2 * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86)
4 * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute
5 * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6 * and then combine the streams to form the final four checksum words.
7 * This implementation is a derivative of the AVX SIMD implementation by
8 * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
10 * Copyright (C) 2016 Tyler J. Stachecki.
13 * Tyler J. Stachecki <stachecki.tyler@gmail.com>
15 * This software is available to you under a choice of one of two
16 * licenses. You may choose to be licensed under the terms of the GNU
17 * General Public License (GPL) Version 2, available from the file
18 * COPYING in the main directory of this source tree, or the
19 * OpenIB.org BSD license below:
21 * Redistribution and use in source and binary forms, with or
22 * without modification, are permitted provided that the following
25 * - Redistributions of source code must retain the above
26 * copyright notice, this list of conditions and the following
29 * - Redistributions in binary form must reproduce the above
30 * copyright notice, this list of conditions and the following
31 * disclaimer in the documentation and/or other materials
32 * provided with the distribution.
34 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
44 #if defined(HAVE_SSE2)
47 #include <sys/spa_checksum.h>
48 #include <sys/string.h>
49 #include <sys/byteorder.h>
50 #include <zfs_fletcher.h>
53 fletcher_4_sse2_init(fletcher_4_ctx_t
*ctx
)
55 memset(ctx
->sse
, 0, 4 * sizeof (zfs_fletcher_sse_t
));
59 fletcher_4_sse2_fini(fletcher_4_ctx_t
*ctx
, zio_cksum_t
*zcp
)
64 * The mixing matrix for checksum calculation is:
67 * c = 4c0 - b0 + 4c1 -3b1
68 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1;
70 * c and d are multiplied by 4 and 8, respectively,
71 * before spilling the vectors out to memory.
73 A
= ctx
->sse
[0].v
[0] + ctx
->sse
[0].v
[1];
74 B
= 2 * ctx
->sse
[1].v
[0] + 2 * ctx
->sse
[1].v
[1] - ctx
->sse
[0].v
[1];
75 C
= 4 * ctx
->sse
[2].v
[0] - ctx
->sse
[1].v
[0] + 4 * ctx
->sse
[2].v
[1] -
77 D
= 8 * ctx
->sse
[3].v
[0] - 4 * ctx
->sse
[2].v
[0] + 8 * ctx
->sse
[3].v
[1] -
78 8 * ctx
->sse
[2].v
[1] + ctx
->sse
[1].v
[1];
80 ZIO_SET_CHECKSUM(zcp
, A
, B
, C
, D
);
83 #define FLETCHER_4_SSE_RESTORE_CTX(ctx) \
85 asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0])); \
86 asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1])); \
87 asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2])); \
88 asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3])); \
91 #define FLETCHER_4_SSE_SAVE_CTX(ctx) \
93 asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0])); \
94 asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1])); \
95 asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2])); \
96 asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3])); \
100 fletcher_4_sse2_native(fletcher_4_ctx_t
*ctx
, const void *buf
, uint64_t size
)
102 const uint64_t *ip
= buf
;
103 const uint64_t *ipend
= (uint64_t *)((uint8_t *)ip
+ size
);
105 FLETCHER_4_SSE_RESTORE_CTX(ctx
);
107 asm volatile("pxor %xmm4, %xmm4");
110 asm volatile("movdqu %0, %%xmm5" :: "m"(*ip
));
111 asm volatile("movdqa %xmm5, %xmm6");
112 asm volatile("punpckldq %xmm4, %xmm5");
113 asm volatile("punpckhdq %xmm4, %xmm6");
114 asm volatile("paddq %xmm5, %xmm0");
115 asm volatile("paddq %xmm0, %xmm1");
116 asm volatile("paddq %xmm1, %xmm2");
117 asm volatile("paddq %xmm2, %xmm3");
118 asm volatile("paddq %xmm6, %xmm0");
119 asm volatile("paddq %xmm0, %xmm1");
120 asm volatile("paddq %xmm1, %xmm2");
121 asm volatile("paddq %xmm2, %xmm3");
122 } while ((ip
+= 2) < ipend
);
124 FLETCHER_4_SSE_SAVE_CTX(ctx
);
128 fletcher_4_sse2_byteswap(fletcher_4_ctx_t
*ctx
, const void *buf
, uint64_t size
)
130 const uint32_t *ip
= buf
;
131 const uint32_t *ipend
= (uint32_t *)((uint8_t *)ip
+ size
);
133 FLETCHER_4_SSE_RESTORE_CTX(ctx
);
136 uint32_t scratch1
= BSWAP_32(ip
[0]);
137 uint32_t scratch2
= BSWAP_32(ip
[1]);
138 asm volatile("movd %0, %%xmm5" :: "r"(scratch1
));
139 asm volatile("movd %0, %%xmm6" :: "r"(scratch2
));
140 asm volatile("punpcklqdq %xmm6, %xmm5");
141 asm volatile("paddq %xmm5, %xmm0");
142 asm volatile("paddq %xmm0, %xmm1");
143 asm volatile("paddq %xmm1, %xmm2");
144 asm volatile("paddq %xmm2, %xmm3");
145 } while ((ip
+= 2) < ipend
);
147 FLETCHER_4_SSE_SAVE_CTX(ctx
);
150 static boolean_t
fletcher_4_sse2_valid(void)
152 return (kfpu_allowed() && zfs_sse2_available());
155 const fletcher_4_ops_t fletcher_4_sse2_ops
= {
156 .init_native
= fletcher_4_sse2_init
,
157 .fini_native
= fletcher_4_sse2_fini
,
158 .compute_native
= fletcher_4_sse2_native
,
159 .init_byteswap
= fletcher_4_sse2_init
,
160 .fini_byteswap
= fletcher_4_sse2_fini
,
161 .compute_byteswap
= fletcher_4_sse2_byteswap
,
162 .valid
= fletcher_4_sse2_valid
,
167 #endif /* defined(HAVE_SSE2) */
169 #if defined(HAVE_SSE2) && defined(HAVE_SSSE3)
171 fletcher_4_ssse3_byteswap(fletcher_4_ctx_t
*ctx
, const void *buf
, uint64_t size
)
173 static const zfs_fletcher_sse_t mask
= {
174 .v
= { 0x0405060700010203, 0x0C0D0E0F08090A0B }
177 const uint64_t *ip
= buf
;
178 const uint64_t *ipend
= (uint64_t *)((uint8_t *)ip
+ size
);
180 FLETCHER_4_SSE_RESTORE_CTX(ctx
);
182 asm volatile("movdqu %0, %%xmm7"::"m" (mask
));
183 asm volatile("pxor %xmm4, %xmm4");
186 asm volatile("movdqu %0, %%xmm5"::"m" (*ip
));
187 asm volatile("pshufb %xmm7, %xmm5");
188 asm volatile("movdqa %xmm5, %xmm6");
189 asm volatile("punpckldq %xmm4, %xmm5");
190 asm volatile("punpckhdq %xmm4, %xmm6");
191 asm volatile("paddq %xmm5, %xmm0");
192 asm volatile("paddq %xmm0, %xmm1");
193 asm volatile("paddq %xmm1, %xmm2");
194 asm volatile("paddq %xmm2, %xmm3");
195 asm volatile("paddq %xmm6, %xmm0");
196 asm volatile("paddq %xmm0, %xmm1");
197 asm volatile("paddq %xmm1, %xmm2");
198 asm volatile("paddq %xmm2, %xmm3");
199 } while ((ip
+= 2) < ipend
);
201 FLETCHER_4_SSE_SAVE_CTX(ctx
);
204 static boolean_t
fletcher_4_ssse3_valid(void)
206 return (kfpu_allowed() && zfs_sse2_available() &&
207 zfs_ssse3_available());
210 const fletcher_4_ops_t fletcher_4_ssse3_ops
= {
211 .init_native
= fletcher_4_sse2_init
,
212 .fini_native
= fletcher_4_sse2_fini
,
213 .compute_native
= fletcher_4_sse2_native
,
214 .init_byteswap
= fletcher_4_sse2_init
,
215 .fini_byteswap
= fletcher_4_sse2_fini
,
216 .compute_byteswap
= fletcher_4_ssse3_byteswap
,
217 .valid
= fletcher_4_ssse3_valid
,
222 #endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */