4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
35 * The overall design of the ztest program is as follows:
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
75 * To turn this into an overnight stress test, use -T to specify run time.
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
80 * Use the -k option to set the desired frequency of kills.
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
91 #include <sys/zfs_context.h>
97 #include <sys/dmu_objset.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
124 #include <sys/blake3.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #include <sys/zfs_impl.h>
139 #if (__GLIBC__ && !__UCLIBC__)
140 #include <execinfo.h> /* for backtrace() */
143 static int ztest_fd_data
= -1;
144 static int ztest_fd_rand
= -1;
146 typedef struct ztest_shared_hdr
{
147 uint64_t zh_hdr_size
;
148 uint64_t zh_opts_size
;
150 uint64_t zh_stats_size
;
151 uint64_t zh_stats_count
;
153 uint64_t zh_ds_count
;
154 uint64_t zh_scratch_state_size
;
155 } ztest_shared_hdr_t
;
157 static ztest_shared_hdr_t
*ztest_shared_hdr
;
159 enum ztest_class_state
{
160 ZTEST_VDEV_CLASS_OFF
,
165 /* Dedicated RAIDZ Expansion test states */
167 RAIDZ_EXPAND_NONE
, /* Default is none, must opt-in */
168 RAIDZ_EXPAND_REQUESTED
, /* The '-X' option was used */
169 RAIDZ_EXPAND_STARTED
, /* Testing has commenced */
170 RAIDZ_EXPAND_KILLED
, /* Reached the proccess kill */
171 RAIDZ_EXPAND_CHECKED
, /* Pool scrub verification done */
172 } raidz_expand_test_state_t
;
175 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
176 #define ZO_GVARS_MAX_COUNT ((size_t)10)
178 typedef struct ztest_shared_opts
{
179 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
180 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
181 char zo_alt_ztest
[MAXNAMELEN
];
182 char zo_alt_libpath
[MAXNAMELEN
];
184 uint64_t zo_vdevtime
;
188 int zo_raid_do_expand
;
189 int zo_raid_children
;
191 char zo_raid_type
[8];
196 uint64_t zo_passtime
;
197 uint64_t zo_killrate
;
201 uint64_t zo_maxloops
;
202 uint64_t zo_metaslab_force_ganging
;
203 raidz_expand_test_state_t zo_raidz_expand_test
;
205 int zo_special_vdevs
;
208 char zo_gvars
[ZO_GVARS_MAX_COUNT
][ZO_GVARS_MAX_ARGLEN
];
209 } ztest_shared_opts_t
;
211 /* Default values for command line options. */
212 #define DEFAULT_POOL "ztest"
213 #define DEFAULT_VDEV_DIR "/tmp"
214 #define DEFAULT_VDEV_COUNT 5
215 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
216 #define DEFAULT_VDEV_SIZE_STR "256M"
217 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
218 #define DEFAULT_MIRRORS 2
219 #define DEFAULT_RAID_CHILDREN 4
220 #define DEFAULT_RAID_PARITY 1
221 #define DEFAULT_DRAID_DATA 4
222 #define DEFAULT_DRAID_SPARES 1
223 #define DEFAULT_DATASETS_COUNT 7
224 #define DEFAULT_THREADS 23
225 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
226 #define DEFAULT_RUN_TIME_STR "300 sec"
227 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
228 #define DEFAULT_PASS_TIME_STR "60 sec"
229 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
230 #define DEFAULT_KILLRATE_STR "70%"
231 #define DEFAULT_INITS 1
232 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
233 #define DEFAULT_FORCE_GANGING (64 << 10)
234 #define DEFAULT_FORCE_GANGING_STR "64K"
236 /* Simplifying assumption: -1 is not a valid default. */
237 #define NO_DEFAULT -1
239 static const ztest_shared_opts_t ztest_opts_defaults
= {
240 .zo_pool
= DEFAULT_POOL
,
241 .zo_dir
= DEFAULT_VDEV_DIR
,
242 .zo_alt_ztest
= { '\0' },
243 .zo_alt_libpath
= { '\0' },
244 .zo_vdevs
= DEFAULT_VDEV_COUNT
,
245 .zo_ashift
= DEFAULT_ASHIFT
,
246 .zo_mirrors
= DEFAULT_MIRRORS
,
247 .zo_raid_children
= DEFAULT_RAID_CHILDREN
,
248 .zo_raid_parity
= DEFAULT_RAID_PARITY
,
249 .zo_raid_type
= VDEV_TYPE_RAIDZ
,
250 .zo_vdev_size
= DEFAULT_VDEV_SIZE
,
251 .zo_draid_data
= DEFAULT_DRAID_DATA
, /* data drives */
252 .zo_draid_spares
= DEFAULT_DRAID_SPARES
, /* distributed spares */
253 .zo_datasets
= DEFAULT_DATASETS_COUNT
,
254 .zo_threads
= DEFAULT_THREADS
,
255 .zo_passtime
= DEFAULT_PASS_TIME
,
256 .zo_killrate
= DEFAULT_KILL_RATE
,
259 .zo_init
= DEFAULT_INITS
,
260 .zo_time
= DEFAULT_RUN_TIME
,
261 .zo_maxloops
= DEFAULT_MAX_LOOPS
, /* max loops during spa_freeze() */
262 .zo_metaslab_force_ganging
= DEFAULT_FORCE_GANGING
,
263 .zo_special_vdevs
= ZTEST_VDEV_CLASS_RND
,
265 .zo_raidz_expand_test
= RAIDZ_EXPAND_NONE
,
268 extern uint64_t metaslab_force_ganging
;
269 extern uint64_t metaslab_df_alloc_threshold
;
270 extern uint64_t zfs_deadman_synctime_ms
;
271 extern uint_t metaslab_preload_limit
;
272 extern int zfs_compressed_arc_enabled
;
273 extern int zfs_abd_scatter_enabled
;
274 extern uint_t dmu_object_alloc_chunk_shift
;
275 extern boolean_t zfs_force_some_double_word_sm_entries
;
276 extern unsigned long zio_decompress_fail_fraction
;
277 extern unsigned long zfs_reconstruct_indirect_damage_fraction
;
278 extern uint64_t raidz_expand_max_reflow_bytes
;
279 extern uint_t raidz_expand_pause_point
;
282 static ztest_shared_opts_t
*ztest_shared_opts
;
283 static ztest_shared_opts_t ztest_opts
;
284 static const char *const ztest_wkeydata
= "abcdefghijklmnopqrstuvwxyz012345";
286 typedef struct ztest_shared_ds
{
290 static ztest_shared_ds_t
*ztest_shared_ds
;
291 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
293 typedef struct ztest_scratch_state
{
294 uint64_t zs_raidz_scratch_verify_pause
;
295 } ztest_shared_scratch_state_t
;
297 static ztest_shared_scratch_state_t
*ztest_scratch_state
;
299 #define BT_MAGIC 0x123456789abcdefULL
300 #define MAXFAULTS(zs) \
301 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
305 ZTEST_IO_WRITE_PATTERN
,
306 ZTEST_IO_WRITE_ZEROES
,
313 typedef struct ztest_block_tag
{
317 uint64_t bt_dnodesize
;
324 typedef struct bufwad
{
331 * It would be better to use a rangelock_t per object. Unfortunately
332 * the rangelock_t is not a drop-in replacement for rl_t, because we
333 * still need to map from object ID to rangelock_t.
355 #define ZTEST_RANGE_LOCKS 64
356 #define ZTEST_OBJECT_LOCKS 64
359 * Object descriptor. Used as a template for object lookup/create/remove.
361 typedef struct ztest_od
{
364 dmu_object_type_t od_type
;
365 dmu_object_type_t od_crtype
;
366 uint64_t od_blocksize
;
367 uint64_t od_crblocksize
;
368 uint64_t od_crdnodesize
;
371 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
377 typedef struct ztest_ds
{
378 ztest_shared_ds_t
*zd_shared
;
380 pthread_rwlock_t zd_zilog_lock
;
382 ztest_od_t
*zd_od
; /* debugging aid */
383 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
384 kmutex_t zd_dirobj_lock
;
385 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
386 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
390 * Per-iteration state.
392 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
394 typedef struct ztest_info
{
395 ztest_func_t
*zi_func
; /* test function */
396 uint64_t zi_iters
; /* iterations per execution */
397 uint64_t *zi_interval
; /* execute every <interval> seconds */
398 const char *zi_funcname
; /* name of test function */
401 typedef struct ztest_shared_callstate
{
402 uint64_t zc_count
; /* per-pass count */
403 uint64_t zc_time
; /* per-pass time */
404 uint64_t zc_next
; /* next time to call this function */
405 } ztest_shared_callstate_t
;
407 static ztest_shared_callstate_t
*ztest_shared_callstate
;
408 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
410 ztest_func_t ztest_dmu_read_write
;
411 ztest_func_t ztest_dmu_write_parallel
;
412 ztest_func_t ztest_dmu_object_alloc_free
;
413 ztest_func_t ztest_dmu_object_next_chunk
;
414 ztest_func_t ztest_dmu_commit_callbacks
;
415 ztest_func_t ztest_zap
;
416 ztest_func_t ztest_zap_parallel
;
417 ztest_func_t ztest_zil_commit
;
418 ztest_func_t ztest_zil_remount
;
419 ztest_func_t ztest_dmu_read_write_zcopy
;
420 ztest_func_t ztest_dmu_objset_create_destroy
;
421 ztest_func_t ztest_dmu_prealloc
;
422 ztest_func_t ztest_fzap
;
423 ztest_func_t ztest_dmu_snapshot_create_destroy
;
424 ztest_func_t ztest_dsl_prop_get_set
;
425 ztest_func_t ztest_spa_prop_get_set
;
426 ztest_func_t ztest_spa_create_destroy
;
427 ztest_func_t ztest_fault_inject
;
428 ztest_func_t ztest_dmu_snapshot_hold
;
429 ztest_func_t ztest_mmp_enable_disable
;
430 ztest_func_t ztest_scrub
;
431 ztest_func_t ztest_dsl_dataset_promote_busy
;
432 ztest_func_t ztest_vdev_attach_detach
;
433 ztest_func_t ztest_vdev_raidz_attach
;
434 ztest_func_t ztest_vdev_LUN_growth
;
435 ztest_func_t ztest_vdev_add_remove
;
436 ztest_func_t ztest_vdev_class_add
;
437 ztest_func_t ztest_vdev_aux_add_remove
;
438 ztest_func_t ztest_split_pool
;
439 ztest_func_t ztest_reguid
;
440 ztest_func_t ztest_spa_upgrade
;
441 ztest_func_t ztest_device_removal
;
442 ztest_func_t ztest_spa_checkpoint_create_discard
;
443 ztest_func_t ztest_initialize
;
444 ztest_func_t ztest_trim
;
445 ztest_func_t ztest_blake3
;
446 ztest_func_t ztest_fletcher
;
447 ztest_func_t ztest_fletcher_incr
;
448 ztest_func_t ztest_verify_dnode_bt
;
450 static uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
451 static uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
452 static uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
453 static uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
454 static uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
456 #define ZTI_INIT(func, iters, interval) \
457 { .zi_func = (func), \
458 .zi_iters = (iters), \
459 .zi_interval = (interval), \
460 .zi_funcname = # func }
462 static ztest_info_t ztest_info
[] = {
463 ZTI_INIT(ztest_dmu_read_write
, 1, &zopt_always
),
464 ZTI_INIT(ztest_dmu_write_parallel
, 10, &zopt_always
),
465 ZTI_INIT(ztest_dmu_object_alloc_free
, 1, &zopt_always
),
466 ZTI_INIT(ztest_dmu_object_next_chunk
, 1, &zopt_sometimes
),
467 ZTI_INIT(ztest_dmu_commit_callbacks
, 1, &zopt_always
),
468 ZTI_INIT(ztest_zap
, 30, &zopt_always
),
469 ZTI_INIT(ztest_zap_parallel
, 100, &zopt_always
),
470 ZTI_INIT(ztest_split_pool
, 1, &zopt_sometimes
),
471 ZTI_INIT(ztest_zil_commit
, 1, &zopt_incessant
),
472 ZTI_INIT(ztest_zil_remount
, 1, &zopt_sometimes
),
473 ZTI_INIT(ztest_dmu_read_write_zcopy
, 1, &zopt_often
),
474 ZTI_INIT(ztest_dmu_objset_create_destroy
, 1, &zopt_often
),
475 ZTI_INIT(ztest_dsl_prop_get_set
, 1, &zopt_often
),
476 ZTI_INIT(ztest_spa_prop_get_set
, 1, &zopt_sometimes
),
478 ZTI_INIT(ztest_dmu_prealloc
, 1, &zopt_sometimes
),
480 ZTI_INIT(ztest_fzap
, 1, &zopt_sometimes
),
481 ZTI_INIT(ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
),
482 ZTI_INIT(ztest_spa_create_destroy
, 1, &zopt_sometimes
),
483 ZTI_INIT(ztest_fault_inject
, 1, &zopt_sometimes
),
484 ZTI_INIT(ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
),
485 ZTI_INIT(ztest_mmp_enable_disable
, 1, &zopt_sometimes
),
486 ZTI_INIT(ztest_reguid
, 1, &zopt_rarely
),
487 ZTI_INIT(ztest_scrub
, 1, &zopt_rarely
),
488 ZTI_INIT(ztest_spa_upgrade
, 1, &zopt_rarely
),
489 ZTI_INIT(ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
),
490 ZTI_INIT(ztest_vdev_attach_detach
, 1, &zopt_sometimes
),
491 ZTI_INIT(ztest_vdev_raidz_attach
, 1, &zopt_sometimes
),
492 ZTI_INIT(ztest_vdev_LUN_growth
, 1, &zopt_rarely
),
493 ZTI_INIT(ztest_vdev_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
494 ZTI_INIT(ztest_vdev_class_add
, 1, &ztest_opts
.zo_vdevtime
),
495 ZTI_INIT(ztest_vdev_aux_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
496 ZTI_INIT(ztest_device_removal
, 1, &zopt_sometimes
),
497 ZTI_INIT(ztest_spa_checkpoint_create_discard
, 1, &zopt_rarely
),
498 ZTI_INIT(ztest_initialize
, 1, &zopt_sometimes
),
499 ZTI_INIT(ztest_trim
, 1, &zopt_sometimes
),
500 ZTI_INIT(ztest_blake3
, 1, &zopt_rarely
),
501 ZTI_INIT(ztest_fletcher
, 1, &zopt_rarely
),
502 ZTI_INIT(ztest_fletcher_incr
, 1, &zopt_rarely
),
503 ZTI_INIT(ztest_verify_dnode_bt
, 1, &zopt_sometimes
),
506 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
509 * The following struct is used to hold a list of uncalled commit callbacks.
510 * The callbacks are ordered by txg number.
512 typedef struct ztest_cb_list
{
513 kmutex_t zcl_callbacks_lock
;
514 list_t zcl_callbacks
;
518 * Stuff we need to share writably between parent and child.
520 typedef struct ztest_shared
{
521 boolean_t zs_do_init
;
522 hrtime_t zs_proc_start
;
523 hrtime_t zs_proc_stop
;
524 hrtime_t zs_thread_start
;
525 hrtime_t zs_thread_stop
;
526 hrtime_t zs_thread_kill
;
527 uint64_t zs_enospc_count
;
528 uint64_t zs_vdev_next_leaf
;
529 uint64_t zs_vdev_aux
;
534 uint64_t zs_metaslab_sz
;
535 uint64_t zs_metaslab_df_alloc_threshold
;
539 #define ID_PARALLEL -1ULL
541 static char ztest_dev_template
[] = "%s/%s.%llua";
542 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
543 static ztest_shared_t
*ztest_shared
;
545 static spa_t
*ztest_spa
= NULL
;
546 static ztest_ds_t
*ztest_ds
;
548 static kmutex_t ztest_vdev_lock
;
549 static boolean_t ztest_device_removal_active
= B_FALSE
;
550 static boolean_t ztest_pool_scrubbed
= B_FALSE
;
551 static kmutex_t ztest_checkpoint_lock
;
554 * The ztest_name_lock protects the pool and dataset namespace used by
555 * the individual tests. To modify the namespace, consumers must grab
556 * this lock as writer. Grabbing the lock as reader will ensure that the
557 * namespace does not change while the lock is held.
559 static pthread_rwlock_t ztest_name_lock
;
561 static boolean_t ztest_dump_core
= B_TRUE
;
562 static boolean_t ztest_exiting
;
564 /* Global commit callback list */
565 static ztest_cb_list_t zcl
;
566 /* Commit cb delay */
567 static uint64_t zc_min_txg_delay
= UINT64_MAX
;
568 static int zc_cb_counter
= 0;
571 * Minimum number of commit callbacks that need to be registered for us to check
572 * whether the minimum txg delay is acceptable.
574 #define ZTEST_COMMIT_CB_MIN_REG 100
577 * If a number of txgs equal to this threshold have been created after a commit
578 * callback has been registered but not called, then we assume there is an
579 * implementation bug.
581 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
584 ZTEST_META_DNODE
= 0,
589 static __attribute__((noreturn
)) void usage(boolean_t requested
);
590 static int ztest_scrub_impl(spa_t
*spa
);
593 * These libumem hooks provide a reasonable set of defaults for the allocator's
594 * debugging facilities.
597 _umem_debug_init(void)
599 return ("default,verbose"); /* $UMEM_DEBUG setting */
603 _umem_logging_init(void)
605 return ("fail,contents"); /* $UMEM_LOGGING setting */
609 dump_debug_buffer(void)
611 ssize_t ret
__attribute__((unused
));
613 if (!ztest_opts
.zo_dump_dbgmsg
)
617 * We use write() instead of printf() so that this function
618 * is safe to call from a signal handler.
620 ret
= write(STDOUT_FILENO
, "\n", 1);
621 zfs_dbgmsg_print("ztest");
624 #define BACKTRACE_SZ 100
626 static void sig_handler(int signo
)
628 struct sigaction action
;
629 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
631 void *buffer
[BACKTRACE_SZ
];
633 nptrs
= backtrace(buffer
, BACKTRACE_SZ
);
634 backtrace_symbols_fd(buffer
, nptrs
, STDERR_FILENO
);
639 * Restore default action and re-raise signal so SIGSEGV and
640 * SIGABRT can trigger a core dump.
642 action
.sa_handler
= SIG_DFL
;
643 sigemptyset(&action
.sa_mask
);
645 (void) sigaction(signo
, &action
, NULL
);
649 #define FATAL_MSG_SZ 1024
651 static const char *fatal_msg
;
653 static __attribute__((format(printf
, 2, 3))) __attribute__((noreturn
)) void
654 fatal(int do_perror
, const char *message
, ...)
657 int save_errno
= errno
;
660 (void) fflush(stdout
);
661 buf
= umem_alloc(FATAL_MSG_SZ
, UMEM_NOFAIL
);
665 va_start(args
, message
);
666 (void) sprintf(buf
, "ztest: ");
668 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
671 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
672 ": %s", strerror(save_errno
));
674 (void) fprintf(stderr
, "%s\n", buf
);
675 fatal_msg
= buf
; /* to ease debugging */
687 str2shift(const char *buf
)
689 const char *ends
= "BKMGTPEZ";
694 for (i
= 0; i
< strlen(ends
); i
++) {
695 if (toupper(buf
[0]) == ends
[i
])
698 if (i
== strlen(ends
)) {
699 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
703 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
706 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
711 nicenumtoull(const char *buf
)
716 val
= strtoull(buf
, &end
, 0);
718 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
720 } else if (end
[0] == '.') {
721 double fval
= strtod(buf
, &end
);
722 fval
*= pow(2, str2shift(end
));
724 * UINT64_MAX is not exactly representable as a double.
725 * The closest representation is UINT64_MAX + 1, so we
726 * use a >= comparison instead of > for the bounds check.
728 if (fval
>= (double)UINT64_MAX
) {
729 (void) fprintf(stderr
, "ztest: value too large: %s\n",
733 val
= (uint64_t)fval
;
735 int shift
= str2shift(end
);
736 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
737 (void) fprintf(stderr
, "ztest: value too large: %s\n",
746 typedef struct ztest_option
{
747 const char short_opt
;
748 const char *long_opt
;
749 const char *long_opt_param
;
751 unsigned int default_int
;
752 const char *default_str
;
756 * The following option_table is used for generating the usage info as well as
757 * the long and short option information for calling getopt_long().
759 static ztest_option_t option_table
[] = {
760 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT
,
762 { 's', "vdev-size", "INTEGER", "Size of each vdev",
763 NO_DEFAULT
, DEFAULT_VDEV_SIZE_STR
},
764 { 'a', "alignment-shift", "INTEGER",
765 "Alignment shift; use 0 for random", DEFAULT_ASHIFT
, NULL
},
766 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
767 DEFAULT_MIRRORS
, NULL
},
768 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
769 DEFAULT_RAID_CHILDREN
, NULL
},
770 { 'R', "raid-parity", "INTEGER", "Raid parity",
771 DEFAULT_RAID_PARITY
, NULL
},
772 { 'K', "raid-kind", "raidz|eraidz|draid|random", "Raid kind",
773 NO_DEFAULT
, "random"},
774 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
775 DEFAULT_DRAID_DATA
, NULL
},
776 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
777 DEFAULT_DRAID_SPARES
, NULL
},
778 { 'd', "datasets", "INTEGER", "Number of datasets",
779 DEFAULT_DATASETS_COUNT
, NULL
},
780 { 't', "threads", "INTEGER", "Number of ztest threads",
781 DEFAULT_THREADS
, NULL
},
782 { 'g', "gang-block-threshold", "INTEGER",
783 "Metaslab gang block threshold",
784 NO_DEFAULT
, DEFAULT_FORCE_GANGING_STR
},
785 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
786 DEFAULT_INITS
, NULL
},
787 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
788 NO_DEFAULT
, DEFAULT_KILLRATE_STR
},
789 { 'p', "pool-name", "STRING", "Pool name",
790 NO_DEFAULT
, DEFAULT_POOL
},
791 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
792 NO_DEFAULT
, DEFAULT_VDEV_DIR
},
793 { 'M', "multi-host", NULL
,
794 "Multi-host; simulate pool imported on remote host",
796 { 'E', "use-existing-pool", NULL
,
797 "Use existing pool instead of creating new one", NO_DEFAULT
, NULL
},
798 { 'T', "run-time", "INTEGER", "Total run time",
799 NO_DEFAULT
, DEFAULT_RUN_TIME_STR
},
800 { 'P', "pass-time", "INTEGER", "Time per pass",
801 NO_DEFAULT
, DEFAULT_PASS_TIME_STR
},
802 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
803 DEFAULT_MAX_LOOPS
, NULL
},
804 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
806 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
807 NO_DEFAULT
, "random"},
808 { 'X', "raidz-expansion", NULL
,
809 "Perform a dedicated raidz expansion test",
811 { 'o', "option", "\"OPTION=INTEGER\"",
812 "Set global variable to an unsigned 32-bit integer value",
814 { 'G', "dump-debug-msg", NULL
,
815 "Dump zfs_dbgmsg buffer before exiting due to an error",
817 { 'V', "verbose", NULL
,
818 "Verbose (use multiple times for ever more verbosity)",
820 { 'h', "help", NULL
, "Show this help",
825 static struct option
*long_opts
= NULL
;
826 static char *short_opts
= NULL
;
831 ASSERT3P(long_opts
, ==, NULL
);
832 ASSERT3P(short_opts
, ==, NULL
);
834 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
835 long_opts
= umem_alloc(sizeof (struct option
) * count
, UMEM_NOFAIL
);
837 short_opts
= umem_alloc(sizeof (char) * 2 * count
, UMEM_NOFAIL
);
838 int short_opt_index
= 0;
840 for (int i
= 0; i
< count
; i
++) {
841 long_opts
[i
].val
= option_table
[i
].short_opt
;
842 long_opts
[i
].name
= option_table
[i
].long_opt
;
843 long_opts
[i
].has_arg
= option_table
[i
].long_opt_param
!= NULL
844 ? required_argument
: no_argument
;
845 long_opts
[i
].flag
= NULL
;
846 short_opts
[short_opt_index
++] = option_table
[i
].short_opt
;
847 if (option_table
[i
].long_opt_param
!= NULL
) {
848 short_opts
[short_opt_index
++] = ':';
856 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
858 umem_free(long_opts
, sizeof (struct option
) * count
);
859 umem_free(short_opts
, sizeof (char) * 2 * count
);
865 static __attribute__((noreturn
)) void
866 usage(boolean_t requested
)
869 FILE *fp
= requested
? stdout
: stderr
;
871 (void) fprintf(fp
, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL
);
872 for (int i
= 0; option_table
[i
].short_opt
!= 0; i
++) {
873 if (option_table
[i
].long_opt_param
!= NULL
) {
874 (void) sprintf(option
, " -%c --%s=%s",
875 option_table
[i
].short_opt
,
876 option_table
[i
].long_opt
,
877 option_table
[i
].long_opt_param
);
879 (void) sprintf(option
, " -%c --%s",
880 option_table
[i
].short_opt
,
881 option_table
[i
].long_opt
);
883 (void) fprintf(fp
, " %-43s%s", option
,
884 option_table
[i
].comment
);
886 if (option_table
[i
].long_opt_param
!= NULL
) {
887 if (option_table
[i
].default_str
!= NULL
) {
888 (void) fprintf(fp
, " (default: %s)",
889 option_table
[i
].default_str
);
890 } else if (option_table
[i
].default_int
!= NO_DEFAULT
) {
891 (void) fprintf(fp
, " (default: %u)",
892 option_table
[i
].default_int
);
895 (void) fprintf(fp
, "\n");
897 exit(requested
? 0 : 1);
901 ztest_random(uint64_t range
)
905 ASSERT3S(ztest_fd_rand
, >=, 0);
910 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
911 fatal(B_TRUE
, "short read from /dev/urandom");
917 ztest_parse_name_value(const char *input
, ztest_shared_opts_t
*zo
)
921 int state
= ZTEST_VDEV_CLASS_RND
;
923 (void) strlcpy(name
, input
, sizeof (name
));
925 value
= strchr(name
, '=');
927 (void) fprintf(stderr
, "missing value in property=value "
928 "'-C' argument (%s)\n", input
);
934 if (strcmp(value
, "on") == 0) {
935 state
= ZTEST_VDEV_CLASS_ON
;
936 } else if (strcmp(value
, "off") == 0) {
937 state
= ZTEST_VDEV_CLASS_OFF
;
938 } else if (strcmp(value
, "random") == 0) {
939 state
= ZTEST_VDEV_CLASS_RND
;
941 (void) fprintf(stderr
, "invalid property value '%s'\n", value
);
945 if (strcmp(name
, "special") == 0) {
946 zo
->zo_special_vdevs
= state
;
948 (void) fprintf(stderr
, "invalid property name '%s'\n", name
);
951 if (zo
->zo_verbose
>= 3)
952 (void) printf("%s vdev state is '%s'\n", name
, value
);
956 process_options(int argc
, char **argv
)
959 ztest_shared_opts_t
*zo
= &ztest_opts
;
963 const char *raid_kind
= "random";
965 memcpy(zo
, &ztest_opts_defaults
, sizeof (*zo
));
969 while ((opt
= getopt_long(argc
, argv
, short_opts
, long_opts
,
989 value
= nicenumtoull(optarg
);
993 zo
->zo_vdevs
= value
;
996 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
999 zo
->zo_ashift
= value
;
1002 zo
->zo_mirrors
= value
;
1005 zo
->zo_raid_children
= MAX(1, value
);
1008 zo
->zo_raid_parity
= MIN(MAX(value
, 1), 3);
1014 zo
->zo_draid_data
= MAX(1, value
);
1017 zo
->zo_draid_spares
= MAX(1, value
);
1020 zo
->zo_datasets
= MAX(1, value
);
1023 zo
->zo_threads
= MAX(1, value
);
1026 zo
->zo_metaslab_force_ganging
=
1027 MAX(SPA_MINBLOCKSIZE
<< 1, value
);
1030 zo
->zo_init
= value
;
1033 zo
->zo_killrate
= value
;
1036 (void) strlcpy(zo
->zo_pool
, optarg
,
1037 sizeof (zo
->zo_pool
));
1040 path
= realpath(optarg
, NULL
);
1042 (void) fprintf(stderr
, "error: %s: %s\n",
1043 optarg
, strerror(errno
));
1046 (void) strlcpy(zo
->zo_dir
, path
,
1047 sizeof (zo
->zo_dir
));
1052 zo
->zo_mmp_test
= 1;
1058 zo
->zo_raidz_expand_test
= RAIDZ_EXPAND_REQUESTED
;
1064 zo
->zo_time
= value
;
1067 zo
->zo_passtime
= MAX(1, value
);
1070 zo
->zo_maxloops
= MAX(1, value
);
1073 (void) strlcpy(zo
->zo_alt_ztest
, optarg
,
1074 sizeof (zo
->zo_alt_ztest
));
1077 ztest_parse_name_value(optarg
, zo
);
1080 if (zo
->zo_gvars_count
>= ZO_GVARS_MAX_COUNT
) {
1081 (void) fprintf(stderr
,
1082 "max global var count (%zu) exceeded\n",
1083 ZO_GVARS_MAX_COUNT
);
1086 char *v
= zo
->zo_gvars
[zo
->zo_gvars_count
];
1087 if (strlcpy(v
, optarg
, ZO_GVARS_MAX_ARGLEN
) >=
1088 ZO_GVARS_MAX_ARGLEN
) {
1089 (void) fprintf(stderr
,
1090 "global var option '%s' is too long\n",
1094 zo
->zo_gvars_count
++;
1097 zo
->zo_dump_dbgmsg
= 1;
1111 /* Force compatible options for raidz expansion run */
1112 if (zo
->zo_raidz_expand_test
== RAIDZ_EXPAND_REQUESTED
) {
1113 zo
->zo_mmp_test
= 0;
1116 zo
->zo_vdev_size
= DEFAULT_VDEV_SIZE
* 2;
1117 zo
->zo_raid_do_expand
= B_FALSE
;
1118 raid_kind
= "raidz";
1121 if (strcmp(raid_kind
, "random") == 0) {
1122 switch (ztest_random(3)) {
1124 raid_kind
= "raidz";
1127 raid_kind
= "eraidz";
1130 raid_kind
= "draid";
1134 if (ztest_opts
.zo_verbose
>= 3)
1135 (void) printf("choosing RAID type '%s'\n", raid_kind
);
1138 if (strcmp(raid_kind
, "draid") == 0) {
1139 uint64_t min_devsize
;
1141 /* With fewer disk use 256M, otherwise 128M is OK */
1142 min_devsize
= (ztest_opts
.zo_raid_children
< 16) ?
1143 (256ULL << 20) : (128ULL << 20);
1145 /* No top-level mirrors with dRAID for now */
1148 /* Use more appropriate defaults for dRAID */
1149 if (zo
->zo_vdevs
== ztest_opts_defaults
.zo_vdevs
)
1151 if (zo
->zo_raid_children
==
1152 ztest_opts_defaults
.zo_raid_children
)
1153 zo
->zo_raid_children
= 16;
1154 if (zo
->zo_ashift
< 12)
1156 if (zo
->zo_vdev_size
< min_devsize
)
1157 zo
->zo_vdev_size
= min_devsize
;
1159 if (zo
->zo_draid_data
+ zo
->zo_raid_parity
>
1160 zo
->zo_raid_children
- zo
->zo_draid_spares
) {
1161 (void) fprintf(stderr
, "error: too few draid "
1162 "children (%d) for stripe width (%d)\n",
1163 zo
->zo_raid_children
,
1164 zo
->zo_draid_data
+ zo
->zo_raid_parity
);
1168 (void) strlcpy(zo
->zo_raid_type
, VDEV_TYPE_DRAID
,
1169 sizeof (zo
->zo_raid_type
));
1171 } else if (strcmp(raid_kind
, "eraidz") == 0) {
1172 /* using eraidz (expandable raidz) */
1173 zo
->zo_raid_do_expand
= B_TRUE
;
1175 /* tests expect top-level to be raidz */
1179 /* Make sure parity is less than data columns */
1180 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1181 zo
->zo_raid_children
- 1);
1183 } else /* using raidz */ {
1184 ASSERT0(strcmp(raid_kind
, "raidz"));
1186 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1187 zo
->zo_raid_children
- 1);
1191 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
1194 if (*zo
->zo_alt_ztest
) {
1195 const char *invalid_what
= "ztest";
1196 char *val
= zo
->zo_alt_ztest
;
1197 if (0 != access(val
, X_OK
) ||
1198 (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
)))
1201 int dirlen
= strrchr(val
, '/') - val
;
1202 strlcpy(zo
->zo_alt_libpath
, val
,
1203 MIN(sizeof (zo
->zo_alt_libpath
), dirlen
+ 1));
1204 invalid_what
= "library path", val
= zo
->zo_alt_libpath
;
1205 if (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
))
1207 *strrchr(val
, '/') = '\0';
1208 strlcat(val
, "/lib", sizeof (zo
->zo_alt_libpath
));
1210 if (0 != access(zo
->zo_alt_libpath
, X_OK
))
1215 ztest_dump_core
= B_FALSE
;
1216 fatal(B_TRUE
, "invalid alternate %s %s", invalid_what
, val
);
1221 ztest_kill(ztest_shared_t
*zs
)
1223 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
1224 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
1227 * Before we kill ourselves, make sure that the config is updated.
1228 * See comment above spa_write_cachefile().
1230 if (raidz_expand_pause_point
!= RAIDZ_EXPAND_PAUSE_NONE
) {
1231 if (mutex_tryenter(&spa_namespace_lock
)) {
1232 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
,
1234 mutex_exit(&spa_namespace_lock
);
1236 ztest_scratch_state
->zs_raidz_scratch_verify_pause
=
1237 raidz_expand_pause_point
;
1240 * Do not verify scratch object in case if
1241 * spa_namespace_lock cannot be acquired,
1242 * it can cause deadlock in spa_config_update().
1244 raidz_expand_pause_point
= RAIDZ_EXPAND_PAUSE_NONE
;
1249 mutex_enter(&spa_namespace_lock
);
1250 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
, B_FALSE
);
1251 mutex_exit(&spa_namespace_lock
);
1254 (void) raise(SIGKILL
);
1258 ztest_record_enospc(const char *s
)
1261 ztest_shared
->zs_enospc_count
++;
1265 ztest_get_ashift(void)
1267 if (ztest_opts
.zo_ashift
== 0)
1268 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
1269 return (ztest_opts
.zo_ashift
);
1273 ztest_is_draid_spare(const char *name
)
1275 uint64_t spare_id
= 0, parity
= 0, vdev_id
= 0;
1277 if (sscanf(name
, VDEV_TYPE_DRAID
"%"PRIu64
"-%"PRIu64
"-%"PRIu64
"",
1278 &parity
, &vdev_id
, &spare_id
) == 3) {
1286 make_vdev_file(const char *path
, const char *aux
, const char *pool
,
1287 size_t size
, uint64_t ashift
)
1289 char *pathbuf
= NULL
;
1292 boolean_t draid_spare
= B_FALSE
;
1296 ashift
= ztest_get_ashift();
1299 pathbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1303 vdev
= ztest_shared
->zs_vdev_aux
;
1304 (void) snprintf(pathbuf
, MAXPATHLEN
,
1305 ztest_aux_template
, ztest_opts
.zo_dir
,
1306 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
1309 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
1310 (void) snprintf(pathbuf
, MAXPATHLEN
,
1311 ztest_dev_template
, ztest_opts
.zo_dir
,
1312 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
1315 draid_spare
= ztest_is_draid_spare(path
);
1318 if (size
!= 0 && !draid_spare
) {
1319 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
1321 fatal(B_TRUE
, "can't open %s", path
);
1322 if (ftruncate(fd
, size
) != 0)
1323 fatal(B_TRUE
, "can't ftruncate %s", path
);
1327 file
= fnvlist_alloc();
1328 fnvlist_add_string(file
, ZPOOL_CONFIG_TYPE
,
1329 draid_spare
? VDEV_TYPE_DRAID_SPARE
: VDEV_TYPE_FILE
);
1330 fnvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
);
1331 fnvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
);
1332 umem_free(pathbuf
, MAXPATHLEN
);
1338 make_vdev_raid(const char *path
, const char *aux
, const char *pool
, size_t size
,
1339 uint64_t ashift
, int r
)
1341 nvlist_t
*raid
, **child
;
1345 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
1346 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1348 for (c
= 0; c
< r
; c
++)
1349 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
1351 raid
= fnvlist_alloc();
1352 fnvlist_add_string(raid
, ZPOOL_CONFIG_TYPE
,
1353 ztest_opts
.zo_raid_type
);
1354 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_NPARITY
,
1355 ztest_opts
.zo_raid_parity
);
1356 fnvlist_add_nvlist_array(raid
, ZPOOL_CONFIG_CHILDREN
,
1357 (const nvlist_t
**)child
, r
);
1359 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0) {
1360 uint64_t ndata
= ztest_opts
.zo_draid_data
;
1361 uint64_t nparity
= ztest_opts
.zo_raid_parity
;
1362 uint64_t nspares
= ztest_opts
.zo_draid_spares
;
1363 uint64_t children
= ztest_opts
.zo_raid_children
;
1364 uint64_t ngroups
= 1;
1367 * Calculate the minimum number of groups required to fill a
1368 * slice. This is the LCM of the stripe width (data + parity)
1369 * and the number of data drives (children - spares).
1371 while (ngroups
* (ndata
+ nparity
) % (children
- nspares
) != 0)
1374 /* Store the basic dRAID configuration. */
1375 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NDATA
, ndata
);
1376 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NSPARES
, nspares
);
1377 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NGROUPS
, ngroups
);
1380 for (c
= 0; c
< r
; c
++)
1381 fnvlist_free(child
[c
]);
1383 umem_free(child
, r
* sizeof (nvlist_t
*));
1389 make_vdev_mirror(const char *path
, const char *aux
, const char *pool
,
1390 size_t size
, uint64_t ashift
, int r
, int m
)
1392 nvlist_t
*mirror
, **child
;
1396 return (make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
));
1398 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1400 for (c
= 0; c
< m
; c
++)
1401 child
[c
] = make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
);
1403 mirror
= fnvlist_alloc();
1404 fnvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_MIRROR
);
1405 fnvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
1406 (const nvlist_t
**)child
, m
);
1408 for (c
= 0; c
< m
; c
++)
1409 fnvlist_free(child
[c
]);
1411 umem_free(child
, m
* sizeof (nvlist_t
*));
1417 make_vdev_root(const char *path
, const char *aux
, const char *pool
, size_t size
,
1418 uint64_t ashift
, const char *class, int r
, int m
, int t
)
1420 nvlist_t
*root
, **child
;
1426 log
= (class != NULL
&& strcmp(class, "log") == 0);
1428 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1430 for (c
= 0; c
< t
; c
++) {
1431 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
1433 fnvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
, log
);
1435 if (class != NULL
&& class[0] != '\0') {
1436 ASSERT(m
> 1 || log
); /* expecting a mirror */
1437 fnvlist_add_string(child
[c
],
1438 ZPOOL_CONFIG_ALLOCATION_BIAS
, class);
1442 root
= fnvlist_alloc();
1443 fnvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
1444 fnvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
1445 (const nvlist_t
**)child
, t
);
1447 for (c
= 0; c
< t
; c
++)
1448 fnvlist_free(child
[c
]);
1450 umem_free(child
, t
* sizeof (nvlist_t
*));
1456 * Find a random spa version. Returns back a random spa version in the
1457 * range [initial_version, SPA_VERSION_FEATURES].
1460 ztest_random_spa_version(uint64_t initial_version
)
1462 uint64_t version
= initial_version
;
1464 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
1466 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
1469 if (version
> SPA_VERSION_BEFORE_FEATURES
)
1470 version
= SPA_VERSION_FEATURES
;
1472 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
1477 ztest_random_blocksize(void)
1479 ASSERT3U(ztest_spa
->spa_max_ashift
, !=, 0);
1482 * Choose a block size >= the ashift.
1483 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1485 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
1486 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
1488 uint64_t block_shift
=
1489 ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
1490 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
1494 ztest_random_dnodesize(void)
1497 int max_slots
= spa_maxdnodesize(ztest_spa
) >> DNODE_SHIFT
;
1499 if (max_slots
== DNODE_MIN_SLOTS
)
1500 return (DNODE_MIN_SIZE
);
1503 * Weight the random distribution more heavily toward smaller
1504 * dnode sizes since that is more likely to reflect real-world
1507 ASSERT3U(max_slots
, >, 4);
1508 switch (ztest_random(10)) {
1510 slots
= 5 + ztest_random(max_slots
- 4);
1513 slots
= 2 + ztest_random(3);
1520 return (slots
<< DNODE_SHIFT
);
1524 ztest_random_ibshift(void)
1526 return (DN_MIN_INDBLKSHIFT
+
1527 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1531 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1534 vdev_t
*rvd
= spa
->spa_root_vdev
;
1537 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
1540 top
= ztest_random(rvd
->vdev_children
);
1541 tvd
= rvd
->vdev_child
[top
];
1542 } while (!vdev_is_concrete(tvd
) || (tvd
->vdev_islog
&& !log_ok
) ||
1543 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1549 ztest_random_dsl_prop(zfs_prop_t prop
)
1554 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1555 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1561 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1564 const char *propname
= zfs_prop_to_name(prop
);
1565 const char *valname
;
1570 error
= dsl_prop_set_int(osname
, propname
,
1571 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1573 if (error
== ENOSPC
) {
1574 ztest_record_enospc(FTAG
);
1579 setpoint
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1580 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1582 if (ztest_opts
.zo_verbose
>= 6) {
1585 err
= zfs_prop_index_to_string(prop
, curval
, &valname
);
1587 (void) printf("%s %s = %llu at '%s'\n", osname
,
1588 propname
, (unsigned long long)curval
, setpoint
);
1590 (void) printf("%s %s = %s at '%s'\n",
1591 osname
, propname
, valname
, setpoint
);
1593 umem_free(setpoint
, MAXPATHLEN
);
1599 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1601 spa_t
*spa
= ztest_spa
;
1602 nvlist_t
*props
= NULL
;
1605 props
= fnvlist_alloc();
1606 fnvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
);
1608 error
= spa_prop_set(spa
, props
);
1610 fnvlist_free(props
);
1612 if (error
== ENOSPC
) {
1613 ztest_record_enospc(FTAG
);
1622 ztest_dmu_objset_own(const char *name
, dmu_objset_type_t type
,
1623 boolean_t readonly
, boolean_t decrypt
, const void *tag
, objset_t
**osp
)
1627 char ddname
[ZFS_MAX_DATASET_NAME_LEN
];
1629 strlcpy(ddname
, name
, sizeof (ddname
));
1630 cp
= strchr(ddname
, '@');
1634 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1635 while (decrypt
&& err
== EACCES
) {
1636 dsl_crypto_params_t
*dcp
;
1637 nvlist_t
*crypto_args
= fnvlist_alloc();
1639 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
1640 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
1641 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, NULL
,
1642 crypto_args
, &dcp
));
1643 err
= spa_keystore_load_wkey(ddname
, dcp
, B_FALSE
);
1645 * Note: if there was an error loading, the wkey was not
1646 * consumed, and needs to be freed.
1648 dsl_crypto_params_free(dcp
, (err
!= 0));
1649 fnvlist_free(crypto_args
);
1651 if (err
== EINVAL
) {
1653 * We couldn't load a key for this dataset so try
1654 * the parent. This loop will eventually hit the
1655 * encryption root since ztest only makes clones
1656 * as children of their origin datasets.
1658 cp
= strrchr(ddname
, '/');
1665 } else if (err
!= 0) {
1669 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1677 ztest_rll_init(rll_t
*rll
)
1679 rll
->rll_writer
= NULL
;
1680 rll
->rll_readers
= 0;
1681 mutex_init(&rll
->rll_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1682 cv_init(&rll
->rll_cv
, NULL
, CV_DEFAULT
, NULL
);
1686 ztest_rll_destroy(rll_t
*rll
)
1688 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1689 ASSERT0(rll
->rll_readers
);
1690 mutex_destroy(&rll
->rll_lock
);
1691 cv_destroy(&rll
->rll_cv
);
1695 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1697 mutex_enter(&rll
->rll_lock
);
1699 if (type
== ZTRL_READER
) {
1700 while (rll
->rll_writer
!= NULL
)
1701 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1704 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1705 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1706 rll
->rll_writer
= curthread
;
1709 mutex_exit(&rll
->rll_lock
);
1713 ztest_rll_unlock(rll_t
*rll
)
1715 mutex_enter(&rll
->rll_lock
);
1717 if (rll
->rll_writer
) {
1718 ASSERT0(rll
->rll_readers
);
1719 rll
->rll_writer
= NULL
;
1721 ASSERT3S(rll
->rll_readers
, >, 0);
1722 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1726 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1727 cv_broadcast(&rll
->rll_cv
);
1729 mutex_exit(&rll
->rll_lock
);
1733 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1735 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1737 ztest_rll_lock(rll
, type
);
1741 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1743 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1745 ztest_rll_unlock(rll
);
1749 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1750 uint64_t size
, rl_type_t type
)
1752 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1753 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1756 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1757 rl
->rl_object
= object
;
1758 rl
->rl_offset
= offset
;
1762 ztest_rll_lock(rll
, type
);
1768 ztest_range_unlock(rl_t
*rl
)
1770 rll_t
*rll
= rl
->rl_lock
;
1772 ztest_rll_unlock(rll
);
1774 umem_free(rl
, sizeof (*rl
));
1778 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1781 zd
->zd_zilog
= dmu_objset_zil(os
);
1782 zd
->zd_shared
= szd
;
1783 dmu_objset_name(os
, zd
->zd_name
);
1786 if (zd
->zd_shared
!= NULL
)
1787 zd
->zd_shared
->zd_seq
= 0;
1789 VERIFY0(pthread_rwlock_init(&zd
->zd_zilog_lock
, NULL
));
1790 mutex_init(&zd
->zd_dirobj_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1792 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1793 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1795 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1796 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1800 ztest_zd_fini(ztest_ds_t
*zd
)
1804 mutex_destroy(&zd
->zd_dirobj_lock
);
1805 (void) pthread_rwlock_destroy(&zd
->zd_zilog_lock
);
1807 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1808 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1810 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1811 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1814 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1817 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1823 * Attempt to assign tx to some transaction group.
1825 error
= dmu_tx_assign(tx
, txg_how
);
1827 if (error
== ERESTART
) {
1828 ASSERT3U(txg_how
, ==, TXG_NOWAIT
);
1831 ASSERT3U(error
, ==, ENOSPC
);
1832 ztest_record_enospc(tag
);
1837 txg
= dmu_tx_get_txg(tx
);
1838 ASSERT3U(txg
, !=, 0);
1843 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1844 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1847 bt
->bt_magic
= BT_MAGIC
;
1848 bt
->bt_objset
= dmu_objset_id(os
);
1849 bt
->bt_object
= object
;
1850 bt
->bt_dnodesize
= dnodesize
;
1851 bt
->bt_offset
= offset
;
1854 bt
->bt_crtxg
= crtxg
;
1858 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1859 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1862 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1863 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1864 ASSERT3U(bt
->bt_object
, ==, object
);
1865 ASSERT3U(bt
->bt_dnodesize
, ==, dnodesize
);
1866 ASSERT3U(bt
->bt_offset
, ==, offset
);
1867 ASSERT3U(bt
->bt_gen
, <=, gen
);
1868 ASSERT3U(bt
->bt_txg
, <=, txg
);
1869 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1872 static ztest_block_tag_t
*
1873 ztest_bt_bonus(dmu_buf_t
*db
)
1875 dmu_object_info_t doi
;
1876 ztest_block_tag_t
*bt
;
1878 dmu_object_info_from_db(db
, &doi
);
1879 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1880 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1881 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1887 * Generate a token to fill up unused bonus buffer space. Try to make
1888 * it unique to the object, generation, and offset to verify that data
1889 * is not getting overwritten by data from other dnodes.
1891 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1892 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1895 * Fill up the unused bonus buffer region before the block tag with a
1896 * verifiable pattern. Filling the whole bonus area with non-zero data
1897 * helps ensure that all dnode traversal code properly skips the
1898 * interior regions of large dnodes.
1901 ztest_fill_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1902 objset_t
*os
, uint64_t gen
)
1906 ASSERT(IS_P2ALIGNED((char *)end
- (char *)db
->db_data
, 8));
1908 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1909 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1910 gen
, bonusp
- (uint64_t *)db
->db_data
);
1916 * Verify that the unused area of a bonus buffer is filled with the
1920 ztest_verify_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1921 objset_t
*os
, uint64_t gen
)
1925 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1926 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1927 gen
, bonusp
- (uint64_t *)db
->db_data
);
1928 VERIFY3U(*bonusp
, ==, token
);
1936 #define lrz_type lr_mode
1937 #define lrz_blocksize lr_uid
1938 #define lrz_ibshift lr_gid
1939 #define lrz_bonustype lr_rdev
1940 #define lrz_dnodesize lr_crtime[1]
1943 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1945 char *name
= (void *)(lr
+ 1); /* name follows lr */
1946 size_t namesize
= strlen(name
) + 1;
1949 if (zil_replaying(zd
->zd_zilog
, tx
))
1952 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1953 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1954 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1956 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1960 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1962 char *name
= (void *)(lr
+ 1); /* name follows lr */
1963 size_t namesize
= strlen(name
) + 1;
1966 if (zil_replaying(zd
->zd_zilog
, tx
))
1969 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1970 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1971 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1973 itx
->itx_oid
= object
;
1974 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1978 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1981 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1983 if (zil_replaying(zd
->zd_zilog
, tx
))
1986 if (lr
->lr_length
> zil_max_log_data(zd
->zd_zilog
, sizeof (lr_write_t
)))
1987 write_state
= WR_INDIRECT
;
1989 itx
= zil_itx_create(TX_WRITE
,
1990 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1992 if (write_state
== WR_COPIED
&&
1993 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1994 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1995 zil_itx_destroy(itx
);
1996 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1997 write_state
= WR_NEED_COPY
;
1999 itx
->itx_private
= zd
;
2000 itx
->itx_wr_state
= write_state
;
2001 itx
->itx_sync
= (ztest_random(8) == 0);
2003 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2004 sizeof (*lr
) - sizeof (lr_t
));
2006 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2010 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
2014 if (zil_replaying(zd
->zd_zilog
, tx
))
2017 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
2018 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2019 sizeof (*lr
) - sizeof (lr_t
));
2021 itx
->itx_sync
= B_FALSE
;
2022 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2026 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
2030 if (zil_replaying(zd
->zd_zilog
, tx
))
2033 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
2034 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
2035 sizeof (*lr
) - sizeof (lr_t
));
2037 itx
->itx_sync
= B_FALSE
;
2038 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
2045 ztest_replay_create(void *arg1
, void *arg2
, boolean_t byteswap
)
2047 ztest_ds_t
*zd
= arg1
;
2048 lr_create_t
*lr
= arg2
;
2049 char *name
= (void *)(lr
+ 1); /* name follows lr */
2050 objset_t
*os
= zd
->zd_os
;
2051 ztest_block_tag_t
*bbt
;
2059 byteswap_uint64_array(lr
, sizeof (*lr
));
2061 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2062 ASSERT3S(name
[0], !=, '\0');
2064 tx
= dmu_tx_create(os
);
2066 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
2068 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2069 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
2071 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
2074 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2078 ASSERT3U(dmu_objset_zil(os
)->zl_replay
, ==, !!lr
->lr_foid
);
2079 bonuslen
= DN_BONUS_SIZE(lr
->lrz_dnodesize
);
2081 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2082 if (lr
->lr_foid
== 0) {
2083 lr
->lr_foid
= zap_create_dnsize(os
,
2084 lr
->lrz_type
, lr
->lrz_bonustype
,
2085 bonuslen
, lr
->lrz_dnodesize
, tx
);
2087 error
= zap_create_claim_dnsize(os
, lr
->lr_foid
,
2088 lr
->lrz_type
, lr
->lrz_bonustype
,
2089 bonuslen
, lr
->lrz_dnodesize
, tx
);
2092 if (lr
->lr_foid
== 0) {
2093 lr
->lr_foid
= dmu_object_alloc_dnsize(os
,
2094 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2095 bonuslen
, lr
->lrz_dnodesize
, tx
);
2097 error
= dmu_object_claim_dnsize(os
, lr
->lr_foid
,
2098 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2099 bonuslen
, lr
->lrz_dnodesize
, tx
);
2104 ASSERT3U(error
, ==, EEXIST
);
2105 ASSERT(zd
->zd_zilog
->zl_replay
);
2110 ASSERT3U(lr
->lr_foid
, !=, 0);
2112 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
2113 VERIFY0(dmu_object_set_blocksize(os
, lr
->lr_foid
,
2114 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
2116 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2117 bbt
= ztest_bt_bonus(db
);
2118 dmu_buf_will_dirty(db
, tx
);
2119 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, lr
->lrz_dnodesize
, -1ULL,
2120 lr
->lr_gen
, txg
, txg
);
2121 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, lr
->lr_gen
);
2122 dmu_buf_rele(db
, FTAG
);
2124 VERIFY0(zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
2127 (void) ztest_log_create(zd
, tx
, lr
);
2135 ztest_replay_remove(void *arg1
, void *arg2
, boolean_t byteswap
)
2137 ztest_ds_t
*zd
= arg1
;
2138 lr_remove_t
*lr
= arg2
;
2139 char *name
= (void *)(lr
+ 1); /* name follows lr */
2140 objset_t
*os
= zd
->zd_os
;
2141 dmu_object_info_t doi
;
2143 uint64_t object
, txg
;
2146 byteswap_uint64_array(lr
, sizeof (*lr
));
2148 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2149 ASSERT3S(name
[0], !=, '\0');
2152 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
2153 ASSERT3U(object
, !=, 0);
2155 ztest_object_lock(zd
, object
, ZTRL_WRITER
);
2157 VERIFY0(dmu_object_info(os
, object
, &doi
));
2159 tx
= dmu_tx_create(os
);
2161 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
2162 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
2164 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2166 ztest_object_unlock(zd
, object
);
2170 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
2171 VERIFY0(zap_destroy(os
, object
, tx
));
2173 VERIFY0(dmu_object_free(os
, object
, tx
));
2176 VERIFY0(zap_remove(os
, lr
->lr_doid
, name
, tx
));
2178 (void) ztest_log_remove(zd
, tx
, lr
, object
);
2182 ztest_object_unlock(zd
, object
);
2188 ztest_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
2190 ztest_ds_t
*zd
= arg1
;
2191 lr_write_t
*lr
= arg2
;
2192 objset_t
*os
= zd
->zd_os
;
2193 void *data
= lr
+ 1; /* data follows lr */
2194 uint64_t offset
, length
;
2195 ztest_block_tag_t
*bt
= data
;
2196 ztest_block_tag_t
*bbt
;
2197 uint64_t gen
, txg
, lrtxg
, crtxg
;
2198 dmu_object_info_t doi
;
2201 arc_buf_t
*abuf
= NULL
;
2205 byteswap_uint64_array(lr
, sizeof (*lr
));
2207 offset
= lr
->lr_offset
;
2208 length
= lr
->lr_length
;
2210 /* If it's a dmu_sync() block, write the whole block */
2211 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
2212 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
2213 if (length
< blocksize
) {
2214 offset
-= offset
% blocksize
;
2219 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
2220 byteswap_uint64_array(bt
, sizeof (*bt
));
2222 if (bt
->bt_magic
!= BT_MAGIC
)
2225 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_READER
);
2226 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, ZTRL_WRITER
);
2228 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2230 dmu_object_info_from_db(db
, &doi
);
2232 bbt
= ztest_bt_bonus(db
);
2233 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2235 crtxg
= bbt
->bt_crtxg
;
2236 lrtxg
= lr
->lr_common
.lrc_txg
;
2238 tx
= dmu_tx_create(os
);
2240 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
2242 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
2243 P2PHASE(offset
, length
) == 0)
2244 abuf
= dmu_request_arcbuf(db
, length
);
2246 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2249 dmu_return_arcbuf(abuf
);
2250 dmu_buf_rele(db
, FTAG
);
2251 ztest_range_unlock(rl
);
2252 ztest_object_unlock(zd
, lr
->lr_foid
);
2258 * Usually, verify the old data before writing new data --
2259 * but not always, because we also want to verify correct
2260 * behavior when the data was not recently read into cache.
2262 ASSERT(doi
.doi_data_block_size
);
2263 ASSERT0(offset
% doi
.doi_data_block_size
);
2264 if (ztest_random(4) != 0) {
2265 int prefetch
= ztest_random(2) ?
2266 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
2267 ztest_block_tag_t rbt
;
2269 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
2270 sizeof (rbt
), &rbt
, prefetch
) == 0);
2271 if (rbt
.bt_magic
== BT_MAGIC
) {
2272 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
, 0,
2273 offset
, gen
, txg
, crtxg
);
2278 * Writes can appear to be newer than the bonus buffer because
2279 * the ztest_get_data() callback does a dmu_read() of the
2280 * open-context data, which may be different than the data
2281 * as it was when the write was generated.
2283 if (zd
->zd_zilog
->zl_replay
) {
2284 ztest_bt_verify(bt
, os
, lr
->lr_foid
, 0, offset
,
2285 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
2290 * Set the bt's gen/txg to the bonus buffer's gen/txg
2291 * so that all of the usual ASSERTs will work.
2293 ztest_bt_generate(bt
, os
, lr
->lr_foid
, 0, offset
, gen
, txg
,
2298 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
2300 memcpy(abuf
->b_data
, data
, length
);
2301 VERIFY0(dmu_assign_arcbuf_by_dbuf(db
, offset
, abuf
, tx
));
2304 (void) ztest_log_write(zd
, tx
, lr
);
2306 dmu_buf_rele(db
, FTAG
);
2310 ztest_range_unlock(rl
);
2311 ztest_object_unlock(zd
, lr
->lr_foid
);
2317 ztest_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
2319 ztest_ds_t
*zd
= arg1
;
2320 lr_truncate_t
*lr
= arg2
;
2321 objset_t
*os
= zd
->zd_os
;
2327 byteswap_uint64_array(lr
, sizeof (*lr
));
2329 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_READER
);
2330 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
2333 tx
= dmu_tx_create(os
);
2335 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
2337 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2339 ztest_range_unlock(rl
);
2340 ztest_object_unlock(zd
, lr
->lr_foid
);
2344 VERIFY0(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
2345 lr
->lr_length
, tx
));
2347 (void) ztest_log_truncate(zd
, tx
, lr
);
2351 ztest_range_unlock(rl
);
2352 ztest_object_unlock(zd
, lr
->lr_foid
);
2358 ztest_replay_setattr(void *arg1
, void *arg2
, boolean_t byteswap
)
2360 ztest_ds_t
*zd
= arg1
;
2361 lr_setattr_t
*lr
= arg2
;
2362 objset_t
*os
= zd
->zd_os
;
2365 ztest_block_tag_t
*bbt
;
2366 uint64_t txg
, lrtxg
, crtxg
, dnodesize
;
2369 byteswap_uint64_array(lr
, sizeof (*lr
));
2371 ztest_object_lock(zd
, lr
->lr_foid
, ZTRL_WRITER
);
2373 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2375 tx
= dmu_tx_create(os
);
2376 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
2378 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2380 dmu_buf_rele(db
, FTAG
);
2381 ztest_object_unlock(zd
, lr
->lr_foid
);
2385 bbt
= ztest_bt_bonus(db
);
2386 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2387 crtxg
= bbt
->bt_crtxg
;
2388 lrtxg
= lr
->lr_common
.lrc_txg
;
2389 dnodesize
= bbt
->bt_dnodesize
;
2391 if (zd
->zd_zilog
->zl_replay
) {
2392 ASSERT3U(lr
->lr_size
, !=, 0);
2393 ASSERT3U(lr
->lr_mode
, !=, 0);
2394 ASSERT3U(lrtxg
, !=, 0);
2397 * Randomly change the size and increment the generation.
2399 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
2401 lr
->lr_mode
= bbt
->bt_gen
+ 1;
2406 * Verify that the current bonus buffer is not newer than our txg.
2408 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2409 MAX(txg
, lrtxg
), crtxg
);
2411 dmu_buf_will_dirty(db
, tx
);
2413 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
2414 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
2415 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
2416 bbt
= ztest_bt_bonus(db
);
2418 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2420 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, bbt
->bt_gen
);
2421 dmu_buf_rele(db
, FTAG
);
2423 (void) ztest_log_setattr(zd
, tx
, lr
);
2427 ztest_object_unlock(zd
, lr
->lr_foid
);
2432 static zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
2433 NULL
, /* 0 no such transaction type */
2434 ztest_replay_create
, /* TX_CREATE */
2435 NULL
, /* TX_MKDIR */
2436 NULL
, /* TX_MKXATTR */
2437 NULL
, /* TX_SYMLINK */
2438 ztest_replay_remove
, /* TX_REMOVE */
2439 NULL
, /* TX_RMDIR */
2441 NULL
, /* TX_RENAME */
2442 ztest_replay_write
, /* TX_WRITE */
2443 ztest_replay_truncate
, /* TX_TRUNCATE */
2444 ztest_replay_setattr
, /* TX_SETATTR */
2446 NULL
, /* TX_CREATE_ACL */
2447 NULL
, /* TX_CREATE_ATTR */
2448 NULL
, /* TX_CREATE_ACL_ATTR */
2449 NULL
, /* TX_MKDIR_ACL */
2450 NULL
, /* TX_MKDIR_ATTR */
2451 NULL
, /* TX_MKDIR_ACL_ATTR */
2452 NULL
, /* TX_WRITE2 */
2453 NULL
, /* TX_SETSAXATTR */
2454 NULL
, /* TX_RENAME_EXCHANGE */
2455 NULL
, /* TX_RENAME_WHITEOUT */
2459 * ZIL get_data callbacks
2463 ztest_get_done(zgd_t
*zgd
, int error
)
2466 ztest_ds_t
*zd
= zgd
->zgd_private
;
2467 uint64_t object
= ((rl_t
*)zgd
->zgd_lr
)->rl_object
;
2470 dmu_buf_rele(zgd
->zgd_db
, zgd
);
2472 ztest_range_unlock((rl_t
*)zgd
->zgd_lr
);
2473 ztest_object_unlock(zd
, object
);
2475 umem_free(zgd
, sizeof (*zgd
));
2479 ztest_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
2480 struct lwb
*lwb
, zio_t
*zio
)
2483 ztest_ds_t
*zd
= arg
;
2484 objset_t
*os
= zd
->zd_os
;
2485 uint64_t object
= lr
->lr_foid
;
2486 uint64_t offset
= lr
->lr_offset
;
2487 uint64_t size
= lr
->lr_length
;
2488 uint64_t txg
= lr
->lr_common
.lrc_txg
;
2490 dmu_object_info_t doi
;
2495 ASSERT3P(lwb
, !=, NULL
);
2496 ASSERT3U(size
, !=, 0);
2498 ztest_object_lock(zd
, object
, ZTRL_READER
);
2499 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
2501 ztest_object_unlock(zd
, object
);
2505 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
2507 if (crtxg
== 0 || crtxg
> txg
) {
2508 dmu_buf_rele(db
, FTAG
);
2509 ztest_object_unlock(zd
, object
);
2513 dmu_object_info_from_db(db
, &doi
);
2514 dmu_buf_rele(db
, FTAG
);
2517 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
2519 zgd
->zgd_private
= zd
;
2521 if (buf
!= NULL
) { /* immediate write */
2522 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2523 object
, offset
, size
, ZTRL_READER
);
2525 error
= dmu_read(os
, object
, offset
, size
, buf
,
2526 DMU_READ_NO_PREFETCH
);
2529 ASSERT3P(zio
, !=, NULL
);
2530 size
= doi
.doi_data_block_size
;
2532 offset
= P2ALIGN(offset
, size
);
2534 ASSERT3U(offset
, <, size
);
2538 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2539 object
, offset
, size
, ZTRL_READER
);
2541 error
= dmu_buf_hold_noread(os
, object
, offset
, zgd
, &db
);
2544 blkptr_t
*bp
= &lr
->lr_blkptr
;
2549 ASSERT3U(db
->db_offset
, ==, offset
);
2550 ASSERT3U(db
->db_size
, ==, size
);
2552 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
2553 ztest_get_done
, zgd
);
2560 ztest_get_done(zgd
, error
);
2566 ztest_lr_alloc(size_t lrsize
, char *name
)
2569 size_t namesize
= name
? strlen(name
) + 1 : 0;
2571 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
2574 memcpy(lr
+ lrsize
, name
, namesize
);
2580 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
2582 size_t namesize
= name
? strlen(name
) + 1 : 0;
2584 umem_free(lr
, lrsize
+ namesize
);
2588 * Lookup a bunch of objects. Returns the number of objects not found.
2591 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2597 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2599 for (i
= 0; i
< count
; i
++, od
++) {
2601 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
2602 sizeof (uint64_t), 1, &od
->od_object
);
2604 ASSERT3S(error
, ==, ENOENT
);
2605 ASSERT0(od
->od_object
);
2609 ztest_block_tag_t
*bbt
;
2610 dmu_object_info_t doi
;
2612 ASSERT3U(od
->od_object
, !=, 0);
2613 ASSERT0(missing
); /* there should be no gaps */
2615 ztest_object_lock(zd
, od
->od_object
, ZTRL_READER
);
2616 VERIFY0(dmu_bonus_hold(zd
->zd_os
, od
->od_object
,
2618 dmu_object_info_from_db(db
, &doi
);
2619 bbt
= ztest_bt_bonus(db
);
2620 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2621 od
->od_type
= doi
.doi_type
;
2622 od
->od_blocksize
= doi
.doi_data_block_size
;
2623 od
->od_gen
= bbt
->bt_gen
;
2624 dmu_buf_rele(db
, FTAG
);
2625 ztest_object_unlock(zd
, od
->od_object
);
2633 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2638 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2640 for (i
= 0; i
< count
; i
++, od
++) {
2647 lr_create_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2649 lr
->lr_doid
= od
->od_dir
;
2650 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2651 lr
->lrz_type
= od
->od_crtype
;
2652 lr
->lrz_blocksize
= od
->od_crblocksize
;
2653 lr
->lrz_ibshift
= ztest_random_ibshift();
2654 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2655 lr
->lrz_dnodesize
= od
->od_crdnodesize
;
2656 lr
->lr_gen
= od
->od_crgen
;
2657 lr
->lr_crtime
[0] = time(NULL
);
2659 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2664 od
->od_object
= lr
->lr_foid
;
2665 od
->od_type
= od
->od_crtype
;
2666 od
->od_blocksize
= od
->od_crblocksize
;
2667 od
->od_gen
= od
->od_crgen
;
2668 ASSERT3U(od
->od_object
, !=, 0);
2671 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2678 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2684 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2688 for (i
= count
- 1; i
>= 0; i
--, od
--) {
2695 * No object was found.
2697 if (od
->od_object
== 0)
2700 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2702 lr
->lr_doid
= od
->od_dir
;
2704 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2705 ASSERT3U(error
, ==, ENOSPC
);
2710 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2717 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2723 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2725 lr
->lr_foid
= object
;
2726 lr
->lr_offset
= offset
;
2727 lr
->lr_length
= size
;
2729 BP_ZERO(&lr
->lr_blkptr
);
2731 memcpy(lr
+ 1, data
, size
);
2733 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2735 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2741 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2746 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2748 lr
->lr_foid
= object
;
2749 lr
->lr_offset
= offset
;
2750 lr
->lr_length
= size
;
2752 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2754 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2760 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2765 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2767 lr
->lr_foid
= object
;
2771 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2773 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2779 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2781 objset_t
*os
= zd
->zd_os
;
2786 txg_wait_synced(dmu_objset_pool(os
), 0);
2788 ztest_object_lock(zd
, object
, ZTRL_READER
);
2789 rl
= ztest_range_lock(zd
, object
, offset
, size
, ZTRL_WRITER
);
2791 tx
= dmu_tx_create(os
);
2793 dmu_tx_hold_write(tx
, object
, offset
, size
);
2795 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2798 dmu_prealloc(os
, object
, offset
, size
, tx
);
2800 txg_wait_synced(dmu_objset_pool(os
), txg
);
2802 (void) dmu_free_long_range(os
, object
, offset
, size
);
2805 ztest_range_unlock(rl
);
2806 ztest_object_unlock(zd
, object
);
2810 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2813 ztest_block_tag_t wbt
;
2814 dmu_object_info_t doi
;
2815 enum ztest_io_type io_type
;
2819 VERIFY0(dmu_object_info(zd
->zd_os
, object
, &doi
));
2820 blocksize
= doi
.doi_data_block_size
;
2821 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2824 * Pick an i/o type at random, biased toward writing block tags.
2826 io_type
= ztest_random(ZTEST_IO_TYPES
);
2827 if (ztest_random(2) == 0)
2828 io_type
= ZTEST_IO_WRITE_TAG
;
2830 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2834 case ZTEST_IO_WRITE_TAG
:
2835 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, doi
.doi_dnodesize
,
2837 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2840 case ZTEST_IO_WRITE_PATTERN
:
2841 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2842 if (ztest_random(2) == 0) {
2844 * Induce fletcher2 collisions to ensure that
2845 * zio_ddt_collision() detects and resolves them
2846 * when using fletcher2-verify for deduplication.
2848 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2849 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2851 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2854 case ZTEST_IO_WRITE_ZEROES
:
2855 memset(data
, 0, blocksize
);
2856 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2859 case ZTEST_IO_TRUNCATE
:
2860 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2863 case ZTEST_IO_SETATTR
:
2864 (void) ztest_setattr(zd
, object
);
2869 case ZTEST_IO_REWRITE
:
2870 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2871 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2872 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2874 ASSERT(err
== 0 || err
== ENOSPC
);
2875 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2876 ZFS_PROP_COMPRESSION
,
2877 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2879 ASSERT(err
== 0 || err
== ENOSPC
);
2880 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2882 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2883 DMU_READ_NO_PREFETCH
));
2885 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2889 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2891 umem_free(data
, blocksize
);
2895 * Initialize an object description template.
2898 ztest_od_init(ztest_od_t
*od
, uint64_t id
, const char *tag
, uint64_t index
,
2899 dmu_object_type_t type
, uint64_t blocksize
, uint64_t dnodesize
,
2902 od
->od_dir
= ZTEST_DIROBJ
;
2905 od
->od_crtype
= type
;
2906 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2907 od
->od_crdnodesize
= dnodesize
? dnodesize
: ztest_random_dnodesize();
2910 od
->od_type
= DMU_OT_NONE
;
2911 od
->od_blocksize
= 0;
2914 (void) snprintf(od
->od_name
, sizeof (od
->od_name
),
2915 "%s(%"PRId64
")[%"PRIu64
"]",
2920 * Lookup or create the objects for a test using the od template.
2921 * If the objects do not all exist, or if 'remove' is specified,
2922 * remove any existing objects and create new ones. Otherwise,
2923 * use the existing objects.
2926 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2928 int count
= size
/ sizeof (*od
);
2931 mutex_enter(&zd
->zd_dirobj_lock
);
2932 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2933 (ztest_remove(zd
, od
, count
) != 0 ||
2934 ztest_create(zd
, od
, count
) != 0))
2937 mutex_exit(&zd
->zd_dirobj_lock
);
2943 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2946 zilog_t
*zilog
= zd
->zd_zilog
;
2948 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2950 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2953 * Remember the committed values in zd, which is in parent/child
2954 * shared memory. If we die, the next iteration of ztest_run()
2955 * will verify that the log really does contain this record.
2957 mutex_enter(&zilog
->zl_lock
);
2958 ASSERT3P(zd
->zd_shared
, !=, NULL
);
2959 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2960 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2961 mutex_exit(&zilog
->zl_lock
);
2963 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2967 * This function is designed to simulate the operations that occur during a
2968 * mount/unmount operation. We hold the dataset across these operations in an
2969 * attempt to expose any implicit assumptions about ZIL management.
2972 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2975 objset_t
*os
= zd
->zd_os
;
2978 * We hold the ztest_vdev_lock so we don't cause problems with
2979 * other threads that wish to remove a log device, such as
2980 * ztest_device_removal().
2982 mutex_enter(&ztest_vdev_lock
);
2985 * We grab the zd_dirobj_lock to ensure that no other thread is
2986 * updating the zil (i.e. adding in-memory log records) and the
2987 * zd_zilog_lock to block any I/O.
2989 mutex_enter(&zd
->zd_dirobj_lock
);
2990 (void) pthread_rwlock_wrlock(&zd
->zd_zilog_lock
);
2992 /* zfsvfs_teardown() */
2993 zil_close(zd
->zd_zilog
);
2995 /* zfsvfs_setup() */
2996 VERIFY3P(zil_open(os
, ztest_get_data
, NULL
), ==, zd
->zd_zilog
);
2997 zil_replay(os
, zd
, ztest_replay_vector
);
2999 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
3000 mutex_exit(&zd
->zd_dirobj_lock
);
3001 mutex_exit(&ztest_vdev_lock
);
3005 * Verify that we can't destroy an active pool, create an existing pool,
3006 * or create a pool with a bad vdev spec.
3009 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
3011 (void) zd
, (void) id
;
3012 ztest_shared_opts_t
*zo
= &ztest_opts
;
3016 if (zo
->zo_mmp_test
)
3020 * Attempt to create using a bad file.
3022 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
3023 VERIFY3U(ENOENT
, ==,
3024 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
, NULL
));
3025 fnvlist_free(nvroot
);
3028 * Attempt to create using a bad mirror.
3030 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 2, 1);
3031 VERIFY3U(ENOENT
, ==,
3032 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
, NULL
));
3033 fnvlist_free(nvroot
);
3036 * Attempt to create an existing pool. It shouldn't matter
3037 * what's in the nvroot; we should fail with EEXIST.
3039 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
3040 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
3041 VERIFY3U(EEXIST
, ==,
3042 spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
, NULL
));
3043 fnvlist_free(nvroot
);
3046 * We open a reference to the spa and then we try to export it
3047 * expecting one of the following errors:
3050 * Because of the reference we just opened.
3052 * ZFS_ERR_EXPORT_IN_PROGRESS
3053 * For the case that there is another ztest thread doing
3054 * an export concurrently.
3056 VERIFY0(spa_open(zo
->zo_pool
, &spa
, FTAG
));
3057 int error
= spa_destroy(zo
->zo_pool
);
3058 if (error
!= EBUSY
&& error
!= ZFS_ERR_EXPORT_IN_PROGRESS
) {
3059 fatal(B_FALSE
, "spa_destroy(%s) returned unexpected value %d",
3060 spa
->spa_name
, error
);
3062 spa_close(spa
, FTAG
);
3064 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3068 * Start and then stop the MMP threads to ensure the startup and shutdown code
3069 * works properly. Actual protection and property-related code tested via ZTS.
3072 ztest_mmp_enable_disable(ztest_ds_t
*zd
, uint64_t id
)
3074 (void) zd
, (void) id
;
3075 ztest_shared_opts_t
*zo
= &ztest_opts
;
3076 spa_t
*spa
= ztest_spa
;
3078 if (zo
->zo_mmp_test
)
3082 * Since enabling MMP involves setting a property, it could not be done
3083 * while the pool is suspended.
3085 if (spa_suspended(spa
))
3088 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3089 mutex_enter(&spa
->spa_props_lock
);
3091 zfs_multihost_fail_intervals
= 0;
3093 if (!spa_multihost(spa
)) {
3094 spa
->spa_multihost
= B_TRUE
;
3095 mmp_thread_start(spa
);
3098 mutex_exit(&spa
->spa_props_lock
);
3099 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3101 txg_wait_synced(spa_get_dsl(spa
), 0);
3102 mmp_signal_all_threads();
3103 txg_wait_synced(spa_get_dsl(spa
), 0);
3105 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3106 mutex_enter(&spa
->spa_props_lock
);
3108 if (spa_multihost(spa
)) {
3109 mmp_thread_stop(spa
);
3110 spa
->spa_multihost
= B_FALSE
;
3113 mutex_exit(&spa
->spa_props_lock
);
3114 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3118 ztest_get_raidz_children(spa_t
*spa
)
3123 ASSERT(MUTEX_HELD(&ztest_vdev_lock
));
3125 if (ztest_opts
.zo_raid_do_expand
) {
3126 raidvd
= ztest_spa
->spa_root_vdev
->vdev_child
[0];
3128 ASSERT(raidvd
->vdev_ops
== &vdev_raidz_ops
);
3130 return (raidvd
->vdev_children
);
3133 return (ztest_opts
.zo_raid_children
);
3137 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
3139 (void) zd
, (void) id
;
3141 uint64_t initial_version
= SPA_VERSION_INITIAL
;
3142 uint64_t raidz_children
, version
, newversion
;
3143 nvlist_t
*nvroot
, *props
;
3146 if (ztest_opts
.zo_mmp_test
)
3149 /* dRAID added after feature flags, skip upgrade test. */
3150 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0)
3153 mutex_enter(&ztest_vdev_lock
);
3154 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
3157 * Clean up from previous runs.
3159 (void) spa_destroy(name
);
3161 raidz_children
= ztest_get_raidz_children(ztest_spa
);
3163 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
3164 NULL
, raidz_children
, ztest_opts
.zo_mirrors
, 1);
3167 * If we're configuring a RAIDZ device then make sure that the
3168 * initial version is capable of supporting that feature.
3170 switch (ztest_opts
.zo_raid_parity
) {
3173 initial_version
= SPA_VERSION_INITIAL
;
3176 initial_version
= SPA_VERSION_RAIDZ2
;
3179 initial_version
= SPA_VERSION_RAIDZ3
;
3184 * Create a pool with a spa version that can be upgraded. Pick
3185 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3188 version
= ztest_random_spa_version(initial_version
);
3189 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
3191 props
= fnvlist_alloc();
3192 fnvlist_add_uint64(props
,
3193 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
3194 VERIFY0(spa_create(name
, nvroot
, props
, NULL
, NULL
));
3195 fnvlist_free(nvroot
);
3196 fnvlist_free(props
);
3198 VERIFY0(spa_open(name
, &spa
, FTAG
));
3199 VERIFY3U(spa_version(spa
), ==, version
);
3200 newversion
= ztest_random_spa_version(version
+ 1);
3202 if (ztest_opts
.zo_verbose
>= 4) {
3203 (void) printf("upgrading spa version from "
3204 "%"PRIu64
" to %"PRIu64
"\n",
3205 version
, newversion
);
3208 spa_upgrade(spa
, newversion
);
3209 VERIFY3U(spa_version(spa
), >, version
);
3210 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
3211 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
3212 spa_close(spa
, FTAG
);
3215 mutex_exit(&ztest_vdev_lock
);
3219 ztest_spa_checkpoint(spa_t
*spa
)
3221 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3223 int error
= spa_checkpoint(spa
->spa_name
);
3227 case ZFS_ERR_DEVRM_IN_PROGRESS
:
3228 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3229 case ZFS_ERR_CHECKPOINT_EXISTS
:
3230 case ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS
:
3233 ztest_record_enospc(FTAG
);
3236 fatal(B_FALSE
, "spa_checkpoint(%s) = %d", spa
->spa_name
, error
);
3241 ztest_spa_discard_checkpoint(spa_t
*spa
)
3243 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3245 int error
= spa_checkpoint_discard(spa
->spa_name
);
3249 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3250 case ZFS_ERR_NO_CHECKPOINT
:
3253 fatal(B_FALSE
, "spa_discard_checkpoint(%s) = %d",
3254 spa
->spa_name
, error
);
3260 ztest_spa_checkpoint_create_discard(ztest_ds_t
*zd
, uint64_t id
)
3262 (void) zd
, (void) id
;
3263 spa_t
*spa
= ztest_spa
;
3265 mutex_enter(&ztest_checkpoint_lock
);
3266 if (ztest_random(2) == 0) {
3267 ztest_spa_checkpoint(spa
);
3269 ztest_spa_discard_checkpoint(spa
);
3271 mutex_exit(&ztest_checkpoint_lock
);
3276 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
3281 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
3284 for (c
= 0; c
< vd
->vdev_children
; c
++)
3285 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
3293 spa_num_top_vdevs(spa_t
*spa
)
3295 vdev_t
*rvd
= spa
->spa_root_vdev
;
3296 ASSERT3U(spa_config_held(spa
, SCL_VDEV
, RW_READER
), ==, SCL_VDEV
);
3297 return (rvd
->vdev_children
);
3301 * Verify that vdev_add() works as expected.
3304 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3306 (void) zd
, (void) id
;
3307 ztest_shared_t
*zs
= ztest_shared
;
3308 spa_t
*spa
= ztest_spa
;
3311 uint64_t raidz_children
;
3316 if (ztest_opts
.zo_mmp_test
)
3319 mutex_enter(&ztest_vdev_lock
);
3320 raidz_children
= ztest_get_raidz_children(spa
);
3321 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
3323 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3325 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3328 * If we have slogs then remove them 1/4 of the time.
3330 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
3331 metaslab_group_t
*mg
;
3334 * find the first real slog in log allocation class
3336 mg
= spa_log_class(spa
)->mc_allocator
[0].mca_rotor
;
3337 while (!mg
->mg_vd
->vdev_islog
)
3340 guid
= mg
->mg_vd
->vdev_guid
;
3342 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3345 * We have to grab the zs_name_lock as writer to
3346 * prevent a race between removing a slog (dmu_objset_find)
3347 * and destroying a dataset. Removing the slog will
3348 * grab a reference on the dataset which may cause
3349 * dsl_destroy_head() to fail with EBUSY thus
3350 * leaving the dataset in an inconsistent state.
3352 pthread_rwlock_wrlock(&ztest_name_lock
);
3353 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3354 pthread_rwlock_unlock(&ztest_name_lock
);
3358 case EEXIST
: /* Generic zil_reset() error */
3359 case EBUSY
: /* Replay required */
3360 case EACCES
: /* Crypto key not loaded */
3361 case ZFS_ERR_CHECKPOINT_EXISTS
:
3362 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3365 fatal(B_FALSE
, "spa_vdev_remove() = %d", error
);
3368 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3371 * Make 1/4 of the devices be log devices
3373 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
3374 ztest_opts
.zo_vdev_size
, 0, (ztest_random(4) == 0) ?
3375 "log" : NULL
, raidz_children
, zs
->zs_mirrors
,
3378 error
= spa_vdev_add(spa
, nvroot
);
3379 fnvlist_free(nvroot
);
3385 ztest_record_enospc("spa_vdev_add");
3388 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3392 mutex_exit(&ztest_vdev_lock
);
3396 ztest_vdev_class_add(ztest_ds_t
*zd
, uint64_t id
)
3398 (void) zd
, (void) id
;
3399 ztest_shared_t
*zs
= ztest_shared
;
3400 spa_t
*spa
= ztest_spa
;
3403 uint64_t raidz_children
;
3404 const char *class = (ztest_random(2) == 0) ?
3405 VDEV_ALLOC_BIAS_SPECIAL
: VDEV_ALLOC_BIAS_DEDUP
;
3409 * By default add a special vdev 50% of the time
3411 if ((ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_OFF
) ||
3412 (ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_RND
&&
3413 ztest_random(2) == 0)) {
3417 mutex_enter(&ztest_vdev_lock
);
3419 /* Only test with mirrors */
3420 if (zs
->zs_mirrors
< 2) {
3421 mutex_exit(&ztest_vdev_lock
);
3425 /* requires feature@allocation_classes */
3426 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
)) {
3427 mutex_exit(&ztest_vdev_lock
);
3431 raidz_children
= ztest_get_raidz_children(spa
);
3432 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
3434 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3435 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3436 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3438 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
3439 class, raidz_children
, zs
->zs_mirrors
, 1);
3441 error
= spa_vdev_add(spa
, nvroot
);
3442 fnvlist_free(nvroot
);
3444 if (error
== ENOSPC
)
3445 ztest_record_enospc("spa_vdev_add");
3446 else if (error
!= 0)
3447 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3450 * 50% of the time allow small blocks in the special class
3453 spa_special_class(spa
)->mc_groups
== 1 && ztest_random(2) == 0) {
3454 if (ztest_opts
.zo_verbose
>= 3)
3455 (void) printf("Enabling special VDEV small blocks\n");
3456 error
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
3457 ZFS_PROP_SPECIAL_SMALL_BLOCKS
, 32768, B_FALSE
);
3458 ASSERT(error
== 0 || error
== ENOSPC
);
3461 mutex_exit(&ztest_vdev_lock
);
3463 if (ztest_opts
.zo_verbose
>= 3) {
3464 metaslab_class_t
*mc
;
3466 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
3467 mc
= spa_special_class(spa
);
3469 mc
= spa_dedup_class(spa
);
3470 (void) printf("Added a %s mirrored vdev (of %d)\n",
3471 class, (int)mc
->mc_groups
);
3476 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3479 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3481 (void) zd
, (void) id
;
3482 ztest_shared_t
*zs
= ztest_shared
;
3483 spa_t
*spa
= ztest_spa
;
3484 vdev_t
*rvd
= spa
->spa_root_vdev
;
3485 spa_aux_vdev_t
*sav
;
3489 int error
, ignore_err
= 0;
3491 if (ztest_opts
.zo_mmp_test
)
3494 path
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3496 if (ztest_random(2) == 0) {
3497 sav
= &spa
->spa_spares
;
3498 aux
= ZPOOL_CONFIG_SPARES
;
3500 sav
= &spa
->spa_l2cache
;
3501 aux
= ZPOOL_CONFIG_L2CACHE
;
3504 mutex_enter(&ztest_vdev_lock
);
3506 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3508 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
3510 * Pick a random device to remove.
3512 vdev_t
*svd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3514 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3515 if (strstr(svd
->vdev_path
, VDEV_TYPE_DRAID
) != NULL
)
3516 ignore_err
= ENOTSUP
;
3518 guid
= svd
->vdev_guid
;
3521 * Find an unused device we can add.
3523 zs
->zs_vdev_aux
= 0;
3526 (void) snprintf(path
, MAXPATHLEN
, ztest_aux_template
,
3527 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
3529 for (c
= 0; c
< sav
->sav_count
; c
++)
3530 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
3533 if (c
== sav
->sav_count
&&
3534 vdev_lookup_by_path(rvd
, path
) == NULL
)
3540 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3546 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
3547 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, NULL
, 0, 0, 1);
3548 error
= spa_vdev_add(spa
, nvroot
);
3554 fatal(B_FALSE
, "spa_vdev_add(%p) = %d", nvroot
, error
);
3556 fnvlist_free(nvroot
);
3559 * Remove an existing device. Sometimes, dirty its
3560 * vdev state first to make sure we handle removal
3561 * of devices that have pending state changes.
3563 if (ztest_random(2) == 0)
3564 (void) vdev_online(spa
, guid
, 0, NULL
);
3566 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3571 case ZFS_ERR_CHECKPOINT_EXISTS
:
3572 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3575 if (error
!= ignore_err
)
3577 "spa_vdev_remove(%"PRIu64
") = %d",
3582 mutex_exit(&ztest_vdev_lock
);
3584 umem_free(path
, MAXPATHLEN
);
3588 * split a pool if it has mirror tlvdevs
3591 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
3593 (void) zd
, (void) id
;
3594 ztest_shared_t
*zs
= ztest_shared
;
3595 spa_t
*spa
= ztest_spa
;
3596 vdev_t
*rvd
= spa
->spa_root_vdev
;
3597 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
3598 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
3601 if (ztest_opts
.zo_mmp_test
)
3604 mutex_enter(&ztest_vdev_lock
);
3606 /* ensure we have a usable config; mirrors of raidz aren't supported */
3607 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raid_children
> 1) {
3608 mutex_exit(&ztest_vdev_lock
);
3612 /* clean up the old pool, if any */
3613 (void) spa_destroy("splitp");
3615 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3617 /* generate a config from the existing config */
3618 mutex_enter(&spa
->spa_props_lock
);
3619 tree
= fnvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
);
3620 mutex_exit(&spa
->spa_props_lock
);
3622 VERIFY0(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
,
3623 &child
, &children
));
3625 schild
= umem_alloc(rvd
->vdev_children
* sizeof (nvlist_t
*),
3627 for (c
= 0; c
< children
; c
++) {
3628 vdev_t
*tvd
= rvd
->vdev_child
[c
];
3632 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
3633 schild
[schildren
] = fnvlist_alloc();
3634 fnvlist_add_string(schild
[schildren
],
3635 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
);
3636 fnvlist_add_uint64(schild
[schildren
],
3637 ZPOOL_CONFIG_IS_HOLE
, 1);
3639 lastlogid
= schildren
;
3644 VERIFY0(nvlist_lookup_nvlist_array(child
[c
],
3645 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
));
3646 schild
[schildren
++] = fnvlist_dup(mchild
[0]);
3649 /* OK, create a config that can be used to split */
3650 split
= fnvlist_alloc();
3651 fnvlist_add_string(split
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
3652 fnvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
,
3653 (const nvlist_t
**)schild
, lastlogid
!= 0 ? lastlogid
: schildren
);
3655 config
= fnvlist_alloc();
3656 fnvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
);
3658 for (c
= 0; c
< schildren
; c
++)
3659 fnvlist_free(schild
[c
]);
3660 umem_free(schild
, rvd
->vdev_children
* sizeof (nvlist_t
*));
3661 fnvlist_free(split
);
3663 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3665 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
3666 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
3667 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3669 fnvlist_free(config
);
3672 (void) printf("successful split - results:\n");
3673 mutex_enter(&spa_namespace_lock
);
3674 show_pool_stats(spa
);
3675 show_pool_stats(spa_lookup("splitp"));
3676 mutex_exit(&spa_namespace_lock
);
3680 mutex_exit(&ztest_vdev_lock
);
3684 * Verify that we can attach and detach devices.
3687 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
3689 (void) zd
, (void) id
;
3690 ztest_shared_t
*zs
= ztest_shared
;
3691 spa_t
*spa
= ztest_spa
;
3692 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
3693 vdev_t
*rvd
= spa
->spa_root_vdev
;
3694 vdev_t
*oldvd
, *newvd
, *pvd
;
3698 uint64_t ashift
= ztest_get_ashift();
3699 uint64_t oldguid
, pguid
;
3700 uint64_t oldsize
, newsize
;
3701 uint64_t raidz_children
;
3702 char *oldpath
, *newpath
;
3704 int oldvd_has_siblings
= B_FALSE
;
3705 int newvd_is_spare
= B_FALSE
;
3706 int newvd_is_dspare
= B_FALSE
;
3708 int oldvd_is_special
;
3709 int error
, expected_error
;
3711 if (ztest_opts
.zo_mmp_test
)
3714 oldpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3715 newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3717 mutex_enter(&ztest_vdev_lock
);
3718 raidz_children
= ztest_get_raidz_children(spa
);
3719 leaves
= MAX(zs
->zs_mirrors
, 1) * raidz_children
;
3721 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
3724 * If a vdev is in the process of being removed, its removal may
3725 * finish while we are in progress, leading to an unexpected error
3726 * value. Don't bother trying to attach while we are in the middle
3729 if (ztest_device_removal_active
) {
3730 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3735 * RAIDZ leaf VDEV mirrors are not currently supported while a
3736 * RAIDZ expansion is in progress.
3738 if (ztest_opts
.zo_raid_do_expand
) {
3739 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3744 * Decide whether to do an attach or a replace.
3746 replacing
= ztest_random(2);
3749 * Pick a random top-level vdev.
3751 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3754 * Pick a random leaf within it.
3756 leaf
= ztest_random(leaves
);
3761 oldvd
= rvd
->vdev_child
[top
];
3763 /* pick a child from the mirror */
3764 if (zs
->zs_mirrors
>= 1) {
3765 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_mirror_ops
);
3766 ASSERT3U(oldvd
->vdev_children
, >=, zs
->zs_mirrors
);
3767 oldvd
= oldvd
->vdev_child
[leaf
/ raidz_children
];
3770 /* pick a child out of the raidz group */
3771 if (ztest_opts
.zo_raid_children
> 1) {
3772 if (strcmp(oldvd
->vdev_ops
->vdev_op_type
, "raidz") == 0)
3773 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_raidz_ops
);
3775 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_draid_ops
);
3776 oldvd
= oldvd
->vdev_child
[leaf
% raidz_children
];
3780 * If we're already doing an attach or replace, oldvd may be a
3781 * mirror vdev -- in which case, pick a random child.
3783 while (oldvd
->vdev_children
!= 0) {
3784 oldvd_has_siblings
= B_TRUE
;
3785 ASSERT3U(oldvd
->vdev_children
, >=, 2);
3786 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
3789 oldguid
= oldvd
->vdev_guid
;
3790 oldsize
= vdev_get_min_asize(oldvd
);
3791 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
3793 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_SPECIAL
||
3794 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_DEDUP
;
3795 (void) strlcpy(oldpath
, oldvd
->vdev_path
, MAXPATHLEN
);
3796 pvd
= oldvd
->vdev_parent
;
3797 pguid
= pvd
->vdev_guid
;
3800 * If oldvd has siblings, then half of the time, detach it. Prior
3801 * to the detach the pool is scrubbed in order to prevent creating
3802 * unrepairable blocks as a result of the data corruption injection.
3804 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
3805 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3807 error
= ztest_scrub_impl(spa
);
3811 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
3812 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
3813 error
!= ENOTSUP
&& error
!= ZFS_ERR_CHECKPOINT_EXISTS
&&
3814 error
!= ZFS_ERR_DISCARDING_CHECKPOINT
)
3815 fatal(B_FALSE
, "detach (%s) returned %d",
3821 * For the new vdev, choose with equal probability between the two
3822 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3824 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
3825 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3826 newvd_is_spare
= B_TRUE
;
3828 if (newvd
->vdev_ops
== &vdev_draid_spare_ops
)
3829 newvd_is_dspare
= B_TRUE
;
3831 (void) strlcpy(newpath
, newvd
->vdev_path
, MAXPATHLEN
);
3833 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
3834 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
3835 top
* leaves
+ leaf
);
3836 if (ztest_random(2) == 0)
3837 newpath
[strlen(newpath
) - 1] = 'b';
3838 newvd
= vdev_lookup_by_path(rvd
, newpath
);
3843 * Reopen to ensure the vdev's asize field isn't stale.
3846 newsize
= vdev_get_min_asize(newvd
);
3849 * Make newsize a little bigger or smaller than oldsize.
3850 * If it's smaller, the attach should fail.
3851 * If it's larger, and we're doing a replace,
3852 * we should get dynamic LUN growth when we're done.
3854 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
3858 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3859 * unless it's a replace; in that case any non-replacing parent is OK.
3861 * If newvd is already part of the pool, it should fail with EBUSY.
3863 * If newvd is too small, it should fail with EOVERFLOW.
3865 * If newvd is a distributed spare and it's being attached to a
3866 * dRAID which is not its parent it should fail with EINVAL.
3868 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
3869 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
3870 pvd
->vdev_ops
== &vdev_replacing_ops
||
3871 pvd
->vdev_ops
== &vdev_spare_ops
))
3872 expected_error
= ENOTSUP
;
3873 else if (newvd_is_spare
&&
3874 (!replacing
|| oldvd_is_log
|| oldvd_is_special
))
3875 expected_error
= ENOTSUP
;
3876 else if (newvd
== oldvd
)
3877 expected_error
= replacing
? 0 : EBUSY
;
3878 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
3879 expected_error
= EBUSY
;
3880 else if (!newvd_is_dspare
&& newsize
< oldsize
)
3881 expected_error
= EOVERFLOW
;
3882 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
3883 expected_error
= EDOM
;
3884 else if (newvd_is_dspare
&& pvd
!= vdev_draid_spare_get_parent(newvd
))
3885 expected_error
= EINVAL
;
3889 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3892 * Build the nvlist describing newpath.
3894 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
3895 ashift
, NULL
, 0, 0, 1);
3898 * When supported select either a healing or sequential resilver.
3900 boolean_t rebuilding
= B_FALSE
;
3901 if (pvd
->vdev_ops
== &vdev_mirror_ops
||
3902 pvd
->vdev_ops
== &vdev_root_ops
) {
3903 rebuilding
= !!ztest_random(2);
3906 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
, rebuilding
);
3911 * If our parent was the replacing vdev, but the replace completed,
3912 * then instead of failing with ENOTSUP we may either succeed,
3913 * fail with ENODEV, or fail with EOVERFLOW.
3915 if (expected_error
== ENOTSUP
&&
3916 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
3917 expected_error
= error
;
3920 * If someone grew the LUN, the replacement may be too small.
3922 if (error
== EOVERFLOW
|| error
== EBUSY
)
3923 expected_error
= error
;
3925 if (error
== ZFS_ERR_CHECKPOINT_EXISTS
||
3926 error
== ZFS_ERR_DISCARDING_CHECKPOINT
||
3927 error
== ZFS_ERR_RESILVER_IN_PROGRESS
||
3928 error
== ZFS_ERR_REBUILD_IN_PROGRESS
)
3929 expected_error
= error
;
3931 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
3932 fatal(B_FALSE
, "attach (%s %"PRIu64
", %s %"PRIu64
", %d) "
3933 "returned %d, expected %d",
3934 oldpath
, oldsize
, newpath
,
3935 newsize
, replacing
, error
, expected_error
);
3938 mutex_exit(&ztest_vdev_lock
);
3940 umem_free(oldpath
, MAXPATHLEN
);
3941 umem_free(newpath
, MAXPATHLEN
);
3945 raidz_scratch_verify(void)
3948 uint64_t write_size
, logical_size
, offset
;
3949 raidz_reflow_scratch_state_t state
;
3950 vdev_raidz_expand_t
*vre
;
3953 ASSERT(raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
);
3955 if (ztest_scratch_state
->zs_raidz_scratch_verify_pause
== 0)
3958 kernel_init(SPA_MODE_READ
);
3960 mutex_enter(&spa_namespace_lock
);
3961 spa
= spa_lookup(ztest_opts
.zo_pool
);
3963 spa
->spa_import_flags
|= ZFS_IMPORT_SKIP_MMP
;
3964 mutex_exit(&spa_namespace_lock
);
3966 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
3968 ASSERT3U(RRSS_GET_OFFSET(&spa
->spa_uberblock
), !=, UINT64_MAX
);
3970 mutex_enter(&ztest_vdev_lock
);
3972 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_READER
);
3974 vre
= spa
->spa_raidz_expand
;
3978 raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
3979 offset
= RRSS_GET_OFFSET(&spa
->spa_uberblock
);
3980 state
= RRSS_GET_STATE(&spa
->spa_uberblock
);
3981 write_size
= P2ALIGN(VDEV_BOOT_SIZE
, 1 << raidvd
->vdev_ashift
);
3982 logical_size
= write_size
* raidvd
->vdev_children
;
3986 * Initial state of reflow process. RAIDZ expansion was
3987 * requested by user, but scratch object was not created.
3989 case RRSS_SCRATCH_NOT_IN_USE
:
3990 ASSERT3U(offset
, ==, 0);
3994 * Scratch object was synced and stored in boot area.
3996 case RRSS_SCRATCH_VALID
:
3999 * Scratch object was synced back to raidz start offset,
4000 * raidz is ready for sector by sector reflow process.
4002 case RRSS_SCRATCH_INVALID_SYNCED
:
4005 * Scratch object was synced back to raidz start offset
4006 * on zpool importing, raidz is ready for sector by sector
4009 case RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT
:
4010 ASSERT3U(offset
, ==, logical_size
);
4014 * Sector by sector reflow process started.
4016 case RRSS_SCRATCH_INVALID_SYNCED_REFLOW
:
4017 ASSERT3U(offset
, >=, logical_size
);
4022 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4024 mutex_exit(&ztest_vdev_lock
);
4026 ztest_scratch_state
->zs_raidz_scratch_verify_pause
= 0;
4028 spa_close(spa
, FTAG
);
4033 ztest_scratch_thread(void *arg
)
4037 /* wait up to 10 seconds */
4038 for (int t
= 100; t
> 0; t
-= 1) {
4039 if (raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
)
4042 (void) poll(NULL
, 0, 100);
4045 /* killed when the scratch area progress reached a certain point */
4046 ztest_kill(ztest_shared
);
4050 * Verify that we can attach raidz device.
4053 ztest_vdev_raidz_attach(ztest_ds_t
*zd
, uint64_t id
)
4055 (void) zd
, (void) id
;
4056 ztest_shared_t
*zs
= ztest_shared
;
4057 spa_t
*spa
= ztest_spa
;
4058 uint64_t leaves
, raidz_children
, newsize
, ashift
= ztest_get_ashift();
4059 kthread_t
*scratch_thread
= NULL
;
4060 vdev_t
*newvd
, *pvd
;
4062 char *newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
4063 int error
, expected_error
= 0;
4065 mutex_enter(&ztest_vdev_lock
);
4067 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_READER
);
4069 /* Only allow attach when raid-kind = 'eraidz' */
4070 if (!ztest_opts
.zo_raid_do_expand
) {
4071 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4075 if (ztest_opts
.zo_mmp_test
) {
4076 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4080 if (ztest_device_removal_active
) {
4081 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4085 pvd
= vdev_lookup_top(spa
, 0);
4087 ASSERT(pvd
->vdev_ops
== &vdev_raidz_ops
);
4090 * Get size of a child of the raidz group,
4091 * make sure device is a bit bigger
4093 newvd
= pvd
->vdev_child
[ztest_random(pvd
->vdev_children
)];
4094 newsize
= 10 * vdev_get_min_asize(newvd
) / (9 + ztest_random(2));
4097 * Get next attached leaf id
4099 raidz_children
= ztest_get_raidz_children(spa
);
4100 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) * raidz_children
;
4101 zs
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
4103 if (spa
->spa_raidz_expand
)
4104 expected_error
= ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS
;
4106 spa_config_exit(spa
, SCL_ALL
, FTAG
);
4109 * Path to vdev to be attached
4111 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
4112 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, zs
->zs_vdev_next_leaf
);
4115 * Build the nvlist describing newpath.
4117 root
= make_vdev_root(newpath
, NULL
, NULL
, newsize
, ashift
, NULL
,
4121 * 50% of the time, set raidz_expand_pause_point to cause
4122 * raidz_reflow_scratch_sync() to pause at a certain point and
4123 * then kill the test after 10 seconds so raidz_scratch_verify()
4124 * can confirm consistency when the pool is imported.
4126 if (ztest_random(2) == 0 && expected_error
== 0) {
4127 raidz_expand_pause_point
=
4128 ztest_random(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2
) + 1;
4129 scratch_thread
= thread_create(NULL
, 0, ztest_scratch_thread
,
4130 ztest_shared
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
4133 error
= spa_vdev_attach(spa
, pvd
->vdev_guid
, root
, B_FALSE
, B_FALSE
);
4137 if (error
== EOVERFLOW
|| error
== ENXIO
||
4138 error
== ZFS_ERR_CHECKPOINT_EXISTS
||
4139 error
== ZFS_ERR_DISCARDING_CHECKPOINT
)
4140 expected_error
= error
;
4142 if (error
!= 0 && error
!= expected_error
) {
4143 fatal(0, "raidz attach (%s %"PRIu64
") returned %d, expected %d",
4144 newpath
, newsize
, error
, expected_error
);
4147 if (raidz_expand_pause_point
) {
4150 * Do not verify scratch object in case of error
4151 * returned by vdev attaching.
4153 raidz_expand_pause_point
= RAIDZ_EXPAND_PAUSE_NONE
;
4156 VERIFY0(thread_join(scratch_thread
));
4159 mutex_exit(&ztest_vdev_lock
);
4161 umem_free(newpath
, MAXPATHLEN
);
4165 ztest_device_removal(ztest_ds_t
*zd
, uint64_t id
)
4167 (void) zd
, (void) id
;
4168 spa_t
*spa
= ztest_spa
;
4173 mutex_enter(&ztest_vdev_lock
);
4175 if (ztest_device_removal_active
) {
4176 mutex_exit(&ztest_vdev_lock
);
4181 * Remove a random top-level vdev and wait for removal to finish.
4183 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
4184 vd
= vdev_lookup_top(spa
, ztest_random_vdev_top(spa
, B_FALSE
));
4185 guid
= vd
->vdev_guid
;
4186 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
4188 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
4190 ztest_device_removal_active
= B_TRUE
;
4191 mutex_exit(&ztest_vdev_lock
);
4194 * spa->spa_vdev_removal is created in a sync task that
4195 * is initiated via dsl_sync_task_nowait(). Since the
4196 * task may not run before spa_vdev_remove() returns, we
4197 * must wait at least 1 txg to ensure that the removal
4198 * struct has been created.
4200 txg_wait_synced(spa_get_dsl(spa
), 0);
4202 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
4203 txg_wait_synced(spa_get_dsl(spa
), 0);
4205 mutex_exit(&ztest_vdev_lock
);
4210 * The pool needs to be scrubbed after completing device removal.
4211 * Failure to do so may result in checksum errors due to the
4212 * strategy employed by ztest_fault_inject() when selecting which
4213 * offset are redundant and can be damaged.
4215 error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
4217 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
4218 txg_wait_synced(spa_get_dsl(spa
), 0);
4221 mutex_enter(&ztest_vdev_lock
);
4222 ztest_device_removal_active
= B_FALSE
;
4223 mutex_exit(&ztest_vdev_lock
);
4227 * Callback function which expands the physical size of the vdev.
4230 grow_vdev(vdev_t
*vd
, void *arg
)
4232 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
4233 size_t *newsize
= arg
;
4237 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
4238 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4240 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
4243 fsize
= lseek(fd
, 0, SEEK_END
);
4244 VERIFY0(ftruncate(fd
, *newsize
));
4246 if (ztest_opts
.zo_verbose
>= 6) {
4247 (void) printf("%s grew from %lu to %lu bytes\n",
4248 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
4255 * Callback function which expands a given vdev by calling vdev_online().
4258 online_vdev(vdev_t
*vd
, void *arg
)
4261 spa_t
*spa
= vd
->vdev_spa
;
4262 vdev_t
*tvd
= vd
->vdev_top
;
4263 uint64_t guid
= vd
->vdev_guid
;
4264 uint64_t generation
= spa
->spa_config_generation
+ 1;
4265 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
4268 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
4269 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4271 /* Calling vdev_online will initialize the new metaslabs */
4272 spa_config_exit(spa
, SCL_STATE
, spa
);
4273 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
4274 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4277 * If vdev_online returned an error or the underlying vdev_open
4278 * failed then we abort the expand. The only way to know that
4279 * vdev_open fails is by checking the returned newstate.
4281 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
4282 if (ztest_opts
.zo_verbose
>= 5) {
4283 (void) printf("Unable to expand vdev, state %u, "
4284 "error %d\n", newstate
, error
);
4288 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
4291 * Since we dropped the lock we need to ensure that we're
4292 * still talking to the original vdev. It's possible this
4293 * vdev may have been detached/replaced while we were
4294 * trying to online it.
4296 if (generation
!= spa
->spa_config_generation
) {
4297 if (ztest_opts
.zo_verbose
>= 5) {
4298 (void) printf("vdev configuration has changed, "
4299 "guid %"PRIu64
", state %"PRIu64
", "
4300 "expected gen %"PRIu64
", got gen %"PRIu64
"\n",
4304 spa
->spa_config_generation
);
4312 * Traverse the vdev tree calling the supplied function.
4313 * We continue to walk the tree until we either have walked all
4314 * children or we receive a non-NULL return from the callback.
4315 * If a NULL callback is passed, then we just return back the first
4316 * leaf vdev we encounter.
4319 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
4323 if (vd
->vdev_ops
->vdev_op_leaf
) {
4327 return (func(vd
, arg
));
4330 for (c
= 0; c
< vd
->vdev_children
; c
++) {
4331 vdev_t
*cvd
= vd
->vdev_child
[c
];
4332 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
4339 * Verify that dynamic LUN growth works as expected.
4342 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
4344 (void) zd
, (void) id
;
4345 spa_t
*spa
= ztest_spa
;
4347 metaslab_class_t
*mc
;
4348 metaslab_group_t
*mg
;
4349 size_t psize
, newsize
;
4351 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
4353 mutex_enter(&ztest_checkpoint_lock
);
4354 mutex_enter(&ztest_vdev_lock
);
4355 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4358 * If there is a vdev removal in progress, it could complete while
4359 * we are running, in which case we would not be able to verify
4360 * that the metaslab_class space increased (because it decreases
4361 * when the device removal completes).
4363 if (ztest_device_removal_active
) {
4364 spa_config_exit(spa
, SCL_STATE
, spa
);
4365 mutex_exit(&ztest_vdev_lock
);
4366 mutex_exit(&ztest_checkpoint_lock
);
4371 * If we are under raidz expansion, the test can failed because the
4372 * metaslabs count will not increase immediately after the vdev is
4373 * expanded. It will happen only after raidz expansion completion.
4375 if (spa
->spa_raidz_expand
) {
4376 spa_config_exit(spa
, SCL_STATE
, spa
);
4377 mutex_exit(&ztest_vdev_lock
);
4378 mutex_exit(&ztest_checkpoint_lock
);
4382 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4384 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4387 old_ms_count
= tvd
->vdev_ms_count
;
4388 old_class_space
= metaslab_class_get_space(mc
);
4391 * Determine the size of the first leaf vdev associated with
4392 * our top-level device.
4394 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
4395 ASSERT3P(vd
, !=, NULL
);
4396 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4398 psize
= vd
->vdev_psize
;
4401 * We only try to expand the vdev if it's healthy, less than 4x its
4402 * original size, and it has a valid psize.
4404 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
4405 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
4406 spa_config_exit(spa
, SCL_STATE
, spa
);
4407 mutex_exit(&ztest_vdev_lock
);
4408 mutex_exit(&ztest_checkpoint_lock
);
4411 ASSERT3U(psize
, >, 0);
4412 newsize
= psize
+ MAX(psize
/ 8, SPA_MAXBLOCKSIZE
);
4413 ASSERT3U(newsize
, >, psize
);
4415 if (ztest_opts
.zo_verbose
>= 6) {
4416 (void) printf("Expanding LUN %s from %lu to %lu\n",
4417 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
4421 * Growing the vdev is a two step process:
4422 * 1). expand the physical size (i.e. relabel)
4423 * 2). online the vdev to create the new metaslabs
4425 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
4426 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
4427 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
4428 if (ztest_opts
.zo_verbose
>= 5) {
4429 (void) printf("Could not expand LUN because "
4430 "the vdev configuration changed.\n");
4432 spa_config_exit(spa
, SCL_STATE
, spa
);
4433 mutex_exit(&ztest_vdev_lock
);
4434 mutex_exit(&ztest_checkpoint_lock
);
4438 spa_config_exit(spa
, SCL_STATE
, spa
);
4441 * Expanding the LUN will update the config asynchronously,
4442 * thus we must wait for the async thread to complete any
4443 * pending tasks before proceeding.
4447 mutex_enter(&spa
->spa_async_lock
);
4448 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
4449 mutex_exit(&spa
->spa_async_lock
);
4452 txg_wait_synced(spa_get_dsl(spa
), 0);
4453 (void) poll(NULL
, 0, 100);
4456 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4458 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4459 new_ms_count
= tvd
->vdev_ms_count
;
4460 new_class_space
= metaslab_class_get_space(mc
);
4462 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
4463 if (ztest_opts
.zo_verbose
>= 5) {
4464 (void) printf("Could not verify LUN expansion due to "
4465 "intervening vdev offline or remove.\n");
4467 spa_config_exit(spa
, SCL_STATE
, spa
);
4468 mutex_exit(&ztest_vdev_lock
);
4469 mutex_exit(&ztest_checkpoint_lock
);
4474 * Make sure we were able to grow the vdev.
4476 if (new_ms_count
<= old_ms_count
) {
4478 "LUN expansion failed: ms_count %"PRIu64
" < %"PRIu64
"\n",
4479 old_ms_count
, new_ms_count
);
4483 * Make sure we were able to grow the pool.
4485 if (new_class_space
<= old_class_space
) {
4487 "LUN expansion failed: class_space %"PRIu64
" < %"PRIu64
"\n",
4488 old_class_space
, new_class_space
);
4491 if (ztest_opts
.zo_verbose
>= 5) {
4492 char oldnumbuf
[NN_NUMBUF_SZ
], newnumbuf
[NN_NUMBUF_SZ
];
4494 nicenum(old_class_space
, oldnumbuf
, sizeof (oldnumbuf
));
4495 nicenum(new_class_space
, newnumbuf
, sizeof (newnumbuf
));
4496 (void) printf("%s grew from %s to %s\n",
4497 spa
->spa_name
, oldnumbuf
, newnumbuf
);
4500 spa_config_exit(spa
, SCL_STATE
, spa
);
4501 mutex_exit(&ztest_vdev_lock
);
4502 mutex_exit(&ztest_checkpoint_lock
);
4506 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4509 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
4511 (void) arg
, (void) cr
;
4514 * Create the objects common to all ztest datasets.
4516 VERIFY0(zap_create_claim(os
, ZTEST_DIROBJ
,
4517 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
));
4521 ztest_dataset_create(char *dsname
)
4525 dsl_crypto_params_t
*dcp
= NULL
;
4528 * 50% of the time, we create encrypted datasets
4529 * using a random cipher suite and a hard-coded
4532 rand
= ztest_random(2);
4534 nvlist_t
*crypto_args
= fnvlist_alloc();
4535 nvlist_t
*props
= fnvlist_alloc();
4537 /* slight bias towards the default cipher suite */
4538 rand
= ztest_random(ZIO_CRYPT_FUNCTIONS
);
4539 if (rand
< ZIO_CRYPT_AES_128_CCM
)
4540 rand
= ZIO_CRYPT_ON
;
4542 fnvlist_add_uint64(props
,
4543 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), rand
);
4544 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
4545 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
4548 * These parameters aren't really used by the kernel. They
4549 * are simply stored so that userspace knows how to load
4552 fnvlist_add_uint64(props
,
4553 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), ZFS_KEYFORMAT_RAW
);
4554 fnvlist_add_string(props
,
4555 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), "prompt");
4556 fnvlist_add_uint64(props
,
4557 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 0ULL);
4558 fnvlist_add_uint64(props
,
4559 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 0ULL);
4561 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, props
,
4562 crypto_args
, &dcp
));
4565 * Cycle through all available encryption implementations
4566 * to verify interoperability.
4568 VERIFY0(gcm_impl_set("cycle"));
4569 VERIFY0(aes_impl_set("cycle"));
4571 fnvlist_free(crypto_args
);
4572 fnvlist_free(props
);
4575 err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0, dcp
,
4576 ztest_objset_create_cb
, NULL
);
4577 dsl_crypto_params_free(dcp
, !!err
);
4579 rand
= ztest_random(100);
4580 if (err
|| rand
< 80)
4583 if (ztest_opts
.zo_verbose
>= 5)
4584 (void) printf("Setting dataset %s to sync always\n", dsname
);
4585 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
4586 ZFS_SYNC_ALWAYS
, B_FALSE
));
4590 ztest_objset_destroy_cb(const char *name
, void *arg
)
4594 dmu_object_info_t doi
;
4598 * Verify that the dataset contains a directory object.
4600 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4601 B_TRUE
, FTAG
, &os
));
4602 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
4603 if (error
!= ENOENT
) {
4604 /* We could have crashed in the middle of destroying it */
4606 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
4607 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
4609 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4612 * Destroy the dataset.
4614 if (strchr(name
, '@') != NULL
) {
4615 error
= dsl_destroy_snapshot(name
, B_TRUE
);
4616 if (error
!= ECHRNG
) {
4618 * The program was executed, but encountered a runtime
4619 * error, such as insufficient slop, or a hold on the
4625 error
= dsl_destroy_head(name
);
4626 if (error
== ENOSPC
) {
4627 /* There could be checkpoint or insufficient slop */
4628 ztest_record_enospc(FTAG
);
4629 } else if (error
!= EBUSY
) {
4630 /* There could be a hold on this dataset */
4638 ztest_snapshot_create(char *osname
, uint64_t id
)
4640 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4643 (void) snprintf(snapname
, sizeof (snapname
), "%"PRIu64
"", id
);
4645 error
= dmu_objset_snapshot_one(osname
, snapname
);
4646 if (error
== ENOSPC
) {
4647 ztest_record_enospc(FTAG
);
4650 if (error
!= 0 && error
!= EEXIST
&& error
!= ECHRNG
) {
4651 fatal(B_FALSE
, "ztest_snapshot_create(%s@%s) = %d", osname
,
4658 ztest_snapshot_destroy(char *osname
, uint64_t id
)
4660 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4663 (void) snprintf(snapname
, sizeof (snapname
), "%s@%"PRIu64
"",
4666 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
4667 if (error
!= 0 && error
!= ENOENT
&& error
!= ECHRNG
)
4668 fatal(B_FALSE
, "ztest_snapshot_destroy(%s) = %d",
4674 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4681 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4685 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
4687 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4689 (void) snprintf(name
, sizeof (name
), "%s/temp_%"PRIu64
"",
4690 ztest_opts
.zo_pool
, id
);
4693 * If this dataset exists from a previous run, process its replay log
4694 * half of the time. If we don't replay it, then dsl_destroy_head()
4695 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4697 if (ztest_random(2) == 0 &&
4698 ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
4699 B_TRUE
, FTAG
, &os
) == 0) {
4700 ztest_zd_init(zdtmp
, NULL
, os
);
4701 zil_replay(os
, zdtmp
, ztest_replay_vector
);
4702 ztest_zd_fini(zdtmp
);
4703 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4707 * There may be an old instance of the dataset we're about to
4708 * create lying around from a previous run. If so, destroy it
4709 * and all of its snapshots.
4711 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
4712 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
4715 * Verify that the destroyed dataset is no longer in the namespace.
4716 * It may still be present if the destroy above fails with ENOSPC.
4718 error
= ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
, B_TRUE
,
4721 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4722 ztest_record_enospc(FTAG
);
4725 VERIFY3U(ENOENT
, ==, error
);
4728 * Verify that we can create a new dataset.
4730 error
= ztest_dataset_create(name
);
4732 if (error
== ENOSPC
) {
4733 ztest_record_enospc(FTAG
);
4736 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", name
, error
);
4739 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, B_TRUE
,
4742 ztest_zd_init(zdtmp
, NULL
, os
);
4745 * Open the intent log for it.
4747 zilog
= zil_open(os
, ztest_get_data
, NULL
);
4750 * Put some objects in there, do a little I/O to them,
4751 * and randomly take a couple of snapshots along the way.
4753 iters
= ztest_random(5);
4754 for (i
= 0; i
< iters
; i
++) {
4755 ztest_dmu_object_alloc_free(zdtmp
, id
);
4756 if (ztest_random(iters
) == 0)
4757 (void) ztest_snapshot_create(name
, i
);
4761 * Verify that we cannot create an existing dataset.
4763 VERIFY3U(EEXIST
, ==,
4764 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
, NULL
));
4767 * Verify that we can hold an objset that is also owned.
4769 VERIFY0(dmu_objset_hold(name
, FTAG
, &os2
));
4770 dmu_objset_rele(os2
, FTAG
);
4773 * Verify that we cannot own an objset that is already owned.
4775 VERIFY3U(EBUSY
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
,
4776 B_FALSE
, B_TRUE
, FTAG
, &os2
));
4779 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4780 ztest_zd_fini(zdtmp
);
4782 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4784 umem_free(zdtmp
, sizeof (ztest_ds_t
));
4788 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4791 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4793 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4794 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
4795 (void) ztest_snapshot_create(zd
->zd_name
, id
);
4796 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4800 * Cleanup non-standard snapshots and clones.
4803 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
4812 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4813 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4814 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4815 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4816 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4818 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4820 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4822 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4824 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4826 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4829 error
= dsl_destroy_head(clone2name
);
4830 if (error
&& error
!= ENOENT
)
4831 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone2name
, error
);
4832 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
4833 if (error
&& error
!= ENOENT
)
4834 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4836 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
4837 if (error
&& error
!= ENOENT
)
4838 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4840 error
= dsl_destroy_head(clone1name
);
4841 if (error
&& error
!= ENOENT
)
4842 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone1name
, error
);
4843 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
4844 if (error
&& error
!= ENOENT
)
4845 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4848 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4849 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4850 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4851 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4852 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4856 * Verify dsl_dataset_promote handles EBUSY
4859 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
4867 char *osname
= zd
->zd_name
;
4870 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4871 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4872 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4873 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4874 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4876 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4878 ztest_dsl_dataset_cleanup(osname
, id
);
4880 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4882 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4884 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4886 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4888 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4891 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
4892 if (error
&& error
!= EEXIST
) {
4893 if (error
== ENOSPC
) {
4894 ztest_record_enospc(FTAG
);
4897 fatal(B_FALSE
, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
4900 error
= dmu_objset_clone(clone1name
, snap1name
);
4902 if (error
== ENOSPC
) {
4903 ztest_record_enospc(FTAG
);
4906 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone1name
, error
);
4909 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
4910 if (error
&& error
!= EEXIST
) {
4911 if (error
== ENOSPC
) {
4912 ztest_record_enospc(FTAG
);
4915 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
4918 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
4919 if (error
&& error
!= EEXIST
) {
4920 if (error
== ENOSPC
) {
4921 ztest_record_enospc(FTAG
);
4924 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
4927 error
= dmu_objset_clone(clone2name
, snap3name
);
4929 if (error
== ENOSPC
) {
4930 ztest_record_enospc(FTAG
);
4933 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone2name
, error
);
4936 error
= ztest_dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, B_TRUE
,
4939 fatal(B_FALSE
, "dmu_objset_own(%s) = %d", snap2name
, error
);
4940 error
= dsl_dataset_promote(clone2name
, NULL
);
4941 if (error
== ENOSPC
) {
4942 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4943 ztest_record_enospc(FTAG
);
4947 fatal(B_FALSE
, "dsl_dataset_promote(%s), %d, not EBUSY",
4949 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4952 ztest_dsl_dataset_cleanup(osname
, id
);
4954 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4956 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4957 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4958 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4959 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4960 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4963 #undef OD_ARRAY_SIZE
4964 #define OD_ARRAY_SIZE 4
4967 * Verify that dmu_object_{alloc,free} work as expected.
4970 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
4977 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4978 od
= umem_alloc(size
, UMEM_NOFAIL
);
4979 batchsize
= OD_ARRAY_SIZE
;
4981 for (b
= 0; b
< batchsize
; b
++)
4982 ztest_od_init(od
+ b
, id
, FTAG
, b
, DMU_OT_UINT64_OTHER
,
4986 * Destroy the previous batch of objects, create a new batch,
4987 * and do some I/O on the new objects.
4989 if (ztest_object_init(zd
, od
, size
, B_TRUE
) != 0) {
4991 umem_free(od
, size
);
4995 while (ztest_random(4 * batchsize
) != 0)
4996 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
4997 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4999 umem_free(od
, size
);
5003 * Rewind the global allocator to verify object allocation backfilling.
5006 ztest_dmu_object_next_chunk(ztest_ds_t
*zd
, uint64_t id
)
5009 objset_t
*os
= zd
->zd_os
;
5010 uint_t dnodes_per_chunk
= 1 << dmu_object_alloc_chunk_shift
;
5014 * Rewind the global allocator randomly back to a lower object number
5015 * to force backfilling and reclamation of recently freed dnodes.
5017 mutex_enter(&os
->os_obj_lock
);
5018 object
= ztest_random(os
->os_obj_next_chunk
);
5019 os
->os_obj_next_chunk
= P2ALIGN(object
, dnodes_per_chunk
);
5020 mutex_exit(&os
->os_obj_lock
);
5023 #undef OD_ARRAY_SIZE
5024 #define OD_ARRAY_SIZE 2
5027 * Verify that dmu_{read,write} work as expected.
5030 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
5035 objset_t
*os
= zd
->zd_os
;
5036 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
5037 od
= umem_alloc(size
, UMEM_NOFAIL
);
5040 uint64_t i
, n
, s
, txg
;
5041 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
5042 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
5043 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
5044 uint64_t regions
= 997;
5045 uint64_t stride
= 123456789ULL;
5046 uint64_t width
= 40;
5047 int free_percent
= 5;
5050 * This test uses two objects, packobj and bigobj, that are always
5051 * updated together (i.e. in the same tx) so that their contents are
5052 * in sync and can be compared. Their contents relate to each other
5053 * in a simple way: packobj is a dense array of 'bufwad' structures,
5054 * while bigobj is a sparse array of the same bufwads. Specifically,
5055 * for any index n, there are three bufwads that should be identical:
5057 * packobj, at offset n * sizeof (bufwad_t)
5058 * bigobj, at the head of the nth chunk
5059 * bigobj, at the tail of the nth chunk
5061 * The chunk size is arbitrary. It doesn't have to be a power of two,
5062 * and it doesn't have any relation to the object blocksize.
5063 * The only requirement is that it can hold at least two bufwads.
5065 * Normally, we write the bufwad to each of these locations.
5066 * However, free_percent of the time we instead write zeroes to
5067 * packobj and perform a dmu_free_range() on bigobj. By comparing
5068 * bigobj to packobj, we can verify that the DMU is correctly
5069 * tracking which parts of an object are allocated and free,
5070 * and that the contents of the allocated blocks are correct.
5074 * Read the directory info. If it's the first time, set things up.
5076 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, chunksize
);
5077 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5080 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5081 umem_free(od
, size
);
5085 bigobj
= od
[0].od_object
;
5086 packobj
= od
[1].od_object
;
5087 chunksize
= od
[0].od_gen
;
5088 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5091 * Prefetch a random chunk of the big object.
5092 * Our aim here is to get some async reads in flight
5093 * for blocks that we may free below; the DMU should
5094 * handle this race correctly.
5096 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5097 s
= 1 + ztest_random(2 * width
- 1);
5098 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
5099 ZIO_PRIORITY_SYNC_READ
);
5102 * Pick a random index and compute the offsets into packobj and bigobj.
5104 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5105 s
= 1 + ztest_random(width
- 1);
5107 packoff
= n
* sizeof (bufwad_t
);
5108 packsize
= s
* sizeof (bufwad_t
);
5110 bigoff
= n
* chunksize
;
5111 bigsize
= s
* chunksize
;
5113 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
5114 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5117 * free_percent of the time, free a range of bigobj rather than
5120 freeit
= (ztest_random(100) < free_percent
);
5123 * Read the current contents of our objects.
5125 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
5128 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
5133 * Get a tx for the mods to both packobj and bigobj.
5135 tx
= dmu_tx_create(os
);
5137 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5140 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
5142 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5144 /* This accounts for setting the checksum/compression. */
5145 dmu_tx_hold_bonus(tx
, bigobj
);
5147 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5149 umem_free(packbuf
, packsize
);
5150 umem_free(bigbuf
, bigsize
);
5151 umem_free(od
, size
);
5155 enum zio_checksum cksum
;
5157 cksum
= (enum zio_checksum
)
5158 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
5159 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
5160 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
5162 enum zio_compress comp
;
5164 comp
= (enum zio_compress
)
5165 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
5166 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
5167 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
5170 * For each index from n to n + s, verify that the existing bufwad
5171 * in packobj matches the bufwads at the head and tail of the
5172 * corresponding chunk in bigobj. Then update all three bufwads
5173 * with the new values we want to write out.
5175 for (i
= 0; i
< s
; i
++) {
5177 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
5179 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
5181 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
5183 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
5184 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
5186 if (pack
->bw_txg
> txg
)
5188 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
5191 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
5192 fatal(B_FALSE
, "wrong index: "
5193 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
5194 pack
->bw_index
, n
, i
);
5196 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
5197 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
5200 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
5201 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
5205 memset(pack
, 0, sizeof (bufwad_t
));
5207 pack
->bw_index
= n
+ i
;
5209 pack
->bw_data
= 1 + ztest_random(-2ULL);
5216 * We've verified all the old bufwads, and made new ones.
5217 * Now write them out.
5219 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5222 if (ztest_opts
.zo_verbose
>= 7) {
5223 (void) printf("freeing offset %"PRIx64
" size %"PRIx64
""
5225 bigoff
, bigsize
, txg
);
5227 VERIFY0(dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
5229 if (ztest_opts
.zo_verbose
>= 7) {
5230 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5232 bigoff
, bigsize
, txg
);
5234 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
5240 * Sanity check the stuff we just wrote.
5243 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5244 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5246 VERIFY0(dmu_read(os
, packobj
, packoff
,
5247 packsize
, packcheck
, DMU_READ_PREFETCH
));
5248 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5249 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
5251 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5252 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5254 umem_free(packcheck
, packsize
);
5255 umem_free(bigcheck
, bigsize
);
5258 umem_free(packbuf
, packsize
);
5259 umem_free(bigbuf
, bigsize
);
5260 umem_free(od
, size
);
5264 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
5265 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
5273 * For each index from n to n + s, verify that the existing bufwad
5274 * in packobj matches the bufwads at the head and tail of the
5275 * corresponding chunk in bigobj. Then update all three bufwads
5276 * with the new values we want to write out.
5278 for (i
= 0; i
< s
; i
++) {
5280 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
5282 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
5284 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
5286 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
5287 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
5289 if (pack
->bw_txg
> txg
)
5291 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
5294 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
5295 fatal(B_FALSE
, "wrong index: "
5296 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
5297 pack
->bw_index
, n
, i
);
5299 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
5300 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
5303 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
5304 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
5307 pack
->bw_index
= n
+ i
;
5309 pack
->bw_data
= 1 + ztest_random(-2ULL);
5316 #undef OD_ARRAY_SIZE
5317 #define OD_ARRAY_SIZE 2
5320 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
5322 objset_t
*os
= zd
->zd_os
;
5329 bufwad_t
*packbuf
, *bigbuf
;
5330 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
5331 uint64_t blocksize
= ztest_random_blocksize();
5332 uint64_t chunksize
= blocksize
;
5333 uint64_t regions
= 997;
5334 uint64_t stride
= 123456789ULL;
5336 dmu_buf_t
*bonus_db
;
5337 arc_buf_t
**bigbuf_arcbufs
;
5338 dmu_object_info_t doi
;
5340 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
5341 od
= umem_alloc(size
, UMEM_NOFAIL
);
5344 * This test uses two objects, packobj and bigobj, that are always
5345 * updated together (i.e. in the same tx) so that their contents are
5346 * in sync and can be compared. Their contents relate to each other
5347 * in a simple way: packobj is a dense array of 'bufwad' structures,
5348 * while bigobj is a sparse array of the same bufwads. Specifically,
5349 * for any index n, there are three bufwads that should be identical:
5351 * packobj, at offset n * sizeof (bufwad_t)
5352 * bigobj, at the head of the nth chunk
5353 * bigobj, at the tail of the nth chunk
5355 * The chunk size is set equal to bigobj block size so that
5356 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5360 * Read the directory info. If it's the first time, set things up.
5362 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5363 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5367 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5368 umem_free(od
, size
);
5372 bigobj
= od
[0].od_object
;
5373 packobj
= od
[1].od_object
;
5374 blocksize
= od
[0].od_blocksize
;
5375 chunksize
= blocksize
;
5376 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5378 VERIFY0(dmu_object_info(os
, bigobj
, &doi
));
5379 VERIFY(ISP2(doi
.doi_data_block_size
));
5380 VERIFY3U(chunksize
, ==, doi
.doi_data_block_size
);
5381 VERIFY3U(chunksize
, >=, 2 * sizeof (bufwad_t
));
5384 * Pick a random index and compute the offsets into packobj and bigobj.
5386 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5387 s
= 1 + ztest_random(width
- 1);
5389 packoff
= n
* sizeof (bufwad_t
);
5390 packsize
= s
* sizeof (bufwad_t
);
5392 bigoff
= n
* chunksize
;
5393 bigsize
= s
* chunksize
;
5395 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
5396 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
5398 VERIFY0(dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
5400 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
5403 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5404 * Iteration 1 test zcopy to already referenced dbufs.
5405 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5406 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5407 * Iteration 4 test zcopy when dbuf is no longer dirty.
5408 * Iteration 5 test zcopy when it can't be done.
5409 * Iteration 6 one more zcopy write.
5411 for (i
= 0; i
< 7; i
++) {
5416 * In iteration 5 (i == 5) use arcbufs
5417 * that don't match bigobj blksz to test
5418 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5419 * assign an arcbuf to a dbuf.
5421 for (j
= 0; j
< s
; j
++) {
5422 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5424 dmu_request_arcbuf(bonus_db
, chunksize
);
5426 bigbuf_arcbufs
[2 * j
] =
5427 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5428 bigbuf_arcbufs
[2 * j
+ 1] =
5429 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5434 * Get a tx for the mods to both packobj and bigobj.
5436 tx
= dmu_tx_create(os
);
5438 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5439 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5441 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5443 umem_free(packbuf
, packsize
);
5444 umem_free(bigbuf
, bigsize
);
5445 for (j
= 0; j
< s
; j
++) {
5447 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5448 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
5451 bigbuf_arcbufs
[2 * j
]);
5453 bigbuf_arcbufs
[2 * j
+ 1]);
5456 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5457 umem_free(od
, size
);
5458 dmu_buf_rele(bonus_db
, FTAG
);
5463 * 50% of the time don't read objects in the 1st iteration to
5464 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5465 * no existing dbufs for the specified offsets.
5467 if (i
!= 0 || ztest_random(2) != 0) {
5468 error
= dmu_read(os
, packobj
, packoff
,
5469 packsize
, packbuf
, DMU_READ_PREFETCH
);
5471 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
5472 bigbuf
, DMU_READ_PREFETCH
);
5475 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
5479 * We've verified all the old bufwads, and made new ones.
5480 * Now write them out.
5482 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5483 if (ztest_opts
.zo_verbose
>= 7) {
5484 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5486 bigoff
, bigsize
, txg
);
5488 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
5490 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5491 memcpy(bigbuf_arcbufs
[j
]->b_data
,
5492 (caddr_t
)bigbuf
+ (off
- bigoff
),
5495 memcpy(bigbuf_arcbufs
[2 * j
]->b_data
,
5496 (caddr_t
)bigbuf
+ (off
- bigoff
),
5498 memcpy(bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
5499 (caddr_t
)bigbuf
+ (off
- bigoff
) +
5505 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
5506 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
5508 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5509 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5510 off
, bigbuf_arcbufs
[j
], tx
));
5512 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5513 off
, bigbuf_arcbufs
[2 * j
], tx
));
5514 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5515 off
+ chunksize
/ 2,
5516 bigbuf_arcbufs
[2 * j
+ 1], tx
));
5519 dmu_buf_rele(dbt
, FTAG
);
5525 * Sanity check the stuff we just wrote.
5528 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5529 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5531 VERIFY0(dmu_read(os
, packobj
, packoff
,
5532 packsize
, packcheck
, DMU_READ_PREFETCH
));
5533 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5534 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
5536 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5537 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5539 umem_free(packcheck
, packsize
);
5540 umem_free(bigcheck
, bigsize
);
5543 txg_wait_open(dmu_objset_pool(os
), 0, B_TRUE
);
5544 } else if (i
== 3) {
5545 txg_wait_synced(dmu_objset_pool(os
), 0);
5549 dmu_buf_rele(bonus_db
, FTAG
);
5550 umem_free(packbuf
, packsize
);
5551 umem_free(bigbuf
, bigsize
);
5552 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5553 umem_free(od
, size
);
5557 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
5562 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5563 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
5564 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5567 * Have multiple threads write to large offsets in an object
5568 * to verify that parallel writes to an object -- even to the
5569 * same blocks within the object -- doesn't cause any trouble.
5571 ztest_od_init(od
, ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5573 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0)
5576 while (ztest_random(10) != 0)
5577 ztest_io(zd
, od
->od_object
, offset
);
5579 umem_free(od
, sizeof (ztest_od_t
));
5583 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
5586 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
5587 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5588 uint64_t count
= ztest_random(20) + 1;
5589 uint64_t blocksize
= ztest_random_blocksize();
5592 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5594 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5596 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5597 !ztest_random(2)) != 0) {
5598 umem_free(od
, sizeof (ztest_od_t
));
5602 if (ztest_truncate(zd
, od
->od_object
, offset
, count
* blocksize
) != 0) {
5603 umem_free(od
, sizeof (ztest_od_t
));
5607 ztest_prealloc(zd
, od
->od_object
, offset
, count
* blocksize
);
5609 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
5611 while (ztest_random(count
) != 0) {
5612 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
5613 if (ztest_write(zd
, od
->od_object
, randoff
, blocksize
,
5616 while (ztest_random(4) != 0)
5617 ztest_io(zd
, od
->od_object
, randoff
);
5620 umem_free(data
, blocksize
);
5621 umem_free(od
, sizeof (ztest_od_t
));
5625 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5627 #define ZTEST_ZAP_MIN_INTS 1
5628 #define ZTEST_ZAP_MAX_INTS 4
5629 #define ZTEST_ZAP_MAX_PROPS 1000
5632 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
5634 objset_t
*os
= zd
->zd_os
;
5637 uint64_t txg
, last_txg
;
5638 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
5639 uint64_t zl_ints
, zl_intsize
, prop
;
5642 char propname
[100], txgname
[100];
5644 const char *const hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5646 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5647 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5649 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5650 !ztest_random(2)) != 0)
5653 object
= od
->od_object
;
5656 * Generate a known hash collision, and verify that
5657 * we can lookup and remove both entries.
5659 tx
= dmu_tx_create(os
);
5660 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5661 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5664 for (i
= 0; i
< 2; i
++) {
5666 VERIFY0(zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
5669 for (i
= 0; i
< 2; i
++) {
5670 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
5671 sizeof (uint64_t), 1, &value
[i
], tx
));
5673 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
5674 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5675 ASSERT3U(zl_ints
, ==, 1);
5677 for (i
= 0; i
< 2; i
++) {
5678 VERIFY0(zap_remove(os
, object
, hc
[i
], tx
));
5683 * Generate a bunch of random entries.
5685 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
5687 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5688 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5689 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5690 memset(value
, 0, sizeof (value
));
5694 * If these zap entries already exist, validate their contents.
5696 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5698 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5699 ASSERT3U(zl_ints
, ==, 1);
5701 VERIFY0(zap_lookup(os
, object
, txgname
, zl_intsize
,
5702 zl_ints
, &last_txg
));
5704 VERIFY0(zap_length(os
, object
, propname
, &zl_intsize
,
5707 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5708 ASSERT3U(zl_ints
, ==, ints
);
5710 VERIFY0(zap_lookup(os
, object
, propname
, zl_intsize
,
5713 for (i
= 0; i
< ints
; i
++) {
5714 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
5717 ASSERT3U(error
, ==, ENOENT
);
5721 * Atomically update two entries in our zap object.
5722 * The first is named txg_%llu, and contains the txg
5723 * in which the property was last updated. The second
5724 * is named prop_%llu, and the nth element of its value
5725 * should be txg + object + n.
5727 tx
= dmu_tx_create(os
);
5728 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5729 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5734 fatal(B_FALSE
, "zap future leak: old %"PRIu64
" new %"PRIu64
"",
5737 for (i
= 0; i
< ints
; i
++)
5738 value
[i
] = txg
+ object
+ i
;
5740 VERIFY0(zap_update(os
, object
, txgname
, sizeof (uint64_t),
5742 VERIFY0(zap_update(os
, object
, propname
, sizeof (uint64_t),
5748 * Remove a random pair of entries.
5750 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5751 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5752 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5754 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5756 if (error
== ENOENT
)
5761 tx
= dmu_tx_create(os
);
5762 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5763 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5766 VERIFY0(zap_remove(os
, object
, txgname
, tx
));
5767 VERIFY0(zap_remove(os
, object
, propname
, tx
));
5770 umem_free(od
, sizeof (ztest_od_t
));
5774 * Test case to test the upgrading of a microzap to fatzap.
5777 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
5779 objset_t
*os
= zd
->zd_os
;
5781 uint64_t object
, txg
, value
;
5783 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5784 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5786 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5787 !ztest_random(2)) != 0)
5789 object
= od
->od_object
;
5792 * Add entries to this ZAP and make sure it spills over
5793 * and gets upgraded to a fatzap. Also, since we are adding
5794 * 2050 entries we should see ptrtbl growth and leaf-block split.
5796 for (value
= 0; value
< 2050; value
++) {
5797 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5801 (void) snprintf(name
, sizeof (name
), "fzap-%"PRIu64
"-%"PRIu64
"",
5804 tx
= dmu_tx_create(os
);
5805 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
5806 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5809 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
5811 ASSERT(error
== 0 || error
== EEXIST
);
5815 umem_free(od
, sizeof (ztest_od_t
));
5819 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
5822 objset_t
*os
= zd
->zd_os
;
5824 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
5826 int i
, namelen
, error
;
5827 int micro
= ztest_random(2);
5828 char name
[20], string_value
[20];
5831 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5832 ztest_od_init(od
, ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5834 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5835 umem_free(od
, sizeof (ztest_od_t
));
5839 object
= od
->od_object
;
5842 * Generate a random name of the form 'xxx.....' where each
5843 * x is a random printable character and the dots are dots.
5844 * There are 94 such characters, and the name length goes from
5845 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5847 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
5849 for (i
= 0; i
< 3; i
++)
5850 name
[i
] = '!' + ztest_random('~' - '!' + 1);
5851 for (; i
< namelen
- 1; i
++)
5855 if ((namelen
& 1) || micro
) {
5856 wsize
= sizeof (txg
);
5862 data
= string_value
;
5866 VERIFY0(zap_count(os
, object
, &count
));
5867 ASSERT3S(count
, !=, -1ULL);
5870 * Select an operation: length, lookup, add, update, remove.
5872 i
= ztest_random(5);
5875 tx
= dmu_tx_create(os
);
5876 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5877 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5879 umem_free(od
, sizeof (ztest_od_t
));
5882 memcpy(string_value
, name
, namelen
);
5886 memset(string_value
, 0, namelen
);
5892 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
5894 ASSERT3U(wsize
, ==, zl_wsize
);
5895 ASSERT3U(wc
, ==, zl_wc
);
5897 ASSERT3U(error
, ==, ENOENT
);
5902 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
5904 if (data
== string_value
&&
5905 memcmp(name
, data
, namelen
) != 0)
5906 fatal(B_FALSE
, "name '%s' != val '%s' len %d",
5907 name
, (char *)data
, namelen
);
5909 ASSERT3U(error
, ==, ENOENT
);
5914 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
5915 ASSERT(error
== 0 || error
== EEXIST
);
5919 VERIFY0(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
));
5923 error
= zap_remove(os
, object
, name
, tx
);
5924 ASSERT(error
== 0 || error
== ENOENT
);
5931 umem_free(od
, sizeof (ztest_od_t
));
5935 * Commit callback data.
5937 typedef struct ztest_cb_data
{
5938 list_node_t zcd_node
;
5940 int zcd_expected_err
;
5941 boolean_t zcd_added
;
5942 boolean_t zcd_called
;
5946 /* This is the actual commit callback function */
5948 ztest_commit_callback(void *arg
, int error
)
5950 ztest_cb_data_t
*data
= arg
;
5951 uint64_t synced_txg
;
5953 VERIFY3P(data
, !=, NULL
);
5954 VERIFY3S(data
->zcd_expected_err
, ==, error
);
5955 VERIFY(!data
->zcd_called
);
5957 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
5958 if (data
->zcd_txg
> synced_txg
)
5960 "commit callback of txg %"PRIu64
" called prematurely, "
5961 "last synced txg = %"PRIu64
"\n",
5962 data
->zcd_txg
, synced_txg
);
5964 data
->zcd_called
= B_TRUE
;
5966 if (error
== ECANCELED
) {
5967 ASSERT0(data
->zcd_txg
);
5968 ASSERT(!data
->zcd_added
);
5971 * The private callback data should be destroyed here, but
5972 * since we are going to check the zcd_called field after
5973 * dmu_tx_abort(), we will destroy it there.
5978 ASSERT(data
->zcd_added
);
5979 ASSERT3U(data
->zcd_txg
, !=, 0);
5981 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5983 /* See if this cb was called more quickly */
5984 if ((synced_txg
- data
->zcd_txg
) < zc_min_txg_delay
)
5985 zc_min_txg_delay
= synced_txg
- data
->zcd_txg
;
5987 /* Remove our callback from the list */
5988 list_remove(&zcl
.zcl_callbacks
, data
);
5990 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5992 umem_free(data
, sizeof (ztest_cb_data_t
));
5995 /* Allocate and initialize callback data structure */
5996 static ztest_cb_data_t
*
5997 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
5999 ztest_cb_data_t
*cb_data
;
6001 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
6003 cb_data
->zcd_txg
= txg
;
6004 cb_data
->zcd_spa
= dmu_objset_spa(os
);
6005 list_link_init(&cb_data
->zcd_node
);
6011 * Commit callback test.
6014 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
6016 objset_t
*os
= zd
->zd_os
;
6019 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
6020 uint64_t old_txg
, txg
;
6023 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
6024 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
6026 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
6027 umem_free(od
, sizeof (ztest_od_t
));
6031 tx
= dmu_tx_create(os
);
6033 cb_data
[0] = ztest_create_cb_data(os
, 0);
6034 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
6036 dmu_tx_hold_write(tx
, od
->od_object
, 0, sizeof (uint64_t));
6038 /* Every once in a while, abort the transaction on purpose */
6039 if (ztest_random(100) == 0)
6043 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
6045 txg
= error
? 0 : dmu_tx_get_txg(tx
);
6047 cb_data
[0]->zcd_txg
= txg
;
6048 cb_data
[1] = ztest_create_cb_data(os
, txg
);
6049 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
6053 * It's not a strict requirement to call the registered
6054 * callbacks from inside dmu_tx_abort(), but that's what
6055 * it's supposed to happen in the current implementation
6056 * so we will check for that.
6058 for (i
= 0; i
< 2; i
++) {
6059 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
6060 VERIFY(!cb_data
[i
]->zcd_called
);
6065 for (i
= 0; i
< 2; i
++) {
6066 VERIFY(cb_data
[i
]->zcd_called
);
6067 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
6070 umem_free(od
, sizeof (ztest_od_t
));
6074 cb_data
[2] = ztest_create_cb_data(os
, txg
);
6075 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
6078 * Read existing data to make sure there isn't a future leak.
6080 VERIFY0(dmu_read(os
, od
->od_object
, 0, sizeof (uint64_t),
6081 &old_txg
, DMU_READ_PREFETCH
));
6085 "future leak: got %"PRIu64
", open txg is %"PRIu64
"",
6088 dmu_write(os
, od
->od_object
, 0, sizeof (uint64_t), &txg
, tx
);
6090 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
6093 * Since commit callbacks don't have any ordering requirement and since
6094 * it is theoretically possible for a commit callback to be called
6095 * after an arbitrary amount of time has elapsed since its txg has been
6096 * synced, it is difficult to reliably determine whether a commit
6097 * callback hasn't been called due to high load or due to a flawed
6100 * In practice, we will assume that if after a certain number of txgs a
6101 * commit callback hasn't been called, then most likely there's an
6102 * implementation bug..
6104 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
6105 if (tmp_cb
!= NULL
&&
6106 tmp_cb
->zcd_txg
+ ZTEST_COMMIT_CB_THRESH
< txg
) {
6108 "Commit callback threshold exceeded, "
6109 "oldest txg: %"PRIu64
", open txg: %"PRIu64
"\n",
6110 tmp_cb
->zcd_txg
, txg
);
6114 * Let's find the place to insert our callbacks.
6116 * Even though the list is ordered by txg, it is possible for the
6117 * insertion point to not be the end because our txg may already be
6118 * quiescing at this point and other callbacks in the open txg
6119 * (from other objsets) may have sneaked in.
6121 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
6122 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
6123 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
6125 /* Add the 3 callbacks to the list */
6126 for (i
= 0; i
< 3; i
++) {
6128 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
6130 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
6133 cb_data
[i
]->zcd_added
= B_TRUE
;
6134 VERIFY(!cb_data
[i
]->zcd_called
);
6136 tmp_cb
= cb_data
[i
];
6141 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
6145 umem_free(od
, sizeof (ztest_od_t
));
6149 * Visit each object in the dataset. Verify that its properties
6150 * are consistent what was stored in the block tag when it was created,
6151 * and that its unused bonus buffer space has not been overwritten.
6154 ztest_verify_dnode_bt(ztest_ds_t
*zd
, uint64_t id
)
6157 objset_t
*os
= zd
->zd_os
;
6161 for (obj
= 0; err
== 0; err
= dmu_object_next(os
, &obj
, FALSE
, 0)) {
6162 ztest_block_tag_t
*bt
= NULL
;
6163 dmu_object_info_t doi
;
6166 ztest_object_lock(zd
, obj
, ZTRL_READER
);
6167 if (dmu_bonus_hold(os
, obj
, FTAG
, &db
) != 0) {
6168 ztest_object_unlock(zd
, obj
);
6172 dmu_object_info_from_db(db
, &doi
);
6173 if (doi
.doi_bonus_size
>= sizeof (*bt
))
6174 bt
= ztest_bt_bonus(db
);
6176 if (bt
&& bt
->bt_magic
== BT_MAGIC
) {
6177 ztest_bt_verify(bt
, os
, obj
, doi
.doi_dnodesize
,
6178 bt
->bt_offset
, bt
->bt_gen
, bt
->bt_txg
,
6180 ztest_verify_unused_bonus(db
, bt
, obj
, os
, bt
->bt_gen
);
6183 dmu_buf_rele(db
, FTAG
);
6184 ztest_object_unlock(zd
, obj
);
6189 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
6192 zfs_prop_t proplist
[] = {
6194 ZFS_PROP_COMPRESSION
,
6199 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6201 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++) {
6202 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
6203 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
6204 ASSERT(error
== 0 || error
== ENOSPC
);
6207 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_RECORDSIZE
,
6208 ztest_random_blocksize(), (int)ztest_random(2));
6209 ASSERT(error
== 0 || error
== ENOSPC
);
6211 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6215 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
6217 (void) zd
, (void) id
;
6218 nvlist_t
*props
= NULL
;
6220 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6222 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM
, ztest_random(2));
6224 VERIFY0(spa_prop_get(ztest_spa
, &props
));
6226 if (ztest_opts
.zo_verbose
>= 6)
6227 dump_nvlist(props
, 4);
6229 fnvlist_free(props
);
6231 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6235 user_release_one(const char *snapname
, const char *holdname
)
6237 nvlist_t
*snaps
, *holds
;
6240 snaps
= fnvlist_alloc();
6241 holds
= fnvlist_alloc();
6242 fnvlist_add_boolean(holds
, holdname
);
6243 fnvlist_add_nvlist(snaps
, snapname
, holds
);
6244 fnvlist_free(holds
);
6245 error
= dsl_dataset_user_release(snaps
, NULL
);
6246 fnvlist_free(snaps
);
6251 * Test snapshot hold/release and deferred destroy.
6254 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
6257 objset_t
*os
= zd
->zd_os
;
6261 char clonename
[100];
6263 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
6266 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6268 dmu_objset_name(os
, osname
);
6270 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%"PRIu64
"", id
);
6271 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
6272 (void) snprintf(clonename
, sizeof (clonename
), "%s/ch1_%"PRIu64
"",
6274 (void) snprintf(tag
, sizeof (tag
), "tag_%"PRIu64
"", id
);
6277 * Clean up from any previous run.
6279 error
= dsl_destroy_head(clonename
);
6280 if (error
!= ENOENT
)
6282 error
= user_release_one(fullname
, tag
);
6283 if (error
!= ESRCH
&& error
!= ENOENT
)
6285 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6286 if (error
!= ENOENT
)
6290 * Create snapshot, clone it, mark snap for deferred destroy,
6291 * destroy clone, verify snap was also destroyed.
6293 error
= dmu_objset_snapshot_one(osname
, snapname
);
6295 if (error
== ENOSPC
) {
6296 ztest_record_enospc("dmu_objset_snapshot");
6299 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
6302 error
= dmu_objset_clone(clonename
, fullname
);
6304 if (error
== ENOSPC
) {
6305 ztest_record_enospc("dmu_objset_clone");
6308 fatal(B_FALSE
, "dmu_objset_clone(%s) = %d", clonename
, error
);
6311 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6313 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6317 error
= dsl_destroy_head(clonename
);
6319 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clonename
, error
);
6321 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
6322 if (error
!= ENOENT
)
6323 fatal(B_FALSE
, "dmu_objset_hold(%s) = %d", fullname
, error
);
6326 * Create snapshot, add temporary hold, verify that we can't
6327 * destroy a held snapshot, mark for deferred destroy,
6328 * release hold, verify snapshot was destroyed.
6330 error
= dmu_objset_snapshot_one(osname
, snapname
);
6332 if (error
== ENOSPC
) {
6333 ztest_record_enospc("dmu_objset_snapshot");
6336 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
6339 holds
= fnvlist_alloc();
6340 fnvlist_add_string(holds
, fullname
, tag
);
6341 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
6342 fnvlist_free(holds
);
6344 if (error
== ENOSPC
) {
6345 ztest_record_enospc("dsl_dataset_user_hold");
6348 fatal(B_FALSE
, "dsl_dataset_user_hold(%s, %s) = %u",
6349 fullname
, tag
, error
);
6352 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6353 if (error
!= EBUSY
) {
6354 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6358 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6360 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6364 error
= user_release_one(fullname
, tag
);
6366 fatal(B_FALSE
, "user_release_one(%s, %s) = %d",
6367 fullname
, tag
, error
);
6369 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
6372 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6376 * Inject random faults into the on-disk data.
6379 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
6381 (void) zd
, (void) id
;
6382 ztest_shared_t
*zs
= ztest_shared
;
6383 spa_t
*spa
= ztest_spa
;
6387 uint64_t bad
= 0x1990c0ffeedecadeull
;
6389 uint64_t raidz_children
;
6393 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
6399 boolean_t islog
= B_FALSE
;
6400 boolean_t injected
= B_FALSE
;
6402 path0
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6403 pathrand
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6405 mutex_enter(&ztest_vdev_lock
);
6408 * Device removal is in progress, fault injection must be disabled
6409 * until it completes and the pool is scrubbed. The fault injection
6410 * strategy for damaging blocks does not take in to account evacuated
6411 * blocks which may have already been damaged.
6413 if (ztest_device_removal_active
)
6417 * The fault injection strategy for damaging blocks cannot be used
6418 * if raidz expansion is in progress. The leaves value
6419 * (attached raidz children) is variable and strategy for damaging
6420 * blocks will corrupt same data blocks on different child vdevs
6421 * because of the reflow process.
6423 if (spa
->spa_raidz_expand
!= NULL
)
6426 maxfaults
= MAXFAULTS(zs
);
6427 raidz_children
= ztest_get_raidz_children(spa
);
6428 leaves
= MAX(zs
->zs_mirrors
, 1) * raidz_children
;
6429 mirror_save
= zs
->zs_mirrors
;
6431 ASSERT3U(leaves
, >=, 1);
6434 * While ztest is running the number of leaves will not change. This
6435 * is critical for the fault injection logic as it determines where
6436 * errors can be safely injected such that they are always repairable.
6438 * When restarting ztest a different number of leaves may be requested
6439 * which will shift the regions to be damaged. This is fine as long
6440 * as the pool has been scrubbed prior to using the new mapping.
6441 * Failure to do can result in non-repairable damage being injected.
6443 if (ztest_pool_scrubbed
== B_FALSE
)
6447 * Grab the name lock as reader. There are some operations
6448 * which don't like to have their vdevs changed while
6449 * they are in progress (i.e. spa_change_guid). Those
6450 * operations will have grabbed the name lock as writer.
6452 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6455 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6457 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
6459 if (ztest_random(2) == 0) {
6461 * Inject errors on a normal data device or slog device.
6463 top
= ztest_random_vdev_top(spa
, B_TRUE
);
6464 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
6467 * Generate paths to the first leaf in this top-level vdev,
6468 * and to the random leaf we selected. We'll induce transient
6469 * write failures and random online/offline activity on leaf 0,
6470 * and we'll write random garbage to the randomly chosen leaf.
6472 (void) snprintf(path0
, MAXPATHLEN
, ztest_dev_template
,
6473 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6474 top
* leaves
+ zs
->zs_splits
);
6475 (void) snprintf(pathrand
, MAXPATHLEN
, ztest_dev_template
,
6476 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6477 top
* leaves
+ leaf
);
6479 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
6480 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
6484 * If the top-level vdev needs to be resilvered
6485 * then we only allow faults on the device that is
6488 if (vd0
!= NULL
&& maxfaults
!= 1 &&
6489 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
6490 vd0
->vdev_resilver_txg
!= 0)) {
6492 * Make vd0 explicitly claim to be unreadable,
6493 * or unwritable, or reach behind its back
6494 * and close the underlying fd. We can do this if
6495 * maxfaults == 0 because we'll fail and reexecute,
6496 * and we can do it if maxfaults >= 2 because we'll
6497 * have enough redundancy. If maxfaults == 1, the
6498 * combination of this with injection of random data
6499 * corruption below exceeds the pool's fault tolerance.
6501 vdev_file_t
*vf
= vd0
->vdev_tsd
;
6503 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6504 (long long)vd0
->vdev_id
, (int)maxfaults
);
6506 if (vf
!= NULL
&& ztest_random(3) == 0) {
6507 (void) close(vf
->vf_file
->f_fd
);
6508 vf
->vf_file
->f_fd
= -1;
6509 } else if (ztest_random(2) == 0) {
6510 vd0
->vdev_cant_read
= B_TRUE
;
6512 vd0
->vdev_cant_write
= B_TRUE
;
6514 guid0
= vd0
->vdev_guid
;
6518 * Inject errors on an l2cache device.
6520 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
6522 if (sav
->sav_count
== 0) {
6523 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6524 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6527 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
6528 guid0
= vd0
->vdev_guid
;
6529 (void) strlcpy(path0
, vd0
->vdev_path
, MAXPATHLEN
);
6530 (void) strlcpy(pathrand
, vd0
->vdev_path
, MAXPATHLEN
);
6534 maxfaults
= INT_MAX
; /* no limit on cache devices */
6537 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6538 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6541 * If we can tolerate two or more faults, or we're dealing
6542 * with a slog, randomly online/offline vd0.
6544 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
6545 if (ztest_random(10) < 6) {
6546 int flags
= (ztest_random(2) == 0 ?
6547 ZFS_OFFLINE_TEMPORARY
: 0);
6550 * We have to grab the zs_name_lock as writer to
6551 * prevent a race between offlining a slog and
6552 * destroying a dataset. Offlining the slog will
6553 * grab a reference on the dataset which may cause
6554 * dsl_destroy_head() to fail with EBUSY thus
6555 * leaving the dataset in an inconsistent state.
6558 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6560 VERIFY3U(vdev_offline(spa
, guid0
, flags
), !=, EBUSY
);
6563 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6566 * Ideally we would like to be able to randomly
6567 * call vdev_[on|off]line without holding locks
6568 * to force unpredictable failures but the side
6569 * effects of vdev_[on|off]line prevent us from
6572 (void) vdev_online(spa
, guid0
, 0, NULL
);
6580 * We have at least single-fault tolerance, so inject data corruption.
6582 fd
= open(pathrand
, O_RDWR
);
6584 if (fd
== -1) /* we hit a gap in the device namespace */
6587 fsize
= lseek(fd
, 0, SEEK_END
);
6589 while (--iters
!= 0) {
6591 * The offset must be chosen carefully to ensure that
6592 * we do not inject a given logical block with errors
6593 * on two different leaf devices, because ZFS can not
6594 * tolerate that (if maxfaults==1).
6596 * To achieve this we divide each leaf device into
6597 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6598 * Each chunk is further divided into error-injection
6599 * ranges (can accept errors) and clear ranges (we do
6600 * not inject errors in those). Each error-injection
6601 * range can accept errors only for a single leaf vdev.
6602 * Error-injection ranges are separated by clear ranges.
6604 * For example, with 3 leaves, each chunk looks like:
6605 * 0 to 32M: injection range for leaf 0
6606 * 32M to 64M: clear range - no injection allowed
6607 * 64M to 96M: injection range for leaf 1
6608 * 96M to 128M: clear range - no injection allowed
6609 * 128M to 160M: injection range for leaf 2
6610 * 160M to 192M: clear range - no injection allowed
6612 * Each clear range must be large enough such that a
6613 * single block cannot straddle it. This way a block
6614 * can't be a target in two different injection ranges
6615 * (on different leaf vdevs).
6617 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
6618 (leaves
<< bshift
) + (leaf
<< bshift
) +
6619 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
6622 * Only allow damage to the labels at one end of the vdev.
6624 * If all labels are damaged, the device will be totally
6625 * inaccessible, which will result in loss of data,
6626 * because we also damage (parts of) the other side of
6629 * Additionally, we will always have both an even and an
6630 * odd label, so that we can handle crashes in the
6631 * middle of vdev_config_sync().
6633 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
6637 * The two end labels are stored at the "end" of the disk, but
6638 * the end of the disk (vdev_psize) is aligned to
6639 * sizeof (vdev_label_t).
6641 uint64_t psize
= P2ALIGN(fsize
, sizeof (vdev_label_t
));
6642 if ((leaf
& 1) == 1 &&
6643 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
6646 if (mirror_save
!= zs
->zs_mirrors
) {
6651 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
6653 "can't inject bad word at 0x%"PRIx64
" in %s",
6656 if (ztest_opts
.zo_verbose
>= 7)
6657 (void) printf("injected bad word into %s,"
6658 " offset 0x%"PRIx64
"\n", pathrand
, offset
);
6665 mutex_exit(&ztest_vdev_lock
);
6667 if (injected
&& ztest_opts
.zo_raid_do_expand
) {
6668 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6670 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6671 txg_wait_synced(spa_get_dsl(spa
), 0);
6675 umem_free(path0
, MAXPATHLEN
);
6676 umem_free(pathrand
, MAXPATHLEN
);
6680 * By design ztest will never inject uncorrectable damage in to the pool.
6681 * Issue a scrub, wait for it to complete, and verify there is never any
6682 * persistent damage.
6684 * Only after a full scrub has been completed is it safe to start injecting
6685 * data corruption. See the comment in zfs_fault_inject().
6688 ztest_scrub_impl(spa_t
*spa
)
6690 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6694 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6695 txg_wait_synced(spa_get_dsl(spa
), 0);
6697 if (spa_approx_errlog_size(spa
) > 0)
6700 ztest_pool_scrubbed
= B_TRUE
;
6709 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
6711 (void) zd
, (void) id
;
6712 spa_t
*spa
= ztest_spa
;
6716 * Scrub in progress by device removal.
6718 if (ztest_device_removal_active
)
6722 * Start a scrub, wait a moment, then force a restart.
6724 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6725 (void) poll(NULL
, 0, 100);
6727 error
= ztest_scrub_impl(spa
);
6734 * Change the guid for the pool.
6737 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
6739 (void) zd
, (void) id
;
6740 spa_t
*spa
= ztest_spa
;
6741 uint64_t orig
, load
;
6743 ztest_shared_t
*zs
= ztest_shared
;
6745 if (ztest_opts
.zo_mmp_test
)
6748 orig
= spa_guid(spa
);
6749 load
= spa_load_guid(spa
);
6751 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6752 error
= spa_change_guid(spa
);
6753 zs
->zs_guid
= spa_guid(spa
);
6754 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6759 if (ztest_opts
.zo_verbose
>= 4) {
6760 (void) printf("Changed guid old %"PRIu64
" -> %"PRIu64
"\n",
6761 orig
, spa_guid(spa
));
6764 VERIFY3U(orig
, !=, spa_guid(spa
));
6765 VERIFY3U(load
, ==, spa_load_guid(spa
));
6769 ztest_blake3(ztest_ds_t
*zd
, uint64_t id
)
6771 (void) zd
, (void) id
;
6772 hrtime_t end
= gethrtime() + NANOSEC
;
6773 zio_cksum_salt_t salt
;
6774 void *salt_ptr
= &salt
.zcs_bytes
;
6775 struct abd
*abd_data
, *abd_meta
;
6780 const zfs_impl_t
*blake3
= zfs_impl_get_ops("blake3");
6782 size
= ztest_random_blocksize();
6783 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6784 abd_data
= abd_alloc(size
, B_FALSE
);
6785 abd_meta
= abd_alloc(size
, B_TRUE
);
6787 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6788 *ptr
= ztest_random(UINT_MAX
);
6789 memset(salt_ptr
, 'A', 32);
6791 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6792 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6794 while (gethrtime() <= end
) {
6795 int run_count
= 100;
6796 zio_cksum_t zc_ref1
, zc_ref2
;
6797 zio_cksum_t zc_res1
, zc_res2
;
6799 void *ref1
= &zc_ref1
;
6800 void *ref2
= &zc_ref2
;
6801 void *res1
= &zc_res1
;
6802 void *res2
= &zc_res2
;
6804 /* BLAKE3_KEY_LEN = 32 */
6805 VERIFY0(blake3
->setname("generic"));
6806 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6807 Blake3_InitKeyed(&ctx
, salt_ptr
);
6808 Blake3_Update(&ctx
, buf
, size
);
6809 Blake3_Final(&ctx
, ref1
);
6811 ZIO_CHECKSUM_BSWAP(&zc_ref2
);
6812 abd_checksum_blake3_tmpl_free(templ
);
6814 VERIFY0(blake3
->setname("cycle"));
6815 while (run_count
-- > 0) {
6817 /* Test current implementation */
6818 Blake3_InitKeyed(&ctx
, salt_ptr
);
6819 Blake3_Update(&ctx
, buf
, size
);
6820 Blake3_Final(&ctx
, res1
);
6822 ZIO_CHECKSUM_BSWAP(&zc_res2
);
6824 VERIFY0(memcmp(ref1
, res1
, 32));
6825 VERIFY0(memcmp(ref2
, res2
, 32));
6827 /* Test ABD - data */
6828 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6829 abd_checksum_blake3_native(abd_data
, size
,
6831 abd_checksum_blake3_byteswap(abd_data
, size
,
6834 VERIFY0(memcmp(ref1
, res1
, 32));
6835 VERIFY0(memcmp(ref2
, res2
, 32));
6837 /* Test ABD - metadata */
6838 abd_checksum_blake3_native(abd_meta
, size
,
6840 abd_checksum_blake3_byteswap(abd_meta
, size
,
6842 abd_checksum_blake3_tmpl_free(templ
);
6844 VERIFY0(memcmp(ref1
, res1
, 32));
6845 VERIFY0(memcmp(ref2
, res2
, 32));
6852 umem_free(buf
, size
);
6856 ztest_fletcher(ztest_ds_t
*zd
, uint64_t id
)
6858 (void) zd
, (void) id
;
6859 hrtime_t end
= gethrtime() + NANOSEC
;
6861 while (gethrtime() <= end
) {
6862 int run_count
= 100;
6864 struct abd
*abd_data
, *abd_meta
;
6869 zio_cksum_t zc_ref_byteswap
;
6871 size
= ztest_random_blocksize();
6873 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6874 abd_data
= abd_alloc(size
, B_FALSE
);
6875 abd_meta
= abd_alloc(size
, B_TRUE
);
6877 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6878 *ptr
= ztest_random(UINT_MAX
);
6880 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6881 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6883 VERIFY0(fletcher_4_impl_set("scalar"));
6884 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6885 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_byteswap
);
6887 VERIFY0(fletcher_4_impl_set("cycle"));
6888 while (run_count
-- > 0) {
6890 zio_cksum_t zc_byteswap
;
6892 fletcher_4_byteswap(buf
, size
, NULL
, &zc_byteswap
);
6893 fletcher_4_native(buf
, size
, NULL
, &zc
);
6895 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6896 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6897 sizeof (zc_byteswap
)));
6899 /* Test ABD - data */
6900 abd_fletcher_4_byteswap(abd_data
, size
, NULL
,
6902 abd_fletcher_4_native(abd_data
, size
, NULL
, &zc
);
6904 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6905 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6906 sizeof (zc_byteswap
)));
6908 /* Test ABD - metadata */
6909 abd_fletcher_4_byteswap(abd_meta
, size
, NULL
,
6911 abd_fletcher_4_native(abd_meta
, size
, NULL
, &zc
);
6913 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6914 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6915 sizeof (zc_byteswap
)));
6919 umem_free(buf
, size
);
6926 ztest_fletcher_incr(ztest_ds_t
*zd
, uint64_t id
)
6928 (void) zd
, (void) id
;
6934 zio_cksum_t zc_ref_bswap
;
6936 hrtime_t end
= gethrtime() + NANOSEC
;
6938 while (gethrtime() <= end
) {
6939 int run_count
= 100;
6941 size
= ztest_random_blocksize();
6942 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6944 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6945 *ptr
= ztest_random(UINT_MAX
);
6947 VERIFY0(fletcher_4_impl_set("scalar"));
6948 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6949 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_bswap
);
6951 VERIFY0(fletcher_4_impl_set("cycle"));
6953 while (run_count
-- > 0) {
6955 zio_cksum_t zc_bswap
;
6958 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6959 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6961 while (pos
< size
) {
6962 size_t inc
= 64 * ztest_random(size
/ 67);
6963 /* sometimes add few bytes to test non-simd */
6964 if (ztest_random(100) < 10)
6965 inc
+= P2ALIGN(ztest_random(64),
6968 if (inc
> (size
- pos
))
6971 fletcher_4_incremental_native(buf
+ pos
, inc
,
6973 fletcher_4_incremental_byteswap(buf
+ pos
, inc
,
6979 VERIFY3U(pos
, ==, size
);
6981 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6982 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6985 * verify if incremental on the whole buffer is
6986 * equivalent to non-incremental version
6988 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6989 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6991 fletcher_4_incremental_native(buf
, size
, &zc
);
6992 fletcher_4_incremental_byteswap(buf
, size
, &zc_bswap
);
6994 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6995 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6998 umem_free(buf
, size
);
7003 ztest_set_global_vars(void)
7005 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
7006 char *kv
= ztest_opts
.zo_gvars
[i
];
7007 VERIFY3U(strlen(kv
), <=, ZO_GVARS_MAX_ARGLEN
);
7008 VERIFY3U(strlen(kv
), >, 0);
7009 int err
= set_global_var(kv
);
7010 if (ztest_opts
.zo_verbose
> 0) {
7011 (void) printf("setting global var %s ... %s\n", kv
,
7012 err
? "failed" : "ok");
7015 (void) fprintf(stderr
,
7016 "failed to set global var '%s'\n", kv
);
7024 ztest_global_vars_to_zdb_args(void)
7026 char **args
= calloc(2*ztest_opts
.zo_gvars_count
+ 1, sizeof (char *));
7030 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
7031 *cur
++ = (char *)"-o";
7032 *cur
++ = ztest_opts
.zo_gvars
[i
];
7034 ASSERT3P(cur
, ==, &args
[2*ztest_opts
.zo_gvars_count
]);
7039 /* The end of strings is indicated by a NULL element */
7041 join_strings(char **strings
, const char *sep
)
7043 size_t totallen
= 0;
7044 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
7045 totallen
+= strlen(*sp
);
7046 totallen
+= strlen(sep
);
7049 ASSERT(totallen
>= strlen(sep
));
7050 totallen
-= strlen(sep
);
7053 size_t buflen
= totallen
+ 1;
7054 char *o
= umem_alloc(buflen
, UMEM_NOFAIL
); /* trailing 0 byte */
7056 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
7058 would
= strlcat(o
, *sp
, buflen
);
7059 VERIFY3U(would
, <, buflen
);
7060 if (*(sp
+1) == NULL
) {
7063 would
= strlcat(o
, sep
, buflen
);
7064 VERIFY3U(would
, <, buflen
);
7066 ASSERT3S(strlen(o
), ==, totallen
);
7071 ztest_check_path(char *path
)
7074 /* return true on success */
7075 return (!stat(path
, &s
));
7079 ztest_get_zdb_bin(char *bin
, int len
)
7083 * Try to use $ZDB and in-tree zdb path. If not successful, just
7084 * let popen to search through PATH.
7086 if ((zdb_path
= getenv("ZDB"))) {
7087 strlcpy(bin
, zdb_path
, len
); /* In env */
7088 if (!ztest_check_path(bin
)) {
7089 ztest_dump_core
= 0;
7090 fatal(B_TRUE
, "invalid ZDB '%s'", bin
);
7095 VERIFY3P(realpath(getexecname(), bin
), !=, NULL
);
7096 if (strstr(bin
, ".libs/ztest")) {
7097 strstr(bin
, ".libs/ztest")[0] = '\0'; /* In-tree */
7099 if (ztest_check_path(bin
))
7106 ztest_random_concrete_vdev_leaf(vdev_t
*vd
)
7111 if (vd
->vdev_children
== 0)
7114 vdev_t
*eligible
[vd
->vdev_children
];
7115 int eligible_idx
= 0, i
;
7116 for (i
= 0; i
< vd
->vdev_children
; i
++) {
7117 vdev_t
*cvd
= vd
->vdev_child
[i
];
7118 if (cvd
->vdev_top
->vdev_removing
)
7120 if (cvd
->vdev_children
> 0 ||
7121 (vdev_is_concrete(cvd
) && !cvd
->vdev_detached
)) {
7122 eligible
[eligible_idx
++] = cvd
;
7125 VERIFY3S(eligible_idx
, >, 0);
7127 uint64_t child_no
= ztest_random(eligible_idx
);
7128 return (ztest_random_concrete_vdev_leaf(eligible
[child_no
]));
7132 ztest_initialize(ztest_ds_t
*zd
, uint64_t id
)
7134 (void) zd
, (void) id
;
7135 spa_t
*spa
= ztest_spa
;
7138 mutex_enter(&ztest_vdev_lock
);
7140 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
7142 /* Random leaf vdev */
7143 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
7144 if (rand_vd
== NULL
) {
7145 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7146 mutex_exit(&ztest_vdev_lock
);
7151 * The random vdev we've selected may change as soon as we
7152 * drop the spa_config_lock. We create local copies of things
7153 * we're interested in.
7155 uint64_t guid
= rand_vd
->vdev_guid
;
7156 char *path
= strdup(rand_vd
->vdev_path
);
7157 boolean_t active
= rand_vd
->vdev_initialize_thread
!= NULL
;
7159 zfs_dbgmsg("vd %px, guid %llu", rand_vd
, (u_longlong_t
)guid
);
7160 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7162 uint64_t cmd
= ztest_random(POOL_INITIALIZE_FUNCS
);
7164 nvlist_t
*vdev_guids
= fnvlist_alloc();
7165 nvlist_t
*vdev_errlist
= fnvlist_alloc();
7166 fnvlist_add_uint64(vdev_guids
, path
, guid
);
7167 error
= spa_vdev_initialize(spa
, vdev_guids
, cmd
, vdev_errlist
);
7168 fnvlist_free(vdev_guids
);
7169 fnvlist_free(vdev_errlist
);
7172 case POOL_INITIALIZE_CANCEL
:
7173 if (ztest_opts
.zo_verbose
>= 4) {
7174 (void) printf("Cancel initialize %s", path
);
7176 (void) printf(" failed (no initialize active)");
7177 (void) printf("\n");
7180 case POOL_INITIALIZE_START
:
7181 if (ztest_opts
.zo_verbose
>= 4) {
7182 (void) printf("Start initialize %s", path
);
7183 if (active
&& error
== 0)
7184 (void) printf(" failed (already active)");
7185 else if (error
!= 0)
7186 (void) printf(" failed (error %d)", error
);
7187 (void) printf("\n");
7190 case POOL_INITIALIZE_SUSPEND
:
7191 if (ztest_opts
.zo_verbose
>= 4) {
7192 (void) printf("Suspend initialize %s", path
);
7194 (void) printf(" failed (no initialize active)");
7195 (void) printf("\n");
7200 mutex_exit(&ztest_vdev_lock
);
7204 ztest_trim(ztest_ds_t
*zd
, uint64_t id
)
7206 (void) zd
, (void) id
;
7207 spa_t
*spa
= ztest_spa
;
7210 mutex_enter(&ztest_vdev_lock
);
7212 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
7214 /* Random leaf vdev */
7215 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
7216 if (rand_vd
== NULL
) {
7217 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7218 mutex_exit(&ztest_vdev_lock
);
7223 * The random vdev we've selected may change as soon as we
7224 * drop the spa_config_lock. We create local copies of things
7225 * we're interested in.
7227 uint64_t guid
= rand_vd
->vdev_guid
;
7228 char *path
= strdup(rand_vd
->vdev_path
);
7229 boolean_t active
= rand_vd
->vdev_trim_thread
!= NULL
;
7231 zfs_dbgmsg("vd %p, guid %llu", rand_vd
, (u_longlong_t
)guid
);
7232 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
7234 uint64_t cmd
= ztest_random(POOL_TRIM_FUNCS
);
7235 uint64_t rate
= 1 << ztest_random(30);
7236 boolean_t partial
= (ztest_random(5) > 0);
7237 boolean_t secure
= (ztest_random(5) > 0);
7239 nvlist_t
*vdev_guids
= fnvlist_alloc();
7240 nvlist_t
*vdev_errlist
= fnvlist_alloc();
7241 fnvlist_add_uint64(vdev_guids
, path
, guid
);
7242 error
= spa_vdev_trim(spa
, vdev_guids
, cmd
, rate
, partial
,
7243 secure
, vdev_errlist
);
7244 fnvlist_free(vdev_guids
);
7245 fnvlist_free(vdev_errlist
);
7248 case POOL_TRIM_CANCEL
:
7249 if (ztest_opts
.zo_verbose
>= 4) {
7250 (void) printf("Cancel TRIM %s", path
);
7252 (void) printf(" failed (no TRIM active)");
7253 (void) printf("\n");
7256 case POOL_TRIM_START
:
7257 if (ztest_opts
.zo_verbose
>= 4) {
7258 (void) printf("Start TRIM %s", path
);
7259 if (active
&& error
== 0)
7260 (void) printf(" failed (already active)");
7261 else if (error
!= 0)
7262 (void) printf(" failed (error %d)", error
);
7263 (void) printf("\n");
7266 case POOL_TRIM_SUSPEND
:
7267 if (ztest_opts
.zo_verbose
>= 4) {
7268 (void) printf("Suspend TRIM %s", path
);
7270 (void) printf(" failed (no TRIM active)");
7271 (void) printf("\n");
7276 mutex_exit(&ztest_vdev_lock
);
7280 * Verify pool integrity by running zdb.
7283 ztest_run_zdb(uint64_t guid
)
7289 const int len
= MAXPATHLEN
+ MAXNAMELEN
+ 20;
7292 bin
= umem_alloc(len
, UMEM_NOFAIL
);
7293 zdb
= umem_alloc(len
, UMEM_NOFAIL
);
7294 zbuf
= umem_alloc(1024, UMEM_NOFAIL
);
7296 ztest_get_zdb_bin(bin
, len
);
7298 char **set_gvars_args
= ztest_global_vars_to_zdb_args();
7299 if (set_gvars_args
== NULL
) {
7300 fatal(B_FALSE
, "Failed to allocate memory in "
7301 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
7303 char *set_gvars_args_joined
= join_strings(set_gvars_args
, " ");
7304 free(set_gvars_args
);
7306 size_t would
= snprintf(zdb
, len
,
7307 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64
,
7309 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
7310 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
7311 set_gvars_args_joined
,
7314 ASSERT3U(would
, <, len
);
7316 umem_free(set_gvars_args_joined
, strlen(set_gvars_args_joined
) + 1);
7318 if (ztest_opts
.zo_verbose
>= 5)
7319 (void) printf("Executing %s\n", zdb
);
7321 fp
= popen(zdb
, "r");
7323 while (fgets(zbuf
, 1024, fp
) != NULL
)
7324 if (ztest_opts
.zo_verbose
>= 3)
7325 (void) printf("%s", zbuf
);
7327 status
= pclose(fp
);
7332 ztest_dump_core
= 0;
7333 if (WIFEXITED(status
))
7334 fatal(B_FALSE
, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
7336 fatal(B_FALSE
, "'%s' died with signal %d",
7337 zdb
, WTERMSIG(status
));
7339 umem_free(bin
, len
);
7340 umem_free(zdb
, len
);
7341 umem_free(zbuf
, 1024);
7345 ztest_walk_pool_directory(const char *header
)
7349 if (ztest_opts
.zo_verbose
>= 6)
7350 (void) puts(header
);
7352 mutex_enter(&spa_namespace_lock
);
7353 while ((spa
= spa_next(spa
)) != NULL
)
7354 if (ztest_opts
.zo_verbose
>= 6)
7355 (void) printf("\t%s\n", spa_name(spa
));
7356 mutex_exit(&spa_namespace_lock
);
7360 ztest_spa_import_export(char *oldname
, char *newname
)
7362 nvlist_t
*config
, *newconfig
;
7367 if (ztest_opts
.zo_verbose
>= 4) {
7368 (void) printf("import/export: old = %s, new = %s\n",
7373 * Clean up from previous runs.
7375 (void) spa_destroy(newname
);
7378 * Get the pool's configuration and guid.
7380 VERIFY0(spa_open(oldname
, &spa
, FTAG
));
7383 * Kick off a scrub to tickle scrub/export races.
7385 if (ztest_random(2) == 0)
7386 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
7388 pool_guid
= spa_guid(spa
);
7389 spa_close(spa
, FTAG
);
7391 ztest_walk_pool_directory("pools before export");
7396 VERIFY0(spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
7398 ztest_walk_pool_directory("pools after export");
7403 newconfig
= spa_tryimport(config
);
7404 ASSERT3P(newconfig
, !=, NULL
);
7405 fnvlist_free(newconfig
);
7408 * Import it under the new name.
7410 error
= spa_import(newname
, config
, NULL
, 0);
7412 dump_nvlist(config
, 0);
7413 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
7414 oldname
, newname
, error
);
7417 ztest_walk_pool_directory("pools after import");
7420 * Try to import it again -- should fail with EEXIST.
7422 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
7425 * Try to import it under a different name -- should fail with EEXIST.
7427 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
7430 * Verify that the pool is no longer visible under the old name.
7432 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
7435 * Verify that we can open and close the pool using the new name.
7437 VERIFY0(spa_open(newname
, &spa
, FTAG
));
7438 ASSERT3U(pool_guid
, ==, spa_guid(spa
));
7439 spa_close(spa
, FTAG
);
7441 fnvlist_free(config
);
7445 ztest_resume(spa_t
*spa
)
7447 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
7448 (void) printf("resuming from suspended state\n");
7449 spa_vdev_state_enter(spa
, SCL_NONE
);
7450 vdev_clear(spa
, NULL
);
7451 (void) spa_vdev_state_exit(spa
, NULL
, 0);
7452 (void) zio_resume(spa
);
7455 static __attribute__((noreturn
)) void
7456 ztest_resume_thread(void *arg
)
7460 while (!ztest_exiting
) {
7461 if (spa_suspended(spa
))
7463 (void) poll(NULL
, 0, 100);
7466 * Periodically change the zfs_compressed_arc_enabled setting.
7468 if (ztest_random(10) == 0)
7469 zfs_compressed_arc_enabled
= ztest_random(2);
7472 * Periodically change the zfs_abd_scatter_enabled setting.
7474 if (ztest_random(10) == 0)
7475 zfs_abd_scatter_enabled
= ztest_random(2);
7481 static __attribute__((noreturn
)) void
7482 ztest_deadman_thread(void *arg
)
7484 ztest_shared_t
*zs
= arg
;
7485 spa_t
*spa
= ztest_spa
;
7486 hrtime_t delay
, overdue
, last_run
= gethrtime();
7488 delay
= (zs
->zs_thread_stop
- zs
->zs_thread_start
) +
7489 MSEC2NSEC(zfs_deadman_synctime_ms
);
7491 while (!ztest_exiting
) {
7493 * Wait for the delay timer while checking occasionally
7494 * if we should stop.
7496 if (gethrtime() < last_run
+ delay
) {
7497 (void) poll(NULL
, 0, 1000);
7502 * If the pool is suspended then fail immediately. Otherwise,
7503 * check to see if the pool is making any progress. If
7504 * vdev_deadman() discovers that there hasn't been any recent
7505 * I/Os then it will end up aborting the tests.
7507 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
7509 "aborting test after %llu seconds because "
7510 "pool has transitioned to a suspended state.",
7511 (u_longlong_t
)zfs_deadman_synctime_ms
/ 1000);
7513 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
7516 * If the process doesn't complete within a grace period of
7517 * zfs_deadman_synctime_ms over the expected finish time,
7518 * then it may be hung and is terminated.
7520 overdue
= zs
->zs_proc_stop
+ MSEC2NSEC(zfs_deadman_synctime_ms
);
7521 if (gethrtime() > overdue
) {
7523 "aborting test after %llu seconds because "
7524 "the process is overdue for termination.",
7525 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7528 (void) printf("ztest has been running for %lld seconds\n",
7529 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7531 last_run
= gethrtime();
7532 delay
= MSEC2NSEC(zfs_deadman_checktime_ms
);
7539 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
7541 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
7542 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
7543 hrtime_t functime
= gethrtime();
7546 for (i
= 0; i
< zi
->zi_iters
; i
++)
7547 zi
->zi_func(zd
, id
);
7549 functime
= gethrtime() - functime
;
7551 atomic_add_64(&zc
->zc_count
, 1);
7552 atomic_add_64(&zc
->zc_time
, functime
);
7554 if (ztest_opts
.zo_verbose
>= 4)
7555 (void) printf("%6.2f sec in %s\n",
7556 (double)functime
/ NANOSEC
, zi
->zi_funcname
);
7559 typedef struct ztest_raidz_expand_io
{
7561 uint64_t rzx_amount
;
7562 uint64_t rzx_bufsize
;
7563 const void *rzx_buffer
;
7564 uint64_t rzx_alloc_max
;
7566 } ztest_expand_io_t
;
7568 #undef OD_ARRAY_SIZE
7569 #define OD_ARRAY_SIZE 10
7572 * Write a request amount of data to some dataset objects.
7573 * There will be ztest_opts.zo_threads count of these running in parallel.
7575 static __attribute__((noreturn
)) void
7576 ztest_rzx_thread(void *arg
)
7578 ztest_expand_io_t
*info
= (ztest_expand_io_t
*)arg
;
7582 ztest_ds_t
*zd
= &ztest_ds
[info
->rzx_id
% ztest_opts
.zo_datasets
];
7583 spa_t
*spa
= info
->rzx_spa
;
7585 od_size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
7586 od
= umem_alloc(od_size
, UMEM_NOFAIL
);
7587 batchsize
= OD_ARRAY_SIZE
;
7589 /* Create objects to write to */
7590 for (int b
= 0; b
< batchsize
; b
++) {
7591 ztest_od_init(od
+ b
, info
->rzx_id
, FTAG
, b
,
7592 DMU_OT_UINT64_OTHER
, 0, 0, 0);
7594 if (ztest_object_init(zd
, od
, od_size
, B_FALSE
) != 0) {
7595 umem_free(od
, od_size
);
7599 for (uint64_t offset
= 0, written
= 0; written
< info
->rzx_amount
;
7600 offset
+= info
->rzx_bufsize
) {
7601 /* write to 10 objects */
7602 for (int i
= 0; i
< batchsize
&& written
< info
->rzx_amount
;
7604 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
7605 ztest_write(zd
, od
[i
].od_object
, offset
,
7606 info
->rzx_bufsize
, info
->rzx_buffer
);
7607 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
7608 written
+= info
->rzx_bufsize
;
7610 txg_wait_synced(spa_get_dsl(spa
), 0);
7611 /* due to inflation, we'll typically bail here */
7612 if (metaslab_class_get_alloc(spa_normal_class(spa
)) >
7613 info
->rzx_alloc_max
) {
7618 /* Remove a few objects to leave some holes in allocation space */
7619 mutex_enter(&zd
->zd_dirobj_lock
);
7620 (void) ztest_remove(zd
, od
, 2);
7621 mutex_exit(&zd
->zd_dirobj_lock
);
7623 umem_free(od
, od_size
);
7628 static __attribute__((noreturn
)) void
7629 ztest_thread(void *arg
)
7632 uint64_t id
= (uintptr_t)arg
;
7633 ztest_shared_t
*zs
= ztest_shared
;
7637 ztest_shared_callstate_t
*zc
;
7639 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
7641 * See if it's time to force a crash.
7643 if (now
> zs
->zs_thread_kill
&&
7644 raidz_expand_pause_point
== RAIDZ_EXPAND_PAUSE_NONE
) {
7649 * If we're getting ENOSPC with some regularity, stop.
7651 if (zs
->zs_enospc_count
> 10)
7655 * Pick a random function to execute.
7657 rand
= ztest_random(ZTEST_FUNCS
);
7658 zi
= &ztest_info
[rand
];
7659 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
7660 call_next
= zc
->zc_next
;
7662 if (now
>= call_next
&&
7663 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
7664 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
7665 ztest_execute(rand
, zi
, id
);
7673 ztest_dataset_name(char *dsname
, const char *pool
, int d
)
7675 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
7679 ztest_dataset_destroy(int d
)
7681 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7684 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7686 if (ztest_opts
.zo_verbose
>= 3)
7687 (void) printf("Destroying %s to free up space\n", name
);
7690 * Cleanup any non-standard clones and snapshots. In general,
7691 * ztest thread t operates on dataset (t % zopt_datasets),
7692 * so there may be more than one thing to clean up.
7694 for (t
= d
; t
< ztest_opts
.zo_threads
;
7695 t
+= ztest_opts
.zo_datasets
)
7696 ztest_dsl_dataset_cleanup(name
, t
);
7698 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
7699 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
7703 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
7705 uint64_t usedobjs
, dirobjs
, scratch
;
7708 * ZTEST_DIROBJ is the object directory for the entire dataset.
7709 * Therefore, the number of objects in use should equal the
7710 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7711 * If not, we have an object leak.
7713 * Note that we can only check this in ztest_dataset_open(),
7714 * when the open-context and syncing-context values agree.
7715 * That's because zap_count() returns the open-context value,
7716 * while dmu_objset_space() returns the rootbp fill count.
7718 VERIFY0(zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
7719 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
7720 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
7724 ztest_dataset_open(int d
)
7726 ztest_ds_t
*zd
= &ztest_ds
[d
];
7727 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
7730 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7733 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7735 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7737 error
= ztest_dataset_create(name
);
7738 if (error
== ENOSPC
) {
7739 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7740 ztest_record_enospc(FTAG
);
7743 ASSERT(error
== 0 || error
== EEXIST
);
7745 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
7747 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7749 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
7751 zilog
= zd
->zd_zilog
;
7753 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
7754 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
7755 fatal(B_FALSE
, "missing log records: "
7756 "claimed %"PRIu64
" < committed %"PRIu64
"",
7757 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
7759 ztest_dataset_dirobj_verify(zd
);
7761 zil_replay(os
, zd
, ztest_replay_vector
);
7763 ztest_dataset_dirobj_verify(zd
);
7765 if (ztest_opts
.zo_verbose
>= 6)
7766 (void) printf("%s replay %"PRIu64
" blocks, "
7767 "%"PRIu64
" records, seq %"PRIu64
"\n",
7769 zilog
->zl_parse_blk_count
,
7770 zilog
->zl_parse_lr_count
,
7771 zilog
->zl_replaying_seq
);
7773 zilog
= zil_open(os
, ztest_get_data
, NULL
);
7775 if (zilog
->zl_replaying_seq
!= 0 &&
7776 zilog
->zl_replaying_seq
< committed_seq
)
7777 fatal(B_FALSE
, "missing log records: "
7778 "replayed %"PRIu64
" < committed %"PRIu64
"",
7779 zilog
->zl_replaying_seq
, committed_seq
);
7785 ztest_dataset_close(int d
)
7787 ztest_ds_t
*zd
= &ztest_ds
[d
];
7789 zil_close(zd
->zd_zilog
);
7790 dmu_objset_disown(zd
->zd_os
, B_TRUE
, zd
);
7796 ztest_replay_zil_cb(const char *name
, void *arg
)
7802 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_ANY
, B_TRUE
,
7803 B_TRUE
, FTAG
, &os
));
7805 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
7807 ztest_zd_init(zdtmp
, NULL
, os
);
7808 zil_replay(os
, zdtmp
, ztest_replay_vector
);
7809 ztest_zd_fini(zdtmp
);
7811 if (dmu_objset_zil(os
)->zl_parse_lr_count
!= 0 &&
7812 ztest_opts
.zo_verbose
>= 6) {
7813 zilog_t
*zilog
= dmu_objset_zil(os
);
7815 (void) printf("%s replay %"PRIu64
" blocks, "
7816 "%"PRIu64
" records, seq %"PRIu64
"\n",
7818 zilog
->zl_parse_blk_count
,
7819 zilog
->zl_parse_lr_count
,
7820 zilog
->zl_replaying_seq
);
7823 umem_free(zdtmp
, sizeof (ztest_ds_t
));
7825 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7832 ztest_ds_t
*zd
= &ztest_ds
[0];
7836 /* freeze not supported during RAIDZ expansion */
7837 if (ztest_opts
.zo_raid_do_expand
)
7840 if (ztest_opts
.zo_verbose
>= 3)
7841 (void) printf("testing spa_freeze()...\n");
7843 raidz_scratch_verify();
7844 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7845 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7846 VERIFY0(ztest_dataset_open(0));
7850 * Force the first log block to be transactionally allocated.
7851 * We have to do this before we freeze the pool -- otherwise
7852 * the log chain won't be anchored.
7854 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
7855 ztest_dmu_object_alloc_free(zd
, 0);
7856 zil_commit(zd
->zd_zilog
, 0);
7859 txg_wait_synced(spa_get_dsl(spa
), 0);
7862 * Freeze the pool. This stops spa_sync() from doing anything,
7863 * so that the only way to record changes from now on is the ZIL.
7868 * Because it is hard to predict how much space a write will actually
7869 * require beforehand, we leave ourselves some fudge space to write over
7872 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
7875 * Run tests that generate log records but don't alter the pool config
7876 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7877 * We do a txg_wait_synced() after each iteration to force the txg
7878 * to increase well beyond the last synced value in the uberblock.
7879 * The ZIL should be OK with that.
7881 * Run a random number of times less than zo_maxloops and ensure we do
7882 * not run out of space on the pool.
7884 while (ztest_random(10) != 0 &&
7885 numloops
++ < ztest_opts
.zo_maxloops
&&
7886 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
7888 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
7889 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
7890 ztest_io(zd
, od
.od_object
,
7891 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
7892 txg_wait_synced(spa_get_dsl(spa
), 0);
7896 * Commit all of the changes we just generated.
7898 zil_commit(zd
->zd_zilog
, 0);
7899 txg_wait_synced(spa_get_dsl(spa
), 0);
7902 * Close our dataset and close the pool.
7904 ztest_dataset_close(0);
7905 spa_close(spa
, FTAG
);
7909 * Open and close the pool and dataset to induce log replay.
7911 raidz_scratch_verify();
7912 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7913 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7914 ASSERT3U(spa_freeze_txg(spa
), ==, UINT64_MAX
);
7915 VERIFY0(ztest_dataset_open(0));
7917 txg_wait_synced(spa_get_dsl(spa
), 0);
7918 ztest_dataset_close(0);
7919 ztest_reguid(NULL
, 0);
7921 spa_close(spa
, FTAG
);
7926 ztest_import_impl(void)
7928 importargs_t args
= { 0 };
7929 nvlist_t
*cfg
= NULL
;
7931 char *searchdirs
[nsearch
];
7932 int flags
= ZFS_IMPORT_MISSING_LOG
;
7934 searchdirs
[0] = ztest_opts
.zo_dir
;
7935 args
.paths
= nsearch
;
7936 args
.path
= searchdirs
;
7937 args
.can_be_active
= B_FALSE
;
7939 libpc_handle_t lpch
= {
7940 .lpc_lib_handle
= NULL
,
7941 .lpc_ops
= &libzpool_config_ops
,
7942 .lpc_printerr
= B_TRUE
7944 VERIFY0(zpool_find_config(&lpch
, ztest_opts
.zo_pool
, &cfg
, &args
));
7945 VERIFY0(spa_import(ztest_opts
.zo_pool
, cfg
, NULL
, flags
));
7950 * Import a storage pool with the given name.
7953 ztest_import(ztest_shared_t
*zs
)
7957 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7958 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7959 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7961 raidz_scratch_verify();
7962 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7964 ztest_import_impl();
7966 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7967 zs
->zs_metaslab_sz
=
7968 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7969 zs
->zs_guid
= spa_guid(spa
);
7970 spa_close(spa
, FTAG
);
7974 if (!ztest_opts
.zo_mmp_test
) {
7975 ztest_run_zdb(zs
->zs_guid
);
7977 ztest_run_zdb(zs
->zs_guid
);
7980 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7981 mutex_destroy(&ztest_vdev_lock
);
7982 mutex_destroy(&ztest_checkpoint_lock
);
7986 * After the expansion was killed, check that the pool is healthy
7989 ztest_raidz_expand_check(spa_t
*spa
)
7991 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, ==, RAIDZ_EXPAND_KILLED
);
7993 * Set pool check done flag, main program will run a zdb check
7994 * of the pool when we exit.
7996 ztest_shared_opts
->zo_raidz_expand_test
= RAIDZ_EXPAND_CHECKED
;
7998 /* Wait for reflow to finish */
7999 if (ztest_opts
.zo_verbose
>= 1) {
8000 (void) printf("\nwaiting for reflow to finish ...\n");
8002 pool_raidz_expand_stat_t rzx_stats
;
8003 pool_raidz_expand_stat_t
*pres
= &rzx_stats
;
8005 txg_wait_synced(spa_get_dsl(spa
), 0);
8006 (void) poll(NULL
, 0, 500); /* wait 1/2 second */
8008 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8009 (void) spa_raidz_expand_get_stats(spa
, pres
);
8010 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8011 } while (pres
->pres_state
!= DSS_FINISHED
&&
8012 pres
->pres_reflowed
< pres
->pres_to_reflow
);
8014 if (ztest_opts
.zo_verbose
>= 1) {
8015 (void) printf("verifying an interrupted raidz "
8016 "expansion using a pool scrub ...\n");
8018 /* Will fail here if there is non-recoverable corruption detected */
8019 VERIFY0(ztest_scrub_impl(spa
));
8020 if (ztest_opts
.zo_verbose
>= 1) {
8021 (void) printf("raidz expansion scrub check complete\n");
8026 * Start a raidz expansion test. We run some I/O on the pool for a while
8027 * to get some data in the pool. Then we grow the raidz and
8028 * kill the test at the requested offset into the reflow, verifying that
8029 * doing such does not lead to pool corruption.
8032 ztest_raidz_expand_run(ztest_shared_t
*zs
, spa_t
*spa
)
8035 pool_raidz_expand_stat_t rzx_stats
;
8036 pool_raidz_expand_stat_t
*pres
= &rzx_stats
;
8037 kthread_t
**run_threads
;
8038 vdev_t
*cvd
, *rzvd
= spa
->spa_root_vdev
->vdev_child
[0];
8039 int total_disks
= rzvd
->vdev_children
;
8040 int data_disks
= total_disks
- vdev_get_nparity(rzvd
);
8041 uint64_t alloc_goal
;
8044 int threads
= ztest_opts
.zo_threads
;
8045 ztest_expand_io_t
*thread_args
;
8047 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, !=, RAIDZ_EXPAND_NONE
);
8048 ASSERT3U(rzvd
->vdev_ops
, ==, &vdev_raidz_ops
);
8049 ztest_opts
.zo_raidz_expand_test
= RAIDZ_EXPAND_STARTED
;
8051 /* Setup a 1 MiB buffer of random data */
8052 uint64_t bufsize
= 1024 * 1024;
8053 void *buffer
= umem_alloc(bufsize
, UMEM_NOFAIL
);
8055 if (read(ztest_fd_rand
, buffer
, bufsize
) != bufsize
) {
8056 fatal(B_TRUE
, "short read from /dev/urandom");
8059 * Put some data in the pool and then attach a vdev to initiate
8062 run_threads
= umem_zalloc(threads
* sizeof (kthread_t
*), UMEM_NOFAIL
);
8063 thread_args
= umem_zalloc(threads
* sizeof (ztest_expand_io_t
),
8065 /* Aim for roughly 25% of allocatable space up to 1GB */
8066 alloc_goal
= (vdev_get_min_asize(rzvd
) * data_disks
) / total_disks
;
8067 alloc_goal
= MIN(alloc_goal
>> 2, 1024*1024*1024);
8068 if (ztest_opts
.zo_verbose
>= 1) {
8069 (void) printf("adding data to pool '%s', goal %llu bytes\n",
8070 ztest_opts
.zo_pool
, (u_longlong_t
)alloc_goal
);
8074 * Kick off all the I/O generators that run in parallel.
8076 for (t
= 0; t
< threads
; t
++) {
8077 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
8078 umem_free(run_threads
, threads
* sizeof (kthread_t
*));
8079 umem_free(buffer
, bufsize
);
8082 thread_args
[t
].rzx_id
= t
;
8083 thread_args
[t
].rzx_amount
= alloc_goal
/ threads
;
8084 thread_args
[t
].rzx_bufsize
= bufsize
;
8085 thread_args
[t
].rzx_buffer
= buffer
;
8086 thread_args
[t
].rzx_alloc_max
= alloc_goal
;
8087 thread_args
[t
].rzx_spa
= spa
;
8088 run_threads
[t
] = thread_create(NULL
, 0, ztest_rzx_thread
,
8089 &thread_args
[t
], 0, NULL
, TS_RUN
| TS_JOINABLE
,
8094 * Wait for all of the writers to complete.
8096 for (t
= 0; t
< threads
; t
++)
8097 VERIFY0(thread_join(run_threads
[t
]));
8100 * Close all datasets. This must be done after all the threads
8101 * are joined so we can be sure none of the datasets are in-use
8102 * by any of the threads.
8104 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8105 if (t
< ztest_opts
.zo_datasets
)
8106 ztest_dataset_close(t
);
8109 txg_wait_synced(spa_get_dsl(spa
), 0);
8111 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
8112 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
8114 umem_free(buffer
, bufsize
);
8115 umem_free(run_threads
, threads
* sizeof (kthread_t
*));
8116 umem_free(thread_args
, threads
* sizeof (ztest_expand_io_t
));
8118 /* Set our reflow target to 25%, 50% or 75% of allocated size */
8119 uint_t multiple
= ztest_random(3) + 1;
8120 uint64_t reflow_max
= (rzvd
->vdev_stat
.vs_alloc
* multiple
) / 4;
8121 raidz_expand_max_reflow_bytes
= reflow_max
;
8123 if (ztest_opts
.zo_verbose
>= 1) {
8124 (void) printf("running raidz expansion test, killing when "
8125 "reflow reaches %llu bytes (%u/4 of allocated space)\n",
8126 (u_longlong_t
)reflow_max
, multiple
);
8129 /* XXX - do we want some I/O load during the reflow? */
8132 * Use a disk size that is larger than existing ones
8134 cvd
= rzvd
->vdev_child
[0];
8135 csize
= vdev_get_min_asize(cvd
);
8136 csize
+= csize
/ 10;
8138 * Path to vdev to be attached
8140 char *newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
8141 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
8142 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, rzvd
->vdev_children
);
8144 * Build the nvlist describing newpath.
8146 root
= make_vdev_root(newpath
, NULL
, NULL
, csize
, ztest_get_ashift(),
8149 * Expand the raidz vdev by attaching the new disk
8151 if (ztest_opts
.zo_verbose
>= 1) {
8152 (void) printf("expanding raidz: %d wide to %d wide with '%s'\n",
8153 (int)rzvd
->vdev_children
, (int)rzvd
->vdev_children
+ 1,
8156 error
= spa_vdev_attach(spa
, rzvd
->vdev_guid
, root
, B_FALSE
, B_FALSE
);
8159 fatal(0, "raidz expand: attach (%s %llu) returned %d",
8160 newpath
, (long long)csize
, error
);
8164 * Wait for reflow to begin
8166 while (spa
->spa_raidz_expand
== NULL
) {
8167 txg_wait_synced(spa_get_dsl(spa
), 0);
8168 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8170 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8171 (void) spa_raidz_expand_get_stats(spa
, pres
);
8172 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8173 while (pres
->pres_state
!= DSS_SCANNING
) {
8174 txg_wait_synced(spa_get_dsl(spa
), 0);
8175 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8176 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8177 (void) spa_raidz_expand_get_stats(spa
, pres
);
8178 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8181 ASSERT3U(pres
->pres_state
, ==, DSS_SCANNING
);
8182 ASSERT3U(pres
->pres_to_reflow
, !=, 0);
8184 * Set so when we are killed we go to raidz checking rather than
8187 ztest_shared_opts
->zo_raidz_expand_test
= RAIDZ_EXPAND_KILLED
;
8188 if (ztest_opts
.zo_verbose
>= 1) {
8189 (void) printf("raidz expansion reflow started, waiting for "
8190 "%llu bytes to be copied\n", (u_longlong_t
)reflow_max
);
8194 * Wait for reflow maximum to be reached and then kill the test
8196 while (pres
->pres_reflowed
< reflow_max
) {
8197 txg_wait_synced(spa_get_dsl(spa
), 0);
8198 (void) poll(NULL
, 0, 100); /* wait 1/10 second */
8199 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
8200 (void) spa_raidz_expand_get_stats(spa
, pres
);
8201 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
8204 /* Reset the reflow pause before killing */
8205 raidz_expand_max_reflow_bytes
= 0;
8207 if (ztest_opts
.zo_verbose
>= 1) {
8208 (void) printf("killing raidz expansion test after reflow "
8209 "reached %llu bytes\n", (u_longlong_t
)pres
->pres_reflowed
);
8213 * Kill ourself to simulate a panic during a reflow. Our parent will
8214 * restart the test and the changed flag value will drive the test
8215 * through the scrub/check code to verify the pool is not corrupted.
8221 ztest_generic_run(ztest_shared_t
*zs
, spa_t
*spa
)
8223 kthread_t
**run_threads
;
8226 run_threads
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (kthread_t
*),
8230 * Kick off all the tests that run in parallel.
8232 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8233 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
8234 umem_free(run_threads
, ztest_opts
.zo_threads
*
8235 sizeof (kthread_t
*));
8239 run_threads
[t
] = thread_create(NULL
, 0, ztest_thread
,
8240 (void *)(uintptr_t)t
, 0, NULL
, TS_RUN
| TS_JOINABLE
,
8245 * Wait for all of the tests to complete.
8247 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++)
8248 VERIFY0(thread_join(run_threads
[t
]));
8251 * Close all datasets. This must be done after all the threads
8252 * are joined so we can be sure none of the datasets are in-use
8253 * by any of the threads.
8255 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
8256 if (t
< ztest_opts
.zo_datasets
)
8257 ztest_dataset_close(t
);
8260 txg_wait_synced(spa_get_dsl(spa
), 0);
8262 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
8263 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
8265 umem_free(run_threads
, ztest_opts
.zo_threads
* sizeof (kthread_t
*));
8269 * Setup our test context and kick off threads to run tests on all datasets
8273 ztest_run(ztest_shared_t
*zs
)
8277 kthread_t
*resume_thread
, *deadman_thread
;
8282 ztest_exiting
= B_FALSE
;
8285 * Initialize parent/child shared state.
8287 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8288 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8289 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8291 zs
->zs_thread_start
= gethrtime();
8292 zs
->zs_thread_stop
=
8293 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
8294 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
8295 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
8296 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
8297 zs
->zs_thread_kill
-=
8298 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
8301 mutex_init(&zcl
.zcl_callbacks_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8303 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
8304 offsetof(ztest_cb_data_t
, zcd_node
));
8307 * Open our pool. It may need to be imported first depending on
8308 * what tests were running when the previous pass was terminated.
8310 raidz_scratch_verify();
8311 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8312 error
= spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
);
8314 VERIFY3S(error
, ==, ENOENT
);
8315 ztest_import_impl();
8316 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8317 zs
->zs_metaslab_sz
=
8318 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8321 metaslab_preload_limit
= ztest_random(20) + 1;
8325 * XXX - BUGBUG raidz expansion do not run this for generic for now
8327 if (ztest_opts
.zo_raidz_expand_test
!= RAIDZ_EXPAND_NONE
)
8328 VERIFY0(vdev_raidz_impl_set("cycle"));
8330 dmu_objset_stats_t dds
;
8331 VERIFY0(ztest_dmu_objset_own(ztest_opts
.zo_pool
,
8332 DMU_OST_ANY
, B_TRUE
, B_TRUE
, FTAG
, &os
));
8333 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
8334 dmu_objset_fast_stat(os
, &dds
);
8335 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
8336 dmu_objset_disown(os
, B_TRUE
, FTAG
);
8338 /* Give the dedicated raidz expansion test more grace time */
8339 if (ztest_opts
.zo_raidz_expand_test
!= RAIDZ_EXPAND_NONE
)
8340 zfs_deadman_synctime_ms
*= 2;
8343 * Create a thread to periodically resume suspended I/O.
8345 resume_thread
= thread_create(NULL
, 0, ztest_resume_thread
,
8346 spa
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
8349 * Create a deadman thread and set to panic if we hang.
8351 deadman_thread
= thread_create(NULL
, 0, ztest_deadman_thread
,
8352 zs
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
8354 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
8357 * Verify that we can safely inquire about any object,
8358 * whether it's allocated or not. To make it interesting,
8359 * we probe a 5-wide window around each power of two.
8360 * This hits all edge cases, including zero and the max.
8362 for (t
= 0; t
< 64; t
++) {
8363 for (d
= -5; d
<= 5; d
++) {
8364 error
= dmu_object_info(spa
->spa_meta_objset
,
8365 (1ULL << t
) + d
, NULL
);
8366 ASSERT(error
== 0 || error
== ENOENT
||
8372 * If we got any ENOSPC errors on the previous run, destroy something.
8374 if (zs
->zs_enospc_count
!= 0) {
8375 /* Not expecting ENOSPC errors during raidz expansion tests */
8376 ASSERT3U(ztest_opts
.zo_raidz_expand_test
, ==,
8379 int d
= ztest_random(ztest_opts
.zo_datasets
);
8380 ztest_dataset_destroy(d
);
8382 zs
->zs_enospc_count
= 0;
8385 * If we were in the middle of ztest_device_removal() and were killed
8386 * we need to ensure the removal and scrub complete before running
8387 * any tests that check ztest_device_removal_active. The removal will
8388 * be restarted automatically when the spa is opened, but we need to
8389 * initiate the scrub manually if it is not already in progress. Note
8390 * that we always run the scrub whenever an indirect vdev exists
8391 * because we have no way of knowing for sure if ztest_device_removal()
8392 * fully completed its scrub before the pool was reimported.
8394 * Does not apply for the RAIDZ expansion specific test runs
8396 if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_NONE
&&
8397 (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
||
8398 spa
->spa_removing_phys
.sr_prev_indirect_vdev
!= -1)) {
8399 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
8400 txg_wait_synced(spa_get_dsl(spa
), 0);
8402 error
= ztest_scrub_impl(spa
);
8408 if (ztest_opts
.zo_verbose
>= 4)
8409 (void) printf("starting main threads...\n");
8412 * Replay all logs of all datasets in the pool. This is primarily for
8413 * temporary datasets which wouldn't otherwise get replayed, which
8414 * can trigger failures when attempting to offline a SLOG in
8415 * ztest_fault_inject().
8417 (void) dmu_objset_find(ztest_opts
.zo_pool
, ztest_replay_zil_cb
,
8418 NULL
, DS_FIND_CHILDREN
);
8420 if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_REQUESTED
)
8421 ztest_raidz_expand_run(zs
, spa
);
8422 else if (ztest_opts
.zo_raidz_expand_test
== RAIDZ_EXPAND_KILLED
)
8423 ztest_raidz_expand_check(spa
);
8425 ztest_generic_run(zs
, spa
);
8427 /* Kill the resume and deadman threads */
8428 ztest_exiting
= B_TRUE
;
8429 VERIFY0(thread_join(resume_thread
));
8430 VERIFY0(thread_join(deadman_thread
));
8434 * Right before closing the pool, kick off a bunch of async I/O;
8435 * spa_close() should wait for it to complete.
8437 for (object
= 1; object
< 50; object
++) {
8438 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
8439 ZIO_PRIORITY_SYNC_READ
);
8442 /* Verify that at least one commit cb was called in a timely fashion */
8443 if (zc_cb_counter
>= ZTEST_COMMIT_CB_MIN_REG
)
8444 VERIFY0(zc_min_txg_delay
);
8446 spa_close(spa
, FTAG
);
8449 * Verify that we can loop over all pools.
8451 mutex_enter(&spa_namespace_lock
);
8452 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
8453 if (ztest_opts
.zo_verbose
> 3)
8454 (void) printf("spa_next: found %s\n", spa_name(spa
));
8455 mutex_exit(&spa_namespace_lock
);
8458 * Verify that we can export the pool and reimport it under a
8461 if ((ztest_random(2) == 0) && !ztest_opts
.zo_mmp_test
) {
8462 char name
[ZFS_MAX_DATASET_NAME_LEN
];
8463 (void) snprintf(name
, sizeof (name
), "%s_import",
8464 ztest_opts
.zo_pool
);
8465 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
8466 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
8471 list_destroy(&zcl
.zcl_callbacks
);
8472 mutex_destroy(&zcl
.zcl_callbacks_lock
);
8473 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8474 mutex_destroy(&ztest_vdev_lock
);
8475 mutex_destroy(&ztest_checkpoint_lock
);
8479 print_time(hrtime_t t
, char *timebuf
)
8481 hrtime_t s
= t
/ NANOSEC
;
8482 hrtime_t m
= s
/ 60;
8483 hrtime_t h
= m
/ 60;
8484 hrtime_t d
= h
/ 24;
8493 (void) sprintf(timebuf
,
8494 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
8496 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
8498 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
8500 (void) sprintf(timebuf
, "%llus", s
);
8504 make_random_props(void)
8508 props
= fnvlist_alloc();
8510 if (ztest_random(2) == 0)
8513 fnvlist_add_uint64(props
,
8514 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE
), 1);
8520 * Create a storage pool with the given name and initial vdev size.
8521 * Then test spa_freeze() functionality.
8524 ztest_init(ztest_shared_t
*zs
)
8527 nvlist_t
*nvroot
, *props
;
8530 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8531 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8532 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
8534 raidz_scratch_verify();
8535 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
8538 * Create the storage pool.
8540 (void) spa_destroy(ztest_opts
.zo_pool
);
8541 ztest_shared
->zs_vdev_next_leaf
= 0;
8543 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
8544 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
8545 NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
8546 props
= make_random_props();
8549 * We don't expect the pool to suspend unless maxfaults == 0,
8550 * in which case ztest_fault_inject() temporarily takes away
8551 * the only valid replica.
8553 fnvlist_add_uint64(props
,
8554 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE
),
8555 MAXFAULTS(zs
) ? ZIO_FAILURE_MODE_PANIC
: ZIO_FAILURE_MODE_WAIT
);
8557 for (i
= 0; i
< SPA_FEATURES
; i
++) {
8560 if (!spa_feature_table
[i
].fi_zfs_mod_supported
)
8564 * 75% chance of using the log space map feature. We want ztest
8565 * to exercise both the code paths that use the log space map
8566 * feature and the ones that don't.
8568 if (i
== SPA_FEATURE_LOG_SPACEMAP
&& ztest_random(4) == 0)
8571 VERIFY3S(-1, !=, asprintf(&buf
, "feature@%s",
8572 spa_feature_table
[i
].fi_uname
));
8573 fnvlist_add_uint64(props
, buf
, 0);
8577 VERIFY0(spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
, NULL
));
8578 fnvlist_free(nvroot
);
8579 fnvlist_free(props
);
8581 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
8582 zs
->zs_metaslab_sz
=
8583 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
8584 zs
->zs_guid
= spa_guid(spa
);
8585 spa_close(spa
, FTAG
);
8589 if (!ztest_opts
.zo_mmp_test
) {
8590 ztest_run_zdb(zs
->zs_guid
);
8592 ztest_run_zdb(zs
->zs_guid
);
8595 (void) pthread_rwlock_destroy(&ztest_name_lock
);
8596 mutex_destroy(&ztest_vdev_lock
);
8597 mutex_destroy(&ztest_checkpoint_lock
);
8603 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
8605 ztest_fd_data
= mkstemp(ztest_name_data
);
8606 ASSERT3S(ztest_fd_data
, >=, 0);
8607 (void) unlink(ztest_name_data
);
8611 shared_data_size(ztest_shared_hdr_t
*hdr
)
8615 size
= hdr
->zh_hdr_size
;
8616 size
+= hdr
->zh_opts_size
;
8617 size
+= hdr
->zh_size
;
8618 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
8619 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
8620 size
+= hdr
->zh_scratch_state_size
;
8629 ztest_shared_hdr_t
*hdr
;
8631 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
8632 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
8633 ASSERT3P(hdr
, !=, MAP_FAILED
);
8635 VERIFY0(ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
8637 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
8638 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
8639 hdr
->zh_size
= sizeof (ztest_shared_t
);
8640 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
8641 hdr
->zh_stats_count
= ZTEST_FUNCS
;
8642 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
8643 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
8644 hdr
->zh_scratch_state_size
= sizeof (ztest_shared_scratch_state_t
);
8646 size
= shared_data_size(hdr
);
8647 VERIFY0(ftruncate(ztest_fd_data
, size
));
8649 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
8656 ztest_shared_hdr_t
*hdr
;
8659 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
8660 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
8661 ASSERT3P(hdr
, !=, MAP_FAILED
);
8663 size
= shared_data_size(hdr
);
8665 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
8666 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
8667 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
8668 ASSERT3P(hdr
, !=, MAP_FAILED
);
8669 buf
= (uint8_t *)hdr
;
8671 offset
= hdr
->zh_hdr_size
;
8672 ztest_shared_opts
= (void *)&buf
[offset
];
8673 offset
+= hdr
->zh_opts_size
;
8674 ztest_shared
= (void *)&buf
[offset
];
8675 offset
+= hdr
->zh_size
;
8676 ztest_shared_callstate
= (void *)&buf
[offset
];
8677 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
8678 ztest_shared_ds
= (void *)&buf
[offset
];
8679 offset
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
8680 ztest_scratch_state
= (void *)&buf
[offset
];
8684 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
8688 char *cmdbuf
= NULL
;
8693 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
8694 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
8699 fatal(B_TRUE
, "fork failed");
8701 if (pid
== 0) { /* child */
8702 char fd_data_str
[12];
8705 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
8706 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
8708 if (libpath
!= NULL
) {
8709 const char *curlp
= getenv("LD_LIBRARY_PATH");
8711 VERIFY0(setenv("LD_LIBRARY_PATH", libpath
, 1));
8715 asprintf(&newlp
, "%s:%s", libpath
, curlp
));
8716 VERIFY0(setenv("LD_LIBRARY_PATH", newlp
, 1));
8720 (void) execl(cmd
, cmd
, (char *)NULL
);
8721 ztest_dump_core
= B_FALSE
;
8722 fatal(B_TRUE
, "exec failed: %s", cmd
);
8725 if (cmdbuf
!= NULL
) {
8726 umem_free(cmdbuf
, MAXPATHLEN
);
8730 while (waitpid(pid
, &status
, 0) != pid
)
8732 if (statusp
!= NULL
)
8735 if (WIFEXITED(status
)) {
8736 if (WEXITSTATUS(status
) != 0) {
8737 (void) fprintf(stderr
, "child exited with code %d\n",
8738 WEXITSTATUS(status
));
8742 } else if (WIFSIGNALED(status
)) {
8743 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
8744 (void) fprintf(stderr
, "child died with signal %d\n",
8750 (void) fprintf(stderr
, "something strange happened to child\n");
8756 ztest_run_init(void)
8760 ztest_shared_t
*zs
= ztest_shared
;
8763 * Blow away any existing copy of zpool.cache
8765 (void) remove(spa_config_path
);
8767 if (ztest_opts
.zo_init
== 0) {
8768 if (ztest_opts
.zo_verbose
>= 1)
8769 (void) printf("Importing pool %s\n",
8770 ztest_opts
.zo_pool
);
8776 * Create and initialize our storage pool.
8778 for (i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
8779 memset(zs
, 0, sizeof (*zs
));
8780 if (ztest_opts
.zo_verbose
>= 3 &&
8781 ztest_opts
.zo_init
!= 1) {
8782 (void) printf("ztest_init(), pass %d\n", i
);
8789 main(int argc
, char **argv
)
8797 ztest_shared_callstate_t
*zc
;
8799 char numbuf
[NN_NUMBUF_SZ
];
8803 char *fd_data_str
= getenv("ZTEST_FD_DATA");
8804 struct sigaction action
;
8806 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
8808 dprintf_setup(&argc
, argv
);
8809 zfs_deadman_synctime_ms
= 300000;
8810 zfs_deadman_checktime_ms
= 30000;
8812 * As two-word space map entries may not come up often (especially
8813 * if pool and vdev sizes are small) we want to force at least some
8814 * of them so the feature get tested.
8816 zfs_force_some_double_word_sm_entries
= B_TRUE
;
8819 * Verify that even extensively damaged split blocks with many
8820 * segments can be reconstructed in a reasonable amount of time
8821 * when reconstruction is known to be possible.
8823 * Note: the lower this value is, the more damage we inflict, and
8824 * the more time ztest spends in recovering that damage. We chose
8825 * to induce damage 1/100th of the time so recovery is tested but
8826 * not so frequently that ztest doesn't get to test other code paths.
8828 zfs_reconstruct_indirect_damage_fraction
= 100;
8830 action
.sa_handler
= sig_handler
;
8831 sigemptyset(&action
.sa_mask
);
8832 action
.sa_flags
= 0;
8834 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
8835 (void) fprintf(stderr
, "ztest: cannot catch SIGSEGV: %s.\n",
8840 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
8841 (void) fprintf(stderr
, "ztest: cannot catch SIGABRT: %s.\n",
8847 * Force random_get_bytes() to use /dev/urandom in order to prevent
8848 * ztest from needlessly depleting the system entropy pool.
8850 random_path
= "/dev/urandom";
8851 ztest_fd_rand
= open(random_path
, O_RDONLY
| O_CLOEXEC
);
8852 ASSERT3S(ztest_fd_rand
, >=, 0);
8855 process_options(argc
, argv
);
8860 memcpy(ztest_shared_opts
, &ztest_opts
,
8861 sizeof (*ztest_shared_opts
));
8863 ztest_fd_data
= atoi(fd_data_str
);
8865 memcpy(&ztest_opts
, ztest_shared_opts
, sizeof (ztest_opts
));
8867 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
8869 err
= ztest_set_global_vars();
8870 if (err
!= 0 && !fd_data_str
) {
8871 /* error message done by ztest_set_global_vars */
8874 /* children should not be spawned if setting gvars fails */
8875 VERIFY3S(err
, ==, 0);
8878 /* Override location of zpool.cache */
8879 VERIFY3S(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
8880 ztest_opts
.zo_dir
), !=, -1);
8882 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
8887 metaslab_force_ganging
= ztest_opts
.zo_metaslab_force_ganging
;
8888 metaslab_df_alloc_threshold
=
8889 zs
->zs_metaslab_df_alloc_threshold
;
8898 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
8900 if (ztest_opts
.zo_verbose
>= 1) {
8901 (void) printf("%"PRIu64
" vdevs, %d datasets, %d threads, "
8902 "%d %s disks, parity %d, %"PRIu64
" seconds...\n\n",
8903 ztest_opts
.zo_vdevs
,
8904 ztest_opts
.zo_datasets
,
8905 ztest_opts
.zo_threads
,
8906 ztest_opts
.zo_raid_children
,
8907 ztest_opts
.zo_raid_type
,
8908 ztest_opts
.zo_raid_parity
,
8909 ztest_opts
.zo_time
);
8912 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
8913 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
8915 zs
->zs_do_init
= B_TRUE
;
8916 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
8917 if (ztest_opts
.zo_verbose
>= 1) {
8918 (void) printf("Executing older ztest for "
8919 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
8921 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
8922 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
8924 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
8926 zs
->zs_do_init
= B_FALSE
;
8928 zs
->zs_proc_start
= gethrtime();
8929 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
8931 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8932 zi
= &ztest_info
[f
];
8933 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8934 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
8935 zc
->zc_next
= UINT64_MAX
;
8937 zc
->zc_next
= zs
->zs_proc_start
+
8938 ztest_random(2 * zi
->zi_interval
[0] + 1);
8942 * Run the tests in a loop. These tests include fault injection
8943 * to verify that self-healing data works, and forced crashes
8944 * to verify that we never lose on-disk consistency.
8946 while (gethrtime() < zs
->zs_proc_stop
) {
8951 * Initialize the workload counters for each function.
8953 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8954 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8959 /* Set the allocation switch size */
8960 zs
->zs_metaslab_df_alloc_threshold
=
8961 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
8963 if (!hasalt
|| ztest_random(2) == 0) {
8964 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8965 (void) printf("Executing newer ztest: %s\n",
8969 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
8971 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8972 (void) printf("Executing older ztest: %s\n",
8973 ztest_opts
.zo_alt_ztest
);
8976 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
8977 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
8984 if (ztest_opts
.zo_verbose
>= 1) {
8985 hrtime_t now
= gethrtime();
8987 now
= MIN(now
, zs
->zs_proc_stop
);
8988 print_time(zs
->zs_proc_stop
- now
, timebuf
);
8989 nicenum(zs
->zs_space
, numbuf
, sizeof (numbuf
));
8991 (void) printf("Pass %3d, %8s, %3"PRIu64
" ENOSPC, "
8992 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8994 WIFEXITED(status
) ? "Complete" : "SIGKILL",
8995 zs
->zs_enospc_count
,
8996 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
8998 100.0 * (now
- zs
->zs_proc_start
) /
8999 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
9002 if (ztest_opts
.zo_verbose
>= 2) {
9003 (void) printf("\nWorkload summary:\n\n");
9004 (void) printf("%7s %9s %s\n",
9005 "Calls", "Time", "Function");
9006 (void) printf("%7s %9s %s\n",
9007 "-----", "----", "--------");
9008 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
9009 zi
= &ztest_info
[f
];
9010 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
9011 print_time(zc
->zc_time
, timebuf
);
9012 (void) printf("%7"PRIu64
" %9s %s\n",
9013 zc
->zc_count
, timebuf
,
9016 (void) printf("\n");
9019 if (!ztest_opts
.zo_mmp_test
)
9020 ztest_run_zdb(zs
->zs_guid
);
9021 if (ztest_shared_opts
->zo_raidz_expand_test
==
9022 RAIDZ_EXPAND_CHECKED
)
9023 break; /* raidz expand test complete */
9026 if (ztest_opts
.zo_verbose
>= 1) {
9028 (void) printf("%d runs of older ztest: %s\n", older
,
9029 ztest_opts
.zo_alt_ztest
);
9030 (void) printf("%d runs of newer ztest: %s\n", newer
,
9033 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
9034 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
9037 umem_free(cmd
, MAXNAMELEN
);