Debug auto_replace_001_pos failures
[zfs.git] / module / zfs / dsl_scan.c
blobd398b6705551575918be7f6f9759047fe66422ad
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/arc_impl.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/brt.h>
51 #include <sys/ddt.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
55 #include <sys/abd.h>
56 #include <sys/range_tree.h>
57 #ifdef _KERNEL
58 #include <sys/zfs_vfsops.h>
59 #endif
62 * Grand theory statement on scan queue sorting
64 * Scanning is implemented by recursively traversing all indirection levels
65 * in an object and reading all blocks referenced from said objects. This
66 * results in us approximately traversing the object from lowest logical
67 * offset to the highest. For best performance, we would want the logical
68 * blocks to be physically contiguous. However, this is frequently not the
69 * case with pools given the allocation patterns of copy-on-write filesystems.
70 * So instead, we put the I/Os into a reordering queue and issue them in a
71 * way that will most benefit physical disks (LBA-order).
73 * Queue management:
75 * Ideally, we would want to scan all metadata and queue up all block I/O
76 * prior to starting to issue it, because that allows us to do an optimal
77 * sorting job. This can however consume large amounts of memory. Therefore
78 * we continuously monitor the size of the queues and constrain them to 5%
79 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
80 * limit, we clear out a few of the largest extents at the head of the queues
81 * to make room for more scanning. Hopefully, these extents will be fairly
82 * large and contiguous, allowing us to approach sequential I/O throughput
83 * even without a fully sorted tree.
85 * Metadata scanning takes place in dsl_scan_visit(), which is called from
86 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
87 * metadata on the pool, or we need to make room in memory because our
88 * queues are too large, dsl_scan_visit() is postponed and
89 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
90 * that metadata scanning and queued I/O issuing are mutually exclusive. This
91 * allows us to provide maximum sequential I/O throughput for the majority of
92 * I/O's issued since sequential I/O performance is significantly negatively
93 * impacted if it is interleaved with random I/O.
95 * Implementation Notes
97 * One side effect of the queued scanning algorithm is that the scanning code
98 * needs to be notified whenever a block is freed. This is needed to allow
99 * the scanning code to remove these I/Os from the issuing queue. Additionally,
100 * we do not attempt to queue gang blocks to be issued sequentially since this
101 * is very hard to do and would have an extremely limited performance benefit.
102 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
103 * algorithm.
105 * Backwards compatibility
107 * This new algorithm is backwards compatible with the legacy on-disk data
108 * structures (and therefore does not require a new feature flag).
109 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
110 * will stop scanning metadata (in logical order) and wait for all outstanding
111 * sorted I/O to complete. Once this is done, we write out a checkpoint
112 * bookmark, indicating that we have scanned everything logically before it.
113 * If the pool is imported on a machine without the new sorting algorithm,
114 * the scan simply resumes from the last checkpoint using the legacy algorithm.
117 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
118 const zbookmark_phys_t *);
120 static scan_cb_t dsl_scan_scrub_cb;
122 static int scan_ds_queue_compare(const void *a, const void *b);
123 static int scan_prefetch_queue_compare(const void *a, const void *b);
124 static void scan_ds_queue_clear(dsl_scan_t *scn);
125 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
126 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
127 uint64_t *txg);
128 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
129 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
130 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
131 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
133 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
134 static int zfs_scan_blkstats = 0;
137 * 'zpool status' uses bytes processed per pass to report throughput and
138 * estimate time remaining. We define a pass to start when the scanning
139 * phase completes for a sequential resilver. Optionally, this value
140 * may be used to reset the pass statistics every N txgs to provide an
141 * estimated completion time based on currently observed performance.
143 static uint_t zfs_scan_report_txgs = 0;
146 * By default zfs will check to ensure it is not over the hard memory
147 * limit before each txg. If finer-grained control of this is needed
148 * this value can be set to 1 to enable checking before scanning each
149 * block.
151 static int zfs_scan_strict_mem_lim = B_FALSE;
154 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
155 * to strike a balance here between keeping the vdev queues full of I/Os
156 * at all times and not overflowing the queues to cause long latency,
157 * which would cause long txg sync times. No matter what, we will not
158 * overload the drives with I/O, since that is protected by
159 * zfs_vdev_scrub_max_active.
161 static uint64_t zfs_scan_vdev_limit = 16 << 20;
163 static uint_t zfs_scan_issue_strategy = 0;
165 /* don't queue & sort zios, go direct */
166 static int zfs_scan_legacy = B_FALSE;
167 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
170 * fill_weight is non-tunable at runtime, so we copy it at module init from
171 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
172 * break queue sorting.
174 static uint_t zfs_scan_fill_weight = 3;
175 static uint64_t fill_weight;
177 /* See dsl_scan_should_clear() for details on the memory limit tunables */
178 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
179 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
182 /* fraction of physmem */
183 static uint_t zfs_scan_mem_lim_fact = 20;
185 /* fraction of mem lim above */
186 static uint_t zfs_scan_mem_lim_soft_fact = 20;
188 /* minimum milliseconds to scrub per txg */
189 static uint_t zfs_scrub_min_time_ms = 1000;
191 /* minimum milliseconds to obsolete per txg */
192 static uint_t zfs_obsolete_min_time_ms = 500;
194 /* minimum milliseconds to free per txg */
195 static uint_t zfs_free_min_time_ms = 1000;
197 /* minimum milliseconds to resilver per txg */
198 static uint_t zfs_resilver_min_time_ms = 3000;
200 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
201 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
202 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
203 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
204 static const enum ddt_class zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
205 /* max number of blocks to free in a single TXG */
206 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
207 /* max number of dedup blocks to free in a single TXG */
208 static uint64_t zfs_max_async_dedup_frees = 100000;
210 /* set to disable resilver deferring */
211 static int zfs_resilver_disable_defer = B_FALSE;
214 * We wait a few txgs after importing a pool to begin scanning so that
215 * the import / mounting code isn't held up by scrub / resilver IO.
216 * Unfortunately, it is a bit difficult to determine exactly how long
217 * this will take since userspace will trigger fs mounts asynchronously
218 * and the kernel will create zvol minors asynchronously. As a result,
219 * the value provided here is a bit arbitrary, but represents a
220 * reasonable estimate of how many txgs it will take to finish fully
221 * importing a pool
223 #define SCAN_IMPORT_WAIT_TXGS 5
225 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
226 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
227 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230 * Enable/disable the processing of the free_bpobj object.
232 static int zfs_free_bpobj_enabled = 1;
234 /* the order has to match pool_scan_type */
235 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
236 NULL,
237 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
238 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
241 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
242 typedef struct {
243 uint64_t sds_dsobj;
244 uint64_t sds_txg;
245 avl_node_t sds_node;
246 } scan_ds_t;
249 * This controls what conditions are placed on dsl_scan_sync_state():
250 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
251 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
252 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
253 * write out the scn_phys_cached version.
254 * See dsl_scan_sync_state for details.
256 typedef enum {
257 SYNC_OPTIONAL,
258 SYNC_MANDATORY,
259 SYNC_CACHED
260 } state_sync_type_t;
263 * This struct represents the minimum information needed to reconstruct a
264 * zio for sequential scanning. This is useful because many of these will
265 * accumulate in the sequential IO queues before being issued, so saving
266 * memory matters here.
268 typedef struct scan_io {
269 /* fields from blkptr_t */
270 uint64_t sio_blk_prop;
271 uint64_t sio_phys_birth;
272 uint64_t sio_birth;
273 zio_cksum_t sio_cksum;
274 uint32_t sio_nr_dvas;
276 /* fields from zio_t */
277 uint32_t sio_flags;
278 zbookmark_phys_t sio_zb;
280 /* members for queue sorting */
281 union {
282 avl_node_t sio_addr_node; /* link into issuing queue */
283 list_node_t sio_list_node; /* link for issuing to disk */
284 } sio_nodes;
287 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
288 * depending on how many were in the original bp. Only the
289 * first DVA is really used for sorting and issuing purposes.
290 * The other DVAs (if provided) simply exist so that the zio
291 * layer can find additional copies to repair from in the
292 * event of an error. This array must go at the end of the
293 * struct to allow this for the variable number of elements.
295 dva_t sio_dva[];
296 } scan_io_t;
298 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
299 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
300 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
301 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
302 #define SIO_GET_END_OFFSET(sio) \
303 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
304 #define SIO_GET_MUSED(sio) \
305 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
307 struct dsl_scan_io_queue {
308 dsl_scan_t *q_scn; /* associated dsl_scan_t */
309 vdev_t *q_vd; /* top-level vdev that this queue represents */
310 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
312 /* trees used for sorting I/Os and extents of I/Os */
313 range_tree_t *q_exts_by_addr;
314 zfs_btree_t q_exts_by_size;
315 avl_tree_t q_sios_by_addr;
316 uint64_t q_sio_memused;
317 uint64_t q_last_ext_addr;
319 /* members for zio rate limiting */
320 uint64_t q_maxinflight_bytes;
321 uint64_t q_inflight_bytes;
322 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
324 /* per txg statistics */
325 uint64_t q_total_seg_size_this_txg;
326 uint64_t q_segs_this_txg;
327 uint64_t q_total_zio_size_this_txg;
328 uint64_t q_zios_this_txg;
331 /* private data for dsl_scan_prefetch_cb() */
332 typedef struct scan_prefetch_ctx {
333 zfs_refcount_t spc_refcnt; /* refcount for memory management */
334 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
335 boolean_t spc_root; /* is this prefetch for an objset? */
336 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
337 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
338 } scan_prefetch_ctx_t;
340 /* private data for dsl_scan_prefetch() */
341 typedef struct scan_prefetch_issue_ctx {
342 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
343 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
344 blkptr_t spic_bp; /* bp to prefetch */
345 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
346 } scan_prefetch_issue_ctx_t;
348 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
349 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
350 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
351 scan_io_t *sio);
353 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
354 static void scan_io_queues_destroy(dsl_scan_t *scn);
356 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
358 /* sio->sio_nr_dvas must be set so we know which cache to free from */
359 static void
360 sio_free(scan_io_t *sio)
362 ASSERT3U(sio->sio_nr_dvas, >, 0);
363 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
365 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
368 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
369 static scan_io_t *
370 sio_alloc(unsigned short nr_dvas)
372 ASSERT3U(nr_dvas, >, 0);
373 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
375 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
378 void
379 scan_init(void)
382 * This is used in ext_size_compare() to weight segments
383 * based on how sparse they are. This cannot be changed
384 * mid-scan and the tree comparison functions don't currently
385 * have a mechanism for passing additional context to the
386 * compare functions. Thus we store this value globally and
387 * we only allow it to be set at module initialization time
389 fill_weight = zfs_scan_fill_weight;
391 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
392 char name[36];
394 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
395 sio_cache[i] = kmem_cache_create(name,
396 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
397 0, NULL, NULL, NULL, NULL, NULL, 0);
401 void
402 scan_fini(void)
404 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
405 kmem_cache_destroy(sio_cache[i]);
409 static inline boolean_t
410 dsl_scan_is_running(const dsl_scan_t *scn)
412 return (scn->scn_phys.scn_state == DSS_SCANNING);
415 boolean_t
416 dsl_scan_resilvering(dsl_pool_t *dp)
418 return (dsl_scan_is_running(dp->dp_scan) &&
419 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
422 static inline void
423 sio2bp(const scan_io_t *sio, blkptr_t *bp)
425 memset(bp, 0, sizeof (*bp));
426 bp->blk_prop = sio->sio_blk_prop;
427 bp->blk_phys_birth = sio->sio_phys_birth;
428 bp->blk_birth = sio->sio_birth;
429 bp->blk_fill = 1; /* we always only work with data pointers */
430 bp->blk_cksum = sio->sio_cksum;
432 ASSERT3U(sio->sio_nr_dvas, >, 0);
433 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
435 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
438 static inline void
439 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
441 sio->sio_blk_prop = bp->blk_prop;
442 sio->sio_phys_birth = bp->blk_phys_birth;
443 sio->sio_birth = bp->blk_birth;
444 sio->sio_cksum = bp->blk_cksum;
445 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
448 * Copy the DVAs to the sio. We need all copies of the block so
449 * that the self healing code can use the alternate copies if the
450 * first is corrupted. We want the DVA at index dva_i to be first
451 * in the sio since this is the primary one that we want to issue.
453 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
454 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
459 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
461 int err;
462 dsl_scan_t *scn;
463 spa_t *spa = dp->dp_spa;
464 uint64_t f;
466 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
467 scn->scn_dp = dp;
470 * It's possible that we're resuming a scan after a reboot so
471 * make sure that the scan_async_destroying flag is initialized
472 * appropriately.
474 ASSERT(!scn->scn_async_destroying);
475 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
476 SPA_FEATURE_ASYNC_DESTROY);
479 * Calculate the max number of in-flight bytes for pool-wide
480 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
481 * Limits for the issuing phase are done per top-level vdev and
482 * are handled separately.
484 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
485 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
487 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
488 offsetof(scan_ds_t, sds_node));
489 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
490 sizeof (scan_prefetch_issue_ctx_t),
491 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
493 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
494 "scrub_func", sizeof (uint64_t), 1, &f);
495 if (err == 0) {
497 * There was an old-style scrub in progress. Restart a
498 * new-style scrub from the beginning.
500 scn->scn_restart_txg = txg;
501 zfs_dbgmsg("old-style scrub was in progress for %s; "
502 "restarting new-style scrub in txg %llu",
503 spa->spa_name,
504 (longlong_t)scn->scn_restart_txg);
507 * Load the queue obj from the old location so that it
508 * can be freed by dsl_scan_done().
510 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
511 "scrub_queue", sizeof (uint64_t), 1,
512 &scn->scn_phys.scn_queue_obj);
513 } else {
514 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
515 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
516 &scn->scn_phys);
518 * Detect if the pool contains the signature of #2094. If it
519 * does properly update the scn->scn_phys structure and notify
520 * the administrator by setting an errata for the pool.
522 if (err == EOVERFLOW) {
523 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
524 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
525 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
526 (23 * sizeof (uint64_t)));
528 err = zap_lookup(dp->dp_meta_objset,
529 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
530 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
531 if (err == 0) {
532 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
534 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
535 scn->scn_async_destroying) {
536 spa->spa_errata =
537 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
538 return (EOVERFLOW);
541 memcpy(&scn->scn_phys, zaptmp,
542 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
543 scn->scn_phys.scn_flags = overflow;
545 /* Required scrub already in progress. */
546 if (scn->scn_phys.scn_state == DSS_FINISHED ||
547 scn->scn_phys.scn_state == DSS_CANCELED)
548 spa->spa_errata =
549 ZPOOL_ERRATA_ZOL_2094_SCRUB;
553 if (err == ENOENT)
554 return (0);
555 else if (err)
556 return (err);
559 * We might be restarting after a reboot, so jump the issued
560 * counter to how far we've scanned. We know we're consistent
561 * up to here.
563 scn->scn_issued_before_pass = scn->scn_phys.scn_examined;
565 if (dsl_scan_is_running(scn) &&
566 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
568 * A new-type scrub was in progress on an old
569 * pool, and the pool was accessed by old
570 * software. Restart from the beginning, since
571 * the old software may have changed the pool in
572 * the meantime.
574 scn->scn_restart_txg = txg;
575 zfs_dbgmsg("new-style scrub for %s was modified "
576 "by old software; restarting in txg %llu",
577 spa->spa_name,
578 (longlong_t)scn->scn_restart_txg);
579 } else if (dsl_scan_resilvering(dp)) {
581 * If a resilver is in progress and there are already
582 * errors, restart it instead of finishing this scan and
583 * then restarting it. If there haven't been any errors
584 * then remember that the incore DTL is valid.
586 if (scn->scn_phys.scn_errors > 0) {
587 scn->scn_restart_txg = txg;
588 zfs_dbgmsg("resilver can't excise DTL_MISSING "
589 "when finished; restarting on %s in txg "
590 "%llu",
591 spa->spa_name,
592 (u_longlong_t)scn->scn_restart_txg);
593 } else {
594 /* it's safe to excise DTL when finished */
595 spa->spa_scrub_started = B_TRUE;
600 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
602 /* reload the queue into the in-core state */
603 if (scn->scn_phys.scn_queue_obj != 0) {
604 zap_cursor_t zc;
605 zap_attribute_t za;
607 for (zap_cursor_init(&zc, dp->dp_meta_objset,
608 scn->scn_phys.scn_queue_obj);
609 zap_cursor_retrieve(&zc, &za) == 0;
610 (void) zap_cursor_advance(&zc)) {
611 scan_ds_queue_insert(scn,
612 zfs_strtonum(za.za_name, NULL),
613 za.za_first_integer);
615 zap_cursor_fini(&zc);
618 spa_scan_stat_init(spa);
619 vdev_scan_stat_init(spa->spa_root_vdev);
621 return (0);
624 void
625 dsl_scan_fini(dsl_pool_t *dp)
627 if (dp->dp_scan != NULL) {
628 dsl_scan_t *scn = dp->dp_scan;
630 if (scn->scn_taskq != NULL)
631 taskq_destroy(scn->scn_taskq);
633 scan_ds_queue_clear(scn);
634 avl_destroy(&scn->scn_queue);
635 scan_ds_prefetch_queue_clear(scn);
636 avl_destroy(&scn->scn_prefetch_queue);
638 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
639 dp->dp_scan = NULL;
643 static boolean_t
644 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
646 return (scn->scn_restart_txg != 0 &&
647 scn->scn_restart_txg <= tx->tx_txg);
650 boolean_t
651 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
653 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
654 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
657 boolean_t
658 dsl_scan_scrubbing(const dsl_pool_t *dp)
660 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
662 return (scn_phys->scn_state == DSS_SCANNING &&
663 scn_phys->scn_func == POOL_SCAN_SCRUB);
666 boolean_t
667 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
669 return (dsl_scan_scrubbing(scn->scn_dp) &&
670 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
674 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
675 * Because we can be running in the block sorting algorithm, we do not always
676 * want to write out the record, only when it is "safe" to do so. This safety
677 * condition is achieved by making sure that the sorting queues are empty
678 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
679 * is inconsistent with how much actual scanning progress has been made. The
680 * kind of sync to be performed is specified by the sync_type argument. If the
681 * sync is optional, we only sync if the queues are empty. If the sync is
682 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
683 * third possible state is a "cached" sync. This is done in response to:
684 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
685 * destroyed, so we wouldn't be able to restart scanning from it.
686 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
687 * superseded by a newer snapshot.
688 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
689 * swapped with its clone.
690 * In all cases, a cached sync simply rewrites the last record we've written,
691 * just slightly modified. For the modifications that are performed to the
692 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
693 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
695 static void
696 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
698 int i;
699 spa_t *spa = scn->scn_dp->dp_spa;
701 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
702 if (scn->scn_queues_pending == 0) {
703 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
704 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
705 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
707 if (q == NULL)
708 continue;
710 mutex_enter(&vd->vdev_scan_io_queue_lock);
711 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
712 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
713 NULL);
714 ASSERT3P(range_tree_first(q->q_exts_by_addr), ==, NULL);
715 mutex_exit(&vd->vdev_scan_io_queue_lock);
718 if (scn->scn_phys.scn_queue_obj != 0)
719 scan_ds_queue_sync(scn, tx);
720 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
721 DMU_POOL_DIRECTORY_OBJECT,
722 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
723 &scn->scn_phys, tx));
724 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
725 sizeof (scn->scn_phys));
727 if (scn->scn_checkpointing)
728 zfs_dbgmsg("finish scan checkpoint for %s",
729 spa->spa_name);
731 scn->scn_checkpointing = B_FALSE;
732 scn->scn_last_checkpoint = ddi_get_lbolt();
733 } else if (sync_type == SYNC_CACHED) {
734 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
735 DMU_POOL_DIRECTORY_OBJECT,
736 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
737 &scn->scn_phys_cached, tx));
742 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
744 (void) arg;
745 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
746 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
748 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd))
749 return (SET_ERROR(EBUSY));
751 return (0);
754 void
755 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
757 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
758 pool_scan_func_t *funcp = arg;
759 dmu_object_type_t ot = 0;
760 dsl_pool_t *dp = scn->scn_dp;
761 spa_t *spa = dp->dp_spa;
763 ASSERT(!dsl_scan_is_running(scn));
764 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
765 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
766 scn->scn_phys.scn_func = *funcp;
767 scn->scn_phys.scn_state = DSS_SCANNING;
768 scn->scn_phys.scn_min_txg = 0;
769 scn->scn_phys.scn_max_txg = tx->tx_txg;
770 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
771 scn->scn_phys.scn_start_time = gethrestime_sec();
772 scn->scn_phys.scn_errors = 0;
773 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
774 scn->scn_issued_before_pass = 0;
775 scn->scn_restart_txg = 0;
776 scn->scn_done_txg = 0;
777 scn->scn_last_checkpoint = 0;
778 scn->scn_checkpointing = B_FALSE;
779 spa_scan_stat_init(spa);
780 vdev_scan_stat_init(spa->spa_root_vdev);
782 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
783 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
785 /* rewrite all disk labels */
786 vdev_config_dirty(spa->spa_root_vdev);
788 if (vdev_resilver_needed(spa->spa_root_vdev,
789 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
790 nvlist_t *aux = fnvlist_alloc();
791 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
792 "healing");
793 spa_event_notify(spa, NULL, aux,
794 ESC_ZFS_RESILVER_START);
795 nvlist_free(aux);
796 } else {
797 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
800 spa->spa_scrub_started = B_TRUE;
802 * If this is an incremental scrub, limit the DDT scrub phase
803 * to just the auto-ditto class (for correctness); the rest
804 * of the scrub should go faster using top-down pruning.
806 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
807 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
810 * When starting a resilver clear any existing rebuild state.
811 * This is required to prevent stale rebuild status from
812 * being reported when a rebuild is run, then a resilver and
813 * finally a scrub. In which case only the scrub status
814 * should be reported by 'zpool status'.
816 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
817 vdev_t *rvd = spa->spa_root_vdev;
818 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
819 vdev_t *vd = rvd->vdev_child[i];
820 vdev_rebuild_clear_sync(
821 (void *)(uintptr_t)vd->vdev_id, tx);
826 /* back to the generic stuff */
828 if (zfs_scan_blkstats) {
829 if (dp->dp_blkstats == NULL) {
830 dp->dp_blkstats =
831 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
833 memset(&dp->dp_blkstats->zab_type, 0,
834 sizeof (dp->dp_blkstats->zab_type));
835 } else {
836 if (dp->dp_blkstats) {
837 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
838 dp->dp_blkstats = NULL;
842 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
843 ot = DMU_OT_ZAP_OTHER;
845 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
846 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
848 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
850 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
852 spa_history_log_internal(spa, "scan setup", tx,
853 "func=%u mintxg=%llu maxtxg=%llu",
854 *funcp, (u_longlong_t)scn->scn_phys.scn_min_txg,
855 (u_longlong_t)scn->scn_phys.scn_max_txg);
859 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
860 * Can also be called to resume a paused scrub.
863 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func)
865 spa_t *spa = dp->dp_spa;
866 dsl_scan_t *scn = dp->dp_scan;
869 * Purge all vdev caches and probe all devices. We do this here
870 * rather than in sync context because this requires a writer lock
871 * on the spa_config lock, which we can't do from sync context. The
872 * spa_scrub_reopen flag indicates that vdev_open() should not
873 * attempt to start another scrub.
875 spa_vdev_state_enter(spa, SCL_NONE);
876 spa->spa_scrub_reopen = B_TRUE;
877 vdev_reopen(spa->spa_root_vdev);
878 spa->spa_scrub_reopen = B_FALSE;
879 (void) spa_vdev_state_exit(spa, NULL, 0);
881 if (func == POOL_SCAN_RESILVER) {
882 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
883 return (0);
886 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
887 /* got scrub start cmd, resume paused scrub */
888 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
889 POOL_SCRUB_NORMAL);
890 if (err == 0) {
891 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
892 return (SET_ERROR(ECANCELED));
895 return (SET_ERROR(err));
898 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
899 dsl_scan_setup_sync, &func, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED));
902 static void
903 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
905 static const char *old_names[] = {
906 "scrub_bookmark",
907 "scrub_ddt_bookmark",
908 "scrub_ddt_class_max",
909 "scrub_queue",
910 "scrub_min_txg",
911 "scrub_max_txg",
912 "scrub_func",
913 "scrub_errors",
914 NULL
917 dsl_pool_t *dp = scn->scn_dp;
918 spa_t *spa = dp->dp_spa;
919 int i;
921 /* Remove any remnants of an old-style scrub. */
922 for (i = 0; old_names[i]; i++) {
923 (void) zap_remove(dp->dp_meta_objset,
924 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
927 if (scn->scn_phys.scn_queue_obj != 0) {
928 VERIFY0(dmu_object_free(dp->dp_meta_objset,
929 scn->scn_phys.scn_queue_obj, tx));
930 scn->scn_phys.scn_queue_obj = 0;
932 scan_ds_queue_clear(scn);
933 scan_ds_prefetch_queue_clear(scn);
935 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
938 * If we were "restarted" from a stopped state, don't bother
939 * with anything else.
941 if (!dsl_scan_is_running(scn)) {
942 ASSERT(!scn->scn_is_sorted);
943 return;
946 if (scn->scn_is_sorted) {
947 scan_io_queues_destroy(scn);
948 scn->scn_is_sorted = B_FALSE;
950 if (scn->scn_taskq != NULL) {
951 taskq_destroy(scn->scn_taskq);
952 scn->scn_taskq = NULL;
956 scn->scn_phys.scn_state = complete ? DSS_FINISHED : DSS_CANCELED;
958 spa_notify_waiters(spa);
960 if (dsl_scan_restarting(scn, tx))
961 spa_history_log_internal(spa, "scan aborted, restarting", tx,
962 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
963 else if (!complete)
964 spa_history_log_internal(spa, "scan cancelled", tx,
965 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
966 else
967 spa_history_log_internal(spa, "scan done", tx,
968 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
970 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
971 spa->spa_scrub_active = B_FALSE;
974 * If the scrub/resilver completed, update all DTLs to
975 * reflect this. Whether it succeeded or not, vacate
976 * all temporary scrub DTLs.
978 * As the scrub does not currently support traversing
979 * data that have been freed but are part of a checkpoint,
980 * we don't mark the scrub as done in the DTLs as faults
981 * may still exist in those vdevs.
983 if (complete &&
984 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
985 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
986 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
988 if (scn->scn_phys.scn_min_txg) {
989 nvlist_t *aux = fnvlist_alloc();
990 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
991 "healing");
992 spa_event_notify(spa, NULL, aux,
993 ESC_ZFS_RESILVER_FINISH);
994 nvlist_free(aux);
995 } else {
996 spa_event_notify(spa, NULL, NULL,
997 ESC_ZFS_SCRUB_FINISH);
999 } else {
1000 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1001 0, B_TRUE, B_FALSE);
1003 spa_errlog_rotate(spa);
1006 * Don't clear flag until after vdev_dtl_reassess to ensure that
1007 * DTL_MISSING will get updated when possible.
1009 spa->spa_scrub_started = B_FALSE;
1012 * We may have finished replacing a device.
1013 * Let the async thread assess this and handle the detach.
1015 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1018 * Clear any resilver_deferred flags in the config.
1019 * If there are drives that need resilvering, kick
1020 * off an asynchronous request to start resilver.
1021 * vdev_clear_resilver_deferred() may update the config
1022 * before the resilver can restart. In the event of
1023 * a crash during this period, the spa loading code
1024 * will find the drives that need to be resilvered
1025 * and start the resilver then.
1027 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1028 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1029 spa_history_log_internal(spa,
1030 "starting deferred resilver", tx, "errors=%llu",
1031 (u_longlong_t)spa_approx_errlog_size(spa));
1032 spa_async_request(spa, SPA_ASYNC_RESILVER);
1035 /* Clear recent error events (i.e. duplicate events tracking) */
1036 if (complete)
1037 zfs_ereport_clear(spa, NULL);
1040 scn->scn_phys.scn_end_time = gethrestime_sec();
1042 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1043 spa->spa_errata = 0;
1045 ASSERT(!dsl_scan_is_running(scn));
1048 static int
1049 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1051 (void) arg;
1052 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1054 if (!dsl_scan_is_running(scn))
1055 return (SET_ERROR(ENOENT));
1056 return (0);
1059 static void
1060 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1062 (void) arg;
1063 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1065 dsl_scan_done(scn, B_FALSE, tx);
1066 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1067 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1071 dsl_scan_cancel(dsl_pool_t *dp)
1073 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1074 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1077 static int
1078 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1080 pool_scrub_cmd_t *cmd = arg;
1081 dsl_pool_t *dp = dmu_tx_pool(tx);
1082 dsl_scan_t *scn = dp->dp_scan;
1084 if (*cmd == POOL_SCRUB_PAUSE) {
1085 /* can't pause a scrub when there is no in-progress scrub */
1086 if (!dsl_scan_scrubbing(dp))
1087 return (SET_ERROR(ENOENT));
1089 /* can't pause a paused scrub */
1090 if (dsl_scan_is_paused_scrub(scn))
1091 return (SET_ERROR(EBUSY));
1092 } else if (*cmd != POOL_SCRUB_NORMAL) {
1093 return (SET_ERROR(ENOTSUP));
1096 return (0);
1099 static void
1100 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1102 pool_scrub_cmd_t *cmd = arg;
1103 dsl_pool_t *dp = dmu_tx_pool(tx);
1104 spa_t *spa = dp->dp_spa;
1105 dsl_scan_t *scn = dp->dp_scan;
1107 if (*cmd == POOL_SCRUB_PAUSE) {
1108 /* can't pause a scrub when there is no in-progress scrub */
1109 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1110 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1111 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1112 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1113 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1114 spa_notify_waiters(spa);
1115 } else {
1116 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1117 if (dsl_scan_is_paused_scrub(scn)) {
1119 * We need to keep track of how much time we spend
1120 * paused per pass so that we can adjust the scrub rate
1121 * shown in the output of 'zpool status'
1123 spa->spa_scan_pass_scrub_spent_paused +=
1124 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1125 spa->spa_scan_pass_scrub_pause = 0;
1126 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1127 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1128 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1134 * Set scrub pause/resume state if it makes sense to do so
1137 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1139 return (dsl_sync_task(spa_name(dp->dp_spa),
1140 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1141 ZFS_SPACE_CHECK_RESERVED));
1145 /* start a new scan, or restart an existing one. */
1146 void
1147 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1149 if (txg == 0) {
1150 dmu_tx_t *tx;
1151 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1152 VERIFY(0 == dmu_tx_assign(tx, TXG_WAIT));
1154 txg = dmu_tx_get_txg(tx);
1155 dp->dp_scan->scn_restart_txg = txg;
1156 dmu_tx_commit(tx);
1157 } else {
1158 dp->dp_scan->scn_restart_txg = txg;
1160 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1161 dp->dp_spa->spa_name, (longlong_t)txg);
1164 void
1165 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1167 zio_free(dp->dp_spa, txg, bp);
1170 void
1171 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1173 ASSERT(dsl_pool_sync_context(dp));
1174 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1177 static int
1178 scan_ds_queue_compare(const void *a, const void *b)
1180 const scan_ds_t *sds_a = a, *sds_b = b;
1182 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1183 return (-1);
1184 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1185 return (0);
1186 return (1);
1189 static void
1190 scan_ds_queue_clear(dsl_scan_t *scn)
1192 void *cookie = NULL;
1193 scan_ds_t *sds;
1194 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1195 kmem_free(sds, sizeof (*sds));
1199 static boolean_t
1200 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1202 scan_ds_t srch, *sds;
1204 srch.sds_dsobj = dsobj;
1205 sds = avl_find(&scn->scn_queue, &srch, NULL);
1206 if (sds != NULL && txg != NULL)
1207 *txg = sds->sds_txg;
1208 return (sds != NULL);
1211 static void
1212 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1214 scan_ds_t *sds;
1215 avl_index_t where;
1217 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1218 sds->sds_dsobj = dsobj;
1219 sds->sds_txg = txg;
1221 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1222 avl_insert(&scn->scn_queue, sds, where);
1225 static void
1226 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1228 scan_ds_t srch, *sds;
1230 srch.sds_dsobj = dsobj;
1232 sds = avl_find(&scn->scn_queue, &srch, NULL);
1233 VERIFY(sds != NULL);
1234 avl_remove(&scn->scn_queue, sds);
1235 kmem_free(sds, sizeof (*sds));
1238 static void
1239 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1241 dsl_pool_t *dp = scn->scn_dp;
1242 spa_t *spa = dp->dp_spa;
1243 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1244 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1246 ASSERT0(scn->scn_queues_pending);
1247 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1249 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1250 scn->scn_phys.scn_queue_obj, tx));
1251 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1252 DMU_OT_NONE, 0, tx);
1253 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1254 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1255 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1256 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1257 sds->sds_txg, tx));
1262 * Computes the memory limit state that we're currently in. A sorted scan
1263 * needs quite a bit of memory to hold the sorting queue, so we need to
1264 * reasonably constrain the size so it doesn't impact overall system
1265 * performance. We compute two limits:
1266 * 1) Hard memory limit: if the amount of memory used by the sorting
1267 * queues on a pool gets above this value, we stop the metadata
1268 * scanning portion and start issuing the queued up and sorted
1269 * I/Os to reduce memory usage.
1270 * This limit is calculated as a fraction of physmem (by default 5%).
1271 * We constrain the lower bound of the hard limit to an absolute
1272 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1273 * the upper bound to 5% of the total pool size - no chance we'll
1274 * ever need that much memory, but just to keep the value in check.
1275 * 2) Soft memory limit: once we hit the hard memory limit, we start
1276 * issuing I/O to reduce queue memory usage, but we don't want to
1277 * completely empty out the queues, since we might be able to find I/Os
1278 * that will fill in the gaps of our non-sequential IOs at some point
1279 * in the future. So we stop the issuing of I/Os once the amount of
1280 * memory used drops below the soft limit (at which point we stop issuing
1281 * I/O and start scanning metadata again).
1283 * This limit is calculated by subtracting a fraction of the hard
1284 * limit from the hard limit. By default this fraction is 5%, so
1285 * the soft limit is 95% of the hard limit. We cap the size of the
1286 * difference between the hard and soft limits at an absolute
1287 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1288 * sufficient to not cause too frequent switching between the
1289 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1290 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1291 * that should take at least a decent fraction of a second).
1293 static boolean_t
1294 dsl_scan_should_clear(dsl_scan_t *scn)
1296 spa_t *spa = scn->scn_dp->dp_spa;
1297 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1298 uint64_t alloc, mlim_hard, mlim_soft, mused;
1300 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1301 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1302 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1304 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1305 zfs_scan_mem_lim_min);
1306 mlim_hard = MIN(mlim_hard, alloc / 20);
1307 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1308 zfs_scan_mem_lim_soft_max);
1309 mused = 0;
1310 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1311 vdev_t *tvd = rvd->vdev_child[i];
1312 dsl_scan_io_queue_t *queue;
1314 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1315 queue = tvd->vdev_scan_io_queue;
1316 if (queue != NULL) {
1318 * # of extents in exts_by_addr = # in exts_by_size.
1319 * B-tree efficiency is ~75%, but can be as low as 50%.
1321 mused += zfs_btree_numnodes(&queue->q_exts_by_size) *
1322 ((sizeof (range_seg_gap_t) + sizeof (uint64_t)) *
1323 3 / 2) + queue->q_sio_memused;
1325 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1328 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1330 if (mused == 0)
1331 ASSERT0(scn->scn_queues_pending);
1334 * If we are above our hard limit, we need to clear out memory.
1335 * If we are below our soft limit, we need to accumulate sequential IOs.
1336 * Otherwise, we should keep doing whatever we are currently doing.
1338 if (mused >= mlim_hard)
1339 return (B_TRUE);
1340 else if (mused < mlim_soft)
1341 return (B_FALSE);
1342 else
1343 return (scn->scn_clearing);
1346 static boolean_t
1347 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1349 /* we never skip user/group accounting objects */
1350 if (zb && (int64_t)zb->zb_object < 0)
1351 return (B_FALSE);
1353 if (scn->scn_suspending)
1354 return (B_TRUE); /* we're already suspending */
1356 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1357 return (B_FALSE); /* we're resuming */
1359 /* We only know how to resume from level-0 and objset blocks. */
1360 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1361 return (B_FALSE);
1364 * We suspend if:
1365 * - we have scanned for at least the minimum time (default 1 sec
1366 * for scrub, 3 sec for resilver), and either we have sufficient
1367 * dirty data that we are starting to write more quickly
1368 * (default 30%), someone is explicitly waiting for this txg
1369 * to complete, or we have used up all of the time in the txg
1370 * timeout (default 5 sec).
1371 * or
1372 * - the spa is shutting down because this pool is being exported
1373 * or the machine is rebooting.
1374 * or
1375 * - the scan queue has reached its memory use limit
1377 uint64_t curr_time_ns = gethrtime();
1378 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1379 uint64_t sync_time_ns = curr_time_ns -
1380 scn->scn_dp->dp_spa->spa_sync_starttime;
1381 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1382 zfs_vdev_async_write_active_min_dirty_percent / 100;
1383 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1384 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1386 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1387 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1388 txg_sync_waiting(scn->scn_dp) ||
1389 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1390 spa_shutting_down(scn->scn_dp->dp_spa) ||
1391 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn))) {
1392 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1393 dprintf("suspending at first available bookmark "
1394 "%llx/%llx/%llx/%llx\n",
1395 (longlong_t)zb->zb_objset,
1396 (longlong_t)zb->zb_object,
1397 (longlong_t)zb->zb_level,
1398 (longlong_t)zb->zb_blkid);
1399 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1400 zb->zb_objset, 0, 0, 0);
1401 } else if (zb != NULL) {
1402 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1403 (longlong_t)zb->zb_objset,
1404 (longlong_t)zb->zb_object,
1405 (longlong_t)zb->zb_level,
1406 (longlong_t)zb->zb_blkid);
1407 scn->scn_phys.scn_bookmark = *zb;
1408 } else {
1409 #ifdef ZFS_DEBUG
1410 dsl_scan_phys_t *scnp = &scn->scn_phys;
1411 dprintf("suspending at at DDT bookmark "
1412 "%llx/%llx/%llx/%llx\n",
1413 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1414 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1415 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1416 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1417 #endif
1419 scn->scn_suspending = B_TRUE;
1420 return (B_TRUE);
1422 return (B_FALSE);
1425 typedef struct zil_scan_arg {
1426 dsl_pool_t *zsa_dp;
1427 zil_header_t *zsa_zh;
1428 } zil_scan_arg_t;
1430 static int
1431 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1432 uint64_t claim_txg)
1434 (void) zilog;
1435 zil_scan_arg_t *zsa = arg;
1436 dsl_pool_t *dp = zsa->zsa_dp;
1437 dsl_scan_t *scn = dp->dp_scan;
1438 zil_header_t *zh = zsa->zsa_zh;
1439 zbookmark_phys_t zb;
1441 ASSERT(!BP_IS_REDACTED(bp));
1442 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1443 return (0);
1446 * One block ("stubby") can be allocated a long time ago; we
1447 * want to visit that one because it has been allocated
1448 * (on-disk) even if it hasn't been claimed (even though for
1449 * scrub there's nothing to do to it).
1451 if (claim_txg == 0 && bp->blk_birth >= spa_min_claim_txg(dp->dp_spa))
1452 return (0);
1454 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1455 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1457 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1458 return (0);
1461 static int
1462 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1463 uint64_t claim_txg)
1465 (void) zilog;
1466 if (lrc->lrc_txtype == TX_WRITE) {
1467 zil_scan_arg_t *zsa = arg;
1468 dsl_pool_t *dp = zsa->zsa_dp;
1469 dsl_scan_t *scn = dp->dp_scan;
1470 zil_header_t *zh = zsa->zsa_zh;
1471 const lr_write_t *lr = (const lr_write_t *)lrc;
1472 const blkptr_t *bp = &lr->lr_blkptr;
1473 zbookmark_phys_t zb;
1475 ASSERT(!BP_IS_REDACTED(bp));
1476 if (BP_IS_HOLE(bp) ||
1477 bp->blk_birth <= scn->scn_phys.scn_cur_min_txg)
1478 return (0);
1481 * birth can be < claim_txg if this record's txg is
1482 * already txg sync'ed (but this log block contains
1483 * other records that are not synced)
1485 if (claim_txg == 0 || bp->blk_birth < claim_txg)
1486 return (0);
1488 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1489 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1490 lr->lr_foid, ZB_ZIL_LEVEL,
1491 lr->lr_offset / BP_GET_LSIZE(bp));
1493 VERIFY(0 == scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1495 return (0);
1498 static void
1499 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1501 uint64_t claim_txg = zh->zh_claim_txg;
1502 zil_scan_arg_t zsa = { dp, zh };
1503 zilog_t *zilog;
1505 ASSERT(spa_writeable(dp->dp_spa));
1508 * We only want to visit blocks that have been claimed but not yet
1509 * replayed (or, in read-only mode, blocks that *would* be claimed).
1511 if (claim_txg == 0)
1512 return;
1514 zilog = zil_alloc(dp->dp_meta_objset, zh);
1516 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1517 claim_txg, B_FALSE);
1519 zil_free(zilog);
1523 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1524 * here is to sort the AVL tree by the order each block will be needed.
1526 static int
1527 scan_prefetch_queue_compare(const void *a, const void *b)
1529 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1530 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1531 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1533 return (zbookmark_compare(spc_a->spc_datablkszsec,
1534 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1535 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1538 static void
1539 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1541 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1542 zfs_refcount_destroy(&spc->spc_refcnt);
1543 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1547 static scan_prefetch_ctx_t *
1548 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1550 scan_prefetch_ctx_t *spc;
1552 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1553 zfs_refcount_create(&spc->spc_refcnt);
1554 zfs_refcount_add(&spc->spc_refcnt, tag);
1555 spc->spc_scn = scn;
1556 if (dnp != NULL) {
1557 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1558 spc->spc_indblkshift = dnp->dn_indblkshift;
1559 spc->spc_root = B_FALSE;
1560 } else {
1561 spc->spc_datablkszsec = 0;
1562 spc->spc_indblkshift = 0;
1563 spc->spc_root = B_TRUE;
1566 return (spc);
1569 static void
1570 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1572 zfs_refcount_add(&spc->spc_refcnt, tag);
1575 static void
1576 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1578 spa_t *spa = scn->scn_dp->dp_spa;
1579 void *cookie = NULL;
1580 scan_prefetch_issue_ctx_t *spic = NULL;
1582 mutex_enter(&spa->spa_scrub_lock);
1583 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1584 &cookie)) != NULL) {
1585 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1586 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1588 mutex_exit(&spa->spa_scrub_lock);
1591 static boolean_t
1592 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1593 const zbookmark_phys_t *zb)
1595 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1596 dnode_phys_t tmp_dnp;
1597 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1599 if (zb->zb_objset != last_zb->zb_objset)
1600 return (B_TRUE);
1601 if ((int64_t)zb->zb_object < 0)
1602 return (B_FALSE);
1604 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1605 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1607 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1608 return (B_TRUE);
1610 return (B_FALSE);
1613 static void
1614 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1616 avl_index_t idx;
1617 dsl_scan_t *scn = spc->spc_scn;
1618 spa_t *spa = scn->scn_dp->dp_spa;
1619 scan_prefetch_issue_ctx_t *spic;
1621 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1622 return;
1624 if (BP_IS_HOLE(bp) || bp->blk_birth <= scn->scn_phys.scn_cur_min_txg ||
1625 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1626 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1627 return;
1629 if (dsl_scan_check_prefetch_resume(spc, zb))
1630 return;
1632 scan_prefetch_ctx_add_ref(spc, scn);
1633 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1634 spic->spic_spc = spc;
1635 spic->spic_bp = *bp;
1636 spic->spic_zb = *zb;
1639 * Add the IO to the queue of blocks to prefetch. This allows us to
1640 * prioritize blocks that we will need first for the main traversal
1641 * thread.
1643 mutex_enter(&spa->spa_scrub_lock);
1644 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1645 /* this block is already queued for prefetch */
1646 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1647 scan_prefetch_ctx_rele(spc, scn);
1648 mutex_exit(&spa->spa_scrub_lock);
1649 return;
1652 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1653 cv_broadcast(&spa->spa_scrub_io_cv);
1654 mutex_exit(&spa->spa_scrub_lock);
1657 static void
1658 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1659 uint64_t objset, uint64_t object)
1661 int i;
1662 zbookmark_phys_t zb;
1663 scan_prefetch_ctx_t *spc;
1665 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1666 return;
1668 SET_BOOKMARK(&zb, objset, object, 0, 0);
1670 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
1672 for (i = 0; i < dnp->dn_nblkptr; i++) {
1673 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
1674 zb.zb_blkid = i;
1675 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
1678 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1679 zb.zb_level = 0;
1680 zb.zb_blkid = DMU_SPILL_BLKID;
1681 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
1684 scan_prefetch_ctx_rele(spc, FTAG);
1687 static void
1688 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1689 arc_buf_t *buf, void *private)
1691 (void) zio;
1692 scan_prefetch_ctx_t *spc = private;
1693 dsl_scan_t *scn = spc->spc_scn;
1694 spa_t *spa = scn->scn_dp->dp_spa;
1696 /* broadcast that the IO has completed for rate limiting purposes */
1697 mutex_enter(&spa->spa_scrub_lock);
1698 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
1699 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
1700 cv_broadcast(&spa->spa_scrub_io_cv);
1701 mutex_exit(&spa->spa_scrub_lock);
1703 /* if there was an error or we are done prefetching, just cleanup */
1704 if (buf == NULL || scn->scn_prefetch_stop)
1705 goto out;
1707 if (BP_GET_LEVEL(bp) > 0) {
1708 int i;
1709 blkptr_t *cbp;
1710 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1711 zbookmark_phys_t czb;
1713 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1714 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1715 zb->zb_level - 1, zb->zb_blkid * epb + i);
1716 dsl_scan_prefetch(spc, cbp, &czb);
1718 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1719 dnode_phys_t *cdnp;
1720 int i;
1721 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1723 for (i = 0, cdnp = buf->b_data; i < epb;
1724 i += cdnp->dn_extra_slots + 1,
1725 cdnp += cdnp->dn_extra_slots + 1) {
1726 dsl_scan_prefetch_dnode(scn, cdnp,
1727 zb->zb_objset, zb->zb_blkid * epb + i);
1729 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1730 objset_phys_t *osp = buf->b_data;
1732 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
1733 zb->zb_objset, DMU_META_DNODE_OBJECT);
1735 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1736 dsl_scan_prefetch_dnode(scn,
1737 &osp->os_groupused_dnode, zb->zb_objset,
1738 DMU_GROUPUSED_OBJECT);
1739 dsl_scan_prefetch_dnode(scn,
1740 &osp->os_userused_dnode, zb->zb_objset,
1741 DMU_USERUSED_OBJECT);
1745 out:
1746 if (buf != NULL)
1747 arc_buf_destroy(buf, private);
1748 scan_prefetch_ctx_rele(spc, scn);
1751 static void
1752 dsl_scan_prefetch_thread(void *arg)
1754 dsl_scan_t *scn = arg;
1755 spa_t *spa = scn->scn_dp->dp_spa;
1756 scan_prefetch_issue_ctx_t *spic;
1758 /* loop until we are told to stop */
1759 while (!scn->scn_prefetch_stop) {
1760 arc_flags_t flags = ARC_FLAG_NOWAIT |
1761 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
1762 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1764 mutex_enter(&spa->spa_scrub_lock);
1767 * Wait until we have an IO to issue and are not above our
1768 * maximum in flight limit.
1770 while (!scn->scn_prefetch_stop &&
1771 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
1772 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
1773 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1776 /* recheck if we should stop since we waited for the cv */
1777 if (scn->scn_prefetch_stop) {
1778 mutex_exit(&spa->spa_scrub_lock);
1779 break;
1782 /* remove the prefetch IO from the tree */
1783 spic = avl_first(&scn->scn_prefetch_queue);
1784 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
1785 avl_remove(&scn->scn_prefetch_queue, spic);
1787 mutex_exit(&spa->spa_scrub_lock);
1789 if (BP_IS_PROTECTED(&spic->spic_bp)) {
1790 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
1791 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
1792 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
1793 zio_flags |= ZIO_FLAG_RAW;
1796 /* issue the prefetch asynchronously */
1797 (void) arc_read(scn->scn_zio_root, scn->scn_dp->dp_spa,
1798 &spic->spic_bp, dsl_scan_prefetch_cb, spic->spic_spc,
1799 ZIO_PRIORITY_SCRUB, zio_flags, &flags, &spic->spic_zb);
1801 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1804 ASSERT(scn->scn_prefetch_stop);
1806 /* free any prefetches we didn't get to complete */
1807 mutex_enter(&spa->spa_scrub_lock);
1808 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
1809 avl_remove(&scn->scn_prefetch_queue, spic);
1810 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1811 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1813 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
1814 mutex_exit(&spa->spa_scrub_lock);
1817 static boolean_t
1818 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
1819 const zbookmark_phys_t *zb)
1822 * We never skip over user/group accounting objects (obj<0)
1824 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
1825 (int64_t)zb->zb_object >= 0) {
1827 * If we already visited this bp & everything below (in
1828 * a prior txg sync), don't bother doing it again.
1830 if (zbookmark_subtree_completed(dnp, zb,
1831 &scn->scn_phys.scn_bookmark))
1832 return (B_TRUE);
1835 * If we found the block we're trying to resume from, or
1836 * we went past it, zero it out to indicate that it's OK
1837 * to start checking for suspending again.
1839 if (zbookmark_subtree_tbd(dnp, zb,
1840 &scn->scn_phys.scn_bookmark)) {
1841 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1842 (longlong_t)zb->zb_objset,
1843 (longlong_t)zb->zb_object,
1844 (longlong_t)zb->zb_level,
1845 (longlong_t)zb->zb_blkid);
1846 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
1849 return (B_FALSE);
1852 static void dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
1853 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
1854 dmu_objset_type_t ostype, dmu_tx_t *tx);
1855 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
1856 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1857 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
1860 * Return nonzero on i/o error.
1861 * Return new buf to write out in *bufp.
1863 inline __attribute__((always_inline)) static int
1864 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
1865 dnode_phys_t *dnp, const blkptr_t *bp,
1866 const zbookmark_phys_t *zb, dmu_tx_t *tx)
1868 dsl_pool_t *dp = scn->scn_dp;
1869 spa_t *spa = dp->dp_spa;
1870 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
1871 int err;
1873 ASSERT(!BP_IS_REDACTED(bp));
1876 * There is an unlikely case of encountering dnodes with contradicting
1877 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
1878 * or modified before commit 4254acb was merged. As it is not possible
1879 * to know which of the two is correct, report an error.
1881 if (dnp != NULL &&
1882 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
1883 scn->scn_phys.scn_errors++;
1884 spa_log_error(spa, zb, &bp->blk_birth);
1885 return (SET_ERROR(EINVAL));
1888 if (BP_GET_LEVEL(bp) > 0) {
1889 arc_flags_t flags = ARC_FLAG_WAIT;
1890 int i;
1891 blkptr_t *cbp;
1892 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
1893 arc_buf_t *buf;
1895 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
1896 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1897 if (err) {
1898 scn->scn_phys.scn_errors++;
1899 return (err);
1901 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
1902 zbookmark_phys_t czb;
1904 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
1905 zb->zb_level - 1,
1906 zb->zb_blkid * epb + i);
1907 dsl_scan_visitbp(cbp, &czb, dnp,
1908 ds, scn, ostype, tx);
1910 arc_buf_destroy(buf, &buf);
1911 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
1912 arc_flags_t flags = ARC_FLAG_WAIT;
1913 dnode_phys_t *cdnp;
1914 int i;
1915 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
1916 arc_buf_t *buf;
1918 if (BP_IS_PROTECTED(bp)) {
1919 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
1920 zio_flags |= ZIO_FLAG_RAW;
1923 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
1924 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1925 if (err) {
1926 scn->scn_phys.scn_errors++;
1927 return (err);
1929 for (i = 0, cdnp = buf->b_data; i < epb;
1930 i += cdnp->dn_extra_slots + 1,
1931 cdnp += cdnp->dn_extra_slots + 1) {
1932 dsl_scan_visitdnode(scn, ds, ostype,
1933 cdnp, zb->zb_blkid * epb + i, tx);
1936 arc_buf_destroy(buf, &buf);
1937 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
1938 arc_flags_t flags = ARC_FLAG_WAIT;
1939 objset_phys_t *osp;
1940 arc_buf_t *buf;
1942 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
1943 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
1944 if (err) {
1945 scn->scn_phys.scn_errors++;
1946 return (err);
1949 osp = buf->b_data;
1951 dsl_scan_visitdnode(scn, ds, osp->os_type,
1952 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
1954 if (OBJSET_BUF_HAS_USERUSED(buf)) {
1956 * We also always visit user/group/project accounting
1957 * objects, and never skip them, even if we are
1958 * suspending. This is necessary so that the
1959 * space deltas from this txg get integrated.
1961 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
1962 dsl_scan_visitdnode(scn, ds, osp->os_type,
1963 &osp->os_projectused_dnode,
1964 DMU_PROJECTUSED_OBJECT, tx);
1965 dsl_scan_visitdnode(scn, ds, osp->os_type,
1966 &osp->os_groupused_dnode,
1967 DMU_GROUPUSED_OBJECT, tx);
1968 dsl_scan_visitdnode(scn, ds, osp->os_type,
1969 &osp->os_userused_dnode,
1970 DMU_USERUSED_OBJECT, tx);
1972 arc_buf_destroy(buf, &buf);
1973 } else if (!zfs_blkptr_verify(spa, bp,
1974 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
1976 * Sanity check the block pointer contents, this is handled
1977 * by arc_read() for the cases above.
1979 scn->scn_phys.scn_errors++;
1980 spa_log_error(spa, zb, &bp->blk_birth);
1981 return (SET_ERROR(EINVAL));
1984 return (0);
1987 inline __attribute__((always_inline)) static void
1988 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
1989 dmu_objset_type_t ostype, dnode_phys_t *dnp,
1990 uint64_t object, dmu_tx_t *tx)
1992 int j;
1994 for (j = 0; j < dnp->dn_nblkptr; j++) {
1995 zbookmark_phys_t czb;
1997 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
1998 dnp->dn_nlevels - 1, j);
1999 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2000 &czb, dnp, ds, scn, ostype, tx);
2003 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2004 zbookmark_phys_t czb;
2005 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2006 0, DMU_SPILL_BLKID);
2007 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2008 &czb, dnp, ds, scn, ostype, tx);
2013 * The arguments are in this order because mdb can only print the
2014 * first 5; we want them to be useful.
2016 static void
2017 dsl_scan_visitbp(blkptr_t *bp, const zbookmark_phys_t *zb,
2018 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2019 dmu_objset_type_t ostype, dmu_tx_t *tx)
2021 dsl_pool_t *dp = scn->scn_dp;
2022 blkptr_t *bp_toread = NULL;
2024 if (dsl_scan_check_suspend(scn, zb))
2025 return;
2027 if (dsl_scan_check_resume(scn, dnp, zb))
2028 return;
2030 scn->scn_visited_this_txg++;
2032 if (BP_IS_HOLE(bp)) {
2033 scn->scn_holes_this_txg++;
2034 return;
2037 if (BP_IS_REDACTED(bp)) {
2038 ASSERT(dsl_dataset_feature_is_active(ds,
2039 SPA_FEATURE_REDACTED_DATASETS));
2040 return;
2044 * Check if this block contradicts any filesystem flags.
2046 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2047 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2048 ASSERT(dsl_dataset_feature_is_active(ds, f));
2050 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2051 if (f != SPA_FEATURE_NONE)
2052 ASSERT(dsl_dataset_feature_is_active(ds, f));
2054 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2055 if (f != SPA_FEATURE_NONE)
2056 ASSERT(dsl_dataset_feature_is_active(ds, f));
2058 if (bp->blk_birth <= scn->scn_phys.scn_cur_min_txg) {
2059 scn->scn_lt_min_this_txg++;
2060 return;
2063 bp_toread = kmem_alloc(sizeof (blkptr_t), KM_SLEEP);
2064 *bp_toread = *bp;
2066 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp_toread, zb, tx) != 0)
2067 goto out;
2070 * If dsl_scan_ddt() has already visited this block, it will have
2071 * already done any translations or scrubbing, so don't call the
2072 * callback again.
2074 if (ddt_class_contains(dp->dp_spa,
2075 scn->scn_phys.scn_ddt_class_max, bp)) {
2076 scn->scn_ddt_contained_this_txg++;
2077 goto out;
2081 * If this block is from the future (after cur_max_txg), then we
2082 * are doing this on behalf of a deleted snapshot, and we will
2083 * revisit the future block on the next pass of this dataset.
2084 * Don't scan it now unless we need to because something
2085 * under it was modified.
2087 if (BP_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2088 scn->scn_gt_max_this_txg++;
2089 goto out;
2092 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2094 out:
2095 kmem_free(bp_toread, sizeof (blkptr_t));
2098 static void
2099 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2100 dmu_tx_t *tx)
2102 zbookmark_phys_t zb;
2103 scan_prefetch_ctx_t *spc;
2105 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2106 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2108 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2109 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2110 zb.zb_objset, 0, 0, 0);
2111 } else {
2112 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2115 scn->scn_objsets_visited_this_txg++;
2117 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2118 dsl_scan_prefetch(spc, bp, &zb);
2119 scan_prefetch_ctx_rele(spc, FTAG);
2121 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2123 dprintf_ds(ds, "finished scan%s", "");
2126 static void
2127 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2129 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2130 if (ds->ds_is_snapshot) {
2132 * Note:
2133 * - scn_cur_{min,max}_txg stays the same.
2134 * - Setting the flag is not really necessary if
2135 * scn_cur_max_txg == scn_max_txg, because there
2136 * is nothing after this snapshot that we care
2137 * about. However, we set it anyway and then
2138 * ignore it when we retraverse it in
2139 * dsl_scan_visitds().
2141 scn_phys->scn_bookmark.zb_objset =
2142 dsl_dataset_phys(ds)->ds_next_snap_obj;
2143 zfs_dbgmsg("destroying ds %llu on %s; currently "
2144 "traversing; reset zb_objset to %llu",
2145 (u_longlong_t)ds->ds_object,
2146 ds->ds_dir->dd_pool->dp_spa->spa_name,
2147 (u_longlong_t)dsl_dataset_phys(ds)->
2148 ds_next_snap_obj);
2149 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2150 } else {
2151 SET_BOOKMARK(&scn_phys->scn_bookmark,
2152 ZB_DESTROYED_OBJSET, 0, 0, 0);
2153 zfs_dbgmsg("destroying ds %llu on %s; currently "
2154 "traversing; reset bookmark to -1,0,0,0",
2155 (u_longlong_t)ds->ds_object,
2156 ds->ds_dir->dd_pool->dp_spa->spa_name);
2162 * Invoked when a dataset is destroyed. We need to make sure that:
2164 * 1) If it is the dataset that was currently being scanned, we write
2165 * a new dsl_scan_phys_t and marking the objset reference in it
2166 * as destroyed.
2167 * 2) Remove it from the work queue, if it was present.
2169 * If the dataset was actually a snapshot, instead of marking the dataset
2170 * as destroyed, we instead substitute the next snapshot in line.
2172 void
2173 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2175 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2176 dsl_scan_t *scn = dp->dp_scan;
2177 uint64_t mintxg;
2179 if (!dsl_scan_is_running(scn))
2180 return;
2182 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2183 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2185 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2186 scan_ds_queue_remove(scn, ds->ds_object);
2187 if (ds->ds_is_snapshot)
2188 scan_ds_queue_insert(scn,
2189 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2192 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2193 ds->ds_object, &mintxg) == 0) {
2194 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2195 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2196 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2197 if (ds->ds_is_snapshot) {
2199 * We keep the same mintxg; it could be >
2200 * ds_creation_txg if the previous snapshot was
2201 * deleted too.
2203 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2204 scn->scn_phys.scn_queue_obj,
2205 dsl_dataset_phys(ds)->ds_next_snap_obj,
2206 mintxg, tx) == 0);
2207 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2208 "replacing with %llu",
2209 (u_longlong_t)ds->ds_object,
2210 dp->dp_spa->spa_name,
2211 (u_longlong_t)dsl_dataset_phys(ds)->
2212 ds_next_snap_obj);
2213 } else {
2214 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2215 "removing",
2216 (u_longlong_t)ds->ds_object,
2217 dp->dp_spa->spa_name);
2222 * dsl_scan_sync() should be called after this, and should sync
2223 * out our changed state, but just to be safe, do it here.
2225 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2228 static void
2229 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2231 if (scn_bookmark->zb_objset == ds->ds_object) {
2232 scn_bookmark->zb_objset =
2233 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2234 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2235 "reset zb_objset to %llu",
2236 (u_longlong_t)ds->ds_object,
2237 ds->ds_dir->dd_pool->dp_spa->spa_name,
2238 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2243 * Called when a dataset is snapshotted. If we were currently traversing
2244 * this snapshot, we reset our bookmark to point at the newly created
2245 * snapshot. We also modify our work queue to remove the old snapshot and
2246 * replace with the new one.
2248 void
2249 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2251 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2252 dsl_scan_t *scn = dp->dp_scan;
2253 uint64_t mintxg;
2255 if (!dsl_scan_is_running(scn))
2256 return;
2258 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2260 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2261 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2263 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2264 scan_ds_queue_remove(scn, ds->ds_object);
2265 scan_ds_queue_insert(scn,
2266 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2269 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2270 ds->ds_object, &mintxg) == 0) {
2271 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2272 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2273 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2274 scn->scn_phys.scn_queue_obj,
2275 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2276 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2277 "replacing with %llu",
2278 (u_longlong_t)ds->ds_object,
2279 dp->dp_spa->spa_name,
2280 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2283 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2286 static void
2287 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2288 zbookmark_phys_t *scn_bookmark)
2290 if (scn_bookmark->zb_objset == ds1->ds_object) {
2291 scn_bookmark->zb_objset = ds2->ds_object;
2292 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2293 "reset zb_objset to %llu",
2294 (u_longlong_t)ds1->ds_object,
2295 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2296 (u_longlong_t)ds2->ds_object);
2297 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2298 scn_bookmark->zb_objset = ds1->ds_object;
2299 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2300 "reset zb_objset to %llu",
2301 (u_longlong_t)ds2->ds_object,
2302 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2303 (u_longlong_t)ds1->ds_object);
2308 * Called when an origin dataset and its clone are swapped. If we were
2309 * currently traversing the dataset, we need to switch to traversing the
2310 * newly promoted clone.
2312 void
2313 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2315 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2316 dsl_scan_t *scn = dp->dp_scan;
2317 uint64_t mintxg1, mintxg2;
2318 boolean_t ds1_queued, ds2_queued;
2320 if (!dsl_scan_is_running(scn))
2321 return;
2323 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2324 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2327 * Handle the in-memory scan queue.
2329 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2330 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2332 /* Sanity checking. */
2333 if (ds1_queued) {
2334 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2335 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2337 if (ds2_queued) {
2338 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2339 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2342 if (ds1_queued && ds2_queued) {
2344 * If both are queued, we don't need to do anything.
2345 * The swapping code below would not handle this case correctly,
2346 * since we can't insert ds2 if it is already there. That's
2347 * because scan_ds_queue_insert() prohibits a duplicate insert
2348 * and panics.
2350 } else if (ds1_queued) {
2351 scan_ds_queue_remove(scn, ds1->ds_object);
2352 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2353 } else if (ds2_queued) {
2354 scan_ds_queue_remove(scn, ds2->ds_object);
2355 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2359 * Handle the on-disk scan queue.
2360 * The on-disk state is an out-of-date version of the in-memory state,
2361 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2362 * be different. Therefore we need to apply the swap logic to the
2363 * on-disk state independently of the in-memory state.
2365 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2366 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2367 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2368 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2370 /* Sanity checking. */
2371 if (ds1_queued) {
2372 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2373 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2375 if (ds2_queued) {
2376 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2377 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2380 if (ds1_queued && ds2_queued) {
2382 * If both are queued, we don't need to do anything.
2383 * Alternatively, we could check for EEXIST from
2384 * zap_add_int_key() and back out to the original state, but
2385 * that would be more work than checking for this case upfront.
2387 } else if (ds1_queued) {
2388 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2389 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2390 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2391 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2392 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2393 "replacing with %llu",
2394 (u_longlong_t)ds1->ds_object,
2395 dp->dp_spa->spa_name,
2396 (u_longlong_t)ds2->ds_object);
2397 } else if (ds2_queued) {
2398 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2399 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2400 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2401 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2402 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2403 "replacing with %llu",
2404 (u_longlong_t)ds2->ds_object,
2405 dp->dp_spa->spa_name,
2406 (u_longlong_t)ds1->ds_object);
2409 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2412 static int
2413 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2415 uint64_t originobj = *(uint64_t *)arg;
2416 dsl_dataset_t *ds;
2417 int err;
2418 dsl_scan_t *scn = dp->dp_scan;
2420 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2421 return (0);
2423 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2424 if (err)
2425 return (err);
2427 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2428 dsl_dataset_t *prev;
2429 err = dsl_dataset_hold_obj(dp,
2430 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2432 dsl_dataset_rele(ds, FTAG);
2433 if (err)
2434 return (err);
2435 ds = prev;
2437 scan_ds_queue_insert(scn, ds->ds_object,
2438 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2439 dsl_dataset_rele(ds, FTAG);
2440 return (0);
2443 static void
2444 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2446 dsl_pool_t *dp = scn->scn_dp;
2447 dsl_dataset_t *ds;
2449 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2451 if (scn->scn_phys.scn_cur_min_txg >=
2452 scn->scn_phys.scn_max_txg) {
2454 * This can happen if this snapshot was created after the
2455 * scan started, and we already completed a previous snapshot
2456 * that was created after the scan started. This snapshot
2457 * only references blocks with:
2459 * birth < our ds_creation_txg
2460 * cur_min_txg is no less than ds_creation_txg.
2461 * We have already visited these blocks.
2462 * or
2463 * birth > scn_max_txg
2464 * The scan requested not to visit these blocks.
2466 * Subsequent snapshots (and clones) can reference our
2467 * blocks, or blocks with even higher birth times.
2468 * Therefore we do not need to visit them either,
2469 * so we do not add them to the work queue.
2471 * Note that checking for cur_min_txg >= cur_max_txg
2472 * is not sufficient, because in that case we may need to
2473 * visit subsequent snapshots. This happens when min_txg > 0,
2474 * which raises cur_min_txg. In this case we will visit
2475 * this dataset but skip all of its blocks, because the
2476 * rootbp's birth time is < cur_min_txg. Then we will
2477 * add the next snapshots/clones to the work queue.
2479 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2480 dsl_dataset_name(ds, dsname);
2481 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2482 "cur_min_txg (%llu) >= max_txg (%llu)",
2483 (longlong_t)dsobj, dsname,
2484 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2485 (longlong_t)scn->scn_phys.scn_max_txg);
2486 kmem_free(dsname, MAXNAMELEN);
2488 goto out;
2492 * Only the ZIL in the head (non-snapshot) is valid. Even though
2493 * snapshots can have ZIL block pointers (which may be the same
2494 * BP as in the head), they must be ignored. In addition, $ORIGIN
2495 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2496 * need to look for a ZIL in it either. So we traverse the ZIL here,
2497 * rather than in scan_recurse(), because the regular snapshot
2498 * block-sharing rules don't apply to it.
2500 if (!dsl_dataset_is_snapshot(ds) &&
2501 (dp->dp_origin_snap == NULL ||
2502 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2503 objset_t *os;
2504 if (dmu_objset_from_ds(ds, &os) != 0) {
2505 goto out;
2507 dsl_scan_zil(dp, &os->os_zil_header);
2511 * Iterate over the bps in this ds.
2513 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2514 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2515 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2516 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2518 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2519 dsl_dataset_name(ds, dsname);
2520 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2521 "suspending=%u",
2522 (longlong_t)dsobj, dsname,
2523 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2524 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2525 (int)scn->scn_suspending);
2526 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2528 if (scn->scn_suspending)
2529 goto out;
2532 * We've finished this pass over this dataset.
2536 * If we did not completely visit this dataset, do another pass.
2538 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2539 zfs_dbgmsg("incomplete pass on %s; visiting again",
2540 dp->dp_spa->spa_name);
2541 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2542 scan_ds_queue_insert(scn, ds->ds_object,
2543 scn->scn_phys.scn_cur_max_txg);
2544 goto out;
2548 * Add descendant datasets to work queue.
2550 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2551 scan_ds_queue_insert(scn,
2552 dsl_dataset_phys(ds)->ds_next_snap_obj,
2553 dsl_dataset_phys(ds)->ds_creation_txg);
2555 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2556 boolean_t usenext = B_FALSE;
2557 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2558 uint64_t count;
2560 * A bug in a previous version of the code could
2561 * cause upgrade_clones_cb() to not set
2562 * ds_next_snap_obj when it should, leading to a
2563 * missing entry. Therefore we can only use the
2564 * next_clones_obj when its count is correct.
2566 int err = zap_count(dp->dp_meta_objset,
2567 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2568 if (err == 0 &&
2569 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2570 usenext = B_TRUE;
2573 if (usenext) {
2574 zap_cursor_t zc;
2575 zap_attribute_t za;
2576 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2577 dsl_dataset_phys(ds)->ds_next_clones_obj);
2578 zap_cursor_retrieve(&zc, &za) == 0;
2579 (void) zap_cursor_advance(&zc)) {
2580 scan_ds_queue_insert(scn,
2581 zfs_strtonum(za.za_name, NULL),
2582 dsl_dataset_phys(ds)->ds_creation_txg);
2584 zap_cursor_fini(&zc);
2585 } else {
2586 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2587 enqueue_clones_cb, &ds->ds_object,
2588 DS_FIND_CHILDREN));
2592 out:
2593 dsl_dataset_rele(ds, FTAG);
2596 static int
2597 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2599 (void) arg;
2600 dsl_dataset_t *ds;
2601 int err;
2602 dsl_scan_t *scn = dp->dp_scan;
2604 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2605 if (err)
2606 return (err);
2608 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2609 dsl_dataset_t *prev;
2610 err = dsl_dataset_hold_obj(dp,
2611 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2612 if (err) {
2613 dsl_dataset_rele(ds, FTAG);
2614 return (err);
2618 * If this is a clone, we don't need to worry about it for now.
2620 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2621 dsl_dataset_rele(ds, FTAG);
2622 dsl_dataset_rele(prev, FTAG);
2623 return (0);
2625 dsl_dataset_rele(ds, FTAG);
2626 ds = prev;
2629 scan_ds_queue_insert(scn, ds->ds_object,
2630 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2631 dsl_dataset_rele(ds, FTAG);
2632 return (0);
2635 void
2636 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2637 ddt_entry_t *dde, dmu_tx_t *tx)
2639 (void) tx;
2640 const ddt_key_t *ddk = &dde->dde_key;
2641 ddt_phys_t *ddp = dde->dde_phys;
2642 blkptr_t bp;
2643 zbookmark_phys_t zb = { 0 };
2645 if (!dsl_scan_is_running(scn))
2646 return;
2649 * This function is special because it is the only thing
2650 * that can add scan_io_t's to the vdev scan queues from
2651 * outside dsl_scan_sync(). For the most part this is ok
2652 * as long as it is called from within syncing context.
2653 * However, dsl_scan_sync() expects that no new sio's will
2654 * be added between when all the work for a scan is done
2655 * and the next txg when the scan is actually marked as
2656 * completed. This check ensures we do not issue new sio's
2657 * during this period.
2659 if (scn->scn_done_txg != 0)
2660 return;
2662 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2663 if (ddp->ddp_phys_birth == 0 ||
2664 ddp->ddp_phys_birth > scn->scn_phys.scn_max_txg)
2665 continue;
2666 ddt_bp_create(checksum, ddk, ddp, &bp);
2668 scn->scn_visited_this_txg++;
2669 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
2674 * Scrub/dedup interaction.
2676 * If there are N references to a deduped block, we don't want to scrub it
2677 * N times -- ideally, we should scrub it exactly once.
2679 * We leverage the fact that the dde's replication class (enum ddt_class)
2680 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2681 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2683 * To prevent excess scrubbing, the scrub begins by walking the DDT
2684 * to find all blocks with refcnt > 1, and scrubs each of these once.
2685 * Since there are two replication classes which contain blocks with
2686 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2687 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2689 * There would be nothing more to say if a block's refcnt couldn't change
2690 * during a scrub, but of course it can so we must account for changes
2691 * in a block's replication class.
2693 * Here's an example of what can occur:
2695 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2696 * when visited during the top-down scrub phase, it will be scrubbed twice.
2697 * This negates our scrub optimization, but is otherwise harmless.
2699 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2700 * on each visit during the top-down scrub phase, it will never be scrubbed.
2701 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2702 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2703 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2704 * while a scrub is in progress, it scrubs the block right then.
2706 static void
2707 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
2709 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
2710 ddt_entry_t dde = {{{{0}}}};
2711 int error;
2712 uint64_t n = 0;
2714 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &dde)) == 0) {
2715 ddt_t *ddt;
2717 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
2718 break;
2719 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2720 (longlong_t)ddb->ddb_class,
2721 (longlong_t)ddb->ddb_type,
2722 (longlong_t)ddb->ddb_checksum,
2723 (longlong_t)ddb->ddb_cursor);
2725 /* There should be no pending changes to the dedup table */
2726 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
2727 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
2729 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, &dde, tx);
2730 n++;
2732 if (dsl_scan_check_suspend(scn, NULL))
2733 break;
2736 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
2737 "suspending=%u", (longlong_t)n, scn->scn_dp->dp_spa->spa_name,
2738 (int)scn->scn_phys.scn_ddt_class_max, (int)scn->scn_suspending);
2740 ASSERT(error == 0 || error == ENOENT);
2741 ASSERT(error != ENOENT ||
2742 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
2745 static uint64_t
2746 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
2748 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
2749 if (ds->ds_is_snapshot)
2750 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
2751 return (smt);
2754 static void
2755 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
2757 scan_ds_t *sds;
2758 dsl_pool_t *dp = scn->scn_dp;
2760 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
2761 scn->scn_phys.scn_ddt_class_max) {
2762 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2763 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2764 dsl_scan_ddt(scn, tx);
2765 if (scn->scn_suspending)
2766 return;
2769 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
2770 /* First do the MOS & ORIGIN */
2772 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
2773 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
2774 dsl_scan_visit_rootbp(scn, NULL,
2775 &dp->dp_meta_rootbp, tx);
2776 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
2777 if (scn->scn_suspending)
2778 return;
2780 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
2781 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2782 enqueue_cb, NULL, DS_FIND_CHILDREN));
2783 } else {
2784 dsl_scan_visitds(scn,
2785 dp->dp_origin_snap->ds_object, tx);
2787 ASSERT(!scn->scn_suspending);
2788 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
2789 ZB_DESTROYED_OBJSET) {
2790 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
2792 * If we were suspended, continue from here. Note if the
2793 * ds we were suspended on was deleted, the zb_objset may
2794 * be -1, so we will skip this and find a new objset
2795 * below.
2797 dsl_scan_visitds(scn, dsobj, tx);
2798 if (scn->scn_suspending)
2799 return;
2803 * In case we suspended right at the end of the ds, zero the
2804 * bookmark so we don't think that we're still trying to resume.
2806 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
2809 * Keep pulling things out of the dataset avl queue. Updates to the
2810 * persistent zap-object-as-queue happen only at checkpoints.
2812 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
2813 dsl_dataset_t *ds;
2814 uint64_t dsobj = sds->sds_dsobj;
2815 uint64_t txg = sds->sds_txg;
2817 /* dequeue and free the ds from the queue */
2818 scan_ds_queue_remove(scn, dsobj);
2819 sds = NULL;
2821 /* set up min / max txg */
2822 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2823 if (txg != 0) {
2824 scn->scn_phys.scn_cur_min_txg =
2825 MAX(scn->scn_phys.scn_min_txg, txg);
2826 } else {
2827 scn->scn_phys.scn_cur_min_txg =
2828 MAX(scn->scn_phys.scn_min_txg,
2829 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2831 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
2832 dsl_dataset_rele(ds, FTAG);
2834 dsl_scan_visitds(scn, dsobj, tx);
2835 if (scn->scn_suspending)
2836 return;
2839 /* No more objsets to fetch, we're done */
2840 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
2841 ASSERT0(scn->scn_suspending);
2844 static uint64_t
2845 dsl_scan_count_data_disks(spa_t *spa)
2847 vdev_t *rvd = spa->spa_root_vdev;
2848 uint64_t i, leaves = 0;
2850 for (i = 0; i < rvd->vdev_children; i++) {
2851 vdev_t *vd = rvd->vdev_child[i];
2852 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
2853 continue;
2854 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
2856 return (leaves);
2859 static void
2860 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
2862 int i;
2863 uint64_t cur_size = 0;
2865 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2866 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
2869 q->q_total_zio_size_this_txg += cur_size;
2870 q->q_zios_this_txg++;
2873 static void
2874 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
2875 uint64_t end)
2877 q->q_total_seg_size_this_txg += end - start;
2878 q->q_segs_this_txg++;
2881 static boolean_t
2882 scan_io_queue_check_suspend(dsl_scan_t *scn)
2884 /* See comment in dsl_scan_check_suspend() */
2885 uint64_t curr_time_ns = gethrtime();
2886 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
2887 uint64_t sync_time_ns = curr_time_ns -
2888 scn->scn_dp->dp_spa->spa_sync_starttime;
2889 uint64_t dirty_min_bytes = zfs_dirty_data_max *
2890 zfs_vdev_async_write_active_min_dirty_percent / 100;
2891 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
2892 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
2894 return ((NSEC2MSEC(scan_time_ns) > mintime &&
2895 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
2896 txg_sync_waiting(scn->scn_dp) ||
2897 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
2898 spa_shutting_down(scn->scn_dp->dp_spa));
2902 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2903 * disk. This consumes the io_list and frees the scan_io_t's. This is
2904 * called when emptying queues, either when we're up against the memory
2905 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2906 * processing the list before we finished. Any sios that were not issued
2907 * will remain in the io_list.
2909 static boolean_t
2910 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
2912 dsl_scan_t *scn = queue->q_scn;
2913 scan_io_t *sio;
2914 boolean_t suspended = B_FALSE;
2916 while ((sio = list_head(io_list)) != NULL) {
2917 blkptr_t bp;
2919 if (scan_io_queue_check_suspend(scn)) {
2920 suspended = B_TRUE;
2921 break;
2924 sio2bp(sio, &bp);
2925 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
2926 &sio->sio_zb, queue);
2927 (void) list_remove_head(io_list);
2928 scan_io_queues_update_zio_stats(queue, &bp);
2929 sio_free(sio);
2931 return (suspended);
2935 * This function removes sios from an IO queue which reside within a given
2936 * range_seg_t and inserts them (in offset order) into a list. Note that
2937 * we only ever return a maximum of 32 sios at once. If there are more sios
2938 * to process within this segment that did not make it onto the list we
2939 * return B_TRUE and otherwise B_FALSE.
2941 static boolean_t
2942 scan_io_queue_gather(dsl_scan_io_queue_t *queue, range_seg_t *rs, list_t *list)
2944 scan_io_t *srch_sio, *sio, *next_sio;
2945 avl_index_t idx;
2946 uint_t num_sios = 0;
2947 int64_t bytes_issued = 0;
2949 ASSERT(rs != NULL);
2950 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
2952 srch_sio = sio_alloc(1);
2953 srch_sio->sio_nr_dvas = 1;
2954 SIO_SET_OFFSET(srch_sio, rs_get_start(rs, queue->q_exts_by_addr));
2957 * The exact start of the extent might not contain any matching zios,
2958 * so if that's the case, examine the next one in the tree.
2960 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
2961 sio_free(srch_sio);
2963 if (sio == NULL)
2964 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
2966 while (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2967 queue->q_exts_by_addr) && num_sios <= 32) {
2968 ASSERT3U(SIO_GET_OFFSET(sio), >=, rs_get_start(rs,
2969 queue->q_exts_by_addr));
2970 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, rs_get_end(rs,
2971 queue->q_exts_by_addr));
2973 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
2974 avl_remove(&queue->q_sios_by_addr, sio);
2975 if (avl_is_empty(&queue->q_sios_by_addr))
2976 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
2977 queue->q_sio_memused -= SIO_GET_MUSED(sio);
2979 bytes_issued += SIO_GET_ASIZE(sio);
2980 num_sios++;
2981 list_insert_tail(list, sio);
2982 sio = next_sio;
2986 * We limit the number of sios we process at once to 32 to avoid
2987 * biting off more than we can chew. If we didn't take everything
2988 * in the segment we update it to reflect the work we were able to
2989 * complete. Otherwise, we remove it from the range tree entirely.
2991 if (sio != NULL && SIO_GET_OFFSET(sio) < rs_get_end(rs,
2992 queue->q_exts_by_addr)) {
2993 range_tree_adjust_fill(queue->q_exts_by_addr, rs,
2994 -bytes_issued);
2995 range_tree_resize_segment(queue->q_exts_by_addr, rs,
2996 SIO_GET_OFFSET(sio), rs_get_end(rs,
2997 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
2998 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
2999 return (B_TRUE);
3000 } else {
3001 uint64_t rstart = rs_get_start(rs, queue->q_exts_by_addr);
3002 uint64_t rend = rs_get_end(rs, queue->q_exts_by_addr);
3003 range_tree_remove(queue->q_exts_by_addr, rstart, rend - rstart);
3004 queue->q_last_ext_addr = -1;
3005 return (B_FALSE);
3010 * This is called from the queue emptying thread and selects the next
3011 * extent from which we are to issue I/Os. The behavior of this function
3012 * depends on the state of the scan, the current memory consumption and
3013 * whether or not we are performing a scan shutdown.
3014 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3015 * needs to perform a checkpoint
3016 * 2) We select the largest available extent if we are up against the
3017 * memory limit.
3018 * 3) Otherwise we don't select any extents.
3020 static range_seg_t *
3021 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3023 dsl_scan_t *scn = queue->q_scn;
3024 range_tree_t *rt = queue->q_exts_by_addr;
3026 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3027 ASSERT(scn->scn_is_sorted);
3029 if (!scn->scn_checkpointing && !scn->scn_clearing)
3030 return (NULL);
3033 * During normal clearing, we want to issue our largest segments
3034 * first, keeping IO as sequential as possible, and leaving the
3035 * smaller extents for later with the hope that they might eventually
3036 * grow to larger sequential segments. However, when the scan is
3037 * checkpointing, no new extents will be added to the sorting queue,
3038 * so the way we are sorted now is as good as it will ever get.
3039 * In this case, we instead switch to issuing extents in LBA order.
3041 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3042 zfs_scan_issue_strategy == 1)
3043 return (range_tree_first(rt));
3046 * Try to continue previous extent if it is not completed yet. After
3047 * shrink in scan_io_queue_gather() it may no longer be the best, but
3048 * otherwise we leave shorter remnant every txg.
3050 uint64_t start;
3051 uint64_t size = 1ULL << rt->rt_shift;
3052 range_seg_t *addr_rs;
3053 if (queue->q_last_ext_addr != -1) {
3054 start = queue->q_last_ext_addr;
3055 addr_rs = range_tree_find(rt, start, size);
3056 if (addr_rs != NULL)
3057 return (addr_rs);
3061 * Nothing to continue, so find new best extent.
3063 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3064 if (v == NULL)
3065 return (NULL);
3066 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3069 * We need to get the original entry in the by_addr tree so we can
3070 * modify it.
3072 addr_rs = range_tree_find(rt, start, size);
3073 ASSERT3P(addr_rs, !=, NULL);
3074 ASSERT3U(rs_get_start(addr_rs, rt), ==, start);
3075 ASSERT3U(rs_get_end(addr_rs, rt), >, start);
3076 return (addr_rs);
3079 static void
3080 scan_io_queues_run_one(void *arg)
3082 dsl_scan_io_queue_t *queue = arg;
3083 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3084 boolean_t suspended = B_FALSE;
3085 range_seg_t *rs;
3086 scan_io_t *sio;
3087 zio_t *zio;
3088 list_t sio_list;
3090 ASSERT(queue->q_scn->scn_is_sorted);
3092 list_create(&sio_list, sizeof (scan_io_t),
3093 offsetof(scan_io_t, sio_nodes.sio_list_node));
3094 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3095 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3096 mutex_enter(q_lock);
3097 queue->q_zio = zio;
3099 /* Calculate maximum in-flight bytes for this vdev. */
3100 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3101 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3103 /* reset per-queue scan statistics for this txg */
3104 queue->q_total_seg_size_this_txg = 0;
3105 queue->q_segs_this_txg = 0;
3106 queue->q_total_zio_size_this_txg = 0;
3107 queue->q_zios_this_txg = 0;
3109 /* loop until we run out of time or sios */
3110 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3111 uint64_t seg_start = 0, seg_end = 0;
3112 boolean_t more_left;
3114 ASSERT(list_is_empty(&sio_list));
3116 /* loop while we still have sios left to process in this rs */
3117 do {
3118 scan_io_t *first_sio, *last_sio;
3121 * We have selected which extent needs to be
3122 * processed next. Gather up the corresponding sios.
3124 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3125 ASSERT(!list_is_empty(&sio_list));
3126 first_sio = list_head(&sio_list);
3127 last_sio = list_tail(&sio_list);
3129 seg_end = SIO_GET_END_OFFSET(last_sio);
3130 if (seg_start == 0)
3131 seg_start = SIO_GET_OFFSET(first_sio);
3134 * Issuing sios can take a long time so drop the
3135 * queue lock. The sio queue won't be updated by
3136 * other threads since we're in syncing context so
3137 * we can be sure that our trees will remain exactly
3138 * as we left them.
3140 mutex_exit(q_lock);
3141 suspended = scan_io_queue_issue(queue, &sio_list);
3142 mutex_enter(q_lock);
3144 if (suspended)
3145 break;
3146 } while (more_left);
3148 /* update statistics for debugging purposes */
3149 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3151 if (suspended)
3152 break;
3156 * If we were suspended in the middle of processing,
3157 * requeue any unfinished sios and exit.
3159 while ((sio = list_head(&sio_list)) != NULL) {
3160 list_remove(&sio_list, sio);
3161 scan_io_queue_insert_impl(queue, sio);
3164 queue->q_zio = NULL;
3165 mutex_exit(q_lock);
3166 zio_nowait(zio);
3167 list_destroy(&sio_list);
3171 * Performs an emptying run on all scan queues in the pool. This just
3172 * punches out one thread per top-level vdev, each of which processes
3173 * only that vdev's scan queue. We can parallelize the I/O here because
3174 * we know that each queue's I/Os only affect its own top-level vdev.
3176 * This function waits for the queue runs to complete, and must be
3177 * called from dsl_scan_sync (or in general, syncing context).
3179 static void
3180 scan_io_queues_run(dsl_scan_t *scn)
3182 spa_t *spa = scn->scn_dp->dp_spa;
3184 ASSERT(scn->scn_is_sorted);
3185 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3187 if (scn->scn_queues_pending == 0)
3188 return;
3190 if (scn->scn_taskq == NULL) {
3191 int nthreads = spa->spa_root_vdev->vdev_children;
3194 * We need to make this taskq *always* execute as many
3195 * threads in parallel as we have top-level vdevs and no
3196 * less, otherwise strange serialization of the calls to
3197 * scan_io_queues_run_one can occur during spa_sync runs
3198 * and that significantly impacts performance.
3200 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3201 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3204 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3205 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3207 mutex_enter(&vd->vdev_scan_io_queue_lock);
3208 if (vd->vdev_scan_io_queue != NULL) {
3209 VERIFY(taskq_dispatch(scn->scn_taskq,
3210 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3211 TQ_SLEEP) != TASKQID_INVALID);
3213 mutex_exit(&vd->vdev_scan_io_queue_lock);
3217 * Wait for the queues to finish issuing their IOs for this run
3218 * before we return. There may still be IOs in flight at this
3219 * point.
3221 taskq_wait(scn->scn_taskq);
3224 static boolean_t
3225 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3227 uint64_t elapsed_nanosecs;
3229 if (zfs_recover)
3230 return (B_FALSE);
3232 if (zfs_async_block_max_blocks != 0 &&
3233 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3234 return (B_TRUE);
3237 if (zfs_max_async_dedup_frees != 0 &&
3238 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3239 return (B_TRUE);
3242 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3243 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3244 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3245 txg_sync_waiting(scn->scn_dp)) ||
3246 spa_shutting_down(scn->scn_dp->dp_spa));
3249 static int
3250 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3252 dsl_scan_t *scn = arg;
3254 if (!scn->scn_is_bptree ||
3255 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3256 if (dsl_scan_async_block_should_pause(scn))
3257 return (SET_ERROR(ERESTART));
3260 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3261 dmu_tx_get_txg(tx), bp, 0));
3262 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3263 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3264 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3265 scn->scn_visited_this_txg++;
3266 if (BP_GET_DEDUP(bp))
3267 scn->scn_dedup_frees_this_txg++;
3268 return (0);
3271 static void
3272 dsl_scan_update_stats(dsl_scan_t *scn)
3274 spa_t *spa = scn->scn_dp->dp_spa;
3275 uint64_t i;
3276 uint64_t seg_size_total = 0, zio_size_total = 0;
3277 uint64_t seg_count_total = 0, zio_count_total = 0;
3279 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3280 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3281 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3283 if (queue == NULL)
3284 continue;
3286 seg_size_total += queue->q_total_seg_size_this_txg;
3287 zio_size_total += queue->q_total_zio_size_this_txg;
3288 seg_count_total += queue->q_segs_this_txg;
3289 zio_count_total += queue->q_zios_this_txg;
3292 if (seg_count_total == 0 || zio_count_total == 0) {
3293 scn->scn_avg_seg_size_this_txg = 0;
3294 scn->scn_avg_zio_size_this_txg = 0;
3295 scn->scn_segs_this_txg = 0;
3296 scn->scn_zios_this_txg = 0;
3297 return;
3300 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3301 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3302 scn->scn_segs_this_txg = seg_count_total;
3303 scn->scn_zios_this_txg = zio_count_total;
3306 static int
3307 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3308 dmu_tx_t *tx)
3310 ASSERT(!bp_freed);
3311 return (dsl_scan_free_block_cb(arg, bp, tx));
3314 static int
3315 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3316 dmu_tx_t *tx)
3318 ASSERT(!bp_freed);
3319 dsl_scan_t *scn = arg;
3320 const dva_t *dva = &bp->blk_dva[0];
3322 if (dsl_scan_async_block_should_pause(scn))
3323 return (SET_ERROR(ERESTART));
3325 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3326 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3327 DVA_GET_ASIZE(dva), tx);
3328 scn->scn_visited_this_txg++;
3329 return (0);
3332 boolean_t
3333 dsl_scan_active(dsl_scan_t *scn)
3335 spa_t *spa = scn->scn_dp->dp_spa;
3336 uint64_t used = 0, comp, uncomp;
3337 boolean_t clones_left;
3339 if (spa->spa_load_state != SPA_LOAD_NONE)
3340 return (B_FALSE);
3341 if (spa_shutting_down(spa))
3342 return (B_FALSE);
3343 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3344 (scn->scn_async_destroying && !scn->scn_async_stalled))
3345 return (B_TRUE);
3347 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3348 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3349 &used, &comp, &uncomp);
3351 clones_left = spa_livelist_delete_check(spa);
3352 return ((used != 0) || (clones_left));
3355 static boolean_t
3356 dsl_scan_check_deferred(vdev_t *vd)
3358 boolean_t need_resilver = B_FALSE;
3360 for (int c = 0; c < vd->vdev_children; c++) {
3361 need_resilver |=
3362 dsl_scan_check_deferred(vd->vdev_child[c]);
3365 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3366 !vd->vdev_ops->vdev_op_leaf)
3367 return (need_resilver);
3369 if (!vd->vdev_resilver_deferred)
3370 need_resilver = B_TRUE;
3372 return (need_resilver);
3375 static boolean_t
3376 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3377 uint64_t phys_birth)
3379 vdev_t *vd;
3381 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3383 if (vd->vdev_ops == &vdev_indirect_ops) {
3385 * The indirect vdev can point to multiple
3386 * vdevs. For simplicity, always create
3387 * the resilver zio_t. zio_vdev_io_start()
3388 * will bypass the child resilver i/o's if
3389 * they are on vdevs that don't have DTL's.
3391 return (B_TRUE);
3394 if (DVA_GET_GANG(dva)) {
3396 * Gang members may be spread across multiple
3397 * vdevs, so the best estimate we have is the
3398 * scrub range, which has already been checked.
3399 * XXX -- it would be better to change our
3400 * allocation policy to ensure that all
3401 * gang members reside on the same vdev.
3403 return (B_TRUE);
3407 * Check if the top-level vdev must resilver this offset.
3408 * When the offset does not intersect with a dirty leaf DTL
3409 * then it may be possible to skip the resilver IO. The psize
3410 * is provided instead of asize to simplify the check for RAIDZ.
3412 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3413 return (B_FALSE);
3416 * Check that this top-level vdev has a device under it which
3417 * is resilvering and is not deferred.
3419 if (!dsl_scan_check_deferred(vd))
3420 return (B_FALSE);
3422 return (B_TRUE);
3425 static int
3426 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3428 dsl_scan_t *scn = dp->dp_scan;
3429 spa_t *spa = dp->dp_spa;
3430 int err = 0;
3432 if (spa_suspend_async_destroy(spa))
3433 return (0);
3435 if (zfs_free_bpobj_enabled &&
3436 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3437 scn->scn_is_bptree = B_FALSE;
3438 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3439 scn->scn_zio_root = zio_root(spa, NULL,
3440 NULL, ZIO_FLAG_MUSTSUCCEED);
3441 err = bpobj_iterate(&dp->dp_free_bpobj,
3442 bpobj_dsl_scan_free_block_cb, scn, tx);
3443 VERIFY0(zio_wait(scn->scn_zio_root));
3444 scn->scn_zio_root = NULL;
3446 if (err != 0 && err != ERESTART)
3447 zfs_panic_recover("error %u from bpobj_iterate()", err);
3450 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3451 ASSERT(scn->scn_async_destroying);
3452 scn->scn_is_bptree = B_TRUE;
3453 scn->scn_zio_root = zio_root(spa, NULL,
3454 NULL, ZIO_FLAG_MUSTSUCCEED);
3455 err = bptree_iterate(dp->dp_meta_objset,
3456 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3457 VERIFY0(zio_wait(scn->scn_zio_root));
3458 scn->scn_zio_root = NULL;
3460 if (err == EIO || err == ECKSUM) {
3461 err = 0;
3462 } else if (err != 0 && err != ERESTART) {
3463 zfs_panic_recover("error %u from "
3464 "traverse_dataset_destroyed()", err);
3467 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3468 /* finished; deactivate async destroy feature */
3469 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3470 ASSERT(!spa_feature_is_active(spa,
3471 SPA_FEATURE_ASYNC_DESTROY));
3472 VERIFY0(zap_remove(dp->dp_meta_objset,
3473 DMU_POOL_DIRECTORY_OBJECT,
3474 DMU_POOL_BPTREE_OBJ, tx));
3475 VERIFY0(bptree_free(dp->dp_meta_objset,
3476 dp->dp_bptree_obj, tx));
3477 dp->dp_bptree_obj = 0;
3478 scn->scn_async_destroying = B_FALSE;
3479 scn->scn_async_stalled = B_FALSE;
3480 } else {
3482 * If we didn't make progress, mark the async
3483 * destroy as stalled, so that we will not initiate
3484 * a spa_sync() on its behalf. Note that we only
3485 * check this if we are not finished, because if the
3486 * bptree had no blocks for us to visit, we can
3487 * finish without "making progress".
3489 scn->scn_async_stalled =
3490 (scn->scn_visited_this_txg == 0);
3493 if (scn->scn_visited_this_txg) {
3494 zfs_dbgmsg("freed %llu blocks in %llums from "
3495 "free_bpobj/bptree on %s in txg %llu; err=%u",
3496 (longlong_t)scn->scn_visited_this_txg,
3497 (longlong_t)
3498 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3499 spa->spa_name, (longlong_t)tx->tx_txg, err);
3500 scn->scn_visited_this_txg = 0;
3501 scn->scn_dedup_frees_this_txg = 0;
3504 * Write out changes to the DDT and the BRT that may be required
3505 * as a result of the blocks freed. This ensures that the DDT
3506 * and the BRT are clean when a scrub/resilver runs.
3508 ddt_sync(spa, tx->tx_txg);
3509 brt_sync(spa, tx->tx_txg);
3511 if (err != 0)
3512 return (err);
3513 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3514 zfs_free_leak_on_eio &&
3515 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3516 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3517 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3519 * We have finished background destroying, but there is still
3520 * some space left in the dp_free_dir. Transfer this leaked
3521 * space to the dp_leak_dir.
3523 if (dp->dp_leak_dir == NULL) {
3524 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3525 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3526 LEAK_DIR_NAME, tx);
3527 VERIFY0(dsl_pool_open_special_dir(dp,
3528 LEAK_DIR_NAME, &dp->dp_leak_dir));
3529 rrw_exit(&dp->dp_config_rwlock, FTAG);
3531 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3532 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3533 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3534 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3535 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3536 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3537 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3538 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3541 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3542 !spa_livelist_delete_check(spa)) {
3543 /* finished; verify that space accounting went to zero */
3544 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3545 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3546 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3549 spa_notify_waiters(spa);
3551 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3552 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3553 DMU_POOL_OBSOLETE_BPOBJ));
3554 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3555 ASSERT(spa_feature_is_active(dp->dp_spa,
3556 SPA_FEATURE_OBSOLETE_COUNTS));
3558 scn->scn_is_bptree = B_FALSE;
3559 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3560 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3561 dsl_scan_obsolete_block_cb, scn, tx);
3562 if (err != 0 && err != ERESTART)
3563 zfs_panic_recover("error %u from bpobj_iterate()", err);
3565 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3566 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3568 return (0);
3572 * This is the primary entry point for scans that is called from syncing
3573 * context. Scans must happen entirely during syncing context so that we
3574 * can guarantee that blocks we are currently scanning will not change out
3575 * from under us. While a scan is active, this function controls how quickly
3576 * transaction groups proceed, instead of the normal handling provided by
3577 * txg_sync_thread().
3579 void
3580 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
3582 int err = 0;
3583 dsl_scan_t *scn = dp->dp_scan;
3584 spa_t *spa = dp->dp_spa;
3585 state_sync_type_t sync_type = SYNC_OPTIONAL;
3587 if (spa->spa_resilver_deferred &&
3588 !spa_feature_is_active(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
3589 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
3592 * Check for scn_restart_txg before checking spa_load_state, so
3593 * that we can restart an old-style scan while the pool is being
3594 * imported (see dsl_scan_init). We also restart scans if there
3595 * is a deferred resilver and the user has manually disabled
3596 * deferred resilvers via the tunable.
3598 if (dsl_scan_restarting(scn, tx) ||
3599 (spa->spa_resilver_deferred && zfs_resilver_disable_defer)) {
3600 pool_scan_func_t func = POOL_SCAN_SCRUB;
3601 dsl_scan_done(scn, B_FALSE, tx);
3602 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3603 func = POOL_SCAN_RESILVER;
3604 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
3605 func, dp->dp_spa->spa_name, (longlong_t)tx->tx_txg);
3606 dsl_scan_setup_sync(&func, tx);
3610 * Only process scans in sync pass 1.
3612 if (spa_sync_pass(spa) > 1)
3613 return;
3616 * If the spa is shutting down, then stop scanning. This will
3617 * ensure that the scan does not dirty any new data during the
3618 * shutdown phase.
3620 if (spa_shutting_down(spa))
3621 return;
3624 * If the scan is inactive due to a stalled async destroy, try again.
3626 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
3627 return;
3629 /* reset scan statistics */
3630 scn->scn_visited_this_txg = 0;
3631 scn->scn_dedup_frees_this_txg = 0;
3632 scn->scn_holes_this_txg = 0;
3633 scn->scn_lt_min_this_txg = 0;
3634 scn->scn_gt_max_this_txg = 0;
3635 scn->scn_ddt_contained_this_txg = 0;
3636 scn->scn_objsets_visited_this_txg = 0;
3637 scn->scn_avg_seg_size_this_txg = 0;
3638 scn->scn_segs_this_txg = 0;
3639 scn->scn_avg_zio_size_this_txg = 0;
3640 scn->scn_zios_this_txg = 0;
3641 scn->scn_suspending = B_FALSE;
3642 scn->scn_sync_start_time = gethrtime();
3643 spa->spa_scrub_active = B_TRUE;
3646 * First process the async destroys. If we suspend, don't do
3647 * any scrubbing or resilvering. This ensures that there are no
3648 * async destroys while we are scanning, so the scan code doesn't
3649 * have to worry about traversing it. It is also faster to free the
3650 * blocks than to scrub them.
3652 err = dsl_process_async_destroys(dp, tx);
3653 if (err != 0)
3654 return;
3656 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
3657 return;
3660 * Wait a few txgs after importing to begin scanning so that
3661 * we can get the pool imported quickly.
3663 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
3664 return;
3667 * zfs_scan_suspend_progress can be set to disable scan progress.
3668 * We don't want to spin the txg_sync thread, so we add a delay
3669 * here to simulate the time spent doing a scan. This is mostly
3670 * useful for testing and debugging.
3672 if (zfs_scan_suspend_progress) {
3673 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3674 uint_t mintime = (scn->scn_phys.scn_func ==
3675 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
3676 zfs_scrub_min_time_ms;
3678 while (zfs_scan_suspend_progress &&
3679 !txg_sync_waiting(scn->scn_dp) &&
3680 !spa_shutting_down(scn->scn_dp->dp_spa) &&
3681 NSEC2MSEC(scan_time_ns) < mintime) {
3682 delay(hz);
3683 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
3685 return;
3689 * Disabled by default, set zfs_scan_report_txgs to report
3690 * average performance over the last zfs_scan_report_txgs TXGs.
3692 if (!dsl_scan_is_paused_scrub(scn) && zfs_scan_report_txgs != 0 &&
3693 tx->tx_txg % zfs_scan_report_txgs == 0) {
3694 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
3695 spa_scan_stat_init(spa);
3699 * It is possible to switch from unsorted to sorted at any time,
3700 * but afterwards the scan will remain sorted unless reloaded from
3701 * a checkpoint after a reboot.
3703 if (!zfs_scan_legacy) {
3704 scn->scn_is_sorted = B_TRUE;
3705 if (scn->scn_last_checkpoint == 0)
3706 scn->scn_last_checkpoint = ddi_get_lbolt();
3710 * For sorted scans, determine what kind of work we will be doing
3711 * this txg based on our memory limitations and whether or not we
3712 * need to perform a checkpoint.
3714 if (scn->scn_is_sorted) {
3716 * If we are over our checkpoint interval, set scn_clearing
3717 * so that we can begin checkpointing immediately. The
3718 * checkpoint allows us to save a consistent bookmark
3719 * representing how much data we have scrubbed so far.
3720 * Otherwise, use the memory limit to determine if we should
3721 * scan for metadata or start issue scrub IOs. We accumulate
3722 * metadata until we hit our hard memory limit at which point
3723 * we issue scrub IOs until we are at our soft memory limit.
3725 if (scn->scn_checkpointing ||
3726 ddi_get_lbolt() - scn->scn_last_checkpoint >
3727 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
3728 if (!scn->scn_checkpointing)
3729 zfs_dbgmsg("begin scan checkpoint for %s",
3730 spa->spa_name);
3732 scn->scn_checkpointing = B_TRUE;
3733 scn->scn_clearing = B_TRUE;
3734 } else {
3735 boolean_t should_clear = dsl_scan_should_clear(scn);
3736 if (should_clear && !scn->scn_clearing) {
3737 zfs_dbgmsg("begin scan clearing for %s",
3738 spa->spa_name);
3739 scn->scn_clearing = B_TRUE;
3740 } else if (!should_clear && scn->scn_clearing) {
3741 zfs_dbgmsg("finish scan clearing for %s",
3742 spa->spa_name);
3743 scn->scn_clearing = B_FALSE;
3746 } else {
3747 ASSERT0(scn->scn_checkpointing);
3748 ASSERT0(scn->scn_clearing);
3751 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
3752 /* Need to scan metadata for more blocks to scrub */
3753 dsl_scan_phys_t *scnp = &scn->scn_phys;
3754 taskqid_t prefetch_tqid;
3757 * Calculate the max number of in-flight bytes for pool-wide
3758 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
3759 * Limits for the issuing phase are done per top-level vdev and
3760 * are handled separately.
3762 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
3763 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
3765 if (scnp->scn_ddt_bookmark.ddb_class <=
3766 scnp->scn_ddt_class_max) {
3767 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
3768 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3769 "ddt bm=%llu/%llu/%llu/%llx",
3770 spa->spa_name,
3771 (longlong_t)tx->tx_txg,
3772 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
3773 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
3774 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
3775 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
3776 } else {
3777 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3778 "bm=%llu/%llu/%llu/%llu",
3779 spa->spa_name,
3780 (longlong_t)tx->tx_txg,
3781 (longlong_t)scnp->scn_bookmark.zb_objset,
3782 (longlong_t)scnp->scn_bookmark.zb_object,
3783 (longlong_t)scnp->scn_bookmark.zb_level,
3784 (longlong_t)scnp->scn_bookmark.zb_blkid);
3787 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3788 NULL, ZIO_FLAG_CANFAIL);
3790 scn->scn_prefetch_stop = B_FALSE;
3791 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
3792 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
3793 ASSERT(prefetch_tqid != TASKQID_INVALID);
3795 dsl_pool_config_enter(dp, FTAG);
3796 dsl_scan_visit(scn, tx);
3797 dsl_pool_config_exit(dp, FTAG);
3799 mutex_enter(&dp->dp_spa->spa_scrub_lock);
3800 scn->scn_prefetch_stop = B_TRUE;
3801 cv_broadcast(&spa->spa_scrub_io_cv);
3802 mutex_exit(&dp->dp_spa->spa_scrub_lock);
3804 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
3805 (void) zio_wait(scn->scn_zio_root);
3806 scn->scn_zio_root = NULL;
3808 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
3809 "(%llu os's, %llu holes, %llu < mintxg, "
3810 "%llu in ddt, %llu > maxtxg)",
3811 (longlong_t)scn->scn_visited_this_txg,
3812 spa->spa_name,
3813 (longlong_t)NSEC2MSEC(gethrtime() -
3814 scn->scn_sync_start_time),
3815 (longlong_t)scn->scn_objsets_visited_this_txg,
3816 (longlong_t)scn->scn_holes_this_txg,
3817 (longlong_t)scn->scn_lt_min_this_txg,
3818 (longlong_t)scn->scn_ddt_contained_this_txg,
3819 (longlong_t)scn->scn_gt_max_this_txg);
3821 if (!scn->scn_suspending) {
3822 ASSERT0(avl_numnodes(&scn->scn_queue));
3823 scn->scn_done_txg = tx->tx_txg + 1;
3824 if (scn->scn_is_sorted) {
3825 scn->scn_checkpointing = B_TRUE;
3826 scn->scn_clearing = B_TRUE;
3827 scn->scn_issued_before_pass +=
3828 spa->spa_scan_pass_issued;
3829 spa_scan_stat_init(spa);
3831 zfs_dbgmsg("scan complete for %s txg %llu",
3832 spa->spa_name,
3833 (longlong_t)tx->tx_txg);
3835 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
3836 ASSERT(scn->scn_clearing);
3838 /* need to issue scrubbing IOs from per-vdev queues */
3839 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
3840 NULL, ZIO_FLAG_CANFAIL);
3841 scan_io_queues_run(scn);
3842 (void) zio_wait(scn->scn_zio_root);
3843 scn->scn_zio_root = NULL;
3845 /* calculate and dprintf the current memory usage */
3846 (void) dsl_scan_should_clear(scn);
3847 dsl_scan_update_stats(scn);
3849 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
3850 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
3851 (longlong_t)scn->scn_zios_this_txg,
3852 spa->spa_name,
3853 (longlong_t)scn->scn_segs_this_txg,
3854 (longlong_t)NSEC2MSEC(gethrtime() -
3855 scn->scn_sync_start_time),
3856 (longlong_t)scn->scn_avg_zio_size_this_txg,
3857 (longlong_t)scn->scn_avg_seg_size_this_txg);
3858 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
3859 /* Finished with everything. Mark the scrub as complete */
3860 zfs_dbgmsg("scan issuing complete txg %llu for %s",
3861 (longlong_t)tx->tx_txg,
3862 spa->spa_name);
3863 ASSERT3U(scn->scn_done_txg, !=, 0);
3864 ASSERT0(spa->spa_scrub_inflight);
3865 ASSERT0(scn->scn_queues_pending);
3866 dsl_scan_done(scn, B_TRUE, tx);
3867 sync_type = SYNC_MANDATORY;
3870 dsl_scan_sync_state(scn, tx, sync_type);
3873 static void
3874 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
3877 * Don't count embedded bp's, since we already did the work of
3878 * scanning these when we scanned the containing block.
3880 if (BP_IS_EMBEDDED(bp))
3881 return;
3884 * Update the spa's stats on how many bytes we have issued.
3885 * Sequential scrubs create a zio for each DVA of the bp. Each
3886 * of these will include all DVAs for repair purposes, but the
3887 * zio code will only try the first one unless there is an issue.
3888 * Therefore, we should only count the first DVA for these IOs.
3890 atomic_add_64(&spa->spa_scan_pass_issued,
3891 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
3894 static void
3895 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
3898 * If we resume after a reboot, zab will be NULL; don't record
3899 * incomplete stats in that case.
3901 if (zab == NULL)
3902 return;
3904 for (int i = 0; i < 4; i++) {
3905 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
3906 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
3908 if (t & DMU_OT_NEWTYPE)
3909 t = DMU_OT_OTHER;
3910 zfs_blkstat_t *zb = &zab->zab_type[l][t];
3911 int equal;
3913 zb->zb_count++;
3914 zb->zb_asize += BP_GET_ASIZE(bp);
3915 zb->zb_lsize += BP_GET_LSIZE(bp);
3916 zb->zb_psize += BP_GET_PSIZE(bp);
3917 zb->zb_gangs += BP_COUNT_GANG(bp);
3919 switch (BP_GET_NDVAS(bp)) {
3920 case 2:
3921 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3922 DVA_GET_VDEV(&bp->blk_dva[1]))
3923 zb->zb_ditto_2_of_2_samevdev++;
3924 break;
3925 case 3:
3926 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3927 DVA_GET_VDEV(&bp->blk_dva[1])) +
3928 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
3929 DVA_GET_VDEV(&bp->blk_dva[2])) +
3930 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
3931 DVA_GET_VDEV(&bp->blk_dva[2]));
3932 if (equal == 1)
3933 zb->zb_ditto_2_of_3_samevdev++;
3934 else if (equal == 3)
3935 zb->zb_ditto_3_of_3_samevdev++;
3936 break;
3941 static void
3942 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
3944 avl_index_t idx;
3945 dsl_scan_t *scn = queue->q_scn;
3947 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3949 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
3950 atomic_add_64(&scn->scn_queues_pending, 1);
3951 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
3952 /* block is already scheduled for reading */
3953 sio_free(sio);
3954 return;
3956 avl_insert(&queue->q_sios_by_addr, sio, idx);
3957 queue->q_sio_memused += SIO_GET_MUSED(sio);
3958 range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
3959 SIO_GET_ASIZE(sio));
3963 * Given all the info we got from our metadata scanning process, we
3964 * construct a scan_io_t and insert it into the scan sorting queue. The
3965 * I/O must already be suitable for us to process. This is controlled
3966 * by dsl_scan_enqueue().
3968 static void
3969 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
3970 int zio_flags, const zbookmark_phys_t *zb)
3972 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
3974 ASSERT0(BP_IS_GANG(bp));
3975 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3977 bp2sio(bp, sio, dva_i);
3978 sio->sio_flags = zio_flags;
3979 sio->sio_zb = *zb;
3981 queue->q_last_ext_addr = -1;
3982 scan_io_queue_insert_impl(queue, sio);
3986 * Given a set of I/O parameters as discovered by the metadata traversal
3987 * process, attempts to place the I/O into the sorted queues (if allowed),
3988 * or immediately executes the I/O.
3990 static void
3991 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
3992 const zbookmark_phys_t *zb)
3994 spa_t *spa = dp->dp_spa;
3996 ASSERT(!BP_IS_EMBEDDED(bp));
3999 * Gang blocks are hard to issue sequentially, so we just issue them
4000 * here immediately instead of queuing them.
4002 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4003 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4004 return;
4007 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4008 dva_t dva;
4009 vdev_t *vdev;
4011 dva = bp->blk_dva[i];
4012 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4013 ASSERT(vdev != NULL);
4015 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4016 if (vdev->vdev_scan_io_queue == NULL)
4017 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4018 ASSERT(dp->dp_scan != NULL);
4019 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4020 i, zio_flags, zb);
4021 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4025 static int
4026 dsl_scan_scrub_cb(dsl_pool_t *dp,
4027 const blkptr_t *bp, const zbookmark_phys_t *zb)
4029 dsl_scan_t *scn = dp->dp_scan;
4030 spa_t *spa = dp->dp_spa;
4031 uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
4032 size_t psize = BP_GET_PSIZE(bp);
4033 boolean_t needs_io = B_FALSE;
4034 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4036 count_block(dp->dp_blkstats, bp);
4037 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4038 phys_birth >= scn->scn_phys.scn_max_txg) {
4039 count_block_issued(spa, bp, B_TRUE);
4040 return (0);
4043 /* Embedded BP's have phys_birth==0, so we reject them above. */
4044 ASSERT(!BP_IS_EMBEDDED(bp));
4046 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4047 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4048 zio_flags |= ZIO_FLAG_SCRUB;
4049 needs_io = B_TRUE;
4050 } else {
4051 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4052 zio_flags |= ZIO_FLAG_RESILVER;
4053 needs_io = B_FALSE;
4056 /* If it's an intent log block, failure is expected. */
4057 if (zb->zb_level == ZB_ZIL_LEVEL)
4058 zio_flags |= ZIO_FLAG_SPECULATIVE;
4060 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4061 const dva_t *dva = &bp->blk_dva[d];
4064 * Keep track of how much data we've examined so that
4065 * zpool(8) status can make useful progress reports.
4067 uint64_t asize = DVA_GET_ASIZE(dva);
4068 scn->scn_phys.scn_examined += asize;
4069 spa->spa_scan_pass_exam += asize;
4071 /* if it's a resilver, this may not be in the target range */
4072 if (!needs_io)
4073 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4074 phys_birth);
4077 if (needs_io && !zfs_no_scrub_io) {
4078 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4079 } else {
4080 count_block_issued(spa, bp, B_TRUE);
4083 /* do not relocate this block */
4084 return (0);
4087 static void
4088 dsl_scan_scrub_done(zio_t *zio)
4090 spa_t *spa = zio->io_spa;
4091 blkptr_t *bp = zio->io_bp;
4092 dsl_scan_io_queue_t *queue = zio->io_private;
4094 abd_free(zio->io_abd);
4096 if (queue == NULL) {
4097 mutex_enter(&spa->spa_scrub_lock);
4098 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4099 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4100 cv_broadcast(&spa->spa_scrub_io_cv);
4101 mutex_exit(&spa->spa_scrub_lock);
4102 } else {
4103 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4104 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4105 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4106 cv_broadcast(&queue->q_zio_cv);
4107 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4110 if (zio->io_error && (zio->io_error != ECKSUM ||
4111 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4112 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys.scn_errors);
4117 * Given a scanning zio's information, executes the zio. The zio need
4118 * not necessarily be only sortable, this function simply executes the
4119 * zio, no matter what it is. The optional queue argument allows the
4120 * caller to specify that they want per top level vdev IO rate limiting
4121 * instead of the legacy global limiting.
4123 static void
4124 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4125 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4127 spa_t *spa = dp->dp_spa;
4128 dsl_scan_t *scn = dp->dp_scan;
4129 size_t size = BP_GET_PSIZE(bp);
4130 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4131 zio_t *pio;
4133 if (queue == NULL) {
4134 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4135 mutex_enter(&spa->spa_scrub_lock);
4136 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4137 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4138 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4139 mutex_exit(&spa->spa_scrub_lock);
4140 pio = scn->scn_zio_root;
4141 } else {
4142 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4144 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4145 mutex_enter(q_lock);
4146 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4147 cv_wait(&queue->q_zio_cv, q_lock);
4148 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4149 pio = queue->q_zio;
4150 mutex_exit(q_lock);
4153 ASSERT(pio != NULL);
4154 count_block_issued(spa, bp, queue == NULL);
4155 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4156 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4160 * This is the primary extent sorting algorithm. We balance two parameters:
4161 * 1) how many bytes of I/O are in an extent
4162 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4163 * Since we allow extents to have gaps between their constituent I/Os, it's
4164 * possible to have a fairly large extent that contains the same amount of
4165 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4166 * The algorithm sorts based on a score calculated from the extent's size,
4167 * the relative fill volume (in %) and a "fill weight" parameter that controls
4168 * the split between whether we prefer larger extents or more well populated
4169 * extents:
4171 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4173 * Example:
4174 * 1) assume extsz = 64 MiB
4175 * 2) assume fill = 32 MiB (extent is half full)
4176 * 3) assume fill_weight = 3
4177 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4178 * SCORE = 32M + (50 * 3 * 32M) / 100
4179 * SCORE = 32M + (4800M / 100)
4180 * SCORE = 32M + 48M
4181 * ^ ^
4182 * | +--- final total relative fill-based score
4183 * +--------- final total fill-based score
4184 * SCORE = 80M
4186 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4187 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4188 * Note that as an optimization, we replace multiplication and division by
4189 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4191 * Since we do not care if one extent is only few percent better than another,
4192 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4193 * put into otherwise unused due to ashift high bits of offset. This allows
4194 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4195 * with single operation. Plus it makes scrubs more sequential and reduces
4196 * chances that minor extent change move it within the B-tree.
4198 static int
4199 ext_size_compare(const void *x, const void *y)
4201 const uint64_t *a = x, *b = y;
4203 return (TREE_CMP(*a, *b));
4206 static void
4207 ext_size_create(range_tree_t *rt, void *arg)
4209 (void) rt;
4210 zfs_btree_t *size_tree = arg;
4212 zfs_btree_create(size_tree, ext_size_compare, sizeof (uint64_t));
4215 static void
4216 ext_size_destroy(range_tree_t *rt, void *arg)
4218 (void) rt;
4219 zfs_btree_t *size_tree = arg;
4220 ASSERT0(zfs_btree_numnodes(size_tree));
4222 zfs_btree_destroy(size_tree);
4225 static uint64_t
4226 ext_size_value(range_tree_t *rt, range_seg_gap_t *rsg)
4228 (void) rt;
4229 uint64_t size = rsg->rs_end - rsg->rs_start;
4230 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
4231 fill_weight * rsg->rs_fill) >> 7);
4232 ASSERT3U(rt->rt_shift, >=, 8);
4233 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
4236 static void
4237 ext_size_add(range_tree_t *rt, range_seg_t *rs, void *arg)
4239 zfs_btree_t *size_tree = arg;
4240 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4241 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4242 zfs_btree_add(size_tree, &v);
4245 static void
4246 ext_size_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
4248 zfs_btree_t *size_tree = arg;
4249 ASSERT3U(rt->rt_type, ==, RANGE_SEG_GAP);
4250 uint64_t v = ext_size_value(rt, (range_seg_gap_t *)rs);
4251 zfs_btree_remove(size_tree, &v);
4254 static void
4255 ext_size_vacate(range_tree_t *rt, void *arg)
4257 zfs_btree_t *size_tree = arg;
4258 zfs_btree_clear(size_tree);
4259 zfs_btree_destroy(size_tree);
4261 ext_size_create(rt, arg);
4264 static const range_tree_ops_t ext_size_ops = {
4265 .rtop_create = ext_size_create,
4266 .rtop_destroy = ext_size_destroy,
4267 .rtop_add = ext_size_add,
4268 .rtop_remove = ext_size_remove,
4269 .rtop_vacate = ext_size_vacate
4273 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4274 * based on LBA-order (from lowest to highest).
4276 static int
4277 sio_addr_compare(const void *x, const void *y)
4279 const scan_io_t *a = x, *b = y;
4281 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
4284 /* IO queues are created on demand when they are needed. */
4285 static dsl_scan_io_queue_t *
4286 scan_io_queue_create(vdev_t *vd)
4288 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
4289 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
4291 q->q_scn = scn;
4292 q->q_vd = vd;
4293 q->q_sio_memused = 0;
4294 q->q_last_ext_addr = -1;
4295 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
4296 q->q_exts_by_addr = range_tree_create_gap(&ext_size_ops, RANGE_SEG_GAP,
4297 &q->q_exts_by_size, 0, vd->vdev_ashift, zfs_scan_max_ext_gap);
4298 avl_create(&q->q_sios_by_addr, sio_addr_compare,
4299 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
4301 return (q);
4305 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4306 * No further execution of I/O occurs, anything pending in the queue is
4307 * simply freed without being executed.
4309 void
4310 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
4312 dsl_scan_t *scn = queue->q_scn;
4313 scan_io_t *sio;
4314 void *cookie = NULL;
4316 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4318 if (!avl_is_empty(&queue->q_sios_by_addr))
4319 atomic_add_64(&scn->scn_queues_pending, -1);
4320 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
4321 NULL) {
4322 ASSERT(range_tree_contains(queue->q_exts_by_addr,
4323 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
4324 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4325 sio_free(sio);
4328 ASSERT0(queue->q_sio_memused);
4329 range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
4330 range_tree_destroy(queue->q_exts_by_addr);
4331 avl_destroy(&queue->q_sios_by_addr);
4332 cv_destroy(&queue->q_zio_cv);
4334 kmem_free(queue, sizeof (*queue));
4338 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4339 * called on behalf of vdev_top_transfer when creating or destroying
4340 * a mirror vdev due to zpool attach/detach.
4342 void
4343 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
4345 mutex_enter(&svd->vdev_scan_io_queue_lock);
4346 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4348 VERIFY3P(tvd->vdev_scan_io_queue, ==, NULL);
4349 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
4350 svd->vdev_scan_io_queue = NULL;
4351 if (tvd->vdev_scan_io_queue != NULL)
4352 tvd->vdev_scan_io_queue->q_vd = tvd;
4354 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4355 mutex_exit(&svd->vdev_scan_io_queue_lock);
4358 static void
4359 scan_io_queues_destroy(dsl_scan_t *scn)
4361 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
4363 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
4364 vdev_t *tvd = rvd->vdev_child[i];
4366 mutex_enter(&tvd->vdev_scan_io_queue_lock);
4367 if (tvd->vdev_scan_io_queue != NULL)
4368 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
4369 tvd->vdev_scan_io_queue = NULL;
4370 mutex_exit(&tvd->vdev_scan_io_queue_lock);
4374 static void
4375 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
4377 dsl_pool_t *dp = spa->spa_dsl_pool;
4378 dsl_scan_t *scn = dp->dp_scan;
4379 vdev_t *vdev;
4380 kmutex_t *q_lock;
4381 dsl_scan_io_queue_t *queue;
4382 scan_io_t *srch_sio, *sio;
4383 avl_index_t idx;
4384 uint64_t start, size;
4386 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
4387 ASSERT(vdev != NULL);
4388 q_lock = &vdev->vdev_scan_io_queue_lock;
4389 queue = vdev->vdev_scan_io_queue;
4391 mutex_enter(q_lock);
4392 if (queue == NULL) {
4393 mutex_exit(q_lock);
4394 return;
4397 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
4398 bp2sio(bp, srch_sio, dva_i);
4399 start = SIO_GET_OFFSET(srch_sio);
4400 size = SIO_GET_ASIZE(srch_sio);
4403 * We can find the zio in two states:
4404 * 1) Cold, just sitting in the queue of zio's to be issued at
4405 * some point in the future. In this case, all we do is
4406 * remove the zio from the q_sios_by_addr tree, decrement
4407 * its data volume from the containing range_seg_t and
4408 * resort the q_exts_by_size tree to reflect that the
4409 * range_seg_t has lost some of its 'fill'. We don't shorten
4410 * the range_seg_t - this is usually rare enough not to be
4411 * worth the extra hassle of trying keep track of precise
4412 * extent boundaries.
4413 * 2) Hot, where the zio is currently in-flight in
4414 * dsl_scan_issue_ios. In this case, we can't simply
4415 * reach in and stop the in-flight zio's, so we instead
4416 * block the caller. Eventually, dsl_scan_issue_ios will
4417 * be done with issuing the zio's it gathered and will
4418 * signal us.
4420 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
4421 sio_free(srch_sio);
4423 if (sio != NULL) {
4424 blkptr_t tmpbp;
4426 /* Got it while it was cold in the queue */
4427 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
4428 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
4429 avl_remove(&queue->q_sios_by_addr, sio);
4430 if (avl_is_empty(&queue->q_sios_by_addr))
4431 atomic_add_64(&scn->scn_queues_pending, -1);
4432 queue->q_sio_memused -= SIO_GET_MUSED(sio);
4434 ASSERT(range_tree_contains(queue->q_exts_by_addr, start, size));
4435 range_tree_remove_fill(queue->q_exts_by_addr, start, size);
4437 /* count the block as though we issued it */
4438 sio2bp(sio, &tmpbp);
4439 count_block_issued(spa, &tmpbp, B_FALSE);
4441 sio_free(sio);
4443 mutex_exit(q_lock);
4447 * Callback invoked when a zio_free() zio is executing. This needs to be
4448 * intercepted to prevent the zio from deallocating a particular portion
4449 * of disk space and it then getting reallocated and written to, while we
4450 * still have it queued up for processing.
4452 void
4453 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
4455 dsl_pool_t *dp = spa->spa_dsl_pool;
4456 dsl_scan_t *scn = dp->dp_scan;
4458 ASSERT(!BP_IS_EMBEDDED(bp));
4459 ASSERT(scn != NULL);
4460 if (!dsl_scan_is_running(scn))
4461 return;
4463 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
4464 dsl_scan_freed_dva(spa, bp, i);
4468 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4469 * not started, start it. Otherwise, only restart if max txg in DTL range is
4470 * greater than the max txg in the current scan. If the DTL max is less than
4471 * the scan max, then the vdev has not missed any new data since the resilver
4472 * started, so a restart is not needed.
4474 void
4475 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
4477 uint64_t min, max;
4479 if (!vdev_resilver_needed(vd, &min, &max))
4480 return;
4482 if (!dsl_scan_resilvering(dp)) {
4483 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4484 return;
4487 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
4488 return;
4490 /* restart is needed, check if it can be deferred */
4491 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
4492 vdev_defer_resilver(vd);
4493 else
4494 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
4497 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
4498 "Max bytes in flight per leaf vdev for scrubs and resilvers");
4500 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
4501 "Min millisecs to scrub per txg");
4503 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
4504 "Min millisecs to obsolete per txg");
4506 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
4507 "Min millisecs to free per txg");
4509 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
4510 "Min millisecs to resilver per txg");
4512 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
4513 "Set to prevent scans from progressing");
4515 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
4516 "Set to disable scrub I/O");
4518 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
4519 "Set to disable scrub prefetching");
4521 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
4522 "Max number of blocks freed in one txg");
4524 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
4525 "Max number of dedup blocks freed in one txg");
4527 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
4528 "Enable processing of the free_bpobj");
4530 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
4531 "Enable block statistics calculation during scrub");
4533 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
4534 "Fraction of RAM for scan hard limit");
4536 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
4537 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4539 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
4540 "Scrub using legacy non-sequential method");
4542 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
4543 "Scan progress on-disk checkpointing interval");
4545 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
4546 "Max gap in bytes between sequential scrub / resilver I/Os");
4548 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
4549 "Fraction of hard limit used as soft limit");
4551 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
4552 "Tunable to attempt to reduce lock contention");
4554 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
4555 "Tunable to adjust bias towards more filled segments during scans");
4557 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
4558 "Tunable to report resilver performance over the last N txgs");
4560 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
4561 "Process all resilvers immediately");