4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
40 #include <sys/arc_impl.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
56 #include <sys/range_tree.h>
58 #include <sys/zfs_vfsops.h>
62 * Grand theory statement on scan queue sorting
64 * Scanning is implemented by recursively traversing all indirection levels
65 * in an object and reading all blocks referenced from said objects. This
66 * results in us approximately traversing the object from lowest logical
67 * offset to the highest. For best performance, we would want the logical
68 * blocks to be physically contiguous. However, this is frequently not the
69 * case with pools given the allocation patterns of copy-on-write filesystems.
70 * So instead, we put the I/Os into a reordering queue and issue them in a
71 * way that will most benefit physical disks (LBA-order).
75 * Ideally, we would want to scan all metadata and queue up all block I/O
76 * prior to starting to issue it, because that allows us to do an optimal
77 * sorting job. This can however consume large amounts of memory. Therefore
78 * we continuously monitor the size of the queues and constrain them to 5%
79 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
80 * limit, we clear out a few of the largest extents at the head of the queues
81 * to make room for more scanning. Hopefully, these extents will be fairly
82 * large and contiguous, allowing us to approach sequential I/O throughput
83 * even without a fully sorted tree.
85 * Metadata scanning takes place in dsl_scan_visit(), which is called from
86 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
87 * metadata on the pool, or we need to make room in memory because our
88 * queues are too large, dsl_scan_visit() is postponed and
89 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
90 * that metadata scanning and queued I/O issuing are mutually exclusive. This
91 * allows us to provide maximum sequential I/O throughput for the majority of
92 * I/O's issued since sequential I/O performance is significantly negatively
93 * impacted if it is interleaved with random I/O.
95 * Implementation Notes
97 * One side effect of the queued scanning algorithm is that the scanning code
98 * needs to be notified whenever a block is freed. This is needed to allow
99 * the scanning code to remove these I/Os from the issuing queue. Additionally,
100 * we do not attempt to queue gang blocks to be issued sequentially since this
101 * is very hard to do and would have an extremely limited performance benefit.
102 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
105 * Backwards compatibility
107 * This new algorithm is backwards compatible with the legacy on-disk data
108 * structures (and therefore does not require a new feature flag).
109 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
110 * will stop scanning metadata (in logical order) and wait for all outstanding
111 * sorted I/O to complete. Once this is done, we write out a checkpoint
112 * bookmark, indicating that we have scanned everything logically before it.
113 * If the pool is imported on a machine without the new sorting algorithm,
114 * the scan simply resumes from the last checkpoint using the legacy algorithm.
117 typedef int (scan_cb_t
)(dsl_pool_t
*, const blkptr_t
*,
118 const zbookmark_phys_t
*);
120 static scan_cb_t dsl_scan_scrub_cb
;
122 static int scan_ds_queue_compare(const void *a
, const void *b
);
123 static int scan_prefetch_queue_compare(const void *a
, const void *b
);
124 static void scan_ds_queue_clear(dsl_scan_t
*scn
);
125 static void scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
);
126 static boolean_t
scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
,
128 static void scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
);
129 static void scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
);
130 static void scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
);
131 static uint64_t dsl_scan_count_data_disks(spa_t
*spa
);
133 extern uint_t zfs_vdev_async_write_active_min_dirty_percent
;
134 static int zfs_scan_blkstats
= 0;
137 * 'zpool status' uses bytes processed per pass to report throughput and
138 * estimate time remaining. We define a pass to start when the scanning
139 * phase completes for a sequential resilver. Optionally, this value
140 * may be used to reset the pass statistics every N txgs to provide an
141 * estimated completion time based on currently observed performance.
143 static uint_t zfs_scan_report_txgs
= 0;
146 * By default zfs will check to ensure it is not over the hard memory
147 * limit before each txg. If finer-grained control of this is needed
148 * this value can be set to 1 to enable checking before scanning each
151 static int zfs_scan_strict_mem_lim
= B_FALSE
;
154 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
155 * to strike a balance here between keeping the vdev queues full of I/Os
156 * at all times and not overflowing the queues to cause long latency,
157 * which would cause long txg sync times. No matter what, we will not
158 * overload the drives with I/O, since that is protected by
159 * zfs_vdev_scrub_max_active.
161 static uint64_t zfs_scan_vdev_limit
= 16 << 20;
163 static uint_t zfs_scan_issue_strategy
= 0;
165 /* don't queue & sort zios, go direct */
166 static int zfs_scan_legacy
= B_FALSE
;
167 static uint64_t zfs_scan_max_ext_gap
= 2 << 20; /* in bytes */
170 * fill_weight is non-tunable at runtime, so we copy it at module init from
171 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
172 * break queue sorting.
174 static uint_t zfs_scan_fill_weight
= 3;
175 static uint64_t fill_weight
;
177 /* See dsl_scan_should_clear() for details on the memory limit tunables */
178 static const uint64_t zfs_scan_mem_lim_min
= 16 << 20; /* bytes */
179 static const uint64_t zfs_scan_mem_lim_soft_max
= 128 << 20; /* bytes */
182 /* fraction of physmem */
183 static uint_t zfs_scan_mem_lim_fact
= 20;
185 /* fraction of mem lim above */
186 static uint_t zfs_scan_mem_lim_soft_fact
= 20;
188 /* minimum milliseconds to scrub per txg */
189 static uint_t zfs_scrub_min_time_ms
= 1000;
191 /* minimum milliseconds to obsolete per txg */
192 static uint_t zfs_obsolete_min_time_ms
= 500;
194 /* minimum milliseconds to free per txg */
195 static uint_t zfs_free_min_time_ms
= 1000;
197 /* minimum milliseconds to resilver per txg */
198 static uint_t zfs_resilver_min_time_ms
= 3000;
200 static uint_t zfs_scan_checkpoint_intval
= 7200; /* in seconds */
201 int zfs_scan_suspend_progress
= 0; /* set to prevent scans from progressing */
202 static int zfs_no_scrub_io
= B_FALSE
; /* set to disable scrub i/o */
203 static int zfs_no_scrub_prefetch
= B_FALSE
; /* set to disable scrub prefetch */
204 static const enum ddt_class zfs_scrub_ddt_class_max
= DDT_CLASS_DUPLICATE
;
205 /* max number of blocks to free in a single TXG */
206 static uint64_t zfs_async_block_max_blocks
= UINT64_MAX
;
207 /* max number of dedup blocks to free in a single TXG */
208 static uint64_t zfs_max_async_dedup_frees
= 100000;
210 /* set to disable resilver deferring */
211 static int zfs_resilver_disable_defer
= B_FALSE
;
214 * We wait a few txgs after importing a pool to begin scanning so that
215 * the import / mounting code isn't held up by scrub / resilver IO.
216 * Unfortunately, it is a bit difficult to determine exactly how long
217 * this will take since userspace will trigger fs mounts asynchronously
218 * and the kernel will create zvol minors asynchronously. As a result,
219 * the value provided here is a bit arbitrary, but represents a
220 * reasonable estimate of how many txgs it will take to finish fully
223 #define SCAN_IMPORT_WAIT_TXGS 5
225 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
226 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
227 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
230 * Enable/disable the processing of the free_bpobj object.
232 static int zfs_free_bpobj_enabled
= 1;
234 /* the order has to match pool_scan_type */
235 static scan_cb_t
*scan_funcs
[POOL_SCAN_FUNCS
] = {
237 dsl_scan_scrub_cb
, /* POOL_SCAN_SCRUB */
238 dsl_scan_scrub_cb
, /* POOL_SCAN_RESILVER */
241 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
249 * This controls what conditions are placed on dsl_scan_sync_state():
250 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
251 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
252 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
253 * write out the scn_phys_cached version.
254 * See dsl_scan_sync_state for details.
263 * This struct represents the minimum information needed to reconstruct a
264 * zio for sequential scanning. This is useful because many of these will
265 * accumulate in the sequential IO queues before being issued, so saving
266 * memory matters here.
268 typedef struct scan_io
{
269 /* fields from blkptr_t */
270 uint64_t sio_blk_prop
;
271 uint64_t sio_phys_birth
;
273 zio_cksum_t sio_cksum
;
274 uint32_t sio_nr_dvas
;
276 /* fields from zio_t */
278 zbookmark_phys_t sio_zb
;
280 /* members for queue sorting */
282 avl_node_t sio_addr_node
; /* link into issuing queue */
283 list_node_t sio_list_node
; /* link for issuing to disk */
287 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
288 * depending on how many were in the original bp. Only the
289 * first DVA is really used for sorting and issuing purposes.
290 * The other DVAs (if provided) simply exist so that the zio
291 * layer can find additional copies to repair from in the
292 * event of an error. This array must go at the end of the
293 * struct to allow this for the variable number of elements.
298 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
299 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
300 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
301 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
302 #define SIO_GET_END_OFFSET(sio) \
303 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
304 #define SIO_GET_MUSED(sio) \
305 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
307 struct dsl_scan_io_queue
{
308 dsl_scan_t
*q_scn
; /* associated dsl_scan_t */
309 vdev_t
*q_vd
; /* top-level vdev that this queue represents */
310 zio_t
*q_zio
; /* scn_zio_root child for waiting on IO */
312 /* trees used for sorting I/Os and extents of I/Os */
313 range_tree_t
*q_exts_by_addr
;
314 zfs_btree_t q_exts_by_size
;
315 avl_tree_t q_sios_by_addr
;
316 uint64_t q_sio_memused
;
317 uint64_t q_last_ext_addr
;
319 /* members for zio rate limiting */
320 uint64_t q_maxinflight_bytes
;
321 uint64_t q_inflight_bytes
;
322 kcondvar_t q_zio_cv
; /* used under vd->vdev_scan_io_queue_lock */
324 /* per txg statistics */
325 uint64_t q_total_seg_size_this_txg
;
326 uint64_t q_segs_this_txg
;
327 uint64_t q_total_zio_size_this_txg
;
328 uint64_t q_zios_this_txg
;
331 /* private data for dsl_scan_prefetch_cb() */
332 typedef struct scan_prefetch_ctx
{
333 zfs_refcount_t spc_refcnt
; /* refcount for memory management */
334 dsl_scan_t
*spc_scn
; /* dsl_scan_t for the pool */
335 boolean_t spc_root
; /* is this prefetch for an objset? */
336 uint8_t spc_indblkshift
; /* dn_indblkshift of current dnode */
337 uint16_t spc_datablkszsec
; /* dn_idatablkszsec of current dnode */
338 } scan_prefetch_ctx_t
;
340 /* private data for dsl_scan_prefetch() */
341 typedef struct scan_prefetch_issue_ctx
{
342 avl_node_t spic_avl_node
; /* link into scn->scn_prefetch_queue */
343 scan_prefetch_ctx_t
*spic_spc
; /* spc for the callback */
344 blkptr_t spic_bp
; /* bp to prefetch */
345 zbookmark_phys_t spic_zb
; /* bookmark to prefetch */
346 } scan_prefetch_issue_ctx_t
;
348 static void scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
349 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
);
350 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
,
353 static dsl_scan_io_queue_t
*scan_io_queue_create(vdev_t
*vd
);
354 static void scan_io_queues_destroy(dsl_scan_t
*scn
);
356 static kmem_cache_t
*sio_cache
[SPA_DVAS_PER_BP
];
358 /* sio->sio_nr_dvas must be set so we know which cache to free from */
360 sio_free(scan_io_t
*sio
)
362 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
363 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
365 kmem_cache_free(sio_cache
[sio
->sio_nr_dvas
- 1], sio
);
368 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
370 sio_alloc(unsigned short nr_dvas
)
372 ASSERT3U(nr_dvas
, >, 0);
373 ASSERT3U(nr_dvas
, <=, SPA_DVAS_PER_BP
);
375 return (kmem_cache_alloc(sio_cache
[nr_dvas
- 1], KM_SLEEP
));
382 * This is used in ext_size_compare() to weight segments
383 * based on how sparse they are. This cannot be changed
384 * mid-scan and the tree comparison functions don't currently
385 * have a mechanism for passing additional context to the
386 * compare functions. Thus we store this value globally and
387 * we only allow it to be set at module initialization time
389 fill_weight
= zfs_scan_fill_weight
;
391 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
394 (void) snprintf(name
, sizeof (name
), "sio_cache_%d", i
);
395 sio_cache
[i
] = kmem_cache_create(name
,
396 (sizeof (scan_io_t
) + ((i
+ 1) * sizeof (dva_t
))),
397 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
404 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
405 kmem_cache_destroy(sio_cache
[i
]);
409 static inline boolean_t
410 dsl_scan_is_running(const dsl_scan_t
*scn
)
412 return (scn
->scn_phys
.scn_state
== DSS_SCANNING
);
416 dsl_scan_resilvering(dsl_pool_t
*dp
)
418 return (dsl_scan_is_running(dp
->dp_scan
) &&
419 dp
->dp_scan
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
);
423 sio2bp(const scan_io_t
*sio
, blkptr_t
*bp
)
425 memset(bp
, 0, sizeof (*bp
));
426 bp
->blk_prop
= sio
->sio_blk_prop
;
427 bp
->blk_phys_birth
= sio
->sio_phys_birth
;
428 bp
->blk_birth
= sio
->sio_birth
;
429 bp
->blk_fill
= 1; /* we always only work with data pointers */
430 bp
->blk_cksum
= sio
->sio_cksum
;
432 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
433 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
435 memcpy(bp
->blk_dva
, sio
->sio_dva
, sio
->sio_nr_dvas
* sizeof (dva_t
));
439 bp2sio(const blkptr_t
*bp
, scan_io_t
*sio
, int dva_i
)
441 sio
->sio_blk_prop
= bp
->blk_prop
;
442 sio
->sio_phys_birth
= bp
->blk_phys_birth
;
443 sio
->sio_birth
= bp
->blk_birth
;
444 sio
->sio_cksum
= bp
->blk_cksum
;
445 sio
->sio_nr_dvas
= BP_GET_NDVAS(bp
);
448 * Copy the DVAs to the sio. We need all copies of the block so
449 * that the self healing code can use the alternate copies if the
450 * first is corrupted. We want the DVA at index dva_i to be first
451 * in the sio since this is the primary one that we want to issue.
453 for (int i
= 0, j
= dva_i
; i
< sio
->sio_nr_dvas
; i
++, j
++) {
454 sio
->sio_dva
[i
] = bp
->blk_dva
[j
% sio
->sio_nr_dvas
];
459 dsl_scan_init(dsl_pool_t
*dp
, uint64_t txg
)
463 spa_t
*spa
= dp
->dp_spa
;
466 scn
= dp
->dp_scan
= kmem_zalloc(sizeof (dsl_scan_t
), KM_SLEEP
);
470 * It's possible that we're resuming a scan after a reboot so
471 * make sure that the scan_async_destroying flag is initialized
474 ASSERT(!scn
->scn_async_destroying
);
475 scn
->scn_async_destroying
= spa_feature_is_active(dp
->dp_spa
,
476 SPA_FEATURE_ASYNC_DESTROY
);
479 * Calculate the max number of in-flight bytes for pool-wide
480 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
481 * Limits for the issuing phase are done per top-level vdev and
482 * are handled separately.
484 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
485 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
487 avl_create(&scn
->scn_queue
, scan_ds_queue_compare
, sizeof (scan_ds_t
),
488 offsetof(scan_ds_t
, sds_node
));
489 avl_create(&scn
->scn_prefetch_queue
, scan_prefetch_queue_compare
,
490 sizeof (scan_prefetch_issue_ctx_t
),
491 offsetof(scan_prefetch_issue_ctx_t
, spic_avl_node
));
493 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
494 "scrub_func", sizeof (uint64_t), 1, &f
);
497 * There was an old-style scrub in progress. Restart a
498 * new-style scrub from the beginning.
500 scn
->scn_restart_txg
= txg
;
501 zfs_dbgmsg("old-style scrub was in progress for %s; "
502 "restarting new-style scrub in txg %llu",
504 (longlong_t
)scn
->scn_restart_txg
);
507 * Load the queue obj from the old location so that it
508 * can be freed by dsl_scan_done().
510 (void) zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
511 "scrub_queue", sizeof (uint64_t), 1,
512 &scn
->scn_phys
.scn_queue_obj
);
514 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
515 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
518 * Detect if the pool contains the signature of #2094. If it
519 * does properly update the scn->scn_phys structure and notify
520 * the administrator by setting an errata for the pool.
522 if (err
== EOVERFLOW
) {
523 uint64_t zaptmp
[SCAN_PHYS_NUMINTS
+ 1];
524 VERIFY3S(SCAN_PHYS_NUMINTS
, ==, 24);
525 VERIFY3S(offsetof(dsl_scan_phys_t
, scn_flags
), ==,
526 (23 * sizeof (uint64_t)));
528 err
= zap_lookup(dp
->dp_meta_objset
,
529 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_SCAN
,
530 sizeof (uint64_t), SCAN_PHYS_NUMINTS
+ 1, &zaptmp
);
532 uint64_t overflow
= zaptmp
[SCAN_PHYS_NUMINTS
];
534 if (overflow
& ~DSL_SCAN_FLAGS_MASK
||
535 scn
->scn_async_destroying
) {
537 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY
;
541 memcpy(&scn
->scn_phys
, zaptmp
,
542 SCAN_PHYS_NUMINTS
* sizeof (uint64_t));
543 scn
->scn_phys
.scn_flags
= overflow
;
545 /* Required scrub already in progress. */
546 if (scn
->scn_phys
.scn_state
== DSS_FINISHED
||
547 scn
->scn_phys
.scn_state
== DSS_CANCELED
)
549 ZPOOL_ERRATA_ZOL_2094_SCRUB
;
559 * We might be restarting after a reboot, so jump the issued
560 * counter to how far we've scanned. We know we're consistent
563 scn
->scn_issued_before_pass
= scn
->scn_phys
.scn_examined
;
565 if (dsl_scan_is_running(scn
) &&
566 spa_prev_software_version(dp
->dp_spa
) < SPA_VERSION_SCAN
) {
568 * A new-type scrub was in progress on an old
569 * pool, and the pool was accessed by old
570 * software. Restart from the beginning, since
571 * the old software may have changed the pool in
574 scn
->scn_restart_txg
= txg
;
575 zfs_dbgmsg("new-style scrub for %s was modified "
576 "by old software; restarting in txg %llu",
578 (longlong_t
)scn
->scn_restart_txg
);
579 } else if (dsl_scan_resilvering(dp
)) {
581 * If a resilver is in progress and there are already
582 * errors, restart it instead of finishing this scan and
583 * then restarting it. If there haven't been any errors
584 * then remember that the incore DTL is valid.
586 if (scn
->scn_phys
.scn_errors
> 0) {
587 scn
->scn_restart_txg
= txg
;
588 zfs_dbgmsg("resilver can't excise DTL_MISSING "
589 "when finished; restarting on %s in txg "
592 (u_longlong_t
)scn
->scn_restart_txg
);
594 /* it's safe to excise DTL when finished */
595 spa
->spa_scrub_started
= B_TRUE
;
600 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
602 /* reload the queue into the in-core state */
603 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
607 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
608 scn
->scn_phys
.scn_queue_obj
);
609 zap_cursor_retrieve(&zc
, &za
) == 0;
610 (void) zap_cursor_advance(&zc
)) {
611 scan_ds_queue_insert(scn
,
612 zfs_strtonum(za
.za_name
, NULL
),
613 za
.za_first_integer
);
615 zap_cursor_fini(&zc
);
618 spa_scan_stat_init(spa
);
619 vdev_scan_stat_init(spa
->spa_root_vdev
);
625 dsl_scan_fini(dsl_pool_t
*dp
)
627 if (dp
->dp_scan
!= NULL
) {
628 dsl_scan_t
*scn
= dp
->dp_scan
;
630 if (scn
->scn_taskq
!= NULL
)
631 taskq_destroy(scn
->scn_taskq
);
633 scan_ds_queue_clear(scn
);
634 avl_destroy(&scn
->scn_queue
);
635 scan_ds_prefetch_queue_clear(scn
);
636 avl_destroy(&scn
->scn_prefetch_queue
);
638 kmem_free(dp
->dp_scan
, sizeof (dsl_scan_t
));
644 dsl_scan_restarting(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
646 return (scn
->scn_restart_txg
!= 0 &&
647 scn
->scn_restart_txg
<= tx
->tx_txg
);
651 dsl_scan_resilver_scheduled(dsl_pool_t
*dp
)
653 return ((dp
->dp_scan
&& dp
->dp_scan
->scn_restart_txg
!= 0) ||
654 (spa_async_tasks(dp
->dp_spa
) & SPA_ASYNC_RESILVER
));
658 dsl_scan_scrubbing(const dsl_pool_t
*dp
)
660 dsl_scan_phys_t
*scn_phys
= &dp
->dp_scan
->scn_phys
;
662 return (scn_phys
->scn_state
== DSS_SCANNING
&&
663 scn_phys
->scn_func
== POOL_SCAN_SCRUB
);
667 dsl_scan_is_paused_scrub(const dsl_scan_t
*scn
)
669 return (dsl_scan_scrubbing(scn
->scn_dp
) &&
670 scn
->scn_phys
.scn_flags
& DSF_SCRUB_PAUSED
);
674 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
675 * Because we can be running in the block sorting algorithm, we do not always
676 * want to write out the record, only when it is "safe" to do so. This safety
677 * condition is achieved by making sure that the sorting queues are empty
678 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
679 * is inconsistent with how much actual scanning progress has been made. The
680 * kind of sync to be performed is specified by the sync_type argument. If the
681 * sync is optional, we only sync if the queues are empty. If the sync is
682 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
683 * third possible state is a "cached" sync. This is done in response to:
684 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
685 * destroyed, so we wouldn't be able to restart scanning from it.
686 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
687 * superseded by a newer snapshot.
688 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
689 * swapped with its clone.
690 * In all cases, a cached sync simply rewrites the last record we've written,
691 * just slightly modified. For the modifications that are performed to the
692 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
693 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
696 dsl_scan_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
, state_sync_type_t sync_type
)
699 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
701 ASSERT(sync_type
!= SYNC_MANDATORY
|| scn
->scn_queues_pending
== 0);
702 if (scn
->scn_queues_pending
== 0) {
703 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
704 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
705 dsl_scan_io_queue_t
*q
= vd
->vdev_scan_io_queue
;
710 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
711 ASSERT3P(avl_first(&q
->q_sios_by_addr
), ==, NULL
);
712 ASSERT3P(zfs_btree_first(&q
->q_exts_by_size
, NULL
), ==,
714 ASSERT3P(range_tree_first(q
->q_exts_by_addr
), ==, NULL
);
715 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
718 if (scn
->scn_phys
.scn_queue_obj
!= 0)
719 scan_ds_queue_sync(scn
, tx
);
720 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
721 DMU_POOL_DIRECTORY_OBJECT
,
722 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
723 &scn
->scn_phys
, tx
));
724 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
,
725 sizeof (scn
->scn_phys
));
727 if (scn
->scn_checkpointing
)
728 zfs_dbgmsg("finish scan checkpoint for %s",
731 scn
->scn_checkpointing
= B_FALSE
;
732 scn
->scn_last_checkpoint
= ddi_get_lbolt();
733 } else if (sync_type
== SYNC_CACHED
) {
734 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
735 DMU_POOL_DIRECTORY_OBJECT
,
736 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
737 &scn
->scn_phys_cached
, tx
));
742 dsl_scan_setup_check(void *arg
, dmu_tx_t
*tx
)
745 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
746 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
748 if (dsl_scan_is_running(scn
) || vdev_rebuild_active(rvd
))
749 return (SET_ERROR(EBUSY
));
755 dsl_scan_setup_sync(void *arg
, dmu_tx_t
*tx
)
757 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
758 pool_scan_func_t
*funcp
= arg
;
759 dmu_object_type_t ot
= 0;
760 dsl_pool_t
*dp
= scn
->scn_dp
;
761 spa_t
*spa
= dp
->dp_spa
;
763 ASSERT(!dsl_scan_is_running(scn
));
764 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
765 memset(&scn
->scn_phys
, 0, sizeof (scn
->scn_phys
));
766 scn
->scn_phys
.scn_func
= *funcp
;
767 scn
->scn_phys
.scn_state
= DSS_SCANNING
;
768 scn
->scn_phys
.scn_min_txg
= 0;
769 scn
->scn_phys
.scn_max_txg
= tx
->tx_txg
;
770 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASSES
- 1; /* the entire DDT */
771 scn
->scn_phys
.scn_start_time
= gethrestime_sec();
772 scn
->scn_phys
.scn_errors
= 0;
773 scn
->scn_phys
.scn_to_examine
= spa
->spa_root_vdev
->vdev_stat
.vs_alloc
;
774 scn
->scn_issued_before_pass
= 0;
775 scn
->scn_restart_txg
= 0;
776 scn
->scn_done_txg
= 0;
777 scn
->scn_last_checkpoint
= 0;
778 scn
->scn_checkpointing
= B_FALSE
;
779 spa_scan_stat_init(spa
);
780 vdev_scan_stat_init(spa
->spa_root_vdev
);
782 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
783 scn
->scn_phys
.scn_ddt_class_max
= zfs_scrub_ddt_class_max
;
785 /* rewrite all disk labels */
786 vdev_config_dirty(spa
->spa_root_vdev
);
788 if (vdev_resilver_needed(spa
->spa_root_vdev
,
789 &scn
->scn_phys
.scn_min_txg
, &scn
->scn_phys
.scn_max_txg
)) {
790 nvlist_t
*aux
= fnvlist_alloc();
791 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
793 spa_event_notify(spa
, NULL
, aux
,
794 ESC_ZFS_RESILVER_START
);
797 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_START
);
800 spa
->spa_scrub_started
= B_TRUE
;
802 * If this is an incremental scrub, limit the DDT scrub phase
803 * to just the auto-ditto class (for correctness); the rest
804 * of the scrub should go faster using top-down pruning.
806 if (scn
->scn_phys
.scn_min_txg
> TXG_INITIAL
)
807 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASS_DITTO
;
810 * When starting a resilver clear any existing rebuild state.
811 * This is required to prevent stale rebuild status from
812 * being reported when a rebuild is run, then a resilver and
813 * finally a scrub. In which case only the scrub status
814 * should be reported by 'zpool status'.
816 if (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) {
817 vdev_t
*rvd
= spa
->spa_root_vdev
;
818 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
819 vdev_t
*vd
= rvd
->vdev_child
[i
];
820 vdev_rebuild_clear_sync(
821 (void *)(uintptr_t)vd
->vdev_id
, tx
);
826 /* back to the generic stuff */
828 if (zfs_scan_blkstats
) {
829 if (dp
->dp_blkstats
== NULL
) {
831 vmem_alloc(sizeof (zfs_all_blkstats_t
), KM_SLEEP
);
833 memset(&dp
->dp_blkstats
->zab_type
, 0,
834 sizeof (dp
->dp_blkstats
->zab_type
));
836 if (dp
->dp_blkstats
) {
837 vmem_free(dp
->dp_blkstats
, sizeof (zfs_all_blkstats_t
));
838 dp
->dp_blkstats
= NULL
;
842 if (spa_version(spa
) < SPA_VERSION_DSL_SCRUB
)
843 ot
= DMU_OT_ZAP_OTHER
;
845 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
,
846 ot
? ot
: DMU_OT_SCAN_QUEUE
, DMU_OT_NONE
, 0, tx
);
848 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
850 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
852 spa_history_log_internal(spa
, "scan setup", tx
,
853 "func=%u mintxg=%llu maxtxg=%llu",
854 *funcp
, (u_longlong_t
)scn
->scn_phys
.scn_min_txg
,
855 (u_longlong_t
)scn
->scn_phys
.scn_max_txg
);
859 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
860 * Can also be called to resume a paused scrub.
863 dsl_scan(dsl_pool_t
*dp
, pool_scan_func_t func
)
865 spa_t
*spa
= dp
->dp_spa
;
866 dsl_scan_t
*scn
= dp
->dp_scan
;
869 * Purge all vdev caches and probe all devices. We do this here
870 * rather than in sync context because this requires a writer lock
871 * on the spa_config lock, which we can't do from sync context. The
872 * spa_scrub_reopen flag indicates that vdev_open() should not
873 * attempt to start another scrub.
875 spa_vdev_state_enter(spa
, SCL_NONE
);
876 spa
->spa_scrub_reopen
= B_TRUE
;
877 vdev_reopen(spa
->spa_root_vdev
);
878 spa
->spa_scrub_reopen
= B_FALSE
;
879 (void) spa_vdev_state_exit(spa
, NULL
, 0);
881 if (func
== POOL_SCAN_RESILVER
) {
882 dsl_scan_restart_resilver(spa
->spa_dsl_pool
, 0);
886 if (func
== POOL_SCAN_SCRUB
&& dsl_scan_is_paused_scrub(scn
)) {
887 /* got scrub start cmd, resume paused scrub */
888 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
891 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_RESUME
);
892 return (SET_ERROR(ECANCELED
));
895 return (SET_ERROR(err
));
898 return (dsl_sync_task(spa_name(spa
), dsl_scan_setup_check
,
899 dsl_scan_setup_sync
, &func
, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED
));
903 dsl_scan_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
905 static const char *old_names
[] = {
907 "scrub_ddt_bookmark",
908 "scrub_ddt_class_max",
917 dsl_pool_t
*dp
= scn
->scn_dp
;
918 spa_t
*spa
= dp
->dp_spa
;
921 /* Remove any remnants of an old-style scrub. */
922 for (i
= 0; old_names
[i
]; i
++) {
923 (void) zap_remove(dp
->dp_meta_objset
,
924 DMU_POOL_DIRECTORY_OBJECT
, old_names
[i
], tx
);
927 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
928 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
929 scn
->scn_phys
.scn_queue_obj
, tx
));
930 scn
->scn_phys
.scn_queue_obj
= 0;
932 scan_ds_queue_clear(scn
);
933 scan_ds_prefetch_queue_clear(scn
);
935 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
938 * If we were "restarted" from a stopped state, don't bother
939 * with anything else.
941 if (!dsl_scan_is_running(scn
)) {
942 ASSERT(!scn
->scn_is_sorted
);
946 if (scn
->scn_is_sorted
) {
947 scan_io_queues_destroy(scn
);
948 scn
->scn_is_sorted
= B_FALSE
;
950 if (scn
->scn_taskq
!= NULL
) {
951 taskq_destroy(scn
->scn_taskq
);
952 scn
->scn_taskq
= NULL
;
956 scn
->scn_phys
.scn_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
958 spa_notify_waiters(spa
);
960 if (dsl_scan_restarting(scn
, tx
))
961 spa_history_log_internal(spa
, "scan aborted, restarting", tx
,
962 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
964 spa_history_log_internal(spa
, "scan cancelled", tx
,
965 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
967 spa_history_log_internal(spa
, "scan done", tx
,
968 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
970 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
971 spa
->spa_scrub_active
= B_FALSE
;
974 * If the scrub/resilver completed, update all DTLs to
975 * reflect this. Whether it succeeded or not, vacate
976 * all temporary scrub DTLs.
978 * As the scrub does not currently support traversing
979 * data that have been freed but are part of a checkpoint,
980 * we don't mark the scrub as done in the DTLs as faults
981 * may still exist in those vdevs.
984 !spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
985 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
986 scn
->scn_phys
.scn_max_txg
, B_TRUE
, B_FALSE
);
988 if (scn
->scn_phys
.scn_min_txg
) {
989 nvlist_t
*aux
= fnvlist_alloc();
990 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
992 spa_event_notify(spa
, NULL
, aux
,
993 ESC_ZFS_RESILVER_FINISH
);
996 spa_event_notify(spa
, NULL
, NULL
,
997 ESC_ZFS_SCRUB_FINISH
);
1000 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1001 0, B_TRUE
, B_FALSE
);
1003 spa_errlog_rotate(spa
);
1006 * Don't clear flag until after vdev_dtl_reassess to ensure that
1007 * DTL_MISSING will get updated when possible.
1009 spa
->spa_scrub_started
= B_FALSE
;
1012 * We may have finished replacing a device.
1013 * Let the async thread assess this and handle the detach.
1015 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
1018 * Clear any resilver_deferred flags in the config.
1019 * If there are drives that need resilvering, kick
1020 * off an asynchronous request to start resilver.
1021 * vdev_clear_resilver_deferred() may update the config
1022 * before the resilver can restart. In the event of
1023 * a crash during this period, the spa loading code
1024 * will find the drives that need to be resilvered
1025 * and start the resilver then.
1027 if (spa_feature_is_enabled(spa
, SPA_FEATURE_RESILVER_DEFER
) &&
1028 vdev_clear_resilver_deferred(spa
->spa_root_vdev
, tx
)) {
1029 spa_history_log_internal(spa
,
1030 "starting deferred resilver", tx
, "errors=%llu",
1031 (u_longlong_t
)spa_approx_errlog_size(spa
));
1032 spa_async_request(spa
, SPA_ASYNC_RESILVER
);
1035 /* Clear recent error events (i.e. duplicate events tracking) */
1037 zfs_ereport_clear(spa
, NULL
);
1040 scn
->scn_phys
.scn_end_time
= gethrestime_sec();
1042 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1043 spa
->spa_errata
= 0;
1045 ASSERT(!dsl_scan_is_running(scn
));
1049 dsl_scan_cancel_check(void *arg
, dmu_tx_t
*tx
)
1052 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1054 if (!dsl_scan_is_running(scn
))
1055 return (SET_ERROR(ENOENT
));
1060 dsl_scan_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1063 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1065 dsl_scan_done(scn
, B_FALSE
, tx
);
1066 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
1067 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
, ESC_ZFS_SCRUB_ABORT
);
1071 dsl_scan_cancel(dsl_pool_t
*dp
)
1073 return (dsl_sync_task(spa_name(dp
->dp_spa
), dsl_scan_cancel_check
,
1074 dsl_scan_cancel_sync
, NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1078 dsl_scrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1080 pool_scrub_cmd_t
*cmd
= arg
;
1081 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1082 dsl_scan_t
*scn
= dp
->dp_scan
;
1084 if (*cmd
== POOL_SCRUB_PAUSE
) {
1085 /* can't pause a scrub when there is no in-progress scrub */
1086 if (!dsl_scan_scrubbing(dp
))
1087 return (SET_ERROR(ENOENT
));
1089 /* can't pause a paused scrub */
1090 if (dsl_scan_is_paused_scrub(scn
))
1091 return (SET_ERROR(EBUSY
));
1092 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1093 return (SET_ERROR(ENOTSUP
));
1100 dsl_scrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1102 pool_scrub_cmd_t
*cmd
= arg
;
1103 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1104 spa_t
*spa
= dp
->dp_spa
;
1105 dsl_scan_t
*scn
= dp
->dp_scan
;
1107 if (*cmd
== POOL_SCRUB_PAUSE
) {
1108 /* can't pause a scrub when there is no in-progress scrub */
1109 spa
->spa_scan_pass_scrub_pause
= gethrestime_sec();
1110 scn
->scn_phys
.scn_flags
|= DSF_SCRUB_PAUSED
;
1111 scn
->scn_phys_cached
.scn_flags
|= DSF_SCRUB_PAUSED
;
1112 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1113 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_PAUSED
);
1114 spa_notify_waiters(spa
);
1116 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1117 if (dsl_scan_is_paused_scrub(scn
)) {
1119 * We need to keep track of how much time we spend
1120 * paused per pass so that we can adjust the scrub rate
1121 * shown in the output of 'zpool status'
1123 spa
->spa_scan_pass_scrub_spent_paused
+=
1124 gethrestime_sec() - spa
->spa_scan_pass_scrub_pause
;
1125 spa
->spa_scan_pass_scrub_pause
= 0;
1126 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1127 scn
->scn_phys_cached
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1128 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1134 * Set scrub pause/resume state if it makes sense to do so
1137 dsl_scrub_set_pause_resume(const dsl_pool_t
*dp
, pool_scrub_cmd_t cmd
)
1139 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1140 dsl_scrub_pause_resume_check
, dsl_scrub_pause_resume_sync
, &cmd
, 3,
1141 ZFS_SPACE_CHECK_RESERVED
));
1145 /* start a new scan, or restart an existing one. */
1147 dsl_scan_restart_resilver(dsl_pool_t
*dp
, uint64_t txg
)
1151 tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
1152 VERIFY(0 == dmu_tx_assign(tx
, TXG_WAIT
));
1154 txg
= dmu_tx_get_txg(tx
);
1155 dp
->dp_scan
->scn_restart_txg
= txg
;
1158 dp
->dp_scan
->scn_restart_txg
= txg
;
1160 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1161 dp
->dp_spa
->spa_name
, (longlong_t
)txg
);
1165 dsl_free(dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bp
)
1167 zio_free(dp
->dp_spa
, txg
, bp
);
1171 dsl_free_sync(zio_t
*pio
, dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bpp
)
1173 ASSERT(dsl_pool_sync_context(dp
));
1174 zio_nowait(zio_free_sync(pio
, dp
->dp_spa
, txg
, bpp
, pio
->io_flags
));
1178 scan_ds_queue_compare(const void *a
, const void *b
)
1180 const scan_ds_t
*sds_a
= a
, *sds_b
= b
;
1182 if (sds_a
->sds_dsobj
< sds_b
->sds_dsobj
)
1184 if (sds_a
->sds_dsobj
== sds_b
->sds_dsobj
)
1190 scan_ds_queue_clear(dsl_scan_t
*scn
)
1192 void *cookie
= NULL
;
1194 while ((sds
= avl_destroy_nodes(&scn
->scn_queue
, &cookie
)) != NULL
) {
1195 kmem_free(sds
, sizeof (*sds
));
1200 scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t *txg
)
1202 scan_ds_t srch
, *sds
;
1204 srch
.sds_dsobj
= dsobj
;
1205 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1206 if (sds
!= NULL
&& txg
!= NULL
)
1207 *txg
= sds
->sds_txg
;
1208 return (sds
!= NULL
);
1212 scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
)
1217 sds
= kmem_zalloc(sizeof (*sds
), KM_SLEEP
);
1218 sds
->sds_dsobj
= dsobj
;
1221 VERIFY3P(avl_find(&scn
->scn_queue
, sds
, &where
), ==, NULL
);
1222 avl_insert(&scn
->scn_queue
, sds
, where
);
1226 scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
)
1228 scan_ds_t srch
, *sds
;
1230 srch
.sds_dsobj
= dsobj
;
1232 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1233 VERIFY(sds
!= NULL
);
1234 avl_remove(&scn
->scn_queue
, sds
);
1235 kmem_free(sds
, sizeof (*sds
));
1239 scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
1241 dsl_pool_t
*dp
= scn
->scn_dp
;
1242 spa_t
*spa
= dp
->dp_spa
;
1243 dmu_object_type_t ot
= (spa_version(spa
) >= SPA_VERSION_DSL_SCRUB
) ?
1244 DMU_OT_SCAN_QUEUE
: DMU_OT_ZAP_OTHER
;
1246 ASSERT0(scn
->scn_queues_pending
);
1247 ASSERT(scn
->scn_phys
.scn_queue_obj
!= 0);
1249 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1250 scn
->scn_phys
.scn_queue_obj
, tx
));
1251 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
, ot
,
1252 DMU_OT_NONE
, 0, tx
);
1253 for (scan_ds_t
*sds
= avl_first(&scn
->scn_queue
);
1254 sds
!= NULL
; sds
= AVL_NEXT(&scn
->scn_queue
, sds
)) {
1255 VERIFY0(zap_add_int_key(dp
->dp_meta_objset
,
1256 scn
->scn_phys
.scn_queue_obj
, sds
->sds_dsobj
,
1262 * Computes the memory limit state that we're currently in. A sorted scan
1263 * needs quite a bit of memory to hold the sorting queue, so we need to
1264 * reasonably constrain the size so it doesn't impact overall system
1265 * performance. We compute two limits:
1266 * 1) Hard memory limit: if the amount of memory used by the sorting
1267 * queues on a pool gets above this value, we stop the metadata
1268 * scanning portion and start issuing the queued up and sorted
1269 * I/Os to reduce memory usage.
1270 * This limit is calculated as a fraction of physmem (by default 5%).
1271 * We constrain the lower bound of the hard limit to an absolute
1272 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1273 * the upper bound to 5% of the total pool size - no chance we'll
1274 * ever need that much memory, but just to keep the value in check.
1275 * 2) Soft memory limit: once we hit the hard memory limit, we start
1276 * issuing I/O to reduce queue memory usage, but we don't want to
1277 * completely empty out the queues, since we might be able to find I/Os
1278 * that will fill in the gaps of our non-sequential IOs at some point
1279 * in the future. So we stop the issuing of I/Os once the amount of
1280 * memory used drops below the soft limit (at which point we stop issuing
1281 * I/O and start scanning metadata again).
1283 * This limit is calculated by subtracting a fraction of the hard
1284 * limit from the hard limit. By default this fraction is 5%, so
1285 * the soft limit is 95% of the hard limit. We cap the size of the
1286 * difference between the hard and soft limits at an absolute
1287 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1288 * sufficient to not cause too frequent switching between the
1289 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1290 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1291 * that should take at least a decent fraction of a second).
1294 dsl_scan_should_clear(dsl_scan_t
*scn
)
1296 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1297 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
1298 uint64_t alloc
, mlim_hard
, mlim_soft
, mused
;
1300 alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
1301 alloc
+= metaslab_class_get_alloc(spa_special_class(spa
));
1302 alloc
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
1304 mlim_hard
= MAX((physmem
/ zfs_scan_mem_lim_fact
) * PAGESIZE
,
1305 zfs_scan_mem_lim_min
);
1306 mlim_hard
= MIN(mlim_hard
, alloc
/ 20);
1307 mlim_soft
= mlim_hard
- MIN(mlim_hard
/ zfs_scan_mem_lim_soft_fact
,
1308 zfs_scan_mem_lim_soft_max
);
1310 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
1311 vdev_t
*tvd
= rvd
->vdev_child
[i
];
1312 dsl_scan_io_queue_t
*queue
;
1314 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
1315 queue
= tvd
->vdev_scan_io_queue
;
1316 if (queue
!= NULL
) {
1318 * # of extents in exts_by_addr = # in exts_by_size.
1319 * B-tree efficiency is ~75%, but can be as low as 50%.
1321 mused
+= zfs_btree_numnodes(&queue
->q_exts_by_size
) *
1322 ((sizeof (range_seg_gap_t
) + sizeof (uint64_t)) *
1323 3 / 2) + queue
->q_sio_memused
;
1325 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
1328 dprintf("current scan memory usage: %llu bytes\n", (longlong_t
)mused
);
1331 ASSERT0(scn
->scn_queues_pending
);
1334 * If we are above our hard limit, we need to clear out memory.
1335 * If we are below our soft limit, we need to accumulate sequential IOs.
1336 * Otherwise, we should keep doing whatever we are currently doing.
1338 if (mused
>= mlim_hard
)
1340 else if (mused
< mlim_soft
)
1343 return (scn
->scn_clearing
);
1347 dsl_scan_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1349 /* we never skip user/group accounting objects */
1350 if (zb
&& (int64_t)zb
->zb_object
< 0)
1353 if (scn
->scn_suspending
)
1354 return (B_TRUE
); /* we're already suspending */
1356 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
))
1357 return (B_FALSE
); /* we're resuming */
1359 /* We only know how to resume from level-0 and objset blocks. */
1360 if (zb
&& (zb
->zb_level
!= 0 && zb
->zb_level
!= ZB_ROOT_LEVEL
))
1365 * - we have scanned for at least the minimum time (default 1 sec
1366 * for scrub, 3 sec for resilver), and either we have sufficient
1367 * dirty data that we are starting to write more quickly
1368 * (default 30%), someone is explicitly waiting for this txg
1369 * to complete, or we have used up all of the time in the txg
1370 * timeout (default 5 sec).
1372 * - the spa is shutting down because this pool is being exported
1373 * or the machine is rebooting.
1375 * - the scan queue has reached its memory use limit
1377 uint64_t curr_time_ns
= gethrtime();
1378 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1379 uint64_t sync_time_ns
= curr_time_ns
-
1380 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1381 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
1382 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
1383 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
1384 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
1386 if ((NSEC2MSEC(scan_time_ns
) > mintime
&&
1387 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
1388 txg_sync_waiting(scn
->scn_dp
) ||
1389 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1390 spa_shutting_down(scn
->scn_dp
->dp_spa
) ||
1391 (zfs_scan_strict_mem_lim
&& dsl_scan_should_clear(scn
))) {
1392 if (zb
&& zb
->zb_level
== ZB_ROOT_LEVEL
) {
1393 dprintf("suspending at first available bookmark "
1394 "%llx/%llx/%llx/%llx\n",
1395 (longlong_t
)zb
->zb_objset
,
1396 (longlong_t
)zb
->zb_object
,
1397 (longlong_t
)zb
->zb_level
,
1398 (longlong_t
)zb
->zb_blkid
);
1399 SET_BOOKMARK(&scn
->scn_phys
.scn_bookmark
,
1400 zb
->zb_objset
, 0, 0, 0);
1401 } else if (zb
!= NULL
) {
1402 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1403 (longlong_t
)zb
->zb_objset
,
1404 (longlong_t
)zb
->zb_object
,
1405 (longlong_t
)zb
->zb_level
,
1406 (longlong_t
)zb
->zb_blkid
);
1407 scn
->scn_phys
.scn_bookmark
= *zb
;
1410 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
1411 dprintf("suspending at at DDT bookmark "
1412 "%llx/%llx/%llx/%llx\n",
1413 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
1414 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
1415 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
1416 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
1419 scn
->scn_suspending
= B_TRUE
;
1425 typedef struct zil_scan_arg
{
1427 zil_header_t
*zsa_zh
;
1431 dsl_scan_zil_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *arg
,
1435 zil_scan_arg_t
*zsa
= arg
;
1436 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1437 dsl_scan_t
*scn
= dp
->dp_scan
;
1438 zil_header_t
*zh
= zsa
->zsa_zh
;
1439 zbookmark_phys_t zb
;
1441 ASSERT(!BP_IS_REDACTED(bp
));
1442 if (BP_IS_HOLE(bp
) || bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
)
1446 * One block ("stubby") can be allocated a long time ago; we
1447 * want to visit that one because it has been allocated
1448 * (on-disk) even if it hasn't been claimed (even though for
1449 * scrub there's nothing to do to it).
1451 if (claim_txg
== 0 && bp
->blk_birth
>= spa_min_claim_txg(dp
->dp_spa
))
1454 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1455 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
, bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
1457 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1462 dsl_scan_zil_record(zilog_t
*zilog
, const lr_t
*lrc
, void *arg
,
1466 if (lrc
->lrc_txtype
== TX_WRITE
) {
1467 zil_scan_arg_t
*zsa
= arg
;
1468 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1469 dsl_scan_t
*scn
= dp
->dp_scan
;
1470 zil_header_t
*zh
= zsa
->zsa_zh
;
1471 const lr_write_t
*lr
= (const lr_write_t
*)lrc
;
1472 const blkptr_t
*bp
= &lr
->lr_blkptr
;
1473 zbookmark_phys_t zb
;
1475 ASSERT(!BP_IS_REDACTED(bp
));
1476 if (BP_IS_HOLE(bp
) ||
1477 bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
)
1481 * birth can be < claim_txg if this record's txg is
1482 * already txg sync'ed (but this log block contains
1483 * other records that are not synced)
1485 if (claim_txg
== 0 || bp
->blk_birth
< claim_txg
)
1488 ASSERT3U(BP_GET_LSIZE(bp
), !=, 0);
1489 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1490 lr
->lr_foid
, ZB_ZIL_LEVEL
,
1491 lr
->lr_offset
/ BP_GET_LSIZE(bp
));
1493 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1499 dsl_scan_zil(dsl_pool_t
*dp
, zil_header_t
*zh
)
1501 uint64_t claim_txg
= zh
->zh_claim_txg
;
1502 zil_scan_arg_t zsa
= { dp
, zh
};
1505 ASSERT(spa_writeable(dp
->dp_spa
));
1508 * We only want to visit blocks that have been claimed but not yet
1509 * replayed (or, in read-only mode, blocks that *would* be claimed).
1514 zilog
= zil_alloc(dp
->dp_meta_objset
, zh
);
1516 (void) zil_parse(zilog
, dsl_scan_zil_block
, dsl_scan_zil_record
, &zsa
,
1517 claim_txg
, B_FALSE
);
1523 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1524 * here is to sort the AVL tree by the order each block will be needed.
1527 scan_prefetch_queue_compare(const void *a
, const void *b
)
1529 const scan_prefetch_issue_ctx_t
*spic_a
= a
, *spic_b
= b
;
1530 const scan_prefetch_ctx_t
*spc_a
= spic_a
->spic_spc
;
1531 const scan_prefetch_ctx_t
*spc_b
= spic_b
->spic_spc
;
1533 return (zbookmark_compare(spc_a
->spc_datablkszsec
,
1534 spc_a
->spc_indblkshift
, spc_b
->spc_datablkszsec
,
1535 spc_b
->spc_indblkshift
, &spic_a
->spic_zb
, &spic_b
->spic_zb
));
1539 scan_prefetch_ctx_rele(scan_prefetch_ctx_t
*spc
, const void *tag
)
1541 if (zfs_refcount_remove(&spc
->spc_refcnt
, tag
) == 0) {
1542 zfs_refcount_destroy(&spc
->spc_refcnt
);
1543 kmem_free(spc
, sizeof (scan_prefetch_ctx_t
));
1547 static scan_prefetch_ctx_t
*
1548 scan_prefetch_ctx_create(dsl_scan_t
*scn
, dnode_phys_t
*dnp
, const void *tag
)
1550 scan_prefetch_ctx_t
*spc
;
1552 spc
= kmem_alloc(sizeof (scan_prefetch_ctx_t
), KM_SLEEP
);
1553 zfs_refcount_create(&spc
->spc_refcnt
);
1554 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1557 spc
->spc_datablkszsec
= dnp
->dn_datablkszsec
;
1558 spc
->spc_indblkshift
= dnp
->dn_indblkshift
;
1559 spc
->spc_root
= B_FALSE
;
1561 spc
->spc_datablkszsec
= 0;
1562 spc
->spc_indblkshift
= 0;
1563 spc
->spc_root
= B_TRUE
;
1570 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t
*spc
, const void *tag
)
1572 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1576 scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
)
1578 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1579 void *cookie
= NULL
;
1580 scan_prefetch_issue_ctx_t
*spic
= NULL
;
1582 mutex_enter(&spa
->spa_scrub_lock
);
1583 while ((spic
= avl_destroy_nodes(&scn
->scn_prefetch_queue
,
1584 &cookie
)) != NULL
) {
1585 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1586 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1588 mutex_exit(&spa
->spa_scrub_lock
);
1592 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t
*spc
,
1593 const zbookmark_phys_t
*zb
)
1595 zbookmark_phys_t
*last_zb
= &spc
->spc_scn
->scn_prefetch_bookmark
;
1596 dnode_phys_t tmp_dnp
;
1597 dnode_phys_t
*dnp
= (spc
->spc_root
) ? NULL
: &tmp_dnp
;
1599 if (zb
->zb_objset
!= last_zb
->zb_objset
)
1601 if ((int64_t)zb
->zb_object
< 0)
1604 tmp_dnp
.dn_datablkszsec
= spc
->spc_datablkszsec
;
1605 tmp_dnp
.dn_indblkshift
= spc
->spc_indblkshift
;
1607 if (zbookmark_subtree_completed(dnp
, zb
, last_zb
))
1614 dsl_scan_prefetch(scan_prefetch_ctx_t
*spc
, blkptr_t
*bp
, zbookmark_phys_t
*zb
)
1617 dsl_scan_t
*scn
= spc
->spc_scn
;
1618 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1619 scan_prefetch_issue_ctx_t
*spic
;
1621 if (zfs_no_scrub_prefetch
|| BP_IS_REDACTED(bp
))
1624 if (BP_IS_HOLE(bp
) || bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
||
1625 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
1626 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
))
1629 if (dsl_scan_check_prefetch_resume(spc
, zb
))
1632 scan_prefetch_ctx_add_ref(spc
, scn
);
1633 spic
= kmem_alloc(sizeof (scan_prefetch_issue_ctx_t
), KM_SLEEP
);
1634 spic
->spic_spc
= spc
;
1635 spic
->spic_bp
= *bp
;
1636 spic
->spic_zb
= *zb
;
1639 * Add the IO to the queue of blocks to prefetch. This allows us to
1640 * prioritize blocks that we will need first for the main traversal
1643 mutex_enter(&spa
->spa_scrub_lock
);
1644 if (avl_find(&scn
->scn_prefetch_queue
, spic
, &idx
) != NULL
) {
1645 /* this block is already queued for prefetch */
1646 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1647 scan_prefetch_ctx_rele(spc
, scn
);
1648 mutex_exit(&spa
->spa_scrub_lock
);
1652 avl_insert(&scn
->scn_prefetch_queue
, spic
, idx
);
1653 cv_broadcast(&spa
->spa_scrub_io_cv
);
1654 mutex_exit(&spa
->spa_scrub_lock
);
1658 dsl_scan_prefetch_dnode(dsl_scan_t
*scn
, dnode_phys_t
*dnp
,
1659 uint64_t objset
, uint64_t object
)
1662 zbookmark_phys_t zb
;
1663 scan_prefetch_ctx_t
*spc
;
1665 if (dnp
->dn_nblkptr
== 0 && !(dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
1668 SET_BOOKMARK(&zb
, objset
, object
, 0, 0);
1670 spc
= scan_prefetch_ctx_create(scn
, dnp
, FTAG
);
1672 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++) {
1673 zb
.zb_level
= BP_GET_LEVEL(&dnp
->dn_blkptr
[i
]);
1675 dsl_scan_prefetch(spc
, &dnp
->dn_blkptr
[i
], &zb
);
1678 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1680 zb
.zb_blkid
= DMU_SPILL_BLKID
;
1681 dsl_scan_prefetch(spc
, DN_SPILL_BLKPTR(dnp
), &zb
);
1684 scan_prefetch_ctx_rele(spc
, FTAG
);
1688 dsl_scan_prefetch_cb(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1689 arc_buf_t
*buf
, void *private)
1692 scan_prefetch_ctx_t
*spc
= private;
1693 dsl_scan_t
*scn
= spc
->spc_scn
;
1694 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1696 /* broadcast that the IO has completed for rate limiting purposes */
1697 mutex_enter(&spa
->spa_scrub_lock
);
1698 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
1699 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
1700 cv_broadcast(&spa
->spa_scrub_io_cv
);
1701 mutex_exit(&spa
->spa_scrub_lock
);
1703 /* if there was an error or we are done prefetching, just cleanup */
1704 if (buf
== NULL
|| scn
->scn_prefetch_stop
)
1707 if (BP_GET_LEVEL(bp
) > 0) {
1710 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
1711 zbookmark_phys_t czb
;
1713 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
1714 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
1715 zb
->zb_level
- 1, zb
->zb_blkid
* epb
+ i
);
1716 dsl_scan_prefetch(spc
, cbp
, &czb
);
1718 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
1721 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
1723 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
1724 i
+= cdnp
->dn_extra_slots
+ 1,
1725 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
1726 dsl_scan_prefetch_dnode(scn
, cdnp
,
1727 zb
->zb_objset
, zb
->zb_blkid
* epb
+ i
);
1729 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
1730 objset_phys_t
*osp
= buf
->b_data
;
1732 dsl_scan_prefetch_dnode(scn
, &osp
->os_meta_dnode
,
1733 zb
->zb_objset
, DMU_META_DNODE_OBJECT
);
1735 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
1736 dsl_scan_prefetch_dnode(scn
,
1737 &osp
->os_groupused_dnode
, zb
->zb_objset
,
1738 DMU_GROUPUSED_OBJECT
);
1739 dsl_scan_prefetch_dnode(scn
,
1740 &osp
->os_userused_dnode
, zb
->zb_objset
,
1741 DMU_USERUSED_OBJECT
);
1747 arc_buf_destroy(buf
, private);
1748 scan_prefetch_ctx_rele(spc
, scn
);
1752 dsl_scan_prefetch_thread(void *arg
)
1754 dsl_scan_t
*scn
= arg
;
1755 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1756 scan_prefetch_issue_ctx_t
*spic
;
1758 /* loop until we are told to stop */
1759 while (!scn
->scn_prefetch_stop
) {
1760 arc_flags_t flags
= ARC_FLAG_NOWAIT
|
1761 ARC_FLAG_PRESCIENT_PREFETCH
| ARC_FLAG_PREFETCH
;
1762 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
1764 mutex_enter(&spa
->spa_scrub_lock
);
1767 * Wait until we have an IO to issue and are not above our
1768 * maximum in flight limit.
1770 while (!scn
->scn_prefetch_stop
&&
1771 (avl_numnodes(&scn
->scn_prefetch_queue
) == 0 ||
1772 spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)) {
1773 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
1776 /* recheck if we should stop since we waited for the cv */
1777 if (scn
->scn_prefetch_stop
) {
1778 mutex_exit(&spa
->spa_scrub_lock
);
1782 /* remove the prefetch IO from the tree */
1783 spic
= avl_first(&scn
->scn_prefetch_queue
);
1784 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(&spic
->spic_bp
);
1785 avl_remove(&scn
->scn_prefetch_queue
, spic
);
1787 mutex_exit(&spa
->spa_scrub_lock
);
1789 if (BP_IS_PROTECTED(&spic
->spic_bp
)) {
1790 ASSERT(BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_DNODE
||
1791 BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_OBJSET
);
1792 ASSERT3U(BP_GET_LEVEL(&spic
->spic_bp
), ==, 0);
1793 zio_flags
|= ZIO_FLAG_RAW
;
1796 /* issue the prefetch asynchronously */
1797 (void) arc_read(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
1798 &spic
->spic_bp
, dsl_scan_prefetch_cb
, spic
->spic_spc
,
1799 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, &spic
->spic_zb
);
1801 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1804 ASSERT(scn
->scn_prefetch_stop
);
1806 /* free any prefetches we didn't get to complete */
1807 mutex_enter(&spa
->spa_scrub_lock
);
1808 while ((spic
= avl_first(&scn
->scn_prefetch_queue
)) != NULL
) {
1809 avl_remove(&scn
->scn_prefetch_queue
, spic
);
1810 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1811 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1813 ASSERT0(avl_numnodes(&scn
->scn_prefetch_queue
));
1814 mutex_exit(&spa
->spa_scrub_lock
);
1818 dsl_scan_check_resume(dsl_scan_t
*scn
, const dnode_phys_t
*dnp
,
1819 const zbookmark_phys_t
*zb
)
1822 * We never skip over user/group accounting objects (obj<0)
1824 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
) &&
1825 (int64_t)zb
->zb_object
>= 0) {
1827 * If we already visited this bp & everything below (in
1828 * a prior txg sync), don't bother doing it again.
1830 if (zbookmark_subtree_completed(dnp
, zb
,
1831 &scn
->scn_phys
.scn_bookmark
))
1835 * If we found the block we're trying to resume from, or
1836 * we went past it, zero it out to indicate that it's OK
1837 * to start checking for suspending again.
1839 if (zbookmark_subtree_tbd(dnp
, zb
,
1840 &scn
->scn_phys
.scn_bookmark
)) {
1841 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1842 (longlong_t
)zb
->zb_objset
,
1843 (longlong_t
)zb
->zb_object
,
1844 (longlong_t
)zb
->zb_level
,
1845 (longlong_t
)zb
->zb_blkid
);
1846 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (*zb
));
1852 static void dsl_scan_visitbp(blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
1853 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
1854 dmu_objset_type_t ostype
, dmu_tx_t
*tx
);
1855 inline __attribute__((always_inline
)) static void dsl_scan_visitdnode(
1856 dsl_scan_t
*, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
1857 dnode_phys_t
*dnp
, uint64_t object
, dmu_tx_t
*tx
);
1860 * Return nonzero on i/o error.
1861 * Return new buf to write out in *bufp.
1863 inline __attribute__((always_inline
)) static int
1864 dsl_scan_recurse(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
1865 dnode_phys_t
*dnp
, const blkptr_t
*bp
,
1866 const zbookmark_phys_t
*zb
, dmu_tx_t
*tx
)
1868 dsl_pool_t
*dp
= scn
->scn_dp
;
1869 spa_t
*spa
= dp
->dp_spa
;
1870 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
1873 ASSERT(!BP_IS_REDACTED(bp
));
1876 * There is an unlikely case of encountering dnodes with contradicting
1877 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
1878 * or modified before commit 4254acb was merged. As it is not possible
1879 * to know which of the two is correct, report an error.
1882 dnp
->dn_bonuslen
> DN_MAX_BONUS_LEN(dnp
)) {
1883 scn
->scn_phys
.scn_errors
++;
1884 spa_log_error(spa
, zb
, &bp
->blk_birth
);
1885 return (SET_ERROR(EINVAL
));
1888 if (BP_GET_LEVEL(bp
) > 0) {
1889 arc_flags_t flags
= ARC_FLAG_WAIT
;
1892 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
1895 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
1896 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
1898 scn
->scn_phys
.scn_errors
++;
1901 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
1902 zbookmark_phys_t czb
;
1904 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
1906 zb
->zb_blkid
* epb
+ i
);
1907 dsl_scan_visitbp(cbp
, &czb
, dnp
,
1908 ds
, scn
, ostype
, tx
);
1910 arc_buf_destroy(buf
, &buf
);
1911 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
1912 arc_flags_t flags
= ARC_FLAG_WAIT
;
1915 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
1918 if (BP_IS_PROTECTED(bp
)) {
1919 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
1920 zio_flags
|= ZIO_FLAG_RAW
;
1923 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
1924 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
1926 scn
->scn_phys
.scn_errors
++;
1929 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
1930 i
+= cdnp
->dn_extra_slots
+ 1,
1931 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
1932 dsl_scan_visitdnode(scn
, ds
, ostype
,
1933 cdnp
, zb
->zb_blkid
* epb
+ i
, tx
);
1936 arc_buf_destroy(buf
, &buf
);
1937 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
1938 arc_flags_t flags
= ARC_FLAG_WAIT
;
1942 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
1943 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
1945 scn
->scn_phys
.scn_errors
++;
1951 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1952 &osp
->os_meta_dnode
, DMU_META_DNODE_OBJECT
, tx
);
1954 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
1956 * We also always visit user/group/project accounting
1957 * objects, and never skip them, even if we are
1958 * suspending. This is necessary so that the
1959 * space deltas from this txg get integrated.
1961 if (OBJSET_BUF_HAS_PROJECTUSED(buf
))
1962 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1963 &osp
->os_projectused_dnode
,
1964 DMU_PROJECTUSED_OBJECT
, tx
);
1965 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1966 &osp
->os_groupused_dnode
,
1967 DMU_GROUPUSED_OBJECT
, tx
);
1968 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1969 &osp
->os_userused_dnode
,
1970 DMU_USERUSED_OBJECT
, tx
);
1972 arc_buf_destroy(buf
, &buf
);
1973 } else if (!zfs_blkptr_verify(spa
, bp
,
1974 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
)) {
1976 * Sanity check the block pointer contents, this is handled
1977 * by arc_read() for the cases above.
1979 scn
->scn_phys
.scn_errors
++;
1980 spa_log_error(spa
, zb
, &bp
->blk_birth
);
1981 return (SET_ERROR(EINVAL
));
1987 inline __attribute__((always_inline
)) static void
1988 dsl_scan_visitdnode(dsl_scan_t
*scn
, dsl_dataset_t
*ds
,
1989 dmu_objset_type_t ostype
, dnode_phys_t
*dnp
,
1990 uint64_t object
, dmu_tx_t
*tx
)
1994 for (j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
1995 zbookmark_phys_t czb
;
1997 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
1998 dnp
->dn_nlevels
- 1, j
);
1999 dsl_scan_visitbp(&dnp
->dn_blkptr
[j
],
2000 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2003 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
2004 zbookmark_phys_t czb
;
2005 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2006 0, DMU_SPILL_BLKID
);
2007 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp
),
2008 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2013 * The arguments are in this order because mdb can only print the
2014 * first 5; we want them to be useful.
2017 dsl_scan_visitbp(blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2018 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2019 dmu_objset_type_t ostype
, dmu_tx_t
*tx
)
2021 dsl_pool_t
*dp
= scn
->scn_dp
;
2022 blkptr_t
*bp_toread
= NULL
;
2024 if (dsl_scan_check_suspend(scn
, zb
))
2027 if (dsl_scan_check_resume(scn
, dnp
, zb
))
2030 scn
->scn_visited_this_txg
++;
2032 if (BP_IS_HOLE(bp
)) {
2033 scn
->scn_holes_this_txg
++;
2037 if (BP_IS_REDACTED(bp
)) {
2038 ASSERT(dsl_dataset_feature_is_active(ds
,
2039 SPA_FEATURE_REDACTED_DATASETS
));
2044 * Check if this block contradicts any filesystem flags.
2046 spa_feature_t f
= SPA_FEATURE_LARGE_BLOCKS
;
2047 if (BP_GET_LSIZE(bp
) > SPA_OLD_MAXBLOCKSIZE
)
2048 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2050 f
= zio_checksum_to_feature(BP_GET_CHECKSUM(bp
));
2051 if (f
!= SPA_FEATURE_NONE
)
2052 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2054 f
= zio_compress_to_feature(BP_GET_COMPRESS(bp
));
2055 if (f
!= SPA_FEATURE_NONE
)
2056 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2058 if (bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
) {
2059 scn
->scn_lt_min_this_txg
++;
2063 bp_toread
= kmem_alloc(sizeof (blkptr_t
), KM_SLEEP
);
2066 if (dsl_scan_recurse(scn
, ds
, ostype
, dnp
, bp_toread
, zb
, tx
) != 0)
2070 * If dsl_scan_ddt() has already visited this block, it will have
2071 * already done any translations or scrubbing, so don't call the
2074 if (ddt_class_contains(dp
->dp_spa
,
2075 scn
->scn_phys
.scn_ddt_class_max
, bp
)) {
2076 scn
->scn_ddt_contained_this_txg
++;
2081 * If this block is from the future (after cur_max_txg), then we
2082 * are doing this on behalf of a deleted snapshot, and we will
2083 * revisit the future block on the next pass of this dataset.
2084 * Don't scan it now unless we need to because something
2085 * under it was modified.
2087 if (BP_PHYSICAL_BIRTH(bp
) > scn
->scn_phys
.scn_cur_max_txg
) {
2088 scn
->scn_gt_max_this_txg
++;
2092 scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, zb
);
2095 kmem_free(bp_toread
, sizeof (blkptr_t
));
2099 dsl_scan_visit_rootbp(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, blkptr_t
*bp
,
2102 zbookmark_phys_t zb
;
2103 scan_prefetch_ctx_t
*spc
;
2105 SET_BOOKMARK(&zb
, ds
? ds
->ds_object
: DMU_META_OBJSET
,
2106 ZB_ROOT_OBJECT
, ZB_ROOT_LEVEL
, ZB_ROOT_BLKID
);
2108 if (ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
)) {
2109 SET_BOOKMARK(&scn
->scn_prefetch_bookmark
,
2110 zb
.zb_objset
, 0, 0, 0);
2112 scn
->scn_prefetch_bookmark
= scn
->scn_phys
.scn_bookmark
;
2115 scn
->scn_objsets_visited_this_txg
++;
2117 spc
= scan_prefetch_ctx_create(scn
, NULL
, FTAG
);
2118 dsl_scan_prefetch(spc
, bp
, &zb
);
2119 scan_prefetch_ctx_rele(spc
, FTAG
);
2121 dsl_scan_visitbp(bp
, &zb
, NULL
, ds
, scn
, DMU_OST_NONE
, tx
);
2123 dprintf_ds(ds
, "finished scan%s", "");
2127 ds_destroyed_scn_phys(dsl_dataset_t
*ds
, dsl_scan_phys_t
*scn_phys
)
2129 if (scn_phys
->scn_bookmark
.zb_objset
== ds
->ds_object
) {
2130 if (ds
->ds_is_snapshot
) {
2133 * - scn_cur_{min,max}_txg stays the same.
2134 * - Setting the flag is not really necessary if
2135 * scn_cur_max_txg == scn_max_txg, because there
2136 * is nothing after this snapshot that we care
2137 * about. However, we set it anyway and then
2138 * ignore it when we retraverse it in
2139 * dsl_scan_visitds().
2141 scn_phys
->scn_bookmark
.zb_objset
=
2142 dsl_dataset_phys(ds
)->ds_next_snap_obj
;
2143 zfs_dbgmsg("destroying ds %llu on %s; currently "
2144 "traversing; reset zb_objset to %llu",
2145 (u_longlong_t
)ds
->ds_object
,
2146 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2147 (u_longlong_t
)dsl_dataset_phys(ds
)->
2149 scn_phys
->scn_flags
|= DSF_VISIT_DS_AGAIN
;
2151 SET_BOOKMARK(&scn_phys
->scn_bookmark
,
2152 ZB_DESTROYED_OBJSET
, 0, 0, 0);
2153 zfs_dbgmsg("destroying ds %llu on %s; currently "
2154 "traversing; reset bookmark to -1,0,0,0",
2155 (u_longlong_t
)ds
->ds_object
,
2156 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
);
2162 * Invoked when a dataset is destroyed. We need to make sure that:
2164 * 1) If it is the dataset that was currently being scanned, we write
2165 * a new dsl_scan_phys_t and marking the objset reference in it
2167 * 2) Remove it from the work queue, if it was present.
2169 * If the dataset was actually a snapshot, instead of marking the dataset
2170 * as destroyed, we instead substitute the next snapshot in line.
2173 dsl_scan_ds_destroyed(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2175 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2176 dsl_scan_t
*scn
= dp
->dp_scan
;
2179 if (!dsl_scan_is_running(scn
))
2182 ds_destroyed_scn_phys(ds
, &scn
->scn_phys
);
2183 ds_destroyed_scn_phys(ds
, &scn
->scn_phys_cached
);
2185 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2186 scan_ds_queue_remove(scn
, ds
->ds_object
);
2187 if (ds
->ds_is_snapshot
)
2188 scan_ds_queue_insert(scn
,
2189 dsl_dataset_phys(ds
)->ds_next_snap_obj
, mintxg
);
2192 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2193 ds
->ds_object
, &mintxg
) == 0) {
2194 ASSERT3U(dsl_dataset_phys(ds
)->ds_num_children
, <=, 1);
2195 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2196 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2197 if (ds
->ds_is_snapshot
) {
2199 * We keep the same mintxg; it could be >
2200 * ds_creation_txg if the previous snapshot was
2203 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2204 scn
->scn_phys
.scn_queue_obj
,
2205 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2207 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2208 "replacing with %llu",
2209 (u_longlong_t
)ds
->ds_object
,
2210 dp
->dp_spa
->spa_name
,
2211 (u_longlong_t
)dsl_dataset_phys(ds
)->
2214 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2216 (u_longlong_t
)ds
->ds_object
,
2217 dp
->dp_spa
->spa_name
);
2222 * dsl_scan_sync() should be called after this, and should sync
2223 * out our changed state, but just to be safe, do it here.
2225 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2229 ds_snapshotted_bookmark(dsl_dataset_t
*ds
, zbookmark_phys_t
*scn_bookmark
)
2231 if (scn_bookmark
->zb_objset
== ds
->ds_object
) {
2232 scn_bookmark
->zb_objset
=
2233 dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
2234 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2235 "reset zb_objset to %llu",
2236 (u_longlong_t
)ds
->ds_object
,
2237 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2238 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2243 * Called when a dataset is snapshotted. If we were currently traversing
2244 * this snapshot, we reset our bookmark to point at the newly created
2245 * snapshot. We also modify our work queue to remove the old snapshot and
2246 * replace with the new one.
2249 dsl_scan_ds_snapshotted(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2251 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2252 dsl_scan_t
*scn
= dp
->dp_scan
;
2255 if (!dsl_scan_is_running(scn
))
2258 ASSERT(dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0);
2260 ds_snapshotted_bookmark(ds
, &scn
->scn_phys
.scn_bookmark
);
2261 ds_snapshotted_bookmark(ds
, &scn
->scn_phys_cached
.scn_bookmark
);
2263 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2264 scan_ds_queue_remove(scn
, ds
->ds_object
);
2265 scan_ds_queue_insert(scn
,
2266 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
);
2269 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2270 ds
->ds_object
, &mintxg
) == 0) {
2271 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2272 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2273 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2274 scn
->scn_phys
.scn_queue_obj
,
2275 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
, tx
) == 0);
2276 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2277 "replacing with %llu",
2278 (u_longlong_t
)ds
->ds_object
,
2279 dp
->dp_spa
->spa_name
,
2280 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2283 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2287 ds_clone_swapped_bookmark(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
,
2288 zbookmark_phys_t
*scn_bookmark
)
2290 if (scn_bookmark
->zb_objset
== ds1
->ds_object
) {
2291 scn_bookmark
->zb_objset
= ds2
->ds_object
;
2292 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2293 "reset zb_objset to %llu",
2294 (u_longlong_t
)ds1
->ds_object
,
2295 ds1
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2296 (u_longlong_t
)ds2
->ds_object
);
2297 } else if (scn_bookmark
->zb_objset
== ds2
->ds_object
) {
2298 scn_bookmark
->zb_objset
= ds1
->ds_object
;
2299 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2300 "reset zb_objset to %llu",
2301 (u_longlong_t
)ds2
->ds_object
,
2302 ds2
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2303 (u_longlong_t
)ds1
->ds_object
);
2308 * Called when an origin dataset and its clone are swapped. If we were
2309 * currently traversing the dataset, we need to switch to traversing the
2310 * newly promoted clone.
2313 dsl_scan_ds_clone_swapped(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
, dmu_tx_t
*tx
)
2315 dsl_pool_t
*dp
= ds1
->ds_dir
->dd_pool
;
2316 dsl_scan_t
*scn
= dp
->dp_scan
;
2317 uint64_t mintxg1
, mintxg2
;
2318 boolean_t ds1_queued
, ds2_queued
;
2320 if (!dsl_scan_is_running(scn
))
2323 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys
.scn_bookmark
);
2324 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys_cached
.scn_bookmark
);
2327 * Handle the in-memory scan queue.
2329 ds1_queued
= scan_ds_queue_contains(scn
, ds1
->ds_object
, &mintxg1
);
2330 ds2_queued
= scan_ds_queue_contains(scn
, ds2
->ds_object
, &mintxg2
);
2332 /* Sanity checking. */
2334 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2335 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2338 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2339 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2342 if (ds1_queued
&& ds2_queued
) {
2344 * If both are queued, we don't need to do anything.
2345 * The swapping code below would not handle this case correctly,
2346 * since we can't insert ds2 if it is already there. That's
2347 * because scan_ds_queue_insert() prohibits a duplicate insert
2350 } else if (ds1_queued
) {
2351 scan_ds_queue_remove(scn
, ds1
->ds_object
);
2352 scan_ds_queue_insert(scn
, ds2
->ds_object
, mintxg1
);
2353 } else if (ds2_queued
) {
2354 scan_ds_queue_remove(scn
, ds2
->ds_object
);
2355 scan_ds_queue_insert(scn
, ds1
->ds_object
, mintxg2
);
2359 * Handle the on-disk scan queue.
2360 * The on-disk state is an out-of-date version of the in-memory state,
2361 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2362 * be different. Therefore we need to apply the swap logic to the
2363 * on-disk state independently of the in-memory state.
2365 ds1_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2366 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, &mintxg1
) == 0;
2367 ds2_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2368 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, &mintxg2
) == 0;
2370 /* Sanity checking. */
2372 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2373 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2376 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2377 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2380 if (ds1_queued
&& ds2_queued
) {
2382 * If both are queued, we don't need to do anything.
2383 * Alternatively, we could check for EEXIST from
2384 * zap_add_int_key() and back out to the original state, but
2385 * that would be more work than checking for this case upfront.
2387 } else if (ds1_queued
) {
2388 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2389 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, tx
));
2390 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2391 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, mintxg1
, tx
));
2392 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2393 "replacing with %llu",
2394 (u_longlong_t
)ds1
->ds_object
,
2395 dp
->dp_spa
->spa_name
,
2396 (u_longlong_t
)ds2
->ds_object
);
2397 } else if (ds2_queued
) {
2398 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2399 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, tx
));
2400 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2401 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, mintxg2
, tx
));
2402 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2403 "replacing with %llu",
2404 (u_longlong_t
)ds2
->ds_object
,
2405 dp
->dp_spa
->spa_name
,
2406 (u_longlong_t
)ds1
->ds_object
);
2409 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2413 enqueue_clones_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2415 uint64_t originobj
= *(uint64_t *)arg
;
2418 dsl_scan_t
*scn
= dp
->dp_scan
;
2420 if (dsl_dir_phys(hds
->ds_dir
)->dd_origin_obj
!= originobj
)
2423 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2427 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= originobj
) {
2428 dsl_dataset_t
*prev
;
2429 err
= dsl_dataset_hold_obj(dp
,
2430 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2432 dsl_dataset_rele(ds
, FTAG
);
2437 scan_ds_queue_insert(scn
, ds
->ds_object
,
2438 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2439 dsl_dataset_rele(ds
, FTAG
);
2444 dsl_scan_visitds(dsl_scan_t
*scn
, uint64_t dsobj
, dmu_tx_t
*tx
)
2446 dsl_pool_t
*dp
= scn
->scn_dp
;
2449 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2451 if (scn
->scn_phys
.scn_cur_min_txg
>=
2452 scn
->scn_phys
.scn_max_txg
) {
2454 * This can happen if this snapshot was created after the
2455 * scan started, and we already completed a previous snapshot
2456 * that was created after the scan started. This snapshot
2457 * only references blocks with:
2459 * birth < our ds_creation_txg
2460 * cur_min_txg is no less than ds_creation_txg.
2461 * We have already visited these blocks.
2463 * birth > scn_max_txg
2464 * The scan requested not to visit these blocks.
2466 * Subsequent snapshots (and clones) can reference our
2467 * blocks, or blocks with even higher birth times.
2468 * Therefore we do not need to visit them either,
2469 * so we do not add them to the work queue.
2471 * Note that checking for cur_min_txg >= cur_max_txg
2472 * is not sufficient, because in that case we may need to
2473 * visit subsequent snapshots. This happens when min_txg > 0,
2474 * which raises cur_min_txg. In this case we will visit
2475 * this dataset but skip all of its blocks, because the
2476 * rootbp's birth time is < cur_min_txg. Then we will
2477 * add the next snapshots/clones to the work queue.
2479 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2480 dsl_dataset_name(ds
, dsname
);
2481 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2482 "cur_min_txg (%llu) >= max_txg (%llu)",
2483 (longlong_t
)dsobj
, dsname
,
2484 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2485 (longlong_t
)scn
->scn_phys
.scn_max_txg
);
2486 kmem_free(dsname
, MAXNAMELEN
);
2492 * Only the ZIL in the head (non-snapshot) is valid. Even though
2493 * snapshots can have ZIL block pointers (which may be the same
2494 * BP as in the head), they must be ignored. In addition, $ORIGIN
2495 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2496 * need to look for a ZIL in it either. So we traverse the ZIL here,
2497 * rather than in scan_recurse(), because the regular snapshot
2498 * block-sharing rules don't apply to it.
2500 if (!dsl_dataset_is_snapshot(ds
) &&
2501 (dp
->dp_origin_snap
== NULL
||
2502 ds
->ds_dir
!= dp
->dp_origin_snap
->ds_dir
)) {
2504 if (dmu_objset_from_ds(ds
, &os
) != 0) {
2507 dsl_scan_zil(dp
, &os
->os_zil_header
);
2511 * Iterate over the bps in this ds.
2513 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
2514 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2515 dsl_scan_visit_rootbp(scn
, ds
, &dsl_dataset_phys(ds
)->ds_bp
, tx
);
2516 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2518 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2519 dsl_dataset_name(ds
, dsname
);
2520 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2522 (longlong_t
)dsobj
, dsname
,
2523 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2524 (longlong_t
)scn
->scn_phys
.scn_cur_max_txg
,
2525 (int)scn
->scn_suspending
);
2526 kmem_free(dsname
, ZFS_MAX_DATASET_NAME_LEN
);
2528 if (scn
->scn_suspending
)
2532 * We've finished this pass over this dataset.
2536 * If we did not completely visit this dataset, do another pass.
2538 if (scn
->scn_phys
.scn_flags
& DSF_VISIT_DS_AGAIN
) {
2539 zfs_dbgmsg("incomplete pass on %s; visiting again",
2540 dp
->dp_spa
->spa_name
);
2541 scn
->scn_phys
.scn_flags
&= ~DSF_VISIT_DS_AGAIN
;
2542 scan_ds_queue_insert(scn
, ds
->ds_object
,
2543 scn
->scn_phys
.scn_cur_max_txg
);
2548 * Add descendant datasets to work queue.
2550 if (dsl_dataset_phys(ds
)->ds_next_snap_obj
!= 0) {
2551 scan_ds_queue_insert(scn
,
2552 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2553 dsl_dataset_phys(ds
)->ds_creation_txg
);
2555 if (dsl_dataset_phys(ds
)->ds_num_children
> 1) {
2556 boolean_t usenext
= B_FALSE
;
2557 if (dsl_dataset_phys(ds
)->ds_next_clones_obj
!= 0) {
2560 * A bug in a previous version of the code could
2561 * cause upgrade_clones_cb() to not set
2562 * ds_next_snap_obj when it should, leading to a
2563 * missing entry. Therefore we can only use the
2564 * next_clones_obj when its count is correct.
2566 int err
= zap_count(dp
->dp_meta_objset
,
2567 dsl_dataset_phys(ds
)->ds_next_clones_obj
, &count
);
2569 count
== dsl_dataset_phys(ds
)->ds_num_children
- 1)
2576 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
2577 dsl_dataset_phys(ds
)->ds_next_clones_obj
);
2578 zap_cursor_retrieve(&zc
, &za
) == 0;
2579 (void) zap_cursor_advance(&zc
)) {
2580 scan_ds_queue_insert(scn
,
2581 zfs_strtonum(za
.za_name
, NULL
),
2582 dsl_dataset_phys(ds
)->ds_creation_txg
);
2584 zap_cursor_fini(&zc
);
2586 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2587 enqueue_clones_cb
, &ds
->ds_object
,
2593 dsl_dataset_rele(ds
, FTAG
);
2597 enqueue_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2602 dsl_scan_t
*scn
= dp
->dp_scan
;
2604 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2608 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0) {
2609 dsl_dataset_t
*prev
;
2610 err
= dsl_dataset_hold_obj(dp
,
2611 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2613 dsl_dataset_rele(ds
, FTAG
);
2618 * If this is a clone, we don't need to worry about it for now.
2620 if (dsl_dataset_phys(prev
)->ds_next_snap_obj
!= ds
->ds_object
) {
2621 dsl_dataset_rele(ds
, FTAG
);
2622 dsl_dataset_rele(prev
, FTAG
);
2625 dsl_dataset_rele(ds
, FTAG
);
2629 scan_ds_queue_insert(scn
, ds
->ds_object
,
2630 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2631 dsl_dataset_rele(ds
, FTAG
);
2636 dsl_scan_ddt_entry(dsl_scan_t
*scn
, enum zio_checksum checksum
,
2637 ddt_entry_t
*dde
, dmu_tx_t
*tx
)
2640 const ddt_key_t
*ddk
= &dde
->dde_key
;
2641 ddt_phys_t
*ddp
= dde
->dde_phys
;
2643 zbookmark_phys_t zb
= { 0 };
2645 if (!dsl_scan_is_running(scn
))
2649 * This function is special because it is the only thing
2650 * that can add scan_io_t's to the vdev scan queues from
2651 * outside dsl_scan_sync(). For the most part this is ok
2652 * as long as it is called from within syncing context.
2653 * However, dsl_scan_sync() expects that no new sio's will
2654 * be added between when all the work for a scan is done
2655 * and the next txg when the scan is actually marked as
2656 * completed. This check ensures we do not issue new sio's
2657 * during this period.
2659 if (scn
->scn_done_txg
!= 0)
2662 for (int p
= 0; p
< DDT_PHYS_TYPES
; p
++, ddp
++) {
2663 if (ddp
->ddp_phys_birth
== 0 ||
2664 ddp
->ddp_phys_birth
> scn
->scn_phys
.scn_max_txg
)
2666 ddt_bp_create(checksum
, ddk
, ddp
, &bp
);
2668 scn
->scn_visited_this_txg
++;
2669 scan_funcs
[scn
->scn_phys
.scn_func
](scn
->scn_dp
, &bp
, &zb
);
2674 * Scrub/dedup interaction.
2676 * If there are N references to a deduped block, we don't want to scrub it
2677 * N times -- ideally, we should scrub it exactly once.
2679 * We leverage the fact that the dde's replication class (enum ddt_class)
2680 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2681 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2683 * To prevent excess scrubbing, the scrub begins by walking the DDT
2684 * to find all blocks with refcnt > 1, and scrubs each of these once.
2685 * Since there are two replication classes which contain blocks with
2686 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2687 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2689 * There would be nothing more to say if a block's refcnt couldn't change
2690 * during a scrub, but of course it can so we must account for changes
2691 * in a block's replication class.
2693 * Here's an example of what can occur:
2695 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2696 * when visited during the top-down scrub phase, it will be scrubbed twice.
2697 * This negates our scrub optimization, but is otherwise harmless.
2699 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2700 * on each visit during the top-down scrub phase, it will never be scrubbed.
2701 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2702 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2703 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2704 * while a scrub is in progress, it scrubs the block right then.
2707 dsl_scan_ddt(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
2709 ddt_bookmark_t
*ddb
= &scn
->scn_phys
.scn_ddt_bookmark
;
2710 ddt_entry_t dde
= {{{{0}}}};
2714 while ((error
= ddt_walk(scn
->scn_dp
->dp_spa
, ddb
, &dde
)) == 0) {
2717 if (ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
)
2719 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2720 (longlong_t
)ddb
->ddb_class
,
2721 (longlong_t
)ddb
->ddb_type
,
2722 (longlong_t
)ddb
->ddb_checksum
,
2723 (longlong_t
)ddb
->ddb_cursor
);
2725 /* There should be no pending changes to the dedup table */
2726 ddt
= scn
->scn_dp
->dp_spa
->spa_ddt
[ddb
->ddb_checksum
];
2727 ASSERT(avl_first(&ddt
->ddt_tree
) == NULL
);
2729 dsl_scan_ddt_entry(scn
, ddb
->ddb_checksum
, &dde
, tx
);
2732 if (dsl_scan_check_suspend(scn
, NULL
))
2736 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
2737 "suspending=%u", (longlong_t
)n
, scn
->scn_dp
->dp_spa
->spa_name
,
2738 (int)scn
->scn_phys
.scn_ddt_class_max
, (int)scn
->scn_suspending
);
2740 ASSERT(error
== 0 || error
== ENOENT
);
2741 ASSERT(error
!= ENOENT
||
2742 ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
);
2746 dsl_scan_ds_maxtxg(dsl_dataset_t
*ds
)
2748 uint64_t smt
= ds
->ds_dir
->dd_pool
->dp_scan
->scn_phys
.scn_max_txg
;
2749 if (ds
->ds_is_snapshot
)
2750 return (MIN(smt
, dsl_dataset_phys(ds
)->ds_creation_txg
));
2755 dsl_scan_visit(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
2758 dsl_pool_t
*dp
= scn
->scn_dp
;
2760 if (scn
->scn_phys
.scn_ddt_bookmark
.ddb_class
<=
2761 scn
->scn_phys
.scn_ddt_class_max
) {
2762 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
2763 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
2764 dsl_scan_ddt(scn
, tx
);
2765 if (scn
->scn_suspending
)
2769 if (scn
->scn_phys
.scn_bookmark
.zb_objset
== DMU_META_OBJSET
) {
2770 /* First do the MOS & ORIGIN */
2772 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
2773 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
2774 dsl_scan_visit_rootbp(scn
, NULL
,
2775 &dp
->dp_meta_rootbp
, tx
);
2776 spa_set_rootblkptr(dp
->dp_spa
, &dp
->dp_meta_rootbp
);
2777 if (scn
->scn_suspending
)
2780 if (spa_version(dp
->dp_spa
) < SPA_VERSION_DSL_SCRUB
) {
2781 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2782 enqueue_cb
, NULL
, DS_FIND_CHILDREN
));
2784 dsl_scan_visitds(scn
,
2785 dp
->dp_origin_snap
->ds_object
, tx
);
2787 ASSERT(!scn
->scn_suspending
);
2788 } else if (scn
->scn_phys
.scn_bookmark
.zb_objset
!=
2789 ZB_DESTROYED_OBJSET
) {
2790 uint64_t dsobj
= scn
->scn_phys
.scn_bookmark
.zb_objset
;
2792 * If we were suspended, continue from here. Note if the
2793 * ds we were suspended on was deleted, the zb_objset may
2794 * be -1, so we will skip this and find a new objset
2797 dsl_scan_visitds(scn
, dsobj
, tx
);
2798 if (scn
->scn_suspending
)
2803 * In case we suspended right at the end of the ds, zero the
2804 * bookmark so we don't think that we're still trying to resume.
2806 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (zbookmark_phys_t
));
2809 * Keep pulling things out of the dataset avl queue. Updates to the
2810 * persistent zap-object-as-queue happen only at checkpoints.
2812 while ((sds
= avl_first(&scn
->scn_queue
)) != NULL
) {
2814 uint64_t dsobj
= sds
->sds_dsobj
;
2815 uint64_t txg
= sds
->sds_txg
;
2817 /* dequeue and free the ds from the queue */
2818 scan_ds_queue_remove(scn
, dsobj
);
2821 /* set up min / max txg */
2822 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2824 scn
->scn_phys
.scn_cur_min_txg
=
2825 MAX(scn
->scn_phys
.scn_min_txg
, txg
);
2827 scn
->scn_phys
.scn_cur_min_txg
=
2828 MAX(scn
->scn_phys
.scn_min_txg
,
2829 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2831 scn
->scn_phys
.scn_cur_max_txg
= dsl_scan_ds_maxtxg(ds
);
2832 dsl_dataset_rele(ds
, FTAG
);
2834 dsl_scan_visitds(scn
, dsobj
, tx
);
2835 if (scn
->scn_suspending
)
2839 /* No more objsets to fetch, we're done */
2840 scn
->scn_phys
.scn_bookmark
.zb_objset
= ZB_DESTROYED_OBJSET
;
2841 ASSERT0(scn
->scn_suspending
);
2845 dsl_scan_count_data_disks(spa_t
*spa
)
2847 vdev_t
*rvd
= spa
->spa_root_vdev
;
2848 uint64_t i
, leaves
= 0;
2850 for (i
= 0; i
< rvd
->vdev_children
; i
++) {
2851 vdev_t
*vd
= rvd
->vdev_child
[i
];
2852 if (vd
->vdev_islog
|| vd
->vdev_isspare
|| vd
->vdev_isl2cache
)
2854 leaves
+= vdev_get_ndisks(vd
) - vdev_get_nparity(vd
);
2860 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t
*q
, const blkptr_t
*bp
)
2863 uint64_t cur_size
= 0;
2865 for (i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
2866 cur_size
+= DVA_GET_ASIZE(&bp
->blk_dva
[i
]);
2869 q
->q_total_zio_size_this_txg
+= cur_size
;
2870 q
->q_zios_this_txg
++;
2874 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t
*q
, uint64_t start
,
2877 q
->q_total_seg_size_this_txg
+= end
- start
;
2878 q
->q_segs_this_txg
++;
2882 scan_io_queue_check_suspend(dsl_scan_t
*scn
)
2884 /* See comment in dsl_scan_check_suspend() */
2885 uint64_t curr_time_ns
= gethrtime();
2886 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
2887 uint64_t sync_time_ns
= curr_time_ns
-
2888 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
2889 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
2890 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
2891 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
2892 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
2894 return ((NSEC2MSEC(scan_time_ns
) > mintime
&&
2895 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
2896 txg_sync_waiting(scn
->scn_dp
) ||
2897 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
2898 spa_shutting_down(scn
->scn_dp
->dp_spa
));
2902 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2903 * disk. This consumes the io_list and frees the scan_io_t's. This is
2904 * called when emptying queues, either when we're up against the memory
2905 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2906 * processing the list before we finished. Any sios that were not issued
2907 * will remain in the io_list.
2910 scan_io_queue_issue(dsl_scan_io_queue_t
*queue
, list_t
*io_list
)
2912 dsl_scan_t
*scn
= queue
->q_scn
;
2914 boolean_t suspended
= B_FALSE
;
2916 while ((sio
= list_head(io_list
)) != NULL
) {
2919 if (scan_io_queue_check_suspend(scn
)) {
2925 scan_exec_io(scn
->scn_dp
, &bp
, sio
->sio_flags
,
2926 &sio
->sio_zb
, queue
);
2927 (void) list_remove_head(io_list
);
2928 scan_io_queues_update_zio_stats(queue
, &bp
);
2935 * This function removes sios from an IO queue which reside within a given
2936 * range_seg_t and inserts them (in offset order) into a list. Note that
2937 * we only ever return a maximum of 32 sios at once. If there are more sios
2938 * to process within this segment that did not make it onto the list we
2939 * return B_TRUE and otherwise B_FALSE.
2942 scan_io_queue_gather(dsl_scan_io_queue_t
*queue
, range_seg_t
*rs
, list_t
*list
)
2944 scan_io_t
*srch_sio
, *sio
, *next_sio
;
2946 uint_t num_sios
= 0;
2947 int64_t bytes_issued
= 0;
2950 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
2952 srch_sio
= sio_alloc(1);
2953 srch_sio
->sio_nr_dvas
= 1;
2954 SIO_SET_OFFSET(srch_sio
, rs_get_start(rs
, queue
->q_exts_by_addr
));
2957 * The exact start of the extent might not contain any matching zios,
2958 * so if that's the case, examine the next one in the tree.
2960 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
2964 sio
= avl_nearest(&queue
->q_sios_by_addr
, idx
, AVL_AFTER
);
2966 while (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
2967 queue
->q_exts_by_addr
) && num_sios
<= 32) {
2968 ASSERT3U(SIO_GET_OFFSET(sio
), >=, rs_get_start(rs
,
2969 queue
->q_exts_by_addr
));
2970 ASSERT3U(SIO_GET_END_OFFSET(sio
), <=, rs_get_end(rs
,
2971 queue
->q_exts_by_addr
));
2973 next_sio
= AVL_NEXT(&queue
->q_sios_by_addr
, sio
);
2974 avl_remove(&queue
->q_sios_by_addr
, sio
);
2975 if (avl_is_empty(&queue
->q_sios_by_addr
))
2976 atomic_add_64(&queue
->q_scn
->scn_queues_pending
, -1);
2977 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
2979 bytes_issued
+= SIO_GET_ASIZE(sio
);
2981 list_insert_tail(list
, sio
);
2986 * We limit the number of sios we process at once to 32 to avoid
2987 * biting off more than we can chew. If we didn't take everything
2988 * in the segment we update it to reflect the work we were able to
2989 * complete. Otherwise, we remove it from the range tree entirely.
2991 if (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
2992 queue
->q_exts_by_addr
)) {
2993 range_tree_adjust_fill(queue
->q_exts_by_addr
, rs
,
2995 range_tree_resize_segment(queue
->q_exts_by_addr
, rs
,
2996 SIO_GET_OFFSET(sio
), rs_get_end(rs
,
2997 queue
->q_exts_by_addr
) - SIO_GET_OFFSET(sio
));
2998 queue
->q_last_ext_addr
= SIO_GET_OFFSET(sio
);
3001 uint64_t rstart
= rs_get_start(rs
, queue
->q_exts_by_addr
);
3002 uint64_t rend
= rs_get_end(rs
, queue
->q_exts_by_addr
);
3003 range_tree_remove(queue
->q_exts_by_addr
, rstart
, rend
- rstart
);
3004 queue
->q_last_ext_addr
= -1;
3010 * This is called from the queue emptying thread and selects the next
3011 * extent from which we are to issue I/Os. The behavior of this function
3012 * depends on the state of the scan, the current memory consumption and
3013 * whether or not we are performing a scan shutdown.
3014 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3015 * needs to perform a checkpoint
3016 * 2) We select the largest available extent if we are up against the
3018 * 3) Otherwise we don't select any extents.
3020 static range_seg_t
*
3021 scan_io_queue_fetch_ext(dsl_scan_io_queue_t
*queue
)
3023 dsl_scan_t
*scn
= queue
->q_scn
;
3024 range_tree_t
*rt
= queue
->q_exts_by_addr
;
3026 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3027 ASSERT(scn
->scn_is_sorted
);
3029 if (!scn
->scn_checkpointing
&& !scn
->scn_clearing
)
3033 * During normal clearing, we want to issue our largest segments
3034 * first, keeping IO as sequential as possible, and leaving the
3035 * smaller extents for later with the hope that they might eventually
3036 * grow to larger sequential segments. However, when the scan is
3037 * checkpointing, no new extents will be added to the sorting queue,
3038 * so the way we are sorted now is as good as it will ever get.
3039 * In this case, we instead switch to issuing extents in LBA order.
3041 if ((zfs_scan_issue_strategy
< 1 && scn
->scn_checkpointing
) ||
3042 zfs_scan_issue_strategy
== 1)
3043 return (range_tree_first(rt
));
3046 * Try to continue previous extent if it is not completed yet. After
3047 * shrink in scan_io_queue_gather() it may no longer be the best, but
3048 * otherwise we leave shorter remnant every txg.
3051 uint64_t size
= 1ULL << rt
->rt_shift
;
3052 range_seg_t
*addr_rs
;
3053 if (queue
->q_last_ext_addr
!= -1) {
3054 start
= queue
->q_last_ext_addr
;
3055 addr_rs
= range_tree_find(rt
, start
, size
);
3056 if (addr_rs
!= NULL
)
3061 * Nothing to continue, so find new best extent.
3063 uint64_t *v
= zfs_btree_first(&queue
->q_exts_by_size
, NULL
);
3066 queue
->q_last_ext_addr
= start
= *v
<< rt
->rt_shift
;
3069 * We need to get the original entry in the by_addr tree so we can
3072 addr_rs
= range_tree_find(rt
, start
, size
);
3073 ASSERT3P(addr_rs
, !=, NULL
);
3074 ASSERT3U(rs_get_start(addr_rs
, rt
), ==, start
);
3075 ASSERT3U(rs_get_end(addr_rs
, rt
), >, start
);
3080 scan_io_queues_run_one(void *arg
)
3082 dsl_scan_io_queue_t
*queue
= arg
;
3083 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
3084 boolean_t suspended
= B_FALSE
;
3090 ASSERT(queue
->q_scn
->scn_is_sorted
);
3092 list_create(&sio_list
, sizeof (scan_io_t
),
3093 offsetof(scan_io_t
, sio_nodes
.sio_list_node
));
3094 zio
= zio_null(queue
->q_scn
->scn_zio_root
, queue
->q_scn
->scn_dp
->dp_spa
,
3095 NULL
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
3096 mutex_enter(q_lock
);
3099 /* Calculate maximum in-flight bytes for this vdev. */
3100 queue
->q_maxinflight_bytes
= MAX(1, zfs_scan_vdev_limit
*
3101 (vdev_get_ndisks(queue
->q_vd
) - vdev_get_nparity(queue
->q_vd
)));
3103 /* reset per-queue scan statistics for this txg */
3104 queue
->q_total_seg_size_this_txg
= 0;
3105 queue
->q_segs_this_txg
= 0;
3106 queue
->q_total_zio_size_this_txg
= 0;
3107 queue
->q_zios_this_txg
= 0;
3109 /* loop until we run out of time or sios */
3110 while ((rs
= scan_io_queue_fetch_ext(queue
)) != NULL
) {
3111 uint64_t seg_start
= 0, seg_end
= 0;
3112 boolean_t more_left
;
3114 ASSERT(list_is_empty(&sio_list
));
3116 /* loop while we still have sios left to process in this rs */
3118 scan_io_t
*first_sio
, *last_sio
;
3121 * We have selected which extent needs to be
3122 * processed next. Gather up the corresponding sios.
3124 more_left
= scan_io_queue_gather(queue
, rs
, &sio_list
);
3125 ASSERT(!list_is_empty(&sio_list
));
3126 first_sio
= list_head(&sio_list
);
3127 last_sio
= list_tail(&sio_list
);
3129 seg_end
= SIO_GET_END_OFFSET(last_sio
);
3131 seg_start
= SIO_GET_OFFSET(first_sio
);
3134 * Issuing sios can take a long time so drop the
3135 * queue lock. The sio queue won't be updated by
3136 * other threads since we're in syncing context so
3137 * we can be sure that our trees will remain exactly
3141 suspended
= scan_io_queue_issue(queue
, &sio_list
);
3142 mutex_enter(q_lock
);
3146 } while (more_left
);
3148 /* update statistics for debugging purposes */
3149 scan_io_queues_update_seg_stats(queue
, seg_start
, seg_end
);
3156 * If we were suspended in the middle of processing,
3157 * requeue any unfinished sios and exit.
3159 while ((sio
= list_head(&sio_list
)) != NULL
) {
3160 list_remove(&sio_list
, sio
);
3161 scan_io_queue_insert_impl(queue
, sio
);
3164 queue
->q_zio
= NULL
;
3167 list_destroy(&sio_list
);
3171 * Performs an emptying run on all scan queues in the pool. This just
3172 * punches out one thread per top-level vdev, each of which processes
3173 * only that vdev's scan queue. We can parallelize the I/O here because
3174 * we know that each queue's I/Os only affect its own top-level vdev.
3176 * This function waits for the queue runs to complete, and must be
3177 * called from dsl_scan_sync (or in general, syncing context).
3180 scan_io_queues_run(dsl_scan_t
*scn
)
3182 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3184 ASSERT(scn
->scn_is_sorted
);
3185 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_READER
));
3187 if (scn
->scn_queues_pending
== 0)
3190 if (scn
->scn_taskq
== NULL
) {
3191 int nthreads
= spa
->spa_root_vdev
->vdev_children
;
3194 * We need to make this taskq *always* execute as many
3195 * threads in parallel as we have top-level vdevs and no
3196 * less, otherwise strange serialization of the calls to
3197 * scan_io_queues_run_one can occur during spa_sync runs
3198 * and that significantly impacts performance.
3200 scn
->scn_taskq
= taskq_create("dsl_scan_iss", nthreads
,
3201 minclsyspri
, nthreads
, nthreads
, TASKQ_PREPOPULATE
);
3204 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3205 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3207 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
3208 if (vd
->vdev_scan_io_queue
!= NULL
) {
3209 VERIFY(taskq_dispatch(scn
->scn_taskq
,
3210 scan_io_queues_run_one
, vd
->vdev_scan_io_queue
,
3211 TQ_SLEEP
) != TASKQID_INVALID
);
3213 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
3217 * Wait for the queues to finish issuing their IOs for this run
3218 * before we return. There may still be IOs in flight at this
3221 taskq_wait(scn
->scn_taskq
);
3225 dsl_scan_async_block_should_pause(dsl_scan_t
*scn
)
3227 uint64_t elapsed_nanosecs
;
3232 if (zfs_async_block_max_blocks
!= 0 &&
3233 scn
->scn_visited_this_txg
>= zfs_async_block_max_blocks
) {
3237 if (zfs_max_async_dedup_frees
!= 0 &&
3238 scn
->scn_dedup_frees_this_txg
>= zfs_max_async_dedup_frees
) {
3242 elapsed_nanosecs
= gethrtime() - scn
->scn_sync_start_time
;
3243 return (elapsed_nanosecs
/ NANOSEC
> zfs_txg_timeout
||
3244 (NSEC2MSEC(elapsed_nanosecs
) > scn
->scn_async_block_min_time_ms
&&
3245 txg_sync_waiting(scn
->scn_dp
)) ||
3246 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3250 dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
3252 dsl_scan_t
*scn
= arg
;
3254 if (!scn
->scn_is_bptree
||
3255 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)) {
3256 if (dsl_scan_async_block_should_pause(scn
))
3257 return (SET_ERROR(ERESTART
));
3260 zio_nowait(zio_free_sync(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
3261 dmu_tx_get_txg(tx
), bp
, 0));
3262 dsl_dir_diduse_space(tx
->tx_pool
->dp_free_dir
, DD_USED_HEAD
,
3263 -bp_get_dsize_sync(scn
->scn_dp
->dp_spa
, bp
),
3264 -BP_GET_PSIZE(bp
), -BP_GET_UCSIZE(bp
), tx
);
3265 scn
->scn_visited_this_txg
++;
3266 if (BP_GET_DEDUP(bp
))
3267 scn
->scn_dedup_frees_this_txg
++;
3272 dsl_scan_update_stats(dsl_scan_t
*scn
)
3274 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3276 uint64_t seg_size_total
= 0, zio_size_total
= 0;
3277 uint64_t seg_count_total
= 0, zio_count_total
= 0;
3279 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3280 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3281 dsl_scan_io_queue_t
*queue
= vd
->vdev_scan_io_queue
;
3286 seg_size_total
+= queue
->q_total_seg_size_this_txg
;
3287 zio_size_total
+= queue
->q_total_zio_size_this_txg
;
3288 seg_count_total
+= queue
->q_segs_this_txg
;
3289 zio_count_total
+= queue
->q_zios_this_txg
;
3292 if (seg_count_total
== 0 || zio_count_total
== 0) {
3293 scn
->scn_avg_seg_size_this_txg
= 0;
3294 scn
->scn_avg_zio_size_this_txg
= 0;
3295 scn
->scn_segs_this_txg
= 0;
3296 scn
->scn_zios_this_txg
= 0;
3300 scn
->scn_avg_seg_size_this_txg
= seg_size_total
/ seg_count_total
;
3301 scn
->scn_avg_zio_size_this_txg
= zio_size_total
/ zio_count_total
;
3302 scn
->scn_segs_this_txg
= seg_count_total
;
3303 scn
->scn_zios_this_txg
= zio_count_total
;
3307 bpobj_dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3311 return (dsl_scan_free_block_cb(arg
, bp
, tx
));
3315 dsl_scan_obsolete_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3319 dsl_scan_t
*scn
= arg
;
3320 const dva_t
*dva
= &bp
->blk_dva
[0];
3322 if (dsl_scan_async_block_should_pause(scn
))
3323 return (SET_ERROR(ERESTART
));
3325 spa_vdev_indirect_mark_obsolete(scn
->scn_dp
->dp_spa
,
3326 DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
),
3327 DVA_GET_ASIZE(dva
), tx
);
3328 scn
->scn_visited_this_txg
++;
3333 dsl_scan_active(dsl_scan_t
*scn
)
3335 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3336 uint64_t used
= 0, comp
, uncomp
;
3337 boolean_t clones_left
;
3339 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3341 if (spa_shutting_down(spa
))
3343 if ((dsl_scan_is_running(scn
) && !dsl_scan_is_paused_scrub(scn
)) ||
3344 (scn
->scn_async_destroying
&& !scn
->scn_async_stalled
))
3347 if (spa_version(scn
->scn_dp
->dp_spa
) >= SPA_VERSION_DEADLISTS
) {
3348 (void) bpobj_space(&scn
->scn_dp
->dp_free_bpobj
,
3349 &used
, &comp
, &uncomp
);
3351 clones_left
= spa_livelist_delete_check(spa
);
3352 return ((used
!= 0) || (clones_left
));
3356 dsl_scan_check_deferred(vdev_t
*vd
)
3358 boolean_t need_resilver
= B_FALSE
;
3360 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3362 dsl_scan_check_deferred(vd
->vdev_child
[c
]);
3365 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
3366 !vd
->vdev_ops
->vdev_op_leaf
)
3367 return (need_resilver
);
3369 if (!vd
->vdev_resilver_deferred
)
3370 need_resilver
= B_TRUE
;
3372 return (need_resilver
);
3376 dsl_scan_need_resilver(spa_t
*spa
, const dva_t
*dva
, size_t psize
,
3377 uint64_t phys_birth
)
3381 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
3383 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
3385 * The indirect vdev can point to multiple
3386 * vdevs. For simplicity, always create
3387 * the resilver zio_t. zio_vdev_io_start()
3388 * will bypass the child resilver i/o's if
3389 * they are on vdevs that don't have DTL's.
3394 if (DVA_GET_GANG(dva
)) {
3396 * Gang members may be spread across multiple
3397 * vdevs, so the best estimate we have is the
3398 * scrub range, which has already been checked.
3399 * XXX -- it would be better to change our
3400 * allocation policy to ensure that all
3401 * gang members reside on the same vdev.
3407 * Check if the top-level vdev must resilver this offset.
3408 * When the offset does not intersect with a dirty leaf DTL
3409 * then it may be possible to skip the resilver IO. The psize
3410 * is provided instead of asize to simplify the check for RAIDZ.
3412 if (!vdev_dtl_need_resilver(vd
, dva
, psize
, phys_birth
))
3416 * Check that this top-level vdev has a device under it which
3417 * is resilvering and is not deferred.
3419 if (!dsl_scan_check_deferred(vd
))
3426 dsl_process_async_destroys(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3428 dsl_scan_t
*scn
= dp
->dp_scan
;
3429 spa_t
*spa
= dp
->dp_spa
;
3432 if (spa_suspend_async_destroy(spa
))
3435 if (zfs_free_bpobj_enabled
&&
3436 spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
3437 scn
->scn_is_bptree
= B_FALSE
;
3438 scn
->scn_async_block_min_time_ms
= zfs_free_min_time_ms
;
3439 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3440 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3441 err
= bpobj_iterate(&dp
->dp_free_bpobj
,
3442 bpobj_dsl_scan_free_block_cb
, scn
, tx
);
3443 VERIFY0(zio_wait(scn
->scn_zio_root
));
3444 scn
->scn_zio_root
= NULL
;
3446 if (err
!= 0 && err
!= ERESTART
)
3447 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3450 if (err
== 0 && spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
3451 ASSERT(scn
->scn_async_destroying
);
3452 scn
->scn_is_bptree
= B_TRUE
;
3453 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3454 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3455 err
= bptree_iterate(dp
->dp_meta_objset
,
3456 dp
->dp_bptree_obj
, B_TRUE
, dsl_scan_free_block_cb
, scn
, tx
);
3457 VERIFY0(zio_wait(scn
->scn_zio_root
));
3458 scn
->scn_zio_root
= NULL
;
3460 if (err
== EIO
|| err
== ECKSUM
) {
3462 } else if (err
!= 0 && err
!= ERESTART
) {
3463 zfs_panic_recover("error %u from "
3464 "traverse_dataset_destroyed()", err
);
3467 if (bptree_is_empty(dp
->dp_meta_objset
, dp
->dp_bptree_obj
)) {
3468 /* finished; deactivate async destroy feature */
3469 spa_feature_decr(spa
, SPA_FEATURE_ASYNC_DESTROY
, tx
);
3470 ASSERT(!spa_feature_is_active(spa
,
3471 SPA_FEATURE_ASYNC_DESTROY
));
3472 VERIFY0(zap_remove(dp
->dp_meta_objset
,
3473 DMU_POOL_DIRECTORY_OBJECT
,
3474 DMU_POOL_BPTREE_OBJ
, tx
));
3475 VERIFY0(bptree_free(dp
->dp_meta_objset
,
3476 dp
->dp_bptree_obj
, tx
));
3477 dp
->dp_bptree_obj
= 0;
3478 scn
->scn_async_destroying
= B_FALSE
;
3479 scn
->scn_async_stalled
= B_FALSE
;
3482 * If we didn't make progress, mark the async
3483 * destroy as stalled, so that we will not initiate
3484 * a spa_sync() on its behalf. Note that we only
3485 * check this if we are not finished, because if the
3486 * bptree had no blocks for us to visit, we can
3487 * finish without "making progress".
3489 scn
->scn_async_stalled
=
3490 (scn
->scn_visited_this_txg
== 0);
3493 if (scn
->scn_visited_this_txg
) {
3494 zfs_dbgmsg("freed %llu blocks in %llums from "
3495 "free_bpobj/bptree on %s in txg %llu; err=%u",
3496 (longlong_t
)scn
->scn_visited_this_txg
,
3498 NSEC2MSEC(gethrtime() - scn
->scn_sync_start_time
),
3499 spa
->spa_name
, (longlong_t
)tx
->tx_txg
, err
);
3500 scn
->scn_visited_this_txg
= 0;
3501 scn
->scn_dedup_frees_this_txg
= 0;
3504 * Write out changes to the DDT and the BRT that may be required
3505 * as a result of the blocks freed. This ensures that the DDT
3506 * and the BRT are clean when a scrub/resilver runs.
3508 ddt_sync(spa
, tx
->tx_txg
);
3509 brt_sync(spa
, tx
->tx_txg
);
3513 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3514 zfs_free_leak_on_eio
&&
3515 (dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
!= 0 ||
3516 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
!= 0 ||
3517 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
!= 0)) {
3519 * We have finished background destroying, but there is still
3520 * some space left in the dp_free_dir. Transfer this leaked
3521 * space to the dp_leak_dir.
3523 if (dp
->dp_leak_dir
== NULL
) {
3524 rrw_enter(&dp
->dp_config_rwlock
, RW_WRITER
, FTAG
);
3525 (void) dsl_dir_create_sync(dp
, dp
->dp_root_dir
,
3527 VERIFY0(dsl_pool_open_special_dir(dp
,
3528 LEAK_DIR_NAME
, &dp
->dp_leak_dir
));
3529 rrw_exit(&dp
->dp_config_rwlock
, FTAG
);
3531 dsl_dir_diduse_space(dp
->dp_leak_dir
, DD_USED_HEAD
,
3532 dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3533 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3534 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3535 dsl_dir_diduse_space(dp
->dp_free_dir
, DD_USED_HEAD
,
3536 -dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3537 -dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3538 -dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3541 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3542 !spa_livelist_delete_check(spa
)) {
3543 /* finished; verify that space accounting went to zero */
3544 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
);
3545 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
);
3546 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
);
3549 spa_notify_waiters(spa
);
3551 EQUIV(bpobj_is_open(&dp
->dp_obsolete_bpobj
),
3552 0 == zap_contains(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
3553 DMU_POOL_OBSOLETE_BPOBJ
));
3554 if (err
== 0 && bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
3555 ASSERT(spa_feature_is_active(dp
->dp_spa
,
3556 SPA_FEATURE_OBSOLETE_COUNTS
));
3558 scn
->scn_is_bptree
= B_FALSE
;
3559 scn
->scn_async_block_min_time_ms
= zfs_obsolete_min_time_ms
;
3560 err
= bpobj_iterate(&dp
->dp_obsolete_bpobj
,
3561 dsl_scan_obsolete_block_cb
, scn
, tx
);
3562 if (err
!= 0 && err
!= ERESTART
)
3563 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3565 if (bpobj_is_empty(&dp
->dp_obsolete_bpobj
))
3566 dsl_pool_destroy_obsolete_bpobj(dp
, tx
);
3572 * This is the primary entry point for scans that is called from syncing
3573 * context. Scans must happen entirely during syncing context so that we
3574 * can guarantee that blocks we are currently scanning will not change out
3575 * from under us. While a scan is active, this function controls how quickly
3576 * transaction groups proceed, instead of the normal handling provided by
3577 * txg_sync_thread().
3580 dsl_scan_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3583 dsl_scan_t
*scn
= dp
->dp_scan
;
3584 spa_t
*spa
= dp
->dp_spa
;
3585 state_sync_type_t sync_type
= SYNC_OPTIONAL
;
3587 if (spa
->spa_resilver_deferred
&&
3588 !spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
3589 spa_feature_incr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
3592 * Check for scn_restart_txg before checking spa_load_state, so
3593 * that we can restart an old-style scan while the pool is being
3594 * imported (see dsl_scan_init). We also restart scans if there
3595 * is a deferred resilver and the user has manually disabled
3596 * deferred resilvers via the tunable.
3598 if (dsl_scan_restarting(scn
, tx
) ||
3599 (spa
->spa_resilver_deferred
&& zfs_resilver_disable_defer
)) {
3600 pool_scan_func_t func
= POOL_SCAN_SCRUB
;
3601 dsl_scan_done(scn
, B_FALSE
, tx
);
3602 if (vdev_resilver_needed(spa
->spa_root_vdev
, NULL
, NULL
))
3603 func
= POOL_SCAN_RESILVER
;
3604 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
3605 func
, dp
->dp_spa
->spa_name
, (longlong_t
)tx
->tx_txg
);
3606 dsl_scan_setup_sync(&func
, tx
);
3610 * Only process scans in sync pass 1.
3612 if (spa_sync_pass(spa
) > 1)
3616 * If the spa is shutting down, then stop scanning. This will
3617 * ensure that the scan does not dirty any new data during the
3620 if (spa_shutting_down(spa
))
3624 * If the scan is inactive due to a stalled async destroy, try again.
3626 if (!scn
->scn_async_stalled
&& !dsl_scan_active(scn
))
3629 /* reset scan statistics */
3630 scn
->scn_visited_this_txg
= 0;
3631 scn
->scn_dedup_frees_this_txg
= 0;
3632 scn
->scn_holes_this_txg
= 0;
3633 scn
->scn_lt_min_this_txg
= 0;
3634 scn
->scn_gt_max_this_txg
= 0;
3635 scn
->scn_ddt_contained_this_txg
= 0;
3636 scn
->scn_objsets_visited_this_txg
= 0;
3637 scn
->scn_avg_seg_size_this_txg
= 0;
3638 scn
->scn_segs_this_txg
= 0;
3639 scn
->scn_avg_zio_size_this_txg
= 0;
3640 scn
->scn_zios_this_txg
= 0;
3641 scn
->scn_suspending
= B_FALSE
;
3642 scn
->scn_sync_start_time
= gethrtime();
3643 spa
->spa_scrub_active
= B_TRUE
;
3646 * First process the async destroys. If we suspend, don't do
3647 * any scrubbing or resilvering. This ensures that there are no
3648 * async destroys while we are scanning, so the scan code doesn't
3649 * have to worry about traversing it. It is also faster to free the
3650 * blocks than to scrub them.
3652 err
= dsl_process_async_destroys(dp
, tx
);
3656 if (!dsl_scan_is_running(scn
) || dsl_scan_is_paused_scrub(scn
))
3660 * Wait a few txgs after importing to begin scanning so that
3661 * we can get the pool imported quickly.
3663 if (spa
->spa_syncing_txg
< spa
->spa_first_txg
+ SCAN_IMPORT_WAIT_TXGS
)
3667 * zfs_scan_suspend_progress can be set to disable scan progress.
3668 * We don't want to spin the txg_sync thread, so we add a delay
3669 * here to simulate the time spent doing a scan. This is mostly
3670 * useful for testing and debugging.
3672 if (zfs_scan_suspend_progress
) {
3673 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
3674 uint_t mintime
= (scn
->scn_phys
.scn_func
==
3675 POOL_SCAN_RESILVER
) ? zfs_resilver_min_time_ms
:
3676 zfs_scrub_min_time_ms
;
3678 while (zfs_scan_suspend_progress
&&
3679 !txg_sync_waiting(scn
->scn_dp
) &&
3680 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
3681 NSEC2MSEC(scan_time_ns
) < mintime
) {
3683 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
3689 * Disabled by default, set zfs_scan_report_txgs to report
3690 * average performance over the last zfs_scan_report_txgs TXGs.
3692 if (!dsl_scan_is_paused_scrub(scn
) && zfs_scan_report_txgs
!= 0 &&
3693 tx
->tx_txg
% zfs_scan_report_txgs
== 0) {
3694 scn
->scn_issued_before_pass
+= spa
->spa_scan_pass_issued
;
3695 spa_scan_stat_init(spa
);
3699 * It is possible to switch from unsorted to sorted at any time,
3700 * but afterwards the scan will remain sorted unless reloaded from
3701 * a checkpoint after a reboot.
3703 if (!zfs_scan_legacy
) {
3704 scn
->scn_is_sorted
= B_TRUE
;
3705 if (scn
->scn_last_checkpoint
== 0)
3706 scn
->scn_last_checkpoint
= ddi_get_lbolt();
3710 * For sorted scans, determine what kind of work we will be doing
3711 * this txg based on our memory limitations and whether or not we
3712 * need to perform a checkpoint.
3714 if (scn
->scn_is_sorted
) {
3716 * If we are over our checkpoint interval, set scn_clearing
3717 * so that we can begin checkpointing immediately. The
3718 * checkpoint allows us to save a consistent bookmark
3719 * representing how much data we have scrubbed so far.
3720 * Otherwise, use the memory limit to determine if we should
3721 * scan for metadata or start issue scrub IOs. We accumulate
3722 * metadata until we hit our hard memory limit at which point
3723 * we issue scrub IOs until we are at our soft memory limit.
3725 if (scn
->scn_checkpointing
||
3726 ddi_get_lbolt() - scn
->scn_last_checkpoint
>
3727 SEC_TO_TICK(zfs_scan_checkpoint_intval
)) {
3728 if (!scn
->scn_checkpointing
)
3729 zfs_dbgmsg("begin scan checkpoint for %s",
3732 scn
->scn_checkpointing
= B_TRUE
;
3733 scn
->scn_clearing
= B_TRUE
;
3735 boolean_t should_clear
= dsl_scan_should_clear(scn
);
3736 if (should_clear
&& !scn
->scn_clearing
) {
3737 zfs_dbgmsg("begin scan clearing for %s",
3739 scn
->scn_clearing
= B_TRUE
;
3740 } else if (!should_clear
&& scn
->scn_clearing
) {
3741 zfs_dbgmsg("finish scan clearing for %s",
3743 scn
->scn_clearing
= B_FALSE
;
3747 ASSERT0(scn
->scn_checkpointing
);
3748 ASSERT0(scn
->scn_clearing
);
3751 if (!scn
->scn_clearing
&& scn
->scn_done_txg
== 0) {
3752 /* Need to scan metadata for more blocks to scrub */
3753 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
3754 taskqid_t prefetch_tqid
;
3757 * Calculate the max number of in-flight bytes for pool-wide
3758 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
3759 * Limits for the issuing phase are done per top-level vdev and
3760 * are handled separately.
3762 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
3763 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
3765 if (scnp
->scn_ddt_bookmark
.ddb_class
<=
3766 scnp
->scn_ddt_class_max
) {
3767 ASSERT(ZB_IS_ZERO(&scnp
->scn_bookmark
));
3768 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3769 "ddt bm=%llu/%llu/%llu/%llx",
3771 (longlong_t
)tx
->tx_txg
,
3772 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
3773 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
3774 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
3775 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
3777 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3778 "bm=%llu/%llu/%llu/%llu",
3780 (longlong_t
)tx
->tx_txg
,
3781 (longlong_t
)scnp
->scn_bookmark
.zb_objset
,
3782 (longlong_t
)scnp
->scn_bookmark
.zb_object
,
3783 (longlong_t
)scnp
->scn_bookmark
.zb_level
,
3784 (longlong_t
)scnp
->scn_bookmark
.zb_blkid
);
3787 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
3788 NULL
, ZIO_FLAG_CANFAIL
);
3790 scn
->scn_prefetch_stop
= B_FALSE
;
3791 prefetch_tqid
= taskq_dispatch(dp
->dp_sync_taskq
,
3792 dsl_scan_prefetch_thread
, scn
, TQ_SLEEP
);
3793 ASSERT(prefetch_tqid
!= TASKQID_INVALID
);
3795 dsl_pool_config_enter(dp
, FTAG
);
3796 dsl_scan_visit(scn
, tx
);
3797 dsl_pool_config_exit(dp
, FTAG
);
3799 mutex_enter(&dp
->dp_spa
->spa_scrub_lock
);
3800 scn
->scn_prefetch_stop
= B_TRUE
;
3801 cv_broadcast(&spa
->spa_scrub_io_cv
);
3802 mutex_exit(&dp
->dp_spa
->spa_scrub_lock
);
3804 taskq_wait_id(dp
->dp_sync_taskq
, prefetch_tqid
);
3805 (void) zio_wait(scn
->scn_zio_root
);
3806 scn
->scn_zio_root
= NULL
;
3808 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
3809 "(%llu os's, %llu holes, %llu < mintxg, "
3810 "%llu in ddt, %llu > maxtxg)",
3811 (longlong_t
)scn
->scn_visited_this_txg
,
3813 (longlong_t
)NSEC2MSEC(gethrtime() -
3814 scn
->scn_sync_start_time
),
3815 (longlong_t
)scn
->scn_objsets_visited_this_txg
,
3816 (longlong_t
)scn
->scn_holes_this_txg
,
3817 (longlong_t
)scn
->scn_lt_min_this_txg
,
3818 (longlong_t
)scn
->scn_ddt_contained_this_txg
,
3819 (longlong_t
)scn
->scn_gt_max_this_txg
);
3821 if (!scn
->scn_suspending
) {
3822 ASSERT0(avl_numnodes(&scn
->scn_queue
));
3823 scn
->scn_done_txg
= tx
->tx_txg
+ 1;
3824 if (scn
->scn_is_sorted
) {
3825 scn
->scn_checkpointing
= B_TRUE
;
3826 scn
->scn_clearing
= B_TRUE
;
3827 scn
->scn_issued_before_pass
+=
3828 spa
->spa_scan_pass_issued
;
3829 spa_scan_stat_init(spa
);
3831 zfs_dbgmsg("scan complete for %s txg %llu",
3833 (longlong_t
)tx
->tx_txg
);
3835 } else if (scn
->scn_is_sorted
&& scn
->scn_queues_pending
!= 0) {
3836 ASSERT(scn
->scn_clearing
);
3838 /* need to issue scrubbing IOs from per-vdev queues */
3839 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
3840 NULL
, ZIO_FLAG_CANFAIL
);
3841 scan_io_queues_run(scn
);
3842 (void) zio_wait(scn
->scn_zio_root
);
3843 scn
->scn_zio_root
= NULL
;
3845 /* calculate and dprintf the current memory usage */
3846 (void) dsl_scan_should_clear(scn
);
3847 dsl_scan_update_stats(scn
);
3849 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
3850 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
3851 (longlong_t
)scn
->scn_zios_this_txg
,
3853 (longlong_t
)scn
->scn_segs_this_txg
,
3854 (longlong_t
)NSEC2MSEC(gethrtime() -
3855 scn
->scn_sync_start_time
),
3856 (longlong_t
)scn
->scn_avg_zio_size_this_txg
,
3857 (longlong_t
)scn
->scn_avg_seg_size_this_txg
);
3858 } else if (scn
->scn_done_txg
!= 0 && scn
->scn_done_txg
<= tx
->tx_txg
) {
3859 /* Finished with everything. Mark the scrub as complete */
3860 zfs_dbgmsg("scan issuing complete txg %llu for %s",
3861 (longlong_t
)tx
->tx_txg
,
3863 ASSERT3U(scn
->scn_done_txg
, !=, 0);
3864 ASSERT0(spa
->spa_scrub_inflight
);
3865 ASSERT0(scn
->scn_queues_pending
);
3866 dsl_scan_done(scn
, B_TRUE
, tx
);
3867 sync_type
= SYNC_MANDATORY
;
3870 dsl_scan_sync_state(scn
, tx
, sync_type
);
3874 count_block_issued(spa_t
*spa
, const blkptr_t
*bp
, boolean_t all
)
3877 * Don't count embedded bp's, since we already did the work of
3878 * scanning these when we scanned the containing block.
3880 if (BP_IS_EMBEDDED(bp
))
3884 * Update the spa's stats on how many bytes we have issued.
3885 * Sequential scrubs create a zio for each DVA of the bp. Each
3886 * of these will include all DVAs for repair purposes, but the
3887 * zio code will only try the first one unless there is an issue.
3888 * Therefore, we should only count the first DVA for these IOs.
3890 atomic_add_64(&spa
->spa_scan_pass_issued
,
3891 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
3895 count_block(zfs_all_blkstats_t
*zab
, const blkptr_t
*bp
)
3898 * If we resume after a reboot, zab will be NULL; don't record
3899 * incomplete stats in that case.
3904 for (int i
= 0; i
< 4; i
++) {
3905 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : DN_MAX_LEVELS
;
3906 int t
= (i
& 1) ? BP_GET_TYPE(bp
) : DMU_OT_TOTAL
;
3908 if (t
& DMU_OT_NEWTYPE
)
3910 zfs_blkstat_t
*zb
= &zab
->zab_type
[l
][t
];
3914 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
3915 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
3916 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
3917 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
3919 switch (BP_GET_NDVAS(bp
)) {
3921 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
3922 DVA_GET_VDEV(&bp
->blk_dva
[1]))
3923 zb
->zb_ditto_2_of_2_samevdev
++;
3926 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
3927 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
3928 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
3929 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
3930 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
3931 DVA_GET_VDEV(&bp
->blk_dva
[2]));
3933 zb
->zb_ditto_2_of_3_samevdev
++;
3934 else if (equal
== 3)
3935 zb
->zb_ditto_3_of_3_samevdev
++;
3942 scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
, scan_io_t
*sio
)
3945 dsl_scan_t
*scn
= queue
->q_scn
;
3947 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3949 if (unlikely(avl_is_empty(&queue
->q_sios_by_addr
)))
3950 atomic_add_64(&scn
->scn_queues_pending
, 1);
3951 if (avl_find(&queue
->q_sios_by_addr
, sio
, &idx
) != NULL
) {
3952 /* block is already scheduled for reading */
3956 avl_insert(&queue
->q_sios_by_addr
, sio
, idx
);
3957 queue
->q_sio_memused
+= SIO_GET_MUSED(sio
);
3958 range_tree_add(queue
->q_exts_by_addr
, SIO_GET_OFFSET(sio
),
3959 SIO_GET_ASIZE(sio
));
3963 * Given all the info we got from our metadata scanning process, we
3964 * construct a scan_io_t and insert it into the scan sorting queue. The
3965 * I/O must already be suitable for us to process. This is controlled
3966 * by dsl_scan_enqueue().
3969 scan_io_queue_insert(dsl_scan_io_queue_t
*queue
, const blkptr_t
*bp
, int dva_i
,
3970 int zio_flags
, const zbookmark_phys_t
*zb
)
3972 scan_io_t
*sio
= sio_alloc(BP_GET_NDVAS(bp
));
3974 ASSERT0(BP_IS_GANG(bp
));
3975 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3977 bp2sio(bp
, sio
, dva_i
);
3978 sio
->sio_flags
= zio_flags
;
3981 queue
->q_last_ext_addr
= -1;
3982 scan_io_queue_insert_impl(queue
, sio
);
3986 * Given a set of I/O parameters as discovered by the metadata traversal
3987 * process, attempts to place the I/O into the sorted queues (if allowed),
3988 * or immediately executes the I/O.
3991 dsl_scan_enqueue(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
3992 const zbookmark_phys_t
*zb
)
3994 spa_t
*spa
= dp
->dp_spa
;
3996 ASSERT(!BP_IS_EMBEDDED(bp
));
3999 * Gang blocks are hard to issue sequentially, so we just issue them
4000 * here immediately instead of queuing them.
4002 if (!dp
->dp_scan
->scn_is_sorted
|| BP_IS_GANG(bp
)) {
4003 scan_exec_io(dp
, bp
, zio_flags
, zb
, NULL
);
4007 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
4011 dva
= bp
->blk_dva
[i
];
4012 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dva
));
4013 ASSERT(vdev
!= NULL
);
4015 mutex_enter(&vdev
->vdev_scan_io_queue_lock
);
4016 if (vdev
->vdev_scan_io_queue
== NULL
)
4017 vdev
->vdev_scan_io_queue
= scan_io_queue_create(vdev
);
4018 ASSERT(dp
->dp_scan
!= NULL
);
4019 scan_io_queue_insert(vdev
->vdev_scan_io_queue
, bp
,
4021 mutex_exit(&vdev
->vdev_scan_io_queue_lock
);
4026 dsl_scan_scrub_cb(dsl_pool_t
*dp
,
4027 const blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
4029 dsl_scan_t
*scn
= dp
->dp_scan
;
4030 spa_t
*spa
= dp
->dp_spa
;
4031 uint64_t phys_birth
= BP_PHYSICAL_BIRTH(bp
);
4032 size_t psize
= BP_GET_PSIZE(bp
);
4033 boolean_t needs_io
= B_FALSE
;
4034 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
;
4036 count_block(dp
->dp_blkstats
, bp
);
4037 if (phys_birth
<= scn
->scn_phys
.scn_min_txg
||
4038 phys_birth
>= scn
->scn_phys
.scn_max_txg
) {
4039 count_block_issued(spa
, bp
, B_TRUE
);
4043 /* Embedded BP's have phys_birth==0, so we reject them above. */
4044 ASSERT(!BP_IS_EMBEDDED(bp
));
4046 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn
));
4047 if (scn
->scn_phys
.scn_func
== POOL_SCAN_SCRUB
) {
4048 zio_flags
|= ZIO_FLAG_SCRUB
;
4051 ASSERT3U(scn
->scn_phys
.scn_func
, ==, POOL_SCAN_RESILVER
);
4052 zio_flags
|= ZIO_FLAG_RESILVER
;
4056 /* If it's an intent log block, failure is expected. */
4057 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
4058 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
4060 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++) {
4061 const dva_t
*dva
= &bp
->blk_dva
[d
];
4064 * Keep track of how much data we've examined so that
4065 * zpool(8) status can make useful progress reports.
4067 uint64_t asize
= DVA_GET_ASIZE(dva
);
4068 scn
->scn_phys
.scn_examined
+= asize
;
4069 spa
->spa_scan_pass_exam
+= asize
;
4071 /* if it's a resilver, this may not be in the target range */
4073 needs_io
= dsl_scan_need_resilver(spa
, dva
, psize
,
4077 if (needs_io
&& !zfs_no_scrub_io
) {
4078 dsl_scan_enqueue(dp
, bp
, zio_flags
, zb
);
4080 count_block_issued(spa
, bp
, B_TRUE
);
4083 /* do not relocate this block */
4088 dsl_scan_scrub_done(zio_t
*zio
)
4090 spa_t
*spa
= zio
->io_spa
;
4091 blkptr_t
*bp
= zio
->io_bp
;
4092 dsl_scan_io_queue_t
*queue
= zio
->io_private
;
4094 abd_free(zio
->io_abd
);
4096 if (queue
== NULL
) {
4097 mutex_enter(&spa
->spa_scrub_lock
);
4098 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
4099 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
4100 cv_broadcast(&spa
->spa_scrub_io_cv
);
4101 mutex_exit(&spa
->spa_scrub_lock
);
4103 mutex_enter(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4104 ASSERT3U(queue
->q_inflight_bytes
, >=, BP_GET_PSIZE(bp
));
4105 queue
->q_inflight_bytes
-= BP_GET_PSIZE(bp
);
4106 cv_broadcast(&queue
->q_zio_cv
);
4107 mutex_exit(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4110 if (zio
->io_error
&& (zio
->io_error
!= ECKSUM
||
4111 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
))) {
4112 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
->scn_phys
.scn_errors
);
4117 * Given a scanning zio's information, executes the zio. The zio need
4118 * not necessarily be only sortable, this function simply executes the
4119 * zio, no matter what it is. The optional queue argument allows the
4120 * caller to specify that they want per top level vdev IO rate limiting
4121 * instead of the legacy global limiting.
4124 scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4125 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
)
4127 spa_t
*spa
= dp
->dp_spa
;
4128 dsl_scan_t
*scn
= dp
->dp_scan
;
4129 size_t size
= BP_GET_PSIZE(bp
);
4130 abd_t
*data
= abd_alloc_for_io(size
, B_FALSE
);
4133 if (queue
== NULL
) {
4134 ASSERT3U(scn
->scn_maxinflight_bytes
, >, 0);
4135 mutex_enter(&spa
->spa_scrub_lock
);
4136 while (spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)
4137 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
4138 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(bp
);
4139 mutex_exit(&spa
->spa_scrub_lock
);
4140 pio
= scn
->scn_zio_root
;
4142 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
4144 ASSERT3U(queue
->q_maxinflight_bytes
, >, 0);
4145 mutex_enter(q_lock
);
4146 while (queue
->q_inflight_bytes
>= queue
->q_maxinflight_bytes
)
4147 cv_wait(&queue
->q_zio_cv
, q_lock
);
4148 queue
->q_inflight_bytes
+= BP_GET_PSIZE(bp
);
4153 ASSERT(pio
!= NULL
);
4154 count_block_issued(spa
, bp
, queue
== NULL
);
4155 zio_nowait(zio_read(pio
, spa
, bp
, data
, size
, dsl_scan_scrub_done
,
4156 queue
, ZIO_PRIORITY_SCRUB
, zio_flags
, zb
));
4160 * This is the primary extent sorting algorithm. We balance two parameters:
4161 * 1) how many bytes of I/O are in an extent
4162 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4163 * Since we allow extents to have gaps between their constituent I/Os, it's
4164 * possible to have a fairly large extent that contains the same amount of
4165 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4166 * The algorithm sorts based on a score calculated from the extent's size,
4167 * the relative fill volume (in %) and a "fill weight" parameter that controls
4168 * the split between whether we prefer larger extents or more well populated
4171 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4174 * 1) assume extsz = 64 MiB
4175 * 2) assume fill = 32 MiB (extent is half full)
4176 * 3) assume fill_weight = 3
4177 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4178 * SCORE = 32M + (50 * 3 * 32M) / 100
4179 * SCORE = 32M + (4800M / 100)
4182 * | +--- final total relative fill-based score
4183 * +--------- final total fill-based score
4186 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4187 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4188 * Note that as an optimization, we replace multiplication and division by
4189 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4191 * Since we do not care if one extent is only few percent better than another,
4192 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4193 * put into otherwise unused due to ashift high bits of offset. This allows
4194 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4195 * with single operation. Plus it makes scrubs more sequential and reduces
4196 * chances that minor extent change move it within the B-tree.
4199 ext_size_compare(const void *x
, const void *y
)
4201 const uint64_t *a
= x
, *b
= y
;
4203 return (TREE_CMP(*a
, *b
));
4207 ext_size_create(range_tree_t
*rt
, void *arg
)
4210 zfs_btree_t
*size_tree
= arg
;
4212 zfs_btree_create(size_tree
, ext_size_compare
, sizeof (uint64_t));
4216 ext_size_destroy(range_tree_t
*rt
, void *arg
)
4219 zfs_btree_t
*size_tree
= arg
;
4220 ASSERT0(zfs_btree_numnodes(size_tree
));
4222 zfs_btree_destroy(size_tree
);
4226 ext_size_value(range_tree_t
*rt
, range_seg_gap_t
*rsg
)
4229 uint64_t size
= rsg
->rs_end
- rsg
->rs_start
;
4230 uint64_t score
= rsg
->rs_fill
+ ((((rsg
->rs_fill
<< 7) / size
) *
4231 fill_weight
* rsg
->rs_fill
) >> 7);
4232 ASSERT3U(rt
->rt_shift
, >=, 8);
4233 return (((uint64_t)(64 - highbit64(score
)) << 56) | rsg
->rs_start
);
4237 ext_size_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4239 zfs_btree_t
*size_tree
= arg
;
4240 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4241 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4242 zfs_btree_add(size_tree
, &v
);
4246 ext_size_remove(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4248 zfs_btree_t
*size_tree
= arg
;
4249 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4250 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4251 zfs_btree_remove(size_tree
, &v
);
4255 ext_size_vacate(range_tree_t
*rt
, void *arg
)
4257 zfs_btree_t
*size_tree
= arg
;
4258 zfs_btree_clear(size_tree
);
4259 zfs_btree_destroy(size_tree
);
4261 ext_size_create(rt
, arg
);
4264 static const range_tree_ops_t ext_size_ops
= {
4265 .rtop_create
= ext_size_create
,
4266 .rtop_destroy
= ext_size_destroy
,
4267 .rtop_add
= ext_size_add
,
4268 .rtop_remove
= ext_size_remove
,
4269 .rtop_vacate
= ext_size_vacate
4273 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4274 * based on LBA-order (from lowest to highest).
4277 sio_addr_compare(const void *x
, const void *y
)
4279 const scan_io_t
*a
= x
, *b
= y
;
4281 return (TREE_CMP(SIO_GET_OFFSET(a
), SIO_GET_OFFSET(b
)));
4284 /* IO queues are created on demand when they are needed. */
4285 static dsl_scan_io_queue_t
*
4286 scan_io_queue_create(vdev_t
*vd
)
4288 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
4289 dsl_scan_io_queue_t
*q
= kmem_zalloc(sizeof (*q
), KM_SLEEP
);
4293 q
->q_sio_memused
= 0;
4294 q
->q_last_ext_addr
= -1;
4295 cv_init(&q
->q_zio_cv
, NULL
, CV_DEFAULT
, NULL
);
4296 q
->q_exts_by_addr
= range_tree_create_gap(&ext_size_ops
, RANGE_SEG_GAP
,
4297 &q
->q_exts_by_size
, 0, vd
->vdev_ashift
, zfs_scan_max_ext_gap
);
4298 avl_create(&q
->q_sios_by_addr
, sio_addr_compare
,
4299 sizeof (scan_io_t
), offsetof(scan_io_t
, sio_nodes
.sio_addr_node
));
4305 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4306 * No further execution of I/O occurs, anything pending in the queue is
4307 * simply freed without being executed.
4310 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t
*queue
)
4312 dsl_scan_t
*scn
= queue
->q_scn
;
4314 void *cookie
= NULL
;
4316 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4318 if (!avl_is_empty(&queue
->q_sios_by_addr
))
4319 atomic_add_64(&scn
->scn_queues_pending
, -1);
4320 while ((sio
= avl_destroy_nodes(&queue
->q_sios_by_addr
, &cookie
)) !=
4322 ASSERT(range_tree_contains(queue
->q_exts_by_addr
,
4323 SIO_GET_OFFSET(sio
), SIO_GET_ASIZE(sio
)));
4324 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
4328 ASSERT0(queue
->q_sio_memused
);
4329 range_tree_vacate(queue
->q_exts_by_addr
, NULL
, queue
);
4330 range_tree_destroy(queue
->q_exts_by_addr
);
4331 avl_destroy(&queue
->q_sios_by_addr
);
4332 cv_destroy(&queue
->q_zio_cv
);
4334 kmem_free(queue
, sizeof (*queue
));
4338 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4339 * called on behalf of vdev_top_transfer when creating or destroying
4340 * a mirror vdev due to zpool attach/detach.
4343 dsl_scan_io_queue_vdev_xfer(vdev_t
*svd
, vdev_t
*tvd
)
4345 mutex_enter(&svd
->vdev_scan_io_queue_lock
);
4346 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
4348 VERIFY3P(tvd
->vdev_scan_io_queue
, ==, NULL
);
4349 tvd
->vdev_scan_io_queue
= svd
->vdev_scan_io_queue
;
4350 svd
->vdev_scan_io_queue
= NULL
;
4351 if (tvd
->vdev_scan_io_queue
!= NULL
)
4352 tvd
->vdev_scan_io_queue
->q_vd
= tvd
;
4354 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
4355 mutex_exit(&svd
->vdev_scan_io_queue_lock
);
4359 scan_io_queues_destroy(dsl_scan_t
*scn
)
4361 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
4363 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
4364 vdev_t
*tvd
= rvd
->vdev_child
[i
];
4366 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
4367 if (tvd
->vdev_scan_io_queue
!= NULL
)
4368 dsl_scan_io_queue_destroy(tvd
->vdev_scan_io_queue
);
4369 tvd
->vdev_scan_io_queue
= NULL
;
4370 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
4375 dsl_scan_freed_dva(spa_t
*spa
, const blkptr_t
*bp
, int dva_i
)
4377 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
4378 dsl_scan_t
*scn
= dp
->dp_scan
;
4381 dsl_scan_io_queue_t
*queue
;
4382 scan_io_t
*srch_sio
, *sio
;
4384 uint64_t start
, size
;
4386 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&bp
->blk_dva
[dva_i
]));
4387 ASSERT(vdev
!= NULL
);
4388 q_lock
= &vdev
->vdev_scan_io_queue_lock
;
4389 queue
= vdev
->vdev_scan_io_queue
;
4391 mutex_enter(q_lock
);
4392 if (queue
== NULL
) {
4397 srch_sio
= sio_alloc(BP_GET_NDVAS(bp
));
4398 bp2sio(bp
, srch_sio
, dva_i
);
4399 start
= SIO_GET_OFFSET(srch_sio
);
4400 size
= SIO_GET_ASIZE(srch_sio
);
4403 * We can find the zio in two states:
4404 * 1) Cold, just sitting in the queue of zio's to be issued at
4405 * some point in the future. In this case, all we do is
4406 * remove the zio from the q_sios_by_addr tree, decrement
4407 * its data volume from the containing range_seg_t and
4408 * resort the q_exts_by_size tree to reflect that the
4409 * range_seg_t has lost some of its 'fill'. We don't shorten
4410 * the range_seg_t - this is usually rare enough not to be
4411 * worth the extra hassle of trying keep track of precise
4412 * extent boundaries.
4413 * 2) Hot, where the zio is currently in-flight in
4414 * dsl_scan_issue_ios. In this case, we can't simply
4415 * reach in and stop the in-flight zio's, so we instead
4416 * block the caller. Eventually, dsl_scan_issue_ios will
4417 * be done with issuing the zio's it gathered and will
4420 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
4426 /* Got it while it was cold in the queue */
4427 ASSERT3U(start
, ==, SIO_GET_OFFSET(sio
));
4428 ASSERT3U(size
, ==, SIO_GET_ASIZE(sio
));
4429 avl_remove(&queue
->q_sios_by_addr
, sio
);
4430 if (avl_is_empty(&queue
->q_sios_by_addr
))
4431 atomic_add_64(&scn
->scn_queues_pending
, -1);
4432 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
4434 ASSERT(range_tree_contains(queue
->q_exts_by_addr
, start
, size
));
4435 range_tree_remove_fill(queue
->q_exts_by_addr
, start
, size
);
4437 /* count the block as though we issued it */
4438 sio2bp(sio
, &tmpbp
);
4439 count_block_issued(spa
, &tmpbp
, B_FALSE
);
4447 * Callback invoked when a zio_free() zio is executing. This needs to be
4448 * intercepted to prevent the zio from deallocating a particular portion
4449 * of disk space and it then getting reallocated and written to, while we
4450 * still have it queued up for processing.
4453 dsl_scan_freed(spa_t
*spa
, const blkptr_t
*bp
)
4455 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
4456 dsl_scan_t
*scn
= dp
->dp_scan
;
4458 ASSERT(!BP_IS_EMBEDDED(bp
));
4459 ASSERT(scn
!= NULL
);
4460 if (!dsl_scan_is_running(scn
))
4463 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++)
4464 dsl_scan_freed_dva(spa
, bp
, i
);
4468 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4469 * not started, start it. Otherwise, only restart if max txg in DTL range is
4470 * greater than the max txg in the current scan. If the DTL max is less than
4471 * the scan max, then the vdev has not missed any new data since the resilver
4472 * started, so a restart is not needed.
4475 dsl_scan_assess_vdev(dsl_pool_t
*dp
, vdev_t
*vd
)
4479 if (!vdev_resilver_needed(vd
, &min
, &max
))
4482 if (!dsl_scan_resilvering(dp
)) {
4483 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
4487 if (max
<= dp
->dp_scan
->scn_phys
.scn_max_txg
)
4490 /* restart is needed, check if it can be deferred */
4491 if (spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
4492 vdev_defer_resilver(vd
);
4494 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
4497 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_vdev_limit
, U64
, ZMOD_RW
,
4498 "Max bytes in flight per leaf vdev for scrubs and resilvers");
4500 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_min_time_ms
, UINT
, ZMOD_RW
,
4501 "Min millisecs to scrub per txg");
4503 ZFS_MODULE_PARAM(zfs
, zfs_
, obsolete_min_time_ms
, UINT
, ZMOD_RW
,
4504 "Min millisecs to obsolete per txg");
4506 ZFS_MODULE_PARAM(zfs
, zfs_
, free_min_time_ms
, UINT
, ZMOD_RW
,
4507 "Min millisecs to free per txg");
4509 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_min_time_ms
, UINT
, ZMOD_RW
,
4510 "Min millisecs to resilver per txg");
4512 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_suspend_progress
, INT
, ZMOD_RW
,
4513 "Set to prevent scans from progressing");
4515 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_io
, INT
, ZMOD_RW
,
4516 "Set to disable scrub I/O");
4518 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_prefetch
, INT
, ZMOD_RW
,
4519 "Set to disable scrub prefetching");
4521 ZFS_MODULE_PARAM(zfs
, zfs_
, async_block_max_blocks
, U64
, ZMOD_RW
,
4522 "Max number of blocks freed in one txg");
4524 ZFS_MODULE_PARAM(zfs
, zfs_
, max_async_dedup_frees
, U64
, ZMOD_RW
,
4525 "Max number of dedup blocks freed in one txg");
4527 ZFS_MODULE_PARAM(zfs
, zfs_
, free_bpobj_enabled
, INT
, ZMOD_RW
,
4528 "Enable processing of the free_bpobj");
4530 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_blkstats
, INT
, ZMOD_RW
,
4531 "Enable block statistics calculation during scrub");
4533 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_fact
, UINT
, ZMOD_RW
,
4534 "Fraction of RAM for scan hard limit");
4536 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_issue_strategy
, UINT
, ZMOD_RW
,
4537 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4539 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_legacy
, INT
, ZMOD_RW
,
4540 "Scrub using legacy non-sequential method");
4542 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_checkpoint_intval
, UINT
, ZMOD_RW
,
4543 "Scan progress on-disk checkpointing interval");
4545 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_max_ext_gap
, U64
, ZMOD_RW
,
4546 "Max gap in bytes between sequential scrub / resilver I/Os");
4548 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_soft_fact
, UINT
, ZMOD_RW
,
4549 "Fraction of hard limit used as soft limit");
4551 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_strict_mem_lim
, INT
, ZMOD_RW
,
4552 "Tunable to attempt to reduce lock contention");
4554 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_fill_weight
, UINT
, ZMOD_RW
,
4555 "Tunable to adjust bias towards more filled segments during scans");
4557 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_report_txgs
, UINT
, ZMOD_RW
,
4558 "Tunable to report resilver performance over the last N txgs");
4560 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_disable_defer
, INT
, ZMOD_RW
,
4561 "Process all resilvers immediately");