dc In/Out data buffer.
270 * @size Size of the buffer
271 * @private pointer to the multiplication constant (unsigned)
273 static int
274 raidz_mul_abd_cb(void *dc, size_t size, void *private)
276 const unsigned mul = *((unsigned *)private);
277 v_t *d = (v_t *)dc;
278 size_t i;
280 MUL_DEFINE();
282 for (i = 0; i < size / sizeof (v_t); i += (2 * MUL_STRIDE)) {
283 LOAD(d + i, MUL_D);
284 MUL(mul, MUL_D);
285 STORE(d + i, MUL_D);
287 LOAD(d + i + MUL_STRIDE, MUL_D);
288 MUL(mul, MUL_D);
289 STORE(d + i + MUL_STRIDE, MUL_D);
292 return (0);
297 * Syndrome generation/update macros
299 * Require LOAD(), XOR(), STORE(), MUL2(), and MUL4() macros
301 #define P_D_SYNDROME(D, T, t) \
303 LOAD((t), T); \
304 XOR(D, T); \
305 STORE((t), T); \
308 #define Q_D_SYNDROME(D, T, t) \
310 LOAD((t), T); \
311 MUL2(T); \
312 XOR(D, T); \
313 STORE((t), T); \
316 #define Q_SYNDROME(T, t) \
318 LOAD((t), T); \
319 MUL2(T); \
320 STORE((t), T); \
323 #define R_D_SYNDROME(D, T, t) \
325 LOAD((t), T); \
326 MUL4(T); \
327 XOR(D, T); \
328 STORE((t), T); \
331 #define R_SYNDROME(T, t) \
333 LOAD((t), T); \
334 MUL4(T); \
335 STORE((t), T); \
340 * PARITY CALCULATION
342 * Macros *_SYNDROME are used for parity/syndrome calculation.
343 * *_D_SYNDROME() macros are used to calculate syndrome between 0 and
344 * length of data column, and *_SYNDROME() macros are only for updating
345 * the parity/syndrome if data column is shorter.
347 * P parity is calculated using raidz_add_abd().
349 * For CPU L2 cache blocking we process 64KB at a time.
351 #define CHUNK 65536
354 * Generate P parity (RAIDZ1)
356 * @rr RAIDZ row
358 static raidz_inline void
359 raidz_generate_p_impl(raidz_row_t * const rr)
361 size_t c;
362 const size_t ncols = rr->rr_cols;
363 const size_t psize = rr->rr_col[CODE_P].rc_size;
364 abd_t *pabd = rr->rr_col[CODE_P].rc_abd;
365 size_t off, size;
367 raidz_math_begin();
369 for (off = 0; off < psize; off += CHUNK) {
371 /* start with first data column */
372 size = MIN(CHUNK, psize - off);
373 raidz_copy(pabd, rr->rr_col[1].rc_abd, off, size);
375 for (c = 2; c < ncols; c++) {
376 size = rr->rr_col[c].rc_size;
377 if (size <= off)
378 continue;
380 /* add data column */
381 size = MIN(CHUNK, size - off);
382 abd_t *dabd = rr->rr_col[c].rc_abd;
383 raidz_add(pabd, dabd, off, size);
387 raidz_math_end();
392 * Generate PQ parity (RAIDZ2)
393 * The function is called per data column.
395 * @c array of pointers to parity (code) columns
396 * @dc pointer to data column
397 * @csize size of parity columns
398 * @dsize size of data column
400 static void
401 raidz_gen_pq_add(void **c, const void *dc, const size_t csize,
402 const size_t dsize)
404 v_t *p = (v_t *)c[0];
405 v_t *q = (v_t *)c[1];
406 const v_t *d = (const v_t *)dc;
407 const v_t * const dend = d + (dsize / sizeof (v_t));
408 const v_t * const qend = q + (csize / sizeof (v_t));
410 GEN_PQ_DEFINE();
412 MUL2_SETUP();
414 for (; d < dend; d += GEN_PQ_STRIDE, p += GEN_PQ_STRIDE,
415 q += GEN_PQ_STRIDE) {
416 LOAD(d, GEN_PQ_D);
417 P_D_SYNDROME(GEN_PQ_D, GEN_PQ_C, p);
418 Q_D_SYNDROME(GEN_PQ_D, GEN_PQ_C, q);
420 for (; q < qend; q += GEN_PQ_STRIDE) {
421 Q_SYNDROME(GEN_PQ_C, q);
427 * Generate PQ parity (RAIDZ2)
429 * @rr RAIDZ row
431 static raidz_inline void
432 raidz_generate_pq_impl(raidz_row_t * const rr)
434 size_t c;
435 const size_t ncols = rr->rr_cols;
436 const size_t csize = rr->rr_col[CODE_P].rc_size;
437 size_t off, size, dsize;
438 abd_t *dabd;
439 abd_t *cabds[] = {
440 rr->rr_col[CODE_P].rc_abd,
441 rr->rr_col[CODE_Q].rc_abd
444 raidz_math_begin();
446 for (off = 0; off < csize; off += CHUNK) {
448 size = MIN(CHUNK, csize - off);
449 raidz_copy(cabds[CODE_P], rr->rr_col[2].rc_abd, off, size);
450 raidz_copy(cabds[CODE_Q], rr->rr_col[2].rc_abd, off, size);
452 for (c = 3; c < ncols; c++) {
453 dabd = rr->rr_col[c].rc_abd;
454 dsize = rr->rr_col[c].rc_size;
455 dsize = (dsize > off) ? MIN(CHUNK, dsize - off) : 0;
457 abd_raidz_gen_iterate(cabds, dabd, off, size, dsize, 2,
458 raidz_gen_pq_add);
462 raidz_math_end();
467 * Generate PQR parity (RAIDZ3)
468 * The function is called per data column.
470 * @c array of pointers to parity (code) columns
471 * @dc pointer to data column
472 * @csize size of parity columns
473 * @dsize size of data column
475 static void
476 raidz_gen_pqr_add(void **c, const void *dc, const size_t csize,
477 const size_t dsize)
479 v_t *p = (v_t *)c[CODE_P];
480 v_t *q = (v_t *)c[CODE_Q];
481 v_t *r = (v_t *)c[CODE_R];
482 const v_t *d = (const v_t *)dc;
483 const v_t * const dend = d + (dsize / sizeof (v_t));
484 const v_t * const qend = q + (csize / sizeof (v_t));
486 GEN_PQR_DEFINE();
488 MUL2_SETUP();
490 for (; d < dend; d += GEN_PQR_STRIDE, p += GEN_PQR_STRIDE,
491 q += GEN_PQR_STRIDE, r += GEN_PQR_STRIDE) {
492 LOAD(d, GEN_PQR_D);
493 P_D_SYNDROME(GEN_PQR_D, GEN_PQR_C, p);
494 Q_D_SYNDROME(GEN_PQR_D, GEN_PQR_C, q);
495 R_D_SYNDROME(GEN_PQR_D, GEN_PQR_C, r);
497 for (; q < qend; q += GEN_PQR_STRIDE, r += GEN_PQR_STRIDE) {
498 Q_SYNDROME(GEN_PQR_C, q);
499 R_SYNDROME(GEN_PQR_C, r);
505 * Generate PQR parity (RAIDZ3)
507 * @rr RAIDZ row
509 static raidz_inline void
510 raidz_generate_pqr_impl(raidz_row_t * const rr)
512 size_t c;
513 const size_t ncols = rr->rr_cols;
514 const size_t csize = rr->rr_col[CODE_P].rc_size;
515 size_t off, size, dsize;
516 abd_t *dabd;
517 abd_t *cabds[] = {
518 rr->rr_col[CODE_P].rc_abd,
519 rr->rr_col[CODE_Q].rc_abd,
520 rr->rr_col[CODE_R].rc_abd
523 raidz_math_begin();
525 for (off = 0; off < csize; off += CHUNK) {
527 size = MIN(CHUNK, csize - off);
528 raidz_copy(cabds[CODE_P], rr->rr_col[3].rc_abd, off, size);
529 raidz_copy(cabds[CODE_Q], rr->rr_col[3].rc_abd, off, size);
530 raidz_copy(cabds[CODE_R], rr->rr_col[3].rc_abd, off, size);
532 for (c = 4; c < ncols; c++) {
533 dabd = rr->rr_col[c].rc_abd;
534 dsize = rr->rr_col[c].rc_size;
535 dsize = (dsize > off) ? MIN(CHUNK, dsize - off) : 0;
537 abd_raidz_gen_iterate(cabds, dabd, off, size, dsize, 3,
538 raidz_gen_pqr_add);
542 raidz_math_end();
547 * DATA RECONSTRUCTION
549 * Data reconstruction process consists of two phases:
550 * - Syndrome calculation
551 * - Data reconstruction
553 * Syndrome is calculated by generating parity using available data columns
554 * and zeros in places of erasure. Existing parity is added to corresponding
555 * syndrome value to obtain the [P|Q|R]syn values from equation:
556 * P = Psyn + Dx + Dy + Dz
557 * Q = Qsyn + 2^x * Dx + 2^y * Dy + 2^z * Dz
558 * R = Rsyn + 4^x * Dx + 4^y * Dy + 4^z * Dz
560 * For data reconstruction phase, the corresponding equations are solved
561 * for missing data (Dx, Dy, Dz). This generally involves multiplying known
562 * symbols by an coefficient and adding them together. The multiplication
563 * constant coefficients are calculated ahead of the operation in
564 * raidz_rec_[q|r|pq|pq|qr|pqr]_coeff() functions.
566 * IMPLEMENTATION NOTE: RAID-Z block can have complex geometry, with "big"
567 * and "short" columns.
568 * For this reason, reconstruction is performed in minimum of
569 * two steps. First, from offset 0 to short_size, then from short_size to
570 * short_size. Calculation functions REC_[*]_BLOCK() are implemented to work
571 * over both ranges. The split also enables removal of conditional expressions
572 * from loop bodies, improving throughput of SIMD implementations.
573 * For the best performance, all functions marked with raidz_inline attribute
574 * must be inlined by compiler.
576 * parity data
577 * columns columns
578 * <----------> <------------------>
579 * x y <----+ missing columns (x, y)
580 * | |
581 * +---+---+---+---+-v-+---+-v-+---+ ^ 0
582 * | | | | | | | | | |
583 * | | | | | | | | | |
584 * | P | Q | R | D | D | D | D | D | |
585 * | | | | 0 | 1 | 2 | 3 | 4 | |
586 * | | | | | | | | | v
587 * | | | | | +---+---+---+ ^ short_size
588 * | | | | | | |
589 * +---+---+---+---+---+ v big_size
590 * <------------------> <---------->
591 * big columns short columns
599 * Reconstruct single data column using P parity
601 * @syn_method raidz_add_abd()
602 * @rec_method not applicable
604 * @rr RAIDZ row
605 * @tgtidx array of missing data indexes
607 static raidz_inline int
608 raidz_reconstruct_p_impl(raidz_row_t *rr, const int *tgtidx)
610 size_t c;
611 const size_t firstdc = rr->rr_firstdatacol;
612 const size_t ncols = rr->rr_cols;
613 const size_t x = tgtidx[TARGET_X];
614 const size_t xsize = rr->rr_col[x].rc_size;
615 abd_t *xabd = rr->rr_col[x].rc_abd;
616 size_t off, size;
618 if (xabd == NULL)
619 return (1 << CODE_P);
621 raidz_math_begin();
623 for (off = 0; off < xsize; off += CHUNK) {
625 /* copy P into target */
626 size = MIN(CHUNK, xsize - off);
627 raidz_copy(xabd, rr->rr_col[CODE_P].rc_abd, off, size);
629 /* generate p_syndrome */
630 for (c = firstdc; c < ncols; c++) {
631 if (c == x)
632 continue;
633 size = rr->rr_col[c].rc_size;
634 if (size <= off)
635 continue;
637 size = MIN(CHUNK, MIN(size, xsize) - off);
638 abd_t *dabd = rr->rr_col[c].rc_abd;
639 raidz_add(xabd, dabd, off, size);
643 raidz_math_end();
645 return (1 << CODE_P);
650 * Generate Q syndrome (Qsyn)
652 * @xc array of pointers to syndrome columns
653 * @dc data column (NULL if missing)
654 * @xsize size of syndrome columns
655 * @dsize size of data column (0 if missing)
657 static void
658 raidz_syn_q_abd(void **xc, const void *dc, const size_t xsize,
659 const size_t dsize)
661 v_t *x = (v_t *)xc[TARGET_X];
662 const v_t *d = (const v_t *)dc;
663 const v_t * const dend = d + (dsize / sizeof (v_t));
664 const v_t * const xend = x + (xsize / sizeof (v_t));
666 SYN_Q_DEFINE();
668 MUL2_SETUP();
670 for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE) {
671 LOAD(d, SYN_Q_D);
672 Q_D_SYNDROME(SYN_Q_D, SYN_Q_X, x);
674 for (; x < xend; x += SYN_STRIDE) {
675 Q_SYNDROME(SYN_Q_X, x);
681 * Reconstruct single data column using Q parity
683 * @syn_method raidz_add_abd()
684 * @rec_method raidz_mul_abd_cb()
686 * @rr RAIDZ row
687 * @tgtidx array of missing data indexes
689 static raidz_inline int
690 raidz_reconstruct_q_impl(raidz_row_t *rr, const int *tgtidx)
692 size_t c;
693 size_t dsize;
694 abd_t *dabd;
695 const size_t firstdc = rr->rr_firstdatacol;
696 const size_t ncols = rr->rr_cols;
697 const size_t x = tgtidx[TARGET_X];
698 abd_t *xabd = rr->rr_col[x].rc_abd;
699 const size_t xsize = rr->rr_col[x].rc_size;
700 abd_t *tabds[] = { xabd };
702 if (xabd == NULL)
703 return (1 << CODE_Q);
705 unsigned coeff[MUL_CNT];
706 raidz_rec_q_coeff(rr, tgtidx, coeff);
708 raidz_math_begin();
710 /* Start with first data column if present */
711 if (firstdc != x) {
712 raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
713 } else {
714 raidz_zero(xabd, xsize);
717 /* generate q_syndrome */
718 for (c = firstdc+1; c < ncols; c++) {
719 if (c == x) {
720 dabd = NULL;
721 dsize = 0;
722 } else {
723 dabd = rr->rr_col[c].rc_abd;
724 dsize = rr->rr_col[c].rc_size;
727 abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 1,
728 raidz_syn_q_abd);
731 /* add Q to the syndrome */
732 raidz_add(xabd, rr->rr_col[CODE_Q].rc_abd, 0, xsize);
734 /* transform the syndrome */
735 abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void*) coeff);
737 raidz_math_end();
739 return (1 << CODE_Q);
744 * Generate R syndrome (Rsyn)
746 * @xc array of pointers to syndrome columns
747 * @dc data column (NULL if missing)
748 * @tsize size of syndrome columns
749 * @dsize size of data column (0 if missing)
751 static void
752 raidz_syn_r_abd(void **xc, const void *dc, const size_t tsize,
753 const size_t dsize)
755 v_t *x = (v_t *)xc[TARGET_X];
756 const v_t *d = (const v_t *)dc;
757 const v_t * const dend = d + (dsize / sizeof (v_t));
758 const v_t * const xend = x + (tsize / sizeof (v_t));
760 SYN_R_DEFINE();
762 MUL2_SETUP();
764 for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE) {
765 LOAD(d, SYN_R_D);
766 R_D_SYNDROME(SYN_R_D, SYN_R_X, x);
768 for (; x < xend; x += SYN_STRIDE) {
769 R_SYNDROME(SYN_R_X, x);
775 * Reconstruct single data column using R parity
777 * @syn_method raidz_add_abd()
778 * @rec_method raidz_mul_abd_cb()
780 * @rr RAIDZ rr
781 * @tgtidx array of missing data indexes
783 static raidz_inline int
784 raidz_reconstruct_r_impl(raidz_row_t *rr, const int *tgtidx)
786 size_t c;
787 size_t dsize;
788 abd_t *dabd;
789 const size_t firstdc = rr->rr_firstdatacol;
790 const size_t ncols = rr->rr_cols;
791 const size_t x = tgtidx[TARGET_X];
792 const size_t xsize = rr->rr_col[x].rc_size;
793 abd_t *xabd = rr->rr_col[x].rc_abd;
794 abd_t *tabds[] = { xabd };
796 if (xabd == NULL)
797 return (1 << CODE_R);
799 unsigned coeff[MUL_CNT];
800 raidz_rec_r_coeff(rr, tgtidx, coeff);
802 raidz_math_begin();
804 /* Start with first data column if present */
805 if (firstdc != x) {
806 raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
807 } else {
808 raidz_zero(xabd, xsize);
812 /* generate q_syndrome */
813 for (c = firstdc+1; c < ncols; c++) {
814 if (c == x) {
815 dabd = NULL;
816 dsize = 0;
817 } else {
818 dabd = rr->rr_col[c].rc_abd;
819 dsize = rr->rr_col[c].rc_size;
822 abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 1,
823 raidz_syn_r_abd);
826 /* add R to the syndrome */
827 raidz_add(xabd, rr->rr_col[CODE_R].rc_abd, 0, xsize);
829 /* transform the syndrome */
830 abd_iterate_func(xabd, 0, xsize, raidz_mul_abd_cb, (void *)coeff);
832 raidz_math_end();
834 return (1 << CODE_R);
839 * Generate P and Q syndromes
841 * @xc array of pointers to syndrome columns
842 * @dc data column (NULL if missing)
843 * @tsize size of syndrome columns
844 * @dsize size of data column (0 if missing)
846 static void
847 raidz_syn_pq_abd(void **tc, const void *dc, const size_t tsize,
848 const size_t dsize)
850 v_t *x = (v_t *)tc[TARGET_X];
851 v_t *y = (v_t *)tc[TARGET_Y];
852 const v_t *d = (const v_t *)dc;
853 const v_t * const dend = d + (dsize / sizeof (v_t));
854 const v_t * const yend = y + (tsize / sizeof (v_t));
856 SYN_PQ_DEFINE();
858 MUL2_SETUP();
860 for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE) {
861 LOAD(d, SYN_PQ_D);
862 P_D_SYNDROME(SYN_PQ_D, SYN_PQ_X, x);
863 Q_D_SYNDROME(SYN_PQ_D, SYN_PQ_X, y);
865 for (; y < yend; y += SYN_STRIDE) {
866 Q_SYNDROME(SYN_PQ_X, y);
871 * Reconstruct data using PQ parity and PQ syndromes
873 * @tc syndrome/result columns
874 * @tsize size of syndrome/result columns
875 * @c parity columns
876 * @mul array of multiplication constants
878 static void
879 raidz_rec_pq_abd(void **tc, const size_t tsize, void **c,
880 const unsigned *mul)
882 v_t *x = (v_t *)tc[TARGET_X];
883 v_t *y = (v_t *)tc[TARGET_Y];
884 const v_t * const xend = x + (tsize / sizeof (v_t));
885 const v_t *p = (v_t *)c[CODE_P];
886 const v_t *q = (v_t *)c[CODE_Q];
888 REC_PQ_DEFINE();
890 for (; x < xend; x += REC_PQ_STRIDE, y += REC_PQ_STRIDE,
891 p += REC_PQ_STRIDE, q += REC_PQ_STRIDE) {
892 LOAD(x, REC_PQ_X);
893 LOAD(y, REC_PQ_Y);
895 XOR_ACC(p, REC_PQ_X);
896 XOR_ACC(q, REC_PQ_Y);
898 /* Save Pxy */
899 COPY(REC_PQ_X, REC_PQ_T);
901 /* Calc X */
902 MUL(mul[MUL_PQ_X], REC_PQ_X);
903 MUL(mul[MUL_PQ_Y], REC_PQ_Y);
904 XOR(REC_PQ_Y, REC_PQ_X);
905 STORE(x, REC_PQ_X);
907 /* Calc Y */
908 XOR(REC_PQ_T, REC_PQ_X);
909 STORE(y, REC_PQ_X);
915 * Reconstruct two data columns using PQ parity
917 * @syn_method raidz_syn_pq_abd()
918 * @rec_method raidz_rec_pq_abd()
920 * @rr RAIDZ row
921 * @tgtidx array of missing data indexes
923 static raidz_inline int
924 raidz_reconstruct_pq_impl(raidz_row_t *rr, const int *tgtidx)
926 size_t c;
927 size_t dsize;
928 abd_t *dabd;
929 const size_t firstdc = rr->rr_firstdatacol;
930 const size_t ncols = rr->rr_cols;
931 const size_t x = tgtidx[TARGET_X];
932 const size_t y = tgtidx[TARGET_Y];
933 const size_t xsize = rr->rr_col[x].rc_size;
934 const size_t ysize = rr->rr_col[y].rc_size;
935 abd_t *xabd = rr->rr_col[x].rc_abd;
936 abd_t *yabd = rr->rr_col[y].rc_abd;
937 abd_t *tabds[2] = { xabd, yabd };
938 abd_t *cabds[] = {
939 rr->rr_col[CODE_P].rc_abd,
940 rr->rr_col[CODE_Q].rc_abd
943 if (xabd == NULL)
944 return ((1 << CODE_P) | (1 << CODE_Q));
946 unsigned coeff[MUL_CNT];
947 raidz_rec_pq_coeff(rr, tgtidx, coeff);
950 * Check if some of targets is shorter then others
951 * In this case, shorter target needs to be replaced with
952 * new buffer so that syndrome can be calculated.
954 if (ysize < xsize) {
955 yabd = abd_alloc(xsize, B_FALSE);
956 tabds[1] = yabd;
959 raidz_math_begin();
961 /* Start with first data column if present */
962 if (firstdc != x) {
963 raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
964 raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
965 } else {
966 raidz_zero(xabd, xsize);
967 raidz_zero(yabd, xsize);
970 /* generate q_syndrome */
971 for (c = firstdc+1; c < ncols; c++) {
972 if (c == x || c == y) {
973 dabd = NULL;
974 dsize = 0;
975 } else {
976 dabd = rr->rr_col[c].rc_abd;
977 dsize = rr->rr_col[c].rc_size;
980 abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 2,
981 raidz_syn_pq_abd);
984 abd_raidz_rec_iterate(cabds, tabds, xsize, 2, raidz_rec_pq_abd, coeff);
986 /* Copy shorter targets back to the original abd buffer */
987 if (ysize < xsize)
988 raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
990 raidz_math_end();
992 if (ysize < xsize)
993 abd_free(yabd);
995 return ((1 << CODE_P) | (1 << CODE_Q));
1000 * Generate P and R syndromes
1002 * @xc array of pointers to syndrome columns
1003 * @dc data column (NULL if missing)
1004 * @tsize size of syndrome columns
1005 * @dsize size of data column (0 if missing)
1007 static void
1008 raidz_syn_pr_abd(void **c, const void *dc, const size_t tsize,
1009 const size_t dsize)
1011 v_t *x = (v_t *)c[TARGET_X];
1012 v_t *y = (v_t *)c[TARGET_Y];
1013 const v_t *d = (const v_t *)dc;
1014 const v_t * const dend = d + (dsize / sizeof (v_t));
1015 const v_t * const yend = y + (tsize / sizeof (v_t));
1017 SYN_PR_DEFINE();
1019 MUL2_SETUP();
1021 for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE) {
1022 LOAD(d, SYN_PR_D);
1023 P_D_SYNDROME(SYN_PR_D, SYN_PR_X, x);
1024 R_D_SYNDROME(SYN_PR_D, SYN_PR_X, y);
1026 for (; y < yend; y += SYN_STRIDE) {
1027 R_SYNDROME(SYN_PR_X, y);
1032 * Reconstruct data using PR parity and PR syndromes
1034 * @tc syndrome/result columns
1035 * @tsize size of syndrome/result columns
1036 * @c parity columns
1037 * @mul array of multiplication constants
1039 static void
1040 raidz_rec_pr_abd(void **t, const size_t tsize, void **c,
1041 const unsigned *mul)
1043 v_t *x = (v_t *)t[TARGET_X];
1044 v_t *y = (v_t *)t[TARGET_Y];
1045 const v_t * const xend = x + (tsize / sizeof (v_t));
1046 const v_t *p = (v_t *)c[CODE_P];
1047 const v_t *q = (v_t *)c[CODE_Q];
1049 REC_PR_DEFINE();
1051 for (; x < xend; x += REC_PR_STRIDE, y += REC_PR_STRIDE,
1052 p += REC_PR_STRIDE, q += REC_PR_STRIDE) {
1053 LOAD(x, REC_PR_X);
1054 LOAD(y, REC_PR_Y);
1055 XOR_ACC(p, REC_PR_X);
1056 XOR_ACC(q, REC_PR_Y);
1058 /* Save Pxy */
1059 COPY(REC_PR_X, REC_PR_T);
1061 /* Calc X */
1062 MUL(mul[MUL_PR_X], REC_PR_X);
1063 MUL(mul[MUL_PR_Y], REC_PR_Y);
1064 XOR(REC_PR_Y, REC_PR_X);
1065 STORE(x, REC_PR_X);
1067 /* Calc Y */
1068 XOR(REC_PR_T, REC_PR_X);
1069 STORE(y, REC_PR_X);
1075 * Reconstruct two data columns using PR parity
1077 * @syn_method raidz_syn_pr_abd()
1078 * @rec_method raidz_rec_pr_abd()
1080 * @rr RAIDZ row
1081 * @tgtidx array of missing data indexes
1083 static raidz_inline int
1084 raidz_reconstruct_pr_impl(raidz_row_t *rr, const int *tgtidx)
1086 size_t c;
1087 size_t dsize;
1088 abd_t *dabd;
1089 const size_t firstdc = rr->rr_firstdatacol;
1090 const size_t ncols = rr->rr_cols;
1091 const size_t x = tgtidx[0];
1092 const size_t y = tgtidx[1];
1093 const size_t xsize = rr->rr_col[x].rc_size;
1094 const size_t ysize = rr->rr_col[y].rc_size;
1095 abd_t *xabd = rr->rr_col[x].rc_abd;
1096 abd_t *yabd = rr->rr_col[y].rc_abd;
1097 abd_t *tabds[2] = { xabd, yabd };
1098 abd_t *cabds[] = {
1099 rr->rr_col[CODE_P].rc_abd,
1100 rr->rr_col[CODE_R].rc_abd
1103 if (xabd == NULL)
1104 return ((1 << CODE_P) | (1 << CODE_R));
1106 unsigned coeff[MUL_CNT];
1107 raidz_rec_pr_coeff(rr, tgtidx, coeff);
1110 * Check if some of targets are shorter then others.
1111 * They need to be replaced with a new buffer so that syndrome can
1112 * be calculated on full length.
1114 if (ysize < xsize) {
1115 yabd = abd_alloc(xsize, B_FALSE);
1116 tabds[1] = yabd;
1119 raidz_math_begin();
1121 /* Start with first data column if present */
1122 if (firstdc != x) {
1123 raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1124 raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1125 } else {
1126 raidz_zero(xabd, xsize);
1127 raidz_zero(yabd, xsize);
1130 /* generate q_syndrome */
1131 for (c = firstdc+1; c < ncols; c++) {
1132 if (c == x || c == y) {
1133 dabd = NULL;
1134 dsize = 0;
1135 } else {
1136 dabd = rr->rr_col[c].rc_abd;
1137 dsize = rr->rr_col[c].rc_size;
1140 abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 2,
1141 raidz_syn_pr_abd);
1144 abd_raidz_rec_iterate(cabds, tabds, xsize, 2, raidz_rec_pr_abd, coeff);
1147 * Copy shorter targets back to the original abd buffer
1149 if (ysize < xsize)
1150 raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
1152 raidz_math_end();
1154 if (ysize < xsize)
1155 abd_free(yabd);
1157 return ((1 << CODE_P) | (1 << CODE_R));
1162 * Generate Q and R syndromes
1164 * @xc array of pointers to syndrome columns
1165 * @dc data column (NULL if missing)
1166 * @tsize size of syndrome columns
1167 * @dsize size of data column (0 if missing)
1169 static void
1170 raidz_syn_qr_abd(void **c, const void *dc, const size_t tsize,
1171 const size_t dsize)
1173 v_t *x = (v_t *)c[TARGET_X];
1174 v_t *y = (v_t *)c[TARGET_Y];
1175 const v_t * const xend = x + (tsize / sizeof (v_t));
1176 const v_t *d = (const v_t *)dc;
1177 const v_t * const dend = d + (dsize / sizeof (v_t));
1179 SYN_QR_DEFINE();
1181 MUL2_SETUP();
1183 for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE) {
1184 LOAD(d, SYN_PQ_D);
1185 Q_D_SYNDROME(SYN_QR_D, SYN_QR_X, x);
1186 R_D_SYNDROME(SYN_QR_D, SYN_QR_X, y);
1188 for (; x < xend; x += SYN_STRIDE, y += SYN_STRIDE) {
1189 Q_SYNDROME(SYN_QR_X, x);
1190 R_SYNDROME(SYN_QR_X, y);
1196 * Reconstruct data using QR parity and QR syndromes
1198 * @tc syndrome/result columns
1199 * @tsize size of syndrome/result columns
1200 * @c parity columns
1201 * @mul array of multiplication constants
1203 static void
1204 raidz_rec_qr_abd(void **t, const size_t tsize, void **c,
1205 const unsigned *mul)
1207 v_t *x = (v_t *)t[TARGET_X];
1208 v_t *y = (v_t *)t[TARGET_Y];
1209 const v_t * const xend = x + (tsize / sizeof (v_t));
1210 const v_t *p = (v_t *)c[CODE_P];
1211 const v_t *q = (v_t *)c[CODE_Q];
1213 REC_QR_DEFINE();
1215 for (; x < xend; x += REC_QR_STRIDE, y += REC_QR_STRIDE,
1216 p += REC_QR_STRIDE, q += REC_QR_STRIDE) {
1217 LOAD(x, REC_QR_X);
1218 LOAD(y, REC_QR_Y);
1220 XOR_ACC(p, REC_QR_X);
1221 XOR_ACC(q, REC_QR_Y);
1223 /* Save Pxy */
1224 COPY(REC_QR_X, REC_QR_T);
1226 /* Calc X */
1227 MUL(mul[MUL_QR_XQ], REC_QR_X); /* X = Q * xqm */
1228 XOR(REC_QR_Y, REC_QR_X); /* X = R ^ X */
1229 MUL(mul[MUL_QR_X], REC_QR_X); /* X = X * xm */
1230 STORE(x, REC_QR_X);
1232 /* Calc Y */
1233 MUL(mul[MUL_QR_YQ], REC_QR_T); /* X = Q * xqm */
1234 XOR(REC_QR_Y, REC_QR_T); /* X = R ^ X */
1235 MUL(mul[MUL_QR_Y], REC_QR_T); /* X = X * xm */
1236 STORE(y, REC_QR_T);
1242 * Reconstruct two data columns using QR parity
1244 * @syn_method raidz_syn_qr_abd()
1245 * @rec_method raidz_rec_qr_abd()
1247 * @rr RAIDZ row
1248 * @tgtidx array of missing data indexes
1250 static raidz_inline int
1251 raidz_reconstruct_qr_impl(raidz_row_t *rr, const int *tgtidx)
1253 size_t c;
1254 size_t dsize;
1255 abd_t *dabd;
1256 const size_t firstdc = rr->rr_firstdatacol;
1257 const size_t ncols = rr->rr_cols;
1258 const size_t x = tgtidx[TARGET_X];
1259 const size_t y = tgtidx[TARGET_Y];
1260 const size_t xsize = rr->rr_col[x].rc_size;
1261 const size_t ysize = rr->rr_col[y].rc_size;
1262 abd_t *xabd = rr->rr_col[x].rc_abd;
1263 abd_t *yabd = rr->rr_col[y].rc_abd;
1264 abd_t *tabds[2] = { xabd, yabd };
1265 abd_t *cabds[] = {
1266 rr->rr_col[CODE_Q].rc_abd,
1267 rr->rr_col[CODE_R].rc_abd
1270 if (xabd == NULL)
1271 return ((1 << CODE_Q) | (1 << CODE_R));
1273 unsigned coeff[MUL_CNT];
1274 raidz_rec_qr_coeff(rr, tgtidx, coeff);
1277 * Check if some of targets is shorter then others
1278 * In this case, shorter target needs to be replaced with
1279 * new buffer so that syndrome can be calculated.
1281 if (ysize < xsize) {
1282 yabd = abd_alloc(xsize, B_FALSE);
1283 tabds[1] = yabd;
1286 raidz_math_begin();
1288 /* Start with first data column if present */
1289 if (firstdc != x) {
1290 raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1291 raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1292 } else {
1293 raidz_zero(xabd, xsize);
1294 raidz_zero(yabd, xsize);
1297 /* generate q_syndrome */
1298 for (c = firstdc+1; c < ncols; c++) {
1299 if (c == x || c == y) {
1300 dabd = NULL;
1301 dsize = 0;
1302 } else {
1303 dabd = rr->rr_col[c].rc_abd;
1304 dsize = rr->rr_col[c].rc_size;
1307 abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 2,
1308 raidz_syn_qr_abd);
1311 abd_raidz_rec_iterate(cabds, tabds, xsize, 2, raidz_rec_qr_abd, coeff);
1314 * Copy shorter targets back to the original abd buffer
1316 if (ysize < xsize)
1317 raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
1319 raidz_math_end();
1321 if (ysize < xsize)
1322 abd_free(yabd);
1325 return ((1 << CODE_Q) | (1 << CODE_R));
1330 * Generate P, Q, and R syndromes
1332 * @xc array of pointers to syndrome columns
1333 * @dc data column (NULL if missing)
1334 * @tsize size of syndrome columns
1335 * @dsize size of data column (0 if missing)
1337 static void
1338 raidz_syn_pqr_abd(void **c, const void *dc, const size_t tsize,
1339 const size_t dsize)
1341 v_t *x = (v_t *)c[TARGET_X];
1342 v_t *y = (v_t *)c[TARGET_Y];
1343 v_t *z = (v_t *)c[TARGET_Z];
1344 const v_t * const yend = y + (tsize / sizeof (v_t));
1345 const v_t *d = (const v_t *)dc;
1346 const v_t * const dend = d + (dsize / sizeof (v_t));
1348 SYN_PQR_DEFINE();
1350 MUL2_SETUP();
1352 for (; d < dend; d += SYN_STRIDE, x += SYN_STRIDE, y += SYN_STRIDE,
1353 z += SYN_STRIDE) {
1354 LOAD(d, SYN_PQR_D);
1355 P_D_SYNDROME(SYN_PQR_D, SYN_PQR_X, x)
1356 Q_D_SYNDROME(SYN_PQR_D, SYN_PQR_X, y);
1357 R_D_SYNDROME(SYN_PQR_D, SYN_PQR_X, z);
1359 for (; y < yend; y += SYN_STRIDE, z += SYN_STRIDE) {
1360 Q_SYNDROME(SYN_PQR_X, y);
1361 R_SYNDROME(SYN_PQR_X, z);
1367 * Reconstruct data using PRQ parity and PQR syndromes
1369 * @tc syndrome/result columns
1370 * @tsize size of syndrome/result columns
1371 * @c parity columns
1372 * @mul array of multiplication constants
1374 static void
1375 raidz_rec_pqr_abd(void **t, const size_t tsize, void **c,
1376 const unsigned * const mul)
1378 v_t *x = (v_t *)t[TARGET_X];
1379 v_t *y = (v_t *)t[TARGET_Y];
1380 v_t *z = (v_t *)t[TARGET_Z];
1381 const v_t * const xend = x + (tsize / sizeof (v_t));
1382 const v_t *p = (v_t *)c[CODE_P];
1383 const v_t *q = (v_t *)c[CODE_Q];
1384 const v_t *r = (v_t *)c[CODE_R];
1386 REC_PQR_DEFINE();
1388 for (; x < xend; x += REC_PQR_STRIDE, y += REC_PQR_STRIDE,
1389 z += REC_PQR_STRIDE, p += REC_PQR_STRIDE, q += REC_PQR_STRIDE,
1390 r += REC_PQR_STRIDE) {
1391 LOAD(x, REC_PQR_X);
1392 LOAD(y, REC_PQR_Y);
1393 LOAD(z, REC_PQR_Z);
1395 XOR_ACC(p, REC_PQR_X);
1396 XOR_ACC(q, REC_PQR_Y);
1397 XOR_ACC(r, REC_PQR_Z);
1399 /* Save Pxyz and Qxyz */
1400 COPY(REC_PQR_X, REC_PQR_XS);
1401 COPY(REC_PQR_Y, REC_PQR_YS);
1403 /* Calc X */
1404 MUL(mul[MUL_PQR_XP], REC_PQR_X); /* Xp = Pxyz * xp */
1405 MUL(mul[MUL_PQR_XQ], REC_PQR_Y); /* Xq = Qxyz * xq */
1406 XOR(REC_PQR_Y, REC_PQR_X);
1407 MUL(mul[MUL_PQR_XR], REC_PQR_Z); /* Xr = Rxyz * xr */
1408 XOR(REC_PQR_Z, REC_PQR_X); /* X = Xp + Xq + Xr */
1409 STORE(x, REC_PQR_X);
1411 /* Calc Y */
1412 XOR(REC_PQR_X, REC_PQR_XS); /* Pyz = Pxyz + X */
1413 MUL(mul[MUL_PQR_YU], REC_PQR_X); /* Xq = X * upd_q */
1414 XOR(REC_PQR_X, REC_PQR_YS); /* Qyz = Qxyz + Xq */
1415 COPY(REC_PQR_XS, REC_PQR_X); /* restore Pyz */
1416 MUL(mul[MUL_PQR_YP], REC_PQR_X); /* Yp = Pyz * yp */
1417 MUL(mul[MUL_PQR_YQ], REC_PQR_YS); /* Yq = Qyz * yq */
1418 XOR(REC_PQR_X, REC_PQR_YS); /* Y = Yp + Yq */
1419 STORE(y, REC_PQR_YS);
1421 /* Calc Z */
1422 XOR(REC_PQR_XS, REC_PQR_YS); /* Z = Pz = Pyz + Y */
1423 STORE(z, REC_PQR_YS);
1429 * Reconstruct three data columns using PQR parity
1431 * @syn_method raidz_syn_pqr_abd()
1432 * @rec_method raidz_rec_pqr_abd()
1434 * @rr RAIDZ row
1435 * @tgtidx array of missing data indexes
1437 static raidz_inline int
1438 raidz_reconstruct_pqr_impl(raidz_row_t *rr, const int *tgtidx)
1440 size_t c;
1441 size_t dsize;
1442 abd_t *dabd;
1443 const size_t firstdc = rr->rr_firstdatacol;
1444 const size_t ncols = rr->rr_cols;
1445 const size_t x = tgtidx[TARGET_X];
1446 const size_t y = tgtidx[TARGET_Y];
1447 const size_t z = tgtidx[TARGET_Z];
1448 const size_t xsize = rr->rr_col[x].rc_size;
1449 const size_t ysize = rr->rr_col[y].rc_size;
1450 const size_t zsize = rr->rr_col[z].rc_size;
1451 abd_t *xabd = rr->rr_col[x].rc_abd;
1452 abd_t *yabd = rr->rr_col[y].rc_abd;
1453 abd_t *zabd = rr->rr_col[z].rc_abd;
1454 abd_t *tabds[] = { xabd, yabd, zabd };
1455 abd_t *cabds[] = {
1456 rr->rr_col[CODE_P].rc_abd,
1457 rr->rr_col[CODE_Q].rc_abd,
1458 rr->rr_col[CODE_R].rc_abd
1461 if (xabd == NULL)
1462 return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
1464 unsigned coeff[MUL_CNT];
1465 raidz_rec_pqr_coeff(rr, tgtidx, coeff);
1468 * Check if some of targets is shorter then others
1469 * In this case, shorter target needs to be replaced with
1470 * new buffer so that syndrome can be calculated.
1472 if (ysize < xsize) {
1473 yabd = abd_alloc(xsize, B_FALSE);
1474 tabds[1] = yabd;
1476 if (zsize < xsize) {
1477 zabd = abd_alloc(xsize, B_FALSE);
1478 tabds[2] = zabd;
1481 raidz_math_begin();
1483 /* Start with first data column if present */
1484 if (firstdc != x) {
1485 raidz_copy(xabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1486 raidz_copy(yabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1487 raidz_copy(zabd, rr->rr_col[firstdc].rc_abd, 0, xsize);
1488 } else {
1489 raidz_zero(xabd, xsize);
1490 raidz_zero(yabd, xsize);
1491 raidz_zero(zabd, xsize);
1494 /* generate q_syndrome */
1495 for (c = firstdc+1; c < ncols; c++) {
1496 if (c == x || c == y || c == z) {
1497 dabd = NULL;
1498 dsize = 0;
1499 } else {
1500 dabd = rr->rr_col[c].rc_abd;
1501 dsize = rr->rr_col[c].rc_size;
1504 abd_raidz_gen_iterate(tabds, dabd, 0, xsize, dsize, 3,
1505 raidz_syn_pqr_abd);
1508 abd_raidz_rec_iterate(cabds, tabds, xsize, 3, raidz_rec_pqr_abd, coeff);
1511 * Copy shorter targets back to the original abd buffer
1513 if (ysize < xsize)
1514 raidz_copy(rr->rr_col[y].rc_abd, yabd, 0, ysize);
1515 if (zsize < xsize)
1516 raidz_copy(rr->rr_col[z].rc_abd, zabd, 0, zsize);
1518 raidz_math_end();
1520 if (ysize < xsize)
1521 abd_free(yabd);
1522 if (zsize < xsize)
1523 abd_free(zabd);
1525 return ((1 << CODE_P) | (1 << CODE_Q) | (1 << CODE_R));
1528 #endif /* _VDEV_RAIDZ_MATH_IMPL_H */