Fix cloning into already dirty dbufs.
[zfs.git] / module / zfs / dbuf.c
blob617c850296b44854f6fb28c98c243c135eaaeb0d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
60 static kstat_t *dbuf_ksp;
62 typedef struct dbuf_stats {
64 * Various statistics about the size of the dbuf cache.
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
70 * Statistics regarding the bounds on the dbuf cache size.
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
76 * Total number of dbuf cache evictions that have occurred.
78 kstat_named_t cache_total_evicts;
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86 * Statistics about the dbuf hash table.
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
103 kstat_named_t hash_insert_race;
105 * Number of entries in the hash table dbuf and mutex arrays.
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
110 * Statistics about the size of the metadata dbuf cache.
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val);
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val));
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1);
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1);
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
183 * Global data structures and functions for the dbuf cache.
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
224 typedef struct dbuf_cache {
225 multilist_t cache;
226 zfs_refcount_t size ____cacheline_aligned;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
232 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift = 5;
236 static uint_t dbuf_metadata_cache_shift = 6;
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift = 0;
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
245 * The LRU dbuf cache uses a three-stage eviction policy:
246 * - A low water marker designates when the dbuf eviction thread
247 * should stop evicting from the dbuf cache.
248 * - When we reach the maximum size (aka mid water mark), we
249 * signal the eviction thread to run.
250 * - The high water mark indicates when the eviction thread
251 * is unable to keep up with the incoming load and eviction must
252 * happen in the context of the calling thread.
254 * The dbuf cache:
255 * (max size)
256 * low water mid water hi water
257 * +----------------------------------------+----------+----------+
258 * | | | |
259 * | | | |
260 * | | | |
261 * | | | |
262 * +----------------------------------------+----------+----------+
263 * stop signal evict
264 * evicting eviction directly
265 * thread
267 * The high and low water marks indicate the operating range for the eviction
268 * thread. The low water mark is, by default, 90% of the total size of the
269 * cache and the high water mark is at 110% (both of these percentages can be
270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271 * respectively). The eviction thread will try to ensure that the cache remains
272 * within this range by waking up every second and checking if the cache is
273 * above the low water mark. The thread can also be woken up by callers adding
274 * elements into the cache if the cache is larger than the mid water (i.e max
275 * cache size). Once the eviction thread is woken up and eviction is required,
276 * it will continue evicting buffers until it's able to reduce the cache size
277 * to the low water mark. If the cache size continues to grow and hits the high
278 * water mark, then callers adding elements to the cache will begin to evict
279 * directly from the cache until the cache is no longer above the high water
280 * mark.
284 * The percentage above and below the maximum cache size.
286 static uint_t dbuf_cache_hiwater_pct = 10;
287 static uint_t dbuf_cache_lowater_pct = 10;
289 static int
290 dbuf_cons(void *vdb, void *unused, int kmflag)
292 (void) unused, (void) kmflag;
293 dmu_buf_impl_t *db = vdb;
294 memset(db, 0, sizeof (dmu_buf_impl_t));
296 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
297 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
298 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
299 multilist_link_init(&db->db_cache_link);
300 zfs_refcount_create(&db->db_holds);
302 return (0);
305 static void
306 dbuf_dest(void *vdb, void *unused)
308 (void) unused;
309 dmu_buf_impl_t *db = vdb;
310 mutex_destroy(&db->db_mtx);
311 rw_destroy(&db->db_rwlock);
312 cv_destroy(&db->db_changed);
313 ASSERT(!multilist_link_active(&db->db_cache_link));
314 zfs_refcount_destroy(&db->db_holds);
318 * dbuf hash table routines
320 static dbuf_hash_table_t dbuf_hash_table;
323 * We use Cityhash for this. It's fast, and has good hash properties without
324 * requiring any large static buffers.
326 static uint64_t
327 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
329 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
332 #define DTRACE_SET_STATE(db, why) \
333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
334 const char *, why)
336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337 ((dbuf)->db.db_object == (obj) && \
338 (dbuf)->db_objset == (os) && \
339 (dbuf)->db_level == (level) && \
340 (dbuf)->db_blkid == (blkid))
342 dmu_buf_impl_t *
343 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
344 uint64_t *hash_out)
346 dbuf_hash_table_t *h = &dbuf_hash_table;
347 uint64_t hv;
348 uint64_t idx;
349 dmu_buf_impl_t *db;
351 hv = dbuf_hash(os, obj, level, blkid);
352 idx = hv & h->hash_table_mask;
354 mutex_enter(DBUF_HASH_MUTEX(h, idx));
355 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
356 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
357 mutex_enter(&db->db_mtx);
358 if (db->db_state != DB_EVICTING) {
359 mutex_exit(DBUF_HASH_MUTEX(h, idx));
360 return (db);
362 mutex_exit(&db->db_mtx);
365 mutex_exit(DBUF_HASH_MUTEX(h, idx));
366 if (hash_out != NULL)
367 *hash_out = hv;
368 return (NULL);
371 static dmu_buf_impl_t *
372 dbuf_find_bonus(objset_t *os, uint64_t object)
374 dnode_t *dn;
375 dmu_buf_impl_t *db = NULL;
377 if (dnode_hold(os, object, FTAG, &dn) == 0) {
378 rw_enter(&dn->dn_struct_rwlock, RW_READER);
379 if (dn->dn_bonus != NULL) {
380 db = dn->dn_bonus;
381 mutex_enter(&db->db_mtx);
383 rw_exit(&dn->dn_struct_rwlock);
384 dnode_rele(dn, FTAG);
386 return (db);
390 * Insert an entry into the hash table. If there is already an element
391 * equal to elem in the hash table, then the already existing element
392 * will be returned and the new element will not be inserted.
393 * Otherwise returns NULL.
395 static dmu_buf_impl_t *
396 dbuf_hash_insert(dmu_buf_impl_t *db)
398 dbuf_hash_table_t *h = &dbuf_hash_table;
399 objset_t *os = db->db_objset;
400 uint64_t obj = db->db.db_object;
401 int level = db->db_level;
402 uint64_t blkid, idx;
403 dmu_buf_impl_t *dbf;
404 uint32_t i;
406 blkid = db->db_blkid;
407 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
408 idx = db->db_hash & h->hash_table_mask;
410 mutex_enter(DBUF_HASH_MUTEX(h, idx));
411 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
412 dbf = dbf->db_hash_next, i++) {
413 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
414 mutex_enter(&dbf->db_mtx);
415 if (dbf->db_state != DB_EVICTING) {
416 mutex_exit(DBUF_HASH_MUTEX(h, idx));
417 return (dbf);
419 mutex_exit(&dbf->db_mtx);
423 if (i > 0) {
424 DBUF_STAT_BUMP(hash_collisions);
425 if (i == 1)
426 DBUF_STAT_BUMP(hash_chains);
428 DBUF_STAT_MAX(hash_chain_max, i);
431 mutex_enter(&db->db_mtx);
432 db->db_hash_next = h->hash_table[idx];
433 h->hash_table[idx] = db;
434 mutex_exit(DBUF_HASH_MUTEX(h, idx));
435 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
436 DBUF_STAT_MAX(hash_elements_max, he);
438 return (NULL);
442 * This returns whether this dbuf should be stored in the metadata cache, which
443 * is based on whether it's from one of the dnode types that store data related
444 * to traversing dataset hierarchies.
446 static boolean_t
447 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
449 DB_DNODE_ENTER(db);
450 dmu_object_type_t type = DB_DNODE(db)->dn_type;
451 DB_DNODE_EXIT(db);
453 /* Check if this dbuf is one of the types we care about */
454 if (DMU_OT_IS_METADATA_CACHED(type)) {
455 /* If we hit this, then we set something up wrong in dmu_ot */
456 ASSERT(DMU_OT_IS_METADATA(type));
459 * Sanity check for small-memory systems: don't allocate too
460 * much memory for this purpose.
462 if (zfs_refcount_count(
463 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
464 dbuf_metadata_cache_target_bytes()) {
465 DBUF_STAT_BUMP(metadata_cache_overflow);
466 return (B_FALSE);
469 return (B_TRUE);
472 return (B_FALSE);
476 * Remove an entry from the hash table. It must be in the EVICTING state.
478 static void
479 dbuf_hash_remove(dmu_buf_impl_t *db)
481 dbuf_hash_table_t *h = &dbuf_hash_table;
482 uint64_t idx;
483 dmu_buf_impl_t *dbf, **dbp;
485 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
486 db->db_blkid), ==, db->db_hash);
487 idx = db->db_hash & h->hash_table_mask;
490 * We mustn't hold db_mtx to maintain lock ordering:
491 * DBUF_HASH_MUTEX > db_mtx.
493 ASSERT(zfs_refcount_is_zero(&db->db_holds));
494 ASSERT(db->db_state == DB_EVICTING);
495 ASSERT(!MUTEX_HELD(&db->db_mtx));
497 mutex_enter(DBUF_HASH_MUTEX(h, idx));
498 dbp = &h->hash_table[idx];
499 while ((dbf = *dbp) != db) {
500 dbp = &dbf->db_hash_next;
501 ASSERT(dbf != NULL);
503 *dbp = db->db_hash_next;
504 db->db_hash_next = NULL;
505 if (h->hash_table[idx] &&
506 h->hash_table[idx]->db_hash_next == NULL)
507 DBUF_STAT_BUMPDOWN(hash_chains);
508 mutex_exit(DBUF_HASH_MUTEX(h, idx));
509 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
512 typedef enum {
513 DBVU_EVICTING,
514 DBVU_NOT_EVICTING
515 } dbvu_verify_type_t;
517 static void
518 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
520 #ifdef ZFS_DEBUG
521 int64_t holds;
523 if (db->db_user == NULL)
524 return;
526 /* Only data blocks support the attachment of user data. */
527 ASSERT(db->db_level == 0);
529 /* Clients must resolve a dbuf before attaching user data. */
530 ASSERT(db->db.db_data != NULL);
531 ASSERT3U(db->db_state, ==, DB_CACHED);
533 holds = zfs_refcount_count(&db->db_holds);
534 if (verify_type == DBVU_EVICTING) {
536 * Immediate eviction occurs when holds == dirtycnt.
537 * For normal eviction buffers, holds is zero on
538 * eviction, except when dbuf_fix_old_data() calls
539 * dbuf_clear_data(). However, the hold count can grow
540 * during eviction even though db_mtx is held (see
541 * dmu_bonus_hold() for an example), so we can only
542 * test the generic invariant that holds >= dirtycnt.
544 ASSERT3U(holds, >=, db->db_dirtycnt);
545 } else {
546 if (db->db_user_immediate_evict == TRUE)
547 ASSERT3U(holds, >=, db->db_dirtycnt);
548 else
549 ASSERT3U(holds, >, 0);
551 #endif
554 static void
555 dbuf_evict_user(dmu_buf_impl_t *db)
557 dmu_buf_user_t *dbu = db->db_user;
559 ASSERT(MUTEX_HELD(&db->db_mtx));
561 if (dbu == NULL)
562 return;
564 dbuf_verify_user(db, DBVU_EVICTING);
565 db->db_user = NULL;
567 #ifdef ZFS_DEBUG
568 if (dbu->dbu_clear_on_evict_dbufp != NULL)
569 *dbu->dbu_clear_on_evict_dbufp = NULL;
570 #endif
573 * There are two eviction callbacks - one that we call synchronously
574 * and one that we invoke via a taskq. The async one is useful for
575 * avoiding lock order reversals and limiting stack depth.
577 * Note that if we have a sync callback but no async callback,
578 * it's likely that the sync callback will free the structure
579 * containing the dbu. In that case we need to take care to not
580 * dereference dbu after calling the sync evict func.
582 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
584 if (dbu->dbu_evict_func_sync != NULL)
585 dbu->dbu_evict_func_sync(dbu);
587 if (has_async) {
588 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
589 dbu, 0, &dbu->dbu_tqent);
593 boolean_t
594 dbuf_is_metadata(dmu_buf_impl_t *db)
597 * Consider indirect blocks and spill blocks to be meta data.
599 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
600 return (B_TRUE);
601 } else {
602 boolean_t is_metadata;
604 DB_DNODE_ENTER(db);
605 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
606 DB_DNODE_EXIT(db);
608 return (is_metadata);
613 * We want to exclude buffers that are on a special allocation class from
614 * L2ARC.
616 boolean_t
617 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
619 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
620 (db->db_objset->os_secondary_cache ==
621 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
622 if (l2arc_exclude_special == 0)
623 return (B_TRUE);
625 blkptr_t *bp = db->db_blkptr;
626 if (bp == NULL || BP_IS_HOLE(bp))
627 return (B_FALSE);
628 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
629 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
630 vdev_t *vd = NULL;
632 if (vdev < rvd->vdev_children)
633 vd = rvd->vdev_child[vdev];
635 if (vd == NULL)
636 return (B_TRUE);
638 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
639 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
640 return (B_TRUE);
642 return (B_FALSE);
645 static inline boolean_t
646 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
648 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
649 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
650 (level > 0 ||
651 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
652 if (l2arc_exclude_special == 0)
653 return (B_TRUE);
655 if (bp == NULL || BP_IS_HOLE(bp))
656 return (B_FALSE);
657 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
658 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
659 vdev_t *vd = NULL;
661 if (vdev < rvd->vdev_children)
662 vd = rvd->vdev_child[vdev];
664 if (vd == NULL)
665 return (B_TRUE);
667 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
668 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
669 return (B_TRUE);
671 return (B_FALSE);
676 * This function *must* return indices evenly distributed between all
677 * sublists of the multilist. This is needed due to how the dbuf eviction
678 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
679 * distributed between all sublists and uses this assumption when
680 * deciding which sublist to evict from and how much to evict from it.
682 static unsigned int
683 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
685 dmu_buf_impl_t *db = obj;
688 * The assumption here, is the hash value for a given
689 * dmu_buf_impl_t will remain constant throughout it's lifetime
690 * (i.e. it's objset, object, level and blkid fields don't change).
691 * Thus, we don't need to store the dbuf's sublist index
692 * on insertion, as this index can be recalculated on removal.
694 * Also, the low order bits of the hash value are thought to be
695 * distributed evenly. Otherwise, in the case that the multilist
696 * has a power of two number of sublists, each sublists' usage
697 * would not be evenly distributed. In this context full 64bit
698 * division would be a waste of time, so limit it to 32 bits.
700 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
701 db->db_level, db->db_blkid) %
702 multilist_get_num_sublists(ml));
706 * The target size of the dbuf cache can grow with the ARC target,
707 * unless limited by the tunable dbuf_cache_max_bytes.
709 static inline unsigned long
710 dbuf_cache_target_bytes(void)
712 return (MIN(dbuf_cache_max_bytes,
713 arc_target_bytes() >> dbuf_cache_shift));
717 * The target size of the dbuf metadata cache can grow with the ARC target,
718 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
720 static inline unsigned long
721 dbuf_metadata_cache_target_bytes(void)
723 return (MIN(dbuf_metadata_cache_max_bytes,
724 arc_target_bytes() >> dbuf_metadata_cache_shift));
727 static inline uint64_t
728 dbuf_cache_hiwater_bytes(void)
730 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
731 return (dbuf_cache_target +
732 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
735 static inline uint64_t
736 dbuf_cache_lowater_bytes(void)
738 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
739 return (dbuf_cache_target -
740 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
743 static inline boolean_t
744 dbuf_cache_above_lowater(void)
746 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
747 dbuf_cache_lowater_bytes());
751 * Evict the oldest eligible dbuf from the dbuf cache.
753 static void
754 dbuf_evict_one(void)
756 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
757 multilist_sublist_t *mls = multilist_sublist_lock(
758 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
760 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
762 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
763 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
764 db = multilist_sublist_prev(mls, db);
767 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
768 multilist_sublist_t *, mls);
770 if (db != NULL) {
771 multilist_sublist_remove(mls, db);
772 multilist_sublist_unlock(mls);
773 (void) zfs_refcount_remove_many(
774 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
775 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
776 DBUF_STAT_BUMPDOWN(cache_count);
777 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
778 db->db.db_size);
779 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
780 db->db_caching_status = DB_NO_CACHE;
781 dbuf_destroy(db);
782 DBUF_STAT_BUMP(cache_total_evicts);
783 } else {
784 multilist_sublist_unlock(mls);
789 * The dbuf evict thread is responsible for aging out dbufs from the
790 * cache. Once the cache has reached it's maximum size, dbufs are removed
791 * and destroyed. The eviction thread will continue running until the size
792 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
793 * out of the cache it is destroyed and becomes eligible for arc eviction.
795 static __attribute__((noreturn)) void
796 dbuf_evict_thread(void *unused)
798 (void) unused;
799 callb_cpr_t cpr;
801 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
803 mutex_enter(&dbuf_evict_lock);
804 while (!dbuf_evict_thread_exit) {
805 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
806 CALLB_CPR_SAFE_BEGIN(&cpr);
807 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
808 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
809 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
811 mutex_exit(&dbuf_evict_lock);
814 * Keep evicting as long as we're above the low water mark
815 * for the cache. We do this without holding the locks to
816 * minimize lock contention.
818 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
819 dbuf_evict_one();
822 mutex_enter(&dbuf_evict_lock);
825 dbuf_evict_thread_exit = B_FALSE;
826 cv_broadcast(&dbuf_evict_cv);
827 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
828 thread_exit();
832 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
833 * If the dbuf cache is at its high water mark, then evict a dbuf from the
834 * dbuf cache using the caller's context.
836 static void
837 dbuf_evict_notify(uint64_t size)
840 * We check if we should evict without holding the dbuf_evict_lock,
841 * because it's OK to occasionally make the wrong decision here,
842 * and grabbing the lock results in massive lock contention.
844 if (size > dbuf_cache_target_bytes()) {
845 if (size > dbuf_cache_hiwater_bytes())
846 dbuf_evict_one();
847 cv_signal(&dbuf_evict_cv);
851 static int
852 dbuf_kstat_update(kstat_t *ksp, int rw)
854 dbuf_stats_t *ds = ksp->ks_data;
855 dbuf_hash_table_t *h = &dbuf_hash_table;
857 if (rw == KSTAT_WRITE)
858 return (SET_ERROR(EACCES));
860 ds->cache_count.value.ui64 =
861 wmsum_value(&dbuf_sums.cache_count);
862 ds->cache_size_bytes.value.ui64 =
863 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
864 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
865 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
866 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
867 ds->cache_total_evicts.value.ui64 =
868 wmsum_value(&dbuf_sums.cache_total_evicts);
869 for (int i = 0; i < DN_MAX_LEVELS; i++) {
870 ds->cache_levels[i].value.ui64 =
871 wmsum_value(&dbuf_sums.cache_levels[i]);
872 ds->cache_levels_bytes[i].value.ui64 =
873 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
875 ds->hash_hits.value.ui64 =
876 wmsum_value(&dbuf_sums.hash_hits);
877 ds->hash_misses.value.ui64 =
878 wmsum_value(&dbuf_sums.hash_misses);
879 ds->hash_collisions.value.ui64 =
880 wmsum_value(&dbuf_sums.hash_collisions);
881 ds->hash_chains.value.ui64 =
882 wmsum_value(&dbuf_sums.hash_chains);
883 ds->hash_insert_race.value.ui64 =
884 wmsum_value(&dbuf_sums.hash_insert_race);
885 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
886 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
887 ds->metadata_cache_count.value.ui64 =
888 wmsum_value(&dbuf_sums.metadata_cache_count);
889 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
890 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
891 ds->metadata_cache_overflow.value.ui64 =
892 wmsum_value(&dbuf_sums.metadata_cache_overflow);
893 return (0);
896 void
897 dbuf_init(void)
899 uint64_t hmsize, hsize = 1ULL << 16;
900 dbuf_hash_table_t *h = &dbuf_hash_table;
903 * The hash table is big enough to fill one eighth of physical memory
904 * with an average block size of zfs_arc_average_blocksize (default 8K).
905 * By default, the table will take up
906 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
908 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
909 hsize <<= 1;
911 h->hash_table = NULL;
912 while (h->hash_table == NULL) {
913 h->hash_table_mask = hsize - 1;
915 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
916 if (h->hash_table == NULL)
917 hsize >>= 1;
919 ASSERT3U(hsize, >=, 1ULL << 10);
923 * The hash table buckets are protected by an array of mutexes where
924 * each mutex is reponsible for protecting 128 buckets. A minimum
925 * array size of 8192 is targeted to avoid contention.
927 if (dbuf_mutex_cache_shift == 0)
928 hmsize = MAX(hsize >> 7, 1ULL << 13);
929 else
930 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
932 h->hash_mutexes = NULL;
933 while (h->hash_mutexes == NULL) {
934 h->hash_mutex_mask = hmsize - 1;
936 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
937 KM_SLEEP);
938 if (h->hash_mutexes == NULL)
939 hmsize >>= 1;
942 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
943 sizeof (dmu_buf_impl_t),
944 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
946 for (int i = 0; i < hmsize; i++)
947 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
949 dbuf_stats_init(h);
952 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
953 * configuration is not required.
955 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
957 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
958 multilist_create(&dbuf_caches[dcs].cache,
959 sizeof (dmu_buf_impl_t),
960 offsetof(dmu_buf_impl_t, db_cache_link),
961 dbuf_cache_multilist_index_func);
962 zfs_refcount_create(&dbuf_caches[dcs].size);
965 dbuf_evict_thread_exit = B_FALSE;
966 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
967 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
968 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
969 NULL, 0, &p0, TS_RUN, minclsyspri);
971 wmsum_init(&dbuf_sums.cache_count, 0);
972 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
973 for (int i = 0; i < DN_MAX_LEVELS; i++) {
974 wmsum_init(&dbuf_sums.cache_levels[i], 0);
975 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
977 wmsum_init(&dbuf_sums.hash_hits, 0);
978 wmsum_init(&dbuf_sums.hash_misses, 0);
979 wmsum_init(&dbuf_sums.hash_collisions, 0);
980 wmsum_init(&dbuf_sums.hash_chains, 0);
981 wmsum_init(&dbuf_sums.hash_insert_race, 0);
982 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
983 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
985 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
986 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
987 KSTAT_FLAG_VIRTUAL);
988 if (dbuf_ksp != NULL) {
989 for (int i = 0; i < DN_MAX_LEVELS; i++) {
990 snprintf(dbuf_stats.cache_levels[i].name,
991 KSTAT_STRLEN, "cache_level_%d", i);
992 dbuf_stats.cache_levels[i].data_type =
993 KSTAT_DATA_UINT64;
994 snprintf(dbuf_stats.cache_levels_bytes[i].name,
995 KSTAT_STRLEN, "cache_level_%d_bytes", i);
996 dbuf_stats.cache_levels_bytes[i].data_type =
997 KSTAT_DATA_UINT64;
999 dbuf_ksp->ks_data = &dbuf_stats;
1000 dbuf_ksp->ks_update = dbuf_kstat_update;
1001 kstat_install(dbuf_ksp);
1005 void
1006 dbuf_fini(void)
1008 dbuf_hash_table_t *h = &dbuf_hash_table;
1010 dbuf_stats_destroy();
1012 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1013 mutex_destroy(&h->hash_mutexes[i]);
1015 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1016 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1017 sizeof (kmutex_t));
1019 kmem_cache_destroy(dbuf_kmem_cache);
1020 taskq_destroy(dbu_evict_taskq);
1022 mutex_enter(&dbuf_evict_lock);
1023 dbuf_evict_thread_exit = B_TRUE;
1024 while (dbuf_evict_thread_exit) {
1025 cv_signal(&dbuf_evict_cv);
1026 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1028 mutex_exit(&dbuf_evict_lock);
1030 mutex_destroy(&dbuf_evict_lock);
1031 cv_destroy(&dbuf_evict_cv);
1033 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1034 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1035 multilist_destroy(&dbuf_caches[dcs].cache);
1038 if (dbuf_ksp != NULL) {
1039 kstat_delete(dbuf_ksp);
1040 dbuf_ksp = NULL;
1043 wmsum_fini(&dbuf_sums.cache_count);
1044 wmsum_fini(&dbuf_sums.cache_total_evicts);
1045 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1046 wmsum_fini(&dbuf_sums.cache_levels[i]);
1047 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1049 wmsum_fini(&dbuf_sums.hash_hits);
1050 wmsum_fini(&dbuf_sums.hash_misses);
1051 wmsum_fini(&dbuf_sums.hash_collisions);
1052 wmsum_fini(&dbuf_sums.hash_chains);
1053 wmsum_fini(&dbuf_sums.hash_insert_race);
1054 wmsum_fini(&dbuf_sums.metadata_cache_count);
1055 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1059 * Other stuff.
1062 #ifdef ZFS_DEBUG
1063 static void
1064 dbuf_verify(dmu_buf_impl_t *db)
1066 dnode_t *dn;
1067 dbuf_dirty_record_t *dr;
1068 uint32_t txg_prev;
1070 ASSERT(MUTEX_HELD(&db->db_mtx));
1072 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1073 return;
1075 ASSERT(db->db_objset != NULL);
1076 DB_DNODE_ENTER(db);
1077 dn = DB_DNODE(db);
1078 if (dn == NULL) {
1079 ASSERT(db->db_parent == NULL);
1080 ASSERT(db->db_blkptr == NULL);
1081 } else {
1082 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1083 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1084 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1085 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1086 db->db_blkid == DMU_SPILL_BLKID ||
1087 !avl_is_empty(&dn->dn_dbufs));
1089 if (db->db_blkid == DMU_BONUS_BLKID) {
1090 ASSERT(dn != NULL);
1091 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1092 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1093 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1094 ASSERT(dn != NULL);
1095 ASSERT0(db->db.db_offset);
1096 } else {
1097 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1100 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1101 ASSERT(dr->dr_dbuf == db);
1102 txg_prev = dr->dr_txg;
1103 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1104 dr = list_next(&db->db_dirty_records, dr)) {
1105 ASSERT(dr->dr_dbuf == db);
1106 ASSERT(txg_prev > dr->dr_txg);
1107 txg_prev = dr->dr_txg;
1112 * We can't assert that db_size matches dn_datablksz because it
1113 * can be momentarily different when another thread is doing
1114 * dnode_set_blksz().
1116 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1117 dr = db->db_data_pending;
1119 * It should only be modified in syncing context, so
1120 * make sure we only have one copy of the data.
1122 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1125 /* verify db->db_blkptr */
1126 if (db->db_blkptr) {
1127 if (db->db_parent == dn->dn_dbuf) {
1128 /* db is pointed to by the dnode */
1129 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1130 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1131 ASSERT(db->db_parent == NULL);
1132 else
1133 ASSERT(db->db_parent != NULL);
1134 if (db->db_blkid != DMU_SPILL_BLKID)
1135 ASSERT3P(db->db_blkptr, ==,
1136 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1137 } else {
1138 /* db is pointed to by an indirect block */
1139 int epb __maybe_unused = db->db_parent->db.db_size >>
1140 SPA_BLKPTRSHIFT;
1141 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1142 ASSERT3U(db->db_parent->db.db_object, ==,
1143 db->db.db_object);
1145 * dnode_grow_indblksz() can make this fail if we don't
1146 * have the parent's rwlock. XXX indblksz no longer
1147 * grows. safe to do this now?
1149 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1150 ASSERT3P(db->db_blkptr, ==,
1151 ((blkptr_t *)db->db_parent->db.db_data +
1152 db->db_blkid % epb));
1156 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1157 (db->db_buf == NULL || db->db_buf->b_data) &&
1158 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1159 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1161 * If the blkptr isn't set but they have nonzero data,
1162 * it had better be dirty, otherwise we'll lose that
1163 * data when we evict this buffer.
1165 * There is an exception to this rule for indirect blocks; in
1166 * this case, if the indirect block is a hole, we fill in a few
1167 * fields on each of the child blocks (importantly, birth time)
1168 * to prevent hole birth times from being lost when you
1169 * partially fill in a hole.
1171 if (db->db_dirtycnt == 0) {
1172 if (db->db_level == 0) {
1173 uint64_t *buf = db->db.db_data;
1174 int i;
1176 for (i = 0; i < db->db.db_size >> 3; i++) {
1177 ASSERT(buf[i] == 0);
1179 } else {
1180 blkptr_t *bps = db->db.db_data;
1181 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1182 db->db.db_size);
1184 * We want to verify that all the blkptrs in the
1185 * indirect block are holes, but we may have
1186 * automatically set up a few fields for them.
1187 * We iterate through each blkptr and verify
1188 * they only have those fields set.
1190 for (int i = 0;
1191 i < db->db.db_size / sizeof (blkptr_t);
1192 i++) {
1193 blkptr_t *bp = &bps[i];
1194 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1195 &bp->blk_cksum));
1196 ASSERT(
1197 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1198 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1199 DVA_IS_EMPTY(&bp->blk_dva[2]));
1200 ASSERT0(bp->blk_fill);
1201 ASSERT0(bp->blk_pad[0]);
1202 ASSERT0(bp->blk_pad[1]);
1203 ASSERT(!BP_IS_EMBEDDED(bp));
1204 ASSERT(BP_IS_HOLE(bp));
1205 ASSERT0(bp->blk_phys_birth);
1210 DB_DNODE_EXIT(db);
1212 #endif
1214 static void
1215 dbuf_clear_data(dmu_buf_impl_t *db)
1217 ASSERT(MUTEX_HELD(&db->db_mtx));
1218 dbuf_evict_user(db);
1219 ASSERT3P(db->db_buf, ==, NULL);
1220 db->db.db_data = NULL;
1221 if (db->db_state != DB_NOFILL) {
1222 db->db_state = DB_UNCACHED;
1223 DTRACE_SET_STATE(db, "clear data");
1227 static void
1228 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1230 ASSERT(MUTEX_HELD(&db->db_mtx));
1231 ASSERT(buf != NULL);
1233 db->db_buf = buf;
1234 ASSERT(buf->b_data != NULL);
1235 db->db.db_data = buf->b_data;
1238 static arc_buf_t *
1239 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1241 spa_t *spa = db->db_objset->os_spa;
1243 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1247 * Loan out an arc_buf for read. Return the loaned arc_buf.
1249 arc_buf_t *
1250 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1252 arc_buf_t *abuf;
1254 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1255 mutex_enter(&db->db_mtx);
1256 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1257 int blksz = db->db.db_size;
1258 spa_t *spa = db->db_objset->os_spa;
1260 mutex_exit(&db->db_mtx);
1261 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1262 memcpy(abuf->b_data, db->db.db_data, blksz);
1263 } else {
1264 abuf = db->db_buf;
1265 arc_loan_inuse_buf(abuf, db);
1266 db->db_buf = NULL;
1267 dbuf_clear_data(db);
1268 mutex_exit(&db->db_mtx);
1270 return (abuf);
1274 * Calculate which level n block references the data at the level 0 offset
1275 * provided.
1277 uint64_t
1278 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1280 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1282 * The level n blkid is equal to the level 0 blkid divided by
1283 * the number of level 0s in a level n block.
1285 * The level 0 blkid is offset >> datablkshift =
1286 * offset / 2^datablkshift.
1288 * The number of level 0s in a level n is the number of block
1289 * pointers in an indirect block, raised to the power of level.
1290 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1291 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1293 * Thus, the level n blkid is: offset /
1294 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1295 * = offset / 2^(datablkshift + level *
1296 * (indblkshift - SPA_BLKPTRSHIFT))
1297 * = offset >> (datablkshift + level *
1298 * (indblkshift - SPA_BLKPTRSHIFT))
1301 const unsigned exp = dn->dn_datablkshift +
1302 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1304 if (exp >= 8 * sizeof (offset)) {
1305 /* This only happens on the highest indirection level */
1306 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1307 return (0);
1310 ASSERT3U(exp, <, 8 * sizeof (offset));
1312 return (offset >> exp);
1313 } else {
1314 ASSERT3U(offset, <, dn->dn_datablksz);
1315 return (0);
1320 * This function is used to lock the parent of the provided dbuf. This should be
1321 * used when modifying or reading db_blkptr.
1323 db_lock_type_t
1324 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1326 enum db_lock_type ret = DLT_NONE;
1327 if (db->db_parent != NULL) {
1328 rw_enter(&db->db_parent->db_rwlock, rw);
1329 ret = DLT_PARENT;
1330 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1331 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1332 tag);
1333 ret = DLT_OBJSET;
1336 * We only return a DLT_NONE lock when it's the top-most indirect block
1337 * of the meta-dnode of the MOS.
1339 return (ret);
1343 * We need to pass the lock type in because it's possible that the block will
1344 * move from being the topmost indirect block in a dnode (and thus, have no
1345 * parent) to not the top-most via an indirection increase. This would cause a
1346 * panic if we didn't pass the lock type in.
1348 void
1349 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1351 if (type == DLT_PARENT)
1352 rw_exit(&db->db_parent->db_rwlock);
1353 else if (type == DLT_OBJSET)
1354 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1357 static void
1358 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1359 arc_buf_t *buf, void *vdb)
1361 (void) zb, (void) bp;
1362 dmu_buf_impl_t *db = vdb;
1364 mutex_enter(&db->db_mtx);
1365 ASSERT3U(db->db_state, ==, DB_READ);
1367 * All reads are synchronous, so we must have a hold on the dbuf
1369 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1370 ASSERT(db->db_buf == NULL);
1371 ASSERT(db->db.db_data == NULL);
1372 if (buf == NULL) {
1373 /* i/o error */
1374 ASSERT(zio == NULL || zio->io_error != 0);
1375 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1376 ASSERT3P(db->db_buf, ==, NULL);
1377 db->db_state = DB_UNCACHED;
1378 DTRACE_SET_STATE(db, "i/o error");
1379 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1380 /* freed in flight */
1381 ASSERT(zio == NULL || zio->io_error == 0);
1382 arc_release(buf, db);
1383 memset(buf->b_data, 0, db->db.db_size);
1384 arc_buf_freeze(buf);
1385 db->db_freed_in_flight = FALSE;
1386 dbuf_set_data(db, buf);
1387 db->db_state = DB_CACHED;
1388 DTRACE_SET_STATE(db, "freed in flight");
1389 } else {
1390 /* success */
1391 ASSERT(zio == NULL || zio->io_error == 0);
1392 dbuf_set_data(db, buf);
1393 db->db_state = DB_CACHED;
1394 DTRACE_SET_STATE(db, "successful read");
1396 cv_broadcast(&db->db_changed);
1397 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1401 * Shortcut for performing reads on bonus dbufs. Returns
1402 * an error if we fail to verify the dnode associated with
1403 * a decrypted block. Otherwise success.
1405 static int
1406 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1408 int bonuslen, max_bonuslen, err;
1410 err = dbuf_read_verify_dnode_crypt(db, flags);
1411 if (err)
1412 return (err);
1414 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1415 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1416 ASSERT(MUTEX_HELD(&db->db_mtx));
1417 ASSERT(DB_DNODE_HELD(db));
1418 ASSERT3U(bonuslen, <=, db->db.db_size);
1419 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1420 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1421 if (bonuslen < max_bonuslen)
1422 memset(db->db.db_data, 0, max_bonuslen);
1423 if (bonuslen)
1424 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1425 db->db_state = DB_CACHED;
1426 DTRACE_SET_STATE(db, "bonus buffer filled");
1427 return (0);
1430 static void
1431 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1433 blkptr_t *bps = db->db.db_data;
1434 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1435 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1437 for (int i = 0; i < n_bps; i++) {
1438 blkptr_t *bp = &bps[i];
1440 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1441 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1442 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1443 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1444 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1445 BP_SET_BIRTH(bp, dbbp->blk_birth, 0);
1450 * Handle reads on dbufs that are holes, if necessary. This function
1451 * requires that the dbuf's mutex is held. Returns success (0) if action
1452 * was taken, ENOENT if no action was taken.
1454 static int
1455 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1457 ASSERT(MUTEX_HELD(&db->db_mtx));
1459 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1461 * For level 0 blocks only, if the above check fails:
1462 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1463 * processes the delete record and clears the bp while we are waiting
1464 * for the dn_mtx (resulting in a "no" from block_freed).
1466 if (!is_hole && db->db_level == 0)
1467 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1469 if (is_hole) {
1470 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1471 memset(db->db.db_data, 0, db->db.db_size);
1473 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1474 bp->blk_birth != 0) {
1475 dbuf_handle_indirect_hole(db, dn, bp);
1477 db->db_state = DB_CACHED;
1478 DTRACE_SET_STATE(db, "hole read satisfied");
1479 return (0);
1481 return (ENOENT);
1485 * This function ensures that, when doing a decrypting read of a block,
1486 * we make sure we have decrypted the dnode associated with it. We must do
1487 * this so that we ensure we are fully authenticating the checksum-of-MACs
1488 * tree from the root of the objset down to this block. Indirect blocks are
1489 * always verified against their secure checksum-of-MACs assuming that the
1490 * dnode containing them is correct. Now that we are doing a decrypting read,
1491 * we can be sure that the key is loaded and verify that assumption. This is
1492 * especially important considering that we always read encrypted dnode
1493 * blocks as raw data (without verifying their MACs) to start, and
1494 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1496 static int
1497 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1499 int err = 0;
1500 objset_t *os = db->db_objset;
1501 arc_buf_t *dnode_abuf;
1502 dnode_t *dn;
1503 zbookmark_phys_t zb;
1505 ASSERT(MUTEX_HELD(&db->db_mtx));
1507 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1508 !os->os_encrypted || os->os_raw_receive)
1509 return (0);
1511 DB_DNODE_ENTER(db);
1512 dn = DB_DNODE(db);
1513 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1515 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1516 DB_DNODE_EXIT(db);
1517 return (0);
1520 SET_BOOKMARK(&zb, dmu_objset_id(os),
1521 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1522 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1525 * An error code of EACCES tells us that the key is still not
1526 * available. This is ok if we are only reading authenticated
1527 * (and therefore non-encrypted) blocks.
1529 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1530 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1531 (db->db_blkid == DMU_BONUS_BLKID &&
1532 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1533 err = 0;
1535 DB_DNODE_EXIT(db);
1537 return (err);
1541 * Drops db_mtx and the parent lock specified by dblt and tag before
1542 * returning.
1544 static int
1545 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1546 db_lock_type_t dblt, const void *tag)
1548 dnode_t *dn;
1549 zbookmark_phys_t zb;
1550 uint32_t aflags = ARC_FLAG_NOWAIT;
1551 int err, zio_flags;
1552 blkptr_t bp, *bpp;
1554 DB_DNODE_ENTER(db);
1555 dn = DB_DNODE(db);
1556 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1557 ASSERT(MUTEX_HELD(&db->db_mtx));
1558 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1559 ASSERT(db->db_buf == NULL);
1560 ASSERT(db->db_parent == NULL ||
1561 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1563 if (db->db_blkid == DMU_BONUS_BLKID) {
1564 err = dbuf_read_bonus(db, dn, flags);
1565 goto early_unlock;
1568 if (db->db_state == DB_UNCACHED) {
1569 if (db->db_blkptr == NULL) {
1570 bpp = NULL;
1571 } else {
1572 bp = *db->db_blkptr;
1573 bpp = &bp;
1575 } else {
1576 struct dirty_leaf *dl;
1577 dbuf_dirty_record_t *dr;
1579 ASSERT3S(db->db_state, ==, DB_NOFILL);
1581 dr = list_head(&db->db_dirty_records);
1582 if (dr == NULL) {
1583 err = EIO;
1584 goto early_unlock;
1585 } else {
1586 dl = &dr->dt.dl;
1587 if (!dl->dr_brtwrite) {
1588 err = EIO;
1589 goto early_unlock;
1591 bp = dl->dr_overridden_by;
1592 bpp = &bp;
1596 err = dbuf_read_hole(db, dn, bpp);
1597 if (err == 0)
1598 goto early_unlock;
1600 ASSERT(bpp != NULL);
1603 * Any attempt to read a redacted block should result in an error. This
1604 * will never happen under normal conditions, but can be useful for
1605 * debugging purposes.
1607 if (BP_IS_REDACTED(bpp)) {
1608 ASSERT(dsl_dataset_feature_is_active(
1609 db->db_objset->os_dsl_dataset,
1610 SPA_FEATURE_REDACTED_DATASETS));
1611 err = SET_ERROR(EIO);
1612 goto early_unlock;
1615 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1616 db->db.db_object, db->db_level, db->db_blkid);
1619 * All bps of an encrypted os should have the encryption bit set.
1620 * If this is not true it indicates tampering and we report an error.
1622 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bpp)) {
1623 spa_log_error(db->db_objset->os_spa, &zb);
1624 zfs_panic_recover("unencrypted block in encrypted "
1625 "object set %llu", dmu_objset_id(db->db_objset));
1626 err = SET_ERROR(EIO);
1627 goto early_unlock;
1630 err = dbuf_read_verify_dnode_crypt(db, flags);
1631 if (err != 0)
1632 goto early_unlock;
1634 DB_DNODE_EXIT(db);
1636 db->db_state = DB_READ;
1637 DTRACE_SET_STATE(db, "read issued");
1638 mutex_exit(&db->db_mtx);
1640 if (!DBUF_IS_CACHEABLE(db))
1641 aflags |= ARC_FLAG_UNCACHED;
1642 else if (dbuf_is_l2cacheable(db))
1643 aflags |= ARC_FLAG_L2CACHE;
1645 dbuf_add_ref(db, NULL);
1647 zio_flags = (flags & DB_RF_CANFAIL) ?
1648 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1650 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1651 zio_flags |= ZIO_FLAG_RAW;
1653 * The zio layer will copy the provided blkptr later, but we have our
1654 * own copy so that we can release the parent's rwlock. We have to
1655 * do that so that if dbuf_read_done is called synchronously (on
1656 * an l1 cache hit) we don't acquire the db_mtx while holding the
1657 * parent's rwlock, which would be a lock ordering violation.
1659 dmu_buf_unlock_parent(db, dblt, tag);
1660 (void) arc_read(zio, db->db_objset->os_spa, bpp,
1661 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1662 &aflags, &zb);
1663 return (err);
1664 early_unlock:
1665 DB_DNODE_EXIT(db);
1666 mutex_exit(&db->db_mtx);
1667 dmu_buf_unlock_parent(db, dblt, tag);
1668 return (err);
1672 * This is our just-in-time copy function. It makes a copy of buffers that
1673 * have been modified in a previous transaction group before we access them in
1674 * the current active group.
1676 * This function is used in three places: when we are dirtying a buffer for the
1677 * first time in a txg, when we are freeing a range in a dnode that includes
1678 * this buffer, and when we are accessing a buffer which was received compressed
1679 * and later referenced in a WRITE_BYREF record.
1681 * Note that when we are called from dbuf_free_range() we do not put a hold on
1682 * the buffer, we just traverse the active dbuf list for the dnode.
1684 static void
1685 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1687 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1689 ASSERT(MUTEX_HELD(&db->db_mtx));
1690 ASSERT(db->db.db_data != NULL);
1691 ASSERT(db->db_level == 0);
1692 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1694 if (dr == NULL ||
1695 (dr->dt.dl.dr_data !=
1696 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1697 return;
1700 * If the last dirty record for this dbuf has not yet synced
1701 * and its referencing the dbuf data, either:
1702 * reset the reference to point to a new copy,
1703 * or (if there a no active holders)
1704 * just null out the current db_data pointer.
1706 ASSERT3U(dr->dr_txg, >=, txg - 2);
1707 if (db->db_blkid == DMU_BONUS_BLKID) {
1708 dnode_t *dn = DB_DNODE(db);
1709 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1710 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1711 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1712 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1713 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1714 dnode_t *dn = DB_DNODE(db);
1715 int size = arc_buf_size(db->db_buf);
1716 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1717 spa_t *spa = db->db_objset->os_spa;
1718 enum zio_compress compress_type =
1719 arc_get_compression(db->db_buf);
1720 uint8_t complevel = arc_get_complevel(db->db_buf);
1722 if (arc_is_encrypted(db->db_buf)) {
1723 boolean_t byteorder;
1724 uint8_t salt[ZIO_DATA_SALT_LEN];
1725 uint8_t iv[ZIO_DATA_IV_LEN];
1726 uint8_t mac[ZIO_DATA_MAC_LEN];
1728 arc_get_raw_params(db->db_buf, &byteorder, salt,
1729 iv, mac);
1730 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1731 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1732 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1733 compress_type, complevel);
1734 } else if (compress_type != ZIO_COMPRESS_OFF) {
1735 ASSERT3U(type, ==, ARC_BUFC_DATA);
1736 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1737 size, arc_buf_lsize(db->db_buf), compress_type,
1738 complevel);
1739 } else {
1740 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1742 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1743 } else {
1744 db->db_buf = NULL;
1745 dbuf_clear_data(db);
1750 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1752 int err = 0;
1753 boolean_t prefetch;
1754 dnode_t *dn;
1757 * We don't have to hold the mutex to check db_state because it
1758 * can't be freed while we have a hold on the buffer.
1760 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1762 DB_DNODE_ENTER(db);
1763 dn = DB_DNODE(db);
1765 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1766 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL;
1768 mutex_enter(&db->db_mtx);
1769 if (flags & DB_RF_PARTIAL_FIRST)
1770 db->db_partial_read = B_TRUE;
1771 else if (!(flags & DB_RF_PARTIAL_MORE))
1772 db->db_partial_read = B_FALSE;
1773 if (db->db_state == DB_CACHED) {
1775 * Ensure that this block's dnode has been decrypted if
1776 * the caller has requested decrypted data.
1778 err = dbuf_read_verify_dnode_crypt(db, flags);
1781 * If the arc buf is compressed or encrypted and the caller
1782 * requested uncompressed data, we need to untransform it
1783 * before returning. We also call arc_untransform() on any
1784 * unauthenticated blocks, which will verify their MAC if
1785 * the key is now available.
1787 if (err == 0 && db->db_buf != NULL &&
1788 (flags & DB_RF_NO_DECRYPT) == 0 &&
1789 (arc_is_encrypted(db->db_buf) ||
1790 arc_is_unauthenticated(db->db_buf) ||
1791 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1792 spa_t *spa = dn->dn_objset->os_spa;
1793 zbookmark_phys_t zb;
1795 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1796 db->db.db_object, db->db_level, db->db_blkid);
1797 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1798 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1799 dbuf_set_data(db, db->db_buf);
1801 mutex_exit(&db->db_mtx);
1802 if (err == 0 && prefetch) {
1803 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1804 B_FALSE, flags & DB_RF_HAVESTRUCT);
1806 DB_DNODE_EXIT(db);
1807 DBUF_STAT_BUMP(hash_hits);
1808 } else if (db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL) {
1809 boolean_t need_wait = B_FALSE;
1811 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1813 if (zio == NULL && (db->db_state == DB_NOFILL ||
1814 (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)))) {
1815 spa_t *spa = dn->dn_objset->os_spa;
1816 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1817 need_wait = B_TRUE;
1819 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1821 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1822 * for us
1824 if (!err && prefetch) {
1825 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1826 db->db_state != DB_CACHED,
1827 flags & DB_RF_HAVESTRUCT);
1830 DB_DNODE_EXIT(db);
1831 DBUF_STAT_BUMP(hash_misses);
1834 * If we created a zio_root we must execute it to avoid
1835 * leaking it, even if it isn't attached to any work due
1836 * to an error in dbuf_read_impl().
1838 if (need_wait) {
1839 if (err == 0)
1840 err = zio_wait(zio);
1841 else
1842 VERIFY0(zio_wait(zio));
1844 } else {
1846 * Another reader came in while the dbuf was in flight
1847 * between UNCACHED and CACHED. Either a writer will finish
1848 * writing the buffer (sending the dbuf to CACHED) or the
1849 * first reader's request will reach the read_done callback
1850 * and send the dbuf to CACHED. Otherwise, a failure
1851 * occurred and the dbuf went to UNCACHED.
1853 mutex_exit(&db->db_mtx);
1854 if (prefetch) {
1855 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1856 B_TRUE, flags & DB_RF_HAVESTRUCT);
1858 DB_DNODE_EXIT(db);
1859 DBUF_STAT_BUMP(hash_misses);
1861 /* Skip the wait per the caller's request. */
1862 if ((flags & DB_RF_NEVERWAIT) == 0) {
1863 mutex_enter(&db->db_mtx);
1864 while (db->db_state == DB_READ ||
1865 db->db_state == DB_FILL) {
1866 ASSERT(db->db_state == DB_READ ||
1867 (flags & DB_RF_HAVESTRUCT) == 0);
1868 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1869 db, zio_t *, zio);
1870 cv_wait(&db->db_changed, &db->db_mtx);
1872 if (db->db_state == DB_UNCACHED)
1873 err = SET_ERROR(EIO);
1874 mutex_exit(&db->db_mtx);
1878 return (err);
1881 static void
1882 dbuf_noread(dmu_buf_impl_t *db)
1884 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1885 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1886 mutex_enter(&db->db_mtx);
1887 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1888 cv_wait(&db->db_changed, &db->db_mtx);
1889 if (db->db_state == DB_UNCACHED) {
1890 ASSERT(db->db_buf == NULL);
1891 ASSERT(db->db.db_data == NULL);
1892 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1893 db->db_state = DB_FILL;
1894 DTRACE_SET_STATE(db, "assigning filled buffer");
1895 } else if (db->db_state == DB_NOFILL) {
1896 dbuf_clear_data(db);
1897 } else {
1898 ASSERT3U(db->db_state, ==, DB_CACHED);
1900 mutex_exit(&db->db_mtx);
1903 void
1904 dbuf_unoverride(dbuf_dirty_record_t *dr)
1906 dmu_buf_impl_t *db = dr->dr_dbuf;
1907 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1908 uint64_t txg = dr->dr_txg;
1910 ASSERT(MUTEX_HELD(&db->db_mtx));
1912 * This assert is valid because dmu_sync() expects to be called by
1913 * a zilog's get_data while holding a range lock. This call only
1914 * comes from dbuf_dirty() callers who must also hold a range lock.
1916 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1917 ASSERT(db->db_level == 0);
1919 if (db->db_blkid == DMU_BONUS_BLKID ||
1920 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1921 return;
1923 ASSERT(db->db_data_pending != dr);
1925 /* free this block */
1926 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1927 zio_free(db->db_objset->os_spa, txg, bp);
1929 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1930 dr->dt.dl.dr_nopwrite = B_FALSE;
1931 dr->dt.dl.dr_has_raw_params = B_FALSE;
1934 * Release the already-written buffer, so we leave it in
1935 * a consistent dirty state. Note that all callers are
1936 * modifying the buffer, so they will immediately do
1937 * another (redundant) arc_release(). Therefore, leave
1938 * the buf thawed to save the effort of freezing &
1939 * immediately re-thawing it.
1941 if (!dr->dt.dl.dr_brtwrite)
1942 arc_release(dr->dt.dl.dr_data, db);
1946 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1947 * data blocks in the free range, so that any future readers will find
1948 * empty blocks.
1950 void
1951 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1952 dmu_tx_t *tx)
1954 dmu_buf_impl_t *db_search;
1955 dmu_buf_impl_t *db, *db_next;
1956 uint64_t txg = tx->tx_txg;
1957 avl_index_t where;
1958 dbuf_dirty_record_t *dr;
1960 if (end_blkid > dn->dn_maxblkid &&
1961 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1962 end_blkid = dn->dn_maxblkid;
1963 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1964 (u_longlong_t)end_blkid);
1966 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1967 db_search->db_level = 0;
1968 db_search->db_blkid = start_blkid;
1969 db_search->db_state = DB_SEARCH;
1971 mutex_enter(&dn->dn_dbufs_mtx);
1972 db = avl_find(&dn->dn_dbufs, db_search, &where);
1973 ASSERT3P(db, ==, NULL);
1975 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1977 for (; db != NULL; db = db_next) {
1978 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1979 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1981 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1982 break;
1984 ASSERT3U(db->db_blkid, >=, start_blkid);
1986 /* found a level 0 buffer in the range */
1987 mutex_enter(&db->db_mtx);
1988 if (dbuf_undirty(db, tx)) {
1989 /* mutex has been dropped and dbuf destroyed */
1990 continue;
1993 if (db->db_state == DB_UNCACHED ||
1994 db->db_state == DB_NOFILL ||
1995 db->db_state == DB_EVICTING) {
1996 ASSERT(db->db.db_data == NULL);
1997 mutex_exit(&db->db_mtx);
1998 continue;
2000 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2001 /* will be handled in dbuf_read_done or dbuf_rele */
2002 db->db_freed_in_flight = TRUE;
2003 mutex_exit(&db->db_mtx);
2004 continue;
2006 if (zfs_refcount_count(&db->db_holds) == 0) {
2007 ASSERT(db->db_buf);
2008 dbuf_destroy(db);
2009 continue;
2011 /* The dbuf is referenced */
2013 dr = list_head(&db->db_dirty_records);
2014 if (dr != NULL) {
2015 if (dr->dr_txg == txg) {
2017 * This buffer is "in-use", re-adjust the file
2018 * size to reflect that this buffer may
2019 * contain new data when we sync.
2021 if (db->db_blkid != DMU_SPILL_BLKID &&
2022 db->db_blkid > dn->dn_maxblkid)
2023 dn->dn_maxblkid = db->db_blkid;
2024 dbuf_unoverride(dr);
2025 if (dr->dt.dl.dr_brtwrite) {
2026 ASSERT(db->db.db_data == NULL);
2027 mutex_exit(&db->db_mtx);
2028 continue;
2030 } else {
2032 * This dbuf is not dirty in the open context.
2033 * Either uncache it (if its not referenced in
2034 * the open context) or reset its contents to
2035 * empty.
2037 dbuf_fix_old_data(db, txg);
2040 /* clear the contents if its cached */
2041 if (db->db_state == DB_CACHED) {
2042 ASSERT(db->db.db_data != NULL);
2043 arc_release(db->db_buf, db);
2044 rw_enter(&db->db_rwlock, RW_WRITER);
2045 memset(db->db.db_data, 0, db->db.db_size);
2046 rw_exit(&db->db_rwlock);
2047 arc_buf_freeze(db->db_buf);
2050 mutex_exit(&db->db_mtx);
2053 mutex_exit(&dn->dn_dbufs_mtx);
2054 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2057 void
2058 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2060 arc_buf_t *buf, *old_buf;
2061 dbuf_dirty_record_t *dr;
2062 int osize = db->db.db_size;
2063 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2064 dnode_t *dn;
2066 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2068 DB_DNODE_ENTER(db);
2069 dn = DB_DNODE(db);
2072 * XXX we should be doing a dbuf_read, checking the return
2073 * value and returning that up to our callers
2075 dmu_buf_will_dirty(&db->db, tx);
2077 /* create the data buffer for the new block */
2078 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2080 /* copy old block data to the new block */
2081 old_buf = db->db_buf;
2082 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2083 /* zero the remainder */
2084 if (size > osize)
2085 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2087 mutex_enter(&db->db_mtx);
2088 dbuf_set_data(db, buf);
2089 arc_buf_destroy(old_buf, db);
2090 db->db.db_size = size;
2092 dr = list_head(&db->db_dirty_records);
2093 /* dirty record added by dmu_buf_will_dirty() */
2094 VERIFY(dr != NULL);
2095 if (db->db_level == 0)
2096 dr->dt.dl.dr_data = buf;
2097 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2098 ASSERT3U(dr->dr_accounted, ==, osize);
2099 dr->dr_accounted = size;
2100 mutex_exit(&db->db_mtx);
2102 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2103 DB_DNODE_EXIT(db);
2106 void
2107 dbuf_release_bp(dmu_buf_impl_t *db)
2109 objset_t *os __maybe_unused = db->db_objset;
2111 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2112 ASSERT(arc_released(os->os_phys_buf) ||
2113 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2114 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2116 (void) arc_release(db->db_buf, db);
2120 * We already have a dirty record for this TXG, and we are being
2121 * dirtied again.
2123 static void
2124 dbuf_redirty(dbuf_dirty_record_t *dr)
2126 dmu_buf_impl_t *db = dr->dr_dbuf;
2128 ASSERT(MUTEX_HELD(&db->db_mtx));
2130 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2132 * If this buffer has already been written out,
2133 * we now need to reset its state.
2135 dbuf_unoverride(dr);
2136 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2137 db->db_state != DB_NOFILL) {
2138 /* Already released on initial dirty, so just thaw. */
2139 ASSERT(arc_released(db->db_buf));
2140 arc_buf_thaw(db->db_buf);
2145 dbuf_dirty_record_t *
2146 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2148 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2149 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2150 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2151 ASSERT(dn->dn_maxblkid >= blkid);
2153 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2154 list_link_init(&dr->dr_dirty_node);
2155 list_link_init(&dr->dr_dbuf_node);
2156 dr->dr_dnode = dn;
2157 dr->dr_txg = tx->tx_txg;
2158 dr->dt.dll.dr_blkid = blkid;
2159 dr->dr_accounted = dn->dn_datablksz;
2162 * There should not be any dbuf for the block that we're dirtying.
2163 * Otherwise the buffer contents could be inconsistent between the
2164 * dbuf and the lightweight dirty record.
2166 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2167 NULL));
2169 mutex_enter(&dn->dn_mtx);
2170 int txgoff = tx->tx_txg & TXG_MASK;
2171 if (dn->dn_free_ranges[txgoff] != NULL) {
2172 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2175 if (dn->dn_nlevels == 1) {
2176 ASSERT3U(blkid, <, dn->dn_nblkptr);
2177 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2178 mutex_exit(&dn->dn_mtx);
2179 rw_exit(&dn->dn_struct_rwlock);
2180 dnode_setdirty(dn, tx);
2181 } else {
2182 mutex_exit(&dn->dn_mtx);
2184 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2185 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2186 1, blkid >> epbs, FTAG);
2187 rw_exit(&dn->dn_struct_rwlock);
2188 if (parent_db == NULL) {
2189 kmem_free(dr, sizeof (*dr));
2190 return (NULL);
2192 int err = dbuf_read(parent_db, NULL,
2193 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2194 if (err != 0) {
2195 dbuf_rele(parent_db, FTAG);
2196 kmem_free(dr, sizeof (*dr));
2197 return (NULL);
2200 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2201 dbuf_rele(parent_db, FTAG);
2202 mutex_enter(&parent_dr->dt.di.dr_mtx);
2203 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2204 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2205 mutex_exit(&parent_dr->dt.di.dr_mtx);
2206 dr->dr_parent = parent_dr;
2209 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2211 return (dr);
2214 dbuf_dirty_record_t *
2215 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2217 dnode_t *dn;
2218 objset_t *os;
2219 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2220 int txgoff = tx->tx_txg & TXG_MASK;
2221 boolean_t drop_struct_rwlock = B_FALSE;
2223 ASSERT(tx->tx_txg != 0);
2224 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2225 DMU_TX_DIRTY_BUF(tx, db);
2227 DB_DNODE_ENTER(db);
2228 dn = DB_DNODE(db);
2230 * Shouldn't dirty a regular buffer in syncing context. Private
2231 * objects may be dirtied in syncing context, but only if they
2232 * were already pre-dirtied in open context.
2234 #ifdef ZFS_DEBUG
2235 if (dn->dn_objset->os_dsl_dataset != NULL) {
2236 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2237 RW_READER, FTAG);
2239 ASSERT(!dmu_tx_is_syncing(tx) ||
2240 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2241 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2242 dn->dn_objset->os_dsl_dataset == NULL);
2243 if (dn->dn_objset->os_dsl_dataset != NULL)
2244 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2245 #endif
2247 * We make this assert for private objects as well, but after we
2248 * check if we're already dirty. They are allowed to re-dirty
2249 * in syncing context.
2251 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2252 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2253 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2255 mutex_enter(&db->db_mtx);
2257 * XXX make this true for indirects too? The problem is that
2258 * transactions created with dmu_tx_create_assigned() from
2259 * syncing context don't bother holding ahead.
2261 ASSERT(db->db_level != 0 ||
2262 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2263 db->db_state == DB_NOFILL);
2265 mutex_enter(&dn->dn_mtx);
2266 dnode_set_dirtyctx(dn, tx, db);
2267 if (tx->tx_txg > dn->dn_dirty_txg)
2268 dn->dn_dirty_txg = tx->tx_txg;
2269 mutex_exit(&dn->dn_mtx);
2271 if (db->db_blkid == DMU_SPILL_BLKID)
2272 dn->dn_have_spill = B_TRUE;
2275 * If this buffer is already dirty, we're done.
2277 dr_head = list_head(&db->db_dirty_records);
2278 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2279 db->db.db_object == DMU_META_DNODE_OBJECT);
2280 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2281 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2282 DB_DNODE_EXIT(db);
2284 dbuf_redirty(dr_next);
2285 mutex_exit(&db->db_mtx);
2286 return (dr_next);
2290 * Only valid if not already dirty.
2292 ASSERT(dn->dn_object == 0 ||
2293 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2294 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2296 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2299 * We should only be dirtying in syncing context if it's the
2300 * mos or we're initializing the os or it's a special object.
2301 * However, we are allowed to dirty in syncing context provided
2302 * we already dirtied it in open context. Hence we must make
2303 * this assertion only if we're not already dirty.
2305 os = dn->dn_objset;
2306 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2307 #ifdef ZFS_DEBUG
2308 if (dn->dn_objset->os_dsl_dataset != NULL)
2309 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2310 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2311 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2312 if (dn->dn_objset->os_dsl_dataset != NULL)
2313 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2314 #endif
2315 ASSERT(db->db.db_size != 0);
2317 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2319 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2320 dmu_objset_willuse_space(os, db->db.db_size, tx);
2324 * If this buffer is dirty in an old transaction group we need
2325 * to make a copy of it so that the changes we make in this
2326 * transaction group won't leak out when we sync the older txg.
2328 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2329 list_link_init(&dr->dr_dirty_node);
2330 list_link_init(&dr->dr_dbuf_node);
2331 dr->dr_dnode = dn;
2332 if (db->db_level == 0) {
2333 void *data_old = db->db_buf;
2335 if (db->db_state != DB_NOFILL) {
2336 if (db->db_blkid == DMU_BONUS_BLKID) {
2337 dbuf_fix_old_data(db, tx->tx_txg);
2338 data_old = db->db.db_data;
2339 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2341 * Release the data buffer from the cache so
2342 * that we can modify it without impacting
2343 * possible other users of this cached data
2344 * block. Note that indirect blocks and
2345 * private objects are not released until the
2346 * syncing state (since they are only modified
2347 * then).
2349 arc_release(db->db_buf, db);
2350 dbuf_fix_old_data(db, tx->tx_txg);
2351 data_old = db->db_buf;
2353 ASSERT(data_old != NULL);
2355 dr->dt.dl.dr_data = data_old;
2356 } else {
2357 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2358 list_create(&dr->dt.di.dr_children,
2359 sizeof (dbuf_dirty_record_t),
2360 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2362 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2363 dr->dr_accounted = db->db.db_size;
2365 dr->dr_dbuf = db;
2366 dr->dr_txg = tx->tx_txg;
2367 list_insert_before(&db->db_dirty_records, dr_next, dr);
2370 * We could have been freed_in_flight between the dbuf_noread
2371 * and dbuf_dirty. We win, as though the dbuf_noread() had
2372 * happened after the free.
2374 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2375 db->db_blkid != DMU_SPILL_BLKID) {
2376 mutex_enter(&dn->dn_mtx);
2377 if (dn->dn_free_ranges[txgoff] != NULL) {
2378 range_tree_clear(dn->dn_free_ranges[txgoff],
2379 db->db_blkid, 1);
2381 mutex_exit(&dn->dn_mtx);
2382 db->db_freed_in_flight = FALSE;
2386 * This buffer is now part of this txg
2388 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2389 db->db_dirtycnt += 1;
2390 ASSERT3U(db->db_dirtycnt, <=, 3);
2392 mutex_exit(&db->db_mtx);
2394 if (db->db_blkid == DMU_BONUS_BLKID ||
2395 db->db_blkid == DMU_SPILL_BLKID) {
2396 mutex_enter(&dn->dn_mtx);
2397 ASSERT(!list_link_active(&dr->dr_dirty_node));
2398 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2399 mutex_exit(&dn->dn_mtx);
2400 dnode_setdirty(dn, tx);
2401 DB_DNODE_EXIT(db);
2402 return (dr);
2405 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2406 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2407 drop_struct_rwlock = B_TRUE;
2411 * If we are overwriting a dedup BP, then unless it is snapshotted,
2412 * when we get to syncing context we will need to decrement its
2413 * refcount in the DDT. Prefetch the relevant DDT block so that
2414 * syncing context won't have to wait for the i/o.
2416 if (db->db_blkptr != NULL) {
2417 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2418 ddt_prefetch(os->os_spa, db->db_blkptr);
2419 dmu_buf_unlock_parent(db, dblt, FTAG);
2423 * We need to hold the dn_struct_rwlock to make this assertion,
2424 * because it protects dn_phys / dn_next_nlevels from changing.
2426 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2427 dn->dn_phys->dn_nlevels > db->db_level ||
2428 dn->dn_next_nlevels[txgoff] > db->db_level ||
2429 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2430 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2433 if (db->db_level == 0) {
2434 ASSERT(!db->db_objset->os_raw_receive ||
2435 dn->dn_maxblkid >= db->db_blkid);
2436 dnode_new_blkid(dn, db->db_blkid, tx,
2437 drop_struct_rwlock, B_FALSE);
2438 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2441 if (db->db_level+1 < dn->dn_nlevels) {
2442 dmu_buf_impl_t *parent = db->db_parent;
2443 dbuf_dirty_record_t *di;
2444 int parent_held = FALSE;
2446 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2447 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2448 parent = dbuf_hold_level(dn, db->db_level + 1,
2449 db->db_blkid >> epbs, FTAG);
2450 ASSERT(parent != NULL);
2451 parent_held = TRUE;
2453 if (drop_struct_rwlock)
2454 rw_exit(&dn->dn_struct_rwlock);
2455 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2456 di = dbuf_dirty(parent, tx);
2457 if (parent_held)
2458 dbuf_rele(parent, FTAG);
2460 mutex_enter(&db->db_mtx);
2462 * Since we've dropped the mutex, it's possible that
2463 * dbuf_undirty() might have changed this out from under us.
2465 if (list_head(&db->db_dirty_records) == dr ||
2466 dn->dn_object == DMU_META_DNODE_OBJECT) {
2467 mutex_enter(&di->dt.di.dr_mtx);
2468 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2469 ASSERT(!list_link_active(&dr->dr_dirty_node));
2470 list_insert_tail(&di->dt.di.dr_children, dr);
2471 mutex_exit(&di->dt.di.dr_mtx);
2472 dr->dr_parent = di;
2474 mutex_exit(&db->db_mtx);
2475 } else {
2476 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2477 ASSERT(db->db_blkid < dn->dn_nblkptr);
2478 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2479 mutex_enter(&dn->dn_mtx);
2480 ASSERT(!list_link_active(&dr->dr_dirty_node));
2481 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2482 mutex_exit(&dn->dn_mtx);
2483 if (drop_struct_rwlock)
2484 rw_exit(&dn->dn_struct_rwlock);
2487 dnode_setdirty(dn, tx);
2488 DB_DNODE_EXIT(db);
2489 return (dr);
2492 static void
2493 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2495 dmu_buf_impl_t *db = dr->dr_dbuf;
2497 if (dr->dt.dl.dr_data != db->db.db_data) {
2498 struct dnode *dn = dr->dr_dnode;
2499 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2501 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2502 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2504 db->db_data_pending = NULL;
2505 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2506 list_remove(&db->db_dirty_records, dr);
2507 if (dr->dr_dbuf->db_level != 0) {
2508 mutex_destroy(&dr->dt.di.dr_mtx);
2509 list_destroy(&dr->dt.di.dr_children);
2511 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2512 ASSERT3U(db->db_dirtycnt, >, 0);
2513 db->db_dirtycnt -= 1;
2517 * Undirty a buffer in the transaction group referenced by the given
2518 * transaction. Return whether this evicted the dbuf.
2520 boolean_t
2521 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2523 uint64_t txg = tx->tx_txg;
2524 boolean_t brtwrite;
2526 ASSERT(txg != 0);
2529 * Due to our use of dn_nlevels below, this can only be called
2530 * in open context, unless we are operating on the MOS.
2531 * From syncing context, dn_nlevels may be different from the
2532 * dn_nlevels used when dbuf was dirtied.
2534 ASSERT(db->db_objset ==
2535 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2536 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2537 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2538 ASSERT0(db->db_level);
2539 ASSERT(MUTEX_HELD(&db->db_mtx));
2542 * If this buffer is not dirty, we're done.
2544 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2545 if (dr == NULL)
2546 return (B_FALSE);
2547 ASSERT(dr->dr_dbuf == db);
2549 brtwrite = dr->dt.dl.dr_brtwrite;
2550 if (brtwrite) {
2552 * We are freeing a block that we cloned in the same
2553 * transaction group.
2555 brt_pending_remove(dmu_objset_spa(db->db_objset),
2556 &dr->dt.dl.dr_overridden_by, tx);
2559 dnode_t *dn = dr->dr_dnode;
2561 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2563 ASSERT(db->db.db_size != 0);
2565 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2566 dr->dr_accounted, txg);
2568 list_remove(&db->db_dirty_records, dr);
2571 * Note that there are three places in dbuf_dirty()
2572 * where this dirty record may be put on a list.
2573 * Make sure to do a list_remove corresponding to
2574 * every one of those list_insert calls.
2576 if (dr->dr_parent) {
2577 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2578 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2579 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2580 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2581 db->db_level + 1 == dn->dn_nlevels) {
2582 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2583 mutex_enter(&dn->dn_mtx);
2584 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2585 mutex_exit(&dn->dn_mtx);
2588 if (db->db_state != DB_NOFILL && !brtwrite) {
2589 dbuf_unoverride(dr);
2591 ASSERT(db->db_buf != NULL);
2592 ASSERT(dr->dt.dl.dr_data != NULL);
2593 if (dr->dt.dl.dr_data != db->db_buf)
2594 arc_buf_destroy(dr->dt.dl.dr_data, db);
2597 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2599 ASSERT(db->db_dirtycnt > 0);
2600 db->db_dirtycnt -= 1;
2602 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2603 ASSERT(db->db_state == DB_NOFILL || brtwrite ||
2604 arc_released(db->db_buf));
2605 dbuf_destroy(db);
2606 return (B_TRUE);
2609 return (B_FALSE);
2612 static void
2613 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2615 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2617 ASSERT(tx->tx_txg != 0);
2618 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2621 * Quick check for dirtiness. For already dirty blocks, this
2622 * reduces runtime of this function by >90%, and overall performance
2623 * by 50% for some workloads (e.g. file deletion with indirect blocks
2624 * cached).
2626 mutex_enter(&db->db_mtx);
2628 if (db->db_state == DB_CACHED) {
2629 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2631 * It's possible that it is already dirty but not cached,
2632 * because there are some calls to dbuf_dirty() that don't
2633 * go through dmu_buf_will_dirty().
2635 if (dr != NULL) {
2636 /* This dbuf is already dirty and cached. */
2637 dbuf_redirty(dr);
2638 mutex_exit(&db->db_mtx);
2639 return;
2642 mutex_exit(&db->db_mtx);
2644 DB_DNODE_ENTER(db);
2645 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2646 flags |= DB_RF_HAVESTRUCT;
2647 DB_DNODE_EXIT(db);
2648 (void) dbuf_read(db, NULL, flags);
2649 (void) dbuf_dirty(db, tx);
2652 void
2653 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2655 dmu_buf_will_dirty_impl(db_fake,
2656 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2659 boolean_t
2660 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2662 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2663 dbuf_dirty_record_t *dr;
2665 mutex_enter(&db->db_mtx);
2666 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2667 mutex_exit(&db->db_mtx);
2668 return (dr != NULL);
2671 void
2672 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2676 db->db_state = DB_NOFILL;
2677 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2678 dmu_buf_will_fill(db_fake, tx);
2681 void
2682 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2684 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2686 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2687 ASSERT(tx->tx_txg != 0);
2688 ASSERT(db->db_level == 0);
2689 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2691 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2692 dmu_tx_private_ok(tx));
2694 dbuf_noread(db);
2695 (void) dbuf_dirty(db, tx);
2699 * This function is effectively the same as dmu_buf_will_dirty(), but
2700 * indicates the caller expects raw encrypted data in the db, and provides
2701 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2702 * blkptr_t when this dbuf is written. This is only used for blocks of
2703 * dnodes, during raw receive.
2705 void
2706 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2707 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2709 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2710 dbuf_dirty_record_t *dr;
2713 * dr_has_raw_params is only processed for blocks of dnodes
2714 * (see dbuf_sync_dnode_leaf_crypt()).
2716 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2717 ASSERT3U(db->db_level, ==, 0);
2718 ASSERT(db->db_objset->os_raw_receive);
2720 dmu_buf_will_dirty_impl(db_fake,
2721 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2723 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2725 ASSERT3P(dr, !=, NULL);
2727 dr->dt.dl.dr_has_raw_params = B_TRUE;
2728 dr->dt.dl.dr_byteorder = byteorder;
2729 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2730 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2731 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2734 static void
2735 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2737 struct dirty_leaf *dl;
2738 dbuf_dirty_record_t *dr;
2740 dr = list_head(&db->db_dirty_records);
2741 ASSERT3P(dr, !=, NULL);
2742 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2743 dl = &dr->dt.dl;
2744 dl->dr_overridden_by = *bp;
2745 dl->dr_override_state = DR_OVERRIDDEN;
2746 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2749 void
2750 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2752 (void) tx;
2753 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2754 dbuf_states_t old_state;
2755 mutex_enter(&db->db_mtx);
2756 DBUF_VERIFY(db);
2758 old_state = db->db_state;
2759 db->db_state = DB_CACHED;
2760 if (old_state == DB_FILL) {
2761 if (db->db_level == 0 && db->db_freed_in_flight) {
2762 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2763 /* we were freed while filling */
2764 /* XXX dbuf_undirty? */
2765 memset(db->db.db_data, 0, db->db.db_size);
2766 db->db_freed_in_flight = FALSE;
2767 DTRACE_SET_STATE(db,
2768 "fill done handling freed in flight");
2769 } else {
2770 DTRACE_SET_STATE(db, "fill done");
2772 cv_broadcast(&db->db_changed);
2774 mutex_exit(&db->db_mtx);
2777 void
2778 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2779 bp_embedded_type_t etype, enum zio_compress comp,
2780 int uncompressed_size, int compressed_size, int byteorder,
2781 dmu_tx_t *tx)
2783 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2784 struct dirty_leaf *dl;
2785 dmu_object_type_t type;
2786 dbuf_dirty_record_t *dr;
2788 if (etype == BP_EMBEDDED_TYPE_DATA) {
2789 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2790 SPA_FEATURE_EMBEDDED_DATA));
2793 DB_DNODE_ENTER(db);
2794 type = DB_DNODE(db)->dn_type;
2795 DB_DNODE_EXIT(db);
2797 ASSERT0(db->db_level);
2798 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2800 dmu_buf_will_not_fill(dbuf, tx);
2802 dr = list_head(&db->db_dirty_records);
2803 ASSERT3P(dr, !=, NULL);
2804 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2805 dl = &dr->dt.dl;
2806 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2807 data, comp, uncompressed_size, compressed_size);
2808 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2809 BP_SET_TYPE(&dl->dr_overridden_by, type);
2810 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2811 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2813 dl->dr_override_state = DR_OVERRIDDEN;
2814 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2817 void
2818 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2820 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2821 dmu_object_type_t type;
2822 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2823 SPA_FEATURE_REDACTED_DATASETS));
2825 DB_DNODE_ENTER(db);
2826 type = DB_DNODE(db)->dn_type;
2827 DB_DNODE_EXIT(db);
2829 ASSERT0(db->db_level);
2830 dmu_buf_will_not_fill(dbuf, tx);
2832 blkptr_t bp = { { { {0} } } };
2833 BP_SET_TYPE(&bp, type);
2834 BP_SET_LEVEL(&bp, 0);
2835 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2836 BP_SET_REDACTED(&bp);
2837 BPE_SET_LSIZE(&bp, dbuf->db_size);
2839 dbuf_override_impl(db, &bp, tx);
2843 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2844 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2846 void
2847 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2849 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2850 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2851 ASSERT(db->db_level == 0);
2852 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2853 ASSERT(buf != NULL);
2854 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2855 ASSERT(tx->tx_txg != 0);
2857 arc_return_buf(buf, db);
2858 ASSERT(arc_released(buf));
2860 mutex_enter(&db->db_mtx);
2862 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2863 cv_wait(&db->db_changed, &db->db_mtx);
2865 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2867 if (db->db_state == DB_CACHED &&
2868 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2870 * In practice, we will never have a case where we have an
2871 * encrypted arc buffer while additional holds exist on the
2872 * dbuf. We don't handle this here so we simply assert that
2873 * fact instead.
2875 ASSERT(!arc_is_encrypted(buf));
2876 mutex_exit(&db->db_mtx);
2877 (void) dbuf_dirty(db, tx);
2878 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2879 arc_buf_destroy(buf, db);
2880 return;
2883 if (db->db_state == DB_CACHED) {
2884 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2886 ASSERT(db->db_buf != NULL);
2887 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2888 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2890 if (!arc_released(db->db_buf)) {
2891 ASSERT(dr->dt.dl.dr_override_state ==
2892 DR_OVERRIDDEN);
2893 arc_release(db->db_buf, db);
2895 dr->dt.dl.dr_data = buf;
2896 arc_buf_destroy(db->db_buf, db);
2897 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2898 arc_release(db->db_buf, db);
2899 arc_buf_destroy(db->db_buf, db);
2901 db->db_buf = NULL;
2903 ASSERT(db->db_buf == NULL);
2904 dbuf_set_data(db, buf);
2905 db->db_state = DB_FILL;
2906 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2907 mutex_exit(&db->db_mtx);
2908 (void) dbuf_dirty(db, tx);
2909 dmu_buf_fill_done(&db->db, tx);
2912 void
2913 dbuf_destroy(dmu_buf_impl_t *db)
2915 dnode_t *dn;
2916 dmu_buf_impl_t *parent = db->db_parent;
2917 dmu_buf_impl_t *dndb;
2919 ASSERT(MUTEX_HELD(&db->db_mtx));
2920 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2922 if (db->db_buf != NULL) {
2923 arc_buf_destroy(db->db_buf, db);
2924 db->db_buf = NULL;
2927 if (db->db_blkid == DMU_BONUS_BLKID) {
2928 int slots = DB_DNODE(db)->dn_num_slots;
2929 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2930 if (db->db.db_data != NULL) {
2931 kmem_free(db->db.db_data, bonuslen);
2932 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2933 db->db_state = DB_UNCACHED;
2934 DTRACE_SET_STATE(db, "buffer cleared");
2938 dbuf_clear_data(db);
2940 if (multilist_link_active(&db->db_cache_link)) {
2941 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2942 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2944 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2945 (void) zfs_refcount_remove_many(
2946 &dbuf_caches[db->db_caching_status].size,
2947 db->db.db_size, db);
2949 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2950 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2951 } else {
2952 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2953 DBUF_STAT_BUMPDOWN(cache_count);
2954 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2955 db->db.db_size);
2957 db->db_caching_status = DB_NO_CACHE;
2960 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2961 ASSERT(db->db_data_pending == NULL);
2962 ASSERT(list_is_empty(&db->db_dirty_records));
2964 db->db_state = DB_EVICTING;
2965 DTRACE_SET_STATE(db, "buffer eviction started");
2966 db->db_blkptr = NULL;
2969 * Now that db_state is DB_EVICTING, nobody else can find this via
2970 * the hash table. We can now drop db_mtx, which allows us to
2971 * acquire the dn_dbufs_mtx.
2973 mutex_exit(&db->db_mtx);
2975 DB_DNODE_ENTER(db);
2976 dn = DB_DNODE(db);
2977 dndb = dn->dn_dbuf;
2978 if (db->db_blkid != DMU_BONUS_BLKID) {
2979 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2980 if (needlock)
2981 mutex_enter_nested(&dn->dn_dbufs_mtx,
2982 NESTED_SINGLE);
2983 avl_remove(&dn->dn_dbufs, db);
2984 membar_producer();
2985 DB_DNODE_EXIT(db);
2986 if (needlock)
2987 mutex_exit(&dn->dn_dbufs_mtx);
2989 * Decrementing the dbuf count means that the hold corresponding
2990 * to the removed dbuf is no longer discounted in dnode_move(),
2991 * so the dnode cannot be moved until after we release the hold.
2992 * The membar_producer() ensures visibility of the decremented
2993 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2994 * release any lock.
2996 mutex_enter(&dn->dn_mtx);
2997 dnode_rele_and_unlock(dn, db, B_TRUE);
2998 db->db_dnode_handle = NULL;
3000 dbuf_hash_remove(db);
3001 } else {
3002 DB_DNODE_EXIT(db);
3005 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3007 db->db_parent = NULL;
3009 ASSERT(db->db_buf == NULL);
3010 ASSERT(db->db.db_data == NULL);
3011 ASSERT(db->db_hash_next == NULL);
3012 ASSERT(db->db_blkptr == NULL);
3013 ASSERT(db->db_data_pending == NULL);
3014 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3015 ASSERT(!multilist_link_active(&db->db_cache_link));
3018 * If this dbuf is referenced from an indirect dbuf,
3019 * decrement the ref count on the indirect dbuf.
3021 if (parent && parent != dndb) {
3022 mutex_enter(&parent->db_mtx);
3023 dbuf_rele_and_unlock(parent, db, B_TRUE);
3026 kmem_cache_free(dbuf_kmem_cache, db);
3027 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3031 * Note: While bpp will always be updated if the function returns success,
3032 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3033 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3034 * object.
3036 __attribute__((always_inline))
3037 static inline int
3038 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3039 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3041 *parentp = NULL;
3042 *bpp = NULL;
3044 ASSERT(blkid != DMU_BONUS_BLKID);
3046 if (blkid == DMU_SPILL_BLKID) {
3047 mutex_enter(&dn->dn_mtx);
3048 if (dn->dn_have_spill &&
3049 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3050 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3051 else
3052 *bpp = NULL;
3053 dbuf_add_ref(dn->dn_dbuf, NULL);
3054 *parentp = dn->dn_dbuf;
3055 mutex_exit(&dn->dn_mtx);
3056 return (0);
3059 int nlevels =
3060 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3061 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3063 ASSERT3U(level * epbs, <, 64);
3064 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3066 * This assertion shouldn't trip as long as the max indirect block size
3067 * is less than 1M. The reason for this is that up to that point,
3068 * the number of levels required to address an entire object with blocks
3069 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3070 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3071 * (i.e. we can address the entire object), objects will all use at most
3072 * N-1 levels and the assertion won't overflow. However, once epbs is
3073 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3074 * enough to address an entire object, so objects will have 5 levels,
3075 * but then this assertion will overflow.
3077 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3078 * need to redo this logic to handle overflows.
3080 ASSERT(level >= nlevels ||
3081 ((nlevels - level - 1) * epbs) +
3082 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3083 if (level >= nlevels ||
3084 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3085 ((nlevels - level - 1) * epbs)) ||
3086 (fail_sparse &&
3087 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3088 /* the buffer has no parent yet */
3089 return (SET_ERROR(ENOENT));
3090 } else if (level < nlevels-1) {
3091 /* this block is referenced from an indirect block */
3092 int err;
3094 err = dbuf_hold_impl(dn, level + 1,
3095 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3097 if (err)
3098 return (err);
3099 err = dbuf_read(*parentp, NULL,
3100 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3101 if (err) {
3102 dbuf_rele(*parentp, NULL);
3103 *parentp = NULL;
3104 return (err);
3106 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3107 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3108 (blkid & ((1ULL << epbs) - 1));
3109 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3110 ASSERT(BP_IS_HOLE(*bpp));
3111 rw_exit(&(*parentp)->db_rwlock);
3112 return (0);
3113 } else {
3114 /* the block is referenced from the dnode */
3115 ASSERT3U(level, ==, nlevels-1);
3116 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3117 blkid < dn->dn_phys->dn_nblkptr);
3118 if (dn->dn_dbuf) {
3119 dbuf_add_ref(dn->dn_dbuf, NULL);
3120 *parentp = dn->dn_dbuf;
3122 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3123 return (0);
3127 static dmu_buf_impl_t *
3128 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3129 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3131 objset_t *os = dn->dn_objset;
3132 dmu_buf_impl_t *db, *odb;
3134 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3135 ASSERT(dn->dn_type != DMU_OT_NONE);
3137 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3139 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3140 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3142 db->db_objset = os;
3143 db->db.db_object = dn->dn_object;
3144 db->db_level = level;
3145 db->db_blkid = blkid;
3146 db->db_dirtycnt = 0;
3147 db->db_dnode_handle = dn->dn_handle;
3148 db->db_parent = parent;
3149 db->db_blkptr = blkptr;
3150 db->db_hash = hash;
3152 db->db_user = NULL;
3153 db->db_user_immediate_evict = FALSE;
3154 db->db_freed_in_flight = FALSE;
3155 db->db_pending_evict = FALSE;
3157 if (blkid == DMU_BONUS_BLKID) {
3158 ASSERT3P(parent, ==, dn->dn_dbuf);
3159 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3160 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3161 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3162 db->db.db_offset = DMU_BONUS_BLKID;
3163 db->db_state = DB_UNCACHED;
3164 DTRACE_SET_STATE(db, "bonus buffer created");
3165 db->db_caching_status = DB_NO_CACHE;
3166 /* the bonus dbuf is not placed in the hash table */
3167 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3168 return (db);
3169 } else if (blkid == DMU_SPILL_BLKID) {
3170 db->db.db_size = (blkptr != NULL) ?
3171 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3172 db->db.db_offset = 0;
3173 } else {
3174 int blocksize =
3175 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3176 db->db.db_size = blocksize;
3177 db->db.db_offset = db->db_blkid * blocksize;
3181 * Hold the dn_dbufs_mtx while we get the new dbuf
3182 * in the hash table *and* added to the dbufs list.
3183 * This prevents a possible deadlock with someone
3184 * trying to look up this dbuf before it's added to the
3185 * dn_dbufs list.
3187 mutex_enter(&dn->dn_dbufs_mtx);
3188 db->db_state = DB_EVICTING; /* not worth logging this state change */
3189 if ((odb = dbuf_hash_insert(db)) != NULL) {
3190 /* someone else inserted it first */
3191 mutex_exit(&dn->dn_dbufs_mtx);
3192 kmem_cache_free(dbuf_kmem_cache, db);
3193 DBUF_STAT_BUMP(hash_insert_race);
3194 return (odb);
3196 avl_add(&dn->dn_dbufs, db);
3198 db->db_state = DB_UNCACHED;
3199 DTRACE_SET_STATE(db, "regular buffer created");
3200 db->db_caching_status = DB_NO_CACHE;
3201 mutex_exit(&dn->dn_dbufs_mtx);
3202 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3204 if (parent && parent != dn->dn_dbuf)
3205 dbuf_add_ref(parent, db);
3207 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3208 zfs_refcount_count(&dn->dn_holds) > 0);
3209 (void) zfs_refcount_add(&dn->dn_holds, db);
3211 dprintf_dbuf(db, "db=%p\n", db);
3213 return (db);
3217 * This function returns a block pointer and information about the object,
3218 * given a dnode and a block. This is a publicly accessible version of
3219 * dbuf_findbp that only returns some information, rather than the
3220 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3221 * should be locked as (at least) a reader.
3224 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3225 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3227 dmu_buf_impl_t *dbp = NULL;
3228 blkptr_t *bp2;
3229 int err = 0;
3230 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3232 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3233 if (err == 0) {
3234 ASSERT3P(bp2, !=, NULL);
3235 *bp = *bp2;
3236 if (dbp != NULL)
3237 dbuf_rele(dbp, NULL);
3238 if (datablkszsec != NULL)
3239 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3240 if (indblkshift != NULL)
3241 *indblkshift = dn->dn_phys->dn_indblkshift;
3244 return (err);
3247 typedef struct dbuf_prefetch_arg {
3248 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3249 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3250 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3251 int dpa_curlevel; /* The current level that we're reading */
3252 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3253 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3254 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3255 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3256 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3257 void *dpa_arg; /* prefetch completion arg */
3258 } dbuf_prefetch_arg_t;
3260 static void
3261 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3263 if (dpa->dpa_cb != NULL) {
3264 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3265 dpa->dpa_zb.zb_blkid, io_done);
3267 kmem_free(dpa, sizeof (*dpa));
3270 static void
3271 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3272 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3274 (void) zio, (void) zb, (void) iobp;
3275 dbuf_prefetch_arg_t *dpa = private;
3277 if (abuf != NULL)
3278 arc_buf_destroy(abuf, private);
3280 dbuf_prefetch_fini(dpa, B_TRUE);
3284 * Actually issue the prefetch read for the block given.
3286 static void
3287 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3289 ASSERT(!BP_IS_REDACTED(bp) ||
3290 dsl_dataset_feature_is_active(
3291 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3292 SPA_FEATURE_REDACTED_DATASETS));
3294 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3295 return (dbuf_prefetch_fini(dpa, B_FALSE));
3297 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3298 arc_flags_t aflags =
3299 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3300 ARC_FLAG_NO_BUF;
3302 /* dnodes are always read as raw and then converted later */
3303 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3304 dpa->dpa_curlevel == 0)
3305 zio_flags |= ZIO_FLAG_RAW;
3307 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3308 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3309 ASSERT(dpa->dpa_zio != NULL);
3310 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3311 dbuf_issue_final_prefetch_done, dpa,
3312 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3316 * Called when an indirect block above our prefetch target is read in. This
3317 * will either read in the next indirect block down the tree or issue the actual
3318 * prefetch if the next block down is our target.
3320 static void
3321 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3322 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3324 (void) zb, (void) iobp;
3325 dbuf_prefetch_arg_t *dpa = private;
3327 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3328 ASSERT3S(dpa->dpa_curlevel, >, 0);
3330 if (abuf == NULL) {
3331 ASSERT(zio == NULL || zio->io_error != 0);
3332 dbuf_prefetch_fini(dpa, B_TRUE);
3333 return;
3335 ASSERT(zio == NULL || zio->io_error == 0);
3338 * The dpa_dnode is only valid if we are called with a NULL
3339 * zio. This indicates that the arc_read() returned without
3340 * first calling zio_read() to issue a physical read. Once
3341 * a physical read is made the dpa_dnode must be invalidated
3342 * as the locks guarding it may have been dropped. If the
3343 * dpa_dnode is still valid, then we want to add it to the dbuf
3344 * cache. To do so, we must hold the dbuf associated with the block
3345 * we just prefetched, read its contents so that we associate it
3346 * with an arc_buf_t, and then release it.
3348 if (zio != NULL) {
3349 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3350 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3351 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3352 } else {
3353 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3355 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3357 dpa->dpa_dnode = NULL;
3358 } else if (dpa->dpa_dnode != NULL) {
3359 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3360 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3361 dpa->dpa_zb.zb_level));
3362 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3363 dpa->dpa_curlevel, curblkid, FTAG);
3364 if (db == NULL) {
3365 arc_buf_destroy(abuf, private);
3366 dbuf_prefetch_fini(dpa, B_TRUE);
3367 return;
3369 (void) dbuf_read(db, NULL,
3370 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3371 dbuf_rele(db, FTAG);
3374 dpa->dpa_curlevel--;
3375 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3376 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3377 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3378 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3380 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3381 dsl_dataset_feature_is_active(
3382 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3383 SPA_FEATURE_REDACTED_DATASETS)));
3384 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3385 arc_buf_destroy(abuf, private);
3386 dbuf_prefetch_fini(dpa, B_TRUE);
3387 return;
3388 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3389 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3390 dbuf_issue_final_prefetch(dpa, bp);
3391 } else {
3392 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3393 zbookmark_phys_t zb;
3395 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3396 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3397 iter_aflags |= ARC_FLAG_L2CACHE;
3399 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3401 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3402 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3404 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3405 bp, dbuf_prefetch_indirect_done, dpa,
3406 ZIO_PRIORITY_SYNC_READ,
3407 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3408 &iter_aflags, &zb);
3411 arc_buf_destroy(abuf, private);
3415 * Issue prefetch reads for the given block on the given level. If the indirect
3416 * blocks above that block are not in memory, we will read them in
3417 * asynchronously. As a result, this call never blocks waiting for a read to
3418 * complete. Note that the prefetch might fail if the dataset is encrypted and
3419 * the encryption key is unmapped before the IO completes.
3422 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3423 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3424 void *arg)
3426 blkptr_t bp;
3427 int epbs, nlevels, curlevel;
3428 uint64_t curblkid;
3430 ASSERT(blkid != DMU_BONUS_BLKID);
3431 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3433 if (blkid > dn->dn_maxblkid)
3434 goto no_issue;
3436 if (level == 0 && dnode_block_freed(dn, blkid))
3437 goto no_issue;
3440 * This dnode hasn't been written to disk yet, so there's nothing to
3441 * prefetch.
3443 nlevels = dn->dn_phys->dn_nlevels;
3444 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3445 goto no_issue;
3447 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3448 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3449 goto no_issue;
3451 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3452 level, blkid, NULL);
3453 if (db != NULL) {
3454 mutex_exit(&db->db_mtx);
3456 * This dbuf already exists. It is either CACHED, or
3457 * (we assume) about to be read or filled.
3459 goto no_issue;
3463 * Find the closest ancestor (indirect block) of the target block
3464 * that is present in the cache. In this indirect block, we will
3465 * find the bp that is at curlevel, curblkid.
3467 curlevel = level;
3468 curblkid = blkid;
3469 while (curlevel < nlevels - 1) {
3470 int parent_level = curlevel + 1;
3471 uint64_t parent_blkid = curblkid >> epbs;
3472 dmu_buf_impl_t *db;
3474 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3475 FALSE, TRUE, FTAG, &db) == 0) {
3476 blkptr_t *bpp = db->db_buf->b_data;
3477 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3478 dbuf_rele(db, FTAG);
3479 break;
3482 curlevel = parent_level;
3483 curblkid = parent_blkid;
3486 if (curlevel == nlevels - 1) {
3487 /* No cached indirect blocks found. */
3488 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3489 bp = dn->dn_phys->dn_blkptr[curblkid];
3491 ASSERT(!BP_IS_REDACTED(&bp) ||
3492 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3493 SPA_FEATURE_REDACTED_DATASETS));
3494 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3495 goto no_issue;
3497 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3499 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3500 ZIO_FLAG_CANFAIL);
3502 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3503 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3504 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3505 dn->dn_object, level, blkid);
3506 dpa->dpa_curlevel = curlevel;
3507 dpa->dpa_prio = prio;
3508 dpa->dpa_aflags = aflags;
3509 dpa->dpa_spa = dn->dn_objset->os_spa;
3510 dpa->dpa_dnode = dn;
3511 dpa->dpa_epbs = epbs;
3512 dpa->dpa_zio = pio;
3513 dpa->dpa_cb = cb;
3514 dpa->dpa_arg = arg;
3516 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3517 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3518 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3519 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3522 * If we have the indirect just above us, no need to do the asynchronous
3523 * prefetch chain; we'll just run the last step ourselves. If we're at
3524 * a higher level, though, we want to issue the prefetches for all the
3525 * indirect blocks asynchronously, so we can go on with whatever we were
3526 * doing.
3528 if (curlevel == level) {
3529 ASSERT3U(curblkid, ==, blkid);
3530 dbuf_issue_final_prefetch(dpa, &bp);
3531 } else {
3532 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3533 zbookmark_phys_t zb;
3535 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3536 if (dnode_level_is_l2cacheable(&bp, dn, level))
3537 iter_aflags |= ARC_FLAG_L2CACHE;
3539 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3540 dn->dn_object, curlevel, curblkid);
3541 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3542 &bp, dbuf_prefetch_indirect_done, dpa,
3543 ZIO_PRIORITY_SYNC_READ,
3544 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3545 &iter_aflags, &zb);
3548 * We use pio here instead of dpa_zio since it's possible that
3549 * dpa may have already been freed.
3551 zio_nowait(pio);
3552 return (1);
3553 no_issue:
3554 if (cb != NULL)
3555 cb(arg, level, blkid, B_FALSE);
3556 return (0);
3560 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3561 arc_flags_t aflags)
3564 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3568 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3569 * the case of encrypted, compressed and uncompressed buffers by
3570 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3571 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3573 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3575 noinline static void
3576 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3578 dbuf_dirty_record_t *dr = db->db_data_pending;
3579 arc_buf_t *data = dr->dt.dl.dr_data;
3580 enum zio_compress compress_type = arc_get_compression(data);
3581 uint8_t complevel = arc_get_complevel(data);
3583 if (arc_is_encrypted(data)) {
3584 boolean_t byteorder;
3585 uint8_t salt[ZIO_DATA_SALT_LEN];
3586 uint8_t iv[ZIO_DATA_IV_LEN];
3587 uint8_t mac[ZIO_DATA_MAC_LEN];
3589 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3590 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3591 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3592 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3593 compress_type, complevel));
3594 } else if (compress_type != ZIO_COMPRESS_OFF) {
3595 dbuf_set_data(db, arc_alloc_compressed_buf(
3596 dn->dn_objset->os_spa, db, arc_buf_size(data),
3597 arc_buf_lsize(data), compress_type, complevel));
3598 } else {
3599 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3600 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3603 rw_enter(&db->db_rwlock, RW_WRITER);
3604 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3605 rw_exit(&db->db_rwlock);
3609 * Returns with db_holds incremented, and db_mtx not held.
3610 * Note: dn_struct_rwlock must be held.
3613 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3614 boolean_t fail_sparse, boolean_t fail_uncached,
3615 const void *tag, dmu_buf_impl_t **dbp)
3617 dmu_buf_impl_t *db, *parent = NULL;
3618 uint64_t hv;
3620 /* If the pool has been created, verify the tx_sync_lock is not held */
3621 spa_t *spa = dn->dn_objset->os_spa;
3622 dsl_pool_t *dp = spa->spa_dsl_pool;
3623 if (dp != NULL) {
3624 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3627 ASSERT(blkid != DMU_BONUS_BLKID);
3628 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3629 ASSERT3U(dn->dn_nlevels, >, level);
3631 *dbp = NULL;
3633 /* dbuf_find() returns with db_mtx held */
3634 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3636 if (db == NULL) {
3637 blkptr_t *bp = NULL;
3638 int err;
3640 if (fail_uncached)
3641 return (SET_ERROR(ENOENT));
3643 ASSERT3P(parent, ==, NULL);
3644 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3645 if (fail_sparse) {
3646 if (err == 0 && bp && BP_IS_HOLE(bp))
3647 err = SET_ERROR(ENOENT);
3648 if (err) {
3649 if (parent)
3650 dbuf_rele(parent, NULL);
3651 return (err);
3654 if (err && err != ENOENT)
3655 return (err);
3656 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3659 if (fail_uncached && db->db_state != DB_CACHED) {
3660 mutex_exit(&db->db_mtx);
3661 return (SET_ERROR(ENOENT));
3664 if (db->db_buf != NULL) {
3665 arc_buf_access(db->db_buf);
3666 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3669 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3672 * If this buffer is currently syncing out, and we are
3673 * still referencing it from db_data, we need to make a copy
3674 * of it in case we decide we want to dirty it again in this txg.
3676 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3677 dn->dn_object != DMU_META_DNODE_OBJECT &&
3678 db->db_state == DB_CACHED && db->db_data_pending) {
3679 dbuf_dirty_record_t *dr = db->db_data_pending;
3680 if (dr->dt.dl.dr_data == db->db_buf) {
3681 ASSERT3P(db->db_buf, !=, NULL);
3682 dbuf_hold_copy(dn, db);
3686 if (multilist_link_active(&db->db_cache_link)) {
3687 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3688 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3689 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3691 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3692 (void) zfs_refcount_remove_many(
3693 &dbuf_caches[db->db_caching_status].size,
3694 db->db.db_size, db);
3696 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3697 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3698 } else {
3699 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3700 DBUF_STAT_BUMPDOWN(cache_count);
3701 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3702 db->db.db_size);
3704 db->db_caching_status = DB_NO_CACHE;
3706 (void) zfs_refcount_add(&db->db_holds, tag);
3707 DBUF_VERIFY(db);
3708 mutex_exit(&db->db_mtx);
3710 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3711 if (parent)
3712 dbuf_rele(parent, NULL);
3714 ASSERT3P(DB_DNODE(db), ==, dn);
3715 ASSERT3U(db->db_blkid, ==, blkid);
3716 ASSERT3U(db->db_level, ==, level);
3717 *dbp = db;
3719 return (0);
3722 dmu_buf_impl_t *
3723 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3725 return (dbuf_hold_level(dn, 0, blkid, tag));
3728 dmu_buf_impl_t *
3729 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3731 dmu_buf_impl_t *db;
3732 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3733 return (err ? NULL : db);
3736 void
3737 dbuf_create_bonus(dnode_t *dn)
3739 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3741 ASSERT(dn->dn_bonus == NULL);
3742 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
3743 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
3747 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3749 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3751 if (db->db_blkid != DMU_SPILL_BLKID)
3752 return (SET_ERROR(ENOTSUP));
3753 if (blksz == 0)
3754 blksz = SPA_MINBLOCKSIZE;
3755 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3756 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3758 dbuf_new_size(db, blksz, tx);
3760 return (0);
3763 void
3764 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3766 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3769 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3770 void
3771 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
3773 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3774 VERIFY3S(holds, >, 1);
3777 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3778 boolean_t
3779 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3780 const void *tag)
3782 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3783 dmu_buf_impl_t *found_db;
3784 boolean_t result = B_FALSE;
3786 if (blkid == DMU_BONUS_BLKID)
3787 found_db = dbuf_find_bonus(os, obj);
3788 else
3789 found_db = dbuf_find(os, obj, 0, blkid, NULL);
3791 if (found_db != NULL) {
3792 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3793 (void) zfs_refcount_add(&db->db_holds, tag);
3794 result = B_TRUE;
3796 mutex_exit(&found_db->db_mtx);
3798 return (result);
3802 * If you call dbuf_rele() you had better not be referencing the dnode handle
3803 * unless you have some other direct or indirect hold on the dnode. (An indirect
3804 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3805 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3806 * dnode's parent dbuf evicting its dnode handles.
3808 void
3809 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
3811 mutex_enter(&db->db_mtx);
3812 dbuf_rele_and_unlock(db, tag, B_FALSE);
3815 void
3816 dmu_buf_rele(dmu_buf_t *db, const void *tag)
3818 dbuf_rele((dmu_buf_impl_t *)db, tag);
3822 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3823 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3824 * argument should be set if we are already in the dbuf-evicting code
3825 * path, in which case we don't want to recursively evict. This allows us to
3826 * avoid deeply nested stacks that would have a call flow similar to this:
3828 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3829 * ^ |
3830 * | |
3831 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3834 void
3835 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
3837 int64_t holds;
3838 uint64_t size;
3840 ASSERT(MUTEX_HELD(&db->db_mtx));
3841 DBUF_VERIFY(db);
3844 * Remove the reference to the dbuf before removing its hold on the
3845 * dnode so we can guarantee in dnode_move() that a referenced bonus
3846 * buffer has a corresponding dnode hold.
3848 holds = zfs_refcount_remove(&db->db_holds, tag);
3849 ASSERT(holds >= 0);
3852 * We can't freeze indirects if there is a possibility that they
3853 * may be modified in the current syncing context.
3855 if (db->db_buf != NULL &&
3856 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3857 arc_buf_freeze(db->db_buf);
3860 if (holds == db->db_dirtycnt &&
3861 db->db_level == 0 && db->db_user_immediate_evict)
3862 dbuf_evict_user(db);
3864 if (holds == 0) {
3865 if (db->db_blkid == DMU_BONUS_BLKID) {
3866 dnode_t *dn;
3867 boolean_t evict_dbuf = db->db_pending_evict;
3870 * If the dnode moves here, we cannot cross this
3871 * barrier until the move completes.
3873 DB_DNODE_ENTER(db);
3875 dn = DB_DNODE(db);
3876 atomic_dec_32(&dn->dn_dbufs_count);
3879 * Decrementing the dbuf count means that the bonus
3880 * buffer's dnode hold is no longer discounted in
3881 * dnode_move(). The dnode cannot move until after
3882 * the dnode_rele() below.
3884 DB_DNODE_EXIT(db);
3887 * Do not reference db after its lock is dropped.
3888 * Another thread may evict it.
3890 mutex_exit(&db->db_mtx);
3892 if (evict_dbuf)
3893 dnode_evict_bonus(dn);
3895 dnode_rele(dn, db);
3896 } else if (db->db_buf == NULL) {
3898 * This is a special case: we never associated this
3899 * dbuf with any data allocated from the ARC.
3901 ASSERT(db->db_state == DB_UNCACHED ||
3902 db->db_state == DB_NOFILL);
3903 dbuf_destroy(db);
3904 } else if (arc_released(db->db_buf)) {
3906 * This dbuf has anonymous data associated with it.
3908 dbuf_destroy(db);
3909 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
3910 db->db_pending_evict) {
3911 dbuf_destroy(db);
3912 } else if (!multilist_link_active(&db->db_cache_link)) {
3913 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3915 dbuf_cached_state_t dcs =
3916 dbuf_include_in_metadata_cache(db) ?
3917 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3918 db->db_caching_status = dcs;
3920 multilist_insert(&dbuf_caches[dcs].cache, db);
3921 uint64_t db_size = db->db.db_size;
3922 size = zfs_refcount_add_many(
3923 &dbuf_caches[dcs].size, db_size, db);
3924 uint8_t db_level = db->db_level;
3925 mutex_exit(&db->db_mtx);
3927 if (dcs == DB_DBUF_METADATA_CACHE) {
3928 DBUF_STAT_BUMP(metadata_cache_count);
3929 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
3930 size);
3931 } else {
3932 DBUF_STAT_BUMP(cache_count);
3933 DBUF_STAT_MAX(cache_size_bytes_max, size);
3934 DBUF_STAT_BUMP(cache_levels[db_level]);
3935 DBUF_STAT_INCR(cache_levels_bytes[db_level],
3936 db_size);
3939 if (dcs == DB_DBUF_CACHE && !evicting)
3940 dbuf_evict_notify(size);
3942 } else {
3943 mutex_exit(&db->db_mtx);
3948 #pragma weak dmu_buf_refcount = dbuf_refcount
3949 uint64_t
3950 dbuf_refcount(dmu_buf_impl_t *db)
3952 return (zfs_refcount_count(&db->db_holds));
3955 uint64_t
3956 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3958 uint64_t holds;
3959 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3961 mutex_enter(&db->db_mtx);
3962 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3963 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3964 mutex_exit(&db->db_mtx);
3966 return (holds);
3969 void *
3970 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3971 dmu_buf_user_t *new_user)
3973 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3975 mutex_enter(&db->db_mtx);
3976 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3977 if (db->db_user == old_user)
3978 db->db_user = new_user;
3979 else
3980 old_user = db->db_user;
3981 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3982 mutex_exit(&db->db_mtx);
3984 return (old_user);
3987 void *
3988 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3990 return (dmu_buf_replace_user(db_fake, NULL, user));
3993 void *
3994 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3996 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3998 db->db_user_immediate_evict = TRUE;
3999 return (dmu_buf_set_user(db_fake, user));
4002 void *
4003 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4005 return (dmu_buf_replace_user(db_fake, user, NULL));
4008 void *
4009 dmu_buf_get_user(dmu_buf_t *db_fake)
4011 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4013 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4014 return (db->db_user);
4017 void
4018 dmu_buf_user_evict_wait(void)
4020 taskq_wait(dbu_evict_taskq);
4023 blkptr_t *
4024 dmu_buf_get_blkptr(dmu_buf_t *db)
4026 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4027 return (dbi->db_blkptr);
4030 objset_t *
4031 dmu_buf_get_objset(dmu_buf_t *db)
4033 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4034 return (dbi->db_objset);
4037 dnode_t *
4038 dmu_buf_dnode_enter(dmu_buf_t *db)
4040 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4041 DB_DNODE_ENTER(dbi);
4042 return (DB_DNODE(dbi));
4045 void
4046 dmu_buf_dnode_exit(dmu_buf_t *db)
4048 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4049 DB_DNODE_EXIT(dbi);
4052 static void
4053 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4055 /* ASSERT(dmu_tx_is_syncing(tx) */
4056 ASSERT(MUTEX_HELD(&db->db_mtx));
4058 if (db->db_blkptr != NULL)
4059 return;
4061 if (db->db_blkid == DMU_SPILL_BLKID) {
4062 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4063 BP_ZERO(db->db_blkptr);
4064 return;
4066 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4068 * This buffer was allocated at a time when there was
4069 * no available blkptrs from the dnode, or it was
4070 * inappropriate to hook it in (i.e., nlevels mismatch).
4072 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4073 ASSERT(db->db_parent == NULL);
4074 db->db_parent = dn->dn_dbuf;
4075 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4076 DBUF_VERIFY(db);
4077 } else {
4078 dmu_buf_impl_t *parent = db->db_parent;
4079 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4081 ASSERT(dn->dn_phys->dn_nlevels > 1);
4082 if (parent == NULL) {
4083 mutex_exit(&db->db_mtx);
4084 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4085 parent = dbuf_hold_level(dn, db->db_level + 1,
4086 db->db_blkid >> epbs, db);
4087 rw_exit(&dn->dn_struct_rwlock);
4088 mutex_enter(&db->db_mtx);
4089 db->db_parent = parent;
4091 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4092 (db->db_blkid & ((1ULL << epbs) - 1));
4093 DBUF_VERIFY(db);
4097 static void
4098 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4100 dmu_buf_impl_t *db = dr->dr_dbuf;
4101 void *data = dr->dt.dl.dr_data;
4103 ASSERT0(db->db_level);
4104 ASSERT(MUTEX_HELD(&db->db_mtx));
4105 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4106 ASSERT(data != NULL);
4108 dnode_t *dn = dr->dr_dnode;
4109 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4110 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4111 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4113 dbuf_sync_leaf_verify_bonus_dnode(dr);
4115 dbuf_undirty_bonus(dr);
4116 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4120 * When syncing out a blocks of dnodes, adjust the block to deal with
4121 * encryption. Normally, we make sure the block is decrypted before writing
4122 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4123 * from a raw receive. In this case, set the ARC buf's crypt params so
4124 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4126 static void
4127 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4129 int err;
4130 dmu_buf_impl_t *db = dr->dr_dbuf;
4132 ASSERT(MUTEX_HELD(&db->db_mtx));
4133 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4134 ASSERT3U(db->db_level, ==, 0);
4136 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4137 zbookmark_phys_t zb;
4140 * Unfortunately, there is currently no mechanism for
4141 * syncing context to handle decryption errors. An error
4142 * here is only possible if an attacker maliciously
4143 * changed a dnode block and updated the associated
4144 * checksums going up the block tree.
4146 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4147 db->db.db_object, db->db_level, db->db_blkid);
4148 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4149 &zb, B_TRUE);
4150 if (err)
4151 panic("Invalid dnode block MAC");
4152 } else if (dr->dt.dl.dr_has_raw_params) {
4153 (void) arc_release(dr->dt.dl.dr_data, db);
4154 arc_convert_to_raw(dr->dt.dl.dr_data,
4155 dmu_objset_id(db->db_objset),
4156 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4157 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4162 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4163 * is critical the we not allow the compiler to inline this function in to
4164 * dbuf_sync_list() thereby drastically bloating the stack usage.
4166 noinline static void
4167 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4169 dmu_buf_impl_t *db = dr->dr_dbuf;
4170 dnode_t *dn = dr->dr_dnode;
4172 ASSERT(dmu_tx_is_syncing(tx));
4174 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4176 mutex_enter(&db->db_mtx);
4178 ASSERT(db->db_level > 0);
4179 DBUF_VERIFY(db);
4181 /* Read the block if it hasn't been read yet. */
4182 if (db->db_buf == NULL) {
4183 mutex_exit(&db->db_mtx);
4184 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4185 mutex_enter(&db->db_mtx);
4187 ASSERT3U(db->db_state, ==, DB_CACHED);
4188 ASSERT(db->db_buf != NULL);
4190 /* Indirect block size must match what the dnode thinks it is. */
4191 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4192 dbuf_check_blkptr(dn, db);
4194 /* Provide the pending dirty record to child dbufs */
4195 db->db_data_pending = dr;
4197 mutex_exit(&db->db_mtx);
4199 dbuf_write(dr, db->db_buf, tx);
4201 zio_t *zio = dr->dr_zio;
4202 mutex_enter(&dr->dt.di.dr_mtx);
4203 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4204 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4205 mutex_exit(&dr->dt.di.dr_mtx);
4206 zio_nowait(zio);
4210 * Verify that the size of the data in our bonus buffer does not exceed
4211 * its recorded size.
4213 * The purpose of this verification is to catch any cases in development
4214 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4215 * due to incorrect feature management, older pools expect to read more
4216 * data even though they didn't actually write it to begin with.
4218 * For a example, this would catch an error in the feature logic where we
4219 * open an older pool and we expect to write the space map histogram of
4220 * a space map with size SPACE_MAP_SIZE_V0.
4222 static void
4223 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4225 #ifdef ZFS_DEBUG
4226 dnode_t *dn = dr->dr_dnode;
4229 * Encrypted bonus buffers can have data past their bonuslen.
4230 * Skip the verification of these blocks.
4232 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4233 return;
4235 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4236 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4237 ASSERT3U(bonuslen, <=, maxbonuslen);
4239 arc_buf_t *datap = dr->dt.dl.dr_data;
4240 char *datap_end = ((char *)datap) + bonuslen;
4241 char *datap_max = ((char *)datap) + maxbonuslen;
4243 /* ensure that everything is zero after our data */
4244 for (; datap_end < datap_max; datap_end++)
4245 ASSERT(*datap_end == 0);
4246 #endif
4249 static blkptr_t *
4250 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4252 /* This must be a lightweight dirty record. */
4253 ASSERT3P(dr->dr_dbuf, ==, NULL);
4254 dnode_t *dn = dr->dr_dnode;
4256 if (dn->dn_phys->dn_nlevels == 1) {
4257 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4258 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4259 } else {
4260 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4261 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4262 VERIFY3U(parent_db->db_level, ==, 1);
4263 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4264 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4265 blkptr_t *bp = parent_db->db.db_data;
4266 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4270 static void
4271 dbuf_lightweight_ready(zio_t *zio)
4273 dbuf_dirty_record_t *dr = zio->io_private;
4274 blkptr_t *bp = zio->io_bp;
4276 if (zio->io_error != 0)
4277 return;
4279 dnode_t *dn = dr->dr_dnode;
4281 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4282 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4283 int64_t delta = bp_get_dsize_sync(spa, bp) -
4284 bp_get_dsize_sync(spa, bp_orig);
4285 dnode_diduse_space(dn, delta);
4287 uint64_t blkid = dr->dt.dll.dr_blkid;
4288 mutex_enter(&dn->dn_mtx);
4289 if (blkid > dn->dn_phys->dn_maxblkid) {
4290 ASSERT0(dn->dn_objset->os_raw_receive);
4291 dn->dn_phys->dn_maxblkid = blkid;
4293 mutex_exit(&dn->dn_mtx);
4295 if (!BP_IS_EMBEDDED(bp)) {
4296 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4297 BP_SET_FILL(bp, fill);
4300 dmu_buf_impl_t *parent_db;
4301 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4302 if (dr->dr_parent == NULL) {
4303 parent_db = dn->dn_dbuf;
4304 } else {
4305 parent_db = dr->dr_parent->dr_dbuf;
4307 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4308 *bp_orig = *bp;
4309 rw_exit(&parent_db->db_rwlock);
4312 static void
4313 dbuf_lightweight_physdone(zio_t *zio)
4315 dbuf_dirty_record_t *dr = zio->io_private;
4316 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4317 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4320 * The callback will be called io_phys_children times. Retire one
4321 * portion of our dirty space each time we are called. Any rounding
4322 * error will be cleaned up by dbuf_lightweight_done().
4324 int delta = dr->dr_accounted / zio->io_phys_children;
4325 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4328 static void
4329 dbuf_lightweight_done(zio_t *zio)
4331 dbuf_dirty_record_t *dr = zio->io_private;
4333 VERIFY0(zio->io_error);
4335 objset_t *os = dr->dr_dnode->dn_objset;
4336 dmu_tx_t *tx = os->os_synctx;
4338 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4339 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4340 } else {
4341 dsl_dataset_t *ds = os->os_dsl_dataset;
4342 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4343 dsl_dataset_block_born(ds, zio->io_bp, tx);
4347 * See comment in dbuf_write_done().
4349 if (zio->io_phys_children == 0) {
4350 dsl_pool_undirty_space(dmu_objset_pool(os),
4351 dr->dr_accounted, zio->io_txg);
4352 } else {
4353 dsl_pool_undirty_space(dmu_objset_pool(os),
4354 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4357 abd_free(dr->dt.dll.dr_abd);
4358 kmem_free(dr, sizeof (*dr));
4361 noinline static void
4362 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4364 dnode_t *dn = dr->dr_dnode;
4365 zio_t *pio;
4366 if (dn->dn_phys->dn_nlevels == 1) {
4367 pio = dn->dn_zio;
4368 } else {
4369 pio = dr->dr_parent->dr_zio;
4372 zbookmark_phys_t zb = {
4373 .zb_objset = dmu_objset_id(dn->dn_objset),
4374 .zb_object = dn->dn_object,
4375 .zb_level = 0,
4376 .zb_blkid = dr->dt.dll.dr_blkid,
4380 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4381 * will have the old BP in dbuf_lightweight_done().
4383 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4385 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4386 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4387 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4388 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4389 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4390 ZIO_PRIORITY_ASYNC_WRITE,
4391 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4393 zio_nowait(dr->dr_zio);
4397 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4398 * critical the we not allow the compiler to inline this function in to
4399 * dbuf_sync_list() thereby drastically bloating the stack usage.
4401 noinline static void
4402 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4404 arc_buf_t **datap = &dr->dt.dl.dr_data;
4405 dmu_buf_impl_t *db = dr->dr_dbuf;
4406 dnode_t *dn = dr->dr_dnode;
4407 objset_t *os;
4408 uint64_t txg = tx->tx_txg;
4410 ASSERT(dmu_tx_is_syncing(tx));
4412 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4414 mutex_enter(&db->db_mtx);
4416 * To be synced, we must be dirtied. But we
4417 * might have been freed after the dirty.
4419 if (db->db_state == DB_UNCACHED) {
4420 /* This buffer has been freed since it was dirtied */
4421 ASSERT(db->db.db_data == NULL);
4422 } else if (db->db_state == DB_FILL) {
4423 /* This buffer was freed and is now being re-filled */
4424 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4425 } else {
4426 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4428 DBUF_VERIFY(db);
4430 if (db->db_blkid == DMU_SPILL_BLKID) {
4431 mutex_enter(&dn->dn_mtx);
4432 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4434 * In the previous transaction group, the bonus buffer
4435 * was entirely used to store the attributes for the
4436 * dnode which overrode the dn_spill field. However,
4437 * when adding more attributes to the file a spill
4438 * block was required to hold the extra attributes.
4440 * Make sure to clear the garbage left in the dn_spill
4441 * field from the previous attributes in the bonus
4442 * buffer. Otherwise, after writing out the spill
4443 * block to the new allocated dva, it will free
4444 * the old block pointed to by the invalid dn_spill.
4446 db->db_blkptr = NULL;
4448 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4449 mutex_exit(&dn->dn_mtx);
4453 * If this is a bonus buffer, simply copy the bonus data into the
4454 * dnode. It will be written out when the dnode is synced (and it
4455 * will be synced, since it must have been dirty for dbuf_sync to
4456 * be called).
4458 if (db->db_blkid == DMU_BONUS_BLKID) {
4459 ASSERT(dr->dr_dbuf == db);
4460 dbuf_sync_bonus(dr, tx);
4461 return;
4464 os = dn->dn_objset;
4467 * This function may have dropped the db_mtx lock allowing a dmu_sync
4468 * operation to sneak in. As a result, we need to ensure that we
4469 * don't check the dr_override_state until we have returned from
4470 * dbuf_check_blkptr.
4472 dbuf_check_blkptr(dn, db);
4475 * If this buffer is in the middle of an immediate write,
4476 * wait for the synchronous IO to complete.
4478 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4479 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4480 cv_wait(&db->db_changed, &db->db_mtx);
4484 * If this is a dnode block, ensure it is appropriately encrypted
4485 * or decrypted, depending on what we are writing to it this txg.
4487 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4488 dbuf_prepare_encrypted_dnode_leaf(dr);
4490 if (db->db_state != DB_NOFILL &&
4491 dn->dn_object != DMU_META_DNODE_OBJECT &&
4492 zfs_refcount_count(&db->db_holds) > 1 &&
4493 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4494 *datap == db->db_buf) {
4496 * If this buffer is currently "in use" (i.e., there
4497 * are active holds and db_data still references it),
4498 * then make a copy before we start the write so that
4499 * any modifications from the open txg will not leak
4500 * into this write.
4502 * NOTE: this copy does not need to be made for
4503 * objects only modified in the syncing context (e.g.
4504 * DNONE_DNODE blocks).
4506 int psize = arc_buf_size(*datap);
4507 int lsize = arc_buf_lsize(*datap);
4508 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4509 enum zio_compress compress_type = arc_get_compression(*datap);
4510 uint8_t complevel = arc_get_complevel(*datap);
4512 if (arc_is_encrypted(*datap)) {
4513 boolean_t byteorder;
4514 uint8_t salt[ZIO_DATA_SALT_LEN];
4515 uint8_t iv[ZIO_DATA_IV_LEN];
4516 uint8_t mac[ZIO_DATA_MAC_LEN];
4518 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4519 *datap = arc_alloc_raw_buf(os->os_spa, db,
4520 dmu_objset_id(os), byteorder, salt, iv, mac,
4521 dn->dn_type, psize, lsize, compress_type,
4522 complevel);
4523 } else if (compress_type != ZIO_COMPRESS_OFF) {
4524 ASSERT3U(type, ==, ARC_BUFC_DATA);
4525 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4526 psize, lsize, compress_type, complevel);
4527 } else {
4528 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4530 memcpy((*datap)->b_data, db->db.db_data, psize);
4532 db->db_data_pending = dr;
4534 mutex_exit(&db->db_mtx);
4536 dbuf_write(dr, *datap, tx);
4538 ASSERT(!list_link_active(&dr->dr_dirty_node));
4539 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4540 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4541 } else {
4542 zio_nowait(dr->dr_zio);
4546 void
4547 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4549 dbuf_dirty_record_t *dr;
4551 while ((dr = list_head(list))) {
4552 if (dr->dr_zio != NULL) {
4554 * If we find an already initialized zio then we
4555 * are processing the meta-dnode, and we have finished.
4556 * The dbufs for all dnodes are put back on the list
4557 * during processing, so that we can zio_wait()
4558 * these IOs after initiating all child IOs.
4560 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4561 DMU_META_DNODE_OBJECT);
4562 break;
4564 list_remove(list, dr);
4565 if (dr->dr_dbuf == NULL) {
4566 dbuf_sync_lightweight(dr, tx);
4567 } else {
4568 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4569 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4570 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4572 if (dr->dr_dbuf->db_level > 0)
4573 dbuf_sync_indirect(dr, tx);
4574 else
4575 dbuf_sync_leaf(dr, tx);
4580 static void
4581 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4583 (void) buf;
4584 dmu_buf_impl_t *db = vdb;
4585 dnode_t *dn;
4586 blkptr_t *bp = zio->io_bp;
4587 blkptr_t *bp_orig = &zio->io_bp_orig;
4588 spa_t *spa = zio->io_spa;
4589 int64_t delta;
4590 uint64_t fill = 0;
4591 int i;
4593 ASSERT3P(db->db_blkptr, !=, NULL);
4594 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4596 DB_DNODE_ENTER(db);
4597 dn = DB_DNODE(db);
4598 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4599 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4600 zio->io_prev_space_delta = delta;
4602 if (bp->blk_birth != 0) {
4603 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4604 BP_GET_TYPE(bp) == dn->dn_type) ||
4605 (db->db_blkid == DMU_SPILL_BLKID &&
4606 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4607 BP_IS_EMBEDDED(bp));
4608 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4611 mutex_enter(&db->db_mtx);
4613 #ifdef ZFS_DEBUG
4614 if (db->db_blkid == DMU_SPILL_BLKID) {
4615 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4616 ASSERT(!(BP_IS_HOLE(bp)) &&
4617 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4619 #endif
4621 if (db->db_level == 0) {
4622 mutex_enter(&dn->dn_mtx);
4623 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4624 db->db_blkid != DMU_SPILL_BLKID) {
4625 ASSERT0(db->db_objset->os_raw_receive);
4626 dn->dn_phys->dn_maxblkid = db->db_blkid;
4628 mutex_exit(&dn->dn_mtx);
4630 if (dn->dn_type == DMU_OT_DNODE) {
4631 i = 0;
4632 while (i < db->db.db_size) {
4633 dnode_phys_t *dnp =
4634 (void *)(((char *)db->db.db_data) + i);
4636 i += DNODE_MIN_SIZE;
4637 if (dnp->dn_type != DMU_OT_NONE) {
4638 fill++;
4639 i += dnp->dn_extra_slots *
4640 DNODE_MIN_SIZE;
4643 } else {
4644 if (BP_IS_HOLE(bp)) {
4645 fill = 0;
4646 } else {
4647 fill = 1;
4650 } else {
4651 blkptr_t *ibp = db->db.db_data;
4652 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4653 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4654 if (BP_IS_HOLE(ibp))
4655 continue;
4656 fill += BP_GET_FILL(ibp);
4659 DB_DNODE_EXIT(db);
4661 if (!BP_IS_EMBEDDED(bp))
4662 BP_SET_FILL(bp, fill);
4664 mutex_exit(&db->db_mtx);
4666 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4667 *db->db_blkptr = *bp;
4668 dmu_buf_unlock_parent(db, dblt, FTAG);
4672 * This function gets called just prior to running through the compression
4673 * stage of the zio pipeline. If we're an indirect block comprised of only
4674 * holes, then we want this indirect to be compressed away to a hole. In
4675 * order to do that we must zero out any information about the holes that
4676 * this indirect points to prior to before we try to compress it.
4678 static void
4679 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4681 (void) zio, (void) buf;
4682 dmu_buf_impl_t *db = vdb;
4683 dnode_t *dn;
4684 blkptr_t *bp;
4685 unsigned int epbs, i;
4687 ASSERT3U(db->db_level, >, 0);
4688 DB_DNODE_ENTER(db);
4689 dn = DB_DNODE(db);
4690 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4691 ASSERT3U(epbs, <, 31);
4693 /* Determine if all our children are holes */
4694 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4695 if (!BP_IS_HOLE(bp))
4696 break;
4700 * If all the children are holes, then zero them all out so that
4701 * we may get compressed away.
4703 if (i == 1ULL << epbs) {
4705 * We only found holes. Grab the rwlock to prevent
4706 * anybody from reading the blocks we're about to
4707 * zero out.
4709 rw_enter(&db->db_rwlock, RW_WRITER);
4710 memset(db->db.db_data, 0, db->db.db_size);
4711 rw_exit(&db->db_rwlock);
4713 DB_DNODE_EXIT(db);
4717 * The SPA will call this callback several times for each zio - once
4718 * for every physical child i/o (zio->io_phys_children times). This
4719 * allows the DMU to monitor the progress of each logical i/o. For example,
4720 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4721 * block. There may be a long delay before all copies/fragments are completed,
4722 * so this callback allows us to retire dirty space gradually, as the physical
4723 * i/os complete.
4725 static void
4726 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4728 (void) buf;
4729 dmu_buf_impl_t *db = arg;
4730 objset_t *os = db->db_objset;
4731 dsl_pool_t *dp = dmu_objset_pool(os);
4732 dbuf_dirty_record_t *dr;
4733 int delta = 0;
4735 dr = db->db_data_pending;
4736 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4739 * The callback will be called io_phys_children times. Retire one
4740 * portion of our dirty space each time we are called. Any rounding
4741 * error will be cleaned up by dbuf_write_done().
4743 delta = dr->dr_accounted / zio->io_phys_children;
4744 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4747 static void
4748 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4750 (void) buf;
4751 dmu_buf_impl_t *db = vdb;
4752 blkptr_t *bp_orig = &zio->io_bp_orig;
4753 blkptr_t *bp = db->db_blkptr;
4754 objset_t *os = db->db_objset;
4755 dmu_tx_t *tx = os->os_synctx;
4757 ASSERT0(zio->io_error);
4758 ASSERT(db->db_blkptr == bp);
4761 * For nopwrites and rewrites we ensure that the bp matches our
4762 * original and bypass all the accounting.
4764 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4765 ASSERT(BP_EQUAL(bp, bp_orig));
4766 } else {
4767 dsl_dataset_t *ds = os->os_dsl_dataset;
4768 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4769 dsl_dataset_block_born(ds, bp, tx);
4772 mutex_enter(&db->db_mtx);
4774 DBUF_VERIFY(db);
4776 dbuf_dirty_record_t *dr = db->db_data_pending;
4777 dnode_t *dn = dr->dr_dnode;
4778 ASSERT(!list_link_active(&dr->dr_dirty_node));
4779 ASSERT(dr->dr_dbuf == db);
4780 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4781 list_remove(&db->db_dirty_records, dr);
4783 #ifdef ZFS_DEBUG
4784 if (db->db_blkid == DMU_SPILL_BLKID) {
4785 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4786 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4787 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4789 #endif
4791 if (db->db_level == 0) {
4792 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4793 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4794 if (db->db_state != DB_NOFILL) {
4795 if (dr->dt.dl.dr_data != NULL &&
4796 dr->dt.dl.dr_data != db->db_buf) {
4797 arc_buf_destroy(dr->dt.dl.dr_data, db);
4800 } else {
4801 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4802 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4803 if (!BP_IS_HOLE(db->db_blkptr)) {
4804 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4805 SPA_BLKPTRSHIFT;
4806 ASSERT3U(db->db_blkid, <=,
4807 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4808 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4809 db->db.db_size);
4811 mutex_destroy(&dr->dt.di.dr_mtx);
4812 list_destroy(&dr->dt.di.dr_children);
4815 cv_broadcast(&db->db_changed);
4816 ASSERT(db->db_dirtycnt > 0);
4817 db->db_dirtycnt -= 1;
4818 db->db_data_pending = NULL;
4819 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4822 * If we didn't do a physical write in this ZIO and we
4823 * still ended up here, it means that the space of the
4824 * dbuf that we just released (and undirtied) above hasn't
4825 * been marked as undirtied in the pool's accounting.
4827 * Thus, we undirty that space in the pool's view of the
4828 * world here. For physical writes this type of update
4829 * happens in dbuf_write_physdone().
4831 * If we did a physical write, cleanup any rounding errors
4832 * that came up due to writing multiple copies of a block
4833 * on disk [see dbuf_write_physdone()].
4835 if (zio->io_phys_children == 0) {
4836 dsl_pool_undirty_space(dmu_objset_pool(os),
4837 dr->dr_accounted, zio->io_txg);
4838 } else {
4839 dsl_pool_undirty_space(dmu_objset_pool(os),
4840 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4843 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4846 static void
4847 dbuf_write_nofill_ready(zio_t *zio)
4849 dbuf_write_ready(zio, NULL, zio->io_private);
4852 static void
4853 dbuf_write_nofill_done(zio_t *zio)
4855 dbuf_write_done(zio, NULL, zio->io_private);
4858 static void
4859 dbuf_write_override_ready(zio_t *zio)
4861 dbuf_dirty_record_t *dr = zio->io_private;
4862 dmu_buf_impl_t *db = dr->dr_dbuf;
4864 dbuf_write_ready(zio, NULL, db);
4867 static void
4868 dbuf_write_override_done(zio_t *zio)
4870 dbuf_dirty_record_t *dr = zio->io_private;
4871 dmu_buf_impl_t *db = dr->dr_dbuf;
4872 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4874 mutex_enter(&db->db_mtx);
4875 if (!BP_EQUAL(zio->io_bp, obp)) {
4876 if (!BP_IS_HOLE(obp))
4877 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4878 arc_release(dr->dt.dl.dr_data, db);
4880 mutex_exit(&db->db_mtx);
4882 dbuf_write_done(zio, NULL, db);
4884 if (zio->io_abd != NULL)
4885 abd_free(zio->io_abd);
4888 typedef struct dbuf_remap_impl_callback_arg {
4889 objset_t *drica_os;
4890 uint64_t drica_blk_birth;
4891 dmu_tx_t *drica_tx;
4892 } dbuf_remap_impl_callback_arg_t;
4894 static void
4895 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4896 void *arg)
4898 dbuf_remap_impl_callback_arg_t *drica = arg;
4899 objset_t *os = drica->drica_os;
4900 spa_t *spa = dmu_objset_spa(os);
4901 dmu_tx_t *tx = drica->drica_tx;
4903 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4905 if (os == spa_meta_objset(spa)) {
4906 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4907 } else {
4908 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4909 size, drica->drica_blk_birth, tx);
4913 static void
4914 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4916 blkptr_t bp_copy = *bp;
4917 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4918 dbuf_remap_impl_callback_arg_t drica;
4920 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4922 drica.drica_os = dn->dn_objset;
4923 drica.drica_blk_birth = bp->blk_birth;
4924 drica.drica_tx = tx;
4925 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4926 &drica)) {
4928 * If the blkptr being remapped is tracked by a livelist,
4929 * then we need to make sure the livelist reflects the update.
4930 * First, cancel out the old blkptr by appending a 'FREE'
4931 * entry. Next, add an 'ALLOC' to track the new version. This
4932 * way we avoid trying to free an inaccurate blkptr at delete.
4933 * Note that embedded blkptrs are not tracked in livelists.
4935 if (dn->dn_objset != spa_meta_objset(spa)) {
4936 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4937 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4938 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4939 ASSERT(!BP_IS_EMBEDDED(bp));
4940 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4941 ASSERT(spa_feature_is_enabled(spa,
4942 SPA_FEATURE_LIVELIST));
4943 bplist_append(&ds->ds_dir->dd_pending_frees,
4944 bp);
4945 bplist_append(&ds->ds_dir->dd_pending_allocs,
4946 &bp_copy);
4951 * The db_rwlock prevents dbuf_read_impl() from
4952 * dereferencing the BP while we are changing it. To
4953 * avoid lock contention, only grab it when we are actually
4954 * changing the BP.
4956 if (rw != NULL)
4957 rw_enter(rw, RW_WRITER);
4958 *bp = bp_copy;
4959 if (rw != NULL)
4960 rw_exit(rw);
4965 * Remap any existing BP's to concrete vdevs, if possible.
4967 static void
4968 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4970 spa_t *spa = dmu_objset_spa(db->db_objset);
4971 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4973 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4974 return;
4976 if (db->db_level > 0) {
4977 blkptr_t *bp = db->db.db_data;
4978 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4979 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4981 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4982 dnode_phys_t *dnp = db->db.db_data;
4983 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4984 DMU_OT_DNODE);
4985 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4986 i += dnp[i].dn_extra_slots + 1) {
4987 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4988 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4989 &dn->dn_dbuf->db_rwlock);
4990 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4991 tx);
4998 /* Issue I/O to commit a dirty buffer to disk. */
4999 static void
5000 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5002 dmu_buf_impl_t *db = dr->dr_dbuf;
5003 dnode_t *dn = dr->dr_dnode;
5004 objset_t *os;
5005 dmu_buf_impl_t *parent = db->db_parent;
5006 uint64_t txg = tx->tx_txg;
5007 zbookmark_phys_t zb;
5008 zio_prop_t zp;
5009 zio_t *pio; /* parent I/O */
5010 int wp_flag = 0;
5012 ASSERT(dmu_tx_is_syncing(tx));
5014 os = dn->dn_objset;
5016 if (db->db_state != DB_NOFILL) {
5017 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5019 * Private object buffers are released here rather
5020 * than in dbuf_dirty() since they are only modified
5021 * in the syncing context and we don't want the
5022 * overhead of making multiple copies of the data.
5024 if (BP_IS_HOLE(db->db_blkptr)) {
5025 arc_buf_thaw(data);
5026 } else {
5027 dbuf_release_bp(db);
5029 dbuf_remap(dn, db, tx);
5033 if (parent != dn->dn_dbuf) {
5034 /* Our parent is an indirect block. */
5035 /* We have a dirty parent that has been scheduled for write. */
5036 ASSERT(parent && parent->db_data_pending);
5037 /* Our parent's buffer is one level closer to the dnode. */
5038 ASSERT(db->db_level == parent->db_level-1);
5040 * We're about to modify our parent's db_data by modifying
5041 * our block pointer, so the parent must be released.
5043 ASSERT(arc_released(parent->db_buf));
5044 pio = parent->db_data_pending->dr_zio;
5045 } else {
5046 /* Our parent is the dnode itself. */
5047 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5048 db->db_blkid != DMU_SPILL_BLKID) ||
5049 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5050 if (db->db_blkid != DMU_SPILL_BLKID)
5051 ASSERT3P(db->db_blkptr, ==,
5052 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5053 pio = dn->dn_zio;
5056 ASSERT(db->db_level == 0 || data == db->db_buf);
5057 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
5058 ASSERT(pio);
5060 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5061 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5062 db->db.db_object, db->db_level, db->db_blkid);
5064 if (db->db_blkid == DMU_SPILL_BLKID)
5065 wp_flag = WP_SPILL;
5066 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5068 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5071 * We copy the blkptr now (rather than when we instantiate the dirty
5072 * record), because its value can change between open context and
5073 * syncing context. We do not need to hold dn_struct_rwlock to read
5074 * db_blkptr because we are in syncing context.
5076 dr->dr_bp_copy = *db->db_blkptr;
5078 if (db->db_level == 0 &&
5079 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5081 * The BP for this block has been provided by open context
5082 * (by dmu_sync() or dmu_buf_write_embedded()).
5084 abd_t *contents = (data != NULL) ?
5085 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5087 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5088 contents, db->db.db_size, db->db.db_size, &zp,
5089 dbuf_write_override_ready, NULL, NULL,
5090 dbuf_write_override_done,
5091 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5092 mutex_enter(&db->db_mtx);
5093 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5094 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5095 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5096 dr->dt.dl.dr_brtwrite);
5097 mutex_exit(&db->db_mtx);
5098 } else if (db->db_state == DB_NOFILL) {
5099 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5100 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5101 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5102 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5103 dbuf_write_nofill_ready, NULL, NULL,
5104 dbuf_write_nofill_done, db,
5105 ZIO_PRIORITY_ASYNC_WRITE,
5106 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5107 } else {
5108 ASSERT(arc_released(data));
5111 * For indirect blocks, we want to setup the children
5112 * ready callback so that we can properly handle an indirect
5113 * block that only contains holes.
5115 arc_write_done_func_t *children_ready_cb = NULL;
5116 if (db->db_level != 0)
5117 children_ready_cb = dbuf_write_children_ready;
5119 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5120 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5121 dbuf_is_l2cacheable(db), &zp, dbuf_write_ready,
5122 children_ready_cb, dbuf_write_physdone,
5123 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5124 ZIO_FLAG_MUSTSUCCEED, &zb);
5128 EXPORT_SYMBOL(dbuf_find);
5129 EXPORT_SYMBOL(dbuf_is_metadata);
5130 EXPORT_SYMBOL(dbuf_destroy);
5131 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5132 EXPORT_SYMBOL(dbuf_whichblock);
5133 EXPORT_SYMBOL(dbuf_read);
5134 EXPORT_SYMBOL(dbuf_unoverride);
5135 EXPORT_SYMBOL(dbuf_free_range);
5136 EXPORT_SYMBOL(dbuf_new_size);
5137 EXPORT_SYMBOL(dbuf_release_bp);
5138 EXPORT_SYMBOL(dbuf_dirty);
5139 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5140 EXPORT_SYMBOL(dmu_buf_will_dirty);
5141 EXPORT_SYMBOL(dmu_buf_is_dirty);
5142 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5143 EXPORT_SYMBOL(dmu_buf_will_fill);
5144 EXPORT_SYMBOL(dmu_buf_fill_done);
5145 EXPORT_SYMBOL(dmu_buf_rele);
5146 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5147 EXPORT_SYMBOL(dbuf_prefetch);
5148 EXPORT_SYMBOL(dbuf_hold_impl);
5149 EXPORT_SYMBOL(dbuf_hold);
5150 EXPORT_SYMBOL(dbuf_hold_level);
5151 EXPORT_SYMBOL(dbuf_create_bonus);
5152 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5153 EXPORT_SYMBOL(dbuf_rm_spill);
5154 EXPORT_SYMBOL(dbuf_add_ref);
5155 EXPORT_SYMBOL(dbuf_rele);
5156 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5157 EXPORT_SYMBOL(dbuf_refcount);
5158 EXPORT_SYMBOL(dbuf_sync_list);
5159 EXPORT_SYMBOL(dmu_buf_set_user);
5160 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5161 EXPORT_SYMBOL(dmu_buf_get_user);
5162 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5164 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5165 "Maximum size in bytes of the dbuf cache.");
5167 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5168 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5170 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5171 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5173 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5174 "Maximum size in bytes of dbuf metadata cache.");
5176 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5177 "Set size of dbuf cache to log2 fraction of arc size.");
5179 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5180 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5182 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5183 "Set size of dbuf cache mutex array as log2 shift.");