4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
32 #include <sys/zfs_context.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
44 #include <sys/dmu_zfetch.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
60 static kstat_t
*dbuf_ksp
;
62 typedef struct dbuf_stats
{
64 * Various statistics about the size of the dbuf cache.
66 kstat_named_t cache_count
;
67 kstat_named_t cache_size_bytes
;
68 kstat_named_t cache_size_bytes_max
;
70 * Statistics regarding the bounds on the dbuf cache size.
72 kstat_named_t cache_target_bytes
;
73 kstat_named_t cache_lowater_bytes
;
74 kstat_named_t cache_hiwater_bytes
;
76 * Total number of dbuf cache evictions that have occurred.
78 kstat_named_t cache_total_evicts
;
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
83 kstat_named_t cache_levels
[DN_MAX_LEVELS
];
84 kstat_named_t cache_levels_bytes
[DN_MAX_LEVELS
];
86 * Statistics about the dbuf hash table.
88 kstat_named_t hash_hits
;
89 kstat_named_t hash_misses
;
90 kstat_named_t hash_collisions
;
91 kstat_named_t hash_elements
;
92 kstat_named_t hash_elements_max
;
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
97 kstat_named_t hash_chains
;
98 kstat_named_t hash_chain_max
;
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
103 kstat_named_t hash_insert_race
;
105 * Number of entries in the hash table dbuf and mutex arrays.
107 kstat_named_t hash_table_count
;
108 kstat_named_t hash_mutex_count
;
110 * Statistics about the size of the metadata dbuf cache.
112 kstat_named_t metadata_cache_count
;
113 kstat_named_t metadata_cache_size_bytes
;
114 kstat_named_t metadata_cache_size_bytes_max
;
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
120 kstat_named_t metadata_cache_overflow
;
123 dbuf_stats_t dbuf_stats
= {
124 { "cache_count", KSTAT_DATA_UINT64
},
125 { "cache_size_bytes", KSTAT_DATA_UINT64
},
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64
},
127 { "cache_target_bytes", KSTAT_DATA_UINT64
},
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64
},
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64
},
130 { "cache_total_evicts", KSTAT_DATA_UINT64
},
131 { { "cache_levels_N", KSTAT_DATA_UINT64
} },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64
} },
133 { "hash_hits", KSTAT_DATA_UINT64
},
134 { "hash_misses", KSTAT_DATA_UINT64
},
135 { "hash_collisions", KSTAT_DATA_UINT64
},
136 { "hash_elements", KSTAT_DATA_UINT64
},
137 { "hash_elements_max", KSTAT_DATA_UINT64
},
138 { "hash_chains", KSTAT_DATA_UINT64
},
139 { "hash_chain_max", KSTAT_DATA_UINT64
},
140 { "hash_insert_race", KSTAT_DATA_UINT64
},
141 { "hash_table_count", KSTAT_DATA_UINT64
},
142 { "hash_mutex_count", KSTAT_DATA_UINT64
},
143 { "metadata_cache_count", KSTAT_DATA_UINT64
},
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64
},
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64
},
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64
}
151 wmsum_t cache_total_evicts
;
152 wmsum_t cache_levels
[DN_MAX_LEVELS
];
153 wmsum_t cache_levels_bytes
[DN_MAX_LEVELS
];
156 wmsum_t hash_collisions
;
158 wmsum_t hash_insert_race
;
159 wmsum_t metadata_cache_count
;
160 wmsum_t metadata_cache_overflow
;
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val);
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val));
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1);
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1);
171 #define DBUF_STAT_MAX(stat, v) { \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
178 static void dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t
*dr
);
180 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t
*db
, uint32_t flags
);
183 * Global data structures and functions for the dbuf cache.
185 static kmem_cache_t
*dbuf_kmem_cache
;
186 static taskq_t
*dbu_evict_taskq
;
188 static kthread_t
*dbuf_cache_evict_thread
;
189 static kmutex_t dbuf_evict_lock
;
190 static kcondvar_t dbuf_evict_cv
;
191 static boolean_t dbuf_evict_thread_exit
;
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
224 typedef struct dbuf_cache
{
226 zfs_refcount_t size ____cacheline_aligned
;
228 dbuf_cache_t dbuf_caches
[DB_CACHE_MAX
];
230 /* Size limits for the caches */
231 static uint64_t dbuf_cache_max_bytes
= UINT64_MAX
;
232 static uint64_t dbuf_metadata_cache_max_bytes
= UINT64_MAX
;
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 static uint_t dbuf_cache_shift
= 5;
236 static uint_t dbuf_metadata_cache_shift
= 6;
238 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
239 static uint_t dbuf_mutex_cache_shift
= 0;
241 static unsigned long dbuf_cache_target_bytes(void);
242 static unsigned long dbuf_metadata_cache_target_bytes(void);
245 * The LRU dbuf cache uses a three-stage eviction policy:
246 * - A low water marker designates when the dbuf eviction thread
247 * should stop evicting from the dbuf cache.
248 * - When we reach the maximum size (aka mid water mark), we
249 * signal the eviction thread to run.
250 * - The high water mark indicates when the eviction thread
251 * is unable to keep up with the incoming load and eviction must
252 * happen in the context of the calling thread.
256 * low water mid water hi water
257 * +----------------------------------------+----------+----------+
262 * +----------------------------------------+----------+----------+
264 * evicting eviction directly
267 * The high and low water marks indicate the operating range for the eviction
268 * thread. The low water mark is, by default, 90% of the total size of the
269 * cache and the high water mark is at 110% (both of these percentages can be
270 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
271 * respectively). The eviction thread will try to ensure that the cache remains
272 * within this range by waking up every second and checking if the cache is
273 * above the low water mark. The thread can also be woken up by callers adding
274 * elements into the cache if the cache is larger than the mid water (i.e max
275 * cache size). Once the eviction thread is woken up and eviction is required,
276 * it will continue evicting buffers until it's able to reduce the cache size
277 * to the low water mark. If the cache size continues to grow and hits the high
278 * water mark, then callers adding elements to the cache will begin to evict
279 * directly from the cache until the cache is no longer above the high water
284 * The percentage above and below the maximum cache size.
286 static uint_t dbuf_cache_hiwater_pct
= 10;
287 static uint_t dbuf_cache_lowater_pct
= 10;
290 dbuf_cons(void *vdb
, void *unused
, int kmflag
)
292 (void) unused
, (void) kmflag
;
293 dmu_buf_impl_t
*db
= vdb
;
294 memset(db
, 0, sizeof (dmu_buf_impl_t
));
296 mutex_init(&db
->db_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
297 rw_init(&db
->db_rwlock
, NULL
, RW_DEFAULT
, NULL
);
298 cv_init(&db
->db_changed
, NULL
, CV_DEFAULT
, NULL
);
299 multilist_link_init(&db
->db_cache_link
);
300 zfs_refcount_create(&db
->db_holds
);
306 dbuf_dest(void *vdb
, void *unused
)
309 dmu_buf_impl_t
*db
= vdb
;
310 mutex_destroy(&db
->db_mtx
);
311 rw_destroy(&db
->db_rwlock
);
312 cv_destroy(&db
->db_changed
);
313 ASSERT(!multilist_link_active(&db
->db_cache_link
));
314 zfs_refcount_destroy(&db
->db_holds
);
318 * dbuf hash table routines
320 static dbuf_hash_table_t dbuf_hash_table
;
323 * We use Cityhash for this. It's fast, and has good hash properties without
324 * requiring any large static buffers.
327 dbuf_hash(void *os
, uint64_t obj
, uint8_t lvl
, uint64_t blkid
)
329 return (cityhash4((uintptr_t)os
, obj
, (uint64_t)lvl
, blkid
));
332 #define DTRACE_SET_STATE(db, why) \
333 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
336 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
337 ((dbuf)->db.db_object == (obj) && \
338 (dbuf)->db_objset == (os) && \
339 (dbuf)->db_level == (level) && \
340 (dbuf)->db_blkid == (blkid))
343 dbuf_find(objset_t
*os
, uint64_t obj
, uint8_t level
, uint64_t blkid
,
346 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
351 hv
= dbuf_hash(os
, obj
, level
, blkid
);
352 idx
= hv
& h
->hash_table_mask
;
354 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
355 for (db
= h
->hash_table
[idx
]; db
!= NULL
; db
= db
->db_hash_next
) {
356 if (DBUF_EQUAL(db
, os
, obj
, level
, blkid
)) {
357 mutex_enter(&db
->db_mtx
);
358 if (db
->db_state
!= DB_EVICTING
) {
359 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
362 mutex_exit(&db
->db_mtx
);
365 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
366 if (hash_out
!= NULL
)
371 static dmu_buf_impl_t
*
372 dbuf_find_bonus(objset_t
*os
, uint64_t object
)
375 dmu_buf_impl_t
*db
= NULL
;
377 if (dnode_hold(os
, object
, FTAG
, &dn
) == 0) {
378 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
379 if (dn
->dn_bonus
!= NULL
) {
381 mutex_enter(&db
->db_mtx
);
383 rw_exit(&dn
->dn_struct_rwlock
);
384 dnode_rele(dn
, FTAG
);
390 * Insert an entry into the hash table. If there is already an element
391 * equal to elem in the hash table, then the already existing element
392 * will be returned and the new element will not be inserted.
393 * Otherwise returns NULL.
395 static dmu_buf_impl_t
*
396 dbuf_hash_insert(dmu_buf_impl_t
*db
)
398 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
399 objset_t
*os
= db
->db_objset
;
400 uint64_t obj
= db
->db
.db_object
;
401 int level
= db
->db_level
;
406 blkid
= db
->db_blkid
;
407 ASSERT3U(dbuf_hash(os
, obj
, level
, blkid
), ==, db
->db_hash
);
408 idx
= db
->db_hash
& h
->hash_table_mask
;
410 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
411 for (dbf
= h
->hash_table
[idx
], i
= 0; dbf
!= NULL
;
412 dbf
= dbf
->db_hash_next
, i
++) {
413 if (DBUF_EQUAL(dbf
, os
, obj
, level
, blkid
)) {
414 mutex_enter(&dbf
->db_mtx
);
415 if (dbf
->db_state
!= DB_EVICTING
) {
416 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
419 mutex_exit(&dbf
->db_mtx
);
424 DBUF_STAT_BUMP(hash_collisions
);
426 DBUF_STAT_BUMP(hash_chains
);
428 DBUF_STAT_MAX(hash_chain_max
, i
);
431 mutex_enter(&db
->db_mtx
);
432 db
->db_hash_next
= h
->hash_table
[idx
];
433 h
->hash_table
[idx
] = db
;
434 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
435 uint64_t he
= atomic_inc_64_nv(&dbuf_stats
.hash_elements
.value
.ui64
);
436 DBUF_STAT_MAX(hash_elements_max
, he
);
442 * This returns whether this dbuf should be stored in the metadata cache, which
443 * is based on whether it's from one of the dnode types that store data related
444 * to traversing dataset hierarchies.
447 dbuf_include_in_metadata_cache(dmu_buf_impl_t
*db
)
450 dmu_object_type_t type
= DB_DNODE(db
)->dn_type
;
453 /* Check if this dbuf is one of the types we care about */
454 if (DMU_OT_IS_METADATA_CACHED(type
)) {
455 /* If we hit this, then we set something up wrong in dmu_ot */
456 ASSERT(DMU_OT_IS_METADATA(type
));
459 * Sanity check for small-memory systems: don't allocate too
460 * much memory for this purpose.
462 if (zfs_refcount_count(
463 &dbuf_caches
[DB_DBUF_METADATA_CACHE
].size
) >
464 dbuf_metadata_cache_target_bytes()) {
465 DBUF_STAT_BUMP(metadata_cache_overflow
);
476 * Remove an entry from the hash table. It must be in the EVICTING state.
479 dbuf_hash_remove(dmu_buf_impl_t
*db
)
481 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
483 dmu_buf_impl_t
*dbf
, **dbp
;
485 ASSERT3U(dbuf_hash(db
->db_objset
, db
->db
.db_object
, db
->db_level
,
486 db
->db_blkid
), ==, db
->db_hash
);
487 idx
= db
->db_hash
& h
->hash_table_mask
;
490 * We mustn't hold db_mtx to maintain lock ordering:
491 * DBUF_HASH_MUTEX > db_mtx.
493 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
494 ASSERT(db
->db_state
== DB_EVICTING
);
495 ASSERT(!MUTEX_HELD(&db
->db_mtx
));
497 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
498 dbp
= &h
->hash_table
[idx
];
499 while ((dbf
= *dbp
) != db
) {
500 dbp
= &dbf
->db_hash_next
;
503 *dbp
= db
->db_hash_next
;
504 db
->db_hash_next
= NULL
;
505 if (h
->hash_table
[idx
] &&
506 h
->hash_table
[idx
]->db_hash_next
== NULL
)
507 DBUF_STAT_BUMPDOWN(hash_chains
);
508 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
509 atomic_dec_64(&dbuf_stats
.hash_elements
.value
.ui64
);
515 } dbvu_verify_type_t
;
518 dbuf_verify_user(dmu_buf_impl_t
*db
, dbvu_verify_type_t verify_type
)
523 if (db
->db_user
== NULL
)
526 /* Only data blocks support the attachment of user data. */
527 ASSERT(db
->db_level
== 0);
529 /* Clients must resolve a dbuf before attaching user data. */
530 ASSERT(db
->db
.db_data
!= NULL
);
531 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
533 holds
= zfs_refcount_count(&db
->db_holds
);
534 if (verify_type
== DBVU_EVICTING
) {
536 * Immediate eviction occurs when holds == dirtycnt.
537 * For normal eviction buffers, holds is zero on
538 * eviction, except when dbuf_fix_old_data() calls
539 * dbuf_clear_data(). However, the hold count can grow
540 * during eviction even though db_mtx is held (see
541 * dmu_bonus_hold() for an example), so we can only
542 * test the generic invariant that holds >= dirtycnt.
544 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
546 if (db
->db_user_immediate_evict
== TRUE
)
547 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
549 ASSERT3U(holds
, >, 0);
555 dbuf_evict_user(dmu_buf_impl_t
*db
)
557 dmu_buf_user_t
*dbu
= db
->db_user
;
559 ASSERT(MUTEX_HELD(&db
->db_mtx
));
564 dbuf_verify_user(db
, DBVU_EVICTING
);
568 if (dbu
->dbu_clear_on_evict_dbufp
!= NULL
)
569 *dbu
->dbu_clear_on_evict_dbufp
= NULL
;
573 * There are two eviction callbacks - one that we call synchronously
574 * and one that we invoke via a taskq. The async one is useful for
575 * avoiding lock order reversals and limiting stack depth.
577 * Note that if we have a sync callback but no async callback,
578 * it's likely that the sync callback will free the structure
579 * containing the dbu. In that case we need to take care to not
580 * dereference dbu after calling the sync evict func.
582 boolean_t has_async
= (dbu
->dbu_evict_func_async
!= NULL
);
584 if (dbu
->dbu_evict_func_sync
!= NULL
)
585 dbu
->dbu_evict_func_sync(dbu
);
588 taskq_dispatch_ent(dbu_evict_taskq
, dbu
->dbu_evict_func_async
,
589 dbu
, 0, &dbu
->dbu_tqent
);
594 dbuf_is_metadata(dmu_buf_impl_t
*db
)
597 * Consider indirect blocks and spill blocks to be meta data.
599 if (db
->db_level
> 0 || db
->db_blkid
== DMU_SPILL_BLKID
) {
602 boolean_t is_metadata
;
605 is_metadata
= DMU_OT_IS_METADATA(DB_DNODE(db
)->dn_type
);
608 return (is_metadata
);
613 * We want to exclude buffers that are on a special allocation class from
617 dbuf_is_l2cacheable(dmu_buf_impl_t
*db
)
619 if (db
->db_objset
->os_secondary_cache
== ZFS_CACHE_ALL
||
620 (db
->db_objset
->os_secondary_cache
==
621 ZFS_CACHE_METADATA
&& dbuf_is_metadata(db
))) {
622 if (l2arc_exclude_special
== 0)
625 blkptr_t
*bp
= db
->db_blkptr
;
626 if (bp
== NULL
|| BP_IS_HOLE(bp
))
628 uint64_t vdev
= DVA_GET_VDEV(bp
->blk_dva
);
629 vdev_t
*rvd
= db
->db_objset
->os_spa
->spa_root_vdev
;
632 if (vdev
< rvd
->vdev_children
)
633 vd
= rvd
->vdev_child
[vdev
];
638 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_SPECIAL
&&
639 vd
->vdev_alloc_bias
!= VDEV_BIAS_DEDUP
)
645 static inline boolean_t
646 dnode_level_is_l2cacheable(blkptr_t
*bp
, dnode_t
*dn
, int64_t level
)
648 if (dn
->dn_objset
->os_secondary_cache
== ZFS_CACHE_ALL
||
649 (dn
->dn_objset
->os_secondary_cache
== ZFS_CACHE_METADATA
&&
651 DMU_OT_IS_METADATA(dn
->dn_handle
->dnh_dnode
->dn_type
)))) {
652 if (l2arc_exclude_special
== 0)
655 if (bp
== NULL
|| BP_IS_HOLE(bp
))
657 uint64_t vdev
= DVA_GET_VDEV(bp
->blk_dva
);
658 vdev_t
*rvd
= dn
->dn_objset
->os_spa
->spa_root_vdev
;
661 if (vdev
< rvd
->vdev_children
)
662 vd
= rvd
->vdev_child
[vdev
];
667 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_SPECIAL
&&
668 vd
->vdev_alloc_bias
!= VDEV_BIAS_DEDUP
)
676 * This function *must* return indices evenly distributed between all
677 * sublists of the multilist. This is needed due to how the dbuf eviction
678 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
679 * distributed between all sublists and uses this assumption when
680 * deciding which sublist to evict from and how much to evict from it.
683 dbuf_cache_multilist_index_func(multilist_t
*ml
, void *obj
)
685 dmu_buf_impl_t
*db
= obj
;
688 * The assumption here, is the hash value for a given
689 * dmu_buf_impl_t will remain constant throughout it's lifetime
690 * (i.e. it's objset, object, level and blkid fields don't change).
691 * Thus, we don't need to store the dbuf's sublist index
692 * on insertion, as this index can be recalculated on removal.
694 * Also, the low order bits of the hash value are thought to be
695 * distributed evenly. Otherwise, in the case that the multilist
696 * has a power of two number of sublists, each sublists' usage
697 * would not be evenly distributed. In this context full 64bit
698 * division would be a waste of time, so limit it to 32 bits.
700 return ((unsigned int)dbuf_hash(db
->db_objset
, db
->db
.db_object
,
701 db
->db_level
, db
->db_blkid
) %
702 multilist_get_num_sublists(ml
));
706 * The target size of the dbuf cache can grow with the ARC target,
707 * unless limited by the tunable dbuf_cache_max_bytes.
709 static inline unsigned long
710 dbuf_cache_target_bytes(void)
712 return (MIN(dbuf_cache_max_bytes
,
713 arc_target_bytes() >> dbuf_cache_shift
));
717 * The target size of the dbuf metadata cache can grow with the ARC target,
718 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
720 static inline unsigned long
721 dbuf_metadata_cache_target_bytes(void)
723 return (MIN(dbuf_metadata_cache_max_bytes
,
724 arc_target_bytes() >> dbuf_metadata_cache_shift
));
727 static inline uint64_t
728 dbuf_cache_hiwater_bytes(void)
730 uint64_t dbuf_cache_target
= dbuf_cache_target_bytes();
731 return (dbuf_cache_target
+
732 (dbuf_cache_target
* dbuf_cache_hiwater_pct
) / 100);
735 static inline uint64_t
736 dbuf_cache_lowater_bytes(void)
738 uint64_t dbuf_cache_target
= dbuf_cache_target_bytes();
739 return (dbuf_cache_target
-
740 (dbuf_cache_target
* dbuf_cache_lowater_pct
) / 100);
743 static inline boolean_t
744 dbuf_cache_above_lowater(void)
746 return (zfs_refcount_count(&dbuf_caches
[DB_DBUF_CACHE
].size
) >
747 dbuf_cache_lowater_bytes());
751 * Evict the oldest eligible dbuf from the dbuf cache.
756 int idx
= multilist_get_random_index(&dbuf_caches
[DB_DBUF_CACHE
].cache
);
757 multilist_sublist_t
*mls
= multilist_sublist_lock(
758 &dbuf_caches
[DB_DBUF_CACHE
].cache
, idx
);
760 ASSERT(!MUTEX_HELD(&dbuf_evict_lock
));
762 dmu_buf_impl_t
*db
= multilist_sublist_tail(mls
);
763 while (db
!= NULL
&& mutex_tryenter(&db
->db_mtx
) == 0) {
764 db
= multilist_sublist_prev(mls
, db
);
767 DTRACE_PROBE2(dbuf__evict__one
, dmu_buf_impl_t
*, db
,
768 multilist_sublist_t
*, mls
);
771 multilist_sublist_remove(mls
, db
);
772 multilist_sublist_unlock(mls
);
773 (void) zfs_refcount_remove_many(
774 &dbuf_caches
[DB_DBUF_CACHE
].size
, db
->db
.db_size
, db
);
775 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
776 DBUF_STAT_BUMPDOWN(cache_count
);
777 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
779 ASSERT3U(db
->db_caching_status
, ==, DB_DBUF_CACHE
);
780 db
->db_caching_status
= DB_NO_CACHE
;
782 DBUF_STAT_BUMP(cache_total_evicts
);
784 multilist_sublist_unlock(mls
);
789 * The dbuf evict thread is responsible for aging out dbufs from the
790 * cache. Once the cache has reached it's maximum size, dbufs are removed
791 * and destroyed. The eviction thread will continue running until the size
792 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
793 * out of the cache it is destroyed and becomes eligible for arc eviction.
795 static __attribute__((noreturn
)) void
796 dbuf_evict_thread(void *unused
)
801 CALLB_CPR_INIT(&cpr
, &dbuf_evict_lock
, callb_generic_cpr
, FTAG
);
803 mutex_enter(&dbuf_evict_lock
);
804 while (!dbuf_evict_thread_exit
) {
805 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
806 CALLB_CPR_SAFE_BEGIN(&cpr
);
807 (void) cv_timedwait_idle_hires(&dbuf_evict_cv
,
808 &dbuf_evict_lock
, SEC2NSEC(1), MSEC2NSEC(1), 0);
809 CALLB_CPR_SAFE_END(&cpr
, &dbuf_evict_lock
);
811 mutex_exit(&dbuf_evict_lock
);
814 * Keep evicting as long as we're above the low water mark
815 * for the cache. We do this without holding the locks to
816 * minimize lock contention.
818 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
822 mutex_enter(&dbuf_evict_lock
);
825 dbuf_evict_thread_exit
= B_FALSE
;
826 cv_broadcast(&dbuf_evict_cv
);
827 CALLB_CPR_EXIT(&cpr
); /* drops dbuf_evict_lock */
832 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
833 * If the dbuf cache is at its high water mark, then evict a dbuf from the
834 * dbuf cache using the caller's context.
837 dbuf_evict_notify(uint64_t size
)
840 * We check if we should evict without holding the dbuf_evict_lock,
841 * because it's OK to occasionally make the wrong decision here,
842 * and grabbing the lock results in massive lock contention.
844 if (size
> dbuf_cache_target_bytes()) {
845 if (size
> dbuf_cache_hiwater_bytes())
847 cv_signal(&dbuf_evict_cv
);
852 dbuf_kstat_update(kstat_t
*ksp
, int rw
)
854 dbuf_stats_t
*ds
= ksp
->ks_data
;
855 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
857 if (rw
== KSTAT_WRITE
)
858 return (SET_ERROR(EACCES
));
860 ds
->cache_count
.value
.ui64
=
861 wmsum_value(&dbuf_sums
.cache_count
);
862 ds
->cache_size_bytes
.value
.ui64
=
863 zfs_refcount_count(&dbuf_caches
[DB_DBUF_CACHE
].size
);
864 ds
->cache_target_bytes
.value
.ui64
= dbuf_cache_target_bytes();
865 ds
->cache_hiwater_bytes
.value
.ui64
= dbuf_cache_hiwater_bytes();
866 ds
->cache_lowater_bytes
.value
.ui64
= dbuf_cache_lowater_bytes();
867 ds
->cache_total_evicts
.value
.ui64
=
868 wmsum_value(&dbuf_sums
.cache_total_evicts
);
869 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
870 ds
->cache_levels
[i
].value
.ui64
=
871 wmsum_value(&dbuf_sums
.cache_levels
[i
]);
872 ds
->cache_levels_bytes
[i
].value
.ui64
=
873 wmsum_value(&dbuf_sums
.cache_levels_bytes
[i
]);
875 ds
->hash_hits
.value
.ui64
=
876 wmsum_value(&dbuf_sums
.hash_hits
);
877 ds
->hash_misses
.value
.ui64
=
878 wmsum_value(&dbuf_sums
.hash_misses
);
879 ds
->hash_collisions
.value
.ui64
=
880 wmsum_value(&dbuf_sums
.hash_collisions
);
881 ds
->hash_chains
.value
.ui64
=
882 wmsum_value(&dbuf_sums
.hash_chains
);
883 ds
->hash_insert_race
.value
.ui64
=
884 wmsum_value(&dbuf_sums
.hash_insert_race
);
885 ds
->hash_table_count
.value
.ui64
= h
->hash_table_mask
+ 1;
886 ds
->hash_mutex_count
.value
.ui64
= h
->hash_mutex_mask
+ 1;
887 ds
->metadata_cache_count
.value
.ui64
=
888 wmsum_value(&dbuf_sums
.metadata_cache_count
);
889 ds
->metadata_cache_size_bytes
.value
.ui64
= zfs_refcount_count(
890 &dbuf_caches
[DB_DBUF_METADATA_CACHE
].size
);
891 ds
->metadata_cache_overflow
.value
.ui64
=
892 wmsum_value(&dbuf_sums
.metadata_cache_overflow
);
899 uint64_t hmsize
, hsize
= 1ULL << 16;
900 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
903 * The hash table is big enough to fill one eighth of physical memory
904 * with an average block size of zfs_arc_average_blocksize (default 8K).
905 * By default, the table will take up
906 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
908 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory() / 8)
911 h
->hash_table
= NULL
;
912 while (h
->hash_table
== NULL
) {
913 h
->hash_table_mask
= hsize
- 1;
915 h
->hash_table
= vmem_zalloc(hsize
* sizeof (void *), KM_SLEEP
);
916 if (h
->hash_table
== NULL
)
919 ASSERT3U(hsize
, >=, 1ULL << 10);
923 * The hash table buckets are protected by an array of mutexes where
924 * each mutex is reponsible for protecting 128 buckets. A minimum
925 * array size of 8192 is targeted to avoid contention.
927 if (dbuf_mutex_cache_shift
== 0)
928 hmsize
= MAX(hsize
>> 7, 1ULL << 13);
930 hmsize
= 1ULL << MIN(dbuf_mutex_cache_shift
, 24);
932 h
->hash_mutexes
= NULL
;
933 while (h
->hash_mutexes
== NULL
) {
934 h
->hash_mutex_mask
= hmsize
- 1;
936 h
->hash_mutexes
= vmem_zalloc(hmsize
* sizeof (kmutex_t
),
938 if (h
->hash_mutexes
== NULL
)
942 dbuf_kmem_cache
= kmem_cache_create("dmu_buf_impl_t",
943 sizeof (dmu_buf_impl_t
),
944 0, dbuf_cons
, dbuf_dest
, NULL
, NULL
, NULL
, 0);
946 for (int i
= 0; i
< hmsize
; i
++)
947 mutex_init(&h
->hash_mutexes
[i
], NULL
, MUTEX_DEFAULT
, NULL
);
952 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
953 * configuration is not required.
955 dbu_evict_taskq
= taskq_create("dbu_evict", 1, defclsyspri
, 0, 0, 0);
957 for (dbuf_cached_state_t dcs
= 0; dcs
< DB_CACHE_MAX
; dcs
++) {
958 multilist_create(&dbuf_caches
[dcs
].cache
,
959 sizeof (dmu_buf_impl_t
),
960 offsetof(dmu_buf_impl_t
, db_cache_link
),
961 dbuf_cache_multilist_index_func
);
962 zfs_refcount_create(&dbuf_caches
[dcs
].size
);
965 dbuf_evict_thread_exit
= B_FALSE
;
966 mutex_init(&dbuf_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
967 cv_init(&dbuf_evict_cv
, NULL
, CV_DEFAULT
, NULL
);
968 dbuf_cache_evict_thread
= thread_create(NULL
, 0, dbuf_evict_thread
,
969 NULL
, 0, &p0
, TS_RUN
, minclsyspri
);
971 wmsum_init(&dbuf_sums
.cache_count
, 0);
972 wmsum_init(&dbuf_sums
.cache_total_evicts
, 0);
973 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
974 wmsum_init(&dbuf_sums
.cache_levels
[i
], 0);
975 wmsum_init(&dbuf_sums
.cache_levels_bytes
[i
], 0);
977 wmsum_init(&dbuf_sums
.hash_hits
, 0);
978 wmsum_init(&dbuf_sums
.hash_misses
, 0);
979 wmsum_init(&dbuf_sums
.hash_collisions
, 0);
980 wmsum_init(&dbuf_sums
.hash_chains
, 0);
981 wmsum_init(&dbuf_sums
.hash_insert_race
, 0);
982 wmsum_init(&dbuf_sums
.metadata_cache_count
, 0);
983 wmsum_init(&dbuf_sums
.metadata_cache_overflow
, 0);
985 dbuf_ksp
= kstat_create("zfs", 0, "dbufstats", "misc",
986 KSTAT_TYPE_NAMED
, sizeof (dbuf_stats
) / sizeof (kstat_named_t
),
988 if (dbuf_ksp
!= NULL
) {
989 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
990 snprintf(dbuf_stats
.cache_levels
[i
].name
,
991 KSTAT_STRLEN
, "cache_level_%d", i
);
992 dbuf_stats
.cache_levels
[i
].data_type
=
994 snprintf(dbuf_stats
.cache_levels_bytes
[i
].name
,
995 KSTAT_STRLEN
, "cache_level_%d_bytes", i
);
996 dbuf_stats
.cache_levels_bytes
[i
].data_type
=
999 dbuf_ksp
->ks_data
= &dbuf_stats
;
1000 dbuf_ksp
->ks_update
= dbuf_kstat_update
;
1001 kstat_install(dbuf_ksp
);
1008 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
1010 dbuf_stats_destroy();
1012 for (int i
= 0; i
< (h
->hash_mutex_mask
+ 1); i
++)
1013 mutex_destroy(&h
->hash_mutexes
[i
]);
1015 vmem_free(h
->hash_table
, (h
->hash_table_mask
+ 1) * sizeof (void *));
1016 vmem_free(h
->hash_mutexes
, (h
->hash_mutex_mask
+ 1) *
1019 kmem_cache_destroy(dbuf_kmem_cache
);
1020 taskq_destroy(dbu_evict_taskq
);
1022 mutex_enter(&dbuf_evict_lock
);
1023 dbuf_evict_thread_exit
= B_TRUE
;
1024 while (dbuf_evict_thread_exit
) {
1025 cv_signal(&dbuf_evict_cv
);
1026 cv_wait(&dbuf_evict_cv
, &dbuf_evict_lock
);
1028 mutex_exit(&dbuf_evict_lock
);
1030 mutex_destroy(&dbuf_evict_lock
);
1031 cv_destroy(&dbuf_evict_cv
);
1033 for (dbuf_cached_state_t dcs
= 0; dcs
< DB_CACHE_MAX
; dcs
++) {
1034 zfs_refcount_destroy(&dbuf_caches
[dcs
].size
);
1035 multilist_destroy(&dbuf_caches
[dcs
].cache
);
1038 if (dbuf_ksp
!= NULL
) {
1039 kstat_delete(dbuf_ksp
);
1043 wmsum_fini(&dbuf_sums
.cache_count
);
1044 wmsum_fini(&dbuf_sums
.cache_total_evicts
);
1045 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
1046 wmsum_fini(&dbuf_sums
.cache_levels
[i
]);
1047 wmsum_fini(&dbuf_sums
.cache_levels_bytes
[i
]);
1049 wmsum_fini(&dbuf_sums
.hash_hits
);
1050 wmsum_fini(&dbuf_sums
.hash_misses
);
1051 wmsum_fini(&dbuf_sums
.hash_collisions
);
1052 wmsum_fini(&dbuf_sums
.hash_chains
);
1053 wmsum_fini(&dbuf_sums
.hash_insert_race
);
1054 wmsum_fini(&dbuf_sums
.metadata_cache_count
);
1055 wmsum_fini(&dbuf_sums
.metadata_cache_overflow
);
1064 dbuf_verify(dmu_buf_impl_t
*db
)
1067 dbuf_dirty_record_t
*dr
;
1070 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1072 if (!(zfs_flags
& ZFS_DEBUG_DBUF_VERIFY
))
1075 ASSERT(db
->db_objset
!= NULL
);
1079 ASSERT(db
->db_parent
== NULL
);
1080 ASSERT(db
->db_blkptr
== NULL
);
1082 ASSERT3U(db
->db
.db_object
, ==, dn
->dn_object
);
1083 ASSERT3P(db
->db_objset
, ==, dn
->dn_objset
);
1084 ASSERT3U(db
->db_level
, <, dn
->dn_nlevels
);
1085 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
||
1086 db
->db_blkid
== DMU_SPILL_BLKID
||
1087 !avl_is_empty(&dn
->dn_dbufs
));
1089 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1091 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
1092 ASSERT3U(db
->db
.db_offset
, ==, DMU_BONUS_BLKID
);
1093 } else if (db
->db_blkid
== DMU_SPILL_BLKID
) {
1095 ASSERT0(db
->db
.db_offset
);
1097 ASSERT3U(db
->db
.db_offset
, ==, db
->db_blkid
* db
->db
.db_size
);
1100 if ((dr
= list_head(&db
->db_dirty_records
)) != NULL
) {
1101 ASSERT(dr
->dr_dbuf
== db
);
1102 txg_prev
= dr
->dr_txg
;
1103 for (dr
= list_next(&db
->db_dirty_records
, dr
); dr
!= NULL
;
1104 dr
= list_next(&db
->db_dirty_records
, dr
)) {
1105 ASSERT(dr
->dr_dbuf
== db
);
1106 ASSERT(txg_prev
> dr
->dr_txg
);
1107 txg_prev
= dr
->dr_txg
;
1112 * We can't assert that db_size matches dn_datablksz because it
1113 * can be momentarily different when another thread is doing
1114 * dnode_set_blksz().
1116 if (db
->db_level
== 0 && db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
1117 dr
= db
->db_data_pending
;
1119 * It should only be modified in syncing context, so
1120 * make sure we only have one copy of the data.
1122 ASSERT(dr
== NULL
|| dr
->dt
.dl
.dr_data
== db
->db_buf
);
1125 /* verify db->db_blkptr */
1126 if (db
->db_blkptr
) {
1127 if (db
->db_parent
== dn
->dn_dbuf
) {
1128 /* db is pointed to by the dnode */
1129 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1130 if (DMU_OBJECT_IS_SPECIAL(db
->db
.db_object
))
1131 ASSERT(db
->db_parent
== NULL
);
1133 ASSERT(db
->db_parent
!= NULL
);
1134 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
1135 ASSERT3P(db
->db_blkptr
, ==,
1136 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
1138 /* db is pointed to by an indirect block */
1139 int epb __maybe_unused
= db
->db_parent
->db
.db_size
>>
1141 ASSERT3U(db
->db_parent
->db_level
, ==, db
->db_level
+1);
1142 ASSERT3U(db
->db_parent
->db
.db_object
, ==,
1145 * dnode_grow_indblksz() can make this fail if we don't
1146 * have the parent's rwlock. XXX indblksz no longer
1147 * grows. safe to do this now?
1149 if (RW_LOCK_HELD(&db
->db_parent
->db_rwlock
)) {
1150 ASSERT3P(db
->db_blkptr
, ==,
1151 ((blkptr_t
*)db
->db_parent
->db
.db_data
+
1152 db
->db_blkid
% epb
));
1156 if ((db
->db_blkptr
== NULL
|| BP_IS_HOLE(db
->db_blkptr
)) &&
1157 (db
->db_buf
== NULL
|| db
->db_buf
->b_data
) &&
1158 db
->db
.db_data
&& db
->db_blkid
!= DMU_BONUS_BLKID
&&
1159 db
->db_state
!= DB_FILL
&& (dn
== NULL
|| !dn
->dn_free_txg
)) {
1161 * If the blkptr isn't set but they have nonzero data,
1162 * it had better be dirty, otherwise we'll lose that
1163 * data when we evict this buffer.
1165 * There is an exception to this rule for indirect blocks; in
1166 * this case, if the indirect block is a hole, we fill in a few
1167 * fields on each of the child blocks (importantly, birth time)
1168 * to prevent hole birth times from being lost when you
1169 * partially fill in a hole.
1171 if (db
->db_dirtycnt
== 0) {
1172 if (db
->db_level
== 0) {
1173 uint64_t *buf
= db
->db
.db_data
;
1176 for (i
= 0; i
< db
->db
.db_size
>> 3; i
++) {
1177 ASSERT(buf
[i
] == 0);
1180 blkptr_t
*bps
= db
->db
.db_data
;
1181 ASSERT3U(1 << DB_DNODE(db
)->dn_indblkshift
, ==,
1184 * We want to verify that all the blkptrs in the
1185 * indirect block are holes, but we may have
1186 * automatically set up a few fields for them.
1187 * We iterate through each blkptr and verify
1188 * they only have those fields set.
1191 i
< db
->db
.db_size
/ sizeof (blkptr_t
);
1193 blkptr_t
*bp
= &bps
[i
];
1194 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1197 DVA_IS_EMPTY(&bp
->blk_dva
[0]) &&
1198 DVA_IS_EMPTY(&bp
->blk_dva
[1]) &&
1199 DVA_IS_EMPTY(&bp
->blk_dva
[2]));
1200 ASSERT0(bp
->blk_fill
);
1201 ASSERT0(bp
->blk_pad
[0]);
1202 ASSERT0(bp
->blk_pad
[1]);
1203 ASSERT(!BP_IS_EMBEDDED(bp
));
1204 ASSERT(BP_IS_HOLE(bp
));
1205 ASSERT0(bp
->blk_phys_birth
);
1215 dbuf_clear_data(dmu_buf_impl_t
*db
)
1217 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1218 dbuf_evict_user(db
);
1219 ASSERT3P(db
->db_buf
, ==, NULL
);
1220 db
->db
.db_data
= NULL
;
1221 if (db
->db_state
!= DB_NOFILL
) {
1222 db
->db_state
= DB_UNCACHED
;
1223 DTRACE_SET_STATE(db
, "clear data");
1228 dbuf_set_data(dmu_buf_impl_t
*db
, arc_buf_t
*buf
)
1230 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1231 ASSERT(buf
!= NULL
);
1234 ASSERT(buf
->b_data
!= NULL
);
1235 db
->db
.db_data
= buf
->b_data
;
1239 dbuf_alloc_arcbuf(dmu_buf_impl_t
*db
)
1241 spa_t
*spa
= db
->db_objset
->os_spa
;
1243 return (arc_alloc_buf(spa
, db
, DBUF_GET_BUFC_TYPE(db
), db
->db
.db_size
));
1247 * Loan out an arc_buf for read. Return the loaned arc_buf.
1250 dbuf_loan_arcbuf(dmu_buf_impl_t
*db
)
1254 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1255 mutex_enter(&db
->db_mtx
);
1256 if (arc_released(db
->db_buf
) || zfs_refcount_count(&db
->db_holds
) > 1) {
1257 int blksz
= db
->db
.db_size
;
1258 spa_t
*spa
= db
->db_objset
->os_spa
;
1260 mutex_exit(&db
->db_mtx
);
1261 abuf
= arc_loan_buf(spa
, B_FALSE
, blksz
);
1262 memcpy(abuf
->b_data
, db
->db
.db_data
, blksz
);
1265 arc_loan_inuse_buf(abuf
, db
);
1267 dbuf_clear_data(db
);
1268 mutex_exit(&db
->db_mtx
);
1274 * Calculate which level n block references the data at the level 0 offset
1278 dbuf_whichblock(const dnode_t
*dn
, const int64_t level
, const uint64_t offset
)
1280 if (dn
->dn_datablkshift
!= 0 && dn
->dn_indblkshift
!= 0) {
1282 * The level n blkid is equal to the level 0 blkid divided by
1283 * the number of level 0s in a level n block.
1285 * The level 0 blkid is offset >> datablkshift =
1286 * offset / 2^datablkshift.
1288 * The number of level 0s in a level n is the number of block
1289 * pointers in an indirect block, raised to the power of level.
1290 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1291 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1293 * Thus, the level n blkid is: offset /
1294 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1295 * = offset / 2^(datablkshift + level *
1296 * (indblkshift - SPA_BLKPTRSHIFT))
1297 * = offset >> (datablkshift + level *
1298 * (indblkshift - SPA_BLKPTRSHIFT))
1301 const unsigned exp
= dn
->dn_datablkshift
+
1302 level
* (dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
);
1304 if (exp
>= 8 * sizeof (offset
)) {
1305 /* This only happens on the highest indirection level */
1306 ASSERT3U(level
, ==, dn
->dn_nlevels
- 1);
1310 ASSERT3U(exp
, <, 8 * sizeof (offset
));
1312 return (offset
>> exp
);
1314 ASSERT3U(offset
, <, dn
->dn_datablksz
);
1320 * This function is used to lock the parent of the provided dbuf. This should be
1321 * used when modifying or reading db_blkptr.
1324 dmu_buf_lock_parent(dmu_buf_impl_t
*db
, krw_t rw
, const void *tag
)
1326 enum db_lock_type ret
= DLT_NONE
;
1327 if (db
->db_parent
!= NULL
) {
1328 rw_enter(&db
->db_parent
->db_rwlock
, rw
);
1330 } else if (dmu_objset_ds(db
->db_objset
) != NULL
) {
1331 rrw_enter(&dmu_objset_ds(db
->db_objset
)->ds_bp_rwlock
, rw
,
1336 * We only return a DLT_NONE lock when it's the top-most indirect block
1337 * of the meta-dnode of the MOS.
1343 * We need to pass the lock type in because it's possible that the block will
1344 * move from being the topmost indirect block in a dnode (and thus, have no
1345 * parent) to not the top-most via an indirection increase. This would cause a
1346 * panic if we didn't pass the lock type in.
1349 dmu_buf_unlock_parent(dmu_buf_impl_t
*db
, db_lock_type_t type
, const void *tag
)
1351 if (type
== DLT_PARENT
)
1352 rw_exit(&db
->db_parent
->db_rwlock
);
1353 else if (type
== DLT_OBJSET
)
1354 rrw_exit(&dmu_objset_ds(db
->db_objset
)->ds_bp_rwlock
, tag
);
1358 dbuf_read_done(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1359 arc_buf_t
*buf
, void *vdb
)
1361 (void) zb
, (void) bp
;
1362 dmu_buf_impl_t
*db
= vdb
;
1364 mutex_enter(&db
->db_mtx
);
1365 ASSERT3U(db
->db_state
, ==, DB_READ
);
1367 * All reads are synchronous, so we must have a hold on the dbuf
1369 ASSERT(zfs_refcount_count(&db
->db_holds
) > 0);
1370 ASSERT(db
->db_buf
== NULL
);
1371 ASSERT(db
->db
.db_data
== NULL
);
1374 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
1375 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1376 ASSERT3P(db
->db_buf
, ==, NULL
);
1377 db
->db_state
= DB_UNCACHED
;
1378 DTRACE_SET_STATE(db
, "i/o error");
1379 } else if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
1380 /* freed in flight */
1381 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
1382 arc_release(buf
, db
);
1383 memset(buf
->b_data
, 0, db
->db
.db_size
);
1384 arc_buf_freeze(buf
);
1385 db
->db_freed_in_flight
= FALSE
;
1386 dbuf_set_data(db
, buf
);
1387 db
->db_state
= DB_CACHED
;
1388 DTRACE_SET_STATE(db
, "freed in flight");
1391 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
1392 dbuf_set_data(db
, buf
);
1393 db
->db_state
= DB_CACHED
;
1394 DTRACE_SET_STATE(db
, "successful read");
1396 cv_broadcast(&db
->db_changed
);
1397 dbuf_rele_and_unlock(db
, NULL
, B_FALSE
);
1401 * Shortcut for performing reads on bonus dbufs. Returns
1402 * an error if we fail to verify the dnode associated with
1403 * a decrypted block. Otherwise success.
1406 dbuf_read_bonus(dmu_buf_impl_t
*db
, dnode_t
*dn
, uint32_t flags
)
1408 int bonuslen
, max_bonuslen
, err
;
1410 err
= dbuf_read_verify_dnode_crypt(db
, flags
);
1414 bonuslen
= MIN(dn
->dn_bonuslen
, dn
->dn_phys
->dn_bonuslen
);
1415 max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
1416 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1417 ASSERT(DB_DNODE_HELD(db
));
1418 ASSERT3U(bonuslen
, <=, db
->db
.db_size
);
1419 db
->db
.db_data
= kmem_alloc(max_bonuslen
, KM_SLEEP
);
1420 arc_space_consume(max_bonuslen
, ARC_SPACE_BONUS
);
1421 if (bonuslen
< max_bonuslen
)
1422 memset(db
->db
.db_data
, 0, max_bonuslen
);
1424 memcpy(db
->db
.db_data
, DN_BONUS(dn
->dn_phys
), bonuslen
);
1425 db
->db_state
= DB_CACHED
;
1426 DTRACE_SET_STATE(db
, "bonus buffer filled");
1431 dbuf_handle_indirect_hole(dmu_buf_impl_t
*db
, dnode_t
*dn
, blkptr_t
*dbbp
)
1433 blkptr_t
*bps
= db
->db
.db_data
;
1434 uint32_t indbs
= 1ULL << dn
->dn_indblkshift
;
1435 int n_bps
= indbs
>> SPA_BLKPTRSHIFT
;
1437 for (int i
= 0; i
< n_bps
; i
++) {
1438 blkptr_t
*bp
= &bps
[i
];
1440 ASSERT3U(BP_GET_LSIZE(dbbp
), ==, indbs
);
1441 BP_SET_LSIZE(bp
, BP_GET_LEVEL(dbbp
) == 1 ?
1442 dn
->dn_datablksz
: BP_GET_LSIZE(dbbp
));
1443 BP_SET_TYPE(bp
, BP_GET_TYPE(dbbp
));
1444 BP_SET_LEVEL(bp
, BP_GET_LEVEL(dbbp
) - 1);
1445 BP_SET_BIRTH(bp
, dbbp
->blk_birth
, 0);
1450 * Handle reads on dbufs that are holes, if necessary. This function
1451 * requires that the dbuf's mutex is held. Returns success (0) if action
1452 * was taken, ENOENT if no action was taken.
1455 dbuf_read_hole(dmu_buf_impl_t
*db
, dnode_t
*dn
, blkptr_t
*bp
)
1457 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1459 int is_hole
= bp
== NULL
|| BP_IS_HOLE(bp
);
1461 * For level 0 blocks only, if the above check fails:
1462 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1463 * processes the delete record and clears the bp while we are waiting
1464 * for the dn_mtx (resulting in a "no" from block_freed).
1466 if (!is_hole
&& db
->db_level
== 0)
1467 is_hole
= dnode_block_freed(dn
, db
->db_blkid
) || BP_IS_HOLE(bp
);
1470 dbuf_set_data(db
, dbuf_alloc_arcbuf(db
));
1471 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
1473 if (bp
!= NULL
&& db
->db_level
> 0 && BP_IS_HOLE(bp
) &&
1474 bp
->blk_birth
!= 0) {
1475 dbuf_handle_indirect_hole(db
, dn
, bp
);
1477 db
->db_state
= DB_CACHED
;
1478 DTRACE_SET_STATE(db
, "hole read satisfied");
1485 * This function ensures that, when doing a decrypting read of a block,
1486 * we make sure we have decrypted the dnode associated with it. We must do
1487 * this so that we ensure we are fully authenticating the checksum-of-MACs
1488 * tree from the root of the objset down to this block. Indirect blocks are
1489 * always verified against their secure checksum-of-MACs assuming that the
1490 * dnode containing them is correct. Now that we are doing a decrypting read,
1491 * we can be sure that the key is loaded and verify that assumption. This is
1492 * especially important considering that we always read encrypted dnode
1493 * blocks as raw data (without verifying their MACs) to start, and
1494 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1497 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t
*db
, uint32_t flags
)
1500 objset_t
*os
= db
->db_objset
;
1501 arc_buf_t
*dnode_abuf
;
1503 zbookmark_phys_t zb
;
1505 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1507 if ((flags
& DB_RF_NO_DECRYPT
) != 0 ||
1508 !os
->os_encrypted
|| os
->os_raw_receive
)
1513 dnode_abuf
= (dn
->dn_dbuf
!= NULL
) ? dn
->dn_dbuf
->db_buf
: NULL
;
1515 if (dnode_abuf
== NULL
|| !arc_is_encrypted(dnode_abuf
)) {
1520 SET_BOOKMARK(&zb
, dmu_objset_id(os
),
1521 DMU_META_DNODE_OBJECT
, 0, dn
->dn_dbuf
->db_blkid
);
1522 err
= arc_untransform(dnode_abuf
, os
->os_spa
, &zb
, B_TRUE
);
1525 * An error code of EACCES tells us that the key is still not
1526 * available. This is ok if we are only reading authenticated
1527 * (and therefore non-encrypted) blocks.
1529 if (err
== EACCES
&& ((db
->db_blkid
!= DMU_BONUS_BLKID
&&
1530 !DMU_OT_IS_ENCRYPTED(dn
->dn_type
)) ||
1531 (db
->db_blkid
== DMU_BONUS_BLKID
&&
1532 !DMU_OT_IS_ENCRYPTED(dn
->dn_bonustype
))))
1541 * Drops db_mtx and the parent lock specified by dblt and tag before
1545 dbuf_read_impl(dmu_buf_impl_t
*db
, zio_t
*zio
, uint32_t flags
,
1546 db_lock_type_t dblt
, const void *tag
)
1549 zbookmark_phys_t zb
;
1550 uint32_t aflags
= ARC_FLAG_NOWAIT
;
1556 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1557 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1558 ASSERT(db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
);
1559 ASSERT(db
->db_buf
== NULL
);
1560 ASSERT(db
->db_parent
== NULL
||
1561 RW_LOCK_HELD(&db
->db_parent
->db_rwlock
));
1563 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1564 err
= dbuf_read_bonus(db
, dn
, flags
);
1568 if (db
->db_state
== DB_UNCACHED
) {
1569 if (db
->db_blkptr
== NULL
) {
1572 bp
= *db
->db_blkptr
;
1576 struct dirty_leaf
*dl
;
1577 dbuf_dirty_record_t
*dr
;
1579 ASSERT3S(db
->db_state
, ==, DB_NOFILL
);
1581 dr
= list_head(&db
->db_dirty_records
);
1587 if (!dl
->dr_brtwrite
) {
1591 bp
= dl
->dr_overridden_by
;
1596 err
= dbuf_read_hole(db
, dn
, bpp
);
1600 ASSERT(bpp
!= NULL
);
1603 * Any attempt to read a redacted block should result in an error. This
1604 * will never happen under normal conditions, but can be useful for
1605 * debugging purposes.
1607 if (BP_IS_REDACTED(bpp
)) {
1608 ASSERT(dsl_dataset_feature_is_active(
1609 db
->db_objset
->os_dsl_dataset
,
1610 SPA_FEATURE_REDACTED_DATASETS
));
1611 err
= SET_ERROR(EIO
);
1615 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
1616 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1619 * All bps of an encrypted os should have the encryption bit set.
1620 * If this is not true it indicates tampering and we report an error.
1622 if (db
->db_objset
->os_encrypted
&& !BP_USES_CRYPT(bpp
)) {
1623 spa_log_error(db
->db_objset
->os_spa
, &zb
);
1624 zfs_panic_recover("unencrypted block in encrypted "
1625 "object set %llu", dmu_objset_id(db
->db_objset
));
1626 err
= SET_ERROR(EIO
);
1630 err
= dbuf_read_verify_dnode_crypt(db
, flags
);
1636 db
->db_state
= DB_READ
;
1637 DTRACE_SET_STATE(db
, "read issued");
1638 mutex_exit(&db
->db_mtx
);
1640 if (!DBUF_IS_CACHEABLE(db
))
1641 aflags
|= ARC_FLAG_UNCACHED
;
1642 else if (dbuf_is_l2cacheable(db
))
1643 aflags
|= ARC_FLAG_L2CACHE
;
1645 dbuf_add_ref(db
, NULL
);
1647 zio_flags
= (flags
& DB_RF_CANFAIL
) ?
1648 ZIO_FLAG_CANFAIL
: ZIO_FLAG_MUSTSUCCEED
;
1650 if ((flags
& DB_RF_NO_DECRYPT
) && BP_IS_PROTECTED(db
->db_blkptr
))
1651 zio_flags
|= ZIO_FLAG_RAW
;
1653 * The zio layer will copy the provided blkptr later, but we have our
1654 * own copy so that we can release the parent's rwlock. We have to
1655 * do that so that if dbuf_read_done is called synchronously (on
1656 * an l1 cache hit) we don't acquire the db_mtx while holding the
1657 * parent's rwlock, which would be a lock ordering violation.
1659 dmu_buf_unlock_parent(db
, dblt
, tag
);
1660 (void) arc_read(zio
, db
->db_objset
->os_spa
, bpp
,
1661 dbuf_read_done
, db
, ZIO_PRIORITY_SYNC_READ
, zio_flags
,
1666 mutex_exit(&db
->db_mtx
);
1667 dmu_buf_unlock_parent(db
, dblt
, tag
);
1672 * This is our just-in-time copy function. It makes a copy of buffers that
1673 * have been modified in a previous transaction group before we access them in
1674 * the current active group.
1676 * This function is used in three places: when we are dirtying a buffer for the
1677 * first time in a txg, when we are freeing a range in a dnode that includes
1678 * this buffer, and when we are accessing a buffer which was received compressed
1679 * and later referenced in a WRITE_BYREF record.
1681 * Note that when we are called from dbuf_free_range() we do not put a hold on
1682 * the buffer, we just traverse the active dbuf list for the dnode.
1685 dbuf_fix_old_data(dmu_buf_impl_t
*db
, uint64_t txg
)
1687 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
1689 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1690 ASSERT(db
->db
.db_data
!= NULL
);
1691 ASSERT(db
->db_level
== 0);
1692 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
);
1695 (dr
->dt
.dl
.dr_data
!=
1696 ((db
->db_blkid
== DMU_BONUS_BLKID
) ? db
->db
.db_data
: db
->db_buf
)))
1700 * If the last dirty record for this dbuf has not yet synced
1701 * and its referencing the dbuf data, either:
1702 * reset the reference to point to a new copy,
1703 * or (if there a no active holders)
1704 * just null out the current db_data pointer.
1706 ASSERT3U(dr
->dr_txg
, >=, txg
- 2);
1707 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1708 dnode_t
*dn
= DB_DNODE(db
);
1709 int bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
1710 dr
->dt
.dl
.dr_data
= kmem_alloc(bonuslen
, KM_SLEEP
);
1711 arc_space_consume(bonuslen
, ARC_SPACE_BONUS
);
1712 memcpy(dr
->dt
.dl
.dr_data
, db
->db
.db_data
, bonuslen
);
1713 } else if (zfs_refcount_count(&db
->db_holds
) > db
->db_dirtycnt
) {
1714 dnode_t
*dn
= DB_DNODE(db
);
1715 int size
= arc_buf_size(db
->db_buf
);
1716 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
1717 spa_t
*spa
= db
->db_objset
->os_spa
;
1718 enum zio_compress compress_type
=
1719 arc_get_compression(db
->db_buf
);
1720 uint8_t complevel
= arc_get_complevel(db
->db_buf
);
1722 if (arc_is_encrypted(db
->db_buf
)) {
1723 boolean_t byteorder
;
1724 uint8_t salt
[ZIO_DATA_SALT_LEN
];
1725 uint8_t iv
[ZIO_DATA_IV_LEN
];
1726 uint8_t mac
[ZIO_DATA_MAC_LEN
];
1728 arc_get_raw_params(db
->db_buf
, &byteorder
, salt
,
1730 dr
->dt
.dl
.dr_data
= arc_alloc_raw_buf(spa
, db
,
1731 dmu_objset_id(dn
->dn_objset
), byteorder
, salt
, iv
,
1732 mac
, dn
->dn_type
, size
, arc_buf_lsize(db
->db_buf
),
1733 compress_type
, complevel
);
1734 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
1735 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
1736 dr
->dt
.dl
.dr_data
= arc_alloc_compressed_buf(spa
, db
,
1737 size
, arc_buf_lsize(db
->db_buf
), compress_type
,
1740 dr
->dt
.dl
.dr_data
= arc_alloc_buf(spa
, db
, type
, size
);
1742 memcpy(dr
->dt
.dl
.dr_data
->b_data
, db
->db
.db_data
, size
);
1745 dbuf_clear_data(db
);
1750 dbuf_read(dmu_buf_impl_t
*db
, zio_t
*zio
, uint32_t flags
)
1757 * We don't have to hold the mutex to check db_state because it
1758 * can't be freed while we have a hold on the buffer.
1760 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1765 prefetch
= db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
1766 (flags
& DB_RF_NOPREFETCH
) == 0 && dn
!= NULL
;
1768 mutex_enter(&db
->db_mtx
);
1769 if (flags
& DB_RF_PARTIAL_FIRST
)
1770 db
->db_partial_read
= B_TRUE
;
1771 else if (!(flags
& DB_RF_PARTIAL_MORE
))
1772 db
->db_partial_read
= B_FALSE
;
1773 if (db
->db_state
== DB_CACHED
) {
1775 * Ensure that this block's dnode has been decrypted if
1776 * the caller has requested decrypted data.
1778 err
= dbuf_read_verify_dnode_crypt(db
, flags
);
1781 * If the arc buf is compressed or encrypted and the caller
1782 * requested uncompressed data, we need to untransform it
1783 * before returning. We also call arc_untransform() on any
1784 * unauthenticated blocks, which will verify their MAC if
1785 * the key is now available.
1787 if (err
== 0 && db
->db_buf
!= NULL
&&
1788 (flags
& DB_RF_NO_DECRYPT
) == 0 &&
1789 (arc_is_encrypted(db
->db_buf
) ||
1790 arc_is_unauthenticated(db
->db_buf
) ||
1791 arc_get_compression(db
->db_buf
) != ZIO_COMPRESS_OFF
)) {
1792 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1793 zbookmark_phys_t zb
;
1795 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
1796 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1797 dbuf_fix_old_data(db
, spa_syncing_txg(spa
));
1798 err
= arc_untransform(db
->db_buf
, spa
, &zb
, B_FALSE
);
1799 dbuf_set_data(db
, db
->db_buf
);
1801 mutex_exit(&db
->db_mtx
);
1802 if (err
== 0 && prefetch
) {
1803 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
,
1804 B_FALSE
, flags
& DB_RF_HAVESTRUCT
);
1807 DBUF_STAT_BUMP(hash_hits
);
1808 } else if (db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
) {
1809 boolean_t need_wait
= B_FALSE
;
1811 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
1813 if (zio
== NULL
&& (db
->db_state
== DB_NOFILL
||
1814 (db
->db_blkptr
!= NULL
&& !BP_IS_HOLE(db
->db_blkptr
)))) {
1815 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1816 zio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
1819 err
= dbuf_read_impl(db
, zio
, flags
, dblt
, FTAG
);
1821 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1824 if (!err
&& prefetch
) {
1825 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
,
1826 db
->db_state
!= DB_CACHED
,
1827 flags
& DB_RF_HAVESTRUCT
);
1831 DBUF_STAT_BUMP(hash_misses
);
1834 * If we created a zio_root we must execute it to avoid
1835 * leaking it, even if it isn't attached to any work due
1836 * to an error in dbuf_read_impl().
1840 err
= zio_wait(zio
);
1842 VERIFY0(zio_wait(zio
));
1846 * Another reader came in while the dbuf was in flight
1847 * between UNCACHED and CACHED. Either a writer will finish
1848 * writing the buffer (sending the dbuf to CACHED) or the
1849 * first reader's request will reach the read_done callback
1850 * and send the dbuf to CACHED. Otherwise, a failure
1851 * occurred and the dbuf went to UNCACHED.
1853 mutex_exit(&db
->db_mtx
);
1855 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
,
1856 B_TRUE
, flags
& DB_RF_HAVESTRUCT
);
1859 DBUF_STAT_BUMP(hash_misses
);
1861 /* Skip the wait per the caller's request. */
1862 if ((flags
& DB_RF_NEVERWAIT
) == 0) {
1863 mutex_enter(&db
->db_mtx
);
1864 while (db
->db_state
== DB_READ
||
1865 db
->db_state
== DB_FILL
) {
1866 ASSERT(db
->db_state
== DB_READ
||
1867 (flags
& DB_RF_HAVESTRUCT
) == 0);
1868 DTRACE_PROBE2(blocked__read
, dmu_buf_impl_t
*,
1870 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1872 if (db
->db_state
== DB_UNCACHED
)
1873 err
= SET_ERROR(EIO
);
1874 mutex_exit(&db
->db_mtx
);
1882 dbuf_noread(dmu_buf_impl_t
*db
)
1884 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1885 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1886 mutex_enter(&db
->db_mtx
);
1887 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
1888 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1889 if (db
->db_state
== DB_UNCACHED
) {
1890 ASSERT(db
->db_buf
== NULL
);
1891 ASSERT(db
->db
.db_data
== NULL
);
1892 dbuf_set_data(db
, dbuf_alloc_arcbuf(db
));
1893 db
->db_state
= DB_FILL
;
1894 DTRACE_SET_STATE(db
, "assigning filled buffer");
1895 } else if (db
->db_state
== DB_NOFILL
) {
1896 dbuf_clear_data(db
);
1898 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
1900 mutex_exit(&db
->db_mtx
);
1904 dbuf_unoverride(dbuf_dirty_record_t
*dr
)
1906 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1907 blkptr_t
*bp
= &dr
->dt
.dl
.dr_overridden_by
;
1908 uint64_t txg
= dr
->dr_txg
;
1910 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1912 * This assert is valid because dmu_sync() expects to be called by
1913 * a zilog's get_data while holding a range lock. This call only
1914 * comes from dbuf_dirty() callers who must also hold a range lock.
1916 ASSERT(dr
->dt
.dl
.dr_override_state
!= DR_IN_DMU_SYNC
);
1917 ASSERT(db
->db_level
== 0);
1919 if (db
->db_blkid
== DMU_BONUS_BLKID
||
1920 dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
)
1923 ASSERT(db
->db_data_pending
!= dr
);
1925 /* free this block */
1926 if (!BP_IS_HOLE(bp
) && !dr
->dt
.dl
.dr_nopwrite
)
1927 zio_free(db
->db_objset
->os_spa
, txg
, bp
);
1929 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1930 dr
->dt
.dl
.dr_nopwrite
= B_FALSE
;
1931 dr
->dt
.dl
.dr_has_raw_params
= B_FALSE
;
1934 * Release the already-written buffer, so we leave it in
1935 * a consistent dirty state. Note that all callers are
1936 * modifying the buffer, so they will immediately do
1937 * another (redundant) arc_release(). Therefore, leave
1938 * the buf thawed to save the effort of freezing &
1939 * immediately re-thawing it.
1941 if (!dr
->dt
.dl
.dr_brtwrite
)
1942 arc_release(dr
->dt
.dl
.dr_data
, db
);
1946 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1947 * data blocks in the free range, so that any future readers will find
1951 dbuf_free_range(dnode_t
*dn
, uint64_t start_blkid
, uint64_t end_blkid
,
1954 dmu_buf_impl_t
*db_search
;
1955 dmu_buf_impl_t
*db
, *db_next
;
1956 uint64_t txg
= tx
->tx_txg
;
1958 dbuf_dirty_record_t
*dr
;
1960 if (end_blkid
> dn
->dn_maxblkid
&&
1961 !(start_blkid
== DMU_SPILL_BLKID
|| end_blkid
== DMU_SPILL_BLKID
))
1962 end_blkid
= dn
->dn_maxblkid
;
1963 dprintf_dnode(dn
, "start=%llu end=%llu\n", (u_longlong_t
)start_blkid
,
1964 (u_longlong_t
)end_blkid
);
1966 db_search
= kmem_alloc(sizeof (dmu_buf_impl_t
), KM_SLEEP
);
1967 db_search
->db_level
= 0;
1968 db_search
->db_blkid
= start_blkid
;
1969 db_search
->db_state
= DB_SEARCH
;
1971 mutex_enter(&dn
->dn_dbufs_mtx
);
1972 db
= avl_find(&dn
->dn_dbufs
, db_search
, &where
);
1973 ASSERT3P(db
, ==, NULL
);
1975 db
= avl_nearest(&dn
->dn_dbufs
, where
, AVL_AFTER
);
1977 for (; db
!= NULL
; db
= db_next
) {
1978 db_next
= AVL_NEXT(&dn
->dn_dbufs
, db
);
1979 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1981 if (db
->db_level
!= 0 || db
->db_blkid
> end_blkid
) {
1984 ASSERT3U(db
->db_blkid
, >=, start_blkid
);
1986 /* found a level 0 buffer in the range */
1987 mutex_enter(&db
->db_mtx
);
1988 if (dbuf_undirty(db
, tx
)) {
1989 /* mutex has been dropped and dbuf destroyed */
1993 if (db
->db_state
== DB_UNCACHED
||
1994 db
->db_state
== DB_NOFILL
||
1995 db
->db_state
== DB_EVICTING
) {
1996 ASSERT(db
->db
.db_data
== NULL
);
1997 mutex_exit(&db
->db_mtx
);
2000 if (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
) {
2001 /* will be handled in dbuf_read_done or dbuf_rele */
2002 db
->db_freed_in_flight
= TRUE
;
2003 mutex_exit(&db
->db_mtx
);
2006 if (zfs_refcount_count(&db
->db_holds
) == 0) {
2011 /* The dbuf is referenced */
2013 dr
= list_head(&db
->db_dirty_records
);
2015 if (dr
->dr_txg
== txg
) {
2017 * This buffer is "in-use", re-adjust the file
2018 * size to reflect that this buffer may
2019 * contain new data when we sync.
2021 if (db
->db_blkid
!= DMU_SPILL_BLKID
&&
2022 db
->db_blkid
> dn
->dn_maxblkid
)
2023 dn
->dn_maxblkid
= db
->db_blkid
;
2024 dbuf_unoverride(dr
);
2025 if (dr
->dt
.dl
.dr_brtwrite
) {
2026 ASSERT(db
->db
.db_data
== NULL
);
2027 mutex_exit(&db
->db_mtx
);
2032 * This dbuf is not dirty in the open context.
2033 * Either uncache it (if its not referenced in
2034 * the open context) or reset its contents to
2037 dbuf_fix_old_data(db
, txg
);
2040 /* clear the contents if its cached */
2041 if (db
->db_state
== DB_CACHED
) {
2042 ASSERT(db
->db
.db_data
!= NULL
);
2043 arc_release(db
->db_buf
, db
);
2044 rw_enter(&db
->db_rwlock
, RW_WRITER
);
2045 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
2046 rw_exit(&db
->db_rwlock
);
2047 arc_buf_freeze(db
->db_buf
);
2050 mutex_exit(&db
->db_mtx
);
2053 mutex_exit(&dn
->dn_dbufs_mtx
);
2054 kmem_free(db_search
, sizeof (dmu_buf_impl_t
));
2058 dbuf_new_size(dmu_buf_impl_t
*db
, int size
, dmu_tx_t
*tx
)
2060 arc_buf_t
*buf
, *old_buf
;
2061 dbuf_dirty_record_t
*dr
;
2062 int osize
= db
->db
.db_size
;
2063 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
2066 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2072 * XXX we should be doing a dbuf_read, checking the return
2073 * value and returning that up to our callers
2075 dmu_buf_will_dirty(&db
->db
, tx
);
2077 /* create the data buffer for the new block */
2078 buf
= arc_alloc_buf(dn
->dn_objset
->os_spa
, db
, type
, size
);
2080 /* copy old block data to the new block */
2081 old_buf
= db
->db_buf
;
2082 memcpy(buf
->b_data
, old_buf
->b_data
, MIN(osize
, size
));
2083 /* zero the remainder */
2085 memset((uint8_t *)buf
->b_data
+ osize
, 0, size
- osize
);
2087 mutex_enter(&db
->db_mtx
);
2088 dbuf_set_data(db
, buf
);
2089 arc_buf_destroy(old_buf
, db
);
2090 db
->db
.db_size
= size
;
2092 dr
= list_head(&db
->db_dirty_records
);
2093 /* dirty record added by dmu_buf_will_dirty() */
2095 if (db
->db_level
== 0)
2096 dr
->dt
.dl
.dr_data
= buf
;
2097 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2098 ASSERT3U(dr
->dr_accounted
, ==, osize
);
2099 dr
->dr_accounted
= size
;
2100 mutex_exit(&db
->db_mtx
);
2102 dmu_objset_willuse_space(dn
->dn_objset
, size
- osize
, tx
);
2107 dbuf_release_bp(dmu_buf_impl_t
*db
)
2109 objset_t
*os __maybe_unused
= db
->db_objset
;
2111 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os
)));
2112 ASSERT(arc_released(os
->os_phys_buf
) ||
2113 list_link_active(&os
->os_dsl_dataset
->ds_synced_link
));
2114 ASSERT(db
->db_parent
== NULL
|| arc_released(db
->db_parent
->db_buf
));
2116 (void) arc_release(db
->db_buf
, db
);
2120 * We already have a dirty record for this TXG, and we are being
2124 dbuf_redirty(dbuf_dirty_record_t
*dr
)
2126 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2128 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2130 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
) {
2132 * If this buffer has already been written out,
2133 * we now need to reset its state.
2135 dbuf_unoverride(dr
);
2136 if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
&&
2137 db
->db_state
!= DB_NOFILL
) {
2138 /* Already released on initial dirty, so just thaw. */
2139 ASSERT(arc_released(db
->db_buf
));
2140 arc_buf_thaw(db
->db_buf
);
2145 dbuf_dirty_record_t
*
2146 dbuf_dirty_lightweight(dnode_t
*dn
, uint64_t blkid
, dmu_tx_t
*tx
)
2148 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2149 IMPLY(dn
->dn_objset
->os_raw_receive
, dn
->dn_maxblkid
>= blkid
);
2150 dnode_new_blkid(dn
, blkid
, tx
, B_TRUE
, B_FALSE
);
2151 ASSERT(dn
->dn_maxblkid
>= blkid
);
2153 dbuf_dirty_record_t
*dr
= kmem_zalloc(sizeof (*dr
), KM_SLEEP
);
2154 list_link_init(&dr
->dr_dirty_node
);
2155 list_link_init(&dr
->dr_dbuf_node
);
2157 dr
->dr_txg
= tx
->tx_txg
;
2158 dr
->dt
.dll
.dr_blkid
= blkid
;
2159 dr
->dr_accounted
= dn
->dn_datablksz
;
2162 * There should not be any dbuf for the block that we're dirtying.
2163 * Otherwise the buffer contents could be inconsistent between the
2164 * dbuf and the lightweight dirty record.
2166 ASSERT3P(NULL
, ==, dbuf_find(dn
->dn_objset
, dn
->dn_object
, 0, blkid
,
2169 mutex_enter(&dn
->dn_mtx
);
2170 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2171 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
2172 range_tree_clear(dn
->dn_free_ranges
[txgoff
], blkid
, 1);
2175 if (dn
->dn_nlevels
== 1) {
2176 ASSERT3U(blkid
, <, dn
->dn_nblkptr
);
2177 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2178 mutex_exit(&dn
->dn_mtx
);
2179 rw_exit(&dn
->dn_struct_rwlock
);
2180 dnode_setdirty(dn
, tx
);
2182 mutex_exit(&dn
->dn_mtx
);
2184 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2185 dmu_buf_impl_t
*parent_db
= dbuf_hold_level(dn
,
2186 1, blkid
>> epbs
, FTAG
);
2187 rw_exit(&dn
->dn_struct_rwlock
);
2188 if (parent_db
== NULL
) {
2189 kmem_free(dr
, sizeof (*dr
));
2192 int err
= dbuf_read(parent_db
, NULL
,
2193 (DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
2195 dbuf_rele(parent_db
, FTAG
);
2196 kmem_free(dr
, sizeof (*dr
));
2200 dbuf_dirty_record_t
*parent_dr
= dbuf_dirty(parent_db
, tx
);
2201 dbuf_rele(parent_db
, FTAG
);
2202 mutex_enter(&parent_dr
->dt
.di
.dr_mtx
);
2203 ASSERT3U(parent_dr
->dr_txg
, ==, tx
->tx_txg
);
2204 list_insert_tail(&parent_dr
->dt
.di
.dr_children
, dr
);
2205 mutex_exit(&parent_dr
->dt
.di
.dr_mtx
);
2206 dr
->dr_parent
= parent_dr
;
2209 dmu_objset_willuse_space(dn
->dn_objset
, dr
->dr_accounted
, tx
);
2214 dbuf_dirty_record_t
*
2215 dbuf_dirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
2219 dbuf_dirty_record_t
*dr
, *dr_next
, *dr_head
;
2220 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2221 boolean_t drop_struct_rwlock
= B_FALSE
;
2223 ASSERT(tx
->tx_txg
!= 0);
2224 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2225 DMU_TX_DIRTY_BUF(tx
, db
);
2230 * Shouldn't dirty a regular buffer in syncing context. Private
2231 * objects may be dirtied in syncing context, but only if they
2232 * were already pre-dirtied in open context.
2235 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
) {
2236 rrw_enter(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
,
2239 ASSERT(!dmu_tx_is_syncing(tx
) ||
2240 BP_IS_HOLE(dn
->dn_objset
->os_rootbp
) ||
2241 DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
2242 dn
->dn_objset
->os_dsl_dataset
== NULL
);
2243 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2244 rrw_exit(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
2247 * We make this assert for private objects as well, but after we
2248 * check if we're already dirty. They are allowed to re-dirty
2249 * in syncing context.
2251 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
2252 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
2253 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
2255 mutex_enter(&db
->db_mtx
);
2257 * XXX make this true for indirects too? The problem is that
2258 * transactions created with dmu_tx_create_assigned() from
2259 * syncing context don't bother holding ahead.
2261 ASSERT(db
->db_level
!= 0 ||
2262 db
->db_state
== DB_CACHED
|| db
->db_state
== DB_FILL
||
2263 db
->db_state
== DB_NOFILL
);
2265 mutex_enter(&dn
->dn_mtx
);
2266 dnode_set_dirtyctx(dn
, tx
, db
);
2267 if (tx
->tx_txg
> dn
->dn_dirty_txg
)
2268 dn
->dn_dirty_txg
= tx
->tx_txg
;
2269 mutex_exit(&dn
->dn_mtx
);
2271 if (db
->db_blkid
== DMU_SPILL_BLKID
)
2272 dn
->dn_have_spill
= B_TRUE
;
2275 * If this buffer is already dirty, we're done.
2277 dr_head
= list_head(&db
->db_dirty_records
);
2278 ASSERT(dr_head
== NULL
|| dr_head
->dr_txg
<= tx
->tx_txg
||
2279 db
->db
.db_object
== DMU_META_DNODE_OBJECT
);
2280 dr_next
= dbuf_find_dirty_lte(db
, tx
->tx_txg
);
2281 if (dr_next
&& dr_next
->dr_txg
== tx
->tx_txg
) {
2284 dbuf_redirty(dr_next
);
2285 mutex_exit(&db
->db_mtx
);
2290 * Only valid if not already dirty.
2292 ASSERT(dn
->dn_object
== 0 ||
2293 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
2294 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
2296 ASSERT3U(dn
->dn_nlevels
, >, db
->db_level
);
2299 * We should only be dirtying in syncing context if it's the
2300 * mos or we're initializing the os or it's a special object.
2301 * However, we are allowed to dirty in syncing context provided
2302 * we already dirtied it in open context. Hence we must make
2303 * this assertion only if we're not already dirty.
2306 VERIFY3U(tx
->tx_txg
, <=, spa_final_dirty_txg(os
->os_spa
));
2308 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2309 rrw_enter(&os
->os_dsl_dataset
->ds_bp_rwlock
, RW_READER
, FTAG
);
2310 ASSERT(!dmu_tx_is_syncing(tx
) || DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
2311 os
->os_dsl_dataset
== NULL
|| BP_IS_HOLE(os
->os_rootbp
));
2312 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2313 rrw_exit(&os
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
2315 ASSERT(db
->db
.db_size
!= 0);
2317 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
2319 if (db
->db_blkid
!= DMU_BONUS_BLKID
&& db
->db_state
!= DB_NOFILL
) {
2320 dmu_objset_willuse_space(os
, db
->db
.db_size
, tx
);
2324 * If this buffer is dirty in an old transaction group we need
2325 * to make a copy of it so that the changes we make in this
2326 * transaction group won't leak out when we sync the older txg.
2328 dr
= kmem_zalloc(sizeof (dbuf_dirty_record_t
), KM_SLEEP
);
2329 list_link_init(&dr
->dr_dirty_node
);
2330 list_link_init(&dr
->dr_dbuf_node
);
2332 if (db
->db_level
== 0) {
2333 void *data_old
= db
->db_buf
;
2335 if (db
->db_state
!= DB_NOFILL
) {
2336 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2337 dbuf_fix_old_data(db
, tx
->tx_txg
);
2338 data_old
= db
->db
.db_data
;
2339 } else if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
) {
2341 * Release the data buffer from the cache so
2342 * that we can modify it without impacting
2343 * possible other users of this cached data
2344 * block. Note that indirect blocks and
2345 * private objects are not released until the
2346 * syncing state (since they are only modified
2349 arc_release(db
->db_buf
, db
);
2350 dbuf_fix_old_data(db
, tx
->tx_txg
);
2351 data_old
= db
->db_buf
;
2353 ASSERT(data_old
!= NULL
);
2355 dr
->dt
.dl
.dr_data
= data_old
;
2357 mutex_init(&dr
->dt
.di
.dr_mtx
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
2358 list_create(&dr
->dt
.di
.dr_children
,
2359 sizeof (dbuf_dirty_record_t
),
2360 offsetof(dbuf_dirty_record_t
, dr_dirty_node
));
2362 if (db
->db_blkid
!= DMU_BONUS_BLKID
&& db
->db_state
!= DB_NOFILL
) {
2363 dr
->dr_accounted
= db
->db
.db_size
;
2366 dr
->dr_txg
= tx
->tx_txg
;
2367 list_insert_before(&db
->db_dirty_records
, dr_next
, dr
);
2370 * We could have been freed_in_flight between the dbuf_noread
2371 * and dbuf_dirty. We win, as though the dbuf_noread() had
2372 * happened after the free.
2374 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
2375 db
->db_blkid
!= DMU_SPILL_BLKID
) {
2376 mutex_enter(&dn
->dn_mtx
);
2377 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
2378 range_tree_clear(dn
->dn_free_ranges
[txgoff
],
2381 mutex_exit(&dn
->dn_mtx
);
2382 db
->db_freed_in_flight
= FALSE
;
2386 * This buffer is now part of this txg
2388 dbuf_add_ref(db
, (void *)(uintptr_t)tx
->tx_txg
);
2389 db
->db_dirtycnt
+= 1;
2390 ASSERT3U(db
->db_dirtycnt
, <=, 3);
2392 mutex_exit(&db
->db_mtx
);
2394 if (db
->db_blkid
== DMU_BONUS_BLKID
||
2395 db
->db_blkid
== DMU_SPILL_BLKID
) {
2396 mutex_enter(&dn
->dn_mtx
);
2397 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2398 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2399 mutex_exit(&dn
->dn_mtx
);
2400 dnode_setdirty(dn
, tx
);
2405 if (!RW_WRITE_HELD(&dn
->dn_struct_rwlock
)) {
2406 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2407 drop_struct_rwlock
= B_TRUE
;
2411 * If we are overwriting a dedup BP, then unless it is snapshotted,
2412 * when we get to syncing context we will need to decrement its
2413 * refcount in the DDT. Prefetch the relevant DDT block so that
2414 * syncing context won't have to wait for the i/o.
2416 if (db
->db_blkptr
!= NULL
) {
2417 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
2418 ddt_prefetch(os
->os_spa
, db
->db_blkptr
);
2419 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
2423 * We need to hold the dn_struct_rwlock to make this assertion,
2424 * because it protects dn_phys / dn_next_nlevels from changing.
2426 ASSERT((dn
->dn_phys
->dn_nlevels
== 0 && db
->db_level
== 0) ||
2427 dn
->dn_phys
->dn_nlevels
> db
->db_level
||
2428 dn
->dn_next_nlevels
[txgoff
] > db
->db_level
||
2429 dn
->dn_next_nlevels
[(tx
->tx_txg
-1) & TXG_MASK
] > db
->db_level
||
2430 dn
->dn_next_nlevels
[(tx
->tx_txg
-2) & TXG_MASK
] > db
->db_level
);
2433 if (db
->db_level
== 0) {
2434 ASSERT(!db
->db_objset
->os_raw_receive
||
2435 dn
->dn_maxblkid
>= db
->db_blkid
);
2436 dnode_new_blkid(dn
, db
->db_blkid
, tx
,
2437 drop_struct_rwlock
, B_FALSE
);
2438 ASSERT(dn
->dn_maxblkid
>= db
->db_blkid
);
2441 if (db
->db_level
+1 < dn
->dn_nlevels
) {
2442 dmu_buf_impl_t
*parent
= db
->db_parent
;
2443 dbuf_dirty_record_t
*di
;
2444 int parent_held
= FALSE
;
2446 if (db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
) {
2447 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2448 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
2449 db
->db_blkid
>> epbs
, FTAG
);
2450 ASSERT(parent
!= NULL
);
2453 if (drop_struct_rwlock
)
2454 rw_exit(&dn
->dn_struct_rwlock
);
2455 ASSERT3U(db
->db_level
+ 1, ==, parent
->db_level
);
2456 di
= dbuf_dirty(parent
, tx
);
2458 dbuf_rele(parent
, FTAG
);
2460 mutex_enter(&db
->db_mtx
);
2462 * Since we've dropped the mutex, it's possible that
2463 * dbuf_undirty() might have changed this out from under us.
2465 if (list_head(&db
->db_dirty_records
) == dr
||
2466 dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
2467 mutex_enter(&di
->dt
.di
.dr_mtx
);
2468 ASSERT3U(di
->dr_txg
, ==, tx
->tx_txg
);
2469 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2470 list_insert_tail(&di
->dt
.di
.dr_children
, dr
);
2471 mutex_exit(&di
->dt
.di
.dr_mtx
);
2474 mutex_exit(&db
->db_mtx
);
2476 ASSERT(db
->db_level
+ 1 == dn
->dn_nlevels
);
2477 ASSERT(db
->db_blkid
< dn
->dn_nblkptr
);
2478 ASSERT(db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
2479 mutex_enter(&dn
->dn_mtx
);
2480 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2481 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2482 mutex_exit(&dn
->dn_mtx
);
2483 if (drop_struct_rwlock
)
2484 rw_exit(&dn
->dn_struct_rwlock
);
2487 dnode_setdirty(dn
, tx
);
2493 dbuf_undirty_bonus(dbuf_dirty_record_t
*dr
)
2495 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2497 if (dr
->dt
.dl
.dr_data
!= db
->db
.db_data
) {
2498 struct dnode
*dn
= dr
->dr_dnode
;
2499 int max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
2501 kmem_free(dr
->dt
.dl
.dr_data
, max_bonuslen
);
2502 arc_space_return(max_bonuslen
, ARC_SPACE_BONUS
);
2504 db
->db_data_pending
= NULL
;
2505 ASSERT(list_next(&db
->db_dirty_records
, dr
) == NULL
);
2506 list_remove(&db
->db_dirty_records
, dr
);
2507 if (dr
->dr_dbuf
->db_level
!= 0) {
2508 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
2509 list_destroy(&dr
->dt
.di
.dr_children
);
2511 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
2512 ASSERT3U(db
->db_dirtycnt
, >, 0);
2513 db
->db_dirtycnt
-= 1;
2517 * Undirty a buffer in the transaction group referenced by the given
2518 * transaction. Return whether this evicted the dbuf.
2521 dbuf_undirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
2523 uint64_t txg
= tx
->tx_txg
;
2529 * Due to our use of dn_nlevels below, this can only be called
2530 * in open context, unless we are operating on the MOS.
2531 * From syncing context, dn_nlevels may be different from the
2532 * dn_nlevels used when dbuf was dirtied.
2534 ASSERT(db
->db_objset
==
2535 dmu_objset_pool(db
->db_objset
)->dp_meta_objset
||
2536 txg
!= spa_syncing_txg(dmu_objset_spa(db
->db_objset
)));
2537 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2538 ASSERT0(db
->db_level
);
2539 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2542 * If this buffer is not dirty, we're done.
2544 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, txg
);
2547 ASSERT(dr
->dr_dbuf
== db
);
2549 brtwrite
= dr
->dt
.dl
.dr_brtwrite
;
2552 * We are freeing a block that we cloned in the same
2553 * transaction group.
2555 brt_pending_remove(dmu_objset_spa(db
->db_objset
),
2556 &dr
->dt
.dl
.dr_overridden_by
, tx
);
2559 dnode_t
*dn
= dr
->dr_dnode
;
2561 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
2563 ASSERT(db
->db
.db_size
!= 0);
2565 dsl_pool_undirty_space(dmu_objset_pool(dn
->dn_objset
),
2566 dr
->dr_accounted
, txg
);
2568 list_remove(&db
->db_dirty_records
, dr
);
2571 * Note that there are three places in dbuf_dirty()
2572 * where this dirty record may be put on a list.
2573 * Make sure to do a list_remove corresponding to
2574 * every one of those list_insert calls.
2576 if (dr
->dr_parent
) {
2577 mutex_enter(&dr
->dr_parent
->dt
.di
.dr_mtx
);
2578 list_remove(&dr
->dr_parent
->dt
.di
.dr_children
, dr
);
2579 mutex_exit(&dr
->dr_parent
->dt
.di
.dr_mtx
);
2580 } else if (db
->db_blkid
== DMU_SPILL_BLKID
||
2581 db
->db_level
+ 1 == dn
->dn_nlevels
) {
2582 ASSERT(db
->db_blkptr
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
2583 mutex_enter(&dn
->dn_mtx
);
2584 list_remove(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
2585 mutex_exit(&dn
->dn_mtx
);
2588 if (db
->db_state
!= DB_NOFILL
&& !brtwrite
) {
2589 dbuf_unoverride(dr
);
2591 ASSERT(db
->db_buf
!= NULL
);
2592 ASSERT(dr
->dt
.dl
.dr_data
!= NULL
);
2593 if (dr
->dt
.dl
.dr_data
!= db
->db_buf
)
2594 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
2597 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
2599 ASSERT(db
->db_dirtycnt
> 0);
2600 db
->db_dirtycnt
-= 1;
2602 if (zfs_refcount_remove(&db
->db_holds
, (void *)(uintptr_t)txg
) == 0) {
2603 ASSERT(db
->db_state
== DB_NOFILL
|| brtwrite
||
2604 arc_released(db
->db_buf
));
2613 dmu_buf_will_dirty_impl(dmu_buf_t
*db_fake
, int flags
, dmu_tx_t
*tx
)
2615 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2617 ASSERT(tx
->tx_txg
!= 0);
2618 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2621 * Quick check for dirtiness. For already dirty blocks, this
2622 * reduces runtime of this function by >90%, and overall performance
2623 * by 50% for some workloads (e.g. file deletion with indirect blocks
2626 mutex_enter(&db
->db_mtx
);
2628 if (db
->db_state
== DB_CACHED
) {
2629 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2631 * It's possible that it is already dirty but not cached,
2632 * because there are some calls to dbuf_dirty() that don't
2633 * go through dmu_buf_will_dirty().
2636 /* This dbuf is already dirty and cached. */
2638 mutex_exit(&db
->db_mtx
);
2642 mutex_exit(&db
->db_mtx
);
2645 if (RW_WRITE_HELD(&DB_DNODE(db
)->dn_struct_rwlock
))
2646 flags
|= DB_RF_HAVESTRUCT
;
2648 (void) dbuf_read(db
, NULL
, flags
);
2649 (void) dbuf_dirty(db
, tx
);
2653 dmu_buf_will_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2655 dmu_buf_will_dirty_impl(db_fake
,
2656 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
, tx
);
2660 dmu_buf_is_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2662 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2663 dbuf_dirty_record_t
*dr
;
2665 mutex_enter(&db
->db_mtx
);
2666 dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2667 mutex_exit(&db
->db_mtx
);
2668 return (dr
!= NULL
);
2672 dmu_buf_will_not_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2674 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2676 db
->db_state
= DB_NOFILL
;
2677 DTRACE_SET_STATE(db
, "allocating NOFILL buffer");
2678 dmu_buf_will_fill(db_fake
, tx
);
2682 dmu_buf_will_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2684 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2686 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2687 ASSERT(tx
->tx_txg
!= 0);
2688 ASSERT(db
->db_level
== 0);
2689 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2691 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
||
2692 dmu_tx_private_ok(tx
));
2695 (void) dbuf_dirty(db
, tx
);
2699 * This function is effectively the same as dmu_buf_will_dirty(), but
2700 * indicates the caller expects raw encrypted data in the db, and provides
2701 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2702 * blkptr_t when this dbuf is written. This is only used for blocks of
2703 * dnodes, during raw receive.
2706 dmu_buf_set_crypt_params(dmu_buf_t
*db_fake
, boolean_t byteorder
,
2707 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
, dmu_tx_t
*tx
)
2709 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2710 dbuf_dirty_record_t
*dr
;
2713 * dr_has_raw_params is only processed for blocks of dnodes
2714 * (see dbuf_sync_dnode_leaf_crypt()).
2716 ASSERT3U(db
->db
.db_object
, ==, DMU_META_DNODE_OBJECT
);
2717 ASSERT3U(db
->db_level
, ==, 0);
2718 ASSERT(db
->db_objset
->os_raw_receive
);
2720 dmu_buf_will_dirty_impl(db_fake
,
2721 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_NO_DECRYPT
, tx
);
2723 dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2725 ASSERT3P(dr
, !=, NULL
);
2727 dr
->dt
.dl
.dr_has_raw_params
= B_TRUE
;
2728 dr
->dt
.dl
.dr_byteorder
= byteorder
;
2729 memcpy(dr
->dt
.dl
.dr_salt
, salt
, ZIO_DATA_SALT_LEN
);
2730 memcpy(dr
->dt
.dl
.dr_iv
, iv
, ZIO_DATA_IV_LEN
);
2731 memcpy(dr
->dt
.dl
.dr_mac
, mac
, ZIO_DATA_MAC_LEN
);
2735 dbuf_override_impl(dmu_buf_impl_t
*db
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
2737 struct dirty_leaf
*dl
;
2738 dbuf_dirty_record_t
*dr
;
2740 dr
= list_head(&db
->db_dirty_records
);
2741 ASSERT3P(dr
, !=, NULL
);
2742 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2744 dl
->dr_overridden_by
= *bp
;
2745 dl
->dr_override_state
= DR_OVERRIDDEN
;
2746 dl
->dr_overridden_by
.blk_birth
= dr
->dr_txg
;
2750 dmu_buf_fill_done(dmu_buf_t
*dbuf
, dmu_tx_t
*tx
)
2753 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2754 dbuf_states_t old_state
;
2755 mutex_enter(&db
->db_mtx
);
2758 old_state
= db
->db_state
;
2759 db
->db_state
= DB_CACHED
;
2760 if (old_state
== DB_FILL
) {
2761 if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
2762 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2763 /* we were freed while filling */
2764 /* XXX dbuf_undirty? */
2765 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
2766 db
->db_freed_in_flight
= FALSE
;
2767 DTRACE_SET_STATE(db
,
2768 "fill done handling freed in flight");
2770 DTRACE_SET_STATE(db
, "fill done");
2772 cv_broadcast(&db
->db_changed
);
2774 mutex_exit(&db
->db_mtx
);
2778 dmu_buf_write_embedded(dmu_buf_t
*dbuf
, void *data
,
2779 bp_embedded_type_t etype
, enum zio_compress comp
,
2780 int uncompressed_size
, int compressed_size
, int byteorder
,
2783 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2784 struct dirty_leaf
*dl
;
2785 dmu_object_type_t type
;
2786 dbuf_dirty_record_t
*dr
;
2788 if (etype
== BP_EMBEDDED_TYPE_DATA
) {
2789 ASSERT(spa_feature_is_active(dmu_objset_spa(db
->db_objset
),
2790 SPA_FEATURE_EMBEDDED_DATA
));
2794 type
= DB_DNODE(db
)->dn_type
;
2797 ASSERT0(db
->db_level
);
2798 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2800 dmu_buf_will_not_fill(dbuf
, tx
);
2802 dr
= list_head(&db
->db_dirty_records
);
2803 ASSERT3P(dr
, !=, NULL
);
2804 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2806 encode_embedded_bp_compressed(&dl
->dr_overridden_by
,
2807 data
, comp
, uncompressed_size
, compressed_size
);
2808 BPE_SET_ETYPE(&dl
->dr_overridden_by
, etype
);
2809 BP_SET_TYPE(&dl
->dr_overridden_by
, type
);
2810 BP_SET_LEVEL(&dl
->dr_overridden_by
, 0);
2811 BP_SET_BYTEORDER(&dl
->dr_overridden_by
, byteorder
);
2813 dl
->dr_override_state
= DR_OVERRIDDEN
;
2814 dl
->dr_overridden_by
.blk_birth
= dr
->dr_txg
;
2818 dmu_buf_redact(dmu_buf_t
*dbuf
, dmu_tx_t
*tx
)
2820 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2821 dmu_object_type_t type
;
2822 ASSERT(dsl_dataset_feature_is_active(db
->db_objset
->os_dsl_dataset
,
2823 SPA_FEATURE_REDACTED_DATASETS
));
2826 type
= DB_DNODE(db
)->dn_type
;
2829 ASSERT0(db
->db_level
);
2830 dmu_buf_will_not_fill(dbuf
, tx
);
2832 blkptr_t bp
= { { { {0} } } };
2833 BP_SET_TYPE(&bp
, type
);
2834 BP_SET_LEVEL(&bp
, 0);
2835 BP_SET_BIRTH(&bp
, tx
->tx_txg
, 0);
2836 BP_SET_REDACTED(&bp
);
2837 BPE_SET_LSIZE(&bp
, dbuf
->db_size
);
2839 dbuf_override_impl(db
, &bp
, tx
);
2843 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2844 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2847 dbuf_assign_arcbuf(dmu_buf_impl_t
*db
, arc_buf_t
*buf
, dmu_tx_t
*tx
)
2849 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2850 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2851 ASSERT(db
->db_level
== 0);
2852 ASSERT3U(dbuf_is_metadata(db
), ==, arc_is_metadata(buf
));
2853 ASSERT(buf
!= NULL
);
2854 ASSERT3U(arc_buf_lsize(buf
), ==, db
->db
.db_size
);
2855 ASSERT(tx
->tx_txg
!= 0);
2857 arc_return_buf(buf
, db
);
2858 ASSERT(arc_released(buf
));
2860 mutex_enter(&db
->db_mtx
);
2862 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
2863 cv_wait(&db
->db_changed
, &db
->db_mtx
);
2865 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_UNCACHED
);
2867 if (db
->db_state
== DB_CACHED
&&
2868 zfs_refcount_count(&db
->db_holds
) - 1 > db
->db_dirtycnt
) {
2870 * In practice, we will never have a case where we have an
2871 * encrypted arc buffer while additional holds exist on the
2872 * dbuf. We don't handle this here so we simply assert that
2875 ASSERT(!arc_is_encrypted(buf
));
2876 mutex_exit(&db
->db_mtx
);
2877 (void) dbuf_dirty(db
, tx
);
2878 memcpy(db
->db
.db_data
, buf
->b_data
, db
->db
.db_size
);
2879 arc_buf_destroy(buf
, db
);
2883 if (db
->db_state
== DB_CACHED
) {
2884 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
2886 ASSERT(db
->db_buf
!= NULL
);
2887 if (dr
!= NULL
&& dr
->dr_txg
== tx
->tx_txg
) {
2888 ASSERT(dr
->dt
.dl
.dr_data
== db
->db_buf
);
2890 if (!arc_released(db
->db_buf
)) {
2891 ASSERT(dr
->dt
.dl
.dr_override_state
==
2893 arc_release(db
->db_buf
, db
);
2895 dr
->dt
.dl
.dr_data
= buf
;
2896 arc_buf_destroy(db
->db_buf
, db
);
2897 } else if (dr
== NULL
|| dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
2898 arc_release(db
->db_buf
, db
);
2899 arc_buf_destroy(db
->db_buf
, db
);
2903 ASSERT(db
->db_buf
== NULL
);
2904 dbuf_set_data(db
, buf
);
2905 db
->db_state
= DB_FILL
;
2906 DTRACE_SET_STATE(db
, "filling assigned arcbuf");
2907 mutex_exit(&db
->db_mtx
);
2908 (void) dbuf_dirty(db
, tx
);
2909 dmu_buf_fill_done(&db
->db
, tx
);
2913 dbuf_destroy(dmu_buf_impl_t
*db
)
2916 dmu_buf_impl_t
*parent
= db
->db_parent
;
2917 dmu_buf_impl_t
*dndb
;
2919 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2920 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
2922 if (db
->db_buf
!= NULL
) {
2923 arc_buf_destroy(db
->db_buf
, db
);
2927 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2928 int slots
= DB_DNODE(db
)->dn_num_slots
;
2929 int bonuslen
= DN_SLOTS_TO_BONUSLEN(slots
);
2930 if (db
->db
.db_data
!= NULL
) {
2931 kmem_free(db
->db
.db_data
, bonuslen
);
2932 arc_space_return(bonuslen
, ARC_SPACE_BONUS
);
2933 db
->db_state
= DB_UNCACHED
;
2934 DTRACE_SET_STATE(db
, "buffer cleared");
2938 dbuf_clear_data(db
);
2940 if (multilist_link_active(&db
->db_cache_link
)) {
2941 ASSERT(db
->db_caching_status
== DB_DBUF_CACHE
||
2942 db
->db_caching_status
== DB_DBUF_METADATA_CACHE
);
2944 multilist_remove(&dbuf_caches
[db
->db_caching_status
].cache
, db
);
2945 (void) zfs_refcount_remove_many(
2946 &dbuf_caches
[db
->db_caching_status
].size
,
2947 db
->db
.db_size
, db
);
2949 if (db
->db_caching_status
== DB_DBUF_METADATA_CACHE
) {
2950 DBUF_STAT_BUMPDOWN(metadata_cache_count
);
2952 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
2953 DBUF_STAT_BUMPDOWN(cache_count
);
2954 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
2957 db
->db_caching_status
= DB_NO_CACHE
;
2960 ASSERT(db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
);
2961 ASSERT(db
->db_data_pending
== NULL
);
2962 ASSERT(list_is_empty(&db
->db_dirty_records
));
2964 db
->db_state
= DB_EVICTING
;
2965 DTRACE_SET_STATE(db
, "buffer eviction started");
2966 db
->db_blkptr
= NULL
;
2969 * Now that db_state is DB_EVICTING, nobody else can find this via
2970 * the hash table. We can now drop db_mtx, which allows us to
2971 * acquire the dn_dbufs_mtx.
2973 mutex_exit(&db
->db_mtx
);
2978 if (db
->db_blkid
!= DMU_BONUS_BLKID
) {
2979 boolean_t needlock
= !MUTEX_HELD(&dn
->dn_dbufs_mtx
);
2981 mutex_enter_nested(&dn
->dn_dbufs_mtx
,
2983 avl_remove(&dn
->dn_dbufs
, db
);
2987 mutex_exit(&dn
->dn_dbufs_mtx
);
2989 * Decrementing the dbuf count means that the hold corresponding
2990 * to the removed dbuf is no longer discounted in dnode_move(),
2991 * so the dnode cannot be moved until after we release the hold.
2992 * The membar_producer() ensures visibility of the decremented
2993 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2996 mutex_enter(&dn
->dn_mtx
);
2997 dnode_rele_and_unlock(dn
, db
, B_TRUE
);
2998 db
->db_dnode_handle
= NULL
;
3000 dbuf_hash_remove(db
);
3005 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
3007 db
->db_parent
= NULL
;
3009 ASSERT(db
->db_buf
== NULL
);
3010 ASSERT(db
->db
.db_data
== NULL
);
3011 ASSERT(db
->db_hash_next
== NULL
);
3012 ASSERT(db
->db_blkptr
== NULL
);
3013 ASSERT(db
->db_data_pending
== NULL
);
3014 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
3015 ASSERT(!multilist_link_active(&db
->db_cache_link
));
3018 * If this dbuf is referenced from an indirect dbuf,
3019 * decrement the ref count on the indirect dbuf.
3021 if (parent
&& parent
!= dndb
) {
3022 mutex_enter(&parent
->db_mtx
);
3023 dbuf_rele_and_unlock(parent
, db
, B_TRUE
);
3026 kmem_cache_free(dbuf_kmem_cache
, db
);
3027 arc_space_return(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3031 * Note: While bpp will always be updated if the function returns success,
3032 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3033 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3036 __attribute__((always_inline
))
3038 dbuf_findbp(dnode_t
*dn
, int level
, uint64_t blkid
, int fail_sparse
,
3039 dmu_buf_impl_t
**parentp
, blkptr_t
**bpp
)
3044 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3046 if (blkid
== DMU_SPILL_BLKID
) {
3047 mutex_enter(&dn
->dn_mtx
);
3048 if (dn
->dn_have_spill
&&
3049 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
3050 *bpp
= DN_SPILL_BLKPTR(dn
->dn_phys
);
3053 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
3054 *parentp
= dn
->dn_dbuf
;
3055 mutex_exit(&dn
->dn_mtx
);
3060 (dn
->dn_phys
->dn_nlevels
== 0) ? 1 : dn
->dn_phys
->dn_nlevels
;
3061 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3063 ASSERT3U(level
* epbs
, <, 64);
3064 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3066 * This assertion shouldn't trip as long as the max indirect block size
3067 * is less than 1M. The reason for this is that up to that point,
3068 * the number of levels required to address an entire object with blocks
3069 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3070 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3071 * (i.e. we can address the entire object), objects will all use at most
3072 * N-1 levels and the assertion won't overflow. However, once epbs is
3073 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3074 * enough to address an entire object, so objects will have 5 levels,
3075 * but then this assertion will overflow.
3077 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3078 * need to redo this logic to handle overflows.
3080 ASSERT(level
>= nlevels
||
3081 ((nlevels
- level
- 1) * epbs
) +
3082 highbit64(dn
->dn_phys
->dn_nblkptr
) <= 64);
3083 if (level
>= nlevels
||
3084 blkid
>= ((uint64_t)dn
->dn_phys
->dn_nblkptr
<<
3085 ((nlevels
- level
- 1) * epbs
)) ||
3087 blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))) {
3088 /* the buffer has no parent yet */
3089 return (SET_ERROR(ENOENT
));
3090 } else if (level
< nlevels
-1) {
3091 /* this block is referenced from an indirect block */
3094 err
= dbuf_hold_impl(dn
, level
+ 1,
3095 blkid
>> epbs
, fail_sparse
, FALSE
, NULL
, parentp
);
3099 err
= dbuf_read(*parentp
, NULL
,
3100 (DB_RF_HAVESTRUCT
| DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
3102 dbuf_rele(*parentp
, NULL
);
3106 rw_enter(&(*parentp
)->db_rwlock
, RW_READER
);
3107 *bpp
= ((blkptr_t
*)(*parentp
)->db
.db_data
) +
3108 (blkid
& ((1ULL << epbs
) - 1));
3109 if (blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))
3110 ASSERT(BP_IS_HOLE(*bpp
));
3111 rw_exit(&(*parentp
)->db_rwlock
);
3114 /* the block is referenced from the dnode */
3115 ASSERT3U(level
, ==, nlevels
-1);
3116 ASSERT(dn
->dn_phys
->dn_nblkptr
== 0 ||
3117 blkid
< dn
->dn_phys
->dn_nblkptr
);
3119 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
3120 *parentp
= dn
->dn_dbuf
;
3122 *bpp
= &dn
->dn_phys
->dn_blkptr
[blkid
];
3127 static dmu_buf_impl_t
*
3128 dbuf_create(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
3129 dmu_buf_impl_t
*parent
, blkptr_t
*blkptr
, uint64_t hash
)
3131 objset_t
*os
= dn
->dn_objset
;
3132 dmu_buf_impl_t
*db
, *odb
;
3134 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3135 ASSERT(dn
->dn_type
!= DMU_OT_NONE
);
3137 db
= kmem_cache_alloc(dbuf_kmem_cache
, KM_SLEEP
);
3139 list_create(&db
->db_dirty_records
, sizeof (dbuf_dirty_record_t
),
3140 offsetof(dbuf_dirty_record_t
, dr_dbuf_node
));
3143 db
->db
.db_object
= dn
->dn_object
;
3144 db
->db_level
= level
;
3145 db
->db_blkid
= blkid
;
3146 db
->db_dirtycnt
= 0;
3147 db
->db_dnode_handle
= dn
->dn_handle
;
3148 db
->db_parent
= parent
;
3149 db
->db_blkptr
= blkptr
;
3153 db
->db_user_immediate_evict
= FALSE
;
3154 db
->db_freed_in_flight
= FALSE
;
3155 db
->db_pending_evict
= FALSE
;
3157 if (blkid
== DMU_BONUS_BLKID
) {
3158 ASSERT3P(parent
, ==, dn
->dn_dbuf
);
3159 db
->db
.db_size
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
) -
3160 (dn
->dn_nblkptr
-1) * sizeof (blkptr_t
);
3161 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
3162 db
->db
.db_offset
= DMU_BONUS_BLKID
;
3163 db
->db_state
= DB_UNCACHED
;
3164 DTRACE_SET_STATE(db
, "bonus buffer created");
3165 db
->db_caching_status
= DB_NO_CACHE
;
3166 /* the bonus dbuf is not placed in the hash table */
3167 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3169 } else if (blkid
== DMU_SPILL_BLKID
) {
3170 db
->db
.db_size
= (blkptr
!= NULL
) ?
3171 BP_GET_LSIZE(blkptr
) : SPA_MINBLOCKSIZE
;
3172 db
->db
.db_offset
= 0;
3175 db
->db_level
? 1 << dn
->dn_indblkshift
: dn
->dn_datablksz
;
3176 db
->db
.db_size
= blocksize
;
3177 db
->db
.db_offset
= db
->db_blkid
* blocksize
;
3181 * Hold the dn_dbufs_mtx while we get the new dbuf
3182 * in the hash table *and* added to the dbufs list.
3183 * This prevents a possible deadlock with someone
3184 * trying to look up this dbuf before it's added to the
3187 mutex_enter(&dn
->dn_dbufs_mtx
);
3188 db
->db_state
= DB_EVICTING
; /* not worth logging this state change */
3189 if ((odb
= dbuf_hash_insert(db
)) != NULL
) {
3190 /* someone else inserted it first */
3191 mutex_exit(&dn
->dn_dbufs_mtx
);
3192 kmem_cache_free(dbuf_kmem_cache
, db
);
3193 DBUF_STAT_BUMP(hash_insert_race
);
3196 avl_add(&dn
->dn_dbufs
, db
);
3198 db
->db_state
= DB_UNCACHED
;
3199 DTRACE_SET_STATE(db
, "regular buffer created");
3200 db
->db_caching_status
= DB_NO_CACHE
;
3201 mutex_exit(&dn
->dn_dbufs_mtx
);
3202 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3204 if (parent
&& parent
!= dn
->dn_dbuf
)
3205 dbuf_add_ref(parent
, db
);
3207 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
3208 zfs_refcount_count(&dn
->dn_holds
) > 0);
3209 (void) zfs_refcount_add(&dn
->dn_holds
, db
);
3211 dprintf_dbuf(db
, "db=%p\n", db
);
3217 * This function returns a block pointer and information about the object,
3218 * given a dnode and a block. This is a publicly accessible version of
3219 * dbuf_findbp that only returns some information, rather than the
3220 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3221 * should be locked as (at least) a reader.
3224 dbuf_dnode_findbp(dnode_t
*dn
, uint64_t level
, uint64_t blkid
,
3225 blkptr_t
*bp
, uint16_t *datablkszsec
, uint8_t *indblkshift
)
3227 dmu_buf_impl_t
*dbp
= NULL
;
3230 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3232 err
= dbuf_findbp(dn
, level
, blkid
, B_FALSE
, &dbp
, &bp2
);
3234 ASSERT3P(bp2
, !=, NULL
);
3237 dbuf_rele(dbp
, NULL
);
3238 if (datablkszsec
!= NULL
)
3239 *datablkszsec
= dn
->dn_phys
->dn_datablkszsec
;
3240 if (indblkshift
!= NULL
)
3241 *indblkshift
= dn
->dn_phys
->dn_indblkshift
;
3247 typedef struct dbuf_prefetch_arg
{
3248 spa_t
*dpa_spa
; /* The spa to issue the prefetch in. */
3249 zbookmark_phys_t dpa_zb
; /* The target block to prefetch. */
3250 int dpa_epbs
; /* Entries (blkptr_t's) Per Block Shift. */
3251 int dpa_curlevel
; /* The current level that we're reading */
3252 dnode_t
*dpa_dnode
; /* The dnode associated with the prefetch */
3253 zio_priority_t dpa_prio
; /* The priority I/Os should be issued at. */
3254 zio_t
*dpa_zio
; /* The parent zio_t for all prefetches. */
3255 arc_flags_t dpa_aflags
; /* Flags to pass to the final prefetch. */
3256 dbuf_prefetch_fn dpa_cb
; /* prefetch completion callback */
3257 void *dpa_arg
; /* prefetch completion arg */
3258 } dbuf_prefetch_arg_t
;
3261 dbuf_prefetch_fini(dbuf_prefetch_arg_t
*dpa
, boolean_t io_done
)
3263 if (dpa
->dpa_cb
!= NULL
) {
3264 dpa
->dpa_cb(dpa
->dpa_arg
, dpa
->dpa_zb
.zb_level
,
3265 dpa
->dpa_zb
.zb_blkid
, io_done
);
3267 kmem_free(dpa
, sizeof (*dpa
));
3271 dbuf_issue_final_prefetch_done(zio_t
*zio
, const zbookmark_phys_t
*zb
,
3272 const blkptr_t
*iobp
, arc_buf_t
*abuf
, void *private)
3274 (void) zio
, (void) zb
, (void) iobp
;
3275 dbuf_prefetch_arg_t
*dpa
= private;
3278 arc_buf_destroy(abuf
, private);
3280 dbuf_prefetch_fini(dpa
, B_TRUE
);
3284 * Actually issue the prefetch read for the block given.
3287 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t
*dpa
, blkptr_t
*bp
)
3289 ASSERT(!BP_IS_REDACTED(bp
) ||
3290 dsl_dataset_feature_is_active(
3291 dpa
->dpa_dnode
->dn_objset
->os_dsl_dataset
,
3292 SPA_FEATURE_REDACTED_DATASETS
));
3294 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
) || BP_IS_REDACTED(bp
))
3295 return (dbuf_prefetch_fini(dpa
, B_FALSE
));
3297 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
;
3298 arc_flags_t aflags
=
3299 dpa
->dpa_aflags
| ARC_FLAG_NOWAIT
| ARC_FLAG_PREFETCH
|
3302 /* dnodes are always read as raw and then converted later */
3303 if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
&& BP_IS_PROTECTED(bp
) &&
3304 dpa
->dpa_curlevel
== 0)
3305 zio_flags
|= ZIO_FLAG_RAW
;
3307 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
3308 ASSERT3U(dpa
->dpa_curlevel
, ==, dpa
->dpa_zb
.zb_level
);
3309 ASSERT(dpa
->dpa_zio
!= NULL
);
3310 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
, bp
,
3311 dbuf_issue_final_prefetch_done
, dpa
,
3312 dpa
->dpa_prio
, zio_flags
, &aflags
, &dpa
->dpa_zb
);
3316 * Called when an indirect block above our prefetch target is read in. This
3317 * will either read in the next indirect block down the tree or issue the actual
3318 * prefetch if the next block down is our target.
3321 dbuf_prefetch_indirect_done(zio_t
*zio
, const zbookmark_phys_t
*zb
,
3322 const blkptr_t
*iobp
, arc_buf_t
*abuf
, void *private)
3324 (void) zb
, (void) iobp
;
3325 dbuf_prefetch_arg_t
*dpa
= private;
3327 ASSERT3S(dpa
->dpa_zb
.zb_level
, <, dpa
->dpa_curlevel
);
3328 ASSERT3S(dpa
->dpa_curlevel
, >, 0);
3331 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
3332 dbuf_prefetch_fini(dpa
, B_TRUE
);
3335 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
3338 * The dpa_dnode is only valid if we are called with a NULL
3339 * zio. This indicates that the arc_read() returned without
3340 * first calling zio_read() to issue a physical read. Once
3341 * a physical read is made the dpa_dnode must be invalidated
3342 * as the locks guarding it may have been dropped. If the
3343 * dpa_dnode is still valid, then we want to add it to the dbuf
3344 * cache. To do so, we must hold the dbuf associated with the block
3345 * we just prefetched, read its contents so that we associate it
3346 * with an arc_buf_t, and then release it.
3349 ASSERT3S(BP_GET_LEVEL(zio
->io_bp
), ==, dpa
->dpa_curlevel
);
3350 if (zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
) {
3351 ASSERT3U(BP_GET_PSIZE(zio
->io_bp
), ==, zio
->io_size
);
3353 ASSERT3U(BP_GET_LSIZE(zio
->io_bp
), ==, zio
->io_size
);
3355 ASSERT3P(zio
->io_spa
, ==, dpa
->dpa_spa
);
3357 dpa
->dpa_dnode
= NULL
;
3358 } else if (dpa
->dpa_dnode
!= NULL
) {
3359 uint64_t curblkid
= dpa
->dpa_zb
.zb_blkid
>>
3360 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
-
3361 dpa
->dpa_zb
.zb_level
));
3362 dmu_buf_impl_t
*db
= dbuf_hold_level(dpa
->dpa_dnode
,
3363 dpa
->dpa_curlevel
, curblkid
, FTAG
);
3365 arc_buf_destroy(abuf
, private);
3366 dbuf_prefetch_fini(dpa
, B_TRUE
);
3369 (void) dbuf_read(db
, NULL
,
3370 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_HAVESTRUCT
);
3371 dbuf_rele(db
, FTAG
);
3374 dpa
->dpa_curlevel
--;
3375 uint64_t nextblkid
= dpa
->dpa_zb
.zb_blkid
>>
3376 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
- dpa
->dpa_zb
.zb_level
));
3377 blkptr_t
*bp
= ((blkptr_t
*)abuf
->b_data
) +
3378 P2PHASE(nextblkid
, 1ULL << dpa
->dpa_epbs
);
3380 ASSERT(!BP_IS_REDACTED(bp
) || (dpa
->dpa_dnode
&&
3381 dsl_dataset_feature_is_active(
3382 dpa
->dpa_dnode
->dn_objset
->os_dsl_dataset
,
3383 SPA_FEATURE_REDACTED_DATASETS
)));
3384 if (BP_IS_HOLE(bp
) || BP_IS_REDACTED(bp
)) {
3385 arc_buf_destroy(abuf
, private);
3386 dbuf_prefetch_fini(dpa
, B_TRUE
);
3388 } else if (dpa
->dpa_curlevel
== dpa
->dpa_zb
.zb_level
) {
3389 ASSERT3U(nextblkid
, ==, dpa
->dpa_zb
.zb_blkid
);
3390 dbuf_issue_final_prefetch(dpa
, bp
);
3392 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
3393 zbookmark_phys_t zb
;
3395 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3396 if (dpa
->dpa_aflags
& ARC_FLAG_L2CACHE
)
3397 iter_aflags
|= ARC_FLAG_L2CACHE
;
3399 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
3401 SET_BOOKMARK(&zb
, dpa
->dpa_zb
.zb_objset
,
3402 dpa
->dpa_zb
.zb_object
, dpa
->dpa_curlevel
, nextblkid
);
3404 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
3405 bp
, dbuf_prefetch_indirect_done
, dpa
,
3406 ZIO_PRIORITY_SYNC_READ
,
3407 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3411 arc_buf_destroy(abuf
, private);
3415 * Issue prefetch reads for the given block on the given level. If the indirect
3416 * blocks above that block are not in memory, we will read them in
3417 * asynchronously. As a result, this call never blocks waiting for a read to
3418 * complete. Note that the prefetch might fail if the dataset is encrypted and
3419 * the encryption key is unmapped before the IO completes.
3422 dbuf_prefetch_impl(dnode_t
*dn
, int64_t level
, uint64_t blkid
,
3423 zio_priority_t prio
, arc_flags_t aflags
, dbuf_prefetch_fn cb
,
3427 int epbs
, nlevels
, curlevel
;
3430 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3431 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3433 if (blkid
> dn
->dn_maxblkid
)
3436 if (level
== 0 && dnode_block_freed(dn
, blkid
))
3440 * This dnode hasn't been written to disk yet, so there's nothing to
3443 nlevels
= dn
->dn_phys
->dn_nlevels
;
3444 if (level
>= nlevels
|| dn
->dn_phys
->dn_nblkptr
== 0)
3447 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3448 if (dn
->dn_phys
->dn_maxblkid
< blkid
<< (epbs
* level
))
3451 dmu_buf_impl_t
*db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
,
3452 level
, blkid
, NULL
);
3454 mutex_exit(&db
->db_mtx
);
3456 * This dbuf already exists. It is either CACHED, or
3457 * (we assume) about to be read or filled.
3463 * Find the closest ancestor (indirect block) of the target block
3464 * that is present in the cache. In this indirect block, we will
3465 * find the bp that is at curlevel, curblkid.
3469 while (curlevel
< nlevels
- 1) {
3470 int parent_level
= curlevel
+ 1;
3471 uint64_t parent_blkid
= curblkid
>> epbs
;
3474 if (dbuf_hold_impl(dn
, parent_level
, parent_blkid
,
3475 FALSE
, TRUE
, FTAG
, &db
) == 0) {
3476 blkptr_t
*bpp
= db
->db_buf
->b_data
;
3477 bp
= bpp
[P2PHASE(curblkid
, 1 << epbs
)];
3478 dbuf_rele(db
, FTAG
);
3482 curlevel
= parent_level
;
3483 curblkid
= parent_blkid
;
3486 if (curlevel
== nlevels
- 1) {
3487 /* No cached indirect blocks found. */
3488 ASSERT3U(curblkid
, <, dn
->dn_phys
->dn_nblkptr
);
3489 bp
= dn
->dn_phys
->dn_blkptr
[curblkid
];
3491 ASSERT(!BP_IS_REDACTED(&bp
) ||
3492 dsl_dataset_feature_is_active(dn
->dn_objset
->os_dsl_dataset
,
3493 SPA_FEATURE_REDACTED_DATASETS
));
3494 if (BP_IS_HOLE(&bp
) || BP_IS_REDACTED(&bp
))
3497 ASSERT3U(curlevel
, ==, BP_GET_LEVEL(&bp
));
3499 zio_t
*pio
= zio_root(dmu_objset_spa(dn
->dn_objset
), NULL
, NULL
,
3502 dbuf_prefetch_arg_t
*dpa
= kmem_zalloc(sizeof (*dpa
), KM_SLEEP
);
3503 dsl_dataset_t
*ds
= dn
->dn_objset
->os_dsl_dataset
;
3504 SET_BOOKMARK(&dpa
->dpa_zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
3505 dn
->dn_object
, level
, blkid
);
3506 dpa
->dpa_curlevel
= curlevel
;
3507 dpa
->dpa_prio
= prio
;
3508 dpa
->dpa_aflags
= aflags
;
3509 dpa
->dpa_spa
= dn
->dn_objset
->os_spa
;
3510 dpa
->dpa_dnode
= dn
;
3511 dpa
->dpa_epbs
= epbs
;
3516 if (!DNODE_LEVEL_IS_CACHEABLE(dn
, level
))
3517 dpa
->dpa_aflags
|= ARC_FLAG_UNCACHED
;
3518 else if (dnode_level_is_l2cacheable(&bp
, dn
, level
))
3519 dpa
->dpa_aflags
|= ARC_FLAG_L2CACHE
;
3522 * If we have the indirect just above us, no need to do the asynchronous
3523 * prefetch chain; we'll just run the last step ourselves. If we're at
3524 * a higher level, though, we want to issue the prefetches for all the
3525 * indirect blocks asynchronously, so we can go on with whatever we were
3528 if (curlevel
== level
) {
3529 ASSERT3U(curblkid
, ==, blkid
);
3530 dbuf_issue_final_prefetch(dpa
, &bp
);
3532 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
3533 zbookmark_phys_t zb
;
3535 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3536 if (dnode_level_is_l2cacheable(&bp
, dn
, level
))
3537 iter_aflags
|= ARC_FLAG_L2CACHE
;
3539 SET_BOOKMARK(&zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
3540 dn
->dn_object
, curlevel
, curblkid
);
3541 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
3542 &bp
, dbuf_prefetch_indirect_done
, dpa
,
3543 ZIO_PRIORITY_SYNC_READ
,
3544 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3548 * We use pio here instead of dpa_zio since it's possible that
3549 * dpa may have already been freed.
3555 cb(arg
, level
, blkid
, B_FALSE
);
3560 dbuf_prefetch(dnode_t
*dn
, int64_t level
, uint64_t blkid
, zio_priority_t prio
,
3564 return (dbuf_prefetch_impl(dn
, level
, blkid
, prio
, aflags
, NULL
, NULL
));
3568 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3569 * the case of encrypted, compressed and uncompressed buffers by
3570 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3571 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3573 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3575 noinline
static void
3576 dbuf_hold_copy(dnode_t
*dn
, dmu_buf_impl_t
*db
)
3578 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
3579 arc_buf_t
*data
= dr
->dt
.dl
.dr_data
;
3580 enum zio_compress compress_type
= arc_get_compression(data
);
3581 uint8_t complevel
= arc_get_complevel(data
);
3583 if (arc_is_encrypted(data
)) {
3584 boolean_t byteorder
;
3585 uint8_t salt
[ZIO_DATA_SALT_LEN
];
3586 uint8_t iv
[ZIO_DATA_IV_LEN
];
3587 uint8_t mac
[ZIO_DATA_MAC_LEN
];
3589 arc_get_raw_params(data
, &byteorder
, salt
, iv
, mac
);
3590 dbuf_set_data(db
, arc_alloc_raw_buf(dn
->dn_objset
->os_spa
, db
,
3591 dmu_objset_id(dn
->dn_objset
), byteorder
, salt
, iv
, mac
,
3592 dn
->dn_type
, arc_buf_size(data
), arc_buf_lsize(data
),
3593 compress_type
, complevel
));
3594 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
3595 dbuf_set_data(db
, arc_alloc_compressed_buf(
3596 dn
->dn_objset
->os_spa
, db
, arc_buf_size(data
),
3597 arc_buf_lsize(data
), compress_type
, complevel
));
3599 dbuf_set_data(db
, arc_alloc_buf(dn
->dn_objset
->os_spa
, db
,
3600 DBUF_GET_BUFC_TYPE(db
), db
->db
.db_size
));
3603 rw_enter(&db
->db_rwlock
, RW_WRITER
);
3604 memcpy(db
->db
.db_data
, data
->b_data
, arc_buf_size(data
));
3605 rw_exit(&db
->db_rwlock
);
3609 * Returns with db_holds incremented, and db_mtx not held.
3610 * Note: dn_struct_rwlock must be held.
3613 dbuf_hold_impl(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
3614 boolean_t fail_sparse
, boolean_t fail_uncached
,
3615 const void *tag
, dmu_buf_impl_t
**dbp
)
3617 dmu_buf_impl_t
*db
, *parent
= NULL
;
3620 /* If the pool has been created, verify the tx_sync_lock is not held */
3621 spa_t
*spa
= dn
->dn_objset
->os_spa
;
3622 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
3624 ASSERT(!MUTEX_HELD(&dp
->dp_tx
.tx_sync_lock
));
3627 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3628 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3629 ASSERT3U(dn
->dn_nlevels
, >, level
);
3633 /* dbuf_find() returns with db_mtx held */
3634 db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
, level
, blkid
, &hv
);
3637 blkptr_t
*bp
= NULL
;
3641 return (SET_ERROR(ENOENT
));
3643 ASSERT3P(parent
, ==, NULL
);
3644 err
= dbuf_findbp(dn
, level
, blkid
, fail_sparse
, &parent
, &bp
);
3646 if (err
== 0 && bp
&& BP_IS_HOLE(bp
))
3647 err
= SET_ERROR(ENOENT
);
3650 dbuf_rele(parent
, NULL
);
3654 if (err
&& err
!= ENOENT
)
3656 db
= dbuf_create(dn
, level
, blkid
, parent
, bp
, hv
);
3659 if (fail_uncached
&& db
->db_state
!= DB_CACHED
) {
3660 mutex_exit(&db
->db_mtx
);
3661 return (SET_ERROR(ENOENT
));
3664 if (db
->db_buf
!= NULL
) {
3665 arc_buf_access(db
->db_buf
);
3666 ASSERT3P(db
->db
.db_data
, ==, db
->db_buf
->b_data
);
3669 ASSERT(db
->db_buf
== NULL
|| arc_referenced(db
->db_buf
));
3672 * If this buffer is currently syncing out, and we are
3673 * still referencing it from db_data, we need to make a copy
3674 * of it in case we decide we want to dirty it again in this txg.
3676 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
3677 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
3678 db
->db_state
== DB_CACHED
&& db
->db_data_pending
) {
3679 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
3680 if (dr
->dt
.dl
.dr_data
== db
->db_buf
) {
3681 ASSERT3P(db
->db_buf
, !=, NULL
);
3682 dbuf_hold_copy(dn
, db
);
3686 if (multilist_link_active(&db
->db_cache_link
)) {
3687 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
3688 ASSERT(db
->db_caching_status
== DB_DBUF_CACHE
||
3689 db
->db_caching_status
== DB_DBUF_METADATA_CACHE
);
3691 multilist_remove(&dbuf_caches
[db
->db_caching_status
].cache
, db
);
3692 (void) zfs_refcount_remove_many(
3693 &dbuf_caches
[db
->db_caching_status
].size
,
3694 db
->db
.db_size
, db
);
3696 if (db
->db_caching_status
== DB_DBUF_METADATA_CACHE
) {
3697 DBUF_STAT_BUMPDOWN(metadata_cache_count
);
3699 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
3700 DBUF_STAT_BUMPDOWN(cache_count
);
3701 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
3704 db
->db_caching_status
= DB_NO_CACHE
;
3706 (void) zfs_refcount_add(&db
->db_holds
, tag
);
3708 mutex_exit(&db
->db_mtx
);
3710 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3712 dbuf_rele(parent
, NULL
);
3714 ASSERT3P(DB_DNODE(db
), ==, dn
);
3715 ASSERT3U(db
->db_blkid
, ==, blkid
);
3716 ASSERT3U(db
->db_level
, ==, level
);
3723 dbuf_hold(dnode_t
*dn
, uint64_t blkid
, const void *tag
)
3725 return (dbuf_hold_level(dn
, 0, blkid
, tag
));
3729 dbuf_hold_level(dnode_t
*dn
, int level
, uint64_t blkid
, const void *tag
)
3732 int err
= dbuf_hold_impl(dn
, level
, blkid
, FALSE
, FALSE
, tag
, &db
);
3733 return (err
? NULL
: db
);
3737 dbuf_create_bonus(dnode_t
*dn
)
3739 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
3741 ASSERT(dn
->dn_bonus
== NULL
);
3742 dn
->dn_bonus
= dbuf_create(dn
, 0, DMU_BONUS_BLKID
, dn
->dn_dbuf
, NULL
,
3743 dbuf_hash(dn
->dn_objset
, dn
->dn_object
, 0, DMU_BONUS_BLKID
));
3747 dbuf_spill_set_blksz(dmu_buf_t
*db_fake
, uint64_t blksz
, dmu_tx_t
*tx
)
3749 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3751 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
3752 return (SET_ERROR(ENOTSUP
));
3754 blksz
= SPA_MINBLOCKSIZE
;
3755 ASSERT3U(blksz
, <=, spa_maxblocksize(dmu_objset_spa(db
->db_objset
)));
3756 blksz
= P2ROUNDUP(blksz
, SPA_MINBLOCKSIZE
);
3758 dbuf_new_size(db
, blksz
, tx
);
3764 dbuf_rm_spill(dnode_t
*dn
, dmu_tx_t
*tx
)
3766 dbuf_free_range(dn
, DMU_SPILL_BLKID
, DMU_SPILL_BLKID
, tx
);
3769 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3771 dbuf_add_ref(dmu_buf_impl_t
*db
, const void *tag
)
3773 int64_t holds
= zfs_refcount_add(&db
->db_holds
, tag
);
3774 VERIFY3S(holds
, >, 1);
3777 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3779 dbuf_try_add_ref(dmu_buf_t
*db_fake
, objset_t
*os
, uint64_t obj
, uint64_t blkid
,
3782 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3783 dmu_buf_impl_t
*found_db
;
3784 boolean_t result
= B_FALSE
;
3786 if (blkid
== DMU_BONUS_BLKID
)
3787 found_db
= dbuf_find_bonus(os
, obj
);
3789 found_db
= dbuf_find(os
, obj
, 0, blkid
, NULL
);
3791 if (found_db
!= NULL
) {
3792 if (db
== found_db
&& dbuf_refcount(db
) > db
->db_dirtycnt
) {
3793 (void) zfs_refcount_add(&db
->db_holds
, tag
);
3796 mutex_exit(&found_db
->db_mtx
);
3802 * If you call dbuf_rele() you had better not be referencing the dnode handle
3803 * unless you have some other direct or indirect hold on the dnode. (An indirect
3804 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3805 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3806 * dnode's parent dbuf evicting its dnode handles.
3809 dbuf_rele(dmu_buf_impl_t
*db
, const void *tag
)
3811 mutex_enter(&db
->db_mtx
);
3812 dbuf_rele_and_unlock(db
, tag
, B_FALSE
);
3816 dmu_buf_rele(dmu_buf_t
*db
, const void *tag
)
3818 dbuf_rele((dmu_buf_impl_t
*)db
, tag
);
3822 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3823 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3824 * argument should be set if we are already in the dbuf-evicting code
3825 * path, in which case we don't want to recursively evict. This allows us to
3826 * avoid deeply nested stacks that would have a call flow similar to this:
3828 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3831 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3835 dbuf_rele_and_unlock(dmu_buf_impl_t
*db
, const void *tag
, boolean_t evicting
)
3840 ASSERT(MUTEX_HELD(&db
->db_mtx
));
3844 * Remove the reference to the dbuf before removing its hold on the
3845 * dnode so we can guarantee in dnode_move() that a referenced bonus
3846 * buffer has a corresponding dnode hold.
3848 holds
= zfs_refcount_remove(&db
->db_holds
, tag
);
3852 * We can't freeze indirects if there is a possibility that they
3853 * may be modified in the current syncing context.
3855 if (db
->db_buf
!= NULL
&&
3856 holds
== (db
->db_level
== 0 ? db
->db_dirtycnt
: 0)) {
3857 arc_buf_freeze(db
->db_buf
);
3860 if (holds
== db
->db_dirtycnt
&&
3861 db
->db_level
== 0 && db
->db_user_immediate_evict
)
3862 dbuf_evict_user(db
);
3865 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
3867 boolean_t evict_dbuf
= db
->db_pending_evict
;
3870 * If the dnode moves here, we cannot cross this
3871 * barrier until the move completes.
3876 atomic_dec_32(&dn
->dn_dbufs_count
);
3879 * Decrementing the dbuf count means that the bonus
3880 * buffer's dnode hold is no longer discounted in
3881 * dnode_move(). The dnode cannot move until after
3882 * the dnode_rele() below.
3887 * Do not reference db after its lock is dropped.
3888 * Another thread may evict it.
3890 mutex_exit(&db
->db_mtx
);
3893 dnode_evict_bonus(dn
);
3896 } else if (db
->db_buf
== NULL
) {
3898 * This is a special case: we never associated this
3899 * dbuf with any data allocated from the ARC.
3901 ASSERT(db
->db_state
== DB_UNCACHED
||
3902 db
->db_state
== DB_NOFILL
);
3904 } else if (arc_released(db
->db_buf
)) {
3906 * This dbuf has anonymous data associated with it.
3909 } else if (!(DBUF_IS_CACHEABLE(db
) || db
->db_partial_read
) ||
3910 db
->db_pending_evict
) {
3912 } else if (!multilist_link_active(&db
->db_cache_link
)) {
3913 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
3915 dbuf_cached_state_t dcs
=
3916 dbuf_include_in_metadata_cache(db
) ?
3917 DB_DBUF_METADATA_CACHE
: DB_DBUF_CACHE
;
3918 db
->db_caching_status
= dcs
;
3920 multilist_insert(&dbuf_caches
[dcs
].cache
, db
);
3921 uint64_t db_size
= db
->db
.db_size
;
3922 size
= zfs_refcount_add_many(
3923 &dbuf_caches
[dcs
].size
, db_size
, db
);
3924 uint8_t db_level
= db
->db_level
;
3925 mutex_exit(&db
->db_mtx
);
3927 if (dcs
== DB_DBUF_METADATA_CACHE
) {
3928 DBUF_STAT_BUMP(metadata_cache_count
);
3929 DBUF_STAT_MAX(metadata_cache_size_bytes_max
,
3932 DBUF_STAT_BUMP(cache_count
);
3933 DBUF_STAT_MAX(cache_size_bytes_max
, size
);
3934 DBUF_STAT_BUMP(cache_levels
[db_level
]);
3935 DBUF_STAT_INCR(cache_levels_bytes
[db_level
],
3939 if (dcs
== DB_DBUF_CACHE
&& !evicting
)
3940 dbuf_evict_notify(size
);
3943 mutex_exit(&db
->db_mtx
);
3948 #pragma weak dmu_buf_refcount = dbuf_refcount
3950 dbuf_refcount(dmu_buf_impl_t
*db
)
3952 return (zfs_refcount_count(&db
->db_holds
));
3956 dmu_buf_user_refcount(dmu_buf_t
*db_fake
)
3959 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3961 mutex_enter(&db
->db_mtx
);
3962 ASSERT3U(zfs_refcount_count(&db
->db_holds
), >=, db
->db_dirtycnt
);
3963 holds
= zfs_refcount_count(&db
->db_holds
) - db
->db_dirtycnt
;
3964 mutex_exit(&db
->db_mtx
);
3970 dmu_buf_replace_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*old_user
,
3971 dmu_buf_user_t
*new_user
)
3973 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3975 mutex_enter(&db
->db_mtx
);
3976 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
3977 if (db
->db_user
== old_user
)
3978 db
->db_user
= new_user
;
3980 old_user
= db
->db_user
;
3981 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
3982 mutex_exit(&db
->db_mtx
);
3988 dmu_buf_set_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
3990 return (dmu_buf_replace_user(db_fake
, NULL
, user
));
3994 dmu_buf_set_user_ie(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
3996 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3998 db
->db_user_immediate_evict
= TRUE
;
3999 return (dmu_buf_set_user(db_fake
, user
));
4003 dmu_buf_remove_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
4005 return (dmu_buf_replace_user(db_fake
, user
, NULL
));
4009 dmu_buf_get_user(dmu_buf_t
*db_fake
)
4011 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4013 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
4014 return (db
->db_user
);
4018 dmu_buf_user_evict_wait(void)
4020 taskq_wait(dbu_evict_taskq
);
4024 dmu_buf_get_blkptr(dmu_buf_t
*db
)
4026 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
4027 return (dbi
->db_blkptr
);
4031 dmu_buf_get_objset(dmu_buf_t
*db
)
4033 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
4034 return (dbi
->db_objset
);
4038 dmu_buf_dnode_enter(dmu_buf_t
*db
)
4040 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
4041 DB_DNODE_ENTER(dbi
);
4042 return (DB_DNODE(dbi
));
4046 dmu_buf_dnode_exit(dmu_buf_t
*db
)
4048 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
4053 dbuf_check_blkptr(dnode_t
*dn
, dmu_buf_impl_t
*db
)
4055 /* ASSERT(dmu_tx_is_syncing(tx) */
4056 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4058 if (db
->db_blkptr
!= NULL
)
4061 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4062 db
->db_blkptr
= DN_SPILL_BLKPTR(dn
->dn_phys
);
4063 BP_ZERO(db
->db_blkptr
);
4066 if (db
->db_level
== dn
->dn_phys
->dn_nlevels
-1) {
4068 * This buffer was allocated at a time when there was
4069 * no available blkptrs from the dnode, or it was
4070 * inappropriate to hook it in (i.e., nlevels mismatch).
4072 ASSERT(db
->db_blkid
< dn
->dn_phys
->dn_nblkptr
);
4073 ASSERT(db
->db_parent
== NULL
);
4074 db
->db_parent
= dn
->dn_dbuf
;
4075 db
->db_blkptr
= &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
];
4078 dmu_buf_impl_t
*parent
= db
->db_parent
;
4079 int epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4081 ASSERT(dn
->dn_phys
->dn_nlevels
> 1);
4082 if (parent
== NULL
) {
4083 mutex_exit(&db
->db_mtx
);
4084 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
4085 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
4086 db
->db_blkid
>> epbs
, db
);
4087 rw_exit(&dn
->dn_struct_rwlock
);
4088 mutex_enter(&db
->db_mtx
);
4089 db
->db_parent
= parent
;
4091 db
->db_blkptr
= (blkptr_t
*)parent
->db
.db_data
+
4092 (db
->db_blkid
& ((1ULL << epbs
) - 1));
4098 dbuf_sync_bonus(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4100 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4101 void *data
= dr
->dt
.dl
.dr_data
;
4103 ASSERT0(db
->db_level
);
4104 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4105 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
);
4106 ASSERT(data
!= NULL
);
4108 dnode_t
*dn
= dr
->dr_dnode
;
4109 ASSERT3U(DN_MAX_BONUS_LEN(dn
->dn_phys
), <=,
4110 DN_SLOTS_TO_BONUSLEN(dn
->dn_phys
->dn_extra_slots
+ 1));
4111 memcpy(DN_BONUS(dn
->dn_phys
), data
, DN_MAX_BONUS_LEN(dn
->dn_phys
));
4113 dbuf_sync_leaf_verify_bonus_dnode(dr
);
4115 dbuf_undirty_bonus(dr
);
4116 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
, B_FALSE
);
4120 * When syncing out a blocks of dnodes, adjust the block to deal with
4121 * encryption. Normally, we make sure the block is decrypted before writing
4122 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4123 * from a raw receive. In this case, set the ARC buf's crypt params so
4124 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4127 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t
*dr
)
4130 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4132 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4133 ASSERT3U(db
->db
.db_object
, ==, DMU_META_DNODE_OBJECT
);
4134 ASSERT3U(db
->db_level
, ==, 0);
4136 if (!db
->db_objset
->os_raw_receive
&& arc_is_encrypted(db
->db_buf
)) {
4137 zbookmark_phys_t zb
;
4140 * Unfortunately, there is currently no mechanism for
4141 * syncing context to handle decryption errors. An error
4142 * here is only possible if an attacker maliciously
4143 * changed a dnode block and updated the associated
4144 * checksums going up the block tree.
4146 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
4147 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
4148 err
= arc_untransform(db
->db_buf
, db
->db_objset
->os_spa
,
4151 panic("Invalid dnode block MAC");
4152 } else if (dr
->dt
.dl
.dr_has_raw_params
) {
4153 (void) arc_release(dr
->dt
.dl
.dr_data
, db
);
4154 arc_convert_to_raw(dr
->dt
.dl
.dr_data
,
4155 dmu_objset_id(db
->db_objset
),
4156 dr
->dt
.dl
.dr_byteorder
, DMU_OT_DNODE
,
4157 dr
->dt
.dl
.dr_salt
, dr
->dt
.dl
.dr_iv
, dr
->dt
.dl
.dr_mac
);
4162 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4163 * is critical the we not allow the compiler to inline this function in to
4164 * dbuf_sync_list() thereby drastically bloating the stack usage.
4166 noinline
static void
4167 dbuf_sync_indirect(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4169 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4170 dnode_t
*dn
= dr
->dr_dnode
;
4172 ASSERT(dmu_tx_is_syncing(tx
));
4174 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
4176 mutex_enter(&db
->db_mtx
);
4178 ASSERT(db
->db_level
> 0);
4181 /* Read the block if it hasn't been read yet. */
4182 if (db
->db_buf
== NULL
) {
4183 mutex_exit(&db
->db_mtx
);
4184 (void) dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
);
4185 mutex_enter(&db
->db_mtx
);
4187 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
4188 ASSERT(db
->db_buf
!= NULL
);
4190 /* Indirect block size must match what the dnode thinks it is. */
4191 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
4192 dbuf_check_blkptr(dn
, db
);
4194 /* Provide the pending dirty record to child dbufs */
4195 db
->db_data_pending
= dr
;
4197 mutex_exit(&db
->db_mtx
);
4199 dbuf_write(dr
, db
->db_buf
, tx
);
4201 zio_t
*zio
= dr
->dr_zio
;
4202 mutex_enter(&dr
->dt
.di
.dr_mtx
);
4203 dbuf_sync_list(&dr
->dt
.di
.dr_children
, db
->db_level
- 1, tx
);
4204 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
4205 mutex_exit(&dr
->dt
.di
.dr_mtx
);
4210 * Verify that the size of the data in our bonus buffer does not exceed
4211 * its recorded size.
4213 * The purpose of this verification is to catch any cases in development
4214 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4215 * due to incorrect feature management, older pools expect to read more
4216 * data even though they didn't actually write it to begin with.
4218 * For a example, this would catch an error in the feature logic where we
4219 * open an older pool and we expect to write the space map histogram of
4220 * a space map with size SPACE_MAP_SIZE_V0.
4223 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t
*dr
)
4226 dnode_t
*dn
= dr
->dr_dnode
;
4229 * Encrypted bonus buffers can have data past their bonuslen.
4230 * Skip the verification of these blocks.
4232 if (DMU_OT_IS_ENCRYPTED(dn
->dn_bonustype
))
4235 uint16_t bonuslen
= dn
->dn_phys
->dn_bonuslen
;
4236 uint16_t maxbonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
4237 ASSERT3U(bonuslen
, <=, maxbonuslen
);
4239 arc_buf_t
*datap
= dr
->dt
.dl
.dr_data
;
4240 char *datap_end
= ((char *)datap
) + bonuslen
;
4241 char *datap_max
= ((char *)datap
) + maxbonuslen
;
4243 /* ensure that everything is zero after our data */
4244 for (; datap_end
< datap_max
; datap_end
++)
4245 ASSERT(*datap_end
== 0);
4250 dbuf_lightweight_bp(dbuf_dirty_record_t
*dr
)
4252 /* This must be a lightweight dirty record. */
4253 ASSERT3P(dr
->dr_dbuf
, ==, NULL
);
4254 dnode_t
*dn
= dr
->dr_dnode
;
4256 if (dn
->dn_phys
->dn_nlevels
== 1) {
4257 VERIFY3U(dr
->dt
.dll
.dr_blkid
, <, dn
->dn_phys
->dn_nblkptr
);
4258 return (&dn
->dn_phys
->dn_blkptr
[dr
->dt
.dll
.dr_blkid
]);
4260 dmu_buf_impl_t
*parent_db
= dr
->dr_parent
->dr_dbuf
;
4261 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4262 VERIFY3U(parent_db
->db_level
, ==, 1);
4263 VERIFY3P(parent_db
->db_dnode_handle
->dnh_dnode
, ==, dn
);
4264 VERIFY3U(dr
->dt
.dll
.dr_blkid
>> epbs
, ==, parent_db
->db_blkid
);
4265 blkptr_t
*bp
= parent_db
->db
.db_data
;
4266 return (&bp
[dr
->dt
.dll
.dr_blkid
& ((1 << epbs
) - 1)]);
4271 dbuf_lightweight_ready(zio_t
*zio
)
4273 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4274 blkptr_t
*bp
= zio
->io_bp
;
4276 if (zio
->io_error
!= 0)
4279 dnode_t
*dn
= dr
->dr_dnode
;
4281 blkptr_t
*bp_orig
= dbuf_lightweight_bp(dr
);
4282 spa_t
*spa
= dmu_objset_spa(dn
->dn_objset
);
4283 int64_t delta
= bp_get_dsize_sync(spa
, bp
) -
4284 bp_get_dsize_sync(spa
, bp_orig
);
4285 dnode_diduse_space(dn
, delta
);
4287 uint64_t blkid
= dr
->dt
.dll
.dr_blkid
;
4288 mutex_enter(&dn
->dn_mtx
);
4289 if (blkid
> dn
->dn_phys
->dn_maxblkid
) {
4290 ASSERT0(dn
->dn_objset
->os_raw_receive
);
4291 dn
->dn_phys
->dn_maxblkid
= blkid
;
4293 mutex_exit(&dn
->dn_mtx
);
4295 if (!BP_IS_EMBEDDED(bp
)) {
4296 uint64_t fill
= BP_IS_HOLE(bp
) ? 0 : 1;
4297 BP_SET_FILL(bp
, fill
);
4300 dmu_buf_impl_t
*parent_db
;
4301 EQUIV(dr
->dr_parent
== NULL
, dn
->dn_phys
->dn_nlevels
== 1);
4302 if (dr
->dr_parent
== NULL
) {
4303 parent_db
= dn
->dn_dbuf
;
4305 parent_db
= dr
->dr_parent
->dr_dbuf
;
4307 rw_enter(&parent_db
->db_rwlock
, RW_WRITER
);
4309 rw_exit(&parent_db
->db_rwlock
);
4313 dbuf_lightweight_physdone(zio_t
*zio
)
4315 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4316 dsl_pool_t
*dp
= spa_get_dsl(zio
->io_spa
);
4317 ASSERT3U(dr
->dr_txg
, ==, zio
->io_txg
);
4320 * The callback will be called io_phys_children times. Retire one
4321 * portion of our dirty space each time we are called. Any rounding
4322 * error will be cleaned up by dbuf_lightweight_done().
4324 int delta
= dr
->dr_accounted
/ zio
->io_phys_children
;
4325 dsl_pool_undirty_space(dp
, delta
, zio
->io_txg
);
4329 dbuf_lightweight_done(zio_t
*zio
)
4331 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4333 VERIFY0(zio
->io_error
);
4335 objset_t
*os
= dr
->dr_dnode
->dn_objset
;
4336 dmu_tx_t
*tx
= os
->os_synctx
;
4338 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
4339 ASSERT(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
4341 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
4342 (void) dsl_dataset_block_kill(ds
, &zio
->io_bp_orig
, tx
, B_TRUE
);
4343 dsl_dataset_block_born(ds
, zio
->io_bp
, tx
);
4347 * See comment in dbuf_write_done().
4349 if (zio
->io_phys_children
== 0) {
4350 dsl_pool_undirty_space(dmu_objset_pool(os
),
4351 dr
->dr_accounted
, zio
->io_txg
);
4353 dsl_pool_undirty_space(dmu_objset_pool(os
),
4354 dr
->dr_accounted
% zio
->io_phys_children
, zio
->io_txg
);
4357 abd_free(dr
->dt
.dll
.dr_abd
);
4358 kmem_free(dr
, sizeof (*dr
));
4361 noinline
static void
4362 dbuf_sync_lightweight(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4364 dnode_t
*dn
= dr
->dr_dnode
;
4366 if (dn
->dn_phys
->dn_nlevels
== 1) {
4369 pio
= dr
->dr_parent
->dr_zio
;
4372 zbookmark_phys_t zb
= {
4373 .zb_objset
= dmu_objset_id(dn
->dn_objset
),
4374 .zb_object
= dn
->dn_object
,
4376 .zb_blkid
= dr
->dt
.dll
.dr_blkid
,
4380 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4381 * will have the old BP in dbuf_lightweight_done().
4383 dr
->dr_bp_copy
= *dbuf_lightweight_bp(dr
);
4385 dr
->dr_zio
= zio_write(pio
, dmu_objset_spa(dn
->dn_objset
),
4386 dmu_tx_get_txg(tx
), &dr
->dr_bp_copy
, dr
->dt
.dll
.dr_abd
,
4387 dn
->dn_datablksz
, abd_get_size(dr
->dt
.dll
.dr_abd
),
4388 &dr
->dt
.dll
.dr_props
, dbuf_lightweight_ready
, NULL
,
4389 dbuf_lightweight_physdone
, dbuf_lightweight_done
, dr
,
4390 ZIO_PRIORITY_ASYNC_WRITE
,
4391 ZIO_FLAG_MUSTSUCCEED
| dr
->dt
.dll
.dr_flags
, &zb
);
4393 zio_nowait(dr
->dr_zio
);
4397 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4398 * critical the we not allow the compiler to inline this function in to
4399 * dbuf_sync_list() thereby drastically bloating the stack usage.
4401 noinline
static void
4402 dbuf_sync_leaf(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4404 arc_buf_t
**datap
= &dr
->dt
.dl
.dr_data
;
4405 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4406 dnode_t
*dn
= dr
->dr_dnode
;
4408 uint64_t txg
= tx
->tx_txg
;
4410 ASSERT(dmu_tx_is_syncing(tx
));
4412 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
4414 mutex_enter(&db
->db_mtx
);
4416 * To be synced, we must be dirtied. But we
4417 * might have been freed after the dirty.
4419 if (db
->db_state
== DB_UNCACHED
) {
4420 /* This buffer has been freed since it was dirtied */
4421 ASSERT(db
->db
.db_data
== NULL
);
4422 } else if (db
->db_state
== DB_FILL
) {
4423 /* This buffer was freed and is now being re-filled */
4424 ASSERT(db
->db
.db_data
!= dr
->dt
.dl
.dr_data
);
4426 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_NOFILL
);
4430 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4431 mutex_enter(&dn
->dn_mtx
);
4432 if (!(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
)) {
4434 * In the previous transaction group, the bonus buffer
4435 * was entirely used to store the attributes for the
4436 * dnode which overrode the dn_spill field. However,
4437 * when adding more attributes to the file a spill
4438 * block was required to hold the extra attributes.
4440 * Make sure to clear the garbage left in the dn_spill
4441 * field from the previous attributes in the bonus
4442 * buffer. Otherwise, after writing out the spill
4443 * block to the new allocated dva, it will free
4444 * the old block pointed to by the invalid dn_spill.
4446 db
->db_blkptr
= NULL
;
4448 dn
->dn_phys
->dn_flags
|= DNODE_FLAG_SPILL_BLKPTR
;
4449 mutex_exit(&dn
->dn_mtx
);
4453 * If this is a bonus buffer, simply copy the bonus data into the
4454 * dnode. It will be written out when the dnode is synced (and it
4455 * will be synced, since it must have been dirty for dbuf_sync to
4458 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
4459 ASSERT(dr
->dr_dbuf
== db
);
4460 dbuf_sync_bonus(dr
, tx
);
4467 * This function may have dropped the db_mtx lock allowing a dmu_sync
4468 * operation to sneak in. As a result, we need to ensure that we
4469 * don't check the dr_override_state until we have returned from
4470 * dbuf_check_blkptr.
4472 dbuf_check_blkptr(dn
, db
);
4475 * If this buffer is in the middle of an immediate write,
4476 * wait for the synchronous IO to complete.
4478 while (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
) {
4479 ASSERT(dn
->dn_object
!= DMU_META_DNODE_OBJECT
);
4480 cv_wait(&db
->db_changed
, &db
->db_mtx
);
4484 * If this is a dnode block, ensure it is appropriately encrypted
4485 * or decrypted, depending on what we are writing to it this txg.
4487 if (os
->os_encrypted
&& dn
->dn_object
== DMU_META_DNODE_OBJECT
)
4488 dbuf_prepare_encrypted_dnode_leaf(dr
);
4490 if (db
->db_state
!= DB_NOFILL
&&
4491 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
4492 zfs_refcount_count(&db
->db_holds
) > 1 &&
4493 dr
->dt
.dl
.dr_override_state
!= DR_OVERRIDDEN
&&
4494 *datap
== db
->db_buf
) {
4496 * If this buffer is currently "in use" (i.e., there
4497 * are active holds and db_data still references it),
4498 * then make a copy before we start the write so that
4499 * any modifications from the open txg will not leak
4502 * NOTE: this copy does not need to be made for
4503 * objects only modified in the syncing context (e.g.
4504 * DNONE_DNODE blocks).
4506 int psize
= arc_buf_size(*datap
);
4507 int lsize
= arc_buf_lsize(*datap
);
4508 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
4509 enum zio_compress compress_type
= arc_get_compression(*datap
);
4510 uint8_t complevel
= arc_get_complevel(*datap
);
4512 if (arc_is_encrypted(*datap
)) {
4513 boolean_t byteorder
;
4514 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4515 uint8_t iv
[ZIO_DATA_IV_LEN
];
4516 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4518 arc_get_raw_params(*datap
, &byteorder
, salt
, iv
, mac
);
4519 *datap
= arc_alloc_raw_buf(os
->os_spa
, db
,
4520 dmu_objset_id(os
), byteorder
, salt
, iv
, mac
,
4521 dn
->dn_type
, psize
, lsize
, compress_type
,
4523 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
4524 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
4525 *datap
= arc_alloc_compressed_buf(os
->os_spa
, db
,
4526 psize
, lsize
, compress_type
, complevel
);
4528 *datap
= arc_alloc_buf(os
->os_spa
, db
, type
, psize
);
4530 memcpy((*datap
)->b_data
, db
->db
.db_data
, psize
);
4532 db
->db_data_pending
= dr
;
4534 mutex_exit(&db
->db_mtx
);
4536 dbuf_write(dr
, *datap
, tx
);
4538 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
4539 if (dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
4540 list_insert_tail(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
4542 zio_nowait(dr
->dr_zio
);
4547 dbuf_sync_list(list_t
*list
, int level
, dmu_tx_t
*tx
)
4549 dbuf_dirty_record_t
*dr
;
4551 while ((dr
= list_head(list
))) {
4552 if (dr
->dr_zio
!= NULL
) {
4554 * If we find an already initialized zio then we
4555 * are processing the meta-dnode, and we have finished.
4556 * The dbufs for all dnodes are put back on the list
4557 * during processing, so that we can zio_wait()
4558 * these IOs after initiating all child IOs.
4560 ASSERT3U(dr
->dr_dbuf
->db
.db_object
, ==,
4561 DMU_META_DNODE_OBJECT
);
4564 list_remove(list
, dr
);
4565 if (dr
->dr_dbuf
== NULL
) {
4566 dbuf_sync_lightweight(dr
, tx
);
4568 if (dr
->dr_dbuf
->db_blkid
!= DMU_BONUS_BLKID
&&
4569 dr
->dr_dbuf
->db_blkid
!= DMU_SPILL_BLKID
) {
4570 VERIFY3U(dr
->dr_dbuf
->db_level
, ==, level
);
4572 if (dr
->dr_dbuf
->db_level
> 0)
4573 dbuf_sync_indirect(dr
, tx
);
4575 dbuf_sync_leaf(dr
, tx
);
4581 dbuf_write_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4584 dmu_buf_impl_t
*db
= vdb
;
4586 blkptr_t
*bp
= zio
->io_bp
;
4587 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
4588 spa_t
*spa
= zio
->io_spa
;
4593 ASSERT3P(db
->db_blkptr
, !=, NULL
);
4594 ASSERT3P(&db
->db_data_pending
->dr_bp_copy
, ==, bp
);
4598 delta
= bp_get_dsize_sync(spa
, bp
) - bp_get_dsize_sync(spa
, bp_orig
);
4599 dnode_diduse_space(dn
, delta
- zio
->io_prev_space_delta
);
4600 zio
->io_prev_space_delta
= delta
;
4602 if (bp
->blk_birth
!= 0) {
4603 ASSERT((db
->db_blkid
!= DMU_SPILL_BLKID
&&
4604 BP_GET_TYPE(bp
) == dn
->dn_type
) ||
4605 (db
->db_blkid
== DMU_SPILL_BLKID
&&
4606 BP_GET_TYPE(bp
) == dn
->dn_bonustype
) ||
4607 BP_IS_EMBEDDED(bp
));
4608 ASSERT(BP_GET_LEVEL(bp
) == db
->db_level
);
4611 mutex_enter(&db
->db_mtx
);
4614 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4615 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
4616 ASSERT(!(BP_IS_HOLE(bp
)) &&
4617 db
->db_blkptr
== DN_SPILL_BLKPTR(dn
->dn_phys
));
4621 if (db
->db_level
== 0) {
4622 mutex_enter(&dn
->dn_mtx
);
4623 if (db
->db_blkid
> dn
->dn_phys
->dn_maxblkid
&&
4624 db
->db_blkid
!= DMU_SPILL_BLKID
) {
4625 ASSERT0(db
->db_objset
->os_raw_receive
);
4626 dn
->dn_phys
->dn_maxblkid
= db
->db_blkid
;
4628 mutex_exit(&dn
->dn_mtx
);
4630 if (dn
->dn_type
== DMU_OT_DNODE
) {
4632 while (i
< db
->db
.db_size
) {
4634 (void *)(((char *)db
->db
.db_data
) + i
);
4636 i
+= DNODE_MIN_SIZE
;
4637 if (dnp
->dn_type
!= DMU_OT_NONE
) {
4639 i
+= dnp
->dn_extra_slots
*
4644 if (BP_IS_HOLE(bp
)) {
4651 blkptr_t
*ibp
= db
->db
.db_data
;
4652 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
4653 for (i
= db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
> 0; i
--, ibp
++) {
4654 if (BP_IS_HOLE(ibp
))
4656 fill
+= BP_GET_FILL(ibp
);
4661 if (!BP_IS_EMBEDDED(bp
))
4662 BP_SET_FILL(bp
, fill
);
4664 mutex_exit(&db
->db_mtx
);
4666 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_WRITER
, FTAG
);
4667 *db
->db_blkptr
= *bp
;
4668 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
4672 * This function gets called just prior to running through the compression
4673 * stage of the zio pipeline. If we're an indirect block comprised of only
4674 * holes, then we want this indirect to be compressed away to a hole. In
4675 * order to do that we must zero out any information about the holes that
4676 * this indirect points to prior to before we try to compress it.
4679 dbuf_write_children_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4681 (void) zio
, (void) buf
;
4682 dmu_buf_impl_t
*db
= vdb
;
4685 unsigned int epbs
, i
;
4687 ASSERT3U(db
->db_level
, >, 0);
4690 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4691 ASSERT3U(epbs
, <, 31);
4693 /* Determine if all our children are holes */
4694 for (i
= 0, bp
= db
->db
.db_data
; i
< 1ULL << epbs
; i
++, bp
++) {
4695 if (!BP_IS_HOLE(bp
))
4700 * If all the children are holes, then zero them all out so that
4701 * we may get compressed away.
4703 if (i
== 1ULL << epbs
) {
4705 * We only found holes. Grab the rwlock to prevent
4706 * anybody from reading the blocks we're about to
4709 rw_enter(&db
->db_rwlock
, RW_WRITER
);
4710 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
4711 rw_exit(&db
->db_rwlock
);
4717 * The SPA will call this callback several times for each zio - once
4718 * for every physical child i/o (zio->io_phys_children times). This
4719 * allows the DMU to monitor the progress of each logical i/o. For example,
4720 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4721 * block. There may be a long delay before all copies/fragments are completed,
4722 * so this callback allows us to retire dirty space gradually, as the physical
4726 dbuf_write_physdone(zio_t
*zio
, arc_buf_t
*buf
, void *arg
)
4729 dmu_buf_impl_t
*db
= arg
;
4730 objset_t
*os
= db
->db_objset
;
4731 dsl_pool_t
*dp
= dmu_objset_pool(os
);
4732 dbuf_dirty_record_t
*dr
;
4735 dr
= db
->db_data_pending
;
4736 ASSERT3U(dr
->dr_txg
, ==, zio
->io_txg
);
4739 * The callback will be called io_phys_children times. Retire one
4740 * portion of our dirty space each time we are called. Any rounding
4741 * error will be cleaned up by dbuf_write_done().
4743 delta
= dr
->dr_accounted
/ zio
->io_phys_children
;
4744 dsl_pool_undirty_space(dp
, delta
, zio
->io_txg
);
4748 dbuf_write_done(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4751 dmu_buf_impl_t
*db
= vdb
;
4752 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
4753 blkptr_t
*bp
= db
->db_blkptr
;
4754 objset_t
*os
= db
->db_objset
;
4755 dmu_tx_t
*tx
= os
->os_synctx
;
4757 ASSERT0(zio
->io_error
);
4758 ASSERT(db
->db_blkptr
== bp
);
4761 * For nopwrites and rewrites we ensure that the bp matches our
4762 * original and bypass all the accounting.
4764 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
4765 ASSERT(BP_EQUAL(bp
, bp_orig
));
4767 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
4768 (void) dsl_dataset_block_kill(ds
, bp_orig
, tx
, B_TRUE
);
4769 dsl_dataset_block_born(ds
, bp
, tx
);
4772 mutex_enter(&db
->db_mtx
);
4776 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
4777 dnode_t
*dn
= dr
->dr_dnode
;
4778 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
4779 ASSERT(dr
->dr_dbuf
== db
);
4780 ASSERT(list_next(&db
->db_dirty_records
, dr
) == NULL
);
4781 list_remove(&db
->db_dirty_records
, dr
);
4784 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4785 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
4786 ASSERT(!(BP_IS_HOLE(db
->db_blkptr
)) &&
4787 db
->db_blkptr
== DN_SPILL_BLKPTR(dn
->dn_phys
));
4791 if (db
->db_level
== 0) {
4792 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
4793 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
4794 if (db
->db_state
!= DB_NOFILL
) {
4795 if (dr
->dt
.dl
.dr_data
!= NULL
&&
4796 dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
4797 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
4801 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
4802 ASSERT3U(db
->db
.db_size
, ==, 1 << dn
->dn_phys
->dn_indblkshift
);
4803 if (!BP_IS_HOLE(db
->db_blkptr
)) {
4804 int epbs __maybe_unused
= dn
->dn_phys
->dn_indblkshift
-
4806 ASSERT3U(db
->db_blkid
, <=,
4807 dn
->dn_phys
->dn_maxblkid
>> (db
->db_level
* epbs
));
4808 ASSERT3U(BP_GET_LSIZE(db
->db_blkptr
), ==,
4811 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
4812 list_destroy(&dr
->dt
.di
.dr_children
);
4815 cv_broadcast(&db
->db_changed
);
4816 ASSERT(db
->db_dirtycnt
> 0);
4817 db
->db_dirtycnt
-= 1;
4818 db
->db_data_pending
= NULL
;
4819 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
, B_FALSE
);
4822 * If we didn't do a physical write in this ZIO and we
4823 * still ended up here, it means that the space of the
4824 * dbuf that we just released (and undirtied) above hasn't
4825 * been marked as undirtied in the pool's accounting.
4827 * Thus, we undirty that space in the pool's view of the
4828 * world here. For physical writes this type of update
4829 * happens in dbuf_write_physdone().
4831 * If we did a physical write, cleanup any rounding errors
4832 * that came up due to writing multiple copies of a block
4833 * on disk [see dbuf_write_physdone()].
4835 if (zio
->io_phys_children
== 0) {
4836 dsl_pool_undirty_space(dmu_objset_pool(os
),
4837 dr
->dr_accounted
, zio
->io_txg
);
4839 dsl_pool_undirty_space(dmu_objset_pool(os
),
4840 dr
->dr_accounted
% zio
->io_phys_children
, zio
->io_txg
);
4843 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
4847 dbuf_write_nofill_ready(zio_t
*zio
)
4849 dbuf_write_ready(zio
, NULL
, zio
->io_private
);
4853 dbuf_write_nofill_done(zio_t
*zio
)
4855 dbuf_write_done(zio
, NULL
, zio
->io_private
);
4859 dbuf_write_override_ready(zio_t
*zio
)
4861 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4862 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4864 dbuf_write_ready(zio
, NULL
, db
);
4868 dbuf_write_override_done(zio_t
*zio
)
4870 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4871 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4872 blkptr_t
*obp
= &dr
->dt
.dl
.dr_overridden_by
;
4874 mutex_enter(&db
->db_mtx
);
4875 if (!BP_EQUAL(zio
->io_bp
, obp
)) {
4876 if (!BP_IS_HOLE(obp
))
4877 dsl_free(spa_get_dsl(zio
->io_spa
), zio
->io_txg
, obp
);
4878 arc_release(dr
->dt
.dl
.dr_data
, db
);
4880 mutex_exit(&db
->db_mtx
);
4882 dbuf_write_done(zio
, NULL
, db
);
4884 if (zio
->io_abd
!= NULL
)
4885 abd_free(zio
->io_abd
);
4888 typedef struct dbuf_remap_impl_callback_arg
{
4890 uint64_t drica_blk_birth
;
4892 } dbuf_remap_impl_callback_arg_t
;
4895 dbuf_remap_impl_callback(uint64_t vdev
, uint64_t offset
, uint64_t size
,
4898 dbuf_remap_impl_callback_arg_t
*drica
= arg
;
4899 objset_t
*os
= drica
->drica_os
;
4900 spa_t
*spa
= dmu_objset_spa(os
);
4901 dmu_tx_t
*tx
= drica
->drica_tx
;
4903 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
4905 if (os
== spa_meta_objset(spa
)) {
4906 spa_vdev_indirect_mark_obsolete(spa
, vdev
, offset
, size
, tx
);
4908 dsl_dataset_block_remapped(dmu_objset_ds(os
), vdev
, offset
,
4909 size
, drica
->drica_blk_birth
, tx
);
4914 dbuf_remap_impl(dnode_t
*dn
, blkptr_t
*bp
, krwlock_t
*rw
, dmu_tx_t
*tx
)
4916 blkptr_t bp_copy
= *bp
;
4917 spa_t
*spa
= dmu_objset_spa(dn
->dn_objset
);
4918 dbuf_remap_impl_callback_arg_t drica
;
4920 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
4922 drica
.drica_os
= dn
->dn_objset
;
4923 drica
.drica_blk_birth
= bp
->blk_birth
;
4924 drica
.drica_tx
= tx
;
4925 if (spa_remap_blkptr(spa
, &bp_copy
, dbuf_remap_impl_callback
,
4928 * If the blkptr being remapped is tracked by a livelist,
4929 * then we need to make sure the livelist reflects the update.
4930 * First, cancel out the old blkptr by appending a 'FREE'
4931 * entry. Next, add an 'ALLOC' to track the new version. This
4932 * way we avoid trying to free an inaccurate blkptr at delete.
4933 * Note that embedded blkptrs are not tracked in livelists.
4935 if (dn
->dn_objset
!= spa_meta_objset(spa
)) {
4936 dsl_dataset_t
*ds
= dmu_objset_ds(dn
->dn_objset
);
4937 if (dsl_deadlist_is_open(&ds
->ds_dir
->dd_livelist
) &&
4938 bp
->blk_birth
> ds
->ds_dir
->dd_origin_txg
) {
4939 ASSERT(!BP_IS_EMBEDDED(bp
));
4940 ASSERT(dsl_dir_is_clone(ds
->ds_dir
));
4941 ASSERT(spa_feature_is_enabled(spa
,
4942 SPA_FEATURE_LIVELIST
));
4943 bplist_append(&ds
->ds_dir
->dd_pending_frees
,
4945 bplist_append(&ds
->ds_dir
->dd_pending_allocs
,
4951 * The db_rwlock prevents dbuf_read_impl() from
4952 * dereferencing the BP while we are changing it. To
4953 * avoid lock contention, only grab it when we are actually
4957 rw_enter(rw
, RW_WRITER
);
4965 * Remap any existing BP's to concrete vdevs, if possible.
4968 dbuf_remap(dnode_t
*dn
, dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
4970 spa_t
*spa
= dmu_objset_spa(db
->db_objset
);
4971 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
4973 if (!spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REMOVAL
))
4976 if (db
->db_level
> 0) {
4977 blkptr_t
*bp
= db
->db
.db_data
;
4978 for (int i
= 0; i
< db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
++) {
4979 dbuf_remap_impl(dn
, &bp
[i
], &db
->db_rwlock
, tx
);
4981 } else if (db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
4982 dnode_phys_t
*dnp
= db
->db
.db_data
;
4983 ASSERT3U(db
->db_dnode_handle
->dnh_dnode
->dn_type
, ==,
4985 for (int i
= 0; i
< db
->db
.db_size
>> DNODE_SHIFT
;
4986 i
+= dnp
[i
].dn_extra_slots
+ 1) {
4987 for (int j
= 0; j
< dnp
[i
].dn_nblkptr
; j
++) {
4988 krwlock_t
*lock
= (dn
->dn_dbuf
== NULL
? NULL
:
4989 &dn
->dn_dbuf
->db_rwlock
);
4990 dbuf_remap_impl(dn
, &dnp
[i
].dn_blkptr
[j
], lock
,
4998 /* Issue I/O to commit a dirty buffer to disk. */
5000 dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
)
5002 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
5003 dnode_t
*dn
= dr
->dr_dnode
;
5005 dmu_buf_impl_t
*parent
= db
->db_parent
;
5006 uint64_t txg
= tx
->tx_txg
;
5007 zbookmark_phys_t zb
;
5009 zio_t
*pio
; /* parent I/O */
5012 ASSERT(dmu_tx_is_syncing(tx
));
5016 if (db
->db_state
!= DB_NOFILL
) {
5017 if (db
->db_level
> 0 || dn
->dn_type
== DMU_OT_DNODE
) {
5019 * Private object buffers are released here rather
5020 * than in dbuf_dirty() since they are only modified
5021 * in the syncing context and we don't want the
5022 * overhead of making multiple copies of the data.
5024 if (BP_IS_HOLE(db
->db_blkptr
)) {
5027 dbuf_release_bp(db
);
5029 dbuf_remap(dn
, db
, tx
);
5033 if (parent
!= dn
->dn_dbuf
) {
5034 /* Our parent is an indirect block. */
5035 /* We have a dirty parent that has been scheduled for write. */
5036 ASSERT(parent
&& parent
->db_data_pending
);
5037 /* Our parent's buffer is one level closer to the dnode. */
5038 ASSERT(db
->db_level
== parent
->db_level
-1);
5040 * We're about to modify our parent's db_data by modifying
5041 * our block pointer, so the parent must be released.
5043 ASSERT(arc_released(parent
->db_buf
));
5044 pio
= parent
->db_data_pending
->dr_zio
;
5046 /* Our parent is the dnode itself. */
5047 ASSERT((db
->db_level
== dn
->dn_phys
->dn_nlevels
-1 &&
5048 db
->db_blkid
!= DMU_SPILL_BLKID
) ||
5049 (db
->db_blkid
== DMU_SPILL_BLKID
&& db
->db_level
== 0));
5050 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
5051 ASSERT3P(db
->db_blkptr
, ==,
5052 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
5056 ASSERT(db
->db_level
== 0 || data
== db
->db_buf
);
5057 ASSERT3U(db
->db_blkptr
->blk_birth
, <=, txg
);
5060 SET_BOOKMARK(&zb
, os
->os_dsl_dataset
?
5061 os
->os_dsl_dataset
->ds_object
: DMU_META_OBJSET
,
5062 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
5064 if (db
->db_blkid
== DMU_SPILL_BLKID
)
5066 wp_flag
|= (db
->db_state
== DB_NOFILL
) ? WP_NOFILL
: 0;
5068 dmu_write_policy(os
, dn
, db
->db_level
, wp_flag
, &zp
);
5071 * We copy the blkptr now (rather than when we instantiate the dirty
5072 * record), because its value can change between open context and
5073 * syncing context. We do not need to hold dn_struct_rwlock to read
5074 * db_blkptr because we are in syncing context.
5076 dr
->dr_bp_copy
= *db
->db_blkptr
;
5078 if (db
->db_level
== 0 &&
5079 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
5081 * The BP for this block has been provided by open context
5082 * (by dmu_sync() or dmu_buf_write_embedded()).
5084 abd_t
*contents
= (data
!= NULL
) ?
5085 abd_get_from_buf(data
->b_data
, arc_buf_size(data
)) : NULL
;
5087 dr
->dr_zio
= zio_write(pio
, os
->os_spa
, txg
, &dr
->dr_bp_copy
,
5088 contents
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
5089 dbuf_write_override_ready
, NULL
, NULL
,
5090 dbuf_write_override_done
,
5091 dr
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_MUSTSUCCEED
, &zb
);
5092 mutex_enter(&db
->db_mtx
);
5093 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
5094 zio_write_override(dr
->dr_zio
, &dr
->dt
.dl
.dr_overridden_by
,
5095 dr
->dt
.dl
.dr_copies
, dr
->dt
.dl
.dr_nopwrite
,
5096 dr
->dt
.dl
.dr_brtwrite
);
5097 mutex_exit(&db
->db_mtx
);
5098 } else if (db
->db_state
== DB_NOFILL
) {
5099 ASSERT(zp
.zp_checksum
== ZIO_CHECKSUM_OFF
||
5100 zp
.zp_checksum
== ZIO_CHECKSUM_NOPARITY
);
5101 dr
->dr_zio
= zio_write(pio
, os
->os_spa
, txg
,
5102 &dr
->dr_bp_copy
, NULL
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
5103 dbuf_write_nofill_ready
, NULL
, NULL
,
5104 dbuf_write_nofill_done
, db
,
5105 ZIO_PRIORITY_ASYNC_WRITE
,
5106 ZIO_FLAG_MUSTSUCCEED
| ZIO_FLAG_NODATA
, &zb
);
5108 ASSERT(arc_released(data
));
5111 * For indirect blocks, we want to setup the children
5112 * ready callback so that we can properly handle an indirect
5113 * block that only contains holes.
5115 arc_write_done_func_t
*children_ready_cb
= NULL
;
5116 if (db
->db_level
!= 0)
5117 children_ready_cb
= dbuf_write_children_ready
;
5119 dr
->dr_zio
= arc_write(pio
, os
->os_spa
, txg
,
5120 &dr
->dr_bp_copy
, data
, !DBUF_IS_CACHEABLE(db
),
5121 dbuf_is_l2cacheable(db
), &zp
, dbuf_write_ready
,
5122 children_ready_cb
, dbuf_write_physdone
,
5123 dbuf_write_done
, db
, ZIO_PRIORITY_ASYNC_WRITE
,
5124 ZIO_FLAG_MUSTSUCCEED
, &zb
);
5128 EXPORT_SYMBOL(dbuf_find
);
5129 EXPORT_SYMBOL(dbuf_is_metadata
);
5130 EXPORT_SYMBOL(dbuf_destroy
);
5131 EXPORT_SYMBOL(dbuf_loan_arcbuf
);
5132 EXPORT_SYMBOL(dbuf_whichblock
);
5133 EXPORT_SYMBOL(dbuf_read
);
5134 EXPORT_SYMBOL(dbuf_unoverride
);
5135 EXPORT_SYMBOL(dbuf_free_range
);
5136 EXPORT_SYMBOL(dbuf_new_size
);
5137 EXPORT_SYMBOL(dbuf_release_bp
);
5138 EXPORT_SYMBOL(dbuf_dirty
);
5139 EXPORT_SYMBOL(dmu_buf_set_crypt_params
);
5140 EXPORT_SYMBOL(dmu_buf_will_dirty
);
5141 EXPORT_SYMBOL(dmu_buf_is_dirty
);
5142 EXPORT_SYMBOL(dmu_buf_will_not_fill
);
5143 EXPORT_SYMBOL(dmu_buf_will_fill
);
5144 EXPORT_SYMBOL(dmu_buf_fill_done
);
5145 EXPORT_SYMBOL(dmu_buf_rele
);
5146 EXPORT_SYMBOL(dbuf_assign_arcbuf
);
5147 EXPORT_SYMBOL(dbuf_prefetch
);
5148 EXPORT_SYMBOL(dbuf_hold_impl
);
5149 EXPORT_SYMBOL(dbuf_hold
);
5150 EXPORT_SYMBOL(dbuf_hold_level
);
5151 EXPORT_SYMBOL(dbuf_create_bonus
);
5152 EXPORT_SYMBOL(dbuf_spill_set_blksz
);
5153 EXPORT_SYMBOL(dbuf_rm_spill
);
5154 EXPORT_SYMBOL(dbuf_add_ref
);
5155 EXPORT_SYMBOL(dbuf_rele
);
5156 EXPORT_SYMBOL(dbuf_rele_and_unlock
);
5157 EXPORT_SYMBOL(dbuf_refcount
);
5158 EXPORT_SYMBOL(dbuf_sync_list
);
5159 EXPORT_SYMBOL(dmu_buf_set_user
);
5160 EXPORT_SYMBOL(dmu_buf_set_user_ie
);
5161 EXPORT_SYMBOL(dmu_buf_get_user
);
5162 EXPORT_SYMBOL(dmu_buf_get_blkptr
);
5164 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, max_bytes
, U64
, ZMOD_RW
,
5165 "Maximum size in bytes of the dbuf cache.");
5167 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, hiwater_pct
, UINT
, ZMOD_RW
,
5168 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5170 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, lowater_pct
, UINT
, ZMOD_RW
,
5171 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5173 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, metadata_cache_max_bytes
, U64
, ZMOD_RW
,
5174 "Maximum size in bytes of dbuf metadata cache.");
5176 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, cache_shift
, UINT
, ZMOD_RW
,
5177 "Set size of dbuf cache to log2 fraction of arc size.");
5179 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, metadata_cache_shift
, UINT
, ZMOD_RW
,
5180 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5182 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, mutex_cache_shift
, UINT
, ZMOD_RD
,
5183 "Set size of dbuf cache mutex array as log2 shift.");