ZTS: Add Fedora 41, remove Fedora 39
[zfs.git] / module / icp / algs / skein / skein_block.c
blob3ad52da5f6a34fefac924fe52ab353da32eb4d80
1 /*
2 * Implementation of the Skein block functions.
3 * Source code author: Doug Whiting, 2008.
4 * This algorithm and source code is released to the public domain.
5 * Compile-time switches:
6 * SKEIN_USE_ASM -- set bits (256/512/1024) to select which
7 * versions use ASM code for block processing
8 * [default: use C for all block sizes]
9 */
10 /* Copyright 2013 Doug Whiting. This code is released to the public domain. */
12 #include <sys/skein.h>
13 #include "skein_impl.h"
14 #include <sys/isa_defs.h> /* for _ILP32 */
16 #ifndef SKEIN_USE_ASM
17 #define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
18 #endif
20 #ifndef SKEIN_LOOP
22 * The low-level checksum routines use a lot of stack space. On systems where
23 * small stacks frame are enforced (like 32-bit kernel builds), do not unroll
24 * checksum calculations to save stack space.
26 * Even with no loops unrolled, we still can exceed the 1k stack frame limit
27 * in Skein1024_Process_Block() (it hits 1272 bytes on ARM32). We can
28 * safely ignore it though, since that the checksum functions will be called
29 * from a worker thread that won't be using much stack. That's why we have
30 * the #pragma here to ignore the warning.
32 #if defined(_ILP32) || defined(__powerpc) /* Assume small stack */
33 #if defined(__GNUC__) && !defined(__clang__)
34 #pragma GCC diagnostic ignored "-Wframe-larger-than="
35 #endif
37 * We're running on 32-bit, don't unroll loops to save stack frame space
39 * Due to the ways the calculations on SKEIN_LOOP are done in
40 * Skein_*_Process_Block(), a value of 111 disables unrolling loops
41 * in any of those functions.
43 #define SKEIN_LOOP 111
44 #else
45 /* We're compiling with large stacks */
46 #define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
47 #endif
48 #endif
50 /* some useful definitions for code here */
51 #define BLK_BITS (WCNT*64)
52 #define KW_TWK_BASE (0)
53 #define KW_KEY_BASE (3)
54 #define ks (kw + KW_KEY_BASE)
55 #define ts (kw + KW_TWK_BASE)
57 /* no debugging in Illumos version */
58 #define DebugSaveTweak(ctx)
60 /* Skein_256 */
61 #if !(SKEIN_USE_ASM & 256)
62 void
63 Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
64 size_t blkCnt, size_t byteCntAdd)
66 enum {
67 WCNT = SKEIN_256_STATE_WORDS
69 #undef RCNT
70 #define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
72 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
73 #define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
74 #else
75 #define SKEIN_UNROLL_256 (0)
76 #endif
78 #if SKEIN_UNROLL_256
79 #if (RCNT % SKEIN_UNROLL_256)
80 #error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
81 #endif
82 size_t r;
83 /* key schedule words : chaining vars + tweak + "rotation" */
84 uint64_t kw[WCNT + 4 + RCNT * 2];
85 #else
86 uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
87 #endif
88 /* local copy of context vars, for speed */
89 uint64_t X0, X1, X2, X3;
90 uint64_t w[WCNT]; /* local copy of input block */
91 #ifdef SKEIN_DEBUG
92 /* use for debugging (help compiler put Xn in registers) */
93 const uint64_t *Xptr[4];
94 Xptr[0] = &X0;
95 Xptr[1] = &X1;
96 Xptr[2] = &X2;
97 Xptr[3] = &X3;
98 #endif
99 Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
100 ts[0] = ctx->h.T[0];
101 ts[1] = ctx->h.T[1];
102 do {
104 * this implementation only supports 2**64 input bytes
105 * (no carry out here)
107 ts[0] += byteCntAdd; /* update processed length */
109 /* precompute the key schedule for this block */
110 ks[0] = ctx->X[0];
111 ks[1] = ctx->X[1];
112 ks[2] = ctx->X[2];
113 ks[3] = ctx->X[3];
114 ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
116 ts[2] = ts[0] ^ ts[1];
118 /* get input block in little-endian format */
119 Skein_Get64_LSB_First(w, blkPtr, WCNT);
120 DebugSaveTweak(ctx);
121 Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
123 X0 = w[0] + ks[0]; /* do the first full key injection */
124 X1 = w[1] + ks[1] + ts[0];
125 X2 = w[2] + ks[2] + ts[1];
126 X3 = w[3] + ks[3];
128 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
129 Xptr); /* show starting state values */
131 blkPtr += SKEIN_256_BLOCK_BYTES;
133 /* run the rounds */
135 #define Round256(p0, p1, p2, p3, ROT, rNum) \
136 X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
137 X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \
139 #if SKEIN_UNROLL_256 == 0
140 #define R256(p0, p1, p2, p3, ROT, rNum) /* fully unrolled */ \
141 Round256(p0, p1, p2, p3, ROT, rNum) \
142 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
144 #define I256(R) \
145 X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
146 X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3]; \
147 X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3]; \
148 X3 += ks[((R) + 4) % 5] + (R) + 1; \
149 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
150 #else /* looping version */
151 #define R256(p0, p1, p2, p3, ROT, rNum) \
152 Round256(p0, p1, p2, p3, ROT, rNum) \
153 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
155 #define I256(R) \
156 X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
157 X1 += ks[r + (R) + 1] + ts[r + (R) + 0]; \
158 X2 += ks[r + (R) + 2] + ts[r + (R) + 1]; \
159 X3 += ks[r + (R) + 3] + r + (R); \
160 ks[r + (R) + 4] = ks[r + (R) - 1]; /* rotate key schedule */ \
161 ts[r + (R) + 2] = ts[r + (R) - 1]; \
162 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
164 /* loop through it */
165 for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
166 #endif
168 #define R256_8_rounds(R) \
169 R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1); \
170 R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2); \
171 R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3); \
172 R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4); \
173 I256(2 * (R)); \
174 R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5); \
175 R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6); \
176 R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7); \
177 R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8); \
178 I256(2 * (R) + 1);
180 R256_8_rounds(0);
182 #define R256_Unroll_R(NN) \
183 ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
184 (SKEIN_UNROLL_256 > (NN)))
186 #if R256_Unroll_R(1)
187 R256_8_rounds(1);
188 #endif
189 #if R256_Unroll_R(2)
190 R256_8_rounds(2);
191 #endif
192 #if R256_Unroll_R(3)
193 R256_8_rounds(3);
194 #endif
195 #if R256_Unroll_R(4)
196 R256_8_rounds(4);
197 #endif
198 #if R256_Unroll_R(5)
199 R256_8_rounds(5);
200 #endif
201 #if R256_Unroll_R(6)
202 R256_8_rounds(6);
203 #endif
204 #if R256_Unroll_R(7)
205 R256_8_rounds(7);
206 #endif
207 #if R256_Unroll_R(8)
208 R256_8_rounds(8);
209 #endif
210 #if R256_Unroll_R(9)
211 R256_8_rounds(9);
212 #endif
213 #if R256_Unroll_R(10)
214 R256_8_rounds(10);
215 #endif
216 #if R256_Unroll_R(11)
217 R256_8_rounds(11);
218 #endif
219 #if R256_Unroll_R(12)
220 R256_8_rounds(12);
221 #endif
222 #if R256_Unroll_R(13)
223 R256_8_rounds(13);
224 #endif
225 #if R256_Unroll_R(14)
226 R256_8_rounds(14);
227 #endif
228 #if (SKEIN_UNROLL_256 > 14)
229 #error "need more unrolling in Skein_256_Process_Block"
230 #endif
233 * do the final "feedforward" xor, update context chaining vars
235 ctx->X[0] = X0 ^ w[0];
236 ctx->X[1] = X1 ^ w[1];
237 ctx->X[2] = X2 ^ w[2];
238 ctx->X[3] = X3 ^ w[3];
240 Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
242 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
243 } while (--blkCnt);
244 ctx->h.T[0] = ts[0];
245 ctx->h.T[1] = ts[1];
248 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
249 size_t
250 Skein_256_Process_Block_CodeSize(void)
252 return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
253 ((uint8_t *)Skein_256_Process_Block);
256 uint_t
257 Skein_256_Unroll_Cnt(void)
259 return (SKEIN_UNROLL_256);
261 #endif
262 #endif
264 /* Skein_512 */
265 #if !(SKEIN_USE_ASM & 512)
266 void
267 Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
268 size_t blkCnt, size_t byteCntAdd)
270 enum {
271 WCNT = SKEIN_512_STATE_WORDS
273 #undef RCNT
274 #define RCNT (SKEIN_512_ROUNDS_TOTAL / 8)
276 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
277 #define SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
278 #else
279 #define SKEIN_UNROLL_512 (0)
280 #endif
282 #if SKEIN_UNROLL_512
283 #if (RCNT % SKEIN_UNROLL_512)
284 #error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
285 #endif
286 size_t r;
287 /* key schedule words : chaining vars + tweak + "rotation" */
288 uint64_t kw[WCNT + 4 + RCNT * 2];
289 #else
290 uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
291 #endif
292 /* local copy of vars, for speed */
293 uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
294 uint64_t w[WCNT]; /* local copy of input block */
295 #ifdef SKEIN_DEBUG
296 /* use for debugging (help compiler put Xn in registers) */
297 const uint64_t *Xptr[8];
298 Xptr[0] = &X0;
299 Xptr[1] = &X1;
300 Xptr[2] = &X2;
301 Xptr[3] = &X3;
302 Xptr[4] = &X4;
303 Xptr[5] = &X5;
304 Xptr[6] = &X6;
305 Xptr[7] = &X7;
306 #endif
308 Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
309 ts[0] = ctx->h.T[0];
310 ts[1] = ctx->h.T[1];
311 do {
313 * this implementation only supports 2**64 input bytes
314 * (no carry out here)
316 ts[0] += byteCntAdd; /* update processed length */
318 /* precompute the key schedule for this block */
319 ks[0] = ctx->X[0];
320 ks[1] = ctx->X[1];
321 ks[2] = ctx->X[2];
322 ks[3] = ctx->X[3];
323 ks[4] = ctx->X[4];
324 ks[5] = ctx->X[5];
325 ks[6] = ctx->X[6];
326 ks[7] = ctx->X[7];
327 ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
328 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
330 ts[2] = ts[0] ^ ts[1];
332 /* get input block in little-endian format */
333 Skein_Get64_LSB_First(w, blkPtr, WCNT);
334 DebugSaveTweak(ctx);
335 Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
337 X0 = w[0] + ks[0]; /* do the first full key injection */
338 X1 = w[1] + ks[1];
339 X2 = w[2] + ks[2];
340 X3 = w[3] + ks[3];
341 X4 = w[4] + ks[4];
342 X5 = w[5] + ks[5] + ts[0];
343 X6 = w[6] + ks[6] + ts[1];
344 X7 = w[7] + ks[7];
346 blkPtr += SKEIN_512_BLOCK_BYTES;
348 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
349 Xptr);
350 /* run the rounds */
351 #define Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
352 X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
353 X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
354 X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
355 X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;
357 #if SKEIN_UNROLL_512 == 0
358 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) /* unrolled */ \
359 Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
360 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);
362 #define I512(R) \
363 X0 += ks[((R) + 1) % 9]; /* inject the key schedule value */\
364 X1 += ks[((R) + 2) % 9]; \
365 X2 += ks[((R) + 3) % 9]; \
366 X3 += ks[((R) + 4) % 9]; \
367 X4 += ks[((R) + 5) % 9]; \
368 X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3]; \
369 X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3]; \
370 X7 += ks[((R) + 8) % 9] + (R) + 1; \
371 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
372 #else /* looping version */
373 #define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
374 Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum) \
375 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);
377 #define I512(R) \
378 X0 += ks[r + (R) + 0]; /* inject the key schedule value */ \
379 X1 += ks[r + (R) + 1]; \
380 X2 += ks[r + (R) + 2]; \
381 X3 += ks[r + (R) + 3]; \
382 X4 += ks[r + (R) + 4]; \
383 X5 += ks[r + (R) + 5] + ts[r + (R) + 0]; \
384 X6 += ks[r + (R) + 6] + ts[r + (R) + 1]; \
385 X7 += ks[r + (R) + 7] + r + (R); \
386 ks[r + (R)+8] = ks[r + (R) - 1]; /* rotate key schedule */\
387 ts[r + (R)+2] = ts[r + (R) - 1]; \
388 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
390 /* loop through it */
391 for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
392 #endif /* end of looped code definitions */
394 #define R512_8_rounds(R) /* do 8 full rounds */ \
395 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1); \
396 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2); \
397 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3); \
398 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4); \
399 I512(2 * (R)); \
400 R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5); \
401 R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6); \
402 R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7); \
403 R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8); \
404 I512(2*(R) + 1); /* and key injection */
406 R512_8_rounds(0);
408 #define R512_Unroll_R(NN) \
409 ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
410 (SKEIN_UNROLL_512 > (NN)))
412 #if R512_Unroll_R(1)
413 R512_8_rounds(1);
414 #endif
415 #if R512_Unroll_R(2)
416 R512_8_rounds(2);
417 #endif
418 #if R512_Unroll_R(3)
419 R512_8_rounds(3);
420 #endif
421 #if R512_Unroll_R(4)
422 R512_8_rounds(4);
423 #endif
424 #if R512_Unroll_R(5)
425 R512_8_rounds(5);
426 #endif
427 #if R512_Unroll_R(6)
428 R512_8_rounds(6);
429 #endif
430 #if R512_Unroll_R(7)
431 R512_8_rounds(7);
432 #endif
433 #if R512_Unroll_R(8)
434 R512_8_rounds(8);
435 #endif
436 #if R512_Unroll_R(9)
437 R512_8_rounds(9);
438 #endif
439 #if R512_Unroll_R(10)
440 R512_8_rounds(10);
441 #endif
442 #if R512_Unroll_R(11)
443 R512_8_rounds(11);
444 #endif
445 #if R512_Unroll_R(12)
446 R512_8_rounds(12);
447 #endif
448 #if R512_Unroll_R(13)
449 R512_8_rounds(13);
450 #endif
451 #if R512_Unroll_R(14)
452 R512_8_rounds(14);
453 #endif
454 #if (SKEIN_UNROLL_512 > 14)
455 #error "need more unrolling in Skein_512_Process_Block"
456 #endif
460 * do the final "feedforward" xor, update context chaining vars
462 ctx->X[0] = X0 ^ w[0];
463 ctx->X[1] = X1 ^ w[1];
464 ctx->X[2] = X2 ^ w[2];
465 ctx->X[3] = X3 ^ w[3];
466 ctx->X[4] = X4 ^ w[4];
467 ctx->X[5] = X5 ^ w[5];
468 ctx->X[6] = X6 ^ w[6];
469 ctx->X[7] = X7 ^ w[7];
470 Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
472 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
473 } while (--blkCnt);
474 ctx->h.T[0] = ts[0];
475 ctx->h.T[1] = ts[1];
478 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
479 size_t
480 Skein_512_Process_Block_CodeSize(void)
482 return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
483 ((uint8_t *)Skein_512_Process_Block);
486 uint_t
487 Skein_512_Unroll_Cnt(void)
489 return (SKEIN_UNROLL_512);
491 #endif
492 #endif
494 /* Skein1024 */
495 #if !(SKEIN_USE_ASM & 1024)
496 void
497 Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
498 size_t blkCnt, size_t byteCntAdd)
500 /* do it in C, always looping (unrolled is bigger AND slower!) */
501 enum {
502 WCNT = SKEIN1024_STATE_WORDS
504 #undef RCNT
505 #define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
507 #ifdef SKEIN_LOOP /* configure how much to unroll the loop */
508 #define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
509 #else
510 #define SKEIN_UNROLL_1024 (0)
511 #endif
513 #if (SKEIN_UNROLL_1024 != 0)
514 #if (RCNT % SKEIN_UNROLL_1024)
515 #error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
516 #endif
517 size_t r;
518 /* key schedule words : chaining vars + tweak + "rotation" */
519 uint64_t kw[WCNT + 4 + RCNT * 2];
520 #else
521 uint64_t kw[WCNT + 4]; /* key schedule words : chaining vars + tweak */
522 #endif
524 /* local copy of vars, for speed */
525 uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
526 X12, X13, X14, X15;
527 uint64_t w[WCNT]; /* local copy of input block */
528 #ifdef SKEIN_DEBUG
529 /* use for debugging (help compiler put Xn in registers) */
530 const uint64_t *Xptr[16];
531 Xptr[0] = &X00;
532 Xptr[1] = &X01;
533 Xptr[2] = &X02;
534 Xptr[3] = &X03;
535 Xptr[4] = &X04;
536 Xptr[5] = &X05;
537 Xptr[6] = &X06;
538 Xptr[7] = &X07;
539 Xptr[8] = &X08;
540 Xptr[9] = &X09;
541 Xptr[10] = &X10;
542 Xptr[11] = &X11;
543 Xptr[12] = &X12;
544 Xptr[13] = &X13;
545 Xptr[14] = &X14;
546 Xptr[15] = &X15;
547 #endif
549 Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
550 ts[0] = ctx->h.T[0];
551 ts[1] = ctx->h.T[1];
552 do {
554 * this implementation only supports 2**64 input bytes
555 * (no carry out here)
557 ts[0] += byteCntAdd; /* update processed length */
559 /* precompute the key schedule for this block */
560 ks[0] = ctx->X[0];
561 ks[1] = ctx->X[1];
562 ks[2] = ctx->X[2];
563 ks[3] = ctx->X[3];
564 ks[4] = ctx->X[4];
565 ks[5] = ctx->X[5];
566 ks[6] = ctx->X[6];
567 ks[7] = ctx->X[7];
568 ks[8] = ctx->X[8];
569 ks[9] = ctx->X[9];
570 ks[10] = ctx->X[10];
571 ks[11] = ctx->X[11];
572 ks[12] = ctx->X[12];
573 ks[13] = ctx->X[13];
574 ks[14] = ctx->X[14];
575 ks[15] = ctx->X[15];
576 ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
577 ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
578 ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
579 ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
581 ts[2] = ts[0] ^ ts[1];
583 /* get input block in little-endian format */
584 Skein_Get64_LSB_First(w, blkPtr, WCNT);
585 DebugSaveTweak(ctx);
586 Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);
588 X00 = w[0] + ks[0]; /* do the first full key injection */
589 X01 = w[1] + ks[1];
590 X02 = w[2] + ks[2];
591 X03 = w[3] + ks[3];
592 X04 = w[4] + ks[4];
593 X05 = w[5] + ks[5];
594 X06 = w[6] + ks[6];
595 X07 = w[7] + ks[7];
596 X08 = w[8] + ks[8];
597 X09 = w[9] + ks[9];
598 X10 = w[10] + ks[10];
599 X11 = w[11] + ks[11];
600 X12 = w[12] + ks[12];
601 X13 = w[13] + ks[13] + ts[0];
602 X14 = w[14] + ks[14] + ts[1];
603 X15 = w[15] + ks[15];
605 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
606 Xptr);
608 #define Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
609 pD, pE, pF, ROT, rNum) \
610 X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
611 X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
612 X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
613 X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
614 X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
615 X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
616 X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
617 X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;
619 #if SKEIN_UNROLL_1024 == 0
620 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
621 pE, pF, ROT, rn) \
622 Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
623 pD, pE, pF, ROT, rn) \
624 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);
626 #define I1024(R) \
627 X00 += ks[((R) + 1) % 17]; /* inject the key schedule value */\
628 X01 += ks[((R) + 2) % 17]; \
629 X02 += ks[((R) + 3) % 17]; \
630 X03 += ks[((R) + 4) % 17]; \
631 X04 += ks[((R) + 5) % 17]; \
632 X05 += ks[((R) + 6) % 17]; \
633 X06 += ks[((R) + 7) % 17]; \
634 X07 += ks[((R) + 8) % 17]; \
635 X08 += ks[((R) + 9) % 17]; \
636 X09 += ks[((R) + 10) % 17]; \
637 X10 += ks[((R) + 11) % 17]; \
638 X11 += ks[((R) + 12) % 17]; \
639 X12 += ks[((R) + 13) % 17]; \
640 X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3]; \
641 X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3]; \
642 X15 += ks[((R) + 16) % 17] + (R) +1; \
643 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
644 #else /* looping version */
645 #define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, \
646 pE, pF, ROT, rn) \
647 Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, \
648 pD, pE, pF, ROT, rn) \
649 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);
651 #define I1024(R) \
652 X00 += ks[r + (R) + 0]; /* inject the key schedule value */ \
653 X01 += ks[r + (R) + 1]; \
654 X02 += ks[r + (R) + 2]; \
655 X03 += ks[r + (R) + 3]; \
656 X04 += ks[r + (R) + 4]; \
657 X05 += ks[r + (R) + 5]; \
658 X06 += ks[r + (R) + 6]; \
659 X07 += ks[r + (R) + 7]; \
660 X08 += ks[r + (R) + 8]; \
661 X09 += ks[r + (R) + 9]; \
662 X10 += ks[r + (R) + 10]; \
663 X11 += ks[r + (R) + 11]; \
664 X12 += ks[r + (R) + 12]; \
665 X13 += ks[r + (R) + 13] + ts[r + (R) + 0]; \
666 X14 += ks[r + (R) + 14] + ts[r + (R) + 1]; \
667 X15 += ks[r + (R) + 15] + r + (R); \
668 ks[r + (R) + 16] = ks[r + (R) - 1]; /* rotate key schedule */\
669 ts[r + (R) + 2] = ts[r + (R) - 1]; \
670 Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
672 /* loop through it */
673 for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
674 #endif
676 #define R1024_8_rounds(R) /* do 8 full rounds */ \
677 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
678 14, 15, R1024_0, 8 * (R) + 1); \
679 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
680 08, 01, R1024_1, 8 * (R) + 2); \
681 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
682 10, 09, R1024_2, 8 * (R) + 3); \
683 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
684 12, 07, R1024_3, 8 * (R) + 4); \
685 I1024(2 * (R)); \
686 R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, \
687 14, 15, R1024_4, 8 * (R) + 5); \
688 R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, \
689 08, 01, R1024_5, 8 * (R) + 6); \
690 R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, \
691 10, 09, R1024_6, 8 * (R) + 7); \
692 R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, \
693 12, 07, R1024_7, 8 * (R) + 8); \
694 I1024(2 * (R) + 1);
696 R1024_8_rounds(0);
698 #define R1024_Unroll_R(NN) \
699 ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || \
700 (SKEIN_UNROLL_1024 > (NN)))
702 #if R1024_Unroll_R(1)
703 R1024_8_rounds(1);
704 #endif
705 #if R1024_Unroll_R(2)
706 R1024_8_rounds(2);
707 #endif
708 #if R1024_Unroll_R(3)
709 R1024_8_rounds(3);
710 #endif
711 #if R1024_Unroll_R(4)
712 R1024_8_rounds(4);
713 #endif
714 #if R1024_Unroll_R(5)
715 R1024_8_rounds(5);
716 #endif
717 #if R1024_Unroll_R(6)
718 R1024_8_rounds(6);
719 #endif
720 #if R1024_Unroll_R(7)
721 R1024_8_rounds(7);
722 #endif
723 #if R1024_Unroll_R(8)
724 R1024_8_rounds(8);
725 #endif
726 #if R1024_Unroll_R(9)
727 R1024_8_rounds(9);
728 #endif
729 #if R1024_Unroll_R(10)
730 R1024_8_rounds(10);
731 #endif
732 #if R1024_Unroll_R(11)
733 R1024_8_rounds(11);
734 #endif
735 #if R1024_Unroll_R(12)
736 R1024_8_rounds(12);
737 #endif
738 #if R1024_Unroll_R(13)
739 R1024_8_rounds(13);
740 #endif
741 #if R1024_Unroll_R(14)
742 R1024_8_rounds(14);
743 #endif
744 #if (SKEIN_UNROLL_1024 > 14)
745 #error "need more unrolling in Skein_1024_Process_Block"
746 #endif
749 * do the final "feedforward" xor, update context chaining vars
752 ctx->X[0] = X00 ^ w[0];
753 ctx->X[1] = X01 ^ w[1];
754 ctx->X[2] = X02 ^ w[2];
755 ctx->X[3] = X03 ^ w[3];
756 ctx->X[4] = X04 ^ w[4];
757 ctx->X[5] = X05 ^ w[5];
758 ctx->X[6] = X06 ^ w[6];
759 ctx->X[7] = X07 ^ w[7];
760 ctx->X[8] = X08 ^ w[8];
761 ctx->X[9] = X09 ^ w[9];
762 ctx->X[10] = X10 ^ w[10];
763 ctx->X[11] = X11 ^ w[11];
764 ctx->X[12] = X12 ^ w[12];
765 ctx->X[13] = X13 ^ w[13];
766 ctx->X[14] = X14 ^ w[14];
767 ctx->X[15] = X15 ^ w[15];
769 Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);
771 ts[1] &= ~SKEIN_T1_FLAG_FIRST;
772 blkPtr += SKEIN1024_BLOCK_BYTES;
773 } while (--blkCnt);
774 ctx->h.T[0] = ts[0];
775 ctx->h.T[1] = ts[1];
778 #if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
779 size_t
780 Skein1024_Process_Block_CodeSize(void)
782 return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
783 ((uint8_t *)Skein1024_Process_Block);
786 uint_t
787 Skein1024_Unroll_Cnt(void)
789 return (SKEIN_UNROLL_1024);
791 #endif
792 #endif