4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_prop.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_deleg.h>
39 #include <sys/dmu_impl.h>
41 #include <sys/spa_impl.h>
42 #include <sys/metaslab.h>
46 #include <sys/sunddi.h>
47 #include <sys/zfeature.h>
48 #include <sys/policy.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/zfs_znode.h>
53 #include "zfs_namecheck.h"
57 * This controls if we verify the ZVOL quota or not.
58 * Currently, quotas are not implemented for ZVOLs.
59 * The quota size is the size of the ZVOL.
60 * The size of the volume already implies the ZVOL size quota.
61 * The quota mechanism can introduce a significant performance drop.
63 static int zvol_enforce_quotas
= B_TRUE
;
66 * Filesystem and Snapshot Limits
67 * ------------------------------
69 * These limits are used to restrict the number of filesystems and/or snapshots
70 * that can be created at a given level in the tree or below. A typical
71 * use-case is with a delegated dataset where the administrator wants to ensure
72 * that a user within the zone is not creating too many additional filesystems
73 * or snapshots, even though they're not exceeding their space quota.
75 * The filesystem and snapshot counts are stored as extensible properties. This
76 * capability is controlled by a feature flag and must be enabled to be used.
77 * Once enabled, the feature is not active until the first limit is set. At
78 * that point, future operations to create/destroy filesystems or snapshots
79 * will validate and update the counts.
81 * Because the count properties will not exist before the feature is active,
82 * the counts are updated when a limit is first set on an uninitialized
83 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
84 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
85 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
86 * snapshot count properties on a node indicate uninitialized counts on that
87 * node.) When first setting a limit on an uninitialized node, the code starts
88 * at the filesystem with the new limit and descends into all sub-filesystems
89 * to add the count properties.
91 * In practice this is lightweight since a limit is typically set when the
92 * filesystem is created and thus has no children. Once valid, changing the
93 * limit value won't require a re-traversal since the counts are already valid.
94 * When recursively fixing the counts, if a node with a limit is encountered
95 * during the descent, the counts are known to be valid and there is no need to
96 * descend into that filesystem's children. The counts on filesystems above the
97 * one with the new limit will still be uninitialized, unless a limit is
98 * eventually set on one of those filesystems. The counts are always recursively
99 * updated when a limit is set on a dataset, unless there is already a limit.
100 * When a new limit value is set on a filesystem with an existing limit, it is
101 * possible for the new limit to be less than the current count at that level
102 * since a user who can change the limit is also allowed to exceed the limit.
104 * Once the feature is active, then whenever a filesystem or snapshot is
105 * created, the code recurses up the tree, validating the new count against the
106 * limit at each initialized level. In practice, most levels will not have a
107 * limit set. If there is a limit at any initialized level up the tree, the
108 * check must pass or the creation will fail. Likewise, when a filesystem or
109 * snapshot is destroyed, the counts are recursively adjusted all the way up
110 * the initialized nodes in the tree. Renaming a filesystem into different point
111 * in the tree will first validate, then update the counts on each branch up to
112 * the common ancestor. A receive will also validate the counts and then update
115 * An exception to the above behavior is that the limit is not enforced if the
116 * user has permission to modify the limit. This is primarily so that
117 * recursive snapshots in the global zone always work. We want to prevent a
118 * denial-of-service in which a lower level delegated dataset could max out its
119 * limit and thus block recursive snapshots from being taken in the global zone.
120 * Because of this, it is possible for the snapshot count to be over the limit
121 * and snapshots taken in the global zone could cause a lower level dataset to
122 * hit or exceed its limit. The administrator taking the global zone recursive
123 * snapshot should be aware of this side-effect and behave accordingly.
124 * For consistency, the filesystem limit is also not enforced if the user can
127 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
128 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
129 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
130 * dsl_dir_init_fs_ss_count().
133 static uint64_t dsl_dir_space_towrite(dsl_dir_t
*dd
);
135 typedef struct ddulrt_arg
{
136 dsl_dir_t
*ddulrta_dd
;
141 dsl_dir_evict_async(void *dbu
)
145 dsl_pool_t
*dp __maybe_unused
= dd
->dd_pool
;
149 for (t
= 0; t
< TXG_SIZE
; t
++) {
150 ASSERT(!txg_list_member(&dp
->dp_dirty_dirs
, dd
, t
));
151 ASSERT(dd
->dd_tempreserved
[t
] == 0);
152 ASSERT(dd
->dd_space_towrite
[t
] == 0);
156 dsl_dir_async_rele(dd
->dd_parent
, dd
);
158 spa_async_close(dd
->dd_pool
->dp_spa
, dd
);
160 if (dsl_deadlist_is_open(&dd
->dd_livelist
))
161 dsl_dir_livelist_close(dd
);
164 cv_destroy(&dd
->dd_activity_cv
);
165 mutex_destroy(&dd
->dd_activity_lock
);
166 mutex_destroy(&dd
->dd_lock
);
167 kmem_free(dd
, sizeof (dsl_dir_t
));
171 dsl_dir_hold_obj(dsl_pool_t
*dp
, uint64_t ddobj
,
172 const char *tail
, const void *tag
, dsl_dir_t
**ddp
)
176 dmu_object_info_t doi
;
179 ASSERT(dsl_pool_config_held(dp
));
181 err
= dmu_bonus_hold(dp
->dp_meta_objset
, ddobj
, tag
, &dbuf
);
184 dd
= dmu_buf_get_user(dbuf
);
186 dmu_object_info_from_db(dbuf
, &doi
);
187 ASSERT3U(doi
.doi_bonus_type
, ==, DMU_OT_DSL_DIR
);
188 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (dsl_dir_phys_t
));
193 dd
= kmem_zalloc(sizeof (dsl_dir_t
), KM_SLEEP
);
194 dd
->dd_object
= ddobj
;
198 mutex_init(&dd
->dd_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
199 mutex_init(&dd
->dd_activity_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
200 cv_init(&dd
->dd_activity_cv
, NULL
, CV_DEFAULT
, NULL
);
203 if (dsl_dir_is_zapified(dd
)) {
204 err
= zap_lookup(dp
->dp_meta_objset
,
205 ddobj
, DD_FIELD_CRYPTO_KEY_OBJ
,
206 sizeof (uint64_t), 1, &dd
->dd_crypto_obj
);
208 /* check for on-disk format errata */
209 if (dsl_dir_incompatible_encryption_version(
211 dp
->dp_spa
->spa_errata
=
212 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION
;
214 } else if (err
!= ENOENT
) {
219 if (dsl_dir_phys(dd
)->dd_parent_obj
) {
220 err
= dsl_dir_hold_obj(dp
,
221 dsl_dir_phys(dd
)->dd_parent_obj
, NULL
, dd
,
229 err
= zap_lookup(dp
->dp_meta_objset
,
230 dsl_dir_phys(dd
->dd_parent
)->
231 dd_child_dir_zapobj
, tail
,
232 sizeof (foundobj
), 1, &foundobj
);
233 ASSERT(err
|| foundobj
== ddobj
);
235 (void) strlcpy(dd
->dd_myname
, tail
,
236 sizeof (dd
->dd_myname
));
238 err
= zap_value_search(dp
->dp_meta_objset
,
239 dsl_dir_phys(dd
->dd_parent
)->
241 ddobj
, 0, dd
->dd_myname
);
246 (void) strlcpy(dd
->dd_myname
, spa_name(dp
->dp_spa
),
247 sizeof (dd
->dd_myname
));
250 if (dsl_dir_is_clone(dd
)) {
251 dmu_buf_t
*origin_bonus
;
252 dsl_dataset_phys_t
*origin_phys
;
255 * We can't open the origin dataset, because
256 * that would require opening this dsl_dir.
257 * Just look at its phys directly instead.
259 err
= dmu_bonus_hold(dp
->dp_meta_objset
,
260 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
,
264 origin_phys
= origin_bonus
->db_data
;
266 origin_phys
->ds_creation_txg
;
267 dmu_buf_rele(origin_bonus
, FTAG
);
268 if (dsl_dir_is_zapified(dd
)) {
270 err
= zap_lookup(dp
->dp_meta_objset
,
271 dd
->dd_object
, DD_FIELD_LIVELIST
,
272 sizeof (uint64_t), 1, &obj
);
274 dsl_dir_livelist_open(dd
, obj
);
275 else if (err
!= ENOENT
)
280 if (dsl_dir_is_zapified(dd
)) {
281 inode_timespec_t t
= {0};
282 (void) zap_lookup(dp
->dp_meta_objset
, ddobj
,
283 DD_FIELD_SNAPSHOTS_CHANGED
,
285 sizeof (inode_timespec_t
) / sizeof (uint64_t),
287 dd
->dd_snap_cmtime
= t
;
290 dmu_buf_init_user(&dd
->dd_dbu
, NULL
, dsl_dir_evict_async
,
292 winner
= dmu_buf_set_user_ie(dbuf
, &dd
->dd_dbu
);
293 if (winner
!= NULL
) {
295 dsl_dir_rele(dd
->dd_parent
, dd
);
296 if (dsl_deadlist_is_open(&dd
->dd_livelist
))
297 dsl_dir_livelist_close(dd
);
299 cv_destroy(&dd
->dd_activity_cv
);
300 mutex_destroy(&dd
->dd_activity_lock
);
301 mutex_destroy(&dd
->dd_lock
);
302 kmem_free(dd
, sizeof (dsl_dir_t
));
305 spa_open_ref(dp
->dp_spa
, dd
);
310 * The dsl_dir_t has both open-to-close and instantiate-to-evict
311 * holds on the spa. We need the open-to-close holds because
312 * otherwise the spa_refcnt wouldn't change when we open a
313 * dir which the spa also has open, so we could incorrectly
314 * think it was OK to unload/export/destroy the pool. We need
315 * the instantiate-to-evict hold because the dsl_dir_t has a
316 * pointer to the dd_pool, which has a pointer to the spa_t.
318 spa_open_ref(dp
->dp_spa
, tag
);
319 ASSERT3P(dd
->dd_pool
, ==, dp
);
320 ASSERT3U(dd
->dd_object
, ==, ddobj
);
321 ASSERT3P(dd
->dd_dbuf
, ==, dbuf
);
327 dsl_dir_rele(dd
->dd_parent
, dd
);
328 if (dsl_deadlist_is_open(&dd
->dd_livelist
))
329 dsl_dir_livelist_close(dd
);
331 cv_destroy(&dd
->dd_activity_cv
);
332 mutex_destroy(&dd
->dd_activity_lock
);
333 mutex_destroy(&dd
->dd_lock
);
334 kmem_free(dd
, sizeof (dsl_dir_t
));
335 dmu_buf_rele(dbuf
, tag
);
340 dsl_dir_rele(dsl_dir_t
*dd
, const void *tag
)
342 dprintf_dd(dd
, "%s\n", "");
343 spa_close(dd
->dd_pool
->dp_spa
, tag
);
344 dmu_buf_rele(dd
->dd_dbuf
, tag
);
348 * Remove a reference to the given dsl dir that is being asynchronously
349 * released. Async releases occur from a taskq performing eviction of
350 * dsl datasets and dirs. This process is identical to a normal release
351 * with the exception of using the async API for releasing the reference on
355 dsl_dir_async_rele(dsl_dir_t
*dd
, const void *tag
)
357 dprintf_dd(dd
, "%s\n", "");
358 spa_async_close(dd
->dd_pool
->dp_spa
, tag
);
359 dmu_buf_rele(dd
->dd_dbuf
, tag
);
362 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
364 dsl_dir_name(dsl_dir_t
*dd
, char *buf
)
367 dsl_dir_name(dd
->dd_parent
, buf
);
368 VERIFY3U(strlcat(buf
, "/", ZFS_MAX_DATASET_NAME_LEN
), <,
369 ZFS_MAX_DATASET_NAME_LEN
);
373 if (!MUTEX_HELD(&dd
->dd_lock
)) {
375 * recursive mutex so that we can use
376 * dprintf_dd() with dd_lock held
378 mutex_enter(&dd
->dd_lock
);
379 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
380 <, ZFS_MAX_DATASET_NAME_LEN
);
381 mutex_exit(&dd
->dd_lock
);
383 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
384 <, ZFS_MAX_DATASET_NAME_LEN
);
388 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
390 dsl_dir_namelen(dsl_dir_t
*dd
)
395 /* parent's name + 1 for the "/" */
396 result
= dsl_dir_namelen(dd
->dd_parent
) + 1;
399 if (!MUTEX_HELD(&dd
->dd_lock
)) {
400 /* see dsl_dir_name */
401 mutex_enter(&dd
->dd_lock
);
402 result
+= strlen(dd
->dd_myname
);
403 mutex_exit(&dd
->dd_lock
);
405 result
+= strlen(dd
->dd_myname
);
412 getcomponent(const char *path
, char *component
, const char **nextp
)
416 if ((path
== NULL
) || (path
[0] == '\0'))
417 return (SET_ERROR(ENOENT
));
418 /* This would be a good place to reserve some namespace... */
419 p
= strpbrk(path
, "/@");
420 if (p
&& (p
[1] == '/' || p
[1] == '@')) {
421 /* two separators in a row */
422 return (SET_ERROR(EINVAL
));
424 if (p
== NULL
|| p
== path
) {
426 * if the first thing is an @ or /, it had better be an
427 * @ and it had better not have any more ats or slashes,
428 * and it had better have something after the @.
431 (p
[0] != '@' || strpbrk(path
+1, "/@") || p
[1] == '\0'))
432 return (SET_ERROR(EINVAL
));
433 if (strlen(path
) >= ZFS_MAX_DATASET_NAME_LEN
)
434 return (SET_ERROR(ENAMETOOLONG
));
435 (void) strlcpy(component
, path
, ZFS_MAX_DATASET_NAME_LEN
);
437 } else if (p
[0] == '/') {
438 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
439 return (SET_ERROR(ENAMETOOLONG
));
440 (void) strlcpy(component
, path
, p
- path
+ 1);
442 } else if (p
[0] == '@') {
444 * if the next separator is an @, there better not be
447 if (strchr(path
, '/'))
448 return (SET_ERROR(EINVAL
));
449 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
450 return (SET_ERROR(ENAMETOOLONG
));
451 (void) strlcpy(component
, path
, p
- path
+ 1);
453 panic("invalid p=%p", (void *)p
);
460 * Return the dsl_dir_t, and possibly the last component which couldn't
461 * be found in *tail. The name must be in the specified dsl_pool_t. This
462 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
463 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
464 * (*tail)[0] == '@' means that the last component is a snapshot.
467 dsl_dir_hold(dsl_pool_t
*dp
, const char *name
, const void *tag
,
468 dsl_dir_t
**ddp
, const char **tailp
)
471 const char *spaname
, *next
, *nextnext
= NULL
;
476 buf
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
477 err
= getcomponent(name
, buf
, &next
);
481 /* Make sure the name is in the specified pool. */
482 spaname
= spa_name(dp
->dp_spa
);
483 if (strcmp(buf
, spaname
) != 0) {
484 err
= SET_ERROR(EXDEV
);
488 ASSERT(dsl_pool_config_held(dp
));
490 err
= dsl_dir_hold_obj(dp
, dp
->dp_root_dir_obj
, NULL
, tag
, &dd
);
495 while (next
!= NULL
) {
497 err
= getcomponent(next
, buf
, &nextnext
);
500 ASSERT(next
[0] != '\0');
503 dprintf("looking up %s in obj%lld\n",
504 buf
, (longlong_t
)dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
506 err
= zap_lookup(dp
->dp_meta_objset
,
507 dsl_dir_phys(dd
)->dd_child_dir_zapobj
,
508 buf
, sizeof (ddobj
), 1, &ddobj
);
515 err
= dsl_dir_hold_obj(dp
, ddobj
, buf
, tag
, &child_dd
);
518 dsl_dir_rele(dd
, tag
);
524 dsl_dir_rele(dd
, tag
);
529 * It's an error if there's more than one component left, or
530 * tailp==NULL and there's any component left.
533 (tailp
== NULL
|| (nextnext
&& nextnext
[0] != '\0'))) {
535 dsl_dir_rele(dd
, tag
);
536 dprintf("next=%p (%s) tail=%p\n", next
, next
?next
:"", tailp
);
537 err
= SET_ERROR(ENOENT
);
544 kmem_free(buf
, ZFS_MAX_DATASET_NAME_LEN
);
549 * If the counts are already initialized for this filesystem and its
550 * descendants then do nothing, otherwise initialize the counts.
552 * The counts on this filesystem, and those below, may be uninitialized due to
553 * either the use of a pre-existing pool which did not support the
554 * filesystem/snapshot limit feature, or one in which the feature had not yet
557 * Recursively descend the filesystem tree and update the filesystem/snapshot
558 * counts on each filesystem below, then update the cumulative count on the
559 * current filesystem. If the filesystem already has a count set on it,
560 * then we know that its counts, and the counts on the filesystems below it,
561 * are already correct, so we don't have to update this filesystem.
564 dsl_dir_init_fs_ss_count(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
566 uint64_t my_fs_cnt
= 0;
567 uint64_t my_ss_cnt
= 0;
568 dsl_pool_t
*dp
= dd
->dd_pool
;
569 objset_t
*os
= dp
->dp_meta_objset
;
574 ASSERT(spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
));
575 ASSERT(dsl_pool_config_held(dp
));
576 ASSERT(dmu_tx_is_syncing(tx
));
578 dsl_dir_zapify(dd
, tx
);
581 * If the filesystem count has already been initialized then we
582 * don't need to recurse down any further.
584 if (zap_contains(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
) == 0)
587 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
588 za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
590 /* Iterate my child dirs */
591 for (zap_cursor_init(zc
, os
, dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
592 zap_cursor_retrieve(zc
, za
) == 0; zap_cursor_advance(zc
)) {
596 VERIFY0(dsl_dir_hold_obj(dp
, za
->za_first_integer
, NULL
, FTAG
,
600 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
602 if (chld_dd
->dd_myname
[0] == '$') {
603 dsl_dir_rele(chld_dd
, FTAG
);
607 my_fs_cnt
++; /* count this child */
609 dsl_dir_init_fs_ss_count(chld_dd
, tx
);
611 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
612 DD_FIELD_FILESYSTEM_COUNT
, sizeof (count
), 1, &count
));
614 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
615 DD_FIELD_SNAPSHOT_COUNT
, sizeof (count
), 1, &count
));
618 dsl_dir_rele(chld_dd
, FTAG
);
621 /* Count my snapshots (we counted children's snapshots above) */
622 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
623 dsl_dir_phys(dd
)->dd_head_dataset_obj
, FTAG
, &ds
));
625 for (zap_cursor_init(zc
, os
, dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
626 zap_cursor_retrieve(zc
, za
) == 0;
627 zap_cursor_advance(zc
)) {
628 /* Don't count temporary snapshots */
629 if (za
->za_name
[0] != '%')
634 dsl_dataset_rele(ds
, FTAG
);
636 kmem_free(zc
, sizeof (zap_cursor_t
));
637 kmem_free(za
, sizeof (zap_attribute_t
));
639 /* we're in a sync task, update counts */
640 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
641 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
642 sizeof (my_fs_cnt
), 1, &my_fs_cnt
, tx
));
643 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
644 sizeof (my_ss_cnt
), 1, &my_ss_cnt
, tx
));
648 dsl_dir_actv_fs_ss_limit_check(void *arg
, dmu_tx_t
*tx
)
650 char *ddname
= (char *)arg
;
651 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
656 error
= dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
);
660 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
661 dsl_dataset_rele(ds
, FTAG
);
662 return (SET_ERROR(ENOTSUP
));
666 if (spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
) &&
667 dsl_dir_is_zapified(dd
) &&
668 zap_contains(dp
->dp_meta_objset
, dd
->dd_object
,
669 DD_FIELD_FILESYSTEM_COUNT
) == 0) {
670 dsl_dataset_rele(ds
, FTAG
);
671 return (SET_ERROR(EALREADY
));
674 dsl_dataset_rele(ds
, FTAG
);
679 dsl_dir_actv_fs_ss_limit_sync(void *arg
, dmu_tx_t
*tx
)
681 char *ddname
= (char *)arg
;
682 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
686 VERIFY0(dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
));
688 spa
= dsl_dataset_get_spa(ds
);
690 if (!spa_feature_is_active(spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
692 * Since the feature was not active and we're now setting a
693 * limit, increment the feature-active counter so that the
694 * feature becomes active for the first time.
696 * We are already in a sync task so we can update the MOS.
698 spa_feature_incr(spa
, SPA_FEATURE_FS_SS_LIMIT
, tx
);
702 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
703 * we need to ensure the counts are correct. Descend down the tree from
704 * this point and update all of the counts to be accurate.
706 dsl_dir_init_fs_ss_count(ds
->ds_dir
, tx
);
708 dsl_dataset_rele(ds
, FTAG
);
712 * Make sure the feature is enabled and activate it if necessary.
713 * Since we're setting a limit, ensure the on-disk counts are valid.
714 * This is only called by the ioctl path when setting a limit value.
716 * We do not need to validate the new limit, since users who can change the
717 * limit are also allowed to exceed the limit.
720 dsl_dir_activate_fs_ss_limit(const char *ddname
)
724 error
= dsl_sync_task(ddname
, dsl_dir_actv_fs_ss_limit_check
,
725 dsl_dir_actv_fs_ss_limit_sync
, (void *)ddname
, 0,
726 ZFS_SPACE_CHECK_RESERVED
);
728 if (error
== EALREADY
)
735 * Used to determine if the filesystem_limit or snapshot_limit should be
736 * enforced. We allow the limit to be exceeded if the user has permission to
737 * write the property value. We pass in the creds that we got in the open
738 * context since we will always be the GZ root in syncing context. We also have
739 * to handle the case where we are allowed to change the limit on the current
740 * dataset, but there may be another limit in the tree above.
742 * We can never modify these two properties within a non-global zone. In
743 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
744 * can't use that function since we are already holding the dp_config_rwlock.
745 * In addition, we already have the dd and dealing with snapshots is simplified
756 dsl_enforce_ds_ss_limits(dsl_dir_t
*dd
, zfs_prop_t prop
,
757 cred_t
*cr
, proc_t
*proc
)
759 enforce_res_t enforce
= ENFORCE_ALWAYS
;
763 const char *zonedstr
;
765 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
766 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
769 if (crgetzoneid(cr
) != GLOBAL_ZONEID
)
770 return (ENFORCE_ALWAYS
);
773 * We are checking the saved credentials of the user process, which is
774 * not the current process. Note that we can't use secpolicy_zfs(),
775 * because it only works if the cred is that of the current process (on
778 if (secpolicy_zfs_proc(cr
, proc
) == 0)
779 return (ENFORCE_NEVER
);
784 if ((obj
= dsl_dir_phys(dd
)->dd_head_dataset_obj
) == 0)
785 return (ENFORCE_ALWAYS
);
787 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
789 if (dsl_dataset_hold_obj(dd
->dd_pool
, obj
, FTAG
, &ds
) != 0)
790 return (ENFORCE_ALWAYS
);
792 zonedstr
= zfs_prop_to_name(ZFS_PROP_ZONED
);
793 if (dsl_prop_get_ds(ds
, zonedstr
, 8, 1, &zoned
, NULL
) || zoned
) {
794 /* Only root can access zoned fs's from the GZ */
795 enforce
= ENFORCE_ALWAYS
;
797 if (dsl_deleg_access_impl(ds
, zfs_prop_to_name(prop
), cr
) == 0)
798 enforce
= ENFORCE_ABOVE
;
801 dsl_dataset_rele(ds
, FTAG
);
806 * Check if adding additional child filesystem(s) would exceed any filesystem
807 * limits or adding additional snapshot(s) would exceed any snapshot limits.
808 * The prop argument indicates which limit to check.
810 * Note that all filesystem limits up to the root (or the highest
811 * initialized) filesystem or the given ancestor must be satisfied.
814 dsl_fs_ss_limit_check(dsl_dir_t
*dd
, uint64_t delta
, zfs_prop_t prop
,
815 dsl_dir_t
*ancestor
, cred_t
*cr
, proc_t
*proc
)
817 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
818 uint64_t limit
, count
;
819 const char *count_prop
;
820 enforce_res_t enforce
;
823 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
824 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
825 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
827 if (prop
== ZFS_PROP_SNAPSHOT_LIMIT
) {
829 * We don't enforce the limit for temporary snapshots. This is
830 * indicated by a NULL cred_t argument.
835 count_prop
= DD_FIELD_SNAPSHOT_COUNT
;
837 count_prop
= DD_FIELD_FILESYSTEM_COUNT
;
840 * If we're allowed to change the limit, don't enforce the limit
841 * e.g. this can happen if a snapshot is taken by an administrative
842 * user in the global zone (i.e. a recursive snapshot by root).
843 * However, we must handle the case of delegated permissions where we
844 * are allowed to change the limit on the current dataset, but there
845 * is another limit in the tree above.
847 enforce
= dsl_enforce_ds_ss_limits(dd
, prop
, cr
, proc
);
848 if (enforce
== ENFORCE_NEVER
)
852 * e.g. if renaming a dataset with no snapshots, count adjustment
859 * If an ancestor has been provided, stop checking the limit once we
860 * hit that dir. We need this during rename so that we don't overcount
861 * the check once we recurse up to the common ancestor.
867 * If we hit an uninitialized node while recursing up the tree, we can
868 * stop since we know there is no limit here (or above). The counts are
869 * not valid on this node and we know we won't touch this node's counts.
871 if (!dsl_dir_is_zapified(dd
))
873 err
= zap_lookup(os
, dd
->dd_object
,
874 count_prop
, sizeof (count
), 1, &count
);
880 err
= dsl_prop_get_dd(dd
, zfs_prop_to_name(prop
), 8, 1, &limit
, NULL
,
885 /* Is there a limit which we've hit? */
886 if (enforce
== ENFORCE_ALWAYS
&& (count
+ delta
) > limit
)
887 return (SET_ERROR(EDQUOT
));
889 if (dd
->dd_parent
!= NULL
)
890 err
= dsl_fs_ss_limit_check(dd
->dd_parent
, delta
, prop
,
897 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
898 * parents. When a new filesystem/snapshot is created, increment the count on
899 * all parents, and when a filesystem/snapshot is destroyed, decrement the
903 dsl_fs_ss_count_adjust(dsl_dir_t
*dd
, int64_t delta
, const char *prop
,
907 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
910 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
911 ASSERT(dmu_tx_is_syncing(tx
));
912 ASSERT(strcmp(prop
, DD_FIELD_FILESYSTEM_COUNT
) == 0 ||
913 strcmp(prop
, DD_FIELD_SNAPSHOT_COUNT
) == 0);
916 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
918 if (dd
->dd_myname
[0] == '$' && strcmp(prop
,
919 DD_FIELD_FILESYSTEM_COUNT
) == 0) {
924 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
930 * If we hit an uninitialized node while recursing up the tree, we can
931 * stop since we know the counts are not valid on this node and we
932 * know we shouldn't touch this node's counts. An uninitialized count
933 * on the node indicates that either the feature has not yet been
934 * activated or there are no limits on this part of the tree.
936 if (!dsl_dir_is_zapified(dd
) || (err
= zap_lookup(os
, dd
->dd_object
,
937 prop
, sizeof (count
), 1, &count
)) == ENOENT
)
942 /* Use a signed verify to make sure we're not neg. */
943 VERIFY3S(count
, >=, 0);
945 VERIFY0(zap_update(os
, dd
->dd_object
, prop
, sizeof (count
), 1, &count
,
948 /* Roll up this additional count into our ancestors */
949 if (dd
->dd_parent
!= NULL
)
950 dsl_fs_ss_count_adjust(dd
->dd_parent
, delta
, prop
, tx
);
954 dsl_dir_create_sync(dsl_pool_t
*dp
, dsl_dir_t
*pds
, const char *name
,
957 objset_t
*mos
= dp
->dp_meta_objset
;
959 dsl_dir_phys_t
*ddphys
;
962 ddobj
= dmu_object_alloc(mos
, DMU_OT_DSL_DIR
, 0,
963 DMU_OT_DSL_DIR
, sizeof (dsl_dir_phys_t
), tx
);
965 VERIFY0(zap_add(mos
, dsl_dir_phys(pds
)->dd_child_dir_zapobj
,
966 name
, sizeof (uint64_t), 1, &ddobj
, tx
));
968 /* it's the root dir */
969 VERIFY0(zap_add(mos
, DMU_POOL_DIRECTORY_OBJECT
,
970 DMU_POOL_ROOT_DATASET
, sizeof (uint64_t), 1, &ddobj
, tx
));
972 VERIFY0(dmu_bonus_hold(mos
, ddobj
, FTAG
, &dbuf
));
973 dmu_buf_will_dirty(dbuf
, tx
);
974 ddphys
= dbuf
->db_data
;
976 ddphys
->dd_creation_time
= gethrestime_sec();
978 ddphys
->dd_parent_obj
= pds
->dd_object
;
980 /* update the filesystem counts */
981 dsl_fs_ss_count_adjust(pds
, 1, DD_FIELD_FILESYSTEM_COUNT
, tx
);
983 ddphys
->dd_props_zapobj
= zap_create(mos
,
984 DMU_OT_DSL_PROPS
, DMU_OT_NONE
, 0, tx
);
985 ddphys
->dd_child_dir_zapobj
= zap_create(mos
,
986 DMU_OT_DSL_DIR_CHILD_MAP
, DMU_OT_NONE
, 0, tx
);
987 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_USED_BREAKDOWN
)
988 ddphys
->dd_flags
|= DD_FLAG_USED_BREAKDOWN
;
990 dmu_buf_rele(dbuf
, FTAG
);
996 dsl_dir_is_clone(dsl_dir_t
*dd
)
998 return (dsl_dir_phys(dd
)->dd_origin_obj
&&
999 (dd
->dd_pool
->dp_origin_snap
== NULL
||
1000 dsl_dir_phys(dd
)->dd_origin_obj
!=
1001 dd
->dd_pool
->dp_origin_snap
->ds_object
));
1005 dsl_dir_get_used(dsl_dir_t
*dd
)
1007 return (dsl_dir_phys(dd
)->dd_used_bytes
);
1011 dsl_dir_get_compressed(dsl_dir_t
*dd
)
1013 return (dsl_dir_phys(dd
)->dd_compressed_bytes
);
1017 dsl_dir_get_quota(dsl_dir_t
*dd
)
1019 return (dsl_dir_phys(dd
)->dd_quota
);
1023 dsl_dir_get_reservation(dsl_dir_t
*dd
)
1025 return (dsl_dir_phys(dd
)->dd_reserved
);
1029 dsl_dir_get_compressratio(dsl_dir_t
*dd
)
1031 /* a fixed point number, 100x the ratio */
1032 return (dsl_dir_phys(dd
)->dd_compressed_bytes
== 0 ? 100 :
1033 (dsl_dir_phys(dd
)->dd_uncompressed_bytes
* 100 /
1034 dsl_dir_phys(dd
)->dd_compressed_bytes
));
1038 dsl_dir_get_logicalused(dsl_dir_t
*dd
)
1040 return (dsl_dir_phys(dd
)->dd_uncompressed_bytes
);
1044 dsl_dir_get_usedsnap(dsl_dir_t
*dd
)
1046 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_SNAP
]);
1050 dsl_dir_get_usedds(dsl_dir_t
*dd
)
1052 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_HEAD
]);
1056 dsl_dir_get_usedrefreserv(dsl_dir_t
*dd
)
1058 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_REFRSRV
]);
1062 dsl_dir_get_usedchild(dsl_dir_t
*dd
)
1064 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD
] +
1065 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD_RSRV
]);
1069 dsl_dir_get_origin(dsl_dir_t
*dd
, char *buf
)
1072 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
1073 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &ds
));
1075 dsl_dataset_name(ds
, buf
);
1077 dsl_dataset_rele(ds
, FTAG
);
1081 dsl_dir_get_filesystem_count(dsl_dir_t
*dd
, uint64_t *count
)
1083 if (dsl_dir_is_zapified(dd
)) {
1084 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1085 return (zap_lookup(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
1086 sizeof (*count
), 1, count
));
1088 return (SET_ERROR(ENOENT
));
1093 dsl_dir_get_snapshot_count(dsl_dir_t
*dd
, uint64_t *count
)
1095 if (dsl_dir_is_zapified(dd
)) {
1096 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1097 return (zap_lookup(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
1098 sizeof (*count
), 1, count
));
1100 return (SET_ERROR(ENOENT
));
1105 dsl_dir_stats(dsl_dir_t
*dd
, nvlist_t
*nv
)
1107 mutex_enter(&dd
->dd_lock
);
1108 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_QUOTA
,
1109 dsl_dir_get_quota(dd
));
1110 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_RESERVATION
,
1111 dsl_dir_get_reservation(dd
));
1112 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_LOGICALUSED
,
1113 dsl_dir_get_logicalused(dd
));
1114 if (dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1115 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDSNAP
,
1116 dsl_dir_get_usedsnap(dd
));
1117 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDDS
,
1118 dsl_dir_get_usedds(dd
));
1119 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDREFRESERV
,
1120 dsl_dir_get_usedrefreserv(dd
));
1121 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDCHILD
,
1122 dsl_dir_get_usedchild(dd
));
1124 mutex_exit(&dd
->dd_lock
);
1127 if (dsl_dir_get_filesystem_count(dd
, &count
) == 0) {
1128 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_FILESYSTEM_COUNT
,
1131 if (dsl_dir_get_snapshot_count(dd
, &count
) == 0) {
1132 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_SNAPSHOT_COUNT
,
1136 if (dsl_dir_is_clone(dd
)) {
1137 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
1138 dsl_dir_get_origin(dd
, buf
);
1139 dsl_prop_nvlist_add_string(nv
, ZFS_PROP_ORIGIN
, buf
);
1145 dsl_dir_dirty(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1147 dsl_pool_t
*dp
= dd
->dd_pool
;
1149 ASSERT(dsl_dir_phys(dd
));
1151 if (txg_list_add(&dp
->dp_dirty_dirs
, dd
, tx
->tx_txg
)) {
1152 /* up the hold count until we can be written out */
1153 dmu_buf_add_ref(dd
->dd_dbuf
, dd
);
1158 parent_delta(dsl_dir_t
*dd
, uint64_t used
, int64_t delta
)
1160 uint64_t old_accounted
= MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1161 uint64_t new_accounted
=
1162 MAX(used
+ delta
, dsl_dir_phys(dd
)->dd_reserved
);
1163 return (new_accounted
- old_accounted
);
1167 dsl_dir_sync(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1169 ASSERT(dmu_tx_is_syncing(tx
));
1171 mutex_enter(&dd
->dd_lock
);
1172 ASSERT0(dd
->dd_tempreserved
[tx
->tx_txg
& TXG_MASK
]);
1173 dprintf_dd(dd
, "txg=%llu towrite=%lluK\n", (u_longlong_t
)tx
->tx_txg
,
1174 (u_longlong_t
)dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] / 1024);
1175 dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] = 0;
1176 mutex_exit(&dd
->dd_lock
);
1178 /* release the hold from dsl_dir_dirty */
1179 dmu_buf_rele(dd
->dd_dbuf
, dd
);
1183 dsl_dir_space_towrite(dsl_dir_t
*dd
)
1187 ASSERT(MUTEX_HELD(&dd
->dd_lock
));
1189 for (int i
= 0; i
< TXG_SIZE
; i
++)
1190 space
+= dd
->dd_space_towrite
[i
& TXG_MASK
];
1196 * How much space would dd have available if ancestor had delta applied
1197 * to it? If ondiskonly is set, we're only interested in what's
1198 * on-disk, not estimated pending changes.
1201 dsl_dir_space_available(dsl_dir_t
*dd
,
1202 dsl_dir_t
*ancestor
, int64_t delta
, int ondiskonly
)
1204 uint64_t parentspace
, myspace
, quota
, used
;
1207 * If there are no restrictions otherwise, assume we have
1208 * unlimited space available.
1211 parentspace
= UINT64_MAX
;
1213 if (dd
->dd_parent
!= NULL
) {
1214 parentspace
= dsl_dir_space_available(dd
->dd_parent
,
1215 ancestor
, delta
, ondiskonly
);
1218 mutex_enter(&dd
->dd_lock
);
1219 if (dsl_dir_phys(dd
)->dd_quota
!= 0)
1220 quota
= dsl_dir_phys(dd
)->dd_quota
;
1221 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1223 used
+= dsl_dir_space_towrite(dd
);
1225 if (dd
->dd_parent
== NULL
) {
1226 uint64_t poolsize
= dsl_pool_adjustedsize(dd
->dd_pool
,
1227 ZFS_SPACE_CHECK_NORMAL
);
1228 quota
= MIN(quota
, poolsize
);
1231 if (dsl_dir_phys(dd
)->dd_reserved
> used
&& parentspace
!= UINT64_MAX
) {
1233 * We have some space reserved, in addition to what our
1236 parentspace
+= dsl_dir_phys(dd
)->dd_reserved
- used
;
1239 if (dd
== ancestor
) {
1241 ASSERT(used
>= -delta
);
1243 if (parentspace
!= UINT64_MAX
)
1244 parentspace
-= delta
;
1252 * the lesser of the space provided by our parent and
1253 * the space left in our quota
1255 myspace
= MIN(parentspace
, quota
- used
);
1258 mutex_exit(&dd
->dd_lock
);
1263 struct tempreserve
{
1264 list_node_t tr_node
;
1270 dsl_dir_tempreserve_impl(dsl_dir_t
*dd
, uint64_t asize
, boolean_t netfree
,
1271 boolean_t ignorequota
, list_t
*tr_list
,
1272 dmu_tx_t
*tx
, boolean_t first
)
1276 struct tempreserve
*tr
;
1286 ASSERT3U(txg
, !=, 0);
1287 ASSERT3S(asize
, >, 0);
1289 mutex_enter(&dd
->dd_lock
);
1292 * Check against the dsl_dir's quota. We don't add in the delta
1293 * when checking for over-quota because they get one free hit.
1295 uint64_t est_inflight
= dsl_dir_space_towrite(dd
);
1296 for (int i
= 0; i
< TXG_SIZE
; i
++)
1297 est_inflight
+= dd
->dd_tempreserved
[i
];
1298 uint64_t used_on_disk
= dsl_dir_phys(dd
)->dd_used_bytes
;
1301 * On the first iteration, fetch the dataset's used-on-disk and
1302 * refreservation values. Also, if checkrefquota is set, test if
1303 * allocating this space would exceed the dataset's refquota.
1305 if (first
&& tx
->tx_objset
) {
1307 dsl_dataset_t
*ds
= tx
->tx_objset
->os_dsl_dataset
;
1309 error
= dsl_dataset_check_quota(ds
, !netfree
,
1310 asize
, est_inflight
, &used_on_disk
, &ref_rsrv
);
1312 mutex_exit(&dd
->dd_lock
);
1313 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1319 * If this transaction will result in a net free of space,
1320 * we want to let it through.
1322 if (ignorequota
|| netfree
|| dsl_dir_phys(dd
)->dd_quota
== 0 ||
1323 (tx
->tx_objset
&& dmu_objset_type(tx
->tx_objset
) == DMU_OST_ZVOL
&&
1324 zvol_enforce_quotas
== B_FALSE
))
1327 quota
= dsl_dir_phys(dd
)->dd_quota
;
1330 * Adjust the quota against the actual pool size at the root
1331 * minus any outstanding deferred frees.
1332 * To ensure that it's possible to remove files from a full
1333 * pool without inducing transient overcommits, we throttle
1334 * netfree transactions against a quota that is slightly larger,
1335 * but still within the pool's allocation slop. In cases where
1336 * we're very close to full, this will allow a steady trickle of
1337 * removes to get through.
1339 if (dd
->dd_parent
== NULL
) {
1340 uint64_t avail
= dsl_pool_unreserved_space(dd
->dd_pool
,
1342 ZFS_SPACE_CHECK_RESERVED
: ZFS_SPACE_CHECK_NORMAL
);
1344 if (avail
< quota
) {
1346 retval
= SET_ERROR(ENOSPC
);
1351 * If they are requesting more space, and our current estimate
1352 * is over quota, they get to try again unless the actual
1353 * on-disk is over quota and there are no pending changes
1354 * or deferred frees (which may free up space for us).
1356 ext_quota
= quota
>> 5;
1357 if (quota
== UINT64_MAX
)
1360 if (used_on_disk
>= quota
) {
1361 /* Quota exceeded */
1362 mutex_exit(&dd
->dd_lock
);
1363 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1365 } else if (used_on_disk
+ est_inflight
>= quota
+ ext_quota
) {
1366 if (est_inflight
> 0 || used_on_disk
< quota
) {
1367 retval
= SET_ERROR(ERESTART
);
1369 ASSERT3U(used_on_disk
, >=, quota
);
1371 if (retval
== ENOSPC
&& (used_on_disk
- quota
) <
1372 dsl_pool_deferred_space(dd
->dd_pool
)) {
1373 retval
= SET_ERROR(ERESTART
);
1377 dprintf_dd(dd
, "failing: used=%lluK inflight = %lluK "
1378 "quota=%lluK tr=%lluK err=%d\n",
1379 (u_longlong_t
)used_on_disk
>>10,
1380 (u_longlong_t
)est_inflight
>>10,
1381 (u_longlong_t
)quota
>>10, (u_longlong_t
)asize
>>10, retval
);
1382 mutex_exit(&dd
->dd_lock
);
1383 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1387 /* We need to up our estimated delta before dropping dd_lock */
1388 dd
->dd_tempreserved
[txg
& TXG_MASK
] += asize
;
1390 uint64_t parent_rsrv
= parent_delta(dd
, used_on_disk
+ est_inflight
,
1392 mutex_exit(&dd
->dd_lock
);
1394 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1396 tr
->tr_size
= asize
;
1397 list_insert_tail(tr_list
, tr
);
1399 /* see if it's OK with our parent */
1400 if (dd
->dd_parent
!= NULL
&& parent_rsrv
!= 0) {
1402 * Recurse on our parent without recursion. This has been
1403 * observed to be potentially large stack usage even within
1404 * the test suite. Largest seen stack was 7632 bytes on linux.
1408 asize
= parent_rsrv
;
1409 ignorequota
= (dsl_dir_phys(dd
)->dd_head_dataset_obj
== 0);
1411 goto top_of_function
;
1418 * Reserve space in this dsl_dir, to be used in this tx's txg.
1419 * After the space has been dirtied (and dsl_dir_willuse_space()
1420 * has been called), the reservation should be canceled, using
1421 * dsl_dir_tempreserve_clear().
1424 dsl_dir_tempreserve_space(dsl_dir_t
*dd
, uint64_t lsize
, uint64_t asize
,
1425 boolean_t netfree
, void **tr_cookiep
, dmu_tx_t
*tx
)
1435 tr_list
= kmem_alloc(sizeof (list_t
), KM_SLEEP
);
1436 list_create(tr_list
, sizeof (struct tempreserve
),
1437 offsetof(struct tempreserve
, tr_node
));
1438 ASSERT3S(asize
, >, 0);
1440 err
= arc_tempreserve_space(dd
->dd_pool
->dp_spa
, lsize
, tx
->tx_txg
);
1442 struct tempreserve
*tr
;
1444 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1445 tr
->tr_size
= lsize
;
1446 list_insert_tail(tr_list
, tr
);
1448 if (err
== EAGAIN
) {
1450 * If arc_memory_throttle() detected that pageout
1451 * is running and we are low on memory, we delay new
1452 * non-pageout transactions to give pageout an
1455 * It is unfortunate to be delaying while the caller's
1458 txg_delay(dd
->dd_pool
, tx
->tx_txg
,
1459 MSEC2NSEC(10), MSEC2NSEC(10));
1460 err
= SET_ERROR(ERESTART
);
1465 err
= dsl_dir_tempreserve_impl(dd
, asize
, netfree
,
1466 B_FALSE
, tr_list
, tx
, B_TRUE
);
1470 dsl_dir_tempreserve_clear(tr_list
, tx
);
1472 *tr_cookiep
= tr_list
;
1478 * Clear a temporary reservation that we previously made with
1479 * dsl_dir_tempreserve_space().
1482 dsl_dir_tempreserve_clear(void *tr_cookie
, dmu_tx_t
*tx
)
1484 int txgidx
= tx
->tx_txg
& TXG_MASK
;
1485 list_t
*tr_list
= tr_cookie
;
1486 struct tempreserve
*tr
;
1488 ASSERT3U(tx
->tx_txg
, !=, 0);
1490 if (tr_cookie
== NULL
)
1493 while ((tr
= list_head(tr_list
)) != NULL
) {
1495 mutex_enter(&tr
->tr_ds
->dd_lock
);
1496 ASSERT3U(tr
->tr_ds
->dd_tempreserved
[txgidx
], >=,
1498 tr
->tr_ds
->dd_tempreserved
[txgidx
] -= tr
->tr_size
;
1499 mutex_exit(&tr
->tr_ds
->dd_lock
);
1501 arc_tempreserve_clear(tr
->tr_size
);
1503 list_remove(tr_list
, tr
);
1504 kmem_free(tr
, sizeof (struct tempreserve
));
1507 kmem_free(tr_list
, sizeof (list_t
));
1511 * This should be called from open context when we think we're going to write
1512 * or free space, for example when dirtying data. Be conservative; it's okay
1513 * to write less space or free more, but we don't want to write more or free
1514 * less than the amount specified.
1516 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1517 * version however it has been adjusted to use an iterative rather than
1518 * recursive algorithm to minimize stack usage.
1521 dsl_dir_willuse_space(dsl_dir_t
*dd
, int64_t space
, dmu_tx_t
*tx
)
1523 int64_t parent_space
;
1527 mutex_enter(&dd
->dd_lock
);
1529 dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] += space
;
1531 est_used
= dsl_dir_space_towrite(dd
) +
1532 dsl_dir_phys(dd
)->dd_used_bytes
;
1533 parent_space
= parent_delta(dd
, est_used
, space
);
1534 mutex_exit(&dd
->dd_lock
);
1536 /* Make sure that we clean up dd_space_to* */
1537 dsl_dir_dirty(dd
, tx
);
1540 space
= parent_space
;
1541 } while (space
&& dd
);
1544 /* call from syncing context when we actually write/free space for this dd */
1546 dsl_dir_diduse_space(dsl_dir_t
*dd
, dd_used_t type
,
1547 int64_t used
, int64_t compressed
, int64_t uncompressed
, dmu_tx_t
*tx
)
1549 int64_t accounted_delta
;
1551 ASSERT(dmu_tx_is_syncing(tx
));
1552 ASSERT(type
< DD_USED_NUM
);
1554 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1557 * dsl_dataset_set_refreservation_sync_impl() calls this with
1558 * dd_lock held, so that it can atomically update
1559 * ds->ds_reserved and the dsl_dir accounting, so that
1560 * dsl_dataset_check_quota() can see dataset and dir accounting
1563 boolean_t needlock
= !MUTEX_HELD(&dd
->dd_lock
);
1565 mutex_enter(&dd
->dd_lock
);
1566 dsl_dir_phys_t
*ddp
= dsl_dir_phys(dd
);
1567 accounted_delta
= parent_delta(dd
, ddp
->dd_used_bytes
, used
);
1568 ASSERT(used
>= 0 || ddp
->dd_used_bytes
>= -used
);
1569 ASSERT(compressed
>= 0 || ddp
->dd_compressed_bytes
>= -compressed
);
1570 ASSERT(uncompressed
>= 0 ||
1571 ddp
->dd_uncompressed_bytes
>= -uncompressed
);
1572 ddp
->dd_used_bytes
+= used
;
1573 ddp
->dd_uncompressed_bytes
+= uncompressed
;
1574 ddp
->dd_compressed_bytes
+= compressed
;
1576 if (ddp
->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1577 ASSERT(used
>= 0 || ddp
->dd_used_breakdown
[type
] >= -used
);
1578 ddp
->dd_used_breakdown
[type
] += used
;
1583 for (t
= 0; t
< DD_USED_NUM
; t
++)
1584 u
+= ddp
->dd_used_breakdown
[t
];
1585 ASSERT3U(u
, ==, ddp
->dd_used_bytes
);
1590 mutex_exit(&dd
->dd_lock
);
1592 if (dd
->dd_parent
!= NULL
) {
1593 dsl_dir_diduse_transfer_space(dd
->dd_parent
,
1594 accounted_delta
, compressed
, uncompressed
,
1595 used
, DD_USED_CHILD_RSRV
, DD_USED_CHILD
, tx
);
1600 dsl_dir_transfer_space(dsl_dir_t
*dd
, int64_t delta
,
1601 dd_used_t oldtype
, dd_used_t newtype
, dmu_tx_t
*tx
)
1603 ASSERT(dmu_tx_is_syncing(tx
));
1604 ASSERT(oldtype
< DD_USED_NUM
);
1605 ASSERT(newtype
< DD_USED_NUM
);
1607 dsl_dir_phys_t
*ddp
= dsl_dir_phys(dd
);
1609 !(ddp
->dd_flags
& DD_FLAG_USED_BREAKDOWN
))
1612 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1613 mutex_enter(&dd
->dd_lock
);
1615 ddp
->dd_used_breakdown
[oldtype
] >= delta
:
1616 ddp
->dd_used_breakdown
[newtype
] >= -delta
);
1617 ASSERT(ddp
->dd_used_bytes
>= ABS(delta
));
1618 ddp
->dd_used_breakdown
[oldtype
] -= delta
;
1619 ddp
->dd_used_breakdown
[newtype
] += delta
;
1620 mutex_exit(&dd
->dd_lock
);
1624 dsl_dir_diduse_transfer_space(dsl_dir_t
*dd
, int64_t used
,
1625 int64_t compressed
, int64_t uncompressed
, int64_t tonew
,
1626 dd_used_t oldtype
, dd_used_t newtype
, dmu_tx_t
*tx
)
1628 int64_t accounted_delta
;
1630 ASSERT(dmu_tx_is_syncing(tx
));
1631 ASSERT(oldtype
< DD_USED_NUM
);
1632 ASSERT(newtype
< DD_USED_NUM
);
1634 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1636 mutex_enter(&dd
->dd_lock
);
1637 dsl_dir_phys_t
*ddp
= dsl_dir_phys(dd
);
1638 accounted_delta
= parent_delta(dd
, ddp
->dd_used_bytes
, used
);
1639 ASSERT(used
>= 0 || ddp
->dd_used_bytes
>= -used
);
1640 ASSERT(compressed
>= 0 || ddp
->dd_compressed_bytes
>= -compressed
);
1641 ASSERT(uncompressed
>= 0 ||
1642 ddp
->dd_uncompressed_bytes
>= -uncompressed
);
1643 ddp
->dd_used_bytes
+= used
;
1644 ddp
->dd_uncompressed_bytes
+= uncompressed
;
1645 ddp
->dd_compressed_bytes
+= compressed
;
1647 if (ddp
->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1648 ASSERT(tonew
- used
<= 0 ||
1649 ddp
->dd_used_breakdown
[oldtype
] >= tonew
- used
);
1650 ASSERT(tonew
>= 0 ||
1651 ddp
->dd_used_breakdown
[newtype
] >= -tonew
);
1652 ddp
->dd_used_breakdown
[oldtype
] -= tonew
- used
;
1653 ddp
->dd_used_breakdown
[newtype
] += tonew
;
1658 for (t
= 0; t
< DD_USED_NUM
; t
++)
1659 u
+= ddp
->dd_used_breakdown
[t
];
1660 ASSERT3U(u
, ==, ddp
->dd_used_bytes
);
1664 mutex_exit(&dd
->dd_lock
);
1666 if (dd
->dd_parent
!= NULL
) {
1667 dsl_dir_diduse_transfer_space(dd
->dd_parent
,
1668 accounted_delta
, compressed
, uncompressed
,
1669 used
, DD_USED_CHILD_RSRV
, DD_USED_CHILD
, tx
);
1673 typedef struct dsl_dir_set_qr_arg
{
1674 const char *ddsqra_name
;
1675 zprop_source_t ddsqra_source
;
1676 uint64_t ddsqra_value
;
1677 } dsl_dir_set_qr_arg_t
;
1680 dsl_dir_set_quota_check(void *arg
, dmu_tx_t
*tx
)
1682 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1683 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1686 uint64_t towrite
, newval
;
1688 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1692 error
= dsl_prop_predict(ds
->ds_dir
, "quota",
1693 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1695 dsl_dataset_rele(ds
, FTAG
);
1700 dsl_dataset_rele(ds
, FTAG
);
1704 mutex_enter(&ds
->ds_dir
->dd_lock
);
1706 * If we are doing the preliminary check in open context, and
1707 * there are pending changes, then don't fail it, since the
1708 * pending changes could under-estimate the amount of space to be
1711 towrite
= dsl_dir_space_towrite(ds
->ds_dir
);
1712 if ((dmu_tx_is_syncing(tx
) || towrite
== 0) &&
1713 (newval
< dsl_dir_phys(ds
->ds_dir
)->dd_reserved
||
1714 newval
< dsl_dir_phys(ds
->ds_dir
)->dd_used_bytes
+ towrite
)) {
1715 error
= SET_ERROR(ENOSPC
);
1717 mutex_exit(&ds
->ds_dir
->dd_lock
);
1718 dsl_dataset_rele(ds
, FTAG
);
1723 dsl_dir_set_quota_sync(void *arg
, dmu_tx_t
*tx
)
1725 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1726 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1730 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1732 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1733 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_QUOTA
),
1734 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1735 &ddsqra
->ddsqra_value
, tx
);
1737 VERIFY0(dsl_prop_get_int_ds(ds
,
1738 zfs_prop_to_name(ZFS_PROP_QUOTA
), &newval
));
1740 newval
= ddsqra
->ddsqra_value
;
1741 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1742 zfs_prop_to_name(ZFS_PROP_QUOTA
), (longlong_t
)newval
);
1745 dmu_buf_will_dirty(ds
->ds_dir
->dd_dbuf
, tx
);
1746 mutex_enter(&ds
->ds_dir
->dd_lock
);
1747 dsl_dir_phys(ds
->ds_dir
)->dd_quota
= newval
;
1748 mutex_exit(&ds
->ds_dir
->dd_lock
);
1749 dsl_dataset_rele(ds
, FTAG
);
1753 dsl_dir_set_quota(const char *ddname
, zprop_source_t source
, uint64_t quota
)
1755 dsl_dir_set_qr_arg_t ddsqra
;
1757 ddsqra
.ddsqra_name
= ddname
;
1758 ddsqra
.ddsqra_source
= source
;
1759 ddsqra
.ddsqra_value
= quota
;
1761 return (dsl_sync_task(ddname
, dsl_dir_set_quota_check
,
1762 dsl_dir_set_quota_sync
, &ddsqra
, 0,
1763 ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1767 dsl_dir_set_reservation_check(void *arg
, dmu_tx_t
*tx
)
1769 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1770 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1773 uint64_t newval
, used
, avail
;
1776 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1782 * If we are doing the preliminary check in open context, the
1783 * space estimates may be inaccurate.
1785 if (!dmu_tx_is_syncing(tx
)) {
1786 dsl_dataset_rele(ds
, FTAG
);
1790 error
= dsl_prop_predict(ds
->ds_dir
,
1791 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1792 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1794 dsl_dataset_rele(ds
, FTAG
);
1798 mutex_enter(&dd
->dd_lock
);
1799 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1800 mutex_exit(&dd
->dd_lock
);
1802 if (dd
->dd_parent
) {
1803 avail
= dsl_dir_space_available(dd
->dd_parent
,
1806 avail
= dsl_pool_adjustedsize(dd
->dd_pool
,
1807 ZFS_SPACE_CHECK_NORMAL
) - used
;
1810 if (MAX(used
, newval
) > MAX(used
, dsl_dir_phys(dd
)->dd_reserved
)) {
1811 uint64_t delta
= MAX(used
, newval
) -
1812 MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1814 if (delta
> avail
||
1815 (dsl_dir_phys(dd
)->dd_quota
> 0 &&
1816 newval
> dsl_dir_phys(dd
)->dd_quota
))
1817 error
= SET_ERROR(ENOSPC
);
1820 dsl_dataset_rele(ds
, FTAG
);
1825 dsl_dir_set_reservation_sync_impl(dsl_dir_t
*dd
, uint64_t value
, dmu_tx_t
*tx
)
1830 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1832 mutex_enter(&dd
->dd_lock
);
1833 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1834 delta
= MAX(used
, value
) - MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1835 dsl_dir_phys(dd
)->dd_reserved
= value
;
1837 if (dd
->dd_parent
!= NULL
) {
1838 /* Roll up this additional usage into our ancestors */
1839 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
1842 mutex_exit(&dd
->dd_lock
);
1846 dsl_dir_set_reservation_sync(void *arg
, dmu_tx_t
*tx
)
1848 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1849 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1853 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1855 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1856 dsl_prop_set_sync_impl(ds
,
1857 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1858 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1859 &ddsqra
->ddsqra_value
, tx
);
1861 VERIFY0(dsl_prop_get_int_ds(ds
,
1862 zfs_prop_to_name(ZFS_PROP_RESERVATION
), &newval
));
1864 newval
= ddsqra
->ddsqra_value
;
1865 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1866 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1867 (longlong_t
)newval
);
1870 dsl_dir_set_reservation_sync_impl(ds
->ds_dir
, newval
, tx
);
1871 dsl_dataset_rele(ds
, FTAG
);
1875 dsl_dir_set_reservation(const char *ddname
, zprop_source_t source
,
1876 uint64_t reservation
)
1878 dsl_dir_set_qr_arg_t ddsqra
;
1880 ddsqra
.ddsqra_name
= ddname
;
1881 ddsqra
.ddsqra_source
= source
;
1882 ddsqra
.ddsqra_value
= reservation
;
1884 return (dsl_sync_task(ddname
, dsl_dir_set_reservation_check
,
1885 dsl_dir_set_reservation_sync
, &ddsqra
, 0,
1886 ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1890 closest_common_ancestor(dsl_dir_t
*ds1
, dsl_dir_t
*ds2
)
1892 for (; ds1
; ds1
= ds1
->dd_parent
) {
1894 for (dd
= ds2
; dd
; dd
= dd
->dd_parent
) {
1903 * If delta is applied to dd, how much of that delta would be applied to
1904 * ancestor? Syncing context only.
1907 would_change(dsl_dir_t
*dd
, int64_t delta
, dsl_dir_t
*ancestor
)
1912 mutex_enter(&dd
->dd_lock
);
1913 delta
= parent_delta(dd
, dsl_dir_phys(dd
)->dd_used_bytes
, delta
);
1914 mutex_exit(&dd
->dd_lock
);
1915 return (would_change(dd
->dd_parent
, delta
, ancestor
));
1918 typedef struct dsl_dir_rename_arg
{
1919 const char *ddra_oldname
;
1920 const char *ddra_newname
;
1923 } dsl_dir_rename_arg_t
;
1925 typedef struct dsl_valid_rename_arg
{
1928 } dsl_valid_rename_arg_t
;
1931 dsl_valid_rename(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
1934 dsl_valid_rename_arg_t
*dvra
= arg
;
1935 char namebuf
[ZFS_MAX_DATASET_NAME_LEN
];
1937 dsl_dataset_name(ds
, namebuf
);
1939 ASSERT3U(strnlen(namebuf
, ZFS_MAX_DATASET_NAME_LEN
),
1940 <, ZFS_MAX_DATASET_NAME_LEN
);
1941 int namelen
= strlen(namebuf
) + dvra
->char_delta
;
1942 int depth
= get_dataset_depth(namebuf
) + dvra
->nest_delta
;
1944 if (namelen
>= ZFS_MAX_DATASET_NAME_LEN
)
1945 return (SET_ERROR(ENAMETOOLONG
));
1946 if (dvra
->nest_delta
> 0 && depth
>= zfs_max_dataset_nesting
)
1947 return (SET_ERROR(ENAMETOOLONG
));
1952 dsl_dir_rename_check(void *arg
, dmu_tx_t
*tx
)
1954 dsl_dir_rename_arg_t
*ddra
= arg
;
1955 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1956 dsl_dir_t
*dd
, *newparent
;
1957 dsl_valid_rename_arg_t dvra
;
1958 dsl_dataset_t
*parentds
;
1960 const char *mynewname
;
1963 /* target dir should exist */
1964 error
= dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
);
1968 /* new parent should exist */
1969 error
= dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
,
1970 &newparent
, &mynewname
);
1972 dsl_dir_rele(dd
, FTAG
);
1976 /* can't rename to different pool */
1977 if (dd
->dd_pool
!= newparent
->dd_pool
) {
1978 dsl_dir_rele(newparent
, FTAG
);
1979 dsl_dir_rele(dd
, FTAG
);
1980 return (SET_ERROR(EXDEV
));
1983 /* new name should not already exist */
1984 if (mynewname
== NULL
) {
1985 dsl_dir_rele(newparent
, FTAG
);
1986 dsl_dir_rele(dd
, FTAG
);
1987 return (SET_ERROR(EEXIST
));
1990 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1991 error
= dsl_dataset_hold_obj(newparent
->dd_pool
,
1992 dsl_dir_phys(newparent
)->dd_head_dataset_obj
, FTAG
, &parentds
);
1994 dsl_dir_rele(newparent
, FTAG
);
1995 dsl_dir_rele(dd
, FTAG
);
1998 error
= dmu_objset_from_ds(parentds
, &parentos
);
2000 dsl_dataset_rele(parentds
, FTAG
);
2001 dsl_dir_rele(newparent
, FTAG
);
2002 dsl_dir_rele(dd
, FTAG
);
2005 if (dmu_objset_type(parentos
) != DMU_OST_ZFS
) {
2006 dsl_dataset_rele(parentds
, FTAG
);
2007 dsl_dir_rele(newparent
, FTAG
);
2008 dsl_dir_rele(dd
, FTAG
);
2009 return (SET_ERROR(ZFS_ERR_WRONG_PARENT
));
2011 dsl_dataset_rele(parentds
, FTAG
);
2013 ASSERT3U(strnlen(ddra
->ddra_newname
, ZFS_MAX_DATASET_NAME_LEN
),
2014 <, ZFS_MAX_DATASET_NAME_LEN
);
2015 ASSERT3U(strnlen(ddra
->ddra_oldname
, ZFS_MAX_DATASET_NAME_LEN
),
2016 <, ZFS_MAX_DATASET_NAME_LEN
);
2017 dvra
.char_delta
= strlen(ddra
->ddra_newname
)
2018 - strlen(ddra
->ddra_oldname
);
2019 dvra
.nest_delta
= get_dataset_depth(ddra
->ddra_newname
)
2020 - get_dataset_depth(ddra
->ddra_oldname
);
2022 /* if the name length is growing, validate child name lengths */
2023 if (dvra
.char_delta
> 0 || dvra
.nest_delta
> 0) {
2024 error
= dmu_objset_find_dp(dp
, dd
->dd_object
, dsl_valid_rename
,
2025 &dvra
, DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
2027 dsl_dir_rele(newparent
, FTAG
);
2028 dsl_dir_rele(dd
, FTAG
);
2033 if (dmu_tx_is_syncing(tx
)) {
2034 if (spa_feature_is_active(dp
->dp_spa
,
2035 SPA_FEATURE_FS_SS_LIMIT
)) {
2037 * Although this is the check function and we don't
2038 * normally make on-disk changes in check functions,
2039 * we need to do that here.
2041 * Ensure this portion of the tree's counts have been
2042 * initialized in case the new parent has limits set.
2044 dsl_dir_init_fs_ss_count(dd
, tx
);
2048 if (newparent
!= dd
->dd_parent
) {
2049 /* is there enough space? */
2051 MAX(dsl_dir_phys(dd
)->dd_used_bytes
,
2052 dsl_dir_phys(dd
)->dd_reserved
);
2053 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
2054 uint64_t fs_cnt
= 0;
2055 uint64_t ss_cnt
= 0;
2057 if (dsl_dir_is_zapified(dd
)) {
2060 err
= zap_lookup(os
, dd
->dd_object
,
2061 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
2063 if (err
!= ENOENT
&& err
!= 0) {
2064 dsl_dir_rele(newparent
, FTAG
);
2065 dsl_dir_rele(dd
, FTAG
);
2070 * have to add 1 for the filesystem itself that we're
2075 err
= zap_lookup(os
, dd
->dd_object
,
2076 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
2078 if (err
!= ENOENT
&& err
!= 0) {
2079 dsl_dir_rele(newparent
, FTAG
);
2080 dsl_dir_rele(dd
, FTAG
);
2085 /* check for encryption errors */
2086 error
= dsl_dir_rename_crypt_check(dd
, newparent
);
2088 dsl_dir_rele(newparent
, FTAG
);
2089 dsl_dir_rele(dd
, FTAG
);
2090 return (SET_ERROR(EACCES
));
2093 /* no rename into our descendant */
2094 if (closest_common_ancestor(dd
, newparent
) == dd
) {
2095 dsl_dir_rele(newparent
, FTAG
);
2096 dsl_dir_rele(dd
, FTAG
);
2097 return (SET_ERROR(EINVAL
));
2100 error
= dsl_dir_transfer_possible(dd
->dd_parent
,
2101 newparent
, fs_cnt
, ss_cnt
, myspace
,
2102 ddra
->ddra_cred
, ddra
->ddra_proc
);
2104 dsl_dir_rele(newparent
, FTAG
);
2105 dsl_dir_rele(dd
, FTAG
);
2110 dsl_dir_rele(newparent
, FTAG
);
2111 dsl_dir_rele(dd
, FTAG
);
2116 dsl_dir_rename_sync(void *arg
, dmu_tx_t
*tx
)
2118 dsl_dir_rename_arg_t
*ddra
= arg
;
2119 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2120 dsl_dir_t
*dd
, *newparent
;
2121 const char *mynewname
;
2122 objset_t
*mos
= dp
->dp_meta_objset
;
2124 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
));
2125 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
, &newparent
,
2128 ASSERT3P(mynewname
, !=, NULL
);
2130 /* Log this before we change the name. */
2131 spa_history_log_internal_dd(dd
, "rename", tx
,
2132 "-> %s", ddra
->ddra_newname
);
2134 if (newparent
!= dd
->dd_parent
) {
2135 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
2136 uint64_t fs_cnt
= 0;
2137 uint64_t ss_cnt
= 0;
2140 * We already made sure the dd counts were initialized in the
2143 if (spa_feature_is_active(dp
->dp_spa
,
2144 SPA_FEATURE_FS_SS_LIMIT
)) {
2145 VERIFY0(zap_lookup(os
, dd
->dd_object
,
2146 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
2148 /* add 1 for the filesystem itself that we're moving */
2151 VERIFY0(zap_lookup(os
, dd
->dd_object
,
2152 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
2156 dsl_fs_ss_count_adjust(dd
->dd_parent
, -fs_cnt
,
2157 DD_FIELD_FILESYSTEM_COUNT
, tx
);
2158 dsl_fs_ss_count_adjust(newparent
, fs_cnt
,
2159 DD_FIELD_FILESYSTEM_COUNT
, tx
);
2161 dsl_fs_ss_count_adjust(dd
->dd_parent
, -ss_cnt
,
2162 DD_FIELD_SNAPSHOT_COUNT
, tx
);
2163 dsl_fs_ss_count_adjust(newparent
, ss_cnt
,
2164 DD_FIELD_SNAPSHOT_COUNT
, tx
);
2166 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD
,
2167 -dsl_dir_phys(dd
)->dd_used_bytes
,
2168 -dsl_dir_phys(dd
)->dd_compressed_bytes
,
2169 -dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
2170 dsl_dir_diduse_space(newparent
, DD_USED_CHILD
,
2171 dsl_dir_phys(dd
)->dd_used_bytes
,
2172 dsl_dir_phys(dd
)->dd_compressed_bytes
,
2173 dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
2175 if (dsl_dir_phys(dd
)->dd_reserved
>
2176 dsl_dir_phys(dd
)->dd_used_bytes
) {
2177 uint64_t unused_rsrv
= dsl_dir_phys(dd
)->dd_reserved
-
2178 dsl_dir_phys(dd
)->dd_used_bytes
;
2180 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
2181 -unused_rsrv
, 0, 0, tx
);
2182 dsl_dir_diduse_space(newparent
, DD_USED_CHILD_RSRV
,
2183 unused_rsrv
, 0, 0, tx
);
2187 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
2189 /* remove from old parent zapobj */
2190 VERIFY0(zap_remove(mos
,
2191 dsl_dir_phys(dd
->dd_parent
)->dd_child_dir_zapobj
,
2192 dd
->dd_myname
, tx
));
2194 (void) strlcpy(dd
->dd_myname
, mynewname
,
2195 sizeof (dd
->dd_myname
));
2196 dsl_dir_rele(dd
->dd_parent
, dd
);
2197 dsl_dir_phys(dd
)->dd_parent_obj
= newparent
->dd_object
;
2198 VERIFY0(dsl_dir_hold_obj(dp
,
2199 newparent
->dd_object
, NULL
, dd
, &dd
->dd_parent
));
2201 /* add to new parent zapobj */
2202 VERIFY0(zap_add(mos
, dsl_dir_phys(newparent
)->dd_child_dir_zapobj
,
2203 dd
->dd_myname
, 8, 1, &dd
->dd_object
, tx
));
2205 /* TODO: A rename callback to avoid these layering violations. */
2206 zfsvfs_update_fromname(ddra
->ddra_oldname
, ddra
->ddra_newname
);
2207 zvol_rename_minors(dp
->dp_spa
, ddra
->ddra_oldname
,
2208 ddra
->ddra_newname
, B_TRUE
);
2210 dsl_prop_notify_all(dd
);
2212 dsl_dir_rele(newparent
, FTAG
);
2213 dsl_dir_rele(dd
, FTAG
);
2217 dsl_dir_rename(const char *oldname
, const char *newname
)
2219 dsl_dir_rename_arg_t ddra
;
2221 ddra
.ddra_oldname
= oldname
;
2222 ddra
.ddra_newname
= newname
;
2223 ddra
.ddra_cred
= CRED();
2224 ddra
.ddra_proc
= curproc
;
2226 return (dsl_sync_task(oldname
,
2227 dsl_dir_rename_check
, dsl_dir_rename_sync
, &ddra
,
2228 3, ZFS_SPACE_CHECK_RESERVED
));
2232 dsl_dir_transfer_possible(dsl_dir_t
*sdd
, dsl_dir_t
*tdd
,
2233 uint64_t fs_cnt
, uint64_t ss_cnt
, uint64_t space
,
2234 cred_t
*cr
, proc_t
*proc
)
2236 dsl_dir_t
*ancestor
;
2241 ancestor
= closest_common_ancestor(sdd
, tdd
);
2242 adelta
= would_change(sdd
, -space
, ancestor
);
2243 avail
= dsl_dir_space_available(tdd
, ancestor
, adelta
, FALSE
);
2245 return (SET_ERROR(ENOSPC
));
2247 err
= dsl_fs_ss_limit_check(tdd
, fs_cnt
, ZFS_PROP_FILESYSTEM_LIMIT
,
2248 ancestor
, cr
, proc
);
2251 err
= dsl_fs_ss_limit_check(tdd
, ss_cnt
, ZFS_PROP_SNAPSHOT_LIMIT
,
2252 ancestor
, cr
, proc
);
2260 dsl_dir_snap_cmtime(dsl_dir_t
*dd
)
2264 mutex_enter(&dd
->dd_lock
);
2265 t
= dd
->dd_snap_cmtime
;
2266 mutex_exit(&dd
->dd_lock
);
2272 dsl_dir_snap_cmtime_update(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
2274 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2278 mutex_enter(&dd
->dd_lock
);
2279 dd
->dd_snap_cmtime
= t
;
2280 if (spa_feature_is_enabled(dp
->dp_spa
,
2281 SPA_FEATURE_EXTENSIBLE_DATASET
)) {
2282 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
2283 uint64_t ddobj
= dd
->dd_object
;
2284 dsl_dir_zapify(dd
, tx
);
2285 VERIFY0(zap_update(mos
, ddobj
,
2286 DD_FIELD_SNAPSHOTS_CHANGED
,
2288 sizeof (inode_timespec_t
) / sizeof (uint64_t),
2291 mutex_exit(&dd
->dd_lock
);
2295 dsl_dir_zapify(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
2297 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
2298 dmu_object_zapify(mos
, dd
->dd_object
, DMU_OT_DSL_DIR
, tx
);
2302 dsl_dir_is_zapified(dsl_dir_t
*dd
)
2304 dmu_object_info_t doi
;
2306 dmu_object_info_from_db(dd
->dd_dbuf
, &doi
);
2307 return (doi
.doi_type
== DMU_OTN_ZAP_METADATA
);
2311 dsl_dir_livelist_open(dsl_dir_t
*dd
, uint64_t obj
)
2313 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
2314 ASSERT(spa_feature_is_active(dd
->dd_pool
->dp_spa
,
2315 SPA_FEATURE_LIVELIST
));
2316 dsl_deadlist_open(&dd
->dd_livelist
, mos
, obj
);
2317 bplist_create(&dd
->dd_pending_allocs
);
2318 bplist_create(&dd
->dd_pending_frees
);
2322 dsl_dir_livelist_close(dsl_dir_t
*dd
)
2324 dsl_deadlist_close(&dd
->dd_livelist
);
2325 bplist_destroy(&dd
->dd_pending_allocs
);
2326 bplist_destroy(&dd
->dd_pending_frees
);
2330 dsl_dir_remove_livelist(dsl_dir_t
*dd
, dmu_tx_t
*tx
, boolean_t total
)
2333 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2334 spa_t
*spa
= dp
->dp_spa
;
2335 livelist_condense_entry_t to_condense
= spa
->spa_to_condense
;
2337 if (!dsl_deadlist_is_open(&dd
->dd_livelist
))
2341 * If the livelist being removed is set to be condensed, stop the
2342 * condense zthr and indicate the cancellation in the spa_to_condense
2343 * struct in case the condense no-wait synctask has already started
2345 zthr_t
*ll_condense_thread
= spa
->spa_livelist_condense_zthr
;
2346 if (ll_condense_thread
!= NULL
&&
2347 (to_condense
.ds
!= NULL
) && (to_condense
.ds
->ds_dir
== dd
)) {
2349 * We use zthr_wait_cycle_done instead of zthr_cancel
2350 * because we don't want to destroy the zthr, just have
2351 * it skip its current task.
2353 spa
->spa_to_condense
.cancelled
= B_TRUE
;
2354 zthr_wait_cycle_done(ll_condense_thread
);
2356 * If we've returned from zthr_wait_cycle_done without
2357 * clearing the to_condense data structure it's either
2358 * because the no-wait synctask has started (which is
2359 * indicated by 'syncing' field of to_condense) and we
2360 * can expect it to clear to_condense on its own.
2361 * Otherwise, we returned before the zthr ran. The
2362 * checkfunc will now fail as cancelled == B_TRUE so we
2363 * can safely NULL out ds, allowing a different dir's
2364 * livelist to be condensed.
2366 * We can be sure that the to_condense struct will not
2367 * be repopulated at this stage because both this
2368 * function and dsl_livelist_try_condense execute in
2371 if ((spa
->spa_to_condense
.ds
!= NULL
) &&
2372 !spa
->spa_to_condense
.syncing
) {
2373 dmu_buf_rele(spa
->spa_to_condense
.ds
->ds_dbuf
,
2375 spa
->spa_to_condense
.ds
= NULL
;
2379 dsl_dir_livelist_close(dd
);
2380 VERIFY0(zap_lookup(dp
->dp_meta_objset
, dd
->dd_object
,
2381 DD_FIELD_LIVELIST
, sizeof (uint64_t), 1, &obj
));
2382 VERIFY0(zap_remove(dp
->dp_meta_objset
, dd
->dd_object
,
2383 DD_FIELD_LIVELIST
, tx
));
2385 dsl_deadlist_free(dp
->dp_meta_objset
, obj
, tx
);
2386 spa_feature_decr(spa
, SPA_FEATURE_LIVELIST
, tx
);
2391 dsl_dir_activity_in_progress(dsl_dir_t
*dd
, dsl_dataset_t
*ds
,
2392 zfs_wait_activity_t activity
, boolean_t
*in_progress
)
2396 ASSERT(MUTEX_HELD(&dd
->dd_activity_lock
));
2399 case ZFS_WAIT_DELETEQ
: {
2402 error
= dmu_objset_from_ds(ds
, &os
);
2406 mutex_enter(&os
->os_user_ptr_lock
);
2407 void *user
= dmu_objset_get_user(os
);
2408 mutex_exit(&os
->os_user_ptr_lock
);
2409 if (dmu_objset_type(os
) != DMU_OST_ZFS
||
2410 user
== NULL
|| zfs_get_vfs_flag_unmounted(os
)) {
2411 *in_progress
= B_FALSE
;
2415 uint64_t readonly
= B_FALSE
;
2416 error
= zfs_get_temporary_prop(ds
, ZFS_PROP_READONLY
, &readonly
,
2422 if (readonly
|| !spa_writeable(dd
->dd_pool
->dp_spa
)) {
2423 *in_progress
= B_FALSE
;
2427 uint64_t count
, unlinked_obj
;
2428 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_UNLINKED_SET
, 8, 1,
2431 dsl_dataset_rele(ds
, FTAG
);
2434 error
= zap_count(os
, unlinked_obj
, &count
);
2437 *in_progress
= (count
!= 0);
2441 * The delete queue is ZPL specific, and libzpool doesn't have
2442 * it. It doesn't make sense to wait for it.
2445 *in_progress
= B_FALSE
;
2450 panic("unrecognized value for activity %d", activity
);
2457 dsl_dir_wait(dsl_dir_t
*dd
, dsl_dataset_t
*ds
, zfs_wait_activity_t activity
,
2461 boolean_t in_progress
;
2462 dsl_pool_t
*dp
= dd
->dd_pool
;
2464 dsl_pool_config_enter(dp
, FTAG
);
2465 error
= dsl_dir_activity_in_progress(dd
, ds
, activity
,
2467 dsl_pool_config_exit(dp
, FTAG
);
2468 if (error
!= 0 || !in_progress
)
2473 if (cv_wait_sig(&dd
->dd_activity_cv
, &dd
->dd_activity_lock
) ==
2474 0 || dd
->dd_activity_cancelled
) {
2475 error
= SET_ERROR(EINTR
);
2483 dsl_dir_cancel_waiters(dsl_dir_t
*dd
)
2485 mutex_enter(&dd
->dd_activity_lock
);
2486 dd
->dd_activity_cancelled
= B_TRUE
;
2487 cv_broadcast(&dd
->dd_activity_cv
);
2488 while (dd
->dd_activity_waiters
> 0)
2489 cv_wait(&dd
->dd_activity_cv
, &dd
->dd_activity_lock
);
2490 mutex_exit(&dd
->dd_activity_lock
);
2493 #if defined(_KERNEL)
2494 EXPORT_SYMBOL(dsl_dir_set_quota
);
2495 EXPORT_SYMBOL(dsl_dir_set_reservation
);
2499 ZFS_MODULE_PARAM(zfs
, , zvol_enforce_quotas
, INT
, ZMOD_RW
,
2500 "Enable strict ZVOL quota enforcment");