4 .\" The contents of this file are subject to the terms of the
5 .\" Common Development and Distribution License (the "License").
6 .\" You may not use this file except in compliance with the License.
8 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 .\" or https://opensource.org/licenses/CDDL-1.0.
10 .\" See the License for the specific language governing permissions
11 .\" and limitations under the License.
13 .\" When distributing Covered Code, include this CDDL HEADER in each
14 .\" file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 .\" If applicable, add the following below this CDDL HEADER, with the
16 .\" fields enclosed by brackets "[]" replaced with your own identifying
17 .\" information: Portions Copyright [yyyy] [name of copyright owner]
21 .\" Copyright (c) 2009 Sun Microsystems, Inc. All Rights Reserved.
22 .\" Copyright 2011 Joshua M. Clulow <josh@sysmgr.org>
23 .\" Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 .\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 .\" Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 .\" Copyright (c) 2014 by Adam Stevko. All rights reserved.
27 .\" Copyright (c) 2014 Integros [integros.com]
28 .\" Copyright 2019 Richard Laager. All rights reserved.
29 .\" Copyright 2018 Nexenta Systems, Inc.
30 .\" Copyright 2019 Joyent, Inc.
38 .Nd overview of ZFS concepts
41 .Ss ZFS File System Hierarchy
42 A ZFS storage pool is a logical collection of devices that provide space for
44 A storage pool is also the root of the ZFS file system hierarchy.
46 The root of the pool can be accessed as a file system, such as mounting and
47 unmounting, taking snapshots, and setting properties.
48 The physical storage characteristics, however, are managed by the
54 for more information on creating and administering pools.
56 A snapshot is a read-only copy of a file system or volume.
57 Snapshots can be created extremely quickly, and initially consume no additional
58 space within the pool.
59 As data within the active dataset changes, the snapshot consumes more data than
60 would otherwise be shared with the active dataset.
62 Snapshots can have arbitrary names.
63 Snapshots of volumes can be cloned or rolled back, visibility is determined
66 property of the parent volume.
68 File system snapshots can be accessed under the
70 directory in the root of the file system.
71 Snapshots are automatically mounted on demand and may be unmounted at regular
75 directory can be controlled by the
79 A bookmark is like a snapshot, a read-only copy of a file system or volume.
80 Bookmarks can be created extremely quickly, compared to snapshots, and they
81 consume no additional space within the pool.
82 Bookmarks can also have arbitrary names, much like snapshots.
84 Unlike snapshots, bookmarks can not be accessed through the filesystem in any
86 From a storage standpoint a bookmark just provides a way to reference
87 when a snapshot was created as a distinct object.
88 Bookmarks are initially tied to a snapshot, not the filesystem or volume,
89 and they will survive if the snapshot itself is destroyed.
90 Since they are very light weight there's little incentive to destroy them.
92 A clone is a writable volume or file system whose initial contents are the same
94 As with snapshots, creating a clone is nearly instantaneous, and initially
95 consumes no additional space.
97 Clones can only be created from a snapshot.
98 When a snapshot is cloned, it creates an implicit dependency between the parent
100 Even though the clone is created somewhere else in the dataset hierarchy, the
101 original snapshot cannot be destroyed as long as a clone exists.
104 property exposes this dependency, and the
106 command lists any such dependencies, if they exist.
108 The clone parent-child dependency relationship can be reversed by using the
113 file system to become a clone of the specified file system, which makes it
114 possible to destroy the file system that the clone was created from.
116 Creating a ZFS file system is a simple operation, so the number of file systems
117 per system is likely to be numerous.
118 To cope with this, ZFS automatically manages mounting and unmounting file
119 systems without the need to edit the
122 All automatically managed file systems are mounted by ZFS at boot time.
124 By default, file systems are mounted under
128 is the name of the file system in the ZFS namespace.
129 Directories are created and destroyed as needed.
131 A file system can also have a mount point set in the
134 This directory is created as needed, and ZFS automatically mounts the file
136 .Nm zfs Cm mount Fl a
143 property can be inherited, so if
149 automatically inherits a mount point of
150 .Pa /export/stuff/user .
156 prevents the file system from being mounted.
158 If needed, ZFS file systems can also be managed with traditional tools
164 If a file system's mount point is set to
166 ZFS makes no attempt to manage the file system, and the administrator is
167 responsible for mounting and unmounting the file system.
169 be imported before a legacy mount can succeed, administrators should ensure
170 that legacy mounts are only attempted after the zpool import process
171 finishes at boot time.
172 For example, on machines using systemd, the mount option
174 .Nm x-systemd.requires=zfs-import.target
176 will ensure that the zfs-import completes before systemd attempts mounting
182 Deduplication is the process for removing redundant data at the block level,
183 reducing the total amount of data stored.
184 If a file system has the
186 property enabled, duplicate data blocks are removed synchronously.
188 is that only unique data is stored and common components are shared among files.
190 Deduplicating data is a very resource-intensive operation.
191 It is generally recommended that you have at least 1.25 GiB of RAM
192 per 1 TiB of storage when you enable deduplication.
193 Calculating the exact requirement depends heavily
194 on the type of data stored in the pool.
196 Enabling deduplication on an improperly-designed system can result in
197 performance issues (slow I/O and administrative operations).
198 It can potentially lead to problems importing a pool due to memory exhaustion.
199 Deduplication can consume significant processing power (CPU) and memory as well
200 as generate additional disk I/O.
202 Before creating a pool with deduplication enabled, ensure that you have planned
203 your hardware requirements appropriately and implemented appropriate recovery
204 practices, such as regular backups.
207 property as a less resource-intensive alternative.