zdb: Fix minor memory leak
[zfs.git] / cmd / zpool / zpool_vdev.c
blob99a521aa2a28775fde59a98848f4e37cff69a7a9
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016, 2017 Intel Corporation.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
30 * Functions to convert between a list of vdevs and an nvlist representing the
31 * configuration. Each entry in the list can be one of:
33 * Device vdevs
34 * disk=(path=..., devid=...)
35 * file=(path=...)
37 * Group vdevs
38 * raidz[1|2]=(...)
39 * mirror=(...)
41 * Hot spares
43 * While the underlying implementation supports it, group vdevs cannot contain
44 * other group vdevs. All userland verification of devices is contained within
45 * this file. If successful, the nvlist returned can be passed directly to the
46 * kernel; we've done as much verification as possible in userland.
48 * Hot spares are a special case, and passed down as an array of disk vdevs, at
49 * the same level as the root of the vdev tree.
51 * The only function exported by this file is 'make_root_vdev'. The
52 * function performs several passes:
54 * 1. Construct the vdev specification. Performs syntax validation and
55 * makes sure each device is valid.
56 * 2. Check for devices in use. Using libblkid to make sure that no
57 * devices are also in use. Some can be overridden using the 'force'
58 * flag, others cannot.
59 * 3. Check for replication errors if the 'force' flag is not specified.
60 * validates that the replication level is consistent across the
61 * entire pool.
62 * 4. Call libzfs to label any whole disks with an EFI label.
65 #include <assert.h>
66 #include <ctype.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <libzutil.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include "zpool_util.h"
78 #include <sys/zfs_context.h>
79 #include <sys/stat.h>
82 * For any given vdev specification, we can have multiple errors. The
83 * vdev_error() function keeps track of whether we have seen an error yet, and
84 * prints out a header if its the first error we've seen.
86 boolean_t error_seen;
87 boolean_t is_force;
89 void
90 vdev_error(const char *fmt, ...)
92 va_list ap;
94 if (!error_seen) {
95 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
96 if (!is_force)
97 (void) fprintf(stderr, gettext("use '-f' to override "
98 "the following errors:\n"));
99 else
100 (void) fprintf(stderr, gettext("the following errors "
101 "must be manually repaired:\n"));
102 error_seen = B_TRUE;
105 va_start(ap, fmt);
106 (void) vfprintf(stderr, fmt, ap);
107 va_end(ap);
111 * Check that a file is valid. All we can do in this case is check that it's
112 * not in use by another pool, and not in use by swap.
115 check_file_generic(const char *file, boolean_t force, boolean_t isspare)
117 char *name;
118 int fd;
119 int ret = 0;
120 pool_state_t state;
121 boolean_t inuse;
123 if ((fd = open(file, O_RDONLY)) < 0)
124 return (0);
126 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
127 const char *desc;
129 switch (state) {
130 case POOL_STATE_ACTIVE:
131 desc = gettext("active");
132 break;
134 case POOL_STATE_EXPORTED:
135 desc = gettext("exported");
136 break;
138 case POOL_STATE_POTENTIALLY_ACTIVE:
139 desc = gettext("potentially active");
140 break;
142 default:
143 desc = gettext("unknown");
144 break;
148 * Allow hot spares to be shared between pools.
150 if (state == POOL_STATE_SPARE && isspare) {
151 free(name);
152 (void) close(fd);
153 return (0);
156 if (state == POOL_STATE_ACTIVE ||
157 state == POOL_STATE_SPARE || !force) {
158 switch (state) {
159 case POOL_STATE_SPARE:
160 vdev_error(gettext("%s is reserved as a hot "
161 "spare for pool %s\n"), file, name);
162 break;
163 default:
164 vdev_error(gettext("%s is part of %s pool "
165 "'%s'\n"), file, desc, name);
166 break;
168 ret = -1;
171 free(name);
174 (void) close(fd);
175 return (ret);
179 * This may be a shorthand device path or it could be total gibberish.
180 * Check to see if it is a known device available in zfs_vdev_paths.
181 * As part of this check, see if we've been given an entire disk
182 * (minus the slice number).
184 static int
185 is_shorthand_path(const char *arg, char *path, size_t path_size,
186 struct stat64 *statbuf, boolean_t *wholedisk)
188 int error;
190 error = zfs_resolve_shortname(arg, path, path_size);
191 if (error == 0) {
192 *wholedisk = zfs_dev_is_whole_disk(path);
193 if (*wholedisk || (stat64(path, statbuf) == 0))
194 return (0);
197 strlcpy(path, arg, path_size);
198 memset(statbuf, 0, sizeof (*statbuf));
199 *wholedisk = B_FALSE;
201 return (error);
205 * Determine if the given path is a hot spare within the given configuration.
206 * If no configuration is given we rely solely on the label.
208 static boolean_t
209 is_spare(nvlist_t *config, const char *path)
211 int fd;
212 pool_state_t state;
213 char *name = NULL;
214 nvlist_t *label;
215 uint64_t guid, spareguid;
216 nvlist_t *nvroot;
217 nvlist_t **spares;
218 uint_t i, nspares;
219 boolean_t inuse;
221 if (zpool_is_draid_spare(path))
222 return (B_TRUE);
224 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
225 return (B_FALSE);
227 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
228 !inuse ||
229 state != POOL_STATE_SPARE ||
230 zpool_read_label(fd, &label, NULL) != 0) {
231 free(name);
232 (void) close(fd);
233 return (B_FALSE);
235 free(name);
236 (void) close(fd);
238 if (config == NULL) {
239 nvlist_free(label);
240 return (B_TRUE);
243 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
244 nvlist_free(label);
246 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
247 &nvroot) == 0);
248 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
249 &spares, &nspares) == 0) {
250 for (i = 0; i < nspares; i++) {
251 verify(nvlist_lookup_uint64(spares[i],
252 ZPOOL_CONFIG_GUID, &spareguid) == 0);
253 if (spareguid == guid)
254 return (B_TRUE);
258 return (B_FALSE);
262 * Create a leaf vdev. Determine if this is a file or a device. If it's a
263 * device, fill in the device id to make a complete nvlist. Valid forms for a
264 * leaf vdev are:
266 * /dev/xxx Complete disk path
267 * /xxx Full path to file
268 * xxx Shorthand for <zfs_vdev_paths>/xxx
269 * draid* Virtual dRAID spare
271 static nvlist_t *
272 make_leaf_vdev(nvlist_t *props, const char *arg, boolean_t is_primary)
274 char path[MAXPATHLEN];
275 struct stat64 statbuf;
276 nvlist_t *vdev = NULL;
277 const char *type = NULL;
278 boolean_t wholedisk = B_FALSE;
279 uint64_t ashift = 0;
280 int err;
283 * Determine what type of vdev this is, and put the full path into
284 * 'path'. We detect whether this is a device of file afterwards by
285 * checking the st_mode of the file.
287 if (arg[0] == '/') {
289 * Complete device or file path. Exact type is determined by
290 * examining the file descriptor afterwards. Symbolic links
291 * are resolved to their real paths to determine whole disk
292 * and S_ISBLK/S_ISREG type checks. However, we are careful
293 * to store the given path as ZPOOL_CONFIG_PATH to ensure we
294 * can leverage udev's persistent device labels.
296 if (realpath(arg, path) == NULL) {
297 (void) fprintf(stderr,
298 gettext("cannot resolve path '%s'\n"), arg);
299 return (NULL);
302 wholedisk = zfs_dev_is_whole_disk(path);
303 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
304 (void) fprintf(stderr,
305 gettext("cannot open '%s': %s\n"),
306 path, strerror(errno));
307 return (NULL);
310 /* After whole disk check restore original passed path */
311 strlcpy(path, arg, sizeof (path));
312 } else if (zpool_is_draid_spare(arg)) {
313 if (!is_primary) {
314 (void) fprintf(stderr,
315 gettext("cannot open '%s': dRAID spares can only "
316 "be used to replace primary vdevs\n"), arg);
317 return (NULL);
320 wholedisk = B_TRUE;
321 strlcpy(path, arg, sizeof (path));
322 type = VDEV_TYPE_DRAID_SPARE;
323 } else {
324 err = is_shorthand_path(arg, path, sizeof (path),
325 &statbuf, &wholedisk);
326 if (err != 0) {
328 * If we got ENOENT, then the user gave us
329 * gibberish, so try to direct them with a
330 * reasonable error message. Otherwise,
331 * regurgitate strerror() since it's the best we
332 * can do.
334 if (err == ENOENT) {
335 (void) fprintf(stderr,
336 gettext("cannot open '%s': no such "
337 "device in %s\n"), arg, DISK_ROOT);
338 (void) fprintf(stderr,
339 gettext("must be a full path or "
340 "shorthand device name\n"));
341 return (NULL);
342 } else {
343 (void) fprintf(stderr,
344 gettext("cannot open '%s': %s\n"),
345 path, strerror(errno));
346 return (NULL);
351 if (type == NULL) {
353 * Determine whether this is a device or a file.
355 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
356 type = VDEV_TYPE_DISK;
357 } else if (S_ISREG(statbuf.st_mode)) {
358 type = VDEV_TYPE_FILE;
359 } else {
360 fprintf(stderr, gettext("cannot use '%s': must "
361 "be a block device or regular file\n"), path);
362 return (NULL);
367 * Finally, we have the complete device or file, and we know that it is
368 * acceptable to use. Construct the nvlist to describe this vdev. All
369 * vdevs have a 'path' element, and devices also have a 'devid' element.
371 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
372 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
373 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
375 if (strcmp(type, VDEV_TYPE_DISK) == 0)
376 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
377 (uint64_t)wholedisk) == 0);
380 * Override defaults if custom properties are provided.
382 if (props != NULL) {
383 const char *value = NULL;
385 if (nvlist_lookup_string(props,
386 zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
387 if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
388 (void) fprintf(stderr,
389 gettext("ashift must be a number.\n"));
390 return (NULL);
392 if (ashift != 0 &&
393 (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
394 (void) fprintf(stderr,
395 gettext("invalid 'ashift=%" PRIu64 "' "
396 "property: only values between %" PRId32 " "
397 "and %" PRId32 " are allowed.\n"),
398 ashift, ASHIFT_MIN, ASHIFT_MAX);
399 return (NULL);
405 * If the device is known to incorrectly report its physical sector
406 * size explicitly provide the known correct value.
408 if (ashift == 0) {
409 int sector_size;
411 if (check_sector_size_database(path, &sector_size) == B_TRUE)
412 ashift = highbit64(sector_size) - 1;
415 if (ashift > 0)
416 (void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
418 return (vdev);
422 * Go through and verify the replication level of the pool is consistent.
423 * Performs the following checks:
425 * For the new spec, verifies that devices in mirrors and raidz are the
426 * same size.
428 * If the current configuration already has inconsistent replication
429 * levels, ignore any other potential problems in the new spec.
431 * Otherwise, make sure that the current spec (if there is one) and the new
432 * spec have consistent replication levels.
434 * If there is no current spec (create), make sure new spec has at least
435 * one general purpose vdev.
437 typedef struct replication_level {
438 const char *zprl_type;
439 uint64_t zprl_children;
440 uint64_t zprl_parity;
441 } replication_level_t;
443 #define ZPOOL_FUZZ (16 * 1024 * 1024)
446 * N.B. For the purposes of comparing replication levels dRAID can be
447 * considered functionally equivalent to raidz.
449 static boolean_t
450 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
451 replication_level_t **raidz, replication_level_t **mirror)
453 if ((strcmp(a->zprl_type, "raidz") == 0 ||
454 strcmp(a->zprl_type, "draid") == 0) &&
455 strcmp(b->zprl_type, "mirror") == 0) {
456 *raidz = a;
457 *mirror = b;
458 return (B_TRUE);
460 return (B_FALSE);
464 * Comparison for determining if dRAID and raidz where passed in either order.
466 static boolean_t
467 is_raidz_draid(replication_level_t *a, replication_level_t *b)
469 if ((strcmp(a->zprl_type, "raidz") == 0 ||
470 strcmp(a->zprl_type, "draid") == 0) &&
471 (strcmp(b->zprl_type, "raidz") == 0 ||
472 strcmp(b->zprl_type, "draid") == 0)) {
473 return (B_TRUE);
476 return (B_FALSE);
480 * Given a list of toplevel vdevs, return the current replication level. If
481 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
482 * an error message will be displayed for each self-inconsistent vdev.
484 static replication_level_t *
485 get_replication(nvlist_t *nvroot, boolean_t fatal)
487 nvlist_t **top;
488 uint_t t, toplevels;
489 nvlist_t **child;
490 uint_t c, children;
491 nvlist_t *nv;
492 const char *type;
493 replication_level_t lastrep = {0};
494 replication_level_t rep;
495 replication_level_t *ret;
496 replication_level_t *raidz, *mirror;
497 boolean_t dontreport;
499 ret = safe_malloc(sizeof (replication_level_t));
501 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
502 &top, &toplevels) == 0);
504 for (t = 0; t < toplevels; t++) {
505 uint64_t is_log = B_FALSE;
507 nv = top[t];
510 * For separate logs we ignore the top level vdev replication
511 * constraints.
513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
514 if (is_log)
515 continue;
518 * Ignore holes introduced by removing aux devices, along
519 * with indirect vdevs introduced by previously removed
520 * vdevs.
522 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
523 if (strcmp(type, VDEV_TYPE_HOLE) == 0 ||
524 strcmp(type, VDEV_TYPE_INDIRECT) == 0)
525 continue;
527 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
528 &child, &children) != 0) {
530 * This is a 'file' or 'disk' vdev.
532 rep.zprl_type = type;
533 rep.zprl_children = 1;
534 rep.zprl_parity = 0;
535 } else {
536 int64_t vdev_size;
539 * This is a mirror or RAID-Z vdev. Go through and make
540 * sure the contents are all the same (files vs. disks),
541 * keeping track of the number of elements in the
542 * process.
544 * We also check that the size of each vdev (if it can
545 * be determined) is the same.
547 rep.zprl_type = type;
548 rep.zprl_children = 0;
550 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 ||
551 strcmp(type, VDEV_TYPE_DRAID) == 0) {
552 verify(nvlist_lookup_uint64(nv,
553 ZPOOL_CONFIG_NPARITY,
554 &rep.zprl_parity) == 0);
555 assert(rep.zprl_parity != 0);
556 } else {
557 rep.zprl_parity = 0;
561 * The 'dontreport' variable indicates that we've
562 * already reported an error for this spec, so don't
563 * bother doing it again.
565 type = NULL;
566 dontreport = 0;
567 vdev_size = -1LL;
568 for (c = 0; c < children; c++) {
569 nvlist_t *cnv = child[c];
570 const char *path;
571 struct stat64 statbuf;
572 int64_t size = -1LL;
573 const char *childtype;
574 int fd, err;
576 rep.zprl_children++;
578 verify(nvlist_lookup_string(cnv,
579 ZPOOL_CONFIG_TYPE, &childtype) == 0);
582 * If this is a replacing or spare vdev, then
583 * get the real first child of the vdev: do this
584 * in a loop because replacing and spare vdevs
585 * can be nested.
587 while (strcmp(childtype,
588 VDEV_TYPE_REPLACING) == 0 ||
589 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
590 nvlist_t **rchild;
591 uint_t rchildren;
593 verify(nvlist_lookup_nvlist_array(cnv,
594 ZPOOL_CONFIG_CHILDREN, &rchild,
595 &rchildren) == 0);
596 assert(rchildren == 2);
597 cnv = rchild[0];
599 verify(nvlist_lookup_string(cnv,
600 ZPOOL_CONFIG_TYPE,
601 &childtype) == 0);
604 verify(nvlist_lookup_string(cnv,
605 ZPOOL_CONFIG_PATH, &path) == 0);
608 * If we have a raidz/mirror that combines disks
609 * with files, report it as an error.
611 if (!dontreport && type != NULL &&
612 strcmp(type, childtype) != 0) {
613 if (ret != NULL)
614 free(ret);
615 ret = NULL;
616 if (fatal)
617 vdev_error(gettext(
618 "mismatched replication "
619 "level: %s contains both "
620 "files and devices\n"),
621 rep.zprl_type);
622 else
623 return (NULL);
624 dontreport = B_TRUE;
628 * According to stat(2), the value of 'st_size'
629 * is undefined for block devices and character
630 * devices. But there is no effective way to
631 * determine the real size in userland.
633 * Instead, we'll take advantage of an
634 * implementation detail of spec_size(). If the
635 * device is currently open, then we (should)
636 * return a valid size.
638 * If we still don't get a valid size (indicated
639 * by a size of 0 or MAXOFFSET_T), then ignore
640 * this device altogether.
642 if ((fd = open(path, O_RDONLY)) >= 0) {
643 err = fstat64_blk(fd, &statbuf);
644 (void) close(fd);
645 } else {
646 err = stat64(path, &statbuf);
649 if (err != 0 ||
650 statbuf.st_size == 0 ||
651 statbuf.st_size == MAXOFFSET_T)
652 continue;
654 size = statbuf.st_size;
657 * Also make sure that devices and
658 * slices have a consistent size. If
659 * they differ by a significant amount
660 * (~16MB) then report an error.
662 if (!dontreport &&
663 (vdev_size != -1LL &&
664 (llabs(size - vdev_size) >
665 ZPOOL_FUZZ))) {
666 if (ret != NULL)
667 free(ret);
668 ret = NULL;
669 if (fatal)
670 vdev_error(gettext(
671 "%s contains devices of "
672 "different sizes\n"),
673 rep.zprl_type);
674 else
675 return (NULL);
676 dontreport = B_TRUE;
679 type = childtype;
680 vdev_size = size;
685 * At this point, we have the replication of the last toplevel
686 * vdev in 'rep'. Compare it to 'lastrep' to see if it is
687 * different.
689 if (lastrep.zprl_type != NULL) {
690 if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
691 is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
693 * Accepted raidz and mirror when they can
694 * handle the same number of disk failures.
696 if (raidz->zprl_parity !=
697 mirror->zprl_children - 1) {
698 if (ret != NULL)
699 free(ret);
700 ret = NULL;
701 if (fatal)
702 vdev_error(gettext(
703 "mismatched replication "
704 "level: "
705 "%s and %s vdevs with "
706 "different redundancy, "
707 "%llu vs. %llu (%llu-way) "
708 "are present\n"),
709 raidz->zprl_type,
710 mirror->zprl_type,
711 (u_longlong_t)
712 raidz->zprl_parity,
713 (u_longlong_t)
714 mirror->zprl_children - 1,
715 (u_longlong_t)
716 mirror->zprl_children);
717 else
718 return (NULL);
720 } else if (is_raidz_draid(&lastrep, &rep)) {
722 * Accepted raidz and draid when they can
723 * handle the same number of disk failures.
725 if (lastrep.zprl_parity != rep.zprl_parity) {
726 if (ret != NULL)
727 free(ret);
728 ret = NULL;
729 if (fatal)
730 vdev_error(gettext(
731 "mismatched replication "
732 "level: %s and %s vdevs "
733 "with different "
734 "redundancy, %llu vs. "
735 "%llu are present\n"),
736 lastrep.zprl_type,
737 rep.zprl_type,
738 (u_longlong_t)
739 lastrep.zprl_parity,
740 (u_longlong_t)
741 rep.zprl_parity);
742 else
743 return (NULL);
745 } else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
746 0) {
747 if (ret != NULL)
748 free(ret);
749 ret = NULL;
750 if (fatal)
751 vdev_error(gettext(
752 "mismatched replication level: "
753 "both %s and %s vdevs are "
754 "present\n"),
755 lastrep.zprl_type, rep.zprl_type);
756 else
757 return (NULL);
758 } else if (lastrep.zprl_parity != rep.zprl_parity) {
759 if (ret)
760 free(ret);
761 ret = NULL;
762 if (fatal)
763 vdev_error(gettext(
764 "mismatched replication level: "
765 "both %llu and %llu device parity "
766 "%s vdevs are present\n"),
767 (u_longlong_t)
768 lastrep.zprl_parity,
769 (u_longlong_t)rep.zprl_parity,
770 rep.zprl_type);
771 else
772 return (NULL);
773 } else if (lastrep.zprl_children != rep.zprl_children) {
774 if (ret)
775 free(ret);
776 ret = NULL;
777 if (fatal)
778 vdev_error(gettext(
779 "mismatched replication level: "
780 "both %llu-way and %llu-way %s "
781 "vdevs are present\n"),
782 (u_longlong_t)
783 lastrep.zprl_children,
784 (u_longlong_t)
785 rep.zprl_children,
786 rep.zprl_type);
787 else
788 return (NULL);
791 lastrep = rep;
794 if (ret != NULL)
795 *ret = rep;
797 return (ret);
801 * Check the replication level of the vdev spec against the current pool. Calls
802 * get_replication() to make sure the new spec is self-consistent. If the pool
803 * has a consistent replication level, then we ignore any errors. Otherwise,
804 * report any difference between the two.
806 static int
807 check_replication(nvlist_t *config, nvlist_t *newroot)
809 nvlist_t **child;
810 uint_t children;
811 replication_level_t *current = NULL, *new;
812 replication_level_t *raidz, *mirror;
813 int ret;
816 * If we have a current pool configuration, check to see if it's
817 * self-consistent. If not, simply return success.
819 if (config != NULL) {
820 nvlist_t *nvroot;
822 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
823 &nvroot) == 0);
824 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
825 return (0);
828 * for spares there may be no children, and therefore no
829 * replication level to check
831 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
832 &child, &children) != 0) || (children == 0)) {
833 free(current);
834 return (0);
838 * If all we have is logs then there's no replication level to check.
840 if (num_logs(newroot) == children) {
841 free(current);
842 return (0);
846 * Get the replication level of the new vdev spec, reporting any
847 * inconsistencies found.
849 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
850 free(current);
851 return (-1);
855 * Check to see if the new vdev spec matches the replication level of
856 * the current pool.
858 ret = 0;
859 if (current != NULL) {
860 if (is_raidz_mirror(current, new, &raidz, &mirror) ||
861 is_raidz_mirror(new, current, &raidz, &mirror)) {
862 if (raidz->zprl_parity != mirror->zprl_children - 1) {
863 vdev_error(gettext(
864 "mismatched replication level: pool and "
865 "new vdev with different redundancy, %s "
866 "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
867 raidz->zprl_type,
868 mirror->zprl_type,
869 (u_longlong_t)raidz->zprl_parity,
870 (u_longlong_t)mirror->zprl_children - 1,
871 (u_longlong_t)mirror->zprl_children);
872 ret = -1;
874 } else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
875 vdev_error(gettext(
876 "mismatched replication level: pool uses %s "
877 "and new vdev is %s\n"),
878 current->zprl_type, new->zprl_type);
879 ret = -1;
880 } else if (current->zprl_parity != new->zprl_parity) {
881 vdev_error(gettext(
882 "mismatched replication level: pool uses %llu "
883 "device parity and new vdev uses %llu\n"),
884 (u_longlong_t)current->zprl_parity,
885 (u_longlong_t)new->zprl_parity);
886 ret = -1;
887 } else if (current->zprl_children != new->zprl_children) {
888 vdev_error(gettext(
889 "mismatched replication level: pool uses %llu-way "
890 "%s and new vdev uses %llu-way %s\n"),
891 (u_longlong_t)current->zprl_children,
892 current->zprl_type,
893 (u_longlong_t)new->zprl_children,
894 new->zprl_type);
895 ret = -1;
899 free(new);
900 if (current != NULL)
901 free(current);
903 return (ret);
906 static int
907 zero_label(const char *path)
909 const int size = 4096;
910 char buf[size];
911 int err, fd;
913 if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
914 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
915 path, strerror(errno));
916 return (-1);
919 memset(buf, 0, size);
920 err = write(fd, buf, size);
921 (void) fdatasync(fd);
922 (void) close(fd);
924 if (err == -1) {
925 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
926 "of '%s': %s\n"), size, path, strerror(errno));
927 return (-1);
930 if (err != size) {
931 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
932 "of '%s'\n"), err, size, path);
933 return (-1);
936 return (0);
940 * Go through and find any whole disks in the vdev specification, labelling them
941 * as appropriate. When constructing the vdev spec, we were unable to open this
942 * device in order to provide a devid. Now that we have labelled the disk and
943 * know that slice 0 is valid, we can construct the devid now.
945 * If the disk was already labeled with an EFI label, we will have gotten the
946 * devid already (because we were able to open the whole disk). Otherwise, we
947 * need to get the devid after we label the disk.
949 static int
950 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
952 nvlist_t **child;
953 uint_t c, children;
954 const char *type, *path;
955 char devpath[MAXPATHLEN];
956 char udevpath[MAXPATHLEN];
957 uint64_t wholedisk;
958 struct stat64 statbuf;
959 int is_exclusive = 0;
960 int fd;
961 int ret;
963 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
965 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
966 &child, &children) != 0) {
968 if (strcmp(type, VDEV_TYPE_DISK) != 0)
969 return (0);
972 * We have a disk device. If this is a whole disk write
973 * out the efi partition table, otherwise write zero's to
974 * the first 4k of the partition. This is to ensure that
975 * libblkid will not misidentify the partition due to a
976 * magic value left by the previous filesystem.
978 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
979 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
980 &wholedisk));
982 if (!wholedisk) {
984 * Update device id string for mpath nodes (Linux only)
986 if (is_mpath_whole_disk(path))
987 update_vdev_config_dev_strs(nv);
989 if (!is_spare(NULL, path))
990 (void) zero_label(path);
991 return (0);
994 if (realpath(path, devpath) == NULL) {
995 ret = errno;
996 (void) fprintf(stderr,
997 gettext("cannot resolve path '%s'\n"), path);
998 return (ret);
1002 * Remove any previously existing symlink from a udev path to
1003 * the device before labeling the disk. This ensures that
1004 * only newly created links are used. Otherwise there is a
1005 * window between when udev deletes and recreates the link
1006 * during which access attempts will fail with ENOENT.
1008 strlcpy(udevpath, path, MAXPATHLEN);
1009 (void) zfs_append_partition(udevpath, MAXPATHLEN);
1011 fd = open(devpath, O_RDWR|O_EXCL);
1012 if (fd == -1) {
1013 if (errno == EBUSY)
1014 is_exclusive = 1;
1015 #ifdef __FreeBSD__
1016 if (errno == EPERM)
1017 is_exclusive = 1;
1018 #endif
1019 } else {
1020 (void) close(fd);
1024 * If the partition exists, contains a valid spare label,
1025 * and is opened exclusively there is no need to partition
1026 * it. Hot spares have already been partitioned and are
1027 * held open exclusively by the kernel as a safety measure.
1029 * If the provided path is for a /dev/disk/ device its
1030 * symbolic link will be removed, partition table created,
1031 * and then block until udev creates the new link.
1033 if (!is_exclusive && !is_spare(NULL, udevpath)) {
1034 char *devnode = strrchr(devpath, '/') + 1;
1036 ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1037 if (ret == 0) {
1038 ret = lstat64(udevpath, &statbuf);
1039 if (ret == 0 && S_ISLNK(statbuf.st_mode))
1040 (void) unlink(udevpath);
1044 * When labeling a pool the raw device node name
1045 * is provided as it appears under /dev/.
1047 if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
1048 return (-1);
1051 * Wait for udev to signal the device is available
1052 * by the provided path.
1054 ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1055 if (ret) {
1056 (void) fprintf(stderr,
1057 gettext("missing link: %s was "
1058 "partitioned but %s is missing\n"),
1059 devnode, udevpath);
1060 return (ret);
1063 ret = zero_label(udevpath);
1064 if (ret)
1065 return (ret);
1069 * Update the path to refer to the partition. The presence of
1070 * the 'whole_disk' field indicates to the CLI that we should
1071 * chop off the partition number when displaying the device in
1072 * future output.
1074 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1077 * Update device id strings for whole disks (Linux only)
1079 update_vdev_config_dev_strs(nv);
1081 return (0);
1084 for (c = 0; c < children; c++)
1085 if ((ret = make_disks(zhp, child[c])) != 0)
1086 return (ret);
1088 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1089 &child, &children) == 0)
1090 for (c = 0; c < children; c++)
1091 if ((ret = make_disks(zhp, child[c])) != 0)
1092 return (ret);
1094 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1095 &child, &children) == 0)
1096 for (c = 0; c < children; c++)
1097 if ((ret = make_disks(zhp, child[c])) != 0)
1098 return (ret);
1100 return (0);
1104 * Go through and find any devices that are in use. We rely on libdiskmgt for
1105 * the majority of this task.
1107 static boolean_t
1108 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1109 boolean_t replacing, boolean_t isspare)
1111 nvlist_t **child;
1112 uint_t c, children;
1113 const char *type, *path;
1114 int ret = 0;
1115 char buf[MAXPATHLEN];
1116 uint64_t wholedisk = B_FALSE;
1117 boolean_t anyinuse = B_FALSE;
1119 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1121 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1122 &child, &children) != 0) {
1124 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1125 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1126 verify(!nvlist_lookup_uint64(nv,
1127 ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1130 * As a generic check, we look to see if this is a replace of a
1131 * hot spare within the same pool. If so, we allow it
1132 * regardless of what libblkid or zpool_in_use() says.
1134 if (replacing) {
1135 (void) strlcpy(buf, path, sizeof (buf));
1136 if (wholedisk) {
1137 ret = zfs_append_partition(buf, sizeof (buf));
1138 if (ret == -1)
1139 return (-1);
1142 if (is_spare(config, buf))
1143 return (B_FALSE);
1146 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1147 ret = check_device(path, force, isspare, wholedisk);
1149 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1150 ret = check_file(path, force, isspare);
1152 return (ret != 0);
1155 for (c = 0; c < children; c++)
1156 if (is_device_in_use(config, child[c], force, replacing,
1157 B_FALSE))
1158 anyinuse = B_TRUE;
1160 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1161 &child, &children) == 0)
1162 for (c = 0; c < children; c++)
1163 if (is_device_in_use(config, child[c], force, replacing,
1164 B_TRUE))
1165 anyinuse = B_TRUE;
1167 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1168 &child, &children) == 0)
1169 for (c = 0; c < children; c++)
1170 if (is_device_in_use(config, child[c], force, replacing,
1171 B_FALSE))
1172 anyinuse = B_TRUE;
1174 return (anyinuse);
1178 * Returns the parity level extracted from a raidz or draid type.
1179 * If the parity cannot be determined zero is returned.
1181 static int
1182 get_parity(const char *type)
1184 long parity = 0;
1185 const char *p;
1187 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0) {
1188 p = type + strlen(VDEV_TYPE_RAIDZ);
1190 if (*p == '\0') {
1191 /* when unspecified default to single parity */
1192 return (1);
1193 } else if (*p == '0') {
1194 /* no zero prefixes allowed */
1195 return (0);
1196 } else {
1197 /* 0-3, no suffixes allowed */
1198 char *end;
1199 errno = 0;
1200 parity = strtol(p, &end, 10);
1201 if (errno != 0 || *end != '\0' ||
1202 parity < 1 || parity > VDEV_RAIDZ_MAXPARITY) {
1203 return (0);
1206 } else if (strncmp(type, VDEV_TYPE_DRAID,
1207 strlen(VDEV_TYPE_DRAID)) == 0) {
1208 p = type + strlen(VDEV_TYPE_DRAID);
1210 if (*p == '\0' || *p == ':') {
1211 /* when unspecified default to single parity */
1212 return (1);
1213 } else if (*p == '0') {
1214 /* no zero prefixes allowed */
1215 return (0);
1216 } else {
1217 /* 0-3, allowed suffixes: '\0' or ':' */
1218 char *end;
1219 errno = 0;
1220 parity = strtol(p, &end, 10);
1221 if (errno != 0 ||
1222 parity < 1 || parity > VDEV_DRAID_MAXPARITY ||
1223 (*end != '\0' && *end != ':')) {
1224 return (0);
1229 return ((int)parity);
1233 * Assign the minimum and maximum number of devices allowed for
1234 * the specified type. On error NULL is returned, otherwise the
1235 * type prefix is returned (raidz, mirror, etc).
1237 static const char *
1238 is_grouping(const char *type, int *mindev, int *maxdev)
1240 int nparity;
1242 if (strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 ||
1243 strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) == 0) {
1244 nparity = get_parity(type);
1245 if (nparity == 0)
1246 return (NULL);
1247 if (mindev != NULL)
1248 *mindev = nparity + 1;
1249 if (maxdev != NULL)
1250 *maxdev = 255;
1252 if (strncmp(type, VDEV_TYPE_RAIDZ,
1253 strlen(VDEV_TYPE_RAIDZ)) == 0) {
1254 return (VDEV_TYPE_RAIDZ);
1255 } else {
1256 return (VDEV_TYPE_DRAID);
1260 if (maxdev != NULL)
1261 *maxdev = INT_MAX;
1263 if (strcmp(type, "mirror") == 0) {
1264 if (mindev != NULL)
1265 *mindev = 2;
1266 return (VDEV_TYPE_MIRROR);
1269 if (strcmp(type, "spare") == 0) {
1270 if (mindev != NULL)
1271 *mindev = 1;
1272 return (VDEV_TYPE_SPARE);
1275 if (strcmp(type, "log") == 0) {
1276 if (mindev != NULL)
1277 *mindev = 1;
1278 return (VDEV_TYPE_LOG);
1281 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0 ||
1282 strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1283 if (mindev != NULL)
1284 *mindev = 1;
1285 return (type);
1288 if (strcmp(type, "cache") == 0) {
1289 if (mindev != NULL)
1290 *mindev = 1;
1291 return (VDEV_TYPE_L2CACHE);
1294 return (NULL);
1298 * Extract the configuration parameters encoded in the dRAID type and
1299 * use them to generate a dRAID configuration. The expected format is:
1301 * draid[<parity>][:<data><d|D>][:<children><c|C>][:<spares><s|S>]
1303 * The intent is to be able to generate a good configuration when no
1304 * additional information is provided. The only mandatory component
1305 * of the 'type' is the 'draid' prefix. If a value is not provided
1306 * then reasonable defaults are used. The optional components may
1307 * appear in any order but the d/s/c suffix is required.
1309 * Valid inputs:
1310 * - data: number of data devices per group (1-255)
1311 * - parity: number of parity blocks per group (1-3)
1312 * - spares: number of distributed spare (0-100)
1313 * - children: total number of devices (1-255)
1315 * Examples:
1316 * - zpool create tank draid <devices...>
1317 * - zpool create tank draid2:8d:51c:2s <devices...>
1319 static int
1320 draid_config_by_type(nvlist_t *nv, const char *type, uint64_t children)
1322 uint64_t nparity = 1;
1323 uint64_t nspares = 0;
1324 uint64_t ndata = UINT64_MAX;
1325 uint64_t ngroups = 1;
1326 long value;
1328 if (strncmp(type, VDEV_TYPE_DRAID, strlen(VDEV_TYPE_DRAID)) != 0)
1329 return (EINVAL);
1331 nparity = (uint64_t)get_parity(type);
1332 if (nparity == 0 || nparity > VDEV_DRAID_MAXPARITY) {
1333 fprintf(stderr,
1334 gettext("invalid dRAID parity level %llu; must be "
1335 "between 1 and %d\n"), (u_longlong_t)nparity,
1336 VDEV_DRAID_MAXPARITY);
1337 return (EINVAL);
1340 char *p = (char *)type;
1341 while ((p = strchr(p, ':')) != NULL) {
1342 char *end;
1344 p = p + 1;
1345 errno = 0;
1347 if (!isdigit(p[0])) {
1348 (void) fprintf(stderr, gettext("invalid dRAID "
1349 "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1350 type);
1351 return (EINVAL);
1354 /* Expected non-zero value with c/d/s suffix */
1355 value = strtol(p, &end, 10);
1356 char suffix = tolower(*end);
1357 if (errno != 0 ||
1358 (suffix != 'c' && suffix != 'd' && suffix != 's')) {
1359 (void) fprintf(stderr, gettext("invalid dRAID "
1360 "syntax; expected [:<number><c|d|s>] not '%s'\n"),
1361 type);
1362 return (EINVAL);
1365 if (suffix == 'c') {
1366 if ((uint64_t)value != children) {
1367 fprintf(stderr,
1368 gettext("invalid number of dRAID children; "
1369 "%llu required but %llu provided\n"),
1370 (u_longlong_t)value,
1371 (u_longlong_t)children);
1372 return (EINVAL);
1374 } else if (suffix == 'd') {
1375 ndata = (uint64_t)value;
1376 } else if (suffix == 's') {
1377 nspares = (uint64_t)value;
1378 } else {
1379 verify(0); /* Unreachable */
1384 * When a specific number of data disks is not provided limit a
1385 * redundancy group to 8 data disks. This value was selected to
1386 * provide a reasonable tradeoff between capacity and performance.
1388 if (ndata == UINT64_MAX) {
1389 if (children > nspares + nparity) {
1390 ndata = MIN(children - nspares - nparity, 8);
1391 } else {
1392 fprintf(stderr, gettext("request number of "
1393 "distributed spares %llu and parity level %llu\n"
1394 "leaves no disks available for data\n"),
1395 (u_longlong_t)nspares, (u_longlong_t)nparity);
1396 return (EINVAL);
1400 /* Verify the maximum allowed group size is never exceeded. */
1401 if (ndata == 0 || (ndata + nparity > children - nspares)) {
1402 fprintf(stderr, gettext("requested number of dRAID data "
1403 "disks per group %llu is too high,\nat most %llu disks "
1404 "are available for data\n"), (u_longlong_t)ndata,
1405 (u_longlong_t)(children - nspares - nparity));
1406 return (EINVAL);
1410 * Verify the requested number of spares can be satisfied.
1411 * An arbitrary limit of 100 distributed spares is applied.
1413 if (nspares > 100 || nspares > (children - (ndata + nparity))) {
1414 fprintf(stderr,
1415 gettext("invalid number of dRAID spares %llu; additional "
1416 "disks would be required\n"), (u_longlong_t)nspares);
1417 return (EINVAL);
1420 /* Verify the requested number children is sufficient. */
1421 if (children < (ndata + nparity + nspares)) {
1422 fprintf(stderr, gettext("%llu disks were provided, but at "
1423 "least %llu disks are required for this config\n"),
1424 (u_longlong_t)children,
1425 (u_longlong_t)(ndata + nparity + nspares));
1428 if (children > VDEV_DRAID_MAX_CHILDREN) {
1429 fprintf(stderr, gettext("%llu disks were provided, but "
1430 "dRAID only supports up to %u disks"),
1431 (u_longlong_t)children, VDEV_DRAID_MAX_CHILDREN);
1435 * Calculate the minimum number of groups required to fill a slice.
1436 * This is the LCM of the stripe width (ndata + nparity) and the
1437 * number of data drives (children - nspares).
1439 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1440 ngroups++;
1442 /* Store the basic dRAID configuration. */
1443 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, nparity);
1444 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1445 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1446 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1448 return (0);
1452 * Construct a syntactically valid vdev specification,
1453 * and ensure that all devices and files exist and can be opened.
1454 * Note: we don't bother freeing anything in the error paths
1455 * because the program is just going to exit anyway.
1457 static nvlist_t *
1458 construct_spec(nvlist_t *props, int argc, char **argv)
1460 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1461 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1462 const char *type, *fulltype;
1463 boolean_t is_log, is_special, is_dedup, is_spare;
1464 boolean_t seen_logs;
1466 top = NULL;
1467 toplevels = 0;
1468 spares = NULL;
1469 l2cache = NULL;
1470 nspares = 0;
1471 nlogs = 0;
1472 nl2cache = 0;
1473 is_log = is_special = is_dedup = is_spare = B_FALSE;
1474 seen_logs = B_FALSE;
1475 nvroot = NULL;
1477 while (argc > 0) {
1478 fulltype = argv[0];
1479 nv = NULL;
1482 * If it's a mirror, raidz, or draid the subsequent arguments
1483 * are its leaves -- until we encounter the next mirror,
1484 * raidz or draid.
1486 if ((type = is_grouping(fulltype, &mindev, &maxdev)) != NULL) {
1487 nvlist_t **child = NULL;
1488 int c, children = 0;
1490 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1491 if (spares != NULL) {
1492 (void) fprintf(stderr,
1493 gettext("invalid vdev "
1494 "specification: 'spare' can be "
1495 "specified only once\n"));
1496 goto spec_out;
1498 is_spare = B_TRUE;
1499 is_log = is_special = is_dedup = B_FALSE;
1502 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1503 if (seen_logs) {
1504 (void) fprintf(stderr,
1505 gettext("invalid vdev "
1506 "specification: 'log' can be "
1507 "specified only once\n"));
1508 goto spec_out;
1510 seen_logs = B_TRUE;
1511 is_log = B_TRUE;
1512 is_special = is_dedup = is_spare = B_FALSE;
1513 argc--;
1514 argv++;
1516 * A log is not a real grouping device.
1517 * We just set is_log and continue.
1519 continue;
1522 if (strcmp(type, VDEV_ALLOC_BIAS_SPECIAL) == 0) {
1523 is_special = B_TRUE;
1524 is_log = is_dedup = is_spare = B_FALSE;
1525 argc--;
1526 argv++;
1527 continue;
1530 if (strcmp(type, VDEV_ALLOC_BIAS_DEDUP) == 0) {
1531 is_dedup = B_TRUE;
1532 is_log = is_special = is_spare = B_FALSE;
1533 argc--;
1534 argv++;
1535 continue;
1538 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1539 if (l2cache != NULL) {
1540 (void) fprintf(stderr,
1541 gettext("invalid vdev "
1542 "specification: 'cache' can be "
1543 "specified only once\n"));
1544 goto spec_out;
1546 is_log = is_special = B_FALSE;
1547 is_dedup = is_spare = B_FALSE;
1550 if (is_log || is_special || is_dedup) {
1551 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1552 (void) fprintf(stderr,
1553 gettext("invalid vdev "
1554 "specification: unsupported '%s' "
1555 "device: %s\n"), is_log ? "log" :
1556 "special", type);
1557 goto spec_out;
1559 nlogs++;
1562 for (c = 1; c < argc; c++) {
1563 if (is_grouping(argv[c], NULL, NULL) != NULL)
1564 break;
1566 children++;
1567 child = realloc(child,
1568 children * sizeof (nvlist_t *));
1569 if (child == NULL)
1570 zpool_no_memory();
1571 if ((nv = make_leaf_vdev(props, argv[c],
1572 !(is_log || is_special || is_dedup ||
1573 is_spare))) == NULL) {
1574 for (c = 0; c < children - 1; c++)
1575 nvlist_free(child[c]);
1576 free(child);
1577 goto spec_out;
1580 child[children - 1] = nv;
1583 if (children < mindev) {
1584 (void) fprintf(stderr, gettext("invalid vdev "
1585 "specification: %s requires at least %d "
1586 "devices\n"), argv[0], mindev);
1587 for (c = 0; c < children; c++)
1588 nvlist_free(child[c]);
1589 free(child);
1590 goto spec_out;
1593 if (children > maxdev) {
1594 (void) fprintf(stderr, gettext("invalid vdev "
1595 "specification: %s supports no more than "
1596 "%d devices\n"), argv[0], maxdev);
1597 for (c = 0; c < children; c++)
1598 nvlist_free(child[c]);
1599 free(child);
1600 goto spec_out;
1603 argc -= c;
1604 argv += c;
1606 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1607 spares = child;
1608 nspares = children;
1609 continue;
1610 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1611 l2cache = child;
1612 nl2cache = children;
1613 continue;
1614 } else {
1615 /* create a top-level vdev with children */
1616 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1617 0) == 0);
1618 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1619 type) == 0);
1620 verify(nvlist_add_uint64(nv,
1621 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1622 if (is_log) {
1623 verify(nvlist_add_string(nv,
1624 ZPOOL_CONFIG_ALLOCATION_BIAS,
1625 VDEV_ALLOC_BIAS_LOG) == 0);
1627 if (is_special) {
1628 verify(nvlist_add_string(nv,
1629 ZPOOL_CONFIG_ALLOCATION_BIAS,
1630 VDEV_ALLOC_BIAS_SPECIAL) == 0);
1632 if (is_dedup) {
1633 verify(nvlist_add_string(nv,
1634 ZPOOL_CONFIG_ALLOCATION_BIAS,
1635 VDEV_ALLOC_BIAS_DEDUP) == 0);
1637 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1638 verify(nvlist_add_uint64(nv,
1639 ZPOOL_CONFIG_NPARITY,
1640 mindev - 1) == 0);
1642 if (strcmp(type, VDEV_TYPE_DRAID) == 0) {
1643 if (draid_config_by_type(nv,
1644 fulltype, children) != 0) {
1645 for (c = 0; c < children; c++)
1646 nvlist_free(child[c]);
1647 free(child);
1648 goto spec_out;
1651 verify(nvlist_add_nvlist_array(nv,
1652 ZPOOL_CONFIG_CHILDREN,
1653 (const nvlist_t **)child, children) == 0);
1655 for (c = 0; c < children; c++)
1656 nvlist_free(child[c]);
1657 free(child);
1659 } else {
1661 * We have a device. Pass off to make_leaf_vdev() to
1662 * construct the appropriate nvlist describing the vdev.
1664 if ((nv = make_leaf_vdev(props, argv[0], !(is_log ||
1665 is_special || is_dedup || is_spare))) == NULL)
1666 goto spec_out;
1668 verify(nvlist_add_uint64(nv,
1669 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1670 if (is_log) {
1671 verify(nvlist_add_string(nv,
1672 ZPOOL_CONFIG_ALLOCATION_BIAS,
1673 VDEV_ALLOC_BIAS_LOG) == 0);
1674 nlogs++;
1677 if (is_special) {
1678 verify(nvlist_add_string(nv,
1679 ZPOOL_CONFIG_ALLOCATION_BIAS,
1680 VDEV_ALLOC_BIAS_SPECIAL) == 0);
1682 if (is_dedup) {
1683 verify(nvlist_add_string(nv,
1684 ZPOOL_CONFIG_ALLOCATION_BIAS,
1685 VDEV_ALLOC_BIAS_DEDUP) == 0);
1687 argc--;
1688 argv++;
1691 toplevels++;
1692 top = realloc(top, toplevels * sizeof (nvlist_t *));
1693 if (top == NULL)
1694 zpool_no_memory();
1695 top[toplevels - 1] = nv;
1698 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1699 (void) fprintf(stderr, gettext("invalid vdev "
1700 "specification: at least one toplevel vdev must be "
1701 "specified\n"));
1702 goto spec_out;
1705 if (seen_logs && nlogs == 0) {
1706 (void) fprintf(stderr, gettext("invalid vdev specification: "
1707 "log requires at least 1 device\n"));
1708 goto spec_out;
1712 * Finally, create nvroot and add all top-level vdevs to it.
1714 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1715 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1716 VDEV_TYPE_ROOT) == 0);
1717 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1718 (const nvlist_t **)top, toplevels) == 0);
1719 if (nspares != 0)
1720 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1721 (const nvlist_t **)spares, nspares) == 0);
1722 if (nl2cache != 0)
1723 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1724 (const nvlist_t **)l2cache, nl2cache) == 0);
1726 spec_out:
1727 for (t = 0; t < toplevels; t++)
1728 nvlist_free(top[t]);
1729 for (t = 0; t < nspares; t++)
1730 nvlist_free(spares[t]);
1731 for (t = 0; t < nl2cache; t++)
1732 nvlist_free(l2cache[t]);
1734 free(spares);
1735 free(l2cache);
1736 free(top);
1738 return (nvroot);
1741 nvlist_t *
1742 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1743 splitflags_t flags, int argc, char **argv)
1745 nvlist_t *newroot = NULL, **child;
1746 uint_t c, children;
1748 if (argc > 0) {
1749 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1750 (void) fprintf(stderr, gettext("Unable to build a "
1751 "pool from the specified devices\n"));
1752 return (NULL);
1755 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1756 nvlist_free(newroot);
1757 return (NULL);
1760 /* avoid any tricks in the spec */
1761 verify(nvlist_lookup_nvlist_array(newroot,
1762 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1763 for (c = 0; c < children; c++) {
1764 const char *path;
1765 const char *type;
1766 int min, max;
1768 verify(nvlist_lookup_string(child[c],
1769 ZPOOL_CONFIG_PATH, &path) == 0);
1770 if ((type = is_grouping(path, &min, &max)) != NULL) {
1771 (void) fprintf(stderr, gettext("Cannot use "
1772 "'%s' as a device for splitting\n"), type);
1773 nvlist_free(newroot);
1774 return (NULL);
1779 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1780 nvlist_free(newroot);
1781 return (NULL);
1784 return (newroot);
1787 static int
1788 num_normal_vdevs(nvlist_t *nvroot)
1790 nvlist_t **top;
1791 uint_t t, toplevels, normal = 0;
1793 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1794 &top, &toplevels) == 0);
1796 for (t = 0; t < toplevels; t++) {
1797 uint64_t log = B_FALSE;
1799 (void) nvlist_lookup_uint64(top[t], ZPOOL_CONFIG_IS_LOG, &log);
1800 if (log)
1801 continue;
1802 if (nvlist_exists(top[t], ZPOOL_CONFIG_ALLOCATION_BIAS))
1803 continue;
1805 normal++;
1808 return (normal);
1812 * Get and validate the contents of the given vdev specification. This ensures
1813 * that the nvlist returned is well-formed, that all the devices exist, and that
1814 * they are not currently in use by any other known consumer. The 'poolconfig'
1815 * parameter is the current configuration of the pool when adding devices
1816 * existing pool, and is used to perform additional checks, such as changing the
1817 * replication level of the pool. It can be 'NULL' to indicate that this is a
1818 * new pool. The 'force' flag controls whether devices should be forcefully
1819 * added, even if they appear in use.
1821 nvlist_t *
1822 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1823 boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1825 nvlist_t *newroot;
1826 nvlist_t *poolconfig = NULL;
1827 is_force = force;
1830 * Construct the vdev specification. If this is successful, we know
1831 * that we have a valid specification, and that all devices can be
1832 * opened.
1834 if ((newroot = construct_spec(props, argc, argv)) == NULL)
1835 return (NULL);
1837 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1838 nvlist_free(newroot);
1839 return (NULL);
1843 * Validate each device to make sure that it's not shared with another
1844 * subsystem. We do this even if 'force' is set, because there are some
1845 * uses (such as a dedicated dump device) that even '-f' cannot
1846 * override.
1848 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1849 nvlist_free(newroot);
1850 return (NULL);
1854 * Check the replication level of the given vdevs and report any errors
1855 * found. We include the existing pool spec, if any, as we need to
1856 * catch changes against the existing replication level.
1858 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1859 nvlist_free(newroot);
1860 return (NULL);
1864 * On pool create the new vdev spec must have one normal vdev.
1866 if (poolconfig == NULL && num_normal_vdevs(newroot) == 0) {
1867 vdev_error(gettext("at least one general top-level vdev must "
1868 "be specified\n"));
1869 nvlist_free(newroot);
1870 return (NULL);
1874 * Run through the vdev specification and label any whole disks found.
1876 if (!dryrun && make_disks(zhp, newroot) != 0) {
1877 nvlist_free(newroot);
1878 return (NULL);
1881 return (newroot);