4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
54 #include <sys/zfeature.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
66 * Enable/disable nopwrite feature.
68 static int zfs_nopwrite_enabled
= 1;
71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72 * one TXG. After this threshold is crossed, additional dirty blocks from frees
73 * will wait until the next TXG.
74 * A value of zero will disable this throttle.
76 static uint_t zfs_per_txg_dirty_frees_percent
= 30;
79 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80 * By default this is enabled to ensure accurate hole reporting, it can result
81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82 * Disabling this option will result in holes never being reported in dirty
83 * files which is always safe.
85 static int zfs_dmu_offset_next_sync
= 1;
88 * Limit the amount we can prefetch with one call to this amount. This
89 * helps to limit the amount of memory that can be used by prefetching.
90 * Larger objects should be prefetched a bit at a time.
92 uint_t dmu_prefetch_max
= 8 * SPA_MAXBLOCKSIZE
;
94 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
95 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "unallocated" },
96 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "object directory" },
97 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "object array" },
98 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "packed nvlist" },
99 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "packed nvlist size" },
100 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj" },
101 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj header" },
102 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map header" },
103 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map" },
104 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, TRUE
, "ZIL intent log" },
105 {DMU_BSWAP_DNODE
, TRUE
, FALSE
, TRUE
, "DMU dnode" },
106 {DMU_BSWAP_OBJSET
, TRUE
, TRUE
, FALSE
, "DMU objset" },
107 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL directory" },
108 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL directory child map"},
109 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset snap map" },
110 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL props" },
111 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL dataset" },
112 {DMU_BSWAP_ZNODE
, TRUE
, FALSE
, FALSE
, "ZFS znode" },
113 {DMU_BSWAP_OLDACL
, TRUE
, FALSE
, TRUE
, "ZFS V0 ACL" },
114 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "ZFS plain file" },
115 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS directory" },
116 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "ZFS master node" },
117 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS delete queue" },
118 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "zvol object" },
119 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "zvol prop" },
120 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "other uint8[]" },
121 {DMU_BSWAP_UINT64
, FALSE
, FALSE
, TRUE
, "other uint64[]" },
122 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "other ZAP" },
123 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "persistent error log" },
124 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "SPA history" },
125 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA history offsets" },
126 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "Pool properties" },
127 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL permissions" },
128 {DMU_BSWAP_ACL
, TRUE
, FALSE
, TRUE
, "ZFS ACL" },
129 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "ZFS SYSACL" },
130 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "FUID table" },
131 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "FUID table size" },
132 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset next clones"},
133 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan work queue" },
134 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project used" },
135 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project quota"},
136 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "snapshot refcount tags"},
137 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT ZAP algorithm" },
138 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT statistics" },
139 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "System attributes" },
140 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA master node" },
141 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr registration" },
142 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr layouts" },
143 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan translations" },
144 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "deduplicated block" },
145 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL deadlist map" },
146 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL deadlist map hdr" },
147 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dir clones" },
148 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj subobj" }
151 dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
152 { byteswap_uint8_array
, "uint8" },
153 { byteswap_uint16_array
, "uint16" },
154 { byteswap_uint32_array
, "uint32" },
155 { byteswap_uint64_array
, "uint64" },
156 { zap_byteswap
, "zap" },
157 { dnode_buf_byteswap
, "dnode" },
158 { dmu_objset_byteswap
, "objset" },
159 { zfs_znode_byteswap
, "znode" },
160 { zfs_oldacl_byteswap
, "oldacl" },
161 { zfs_acl_byteswap
, "acl" }
165 dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
,
166 const void *tag
, dmu_buf_t
**dbp
)
171 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
172 blkid
= dbuf_whichblock(dn
, 0, offset
);
173 db
= dbuf_hold(dn
, blkid
, tag
);
174 rw_exit(&dn
->dn_struct_rwlock
);
178 return (SET_ERROR(EIO
));
185 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
186 const void *tag
, dmu_buf_t
**dbp
)
193 err
= dnode_hold(os
, object
, FTAG
, &dn
);
196 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
197 blkid
= dbuf_whichblock(dn
, 0, offset
);
198 db
= dbuf_hold(dn
, blkid
, tag
);
199 rw_exit(&dn
->dn_struct_rwlock
);
200 dnode_rele(dn
, FTAG
);
204 return (SET_ERROR(EIO
));
212 dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
213 const void *tag
, dmu_buf_t
**dbp
, int flags
)
216 int db_flags
= DB_RF_CANFAIL
;
218 if (flags
& DMU_READ_NO_PREFETCH
)
219 db_flags
|= DB_RF_NOPREFETCH
;
220 if (flags
& DMU_READ_NO_DECRYPT
)
221 db_flags
|= DB_RF_NO_DECRYPT
;
223 err
= dmu_buf_hold_noread_by_dnode(dn
, offset
, tag
, dbp
);
225 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
226 err
= dbuf_read(db
, NULL
, db_flags
);
237 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
238 const void *tag
, dmu_buf_t
**dbp
, int flags
)
241 int db_flags
= DB_RF_CANFAIL
;
243 if (flags
& DMU_READ_NO_PREFETCH
)
244 db_flags
|= DB_RF_NOPREFETCH
;
245 if (flags
& DMU_READ_NO_DECRYPT
)
246 db_flags
|= DB_RF_NO_DECRYPT
;
248 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
250 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
251 err
= dbuf_read(db
, NULL
, db_flags
);
264 return (DN_OLD_MAX_BONUSLEN
);
268 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
270 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
277 if (dn
->dn_bonus
!= db
) {
278 error
= SET_ERROR(EINVAL
);
279 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
280 error
= SET_ERROR(EINVAL
);
282 dnode_setbonuslen(dn
, newsize
, tx
);
291 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
293 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
300 if (!DMU_OT_IS_VALID(type
)) {
301 error
= SET_ERROR(EINVAL
);
302 } else if (dn
->dn_bonus
!= db
) {
303 error
= SET_ERROR(EINVAL
);
305 dnode_setbonus_type(dn
, type
, tx
);
314 dmu_get_bonustype(dmu_buf_t
*db_fake
)
316 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
318 dmu_object_type_t type
;
322 type
= dn
->dn_bonustype
;
329 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
334 error
= dnode_hold(os
, object
, FTAG
, &dn
);
335 dbuf_rm_spill(dn
, tx
);
336 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
337 dnode_rm_spill(dn
, tx
);
338 rw_exit(&dn
->dn_struct_rwlock
);
339 dnode_rele(dn
, FTAG
);
344 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
345 * has not yet been allocated a new bonus dbuf a will be allocated.
346 * Returns ENOENT, EIO, or 0.
348 int dmu_bonus_hold_by_dnode(dnode_t
*dn
, const void *tag
, dmu_buf_t
**dbp
,
353 uint32_t db_flags
= DB_RF_MUST_SUCCEED
;
355 if (flags
& DMU_READ_NO_PREFETCH
)
356 db_flags
|= DB_RF_NOPREFETCH
;
357 if (flags
& DMU_READ_NO_DECRYPT
)
358 db_flags
|= DB_RF_NO_DECRYPT
;
360 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
361 if (dn
->dn_bonus
== NULL
) {
362 if (!rw_tryupgrade(&dn
->dn_struct_rwlock
)) {
363 rw_exit(&dn
->dn_struct_rwlock
);
364 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
366 if (dn
->dn_bonus
== NULL
)
367 dbuf_create_bonus(dn
);
371 /* as long as the bonus buf is held, the dnode will be held */
372 if (zfs_refcount_add(&db
->db_holds
, tag
) == 1) {
373 VERIFY(dnode_add_ref(dn
, db
));
374 atomic_inc_32(&dn
->dn_dbufs_count
);
378 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
379 * hold and incrementing the dbuf count to ensure that dnode_move() sees
380 * a dnode hold for every dbuf.
382 rw_exit(&dn
->dn_struct_rwlock
);
384 error
= dbuf_read(db
, NULL
, db_flags
);
386 dnode_evict_bonus(dn
);
397 dmu_bonus_hold(objset_t
*os
, uint64_t object
, const void *tag
, dmu_buf_t
**dbp
)
402 error
= dnode_hold(os
, object
, FTAG
, &dn
);
406 error
= dmu_bonus_hold_by_dnode(dn
, tag
, dbp
, DMU_READ_NO_PREFETCH
);
407 dnode_rele(dn
, FTAG
);
413 * returns ENOENT, EIO, or 0.
415 * This interface will allocate a blank spill dbuf when a spill blk
416 * doesn't already exist on the dnode.
418 * if you only want to find an already existing spill db, then
419 * dmu_spill_hold_existing() should be used.
422 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, const void *tag
,
425 dmu_buf_impl_t
*db
= NULL
;
428 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
429 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
431 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
433 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
434 rw_exit(&dn
->dn_struct_rwlock
);
438 return (SET_ERROR(EIO
));
440 err
= dbuf_read(db
, NULL
, flags
);
451 dmu_spill_hold_existing(dmu_buf_t
*bonus
, const void *tag
, dmu_buf_t
**dbp
)
453 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
460 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
461 err
= SET_ERROR(EINVAL
);
463 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
465 if (!dn
->dn_have_spill
) {
466 err
= SET_ERROR(ENOENT
);
468 err
= dmu_spill_hold_by_dnode(dn
,
469 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
472 rw_exit(&dn
->dn_struct_rwlock
);
480 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, uint32_t flags
, const void *tag
,
483 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
486 uint32_t db_flags
= DB_RF_CANFAIL
;
488 if (flags
& DMU_READ_NO_DECRYPT
)
489 db_flags
|= DB_RF_NO_DECRYPT
;
493 err
= dmu_spill_hold_by_dnode(dn
, db_flags
, tag
, dbp
);
500 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
501 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
502 * and can induce severe lock contention when writing to several files
503 * whose dnodes are in the same block.
506 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
507 boolean_t read
, const void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
,
511 zstream_t
*zs
= NULL
;
512 uint64_t blkid
, nblks
, i
;
516 boolean_t missed
= B_FALSE
;
518 ASSERT(!read
|| length
<= DMU_MAX_ACCESS
);
521 * Note: We directly notify the prefetch code of this read, so that
522 * we can tell it about the multi-block read. dbuf_read() only knows
523 * about the one block it is accessing.
525 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
528 if ((flags
& DMU_READ_NO_DECRYPT
) != 0)
529 dbuf_flags
|= DB_RF_NO_DECRYPT
;
531 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
532 if (dn
->dn_datablkshift
) {
533 int blkshift
= dn
->dn_datablkshift
;
534 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
535 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
537 if (offset
+ length
> dn
->dn_datablksz
) {
538 zfs_panic_recover("zfs: accessing past end of object "
539 "%llx/%llx (size=%u access=%llu+%llu)",
540 (longlong_t
)dn
->dn_objset
->
541 os_dsl_dataset
->ds_object
,
542 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
543 (longlong_t
)offset
, (longlong_t
)length
);
544 rw_exit(&dn
->dn_struct_rwlock
);
545 return (SET_ERROR(EIO
));
549 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
552 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
,
554 blkid
= dbuf_whichblock(dn
, 0, offset
);
555 if ((flags
& DMU_READ_NO_PREFETCH
) == 0 &&
556 length
<= zfetch_array_rd_sz
) {
558 * Prepare the zfetch before initiating the demand reads, so
559 * that if multiple threads block on same indirect block, we
560 * base predictions on the original less racy request order.
562 zs
= dmu_zfetch_prepare(&dn
->dn_zfetch
, blkid
, nblks
, read
,
565 for (i
= 0; i
< nblks
; i
++) {
566 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
569 dmu_zfetch_run(zs
, missed
, B_TRUE
);
570 rw_exit(&dn
->dn_struct_rwlock
);
571 dmu_buf_rele_array(dbp
, nblks
, tag
);
574 return (SET_ERROR(EIO
));
578 * Initiate async demand data read.
579 * We check the db_state after calling dbuf_read() because
580 * (1) dbuf_read() may change the state to CACHED due to a
581 * hit in the ARC, and (2) on a cache miss, a child will
582 * have been added to "zio" but not yet completed, so the
583 * state will not yet be CACHED.
586 if (i
== nblks
- 1 && blkid
+ i
< dn
->dn_maxblkid
&&
587 offset
+ length
< db
->db
.db_offset
+
589 if (offset
<= db
->db
.db_offset
)
590 dbuf_flags
|= DB_RF_PARTIAL_FIRST
;
592 dbuf_flags
|= DB_RF_PARTIAL_MORE
;
594 (void) dbuf_read(db
, zio
, dbuf_flags
);
595 if (db
->db_state
!= DB_CACHED
)
602 zfs_racct_write(length
, nblks
);
605 dmu_zfetch_run(zs
, missed
, B_TRUE
);
606 rw_exit(&dn
->dn_struct_rwlock
);
609 /* wait for async read i/o */
612 dmu_buf_rele_array(dbp
, nblks
, tag
);
616 /* wait for other io to complete */
617 for (i
= 0; i
< nblks
; i
++) {
618 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
619 mutex_enter(&db
->db_mtx
);
620 while (db
->db_state
== DB_READ
||
621 db
->db_state
== DB_FILL
)
622 cv_wait(&db
->db_changed
, &db
->db_mtx
);
623 if (db
->db_state
== DB_UNCACHED
)
624 err
= SET_ERROR(EIO
);
625 mutex_exit(&db
->db_mtx
);
627 dmu_buf_rele_array(dbp
, nblks
, tag
);
639 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
640 uint64_t length
, int read
, const void *tag
, int *numbufsp
,
646 err
= dnode_hold(os
, object
, FTAG
, &dn
);
650 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
651 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
653 dnode_rele(dn
, FTAG
);
659 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
660 uint64_t length
, boolean_t read
, const void *tag
, int *numbufsp
,
663 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
669 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
670 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
677 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, const void *tag
)
680 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
685 for (i
= 0; i
< numbufs
; i
++) {
687 dbuf_rele(dbp
[i
], tag
);
690 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
694 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
695 * indirect blocks prefetched will be those that point to the blocks containing
696 * the data starting at offset, and continuing to offset + len.
698 * Note that if the indirect blocks above the blocks being prefetched are not
699 * in cache, they will be asynchronously read in.
702 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
703 uint64_t len
, zio_priority_t pri
)
709 if (len
== 0) { /* they're interested in the bonus buffer */
710 dn
= DMU_META_DNODE(os
);
712 if (object
== 0 || object
>= DN_MAX_OBJECT
)
715 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
716 blkid
= dbuf_whichblock(dn
, level
,
717 object
* sizeof (dnode_phys_t
));
718 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
719 rw_exit(&dn
->dn_struct_rwlock
);
724 * See comment before the definition of dmu_prefetch_max.
726 len
= MIN(len
, dmu_prefetch_max
);
729 * XXX - Note, if the dnode for the requested object is not
730 * already cached, we will do a *synchronous* read in the
731 * dnode_hold() call. The same is true for any indirects.
733 err
= dnode_hold(os
, object
, FTAG
, &dn
);
738 * offset + len - 1 is the last byte we want to prefetch for, and offset
739 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
740 * last block we want to prefetch, and dbuf_whichblock(dn, level,
741 * offset) is the first. Then the number we need to prefetch is the
744 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
745 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
746 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
747 dbuf_whichblock(dn
, level
, offset
) + 1;
749 nblks
= (offset
< dn
->dn_datablksz
);
753 blkid
= dbuf_whichblock(dn
, level
, offset
);
754 for (int i
= 0; i
< nblks
; i
++)
755 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
757 rw_exit(&dn
->dn_struct_rwlock
);
759 dnode_rele(dn
, FTAG
);
763 * Get the next "chunk" of file data to free. We traverse the file from
764 * the end so that the file gets shorter over time (if we crashes in the
765 * middle, this will leave us in a better state). We find allocated file
766 * data by simply searching the allocated level 1 indirects.
768 * On input, *start should be the first offset that does not need to be
769 * freed (e.g. "offset + length"). On return, *start will be the first
770 * offset that should be freed and l1blks is set to the number of level 1
771 * indirect blocks found within the chunk.
774 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
, uint64_t *l1blks
)
777 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
778 /* bytes of data covered by a level-1 indirect block */
779 uint64_t iblkrange
= (uint64_t)dn
->dn_datablksz
*
780 EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
782 ASSERT3U(minimum
, <=, *start
);
785 * Check if we can free the entire range assuming that all of the
786 * L1 blocks in this range have data. If we can, we use this
787 * worst case value as an estimate so we can avoid having to look
788 * at the object's actual data.
790 uint64_t total_l1blks
=
791 (roundup(*start
, iblkrange
) - (minimum
/ iblkrange
* iblkrange
)) /
793 if (total_l1blks
<= maxblks
) {
794 *l1blks
= total_l1blks
;
798 ASSERT(ISP2(iblkrange
));
800 for (blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
804 * dnode_next_offset(BACKWARDS) will find an allocated L1
805 * indirect block at or before the input offset. We must
806 * decrement *start so that it is at the end of the region
811 err
= dnode_next_offset(dn
,
812 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
814 /* if there are no indirect blocks before start, we are done */
818 } else if (err
!= 0) {
823 /* set start to the beginning of this L1 indirect */
824 *start
= P2ALIGN(*start
, iblkrange
);
826 if (*start
< minimum
)
834 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
835 * otherwise return false.
836 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
839 dmu_objset_zfs_unmounting(objset_t
*os
)
842 if (dmu_objset_type(os
) == DMU_OST_ZFS
)
843 return (zfs_get_vfs_flag_unmounted(os
));
851 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
854 uint64_t object_size
;
856 uint64_t dirty_frees_threshold
;
857 dsl_pool_t
*dp
= dmu_objset_pool(os
);
860 return (SET_ERROR(EINVAL
));
862 object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
863 if (offset
>= object_size
)
866 if (zfs_per_txg_dirty_frees_percent
<= 100)
867 dirty_frees_threshold
=
868 zfs_per_txg_dirty_frees_percent
* zfs_dirty_data_max
/ 100;
870 dirty_frees_threshold
= zfs_dirty_data_max
/ 20;
872 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
873 length
= object_size
- offset
;
875 while (length
!= 0) {
876 uint64_t chunk_end
, chunk_begin
, chunk_len
;
880 if (dmu_objset_zfs_unmounting(dn
->dn_objset
))
881 return (SET_ERROR(EINTR
));
883 chunk_end
= chunk_begin
= offset
+ length
;
885 /* move chunk_begin backwards to the beginning of this chunk */
886 err
= get_next_chunk(dn
, &chunk_begin
, offset
, &l1blks
);
889 ASSERT3U(chunk_begin
, >=, offset
);
890 ASSERT3U(chunk_begin
, <=, chunk_end
);
892 chunk_len
= chunk_end
- chunk_begin
;
894 tx
= dmu_tx_create(os
);
895 dmu_tx_hold_free(tx
, dn
->dn_object
, chunk_begin
, chunk_len
);
898 * Mark this transaction as typically resulting in a net
899 * reduction in space used.
901 dmu_tx_mark_netfree(tx
);
902 err
= dmu_tx_assign(tx
, TXG_WAIT
);
908 uint64_t txg
= dmu_tx_get_txg(tx
);
910 mutex_enter(&dp
->dp_lock
);
911 uint64_t long_free_dirty
=
912 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
];
913 mutex_exit(&dp
->dp_lock
);
916 * To avoid filling up a TXG with just frees, wait for
917 * the next TXG to open before freeing more chunks if
918 * we have reached the threshold of frees.
920 if (dirty_frees_threshold
!= 0 &&
921 long_free_dirty
>= dirty_frees_threshold
) {
922 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay
);
924 txg_wait_open(dp
, 0, B_TRUE
);
929 * In order to prevent unnecessary write throttling, for each
930 * TXG, we track the cumulative size of L1 blocks being dirtied
931 * in dnode_free_range() below. We compare this number to a
932 * tunable threshold, past which we prevent new L1 dirty freeing
933 * blocks from being added into the open TXG. See
934 * dmu_free_long_range_impl() for details. The threshold
935 * prevents write throttle activation due to dirty freeing L1
936 * blocks taking up a large percentage of zfs_dirty_data_max.
938 mutex_enter(&dp
->dp_lock
);
939 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
] +=
940 l1blks
<< dn
->dn_indblkshift
;
941 mutex_exit(&dp
->dp_lock
);
942 DTRACE_PROBE3(free__long__range
,
943 uint64_t, long_free_dirty
, uint64_t, chunk_len
,
945 dnode_free_range(dn
, chunk_begin
, chunk_len
, tx
);
955 dmu_free_long_range(objset_t
*os
, uint64_t object
,
956 uint64_t offset
, uint64_t length
)
961 err
= dnode_hold(os
, object
, FTAG
, &dn
);
964 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
967 * It is important to zero out the maxblkid when freeing the entire
968 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
969 * will take the fast path, and (b) dnode_reallocate() can verify
970 * that the entire file has been freed.
972 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
975 dnode_rele(dn
, FTAG
);
980 dmu_free_long_object(objset_t
*os
, uint64_t object
)
985 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
989 tx
= dmu_tx_create(os
);
990 dmu_tx_hold_bonus(tx
, object
);
991 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
992 dmu_tx_mark_netfree(tx
);
993 err
= dmu_tx_assign(tx
, TXG_WAIT
);
995 err
= dmu_object_free(os
, object
, tx
);
1005 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
1006 uint64_t size
, dmu_tx_t
*tx
)
1009 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
1012 ASSERT(offset
< UINT64_MAX
);
1013 ASSERT(size
== DMU_OBJECT_END
|| size
<= UINT64_MAX
- offset
);
1014 dnode_free_range(dn
, offset
, size
, tx
);
1015 dnode_rele(dn
, FTAG
);
1020 dmu_read_impl(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1021 void *buf
, uint32_t flags
)
1024 int numbufs
, err
= 0;
1027 * Deal with odd block sizes, where there can't be data past the first
1028 * block. If we ever do the tail block optimization, we will need to
1029 * handle that here as well.
1031 if (dn
->dn_maxblkid
== 0) {
1032 uint64_t newsz
= offset
> dn
->dn_datablksz
? 0 :
1033 MIN(size
, dn
->dn_datablksz
- offset
);
1034 memset((char *)buf
+ newsz
, 0, size
- newsz
);
1039 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
1043 * NB: we could do this block-at-a-time, but it's nice
1044 * to be reading in parallel.
1046 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
1047 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
1051 for (i
= 0; i
< numbufs
; i
++) {
1054 dmu_buf_t
*db
= dbp
[i
];
1058 bufoff
= offset
- db
->db_offset
;
1059 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1061 (void) memcpy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
1065 buf
= (char *)buf
+ tocpy
;
1067 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1073 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1074 void *buf
, uint32_t flags
)
1079 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1083 err
= dmu_read_impl(dn
, offset
, size
, buf
, flags
);
1084 dnode_rele(dn
, FTAG
);
1089 dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
1092 return (dmu_read_impl(dn
, offset
, size
, buf
, flags
));
1096 dmu_write_impl(dmu_buf_t
**dbp
, int numbufs
, uint64_t offset
, uint64_t size
,
1097 const void *buf
, dmu_tx_t
*tx
)
1101 for (i
= 0; i
< numbufs
; i
++) {
1104 dmu_buf_t
*db
= dbp
[i
];
1108 bufoff
= offset
- db
->db_offset
;
1109 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1111 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1113 if (tocpy
== db
->db_size
)
1114 dmu_buf_will_fill(db
, tx
);
1116 dmu_buf_will_dirty(db
, tx
);
1118 (void) memcpy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
1120 if (tocpy
== db
->db_size
)
1121 dmu_buf_fill_done(db
, tx
);
1125 buf
= (char *)buf
+ tocpy
;
1130 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1131 const void *buf
, dmu_tx_t
*tx
)
1139 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
1140 FALSE
, FTAG
, &numbufs
, &dbp
));
1141 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1142 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1146 * Note: Lustre is an external consumer of this interface.
1149 dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1150 const void *buf
, dmu_tx_t
*tx
)
1158 VERIFY0(dmu_buf_hold_array_by_dnode(dn
, offset
, size
,
1159 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
));
1160 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1161 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1165 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1174 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
1175 FALSE
, FTAG
, &numbufs
, &dbp
));
1177 for (i
= 0; i
< numbufs
; i
++) {
1178 dmu_buf_t
*db
= dbp
[i
];
1180 dmu_buf_will_not_fill(db
, tx
);
1182 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1186 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
1187 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
1188 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
1192 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
1193 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
1194 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
1197 dmu_buf_write_embedded(db
,
1198 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
1199 uncompressed_size
, compressed_size
, byteorder
, tx
);
1201 dmu_buf_rele(db
, FTAG
);
1205 dmu_redact(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1211 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
, FALSE
, FTAG
,
1213 for (i
= 0; i
< numbufs
; i
++)
1214 dmu_buf_redact(dbp
[i
], tx
);
1215 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1220 dmu_read_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
)
1223 int numbufs
, i
, err
;
1226 * NB: we could do this block-at-a-time, but it's nice
1227 * to be reading in parallel.
1229 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1230 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1234 for (i
= 0; i
< numbufs
; i
++) {
1237 dmu_buf_t
*db
= dbp
[i
];
1241 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1242 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1244 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
, tocpy
,
1252 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1258 * Read 'size' bytes into the uio buffer.
1259 * From object zdb->db_object.
1260 * Starting at zfs_uio_offset(uio).
1262 * If the caller already has a dbuf in the target object
1263 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1264 * because we don't have to find the dnode_t for the object.
1267 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
)
1269 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1278 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1285 * Read 'size' bytes into the uio buffer.
1286 * From the specified object
1287 * Starting at offset zfs_uio_offset(uio).
1290 dmu_read_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
)
1298 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1302 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1304 dnode_rele(dn
, FTAG
);
1310 dmu_write_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1317 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1318 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1322 for (i
= 0; i
< numbufs
; i
++) {
1325 dmu_buf_t
*db
= dbp
[i
];
1329 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1330 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1332 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1334 if (tocpy
== db
->db_size
)
1335 dmu_buf_will_fill(db
, tx
);
1337 dmu_buf_will_dirty(db
, tx
);
1340 * XXX zfs_uiomove could block forever (eg.nfs-backed
1341 * pages). There needs to be a uiolockdown() function
1342 * to lock the pages in memory, so that zfs_uiomove won't
1345 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
,
1346 tocpy
, UIO_WRITE
, uio
);
1348 if (tocpy
== db
->db_size
)
1349 dmu_buf_fill_done(db
, tx
);
1357 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1362 * Write 'size' bytes from the uio buffer.
1363 * To object zdb->db_object.
1364 * Starting at offset zfs_uio_offset(uio).
1366 * If the caller already has a dbuf in the target object
1367 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1368 * because we don't have to find the dnode_t for the object.
1371 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
,
1374 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1383 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1390 * Write 'size' bytes from the uio buffer.
1391 * To the specified object.
1392 * Starting at offset zfs_uio_offset(uio).
1395 dmu_write_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
,
1404 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1408 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1410 dnode_rele(dn
, FTAG
);
1414 #endif /* _KERNEL */
1417 * Allocate a loaned anonymous arc buffer.
1420 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1422 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1424 return (arc_loan_buf(db
->db_objset
->os_spa
, B_FALSE
, size
));
1428 * Free a loaned arc buffer.
1431 dmu_return_arcbuf(arc_buf_t
*buf
)
1433 arc_return_buf(buf
, FTAG
);
1434 arc_buf_destroy(buf
, FTAG
);
1438 * A "lightweight" write is faster than a regular write (e.g.
1439 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1440 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1441 * data can not be read or overwritten until the transaction's txg has been
1442 * synced. This makes it appropriate for workloads that are known to be
1443 * (temporarily) write-only, like "zfs receive".
1445 * A single block is written, starting at the specified offset in bytes. If
1446 * the call is successful, it returns 0 and the provided abd has been
1447 * consumed (the caller should not free it).
1450 dmu_lightweight_write_by_dnode(dnode_t
*dn
, uint64_t offset
, abd_t
*abd
,
1451 const zio_prop_t
*zp
, zio_flag_t flags
, dmu_tx_t
*tx
)
1453 dbuf_dirty_record_t
*dr
=
1454 dbuf_dirty_lightweight(dn
, dbuf_whichblock(dn
, 0, offset
), tx
);
1456 return (SET_ERROR(EIO
));
1457 dr
->dt
.dll
.dr_abd
= abd
;
1458 dr
->dt
.dll
.dr_props
= *zp
;
1459 dr
->dt
.dll
.dr_flags
= flags
;
1464 * When possible directly assign passed loaned arc buffer to a dbuf.
1465 * If this is not possible copy the contents of passed arc buf via
1469 dmu_assign_arcbuf_by_dnode(dnode_t
*dn
, uint64_t offset
, arc_buf_t
*buf
,
1473 objset_t
*os
= dn
->dn_objset
;
1474 uint64_t object
= dn
->dn_object
;
1475 uint32_t blksz
= (uint32_t)arc_buf_lsize(buf
);
1478 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1479 blkid
= dbuf_whichblock(dn
, 0, offset
);
1480 db
= dbuf_hold(dn
, blkid
, FTAG
);
1482 return (SET_ERROR(EIO
));
1483 rw_exit(&dn
->dn_struct_rwlock
);
1486 * We can only assign if the offset is aligned and the arc buf is the
1487 * same size as the dbuf.
1489 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
) {
1490 zfs_racct_write(blksz
, 1);
1491 dbuf_assign_arcbuf(db
, buf
, tx
);
1492 dbuf_rele(db
, FTAG
);
1494 /* compressed bufs must always be assignable to their dbuf */
1495 ASSERT3U(arc_get_compression(buf
), ==, ZIO_COMPRESS_OFF
);
1496 ASSERT(!(buf
->b_flags
& ARC_BUF_FLAG_COMPRESSED
));
1498 dbuf_rele(db
, FTAG
);
1499 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1500 dmu_return_arcbuf(buf
);
1507 dmu_assign_arcbuf_by_dbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1511 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1513 DB_DNODE_ENTER(dbuf
);
1514 err
= dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf
), offset
, buf
, tx
);
1515 DB_DNODE_EXIT(dbuf
);
1521 dbuf_dirty_record_t
*dsa_dr
;
1522 dmu_sync_cb_t
*dsa_done
;
1528 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1531 dmu_sync_arg_t
*dsa
= varg
;
1532 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1533 blkptr_t
*bp
= zio
->io_bp
;
1535 if (zio
->io_error
== 0) {
1536 if (BP_IS_HOLE(bp
)) {
1538 * A block of zeros may compress to a hole, but the
1539 * block size still needs to be known for replay.
1541 BP_SET_LSIZE(bp
, db
->db_size
);
1542 } else if (!BP_IS_EMBEDDED(bp
)) {
1543 ASSERT(BP_GET_LEVEL(bp
) == 0);
1550 dmu_sync_late_arrival_ready(zio_t
*zio
)
1552 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1556 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1559 dmu_sync_arg_t
*dsa
= varg
;
1560 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1561 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1562 zgd_t
*zgd
= dsa
->dsa_zgd
;
1565 * Record the vdev(s) backing this blkptr so they can be flushed after
1566 * the writes for the lwb have completed.
1568 if (zio
->io_error
== 0) {
1569 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1572 mutex_enter(&db
->db_mtx
);
1573 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1574 if (zio
->io_error
== 0) {
1575 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1576 if (dr
->dt
.dl
.dr_nopwrite
) {
1577 blkptr_t
*bp
= zio
->io_bp
;
1578 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1579 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1581 ASSERT(BP_EQUAL(bp
, bp_orig
));
1582 VERIFY(BP_EQUAL(bp
, db
->db_blkptr
));
1583 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1584 VERIFY(zio_checksum_table
[chksum
].ci_flags
&
1585 ZCHECKSUM_FLAG_NOPWRITE
);
1587 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1588 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1589 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1592 * Old style holes are filled with all zeros, whereas
1593 * new-style holes maintain their lsize, type, level,
1594 * and birth time (see zio_write_compress). While we
1595 * need to reset the BP_SET_LSIZE() call that happened
1596 * in dmu_sync_ready for old style holes, we do *not*
1597 * want to wipe out the information contained in new
1598 * style holes. Thus, only zero out the block pointer if
1599 * it's an old style hole.
1601 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1602 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1603 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1605 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1607 cv_broadcast(&db
->db_changed
);
1608 mutex_exit(&db
->db_mtx
);
1610 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1612 kmem_free(dsa
, sizeof (*dsa
));
1616 dmu_sync_late_arrival_done(zio_t
*zio
)
1618 blkptr_t
*bp
= zio
->io_bp
;
1619 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1620 zgd_t
*zgd
= dsa
->dsa_zgd
;
1622 if (zio
->io_error
== 0) {
1624 * Record the vdev(s) backing this blkptr so they can be
1625 * flushed after the writes for the lwb have completed.
1627 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1629 if (!BP_IS_HOLE(bp
)) {
1630 blkptr_t
*bp_orig __maybe_unused
= &zio
->io_bp_orig
;
1631 ASSERT(!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
1632 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1633 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1634 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1635 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1639 dmu_tx_commit(dsa
->dsa_tx
);
1641 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1643 abd_free(zio
->io_abd
);
1644 kmem_free(dsa
, sizeof (*dsa
));
1648 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1649 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1651 dmu_sync_arg_t
*dsa
;
1654 tx
= dmu_tx_create(os
);
1655 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1656 if (dmu_tx_assign(tx
, TXG_WAIT
) != 0) {
1658 /* Make zl_get_data do txg_waited_synced() */
1659 return (SET_ERROR(EIO
));
1663 * In order to prevent the zgd's lwb from being free'd prior to
1664 * dmu_sync_late_arrival_done() being called, we have to ensure
1665 * the lwb's "max txg" takes this tx's txg into account.
1667 zil_lwb_add_txg(zgd
->zgd_lwb
, dmu_tx_get_txg(tx
));
1669 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1671 dsa
->dsa_done
= done
;
1676 * Since we are currently syncing this txg, it's nontrivial to
1677 * determine what BP to nopwrite against, so we disable nopwrite.
1679 * When syncing, the db_blkptr is initially the BP of the previous
1680 * txg. We can not nopwrite against it because it will be changed
1681 * (this is similar to the non-late-arrival case where the dbuf is
1682 * dirty in a future txg).
1684 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1685 * We can not nopwrite against it because although the BP will not
1686 * (typically) be changed, the data has not yet been persisted to this
1689 * Finally, when dbuf_write_done() is called, it is theoretically
1690 * possible to always nopwrite, because the data that was written in
1691 * this txg is the same data that we are trying to write. However we
1692 * would need to check that this dbuf is not dirty in any future
1693 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1694 * don't nopwrite in this case.
1696 zp
->zp_nopwrite
= B_FALSE
;
1698 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
1699 abd_get_from_buf(zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
),
1700 zgd
->zgd_db
->db_size
, zgd
->zgd_db
->db_size
, zp
,
1701 dmu_sync_late_arrival_ready
, NULL
, NULL
, dmu_sync_late_arrival_done
,
1702 dsa
, ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, zb
));
1708 * Intent log support: sync the block associated with db to disk.
1709 * N.B. and XXX: the caller is responsible for making sure that the
1710 * data isn't changing while dmu_sync() is writing it.
1714 * EEXIST: this txg has already been synced, so there's nothing to do.
1715 * The caller should not log the write.
1717 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1718 * The caller should not log the write.
1720 * EALREADY: this block is already in the process of being synced.
1721 * The caller should track its progress (somehow).
1723 * EIO: could not do the I/O.
1724 * The caller should do a txg_wait_synced().
1726 * 0: the I/O has been initiated.
1727 * The caller should log this blkptr in the done callback.
1728 * It is possible that the I/O will fail, in which case
1729 * the error will be reported to the done callback and
1730 * propagated to pio from zio_done().
1733 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1735 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1736 objset_t
*os
= db
->db_objset
;
1737 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1738 dbuf_dirty_record_t
*dr
, *dr_next
;
1739 dmu_sync_arg_t
*dsa
;
1740 zbookmark_phys_t zb
;
1744 ASSERT(pio
!= NULL
);
1747 SET_BOOKMARK(&zb
, ds
->ds_object
,
1748 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1752 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
, &zp
);
1756 * If we're frozen (running ziltest), we always need to generate a bp.
1758 if (txg
> spa_freeze_txg(os
->os_spa
))
1759 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1762 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1763 * and us. If we determine that this txg is not yet syncing,
1764 * but it begins to sync a moment later, that's OK because the
1765 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1767 mutex_enter(&db
->db_mtx
);
1769 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1771 * This txg has already synced. There's nothing to do.
1773 mutex_exit(&db
->db_mtx
);
1774 return (SET_ERROR(EEXIST
));
1777 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1779 * This txg is currently syncing, so we can't mess with
1780 * the dirty record anymore; just write a new log block.
1782 mutex_exit(&db
->db_mtx
);
1783 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1786 dr
= dbuf_find_dirty_eq(db
, txg
);
1790 * There's no dr for this dbuf, so it must have been freed.
1791 * There's no need to log writes to freed blocks, so we're done.
1793 mutex_exit(&db
->db_mtx
);
1794 return (SET_ERROR(ENOENT
));
1797 dr_next
= list_next(&db
->db_dirty_records
, dr
);
1798 ASSERT(dr_next
== NULL
|| dr_next
->dr_txg
< txg
);
1800 if (db
->db_blkptr
!= NULL
) {
1802 * We need to fill in zgd_bp with the current blkptr so that
1803 * the nopwrite code can check if we're writing the same
1804 * data that's already on disk. We can only nopwrite if we
1805 * are sure that after making the copy, db_blkptr will not
1806 * change until our i/o completes. We ensure this by
1807 * holding the db_mtx, and only allowing nopwrite if the
1808 * block is not already dirty (see below). This is verified
1809 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1812 *zgd
->zgd_bp
= *db
->db_blkptr
;
1816 * Assume the on-disk data is X, the current syncing data (in
1817 * txg - 1) is Y, and the current in-memory data is Z (currently
1820 * We usually want to perform a nopwrite if X and Z are the
1821 * same. However, if Y is different (i.e. the BP is going to
1822 * change before this write takes effect), then a nopwrite will
1823 * be incorrect - we would override with X, which could have
1824 * been freed when Y was written.
1826 * (Note that this is not a concern when we are nop-writing from
1827 * syncing context, because X and Y must be identical, because
1828 * all previous txgs have been synced.)
1830 * Therefore, we disable nopwrite if the current BP could change
1831 * before this TXG. There are two ways it could change: by
1832 * being dirty (dr_next is non-NULL), or by being freed
1833 * (dnode_block_freed()). This behavior is verified by
1834 * zio_done(), which VERIFYs that the override BP is identical
1835 * to the on-disk BP.
1839 if (dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1840 zp
.zp_nopwrite
= B_FALSE
;
1843 ASSERT(dr
->dr_txg
== txg
);
1844 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1845 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1847 * We have already issued a sync write for this buffer,
1848 * or this buffer has already been synced. It could not
1849 * have been dirtied since, or we would have cleared the state.
1851 mutex_exit(&db
->db_mtx
);
1852 return (SET_ERROR(EALREADY
));
1855 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1856 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1857 mutex_exit(&db
->db_mtx
);
1859 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1861 dsa
->dsa_done
= done
;
1865 zio_nowait(arc_write(pio
, os
->os_spa
, txg
, zgd
->zgd_bp
,
1866 dr
->dt
.dl
.dr_data
, !DBUF_IS_CACHEABLE(db
), dbuf_is_l2cacheable(db
),
1867 &zp
, dmu_sync_ready
, NULL
, NULL
, dmu_sync_done
, dsa
,
1868 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, &zb
));
1874 dmu_object_set_nlevels(objset_t
*os
, uint64_t object
, int nlevels
, dmu_tx_t
*tx
)
1879 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1882 err
= dnode_set_nlevels(dn
, nlevels
, tx
);
1883 dnode_rele(dn
, FTAG
);
1888 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1894 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1897 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1898 dnode_rele(dn
, FTAG
);
1903 dmu_object_set_maxblkid(objset_t
*os
, uint64_t object
, uint64_t maxblkid
,
1909 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1912 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
1913 dnode_new_blkid(dn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
1914 rw_exit(&dn
->dn_struct_rwlock
);
1915 dnode_rele(dn
, FTAG
);
1920 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1926 * Send streams include each object's checksum function. This
1927 * check ensures that the receiving system can understand the
1928 * checksum function transmitted.
1930 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1932 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1933 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1934 dn
->dn_checksum
= checksum
;
1935 dnode_setdirty(dn
, tx
);
1936 dnode_rele(dn
, FTAG
);
1940 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1946 * Send streams include each object's compression function. This
1947 * check ensures that the receiving system can understand the
1948 * compression function transmitted.
1950 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1952 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1953 dn
->dn_compress
= compress
;
1954 dnode_setdirty(dn
, tx
);
1955 dnode_rele(dn
, FTAG
);
1959 * When the "redundant_metadata" property is set to "most", only indirect
1960 * blocks of this level and higher will have an additional ditto block.
1962 static const int zfs_redundant_metadata_most_ditto_level
= 2;
1965 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
1967 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1968 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1970 enum zio_checksum checksum
= os
->os_checksum
;
1971 enum zio_compress compress
= os
->os_compress
;
1972 uint8_t complevel
= os
->os_complevel
;
1973 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1974 boolean_t dedup
= B_FALSE
;
1975 boolean_t nopwrite
= B_FALSE
;
1976 boolean_t dedup_verify
= os
->os_dedup_verify
;
1977 boolean_t encrypt
= B_FALSE
;
1978 int copies
= os
->os_copies
;
1981 * We maintain different write policies for each of the following
1984 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1985 * 3. all other level 0 blocks
1989 * XXX -- we should design a compression algorithm
1990 * that specializes in arrays of bps.
1992 compress
= zio_compress_select(os
->os_spa
,
1993 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
1996 * Metadata always gets checksummed. If the data
1997 * checksum is multi-bit correctable, and it's not a
1998 * ZBT-style checksum, then it's suitable for metadata
1999 * as well. Otherwise, the metadata checksum defaults
2002 if (!(zio_checksum_table
[checksum
].ci_flags
&
2003 ZCHECKSUM_FLAG_METADATA
) ||
2004 (zio_checksum_table
[checksum
].ci_flags
&
2005 ZCHECKSUM_FLAG_EMBEDDED
))
2006 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
2008 switch (os
->os_redundant_metadata
) {
2009 case ZFS_REDUNDANT_METADATA_ALL
:
2012 case ZFS_REDUNDANT_METADATA_MOST
:
2013 if (level
>= zfs_redundant_metadata_most_ditto_level
||
2014 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))
2017 case ZFS_REDUNDANT_METADATA_SOME
:
2018 if (DMU_OT_IS_CRITICAL(type
))
2021 case ZFS_REDUNDANT_METADATA_NONE
:
2024 } else if (wp
& WP_NOFILL
) {
2028 * If we're writing preallocated blocks, we aren't actually
2029 * writing them so don't set any policy properties. These
2030 * blocks are currently only used by an external subsystem
2031 * outside of zfs (i.e. dump) and not written by the zio
2034 compress
= ZIO_COMPRESS_OFF
;
2035 checksum
= ZIO_CHECKSUM_OFF
;
2037 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
2039 complevel
= zio_complevel_select(os
->os_spa
, compress
,
2040 complevel
, complevel
);
2042 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
2043 zio_checksum_select(dn
->dn_checksum
, checksum
) :
2047 * Determine dedup setting. If we are in dmu_sync(),
2048 * we won't actually dedup now because that's all
2049 * done in syncing context; but we do want to use the
2050 * dedup checksum. If the checksum is not strong
2051 * enough to ensure unique signatures, force
2054 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
2055 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
2056 if (!(zio_checksum_table
[checksum
].ci_flags
&
2057 ZCHECKSUM_FLAG_DEDUP
))
2058 dedup_verify
= B_TRUE
;
2062 * Enable nopwrite if we have secure enough checksum
2063 * algorithm (see comment in zio_nop_write) and
2064 * compression is enabled. We don't enable nopwrite if
2065 * dedup is enabled as the two features are mutually
2068 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
2069 ZCHECKSUM_FLAG_NOPWRITE
) &&
2070 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
2074 * All objects in an encrypted objset are protected from modification
2075 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2076 * in the bp, so we cannot use all copies. Encrypted objects are also
2077 * not subject to nopwrite since writing the same data will still
2078 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2079 * to avoid ambiguity in the dedup code since the DDT does not store
2082 if (os
->os_encrypted
&& (wp
& WP_NOFILL
) == 0) {
2085 if (DMU_OT_IS_ENCRYPTED(type
)) {
2086 copies
= MIN(copies
, SPA_DVAS_PER_BP
- 1);
2093 (type
== DMU_OT_DNODE
|| type
== DMU_OT_OBJSET
)) {
2094 compress
= ZIO_COMPRESS_EMPTY
;
2098 zp
->zp_compress
= compress
;
2099 zp
->zp_complevel
= complevel
;
2100 zp
->zp_checksum
= checksum
;
2101 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
2102 zp
->zp_level
= level
;
2103 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
2104 zp
->zp_dedup
= dedup
;
2105 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
2106 zp
->zp_nopwrite
= nopwrite
;
2107 zp
->zp_encrypt
= encrypt
;
2108 zp
->zp_byteorder
= ZFS_HOST_BYTEORDER
;
2109 memset(zp
->zp_salt
, 0, ZIO_DATA_SALT_LEN
);
2110 memset(zp
->zp_iv
, 0, ZIO_DATA_IV_LEN
);
2111 memset(zp
->zp_mac
, 0, ZIO_DATA_MAC_LEN
);
2112 zp
->zp_zpl_smallblk
= DMU_OT_IS_FILE(zp
->zp_type
) ?
2113 os
->os_zpl_special_smallblock
: 0;
2115 ASSERT3U(zp
->zp_compress
, !=, ZIO_COMPRESS_INHERIT
);
2119 * Reports the location of data and holes in an object. In order to
2120 * accurately report holes all dirty data must be synced to disk. This
2121 * causes extremely poor performance when seeking for holes in a dirty file.
2122 * As a compromise, only provide hole data when the dnode is clean. When
2123 * a dnode is dirty report the dnode as having no holes by returning EBUSY
2124 * which is always safe to do.
2127 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
2130 int restarted
= 0, err
;
2133 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2137 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2139 if (dnode_is_dirty(dn
)) {
2141 * If the zfs_dmu_offset_next_sync module option is enabled
2142 * then hole reporting has been requested. Dirty dnodes
2143 * must be synced to disk to accurately report holes.
2145 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2146 * held by the caller only a single restart will be required.
2147 * We tolerate callers which do not hold the rangelock by
2148 * returning EBUSY and not reporting holes after one restart.
2150 if (zfs_dmu_offset_next_sync
) {
2151 rw_exit(&dn
->dn_struct_rwlock
);
2152 dnode_rele(dn
, FTAG
);
2155 return (SET_ERROR(EBUSY
));
2157 txg_wait_synced(dmu_objset_pool(os
), 0);
2162 err
= SET_ERROR(EBUSY
);
2164 err
= dnode_next_offset(dn
, DNODE_FIND_HAVELOCK
|
2165 (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
2168 rw_exit(&dn
->dn_struct_rwlock
);
2169 dnode_rele(dn
, FTAG
);
2175 dmu_read_l0_bps(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t length
,
2176 dmu_tx_t
*tx
, blkptr_t
*bps
, size_t *nbpsp
)
2178 dmu_buf_t
**dbp
, *dbuf
;
2183 error
= dmu_buf_hold_array(os
, object
, offset
, length
, FALSE
, FTAG
,
2186 if (error
== ESRCH
) {
2187 error
= SET_ERROR(ENXIO
);
2192 ASSERT3U(numbufs
, <=, *nbpsp
);
2194 for (int i
= 0; i
< numbufs
; i
++) {
2196 db
= (dmu_buf_impl_t
*)dbuf
;
2198 mutex_enter(&db
->db_mtx
);
2201 * If the block is not on the disk yet, it has no BP assigned.
2202 * There is not much we can do...
2204 if (!list_is_empty(&db
->db_dirty_records
)) {
2205 dbuf_dirty_record_t
*dr
;
2207 dr
= list_head(&db
->db_dirty_records
);
2208 if (dr
->dt
.dl
.dr_brtwrite
) {
2210 * This is very special case where we clone a
2211 * block and in the same transaction group we
2212 * read its BP (most likely to clone the clone).
2214 bp
= &dr
->dt
.dl
.dr_overridden_by
;
2217 * The block was modified in the same
2218 * transaction group.
2220 mutex_exit(&db
->db_mtx
);
2221 error
= SET_ERROR(EAGAIN
);
2228 mutex_exit(&db
->db_mtx
);
2232 * The block was created in this transaction group,
2233 * so it has no BP yet.
2235 error
= SET_ERROR(EAGAIN
);
2238 if (dmu_buf_is_dirty(dbuf
, tx
)) {
2239 error
= SET_ERROR(EAGAIN
);
2243 * Make sure we clone only data blocks.
2245 if (BP_IS_METADATA(bp
) && !BP_IS_HOLE(bp
)) {
2246 error
= SET_ERROR(EINVAL
);
2255 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
2261 dmu_brt_clone(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t length
,
2262 dmu_tx_t
*tx
, const blkptr_t
*bps
, size_t nbps
, boolean_t replay
)
2265 dmu_buf_t
**dbp
, *dbuf
;
2267 struct dirty_leaf
*dl
;
2268 dbuf_dirty_record_t
*dr
;
2274 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, length
, FALSE
, FTAG
,
2276 ASSERT3U(nbps
, ==, numbufs
);
2278 for (int i
= 0; i
< numbufs
; i
++) {
2280 db
= (dmu_buf_impl_t
*)dbuf
;
2283 ASSERT0(db
->db_level
);
2284 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2285 ASSERT(BP_IS_HOLE(bp
) || dbuf
->db_size
== BP_GET_LSIZE(bp
));
2287 mutex_enter(&db
->db_mtx
);
2289 VERIFY(!dbuf_undirty(db
, tx
));
2290 ASSERT(list_head(&db
->db_dirty_records
) == NULL
);
2291 if (db
->db_buf
!= NULL
) {
2292 arc_buf_destroy(db
->db_buf
, db
);
2296 mutex_exit(&db
->db_mtx
);
2298 dmu_buf_will_not_fill(dbuf
, tx
);
2300 mutex_enter(&db
->db_mtx
);
2302 dr
= list_head(&db
->db_dirty_records
);
2304 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2306 dl
->dr_overridden_by
= *bp
;
2307 dl
->dr_brtwrite
= B_TRUE
;
2309 dl
->dr_override_state
= DR_OVERRIDDEN
;
2310 if (BP_IS_HOLE(bp
)) {
2311 dl
->dr_overridden_by
.blk_birth
= 0;
2312 dl
->dr_overridden_by
.blk_phys_birth
= 0;
2314 dl
->dr_overridden_by
.blk_birth
= dr
->dr_txg
;
2315 if (!BP_IS_EMBEDDED(bp
)) {
2316 dl
->dr_overridden_by
.blk_phys_birth
=
2317 BP_PHYSICAL_BIRTH(bp
);
2321 mutex_exit(&db
->db_mtx
);
2324 * When data in embedded into BP there is no need to create
2325 * BRT entry as there is no data block. Just copy the BP as
2326 * it contains the data.
2327 * Also, when replaying ZIL we don't want to bump references
2328 * in the BRT as it was already done during ZIL claim.
2330 if (!replay
&& !BP_IS_HOLE(bp
) && !BP_IS_EMBEDDED(bp
)) {
2331 brt_pending_add(spa
, bp
, tx
);
2335 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
2339 __dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2341 dnode_phys_t
*dnp
= dn
->dn_phys
;
2343 doi
->doi_data_block_size
= dn
->dn_datablksz
;
2344 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
2345 1ULL << dn
->dn_indblkshift
: 0;
2346 doi
->doi_type
= dn
->dn_type
;
2347 doi
->doi_bonus_type
= dn
->dn_bonustype
;
2348 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
2349 doi
->doi_dnodesize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2350 doi
->doi_indirection
= dn
->dn_nlevels
;
2351 doi
->doi_checksum
= dn
->dn_checksum
;
2352 doi
->doi_compress
= dn
->dn_compress
;
2353 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
2354 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
2355 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
2356 doi
->doi_fill_count
= 0;
2357 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
2358 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
2362 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2364 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2365 mutex_enter(&dn
->dn_mtx
);
2367 __dmu_object_info_from_dnode(dn
, doi
);
2369 mutex_exit(&dn
->dn_mtx
);
2370 rw_exit(&dn
->dn_struct_rwlock
);
2374 * Get information on a DMU object.
2375 * If doi is NULL, just indicates whether the object exists.
2378 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
2381 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
2387 dmu_object_info_from_dnode(dn
, doi
);
2389 dnode_rele(dn
, FTAG
);
2394 * As above, but faster; can be used when you have a held dbuf in hand.
2397 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
2399 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2402 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
2407 * Faster still when you only care about the size.
2410 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
2411 u_longlong_t
*nblk512
)
2413 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2419 *blksize
= dn
->dn_datablksz
;
2420 /* add in number of slots used for the dnode itself */
2421 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
2422 SPA_MINBLOCKSHIFT
) + dn
->dn_num_slots
;
2427 dmu_object_dnsize_from_db(dmu_buf_t
*db_fake
, int *dnsize
)
2429 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2434 *dnsize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2439 byteswap_uint64_array(void *vbuf
, size_t size
)
2441 uint64_t *buf
= vbuf
;
2442 size_t count
= size
>> 3;
2445 ASSERT((size
& 7) == 0);
2447 for (i
= 0; i
< count
; i
++)
2448 buf
[i
] = BSWAP_64(buf
[i
]);
2452 byteswap_uint32_array(void *vbuf
, size_t size
)
2454 uint32_t *buf
= vbuf
;
2455 size_t count
= size
>> 2;
2458 ASSERT((size
& 3) == 0);
2460 for (i
= 0; i
< count
; i
++)
2461 buf
[i
] = BSWAP_32(buf
[i
]);
2465 byteswap_uint16_array(void *vbuf
, size_t size
)
2467 uint16_t *buf
= vbuf
;
2468 size_t count
= size
>> 1;
2471 ASSERT((size
& 1) == 0);
2473 for (i
= 0; i
< count
; i
++)
2474 buf
[i
] = BSWAP_16(buf
[i
]);
2478 byteswap_uint8_array(void *vbuf
, size_t size
)
2480 (void) vbuf
, (void) size
;
2501 arc_fini(); /* arc depends on l2arc, so arc must go first */
2513 EXPORT_SYMBOL(dmu_bonus_hold
);
2514 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode
);
2515 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus
);
2516 EXPORT_SYMBOL(dmu_buf_rele_array
);
2517 EXPORT_SYMBOL(dmu_prefetch
);
2518 EXPORT_SYMBOL(dmu_free_range
);
2519 EXPORT_SYMBOL(dmu_free_long_range
);
2520 EXPORT_SYMBOL(dmu_free_long_object
);
2521 EXPORT_SYMBOL(dmu_read
);
2522 EXPORT_SYMBOL(dmu_read_by_dnode
);
2523 EXPORT_SYMBOL(dmu_write
);
2524 EXPORT_SYMBOL(dmu_write_by_dnode
);
2525 EXPORT_SYMBOL(dmu_prealloc
);
2526 EXPORT_SYMBOL(dmu_object_info
);
2527 EXPORT_SYMBOL(dmu_object_info_from_dnode
);
2528 EXPORT_SYMBOL(dmu_object_info_from_db
);
2529 EXPORT_SYMBOL(dmu_object_size_from_db
);
2530 EXPORT_SYMBOL(dmu_object_dnsize_from_db
);
2531 EXPORT_SYMBOL(dmu_object_set_nlevels
);
2532 EXPORT_SYMBOL(dmu_object_set_blocksize
);
2533 EXPORT_SYMBOL(dmu_object_set_maxblkid
);
2534 EXPORT_SYMBOL(dmu_object_set_checksum
);
2535 EXPORT_SYMBOL(dmu_object_set_compress
);
2536 EXPORT_SYMBOL(dmu_offset_next
);
2537 EXPORT_SYMBOL(dmu_write_policy
);
2538 EXPORT_SYMBOL(dmu_sync
);
2539 EXPORT_SYMBOL(dmu_request_arcbuf
);
2540 EXPORT_SYMBOL(dmu_return_arcbuf
);
2541 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode
);
2542 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf
);
2543 EXPORT_SYMBOL(dmu_buf_hold
);
2544 EXPORT_SYMBOL(dmu_ot
);
2546 ZFS_MODULE_PARAM(zfs
, zfs_
, nopwrite_enabled
, INT
, ZMOD_RW
,
2547 "Enable NOP writes");
2549 ZFS_MODULE_PARAM(zfs
, zfs_
, per_txg_dirty_frees_percent
, UINT
, ZMOD_RW
,
2550 "Percentage of dirtied blocks from frees in one TXG");
2552 ZFS_MODULE_PARAM(zfs
, zfs_
, dmu_offset_next_sync
, INT
, ZMOD_RW
,
2553 "Enable forcing txg sync to find holes");
2556 ZFS_MODULE_PARAM(zfs
, , dmu_prefetch_max
, UINT
, ZMOD_RW
,
2557 "Limit one prefetch call to this size");