Add the ability to uninitialize
[zfs.git] / module / zfs / spa.c
blob51d6de9105fb7120fd155bc3e836e6f433c7aefb
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
39 * SPA: Storage Pool Allocator
41 * This file contains all the routines used when modifying on-disk SPA state.
42 * This includes opening, importing, destroying, exporting a pool, and syncing a
43 * pool.
46 #include <sys/zfs_context.h>
47 #include <sys/fm/fs/zfs.h>
48 #include <sys/spa_impl.h>
49 #include <sys/zio.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/dmu.h>
52 #include <sys/dmu_tx.h>
53 #include <sys/zap.h>
54 #include <sys/zil.h>
55 #include <sys/brt.h>
56 #include <sys/ddt.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/vdev_removal.h>
59 #include <sys/vdev_indirect_mapping.h>
60 #include <sys/vdev_indirect_births.h>
61 #include <sys/vdev_initialize.h>
62 #include <sys/vdev_rebuild.h>
63 #include <sys/vdev_trim.h>
64 #include <sys/vdev_disk.h>
65 #include <sys/vdev_draid.h>
66 #include <sys/metaslab.h>
67 #include <sys/metaslab_impl.h>
68 #include <sys/mmp.h>
69 #include <sys/uberblock_impl.h>
70 #include <sys/txg.h>
71 #include <sys/avl.h>
72 #include <sys/bpobj.h>
73 #include <sys/dmu_traverse.h>
74 #include <sys/dmu_objset.h>
75 #include <sys/unique.h>
76 #include <sys/dsl_pool.h>
77 #include <sys/dsl_dataset.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/dsl_prop.h>
80 #include <sys/dsl_synctask.h>
81 #include <sys/fs/zfs.h>
82 #include <sys/arc.h>
83 #include <sys/callb.h>
84 #include <sys/systeminfo.h>
85 #include <sys/zfs_ioctl.h>
86 #include <sys/dsl_scan.h>
87 #include <sys/zfeature.h>
88 #include <sys/dsl_destroy.h>
89 #include <sys/zvol.h>
91 #ifdef _KERNEL
92 #include <sys/fm/protocol.h>
93 #include <sys/fm/util.h>
94 #include <sys/callb.h>
95 #include <sys/zone.h>
96 #include <sys/vmsystm.h>
97 #endif /* _KERNEL */
99 #include "zfs_prop.h"
100 #include "zfs_comutil.h"
103 * The interval, in seconds, at which failed configuration cache file writes
104 * should be retried.
106 int zfs_ccw_retry_interval = 300;
108 typedef enum zti_modes {
109 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
110 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
111 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
112 ZTI_MODE_NULL, /* don't create a taskq */
113 ZTI_NMODES
114 } zti_modes_t;
116 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
117 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
118 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
119 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
120 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
122 #define ZTI_N(n) ZTI_P(n, 1)
123 #define ZTI_ONE ZTI_N(1)
125 typedef struct zio_taskq_info {
126 zti_modes_t zti_mode;
127 uint_t zti_value;
128 uint_t zti_count;
129 } zio_taskq_info_t;
131 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
132 "iss", "iss_h", "int", "int_h"
136 * This table defines the taskq settings for each ZFS I/O type. When
137 * initializing a pool, we use this table to create an appropriately sized
138 * taskq. Some operations are low volume and therefore have a small, static
139 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
140 * macros. Other operations process a large amount of data; the ZTI_BATCH
141 * macro causes us to create a taskq oriented for throughput. Some operations
142 * are so high frequency and short-lived that the taskq itself can become a
143 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
144 * additional degree of parallelism specified by the number of threads per-
145 * taskq and the number of taskqs; when dispatching an event in this case, the
146 * particular taskq is chosen at random. ZTI_SCALE is similar to ZTI_BATCH,
147 * but with number of taskqs also scaling with number of CPUs.
149 * The different taskq priorities are to handle the different contexts (issue
150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151 * need to be handled with minimum delay.
153 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
156 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
157 { ZTI_BATCH, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
158 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
159 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
160 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
161 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
164 static void spa_sync_version(void *arg, dmu_tx_t *tx);
165 static void spa_sync_props(void *arg, dmu_tx_t *tx);
166 static boolean_t spa_has_active_shared_spare(spa_t *spa);
167 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
168 const char **ereport);
169 static void spa_vdev_resilver_done(spa_t *spa);
171 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
172 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
173 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
174 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
176 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
179 * Report any spa_load_verify errors found, but do not fail spa_load.
180 * This is used by zdb to analyze non-idle pools.
182 boolean_t spa_load_verify_dryrun = B_FALSE;
185 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
186 * This is used by zdb for spacemaps verification.
188 boolean_t spa_mode_readable_spacemaps = B_FALSE;
191 * This (illegal) pool name is used when temporarily importing a spa_t in order
192 * to get the vdev stats associated with the imported devices.
194 #define TRYIMPORT_NAME "$import"
197 * For debugging purposes: print out vdev tree during pool import.
199 static int spa_load_print_vdev_tree = B_FALSE;
202 * A non-zero value for zfs_max_missing_tvds means that we allow importing
203 * pools with missing top-level vdevs. This is strictly intended for advanced
204 * pool recovery cases since missing data is almost inevitable. Pools with
205 * missing devices can only be imported read-only for safety reasons, and their
206 * fail-mode will be automatically set to "continue".
208 * With 1 missing vdev we should be able to import the pool and mount all
209 * datasets. User data that was not modified after the missing device has been
210 * added should be recoverable. This means that snapshots created prior to the
211 * addition of that device should be completely intact.
213 * With 2 missing vdevs, some datasets may fail to mount since there are
214 * dataset statistics that are stored as regular metadata. Some data might be
215 * recoverable if those vdevs were added recently.
217 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
218 * may be missing entirely. Chances of data recovery are very low. Note that
219 * there are also risks of performing an inadvertent rewind as we might be
220 * missing all the vdevs with the latest uberblocks.
222 uint64_t zfs_max_missing_tvds = 0;
225 * The parameters below are similar to zfs_max_missing_tvds but are only
226 * intended for a preliminary open of the pool with an untrusted config which
227 * might be incomplete or out-dated.
229 * We are more tolerant for pools opened from a cachefile since we could have
230 * an out-dated cachefile where a device removal was not registered.
231 * We could have set the limit arbitrarily high but in the case where devices
232 * are really missing we would want to return the proper error codes; we chose
233 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
234 * and we get a chance to retrieve the trusted config.
236 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
239 * In the case where config was assembled by scanning device paths (/dev/dsks
240 * by default) we are less tolerant since all the existing devices should have
241 * been detected and we want spa_load to return the right error codes.
243 uint64_t zfs_max_missing_tvds_scan = 0;
246 * Debugging aid that pauses spa_sync() towards the end.
248 static const boolean_t zfs_pause_spa_sync = B_FALSE;
251 * Variables to indicate the livelist condense zthr func should wait at certain
252 * points for the livelist to be removed - used to test condense/destroy races
254 static int zfs_livelist_condense_zthr_pause = 0;
255 static int zfs_livelist_condense_sync_pause = 0;
258 * Variables to track whether or not condense cancellation has been
259 * triggered in testing.
261 static int zfs_livelist_condense_sync_cancel = 0;
262 static int zfs_livelist_condense_zthr_cancel = 0;
265 * Variable to track whether or not extra ALLOC blkptrs were added to a
266 * livelist entry while it was being condensed (caused by the way we track
267 * remapped blkptrs in dbuf_remap_impl)
269 static int zfs_livelist_condense_new_alloc = 0;
272 * ==========================================================================
273 * SPA properties routines
274 * ==========================================================================
278 * Add a (source=src, propname=propval) list to an nvlist.
280 static void
281 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
282 uint64_t intval, zprop_source_t src)
284 const char *propname = zpool_prop_to_name(prop);
285 nvlist_t *propval;
287 propval = fnvlist_alloc();
288 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
290 if (strval != NULL)
291 fnvlist_add_string(propval, ZPROP_VALUE, strval);
292 else
293 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
295 fnvlist_add_nvlist(nvl, propname, propval);
296 nvlist_free(propval);
300 * Add a user property (source=src, propname=propval) to an nvlist.
302 static void
303 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
304 zprop_source_t src)
306 nvlist_t *propval;
308 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
309 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
310 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
311 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
312 nvlist_free(propval);
316 * Get property values from the spa configuration.
318 static void
319 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
321 vdev_t *rvd = spa->spa_root_vdev;
322 dsl_pool_t *pool = spa->spa_dsl_pool;
323 uint64_t size, alloc, cap, version;
324 const zprop_source_t src = ZPROP_SRC_NONE;
325 spa_config_dirent_t *dp;
326 metaslab_class_t *mc = spa_normal_class(spa);
328 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
330 if (rvd != NULL) {
331 alloc = metaslab_class_get_alloc(mc);
332 alloc += metaslab_class_get_alloc(spa_special_class(spa));
333 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
334 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
336 size = metaslab_class_get_space(mc);
337 size += metaslab_class_get_space(spa_special_class(spa));
338 size += metaslab_class_get_space(spa_dedup_class(spa));
339 size += metaslab_class_get_space(spa_embedded_log_class(spa));
341 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
342 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
343 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
344 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
345 size - alloc, src);
346 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
347 spa->spa_checkpoint_info.sci_dspace, src);
349 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
350 metaslab_class_fragmentation(mc), src);
351 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
352 metaslab_class_expandable_space(mc), src);
353 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
354 (spa_mode(spa) == SPA_MODE_READ), src);
356 cap = (size == 0) ? 0 : (alloc * 100 / size);
357 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
359 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
360 ddt_get_pool_dedup_ratio(spa), src);
361 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
362 brt_get_used(spa), src);
363 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
364 brt_get_saved(spa), src);
365 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
366 brt_get_ratio(spa), src);
368 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
369 rvd->vdev_state, src);
371 version = spa_version(spa);
372 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
373 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
374 version, ZPROP_SRC_DEFAULT);
375 } else {
376 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
377 version, ZPROP_SRC_LOCAL);
379 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
380 NULL, spa_load_guid(spa), src);
383 if (pool != NULL) {
385 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
386 * when opening pools before this version freedir will be NULL.
388 if (pool->dp_free_dir != NULL) {
389 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
390 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
391 src);
392 } else {
393 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
394 NULL, 0, src);
397 if (pool->dp_leak_dir != NULL) {
398 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
399 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
400 src);
401 } else {
402 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
403 NULL, 0, src);
407 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
409 if (spa->spa_comment != NULL) {
410 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
411 0, ZPROP_SRC_LOCAL);
414 if (spa->spa_compatibility != NULL) {
415 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
416 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
419 if (spa->spa_root != NULL)
420 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
421 0, ZPROP_SRC_LOCAL);
423 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
424 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
425 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
426 } else {
427 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
428 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
431 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
432 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
433 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
434 } else {
435 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
436 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
439 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
440 if (dp->scd_path == NULL) {
441 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
442 "none", 0, ZPROP_SRC_LOCAL);
443 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
444 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
445 dp->scd_path, 0, ZPROP_SRC_LOCAL);
451 * Get zpool property values.
454 spa_prop_get(spa_t *spa, nvlist_t **nvp)
456 objset_t *mos = spa->spa_meta_objset;
457 zap_cursor_t zc;
458 zap_attribute_t za;
459 dsl_pool_t *dp;
460 int err;
462 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
463 if (err)
464 return (err);
466 dp = spa_get_dsl(spa);
467 dsl_pool_config_enter(dp, FTAG);
468 mutex_enter(&spa->spa_props_lock);
471 * Get properties from the spa config.
473 spa_prop_get_config(spa, nvp);
475 /* If no pool property object, no more prop to get. */
476 if (mos == NULL || spa->spa_pool_props_object == 0)
477 goto out;
480 * Get properties from the MOS pool property object.
482 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
483 (err = zap_cursor_retrieve(&zc, &za)) == 0;
484 zap_cursor_advance(&zc)) {
485 uint64_t intval = 0;
486 char *strval = NULL;
487 zprop_source_t src = ZPROP_SRC_DEFAULT;
488 zpool_prop_t prop;
490 if ((prop = zpool_name_to_prop(za.za_name)) ==
491 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
492 continue;
494 switch (za.za_integer_length) {
495 case 8:
496 /* integer property */
497 if (za.za_first_integer !=
498 zpool_prop_default_numeric(prop))
499 src = ZPROP_SRC_LOCAL;
501 if (prop == ZPOOL_PROP_BOOTFS) {
502 dsl_dataset_t *ds = NULL;
504 err = dsl_dataset_hold_obj(dp,
505 za.za_first_integer, FTAG, &ds);
506 if (err != 0)
507 break;
509 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
510 KM_SLEEP);
511 dsl_dataset_name(ds, strval);
512 dsl_dataset_rele(ds, FTAG);
513 } else {
514 strval = NULL;
515 intval = za.za_first_integer;
518 spa_prop_add_list(*nvp, prop, strval, intval, src);
520 if (strval != NULL)
521 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
523 break;
525 case 1:
526 /* string property */
527 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
528 err = zap_lookup(mos, spa->spa_pool_props_object,
529 za.za_name, 1, za.za_num_integers, strval);
530 if (err) {
531 kmem_free(strval, za.za_num_integers);
532 break;
534 if (prop != ZPOOL_PROP_INVAL) {
535 spa_prop_add_list(*nvp, prop, strval, 0, src);
536 } else {
537 src = ZPROP_SRC_LOCAL;
538 spa_prop_add_user(*nvp, za.za_name, strval,
539 src);
541 kmem_free(strval, za.za_num_integers);
542 break;
544 default:
545 break;
548 zap_cursor_fini(&zc);
549 out:
550 mutex_exit(&spa->spa_props_lock);
551 dsl_pool_config_exit(dp, FTAG);
552 if (err && err != ENOENT) {
553 nvlist_free(*nvp);
554 *nvp = NULL;
555 return (err);
558 return (0);
562 * Validate the given pool properties nvlist and modify the list
563 * for the property values to be set.
565 static int
566 spa_prop_validate(spa_t *spa, nvlist_t *props)
568 nvpair_t *elem;
569 int error = 0, reset_bootfs = 0;
570 uint64_t objnum = 0;
571 boolean_t has_feature = B_FALSE;
573 elem = NULL;
574 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
575 uint64_t intval;
576 const char *strval, *slash, *check, *fname;
577 const char *propname = nvpair_name(elem);
578 zpool_prop_t prop = zpool_name_to_prop(propname);
580 switch (prop) {
581 case ZPOOL_PROP_INVAL:
583 * Sanitize the input.
585 if (zfs_prop_user(propname)) {
586 if (strlen(propname) >= ZAP_MAXNAMELEN) {
587 error = SET_ERROR(ENAMETOOLONG);
588 break;
591 if (strlen(fnvpair_value_string(elem)) >=
592 ZAP_MAXVALUELEN) {
593 error = SET_ERROR(E2BIG);
594 break;
596 } else if (zpool_prop_feature(propname)) {
597 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
598 error = SET_ERROR(EINVAL);
599 break;
602 if (nvpair_value_uint64(elem, &intval) != 0) {
603 error = SET_ERROR(EINVAL);
604 break;
607 if (intval != 0) {
608 error = SET_ERROR(EINVAL);
609 break;
612 fname = strchr(propname, '@') + 1;
613 if (zfeature_lookup_name(fname, NULL) != 0) {
614 error = SET_ERROR(EINVAL);
615 break;
618 has_feature = B_TRUE;
619 } else {
620 error = SET_ERROR(EINVAL);
621 break;
623 break;
625 case ZPOOL_PROP_VERSION:
626 error = nvpair_value_uint64(elem, &intval);
627 if (!error &&
628 (intval < spa_version(spa) ||
629 intval > SPA_VERSION_BEFORE_FEATURES ||
630 has_feature))
631 error = SET_ERROR(EINVAL);
632 break;
634 case ZPOOL_PROP_DELEGATION:
635 case ZPOOL_PROP_AUTOREPLACE:
636 case ZPOOL_PROP_LISTSNAPS:
637 case ZPOOL_PROP_AUTOEXPAND:
638 case ZPOOL_PROP_AUTOTRIM:
639 error = nvpair_value_uint64(elem, &intval);
640 if (!error && intval > 1)
641 error = SET_ERROR(EINVAL);
642 break;
644 case ZPOOL_PROP_MULTIHOST:
645 error = nvpair_value_uint64(elem, &intval);
646 if (!error && intval > 1)
647 error = SET_ERROR(EINVAL);
649 if (!error) {
650 uint32_t hostid = zone_get_hostid(NULL);
651 if (hostid)
652 spa->spa_hostid = hostid;
653 else
654 error = SET_ERROR(ENOTSUP);
657 break;
659 case ZPOOL_PROP_BOOTFS:
661 * If the pool version is less than SPA_VERSION_BOOTFS,
662 * or the pool is still being created (version == 0),
663 * the bootfs property cannot be set.
665 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
666 error = SET_ERROR(ENOTSUP);
667 break;
671 * Make sure the vdev config is bootable
673 if (!vdev_is_bootable(spa->spa_root_vdev)) {
674 error = SET_ERROR(ENOTSUP);
675 break;
678 reset_bootfs = 1;
680 error = nvpair_value_string(elem, &strval);
682 if (!error) {
683 objset_t *os;
685 if (strval == NULL || strval[0] == '\0') {
686 objnum = zpool_prop_default_numeric(
687 ZPOOL_PROP_BOOTFS);
688 break;
691 error = dmu_objset_hold(strval, FTAG, &os);
692 if (error != 0)
693 break;
695 /* Must be ZPL. */
696 if (dmu_objset_type(os) != DMU_OST_ZFS) {
697 error = SET_ERROR(ENOTSUP);
698 } else {
699 objnum = dmu_objset_id(os);
701 dmu_objset_rele(os, FTAG);
703 break;
705 case ZPOOL_PROP_FAILUREMODE:
706 error = nvpair_value_uint64(elem, &intval);
707 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
708 error = SET_ERROR(EINVAL);
711 * This is a special case which only occurs when
712 * the pool has completely failed. This allows
713 * the user to change the in-core failmode property
714 * without syncing it out to disk (I/Os might
715 * currently be blocked). We do this by returning
716 * EIO to the caller (spa_prop_set) to trick it
717 * into thinking we encountered a property validation
718 * error.
720 if (!error && spa_suspended(spa)) {
721 spa->spa_failmode = intval;
722 error = SET_ERROR(EIO);
724 break;
726 case ZPOOL_PROP_CACHEFILE:
727 if ((error = nvpair_value_string(elem, &strval)) != 0)
728 break;
730 if (strval[0] == '\0')
731 break;
733 if (strcmp(strval, "none") == 0)
734 break;
736 if (strval[0] != '/') {
737 error = SET_ERROR(EINVAL);
738 break;
741 slash = strrchr(strval, '/');
742 ASSERT(slash != NULL);
744 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
745 strcmp(slash, "/..") == 0)
746 error = SET_ERROR(EINVAL);
747 break;
749 case ZPOOL_PROP_COMMENT:
750 if ((error = nvpair_value_string(elem, &strval)) != 0)
751 break;
752 for (check = strval; *check != '\0'; check++) {
753 if (!isprint(*check)) {
754 error = SET_ERROR(EINVAL);
755 break;
758 if (strlen(strval) > ZPROP_MAX_COMMENT)
759 error = SET_ERROR(E2BIG);
760 break;
762 default:
763 break;
766 if (error)
767 break;
770 (void) nvlist_remove_all(props,
771 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
773 if (!error && reset_bootfs) {
774 error = nvlist_remove(props,
775 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
777 if (!error) {
778 error = nvlist_add_uint64(props,
779 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
783 return (error);
786 void
787 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
789 const char *cachefile;
790 spa_config_dirent_t *dp;
792 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
793 &cachefile) != 0)
794 return;
796 dp = kmem_alloc(sizeof (spa_config_dirent_t),
797 KM_SLEEP);
799 if (cachefile[0] == '\0')
800 dp->scd_path = spa_strdup(spa_config_path);
801 else if (strcmp(cachefile, "none") == 0)
802 dp->scd_path = NULL;
803 else
804 dp->scd_path = spa_strdup(cachefile);
806 list_insert_head(&spa->spa_config_list, dp);
807 if (need_sync)
808 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
812 spa_prop_set(spa_t *spa, nvlist_t *nvp)
814 int error;
815 nvpair_t *elem = NULL;
816 boolean_t need_sync = B_FALSE;
818 if ((error = spa_prop_validate(spa, nvp)) != 0)
819 return (error);
821 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
822 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
824 if (prop == ZPOOL_PROP_CACHEFILE ||
825 prop == ZPOOL_PROP_ALTROOT ||
826 prop == ZPOOL_PROP_READONLY)
827 continue;
829 if (prop == ZPOOL_PROP_INVAL &&
830 zfs_prop_user(nvpair_name(elem))) {
831 need_sync = B_TRUE;
832 break;
835 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
836 uint64_t ver = 0;
838 if (prop == ZPOOL_PROP_VERSION) {
839 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
840 } else {
841 ASSERT(zpool_prop_feature(nvpair_name(elem)));
842 ver = SPA_VERSION_FEATURES;
843 need_sync = B_TRUE;
846 /* Save time if the version is already set. */
847 if (ver == spa_version(spa))
848 continue;
851 * In addition to the pool directory object, we might
852 * create the pool properties object, the features for
853 * read object, the features for write object, or the
854 * feature descriptions object.
856 error = dsl_sync_task(spa->spa_name, NULL,
857 spa_sync_version, &ver,
858 6, ZFS_SPACE_CHECK_RESERVED);
859 if (error)
860 return (error);
861 continue;
864 need_sync = B_TRUE;
865 break;
868 if (need_sync) {
869 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
870 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
873 return (0);
877 * If the bootfs property value is dsobj, clear it.
879 void
880 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
882 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
883 VERIFY(zap_remove(spa->spa_meta_objset,
884 spa->spa_pool_props_object,
885 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
886 spa->spa_bootfs = 0;
890 static int
891 spa_change_guid_check(void *arg, dmu_tx_t *tx)
893 uint64_t *newguid __maybe_unused = arg;
894 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
895 vdev_t *rvd = spa->spa_root_vdev;
896 uint64_t vdev_state;
898 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
899 int error = (spa_has_checkpoint(spa)) ?
900 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
901 return (SET_ERROR(error));
904 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
905 vdev_state = rvd->vdev_state;
906 spa_config_exit(spa, SCL_STATE, FTAG);
908 if (vdev_state != VDEV_STATE_HEALTHY)
909 return (SET_ERROR(ENXIO));
911 ASSERT3U(spa_guid(spa), !=, *newguid);
913 return (0);
916 static void
917 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
919 uint64_t *newguid = arg;
920 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
921 uint64_t oldguid;
922 vdev_t *rvd = spa->spa_root_vdev;
924 oldguid = spa_guid(spa);
926 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
927 rvd->vdev_guid = *newguid;
928 rvd->vdev_guid_sum += (*newguid - oldguid);
929 vdev_config_dirty(rvd);
930 spa_config_exit(spa, SCL_STATE, FTAG);
932 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
933 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
937 * Change the GUID for the pool. This is done so that we can later
938 * re-import a pool built from a clone of our own vdevs. We will modify
939 * the root vdev's guid, our own pool guid, and then mark all of our
940 * vdevs dirty. Note that we must make sure that all our vdevs are
941 * online when we do this, or else any vdevs that weren't present
942 * would be orphaned from our pool. We are also going to issue a
943 * sysevent to update any watchers.
946 spa_change_guid(spa_t *spa)
948 int error;
949 uint64_t guid;
951 mutex_enter(&spa->spa_vdev_top_lock);
952 mutex_enter(&spa_namespace_lock);
953 guid = spa_generate_guid(NULL);
955 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
956 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
958 if (error == 0) {
960 * Clear the kobj flag from all the vdevs to allow
961 * vdev_cache_process_kobj_evt() to post events to all the
962 * vdevs since GUID is updated.
964 vdev_clear_kobj_evt(spa->spa_root_vdev);
965 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
966 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
968 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
969 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
972 mutex_exit(&spa_namespace_lock);
973 mutex_exit(&spa->spa_vdev_top_lock);
975 return (error);
979 * ==========================================================================
980 * SPA state manipulation (open/create/destroy/import/export)
981 * ==========================================================================
984 static int
985 spa_error_entry_compare(const void *a, const void *b)
987 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
988 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
989 int ret;
991 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
992 sizeof (zbookmark_phys_t));
994 return (TREE_ISIGN(ret));
998 * Utility function which retrieves copies of the current logs and
999 * re-initializes them in the process.
1001 void
1002 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1004 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1006 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1007 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1009 avl_create(&spa->spa_errlist_scrub,
1010 spa_error_entry_compare, sizeof (spa_error_entry_t),
1011 offsetof(spa_error_entry_t, se_avl));
1012 avl_create(&spa->spa_errlist_last,
1013 spa_error_entry_compare, sizeof (spa_error_entry_t),
1014 offsetof(spa_error_entry_t, se_avl));
1017 static void
1018 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1020 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1021 enum zti_modes mode = ztip->zti_mode;
1022 uint_t value = ztip->zti_value;
1023 uint_t count = ztip->zti_count;
1024 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1025 uint_t cpus, flags = TASKQ_DYNAMIC;
1026 boolean_t batch = B_FALSE;
1028 switch (mode) {
1029 case ZTI_MODE_FIXED:
1030 ASSERT3U(value, >, 0);
1031 break;
1033 case ZTI_MODE_BATCH:
1034 batch = B_TRUE;
1035 flags |= TASKQ_THREADS_CPU_PCT;
1036 value = MIN(zio_taskq_batch_pct, 100);
1037 break;
1039 case ZTI_MODE_SCALE:
1040 flags |= TASKQ_THREADS_CPU_PCT;
1042 * We want more taskqs to reduce lock contention, but we want
1043 * less for better request ordering and CPU utilization.
1045 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1046 if (zio_taskq_batch_tpq > 0) {
1047 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1048 zio_taskq_batch_tpq);
1049 } else {
1051 * Prefer 6 threads per taskq, but no more taskqs
1052 * than threads in them on large systems. For 80%:
1054 * taskq taskq total
1055 * cpus taskqs percent threads threads
1056 * ------- ------- ------- ------- -------
1057 * 1 1 80% 1 1
1058 * 2 1 80% 1 1
1059 * 4 1 80% 3 3
1060 * 8 2 40% 3 6
1061 * 16 3 27% 4 12
1062 * 32 5 16% 5 25
1063 * 64 7 11% 7 49
1064 * 128 10 8% 10 100
1065 * 256 14 6% 15 210
1067 count = 1 + cpus / 6;
1068 while (count * count > cpus)
1069 count--;
1071 /* Limit each taskq within 100% to not trigger assertion. */
1072 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1073 value = (zio_taskq_batch_pct + count / 2) / count;
1074 break;
1076 case ZTI_MODE_NULL:
1077 tqs->stqs_count = 0;
1078 tqs->stqs_taskq = NULL;
1079 return;
1081 default:
1082 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1083 "spa_activate()",
1084 zio_type_name[t], zio_taskq_types[q], mode, value);
1085 break;
1088 ASSERT3U(count, >, 0);
1089 tqs->stqs_count = count;
1090 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1092 for (uint_t i = 0; i < count; i++) {
1093 taskq_t *tq;
1094 char name[32];
1096 if (count > 1)
1097 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1098 zio_type_name[t], zio_taskq_types[q], i);
1099 else
1100 (void) snprintf(name, sizeof (name), "%s_%s",
1101 zio_type_name[t], zio_taskq_types[q]);
1103 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1104 if (batch)
1105 flags |= TASKQ_DC_BATCH;
1107 (void) zio_taskq_basedc;
1108 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1109 spa->spa_proc, zio_taskq_basedc, flags);
1110 } else {
1111 pri_t pri = maxclsyspri;
1113 * The write issue taskq can be extremely CPU
1114 * intensive. Run it at slightly less important
1115 * priority than the other taskqs.
1117 * Under Linux and FreeBSD this means incrementing
1118 * the priority value as opposed to platforms like
1119 * illumos where it should be decremented.
1121 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1122 * are equal then a difference between them is
1123 * insignificant.
1125 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1126 #if defined(__linux__)
1127 pri++;
1128 #elif defined(__FreeBSD__)
1129 pri += 4;
1130 #else
1131 #error "unknown OS"
1132 #endif
1134 tq = taskq_create_proc(name, value, pri, 50,
1135 INT_MAX, spa->spa_proc, flags);
1138 tqs->stqs_taskq[i] = tq;
1142 static void
1143 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1145 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1147 if (tqs->stqs_taskq == NULL) {
1148 ASSERT3U(tqs->stqs_count, ==, 0);
1149 return;
1152 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1153 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1154 taskq_destroy(tqs->stqs_taskq[i]);
1157 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1158 tqs->stqs_taskq = NULL;
1162 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1163 * Note that a type may have multiple discrete taskqs to avoid lock contention
1164 * on the taskq itself. In that case we choose which taskq at random by using
1165 * the low bits of gethrtime().
1167 void
1168 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1169 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1171 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1172 taskq_t *tq;
1174 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1175 ASSERT3U(tqs->stqs_count, !=, 0);
1177 if (tqs->stqs_count == 1) {
1178 tq = tqs->stqs_taskq[0];
1179 } else {
1180 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1183 taskq_dispatch_ent(tq, func, arg, flags, ent);
1187 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1189 void
1190 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1191 task_func_t *func, void *arg, uint_t flags)
1193 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1194 taskq_t *tq;
1195 taskqid_t id;
1197 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1198 ASSERT3U(tqs->stqs_count, !=, 0);
1200 if (tqs->stqs_count == 1) {
1201 tq = tqs->stqs_taskq[0];
1202 } else {
1203 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1206 id = taskq_dispatch(tq, func, arg, flags);
1207 if (id)
1208 taskq_wait_id(tq, id);
1211 static void
1212 spa_create_zio_taskqs(spa_t *spa)
1214 for (int t = 0; t < ZIO_TYPES; t++) {
1215 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1216 spa_taskqs_init(spa, t, q);
1222 * Disabled until spa_thread() can be adapted for Linux.
1224 #undef HAVE_SPA_THREAD
1226 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1227 static void
1228 spa_thread(void *arg)
1230 psetid_t zio_taskq_psrset_bind = PS_NONE;
1231 callb_cpr_t cprinfo;
1233 spa_t *spa = arg;
1234 user_t *pu = PTOU(curproc);
1236 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1237 spa->spa_name);
1239 ASSERT(curproc != &p0);
1240 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1241 "zpool-%s", spa->spa_name);
1242 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1244 /* bind this thread to the requested psrset */
1245 if (zio_taskq_psrset_bind != PS_NONE) {
1246 pool_lock();
1247 mutex_enter(&cpu_lock);
1248 mutex_enter(&pidlock);
1249 mutex_enter(&curproc->p_lock);
1251 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1252 0, NULL, NULL) == 0) {
1253 curthread->t_bind_pset = zio_taskq_psrset_bind;
1254 } else {
1255 cmn_err(CE_WARN,
1256 "Couldn't bind process for zfs pool \"%s\" to "
1257 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1260 mutex_exit(&curproc->p_lock);
1261 mutex_exit(&pidlock);
1262 mutex_exit(&cpu_lock);
1263 pool_unlock();
1266 if (zio_taskq_sysdc) {
1267 sysdc_thread_enter(curthread, 100, 0);
1270 spa->spa_proc = curproc;
1271 spa->spa_did = curthread->t_did;
1273 spa_create_zio_taskqs(spa);
1275 mutex_enter(&spa->spa_proc_lock);
1276 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1278 spa->spa_proc_state = SPA_PROC_ACTIVE;
1279 cv_broadcast(&spa->spa_proc_cv);
1281 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1282 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1283 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1284 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1286 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1287 spa->spa_proc_state = SPA_PROC_GONE;
1288 spa->spa_proc = &p0;
1289 cv_broadcast(&spa->spa_proc_cv);
1290 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1292 mutex_enter(&curproc->p_lock);
1293 lwp_exit();
1295 #endif
1298 * Activate an uninitialized pool.
1300 static void
1301 spa_activate(spa_t *spa, spa_mode_t mode)
1303 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1305 spa->spa_state = POOL_STATE_ACTIVE;
1306 spa->spa_mode = mode;
1307 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1309 spa->spa_normal_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1310 spa->spa_log_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1311 spa->spa_embedded_log_class =
1312 metaslab_class_create(spa, &zfs_metaslab_ops);
1313 spa->spa_special_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1314 spa->spa_dedup_class = metaslab_class_create(spa, &zfs_metaslab_ops);
1316 /* Try to create a covering process */
1317 mutex_enter(&spa->spa_proc_lock);
1318 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1319 ASSERT(spa->spa_proc == &p0);
1320 spa->spa_did = 0;
1322 (void) spa_create_process;
1323 #ifdef HAVE_SPA_THREAD
1324 /* Only create a process if we're going to be around a while. */
1325 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1326 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1327 NULL, 0) == 0) {
1328 spa->spa_proc_state = SPA_PROC_CREATED;
1329 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1330 cv_wait(&spa->spa_proc_cv,
1331 &spa->spa_proc_lock);
1333 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1334 ASSERT(spa->spa_proc != &p0);
1335 ASSERT(spa->spa_did != 0);
1336 } else {
1337 #ifdef _KERNEL
1338 cmn_err(CE_WARN,
1339 "Couldn't create process for zfs pool \"%s\"\n",
1340 spa->spa_name);
1341 #endif
1344 #endif /* HAVE_SPA_THREAD */
1345 mutex_exit(&spa->spa_proc_lock);
1347 /* If we didn't create a process, we need to create our taskqs. */
1348 if (spa->spa_proc == &p0) {
1349 spa_create_zio_taskqs(spa);
1352 for (size_t i = 0; i < TXG_SIZE; i++) {
1353 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1354 ZIO_FLAG_CANFAIL);
1357 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1358 offsetof(vdev_t, vdev_config_dirty_node));
1359 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1360 offsetof(objset_t, os_evicting_node));
1361 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1362 offsetof(vdev_t, vdev_state_dirty_node));
1364 txg_list_create(&spa->spa_vdev_txg_list, spa,
1365 offsetof(struct vdev, vdev_txg_node));
1367 avl_create(&spa->spa_errlist_scrub,
1368 spa_error_entry_compare, sizeof (spa_error_entry_t),
1369 offsetof(spa_error_entry_t, se_avl));
1370 avl_create(&spa->spa_errlist_last,
1371 spa_error_entry_compare, sizeof (spa_error_entry_t),
1372 offsetof(spa_error_entry_t, se_avl));
1373 avl_create(&spa->spa_errlist_healed,
1374 spa_error_entry_compare, sizeof (spa_error_entry_t),
1375 offsetof(spa_error_entry_t, se_avl));
1377 spa_activate_os(spa);
1379 spa_keystore_init(&spa->spa_keystore);
1382 * This taskq is used to perform zvol-minor-related tasks
1383 * asynchronously. This has several advantages, including easy
1384 * resolution of various deadlocks.
1386 * The taskq must be single threaded to ensure tasks are always
1387 * processed in the order in which they were dispatched.
1389 * A taskq per pool allows one to keep the pools independent.
1390 * This way if one pool is suspended, it will not impact another.
1392 * The preferred location to dispatch a zvol minor task is a sync
1393 * task. In this context, there is easy access to the spa_t and minimal
1394 * error handling is required because the sync task must succeed.
1396 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1397 1, INT_MAX, 0);
1400 * Taskq dedicated to prefetcher threads: this is used to prevent the
1401 * pool traverse code from monopolizing the global (and limited)
1402 * system_taskq by inappropriately scheduling long running tasks on it.
1404 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1405 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1408 * The taskq to upgrade datasets in this pool. Currently used by
1409 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1411 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1412 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1416 * Opposite of spa_activate().
1418 static void
1419 spa_deactivate(spa_t *spa)
1421 ASSERT(spa->spa_sync_on == B_FALSE);
1422 ASSERT(spa->spa_dsl_pool == NULL);
1423 ASSERT(spa->spa_root_vdev == NULL);
1424 ASSERT(spa->spa_async_zio_root == NULL);
1425 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1427 spa_evicting_os_wait(spa);
1429 if (spa->spa_zvol_taskq) {
1430 taskq_destroy(spa->spa_zvol_taskq);
1431 spa->spa_zvol_taskq = NULL;
1434 if (spa->spa_prefetch_taskq) {
1435 taskq_destroy(spa->spa_prefetch_taskq);
1436 spa->spa_prefetch_taskq = NULL;
1439 if (spa->spa_upgrade_taskq) {
1440 taskq_destroy(spa->spa_upgrade_taskq);
1441 spa->spa_upgrade_taskq = NULL;
1444 txg_list_destroy(&spa->spa_vdev_txg_list);
1446 list_destroy(&spa->spa_config_dirty_list);
1447 list_destroy(&spa->spa_evicting_os_list);
1448 list_destroy(&spa->spa_state_dirty_list);
1450 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1452 for (int t = 0; t < ZIO_TYPES; t++) {
1453 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1454 spa_taskqs_fini(spa, t, q);
1458 for (size_t i = 0; i < TXG_SIZE; i++) {
1459 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1460 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1461 spa->spa_txg_zio[i] = NULL;
1464 metaslab_class_destroy(spa->spa_normal_class);
1465 spa->spa_normal_class = NULL;
1467 metaslab_class_destroy(spa->spa_log_class);
1468 spa->spa_log_class = NULL;
1470 metaslab_class_destroy(spa->spa_embedded_log_class);
1471 spa->spa_embedded_log_class = NULL;
1473 metaslab_class_destroy(spa->spa_special_class);
1474 spa->spa_special_class = NULL;
1476 metaslab_class_destroy(spa->spa_dedup_class);
1477 spa->spa_dedup_class = NULL;
1480 * If this was part of an import or the open otherwise failed, we may
1481 * still have errors left in the queues. Empty them just in case.
1483 spa_errlog_drain(spa);
1484 avl_destroy(&spa->spa_errlist_scrub);
1485 avl_destroy(&spa->spa_errlist_last);
1486 avl_destroy(&spa->spa_errlist_healed);
1488 spa_keystore_fini(&spa->spa_keystore);
1490 spa->spa_state = POOL_STATE_UNINITIALIZED;
1492 mutex_enter(&spa->spa_proc_lock);
1493 if (spa->spa_proc_state != SPA_PROC_NONE) {
1494 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1495 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1496 cv_broadcast(&spa->spa_proc_cv);
1497 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1498 ASSERT(spa->spa_proc != &p0);
1499 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1501 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1502 spa->spa_proc_state = SPA_PROC_NONE;
1504 ASSERT(spa->spa_proc == &p0);
1505 mutex_exit(&spa->spa_proc_lock);
1508 * We want to make sure spa_thread() has actually exited the ZFS
1509 * module, so that the module can't be unloaded out from underneath
1510 * it.
1512 if (spa->spa_did != 0) {
1513 thread_join(spa->spa_did);
1514 spa->spa_did = 0;
1517 spa_deactivate_os(spa);
1522 * Verify a pool configuration, and construct the vdev tree appropriately. This
1523 * will create all the necessary vdevs in the appropriate layout, with each vdev
1524 * in the CLOSED state. This will prep the pool before open/creation/import.
1525 * All vdev validation is done by the vdev_alloc() routine.
1528 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1529 uint_t id, int atype)
1531 nvlist_t **child;
1532 uint_t children;
1533 int error;
1535 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1536 return (error);
1538 if ((*vdp)->vdev_ops->vdev_op_leaf)
1539 return (0);
1541 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1542 &child, &children);
1544 if (error == ENOENT)
1545 return (0);
1547 if (error) {
1548 vdev_free(*vdp);
1549 *vdp = NULL;
1550 return (SET_ERROR(EINVAL));
1553 for (int c = 0; c < children; c++) {
1554 vdev_t *vd;
1555 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1556 atype)) != 0) {
1557 vdev_free(*vdp);
1558 *vdp = NULL;
1559 return (error);
1563 ASSERT(*vdp != NULL);
1565 return (0);
1568 static boolean_t
1569 spa_should_flush_logs_on_unload(spa_t *spa)
1571 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1572 return (B_FALSE);
1574 if (!spa_writeable(spa))
1575 return (B_FALSE);
1577 if (!spa->spa_sync_on)
1578 return (B_FALSE);
1580 if (spa_state(spa) != POOL_STATE_EXPORTED)
1581 return (B_FALSE);
1583 if (zfs_keep_log_spacemaps_at_export)
1584 return (B_FALSE);
1586 return (B_TRUE);
1590 * Opens a transaction that will set the flag that will instruct
1591 * spa_sync to attempt to flush all the metaslabs for that txg.
1593 static void
1594 spa_unload_log_sm_flush_all(spa_t *spa)
1596 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1597 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1599 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1600 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1602 dmu_tx_commit(tx);
1603 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1606 static void
1607 spa_unload_log_sm_metadata(spa_t *spa)
1609 void *cookie = NULL;
1610 spa_log_sm_t *sls;
1611 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1612 &cookie)) != NULL) {
1613 VERIFY0(sls->sls_mscount);
1614 kmem_free(sls, sizeof (spa_log_sm_t));
1617 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1618 e != NULL; e = list_head(&spa->spa_log_summary)) {
1619 VERIFY0(e->lse_mscount);
1620 list_remove(&spa->spa_log_summary, e);
1621 kmem_free(e, sizeof (log_summary_entry_t));
1624 spa->spa_unflushed_stats.sus_nblocks = 0;
1625 spa->spa_unflushed_stats.sus_memused = 0;
1626 spa->spa_unflushed_stats.sus_blocklimit = 0;
1629 static void
1630 spa_destroy_aux_threads(spa_t *spa)
1632 if (spa->spa_condense_zthr != NULL) {
1633 zthr_destroy(spa->spa_condense_zthr);
1634 spa->spa_condense_zthr = NULL;
1636 if (spa->spa_checkpoint_discard_zthr != NULL) {
1637 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1638 spa->spa_checkpoint_discard_zthr = NULL;
1640 if (spa->spa_livelist_delete_zthr != NULL) {
1641 zthr_destroy(spa->spa_livelist_delete_zthr);
1642 spa->spa_livelist_delete_zthr = NULL;
1644 if (spa->spa_livelist_condense_zthr != NULL) {
1645 zthr_destroy(spa->spa_livelist_condense_zthr);
1646 spa->spa_livelist_condense_zthr = NULL;
1651 * Opposite of spa_load().
1653 static void
1654 spa_unload(spa_t *spa)
1656 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1657 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1659 spa_import_progress_remove(spa_guid(spa));
1660 spa_load_note(spa, "UNLOADING");
1662 spa_wake_waiters(spa);
1665 * If we have set the spa_final_txg, we have already performed the
1666 * tasks below in spa_export_common(). We should not redo it here since
1667 * we delay the final TXGs beyond what spa_final_txg is set at.
1669 if (spa->spa_final_txg == UINT64_MAX) {
1671 * If the log space map feature is enabled and the pool is
1672 * getting exported (but not destroyed), we want to spend some
1673 * time flushing as many metaslabs as we can in an attempt to
1674 * destroy log space maps and save import time.
1676 if (spa_should_flush_logs_on_unload(spa))
1677 spa_unload_log_sm_flush_all(spa);
1680 * Stop async tasks.
1682 spa_async_suspend(spa);
1684 if (spa->spa_root_vdev) {
1685 vdev_t *root_vdev = spa->spa_root_vdev;
1686 vdev_initialize_stop_all(root_vdev,
1687 VDEV_INITIALIZE_ACTIVE);
1688 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1689 vdev_autotrim_stop_all(spa);
1690 vdev_rebuild_stop_all(spa);
1695 * Stop syncing.
1697 if (spa->spa_sync_on) {
1698 txg_sync_stop(spa->spa_dsl_pool);
1699 spa->spa_sync_on = B_FALSE;
1703 * This ensures that there is no async metaslab prefetching
1704 * while we attempt to unload the spa.
1706 if (spa->spa_root_vdev != NULL) {
1707 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1708 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1709 if (vc->vdev_mg != NULL)
1710 taskq_wait(vc->vdev_mg->mg_taskq);
1714 if (spa->spa_mmp.mmp_thread)
1715 mmp_thread_stop(spa);
1718 * Wait for any outstanding async I/O to complete.
1720 if (spa->spa_async_zio_root != NULL) {
1721 for (int i = 0; i < max_ncpus; i++)
1722 (void) zio_wait(spa->spa_async_zio_root[i]);
1723 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1724 spa->spa_async_zio_root = NULL;
1727 if (spa->spa_vdev_removal != NULL) {
1728 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1729 spa->spa_vdev_removal = NULL;
1732 spa_destroy_aux_threads(spa);
1734 spa_condense_fini(spa);
1736 bpobj_close(&spa->spa_deferred_bpobj);
1738 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1741 * Close all vdevs.
1743 if (spa->spa_root_vdev)
1744 vdev_free(spa->spa_root_vdev);
1745 ASSERT(spa->spa_root_vdev == NULL);
1748 * Close the dsl pool.
1750 if (spa->spa_dsl_pool) {
1751 dsl_pool_close(spa->spa_dsl_pool);
1752 spa->spa_dsl_pool = NULL;
1753 spa->spa_meta_objset = NULL;
1756 ddt_unload(spa);
1757 brt_unload(spa);
1758 spa_unload_log_sm_metadata(spa);
1761 * Drop and purge level 2 cache
1763 spa_l2cache_drop(spa);
1765 if (spa->spa_spares.sav_vdevs) {
1766 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1767 vdev_free(spa->spa_spares.sav_vdevs[i]);
1768 kmem_free(spa->spa_spares.sav_vdevs,
1769 spa->spa_spares.sav_count * sizeof (void *));
1770 spa->spa_spares.sav_vdevs = NULL;
1772 if (spa->spa_spares.sav_config) {
1773 nvlist_free(spa->spa_spares.sav_config);
1774 spa->spa_spares.sav_config = NULL;
1776 spa->spa_spares.sav_count = 0;
1778 if (spa->spa_l2cache.sav_vdevs) {
1779 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1780 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1781 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1783 kmem_free(spa->spa_l2cache.sav_vdevs,
1784 spa->spa_l2cache.sav_count * sizeof (void *));
1785 spa->spa_l2cache.sav_vdevs = NULL;
1787 if (spa->spa_l2cache.sav_config) {
1788 nvlist_free(spa->spa_l2cache.sav_config);
1789 spa->spa_l2cache.sav_config = NULL;
1791 spa->spa_l2cache.sav_count = 0;
1793 spa->spa_async_suspended = 0;
1795 spa->spa_indirect_vdevs_loaded = B_FALSE;
1797 if (spa->spa_comment != NULL) {
1798 spa_strfree(spa->spa_comment);
1799 spa->spa_comment = NULL;
1801 if (spa->spa_compatibility != NULL) {
1802 spa_strfree(spa->spa_compatibility);
1803 spa->spa_compatibility = NULL;
1806 spa_config_exit(spa, SCL_ALL, spa);
1810 * Load (or re-load) the current list of vdevs describing the active spares for
1811 * this pool. When this is called, we have some form of basic information in
1812 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1813 * then re-generate a more complete list including status information.
1815 void
1816 spa_load_spares(spa_t *spa)
1818 nvlist_t **spares;
1819 uint_t nspares;
1820 int i;
1821 vdev_t *vd, *tvd;
1823 #ifndef _KERNEL
1825 * zdb opens both the current state of the pool and the
1826 * checkpointed state (if present), with a different spa_t.
1828 * As spare vdevs are shared among open pools, we skip loading
1829 * them when we load the checkpointed state of the pool.
1831 if (!spa_writeable(spa))
1832 return;
1833 #endif
1835 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1838 * First, close and free any existing spare vdevs.
1840 if (spa->spa_spares.sav_vdevs) {
1841 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1842 vd = spa->spa_spares.sav_vdevs[i];
1844 /* Undo the call to spa_activate() below */
1845 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1846 B_FALSE)) != NULL && tvd->vdev_isspare)
1847 spa_spare_remove(tvd);
1848 vdev_close(vd);
1849 vdev_free(vd);
1852 kmem_free(spa->spa_spares.sav_vdevs,
1853 spa->spa_spares.sav_count * sizeof (void *));
1856 if (spa->spa_spares.sav_config == NULL)
1857 nspares = 0;
1858 else
1859 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1860 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1862 spa->spa_spares.sav_count = (int)nspares;
1863 spa->spa_spares.sav_vdevs = NULL;
1865 if (nspares == 0)
1866 return;
1869 * Construct the array of vdevs, opening them to get status in the
1870 * process. For each spare, there is potentially two different vdev_t
1871 * structures associated with it: one in the list of spares (used only
1872 * for basic validation purposes) and one in the active vdev
1873 * configuration (if it's spared in). During this phase we open and
1874 * validate each vdev on the spare list. If the vdev also exists in the
1875 * active configuration, then we also mark this vdev as an active spare.
1877 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1878 KM_SLEEP);
1879 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1880 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1881 VDEV_ALLOC_SPARE) == 0);
1882 ASSERT(vd != NULL);
1884 spa->spa_spares.sav_vdevs[i] = vd;
1886 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1887 B_FALSE)) != NULL) {
1888 if (!tvd->vdev_isspare)
1889 spa_spare_add(tvd);
1892 * We only mark the spare active if we were successfully
1893 * able to load the vdev. Otherwise, importing a pool
1894 * with a bad active spare would result in strange
1895 * behavior, because multiple pool would think the spare
1896 * is actively in use.
1898 * There is a vulnerability here to an equally bizarre
1899 * circumstance, where a dead active spare is later
1900 * brought back to life (onlined or otherwise). Given
1901 * the rarity of this scenario, and the extra complexity
1902 * it adds, we ignore the possibility.
1904 if (!vdev_is_dead(tvd))
1905 spa_spare_activate(tvd);
1908 vd->vdev_top = vd;
1909 vd->vdev_aux = &spa->spa_spares;
1911 if (vdev_open(vd) != 0)
1912 continue;
1914 if (vdev_validate_aux(vd) == 0)
1915 spa_spare_add(vd);
1919 * Recompute the stashed list of spares, with status information
1920 * this time.
1922 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1924 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1925 KM_SLEEP);
1926 for (i = 0; i < spa->spa_spares.sav_count; i++)
1927 spares[i] = vdev_config_generate(spa,
1928 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1929 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1930 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1931 spa->spa_spares.sav_count);
1932 for (i = 0; i < spa->spa_spares.sav_count; i++)
1933 nvlist_free(spares[i]);
1934 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1938 * Load (or re-load) the current list of vdevs describing the active l2cache for
1939 * this pool. When this is called, we have some form of basic information in
1940 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1941 * then re-generate a more complete list including status information.
1942 * Devices which are already active have their details maintained, and are
1943 * not re-opened.
1945 void
1946 spa_load_l2cache(spa_t *spa)
1948 nvlist_t **l2cache = NULL;
1949 uint_t nl2cache;
1950 int i, j, oldnvdevs;
1951 uint64_t guid;
1952 vdev_t *vd, **oldvdevs, **newvdevs;
1953 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1955 #ifndef _KERNEL
1957 * zdb opens both the current state of the pool and the
1958 * checkpointed state (if present), with a different spa_t.
1960 * As L2 caches are part of the ARC which is shared among open
1961 * pools, we skip loading them when we load the checkpointed
1962 * state of the pool.
1964 if (!spa_writeable(spa))
1965 return;
1966 #endif
1968 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1970 oldvdevs = sav->sav_vdevs;
1971 oldnvdevs = sav->sav_count;
1972 sav->sav_vdevs = NULL;
1973 sav->sav_count = 0;
1975 if (sav->sav_config == NULL) {
1976 nl2cache = 0;
1977 newvdevs = NULL;
1978 goto out;
1981 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
1982 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
1983 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1986 * Process new nvlist of vdevs.
1988 for (i = 0; i < nl2cache; i++) {
1989 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
1991 newvdevs[i] = NULL;
1992 for (j = 0; j < oldnvdevs; j++) {
1993 vd = oldvdevs[j];
1994 if (vd != NULL && guid == vd->vdev_guid) {
1996 * Retain previous vdev for add/remove ops.
1998 newvdevs[i] = vd;
1999 oldvdevs[j] = NULL;
2000 break;
2004 if (newvdevs[i] == NULL) {
2006 * Create new vdev
2008 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2009 VDEV_ALLOC_L2CACHE) == 0);
2010 ASSERT(vd != NULL);
2011 newvdevs[i] = vd;
2014 * Commit this vdev as an l2cache device,
2015 * even if it fails to open.
2017 spa_l2cache_add(vd);
2019 vd->vdev_top = vd;
2020 vd->vdev_aux = sav;
2022 spa_l2cache_activate(vd);
2024 if (vdev_open(vd) != 0)
2025 continue;
2027 (void) vdev_validate_aux(vd);
2029 if (!vdev_is_dead(vd))
2030 l2arc_add_vdev(spa, vd);
2033 * Upon cache device addition to a pool or pool
2034 * creation with a cache device or if the header
2035 * of the device is invalid we issue an async
2036 * TRIM command for the whole device which will
2037 * execute if l2arc_trim_ahead > 0.
2039 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2043 sav->sav_vdevs = newvdevs;
2044 sav->sav_count = (int)nl2cache;
2047 * Recompute the stashed list of l2cache devices, with status
2048 * information this time.
2050 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2052 if (sav->sav_count > 0)
2053 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2054 KM_SLEEP);
2055 for (i = 0; i < sav->sav_count; i++)
2056 l2cache[i] = vdev_config_generate(spa,
2057 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2058 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2059 (const nvlist_t * const *)l2cache, sav->sav_count);
2061 out:
2063 * Purge vdevs that were dropped
2065 if (oldvdevs) {
2066 for (i = 0; i < oldnvdevs; i++) {
2067 uint64_t pool;
2069 vd = oldvdevs[i];
2070 if (vd != NULL) {
2071 ASSERT(vd->vdev_isl2cache);
2073 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2074 pool != 0ULL && l2arc_vdev_present(vd))
2075 l2arc_remove_vdev(vd);
2076 vdev_clear_stats(vd);
2077 vdev_free(vd);
2081 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2084 for (i = 0; i < sav->sav_count; i++)
2085 nvlist_free(l2cache[i]);
2086 if (sav->sav_count)
2087 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2090 static int
2091 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2093 dmu_buf_t *db;
2094 char *packed = NULL;
2095 size_t nvsize = 0;
2096 int error;
2097 *value = NULL;
2099 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2100 if (error)
2101 return (error);
2103 nvsize = *(uint64_t *)db->db_data;
2104 dmu_buf_rele(db, FTAG);
2106 packed = vmem_alloc(nvsize, KM_SLEEP);
2107 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2108 DMU_READ_PREFETCH);
2109 if (error == 0)
2110 error = nvlist_unpack(packed, nvsize, value, 0);
2111 vmem_free(packed, nvsize);
2113 return (error);
2117 * Concrete top-level vdevs that are not missing and are not logs. At every
2118 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2120 static uint64_t
2121 spa_healthy_core_tvds(spa_t *spa)
2123 vdev_t *rvd = spa->spa_root_vdev;
2124 uint64_t tvds = 0;
2126 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2127 vdev_t *vd = rvd->vdev_child[i];
2128 if (vd->vdev_islog)
2129 continue;
2130 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2131 tvds++;
2134 return (tvds);
2138 * Checks to see if the given vdev could not be opened, in which case we post a
2139 * sysevent to notify the autoreplace code that the device has been removed.
2141 static void
2142 spa_check_removed(vdev_t *vd)
2144 for (uint64_t c = 0; c < vd->vdev_children; c++)
2145 spa_check_removed(vd->vdev_child[c]);
2147 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2148 vdev_is_concrete(vd)) {
2149 zfs_post_autoreplace(vd->vdev_spa, vd);
2150 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2154 static int
2155 spa_check_for_missing_logs(spa_t *spa)
2157 vdev_t *rvd = spa->spa_root_vdev;
2160 * If we're doing a normal import, then build up any additional
2161 * diagnostic information about missing log devices.
2162 * We'll pass this up to the user for further processing.
2164 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2165 nvlist_t **child, *nv;
2166 uint64_t idx = 0;
2168 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2169 KM_SLEEP);
2170 nv = fnvlist_alloc();
2172 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2173 vdev_t *tvd = rvd->vdev_child[c];
2176 * We consider a device as missing only if it failed
2177 * to open (i.e. offline or faulted is not considered
2178 * as missing).
2180 if (tvd->vdev_islog &&
2181 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2182 child[idx++] = vdev_config_generate(spa, tvd,
2183 B_FALSE, VDEV_CONFIG_MISSING);
2187 if (idx > 0) {
2188 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2189 (const nvlist_t * const *)child, idx);
2190 fnvlist_add_nvlist(spa->spa_load_info,
2191 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2193 for (uint64_t i = 0; i < idx; i++)
2194 nvlist_free(child[i]);
2196 nvlist_free(nv);
2197 kmem_free(child, rvd->vdev_children * sizeof (char **));
2199 if (idx > 0) {
2200 spa_load_failed(spa, "some log devices are missing");
2201 vdev_dbgmsg_print_tree(rvd, 2);
2202 return (SET_ERROR(ENXIO));
2204 } else {
2205 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2206 vdev_t *tvd = rvd->vdev_child[c];
2208 if (tvd->vdev_islog &&
2209 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2210 spa_set_log_state(spa, SPA_LOG_CLEAR);
2211 spa_load_note(spa, "some log devices are "
2212 "missing, ZIL is dropped.");
2213 vdev_dbgmsg_print_tree(rvd, 2);
2214 break;
2219 return (0);
2223 * Check for missing log devices
2225 static boolean_t
2226 spa_check_logs(spa_t *spa)
2228 boolean_t rv = B_FALSE;
2229 dsl_pool_t *dp = spa_get_dsl(spa);
2231 switch (spa->spa_log_state) {
2232 default:
2233 break;
2234 case SPA_LOG_MISSING:
2235 /* need to recheck in case slog has been restored */
2236 case SPA_LOG_UNKNOWN:
2237 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2238 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2239 if (rv)
2240 spa_set_log_state(spa, SPA_LOG_MISSING);
2241 break;
2243 return (rv);
2247 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2249 static boolean_t
2250 spa_passivate_log(spa_t *spa)
2252 vdev_t *rvd = spa->spa_root_vdev;
2253 boolean_t slog_found = B_FALSE;
2255 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2257 for (int c = 0; c < rvd->vdev_children; c++) {
2258 vdev_t *tvd = rvd->vdev_child[c];
2260 if (tvd->vdev_islog) {
2261 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2262 metaslab_group_passivate(tvd->vdev_mg);
2263 slog_found = B_TRUE;
2267 return (slog_found);
2271 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2273 static void
2274 spa_activate_log(spa_t *spa)
2276 vdev_t *rvd = spa->spa_root_vdev;
2278 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2280 for (int c = 0; c < rvd->vdev_children; c++) {
2281 vdev_t *tvd = rvd->vdev_child[c];
2283 if (tvd->vdev_islog) {
2284 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2285 metaslab_group_activate(tvd->vdev_mg);
2291 spa_reset_logs(spa_t *spa)
2293 int error;
2295 error = dmu_objset_find(spa_name(spa), zil_reset,
2296 NULL, DS_FIND_CHILDREN);
2297 if (error == 0) {
2299 * We successfully offlined the log device, sync out the
2300 * current txg so that the "stubby" block can be removed
2301 * by zil_sync().
2303 txg_wait_synced(spa->spa_dsl_pool, 0);
2305 return (error);
2308 static void
2309 spa_aux_check_removed(spa_aux_vdev_t *sav)
2311 for (int i = 0; i < sav->sav_count; i++)
2312 spa_check_removed(sav->sav_vdevs[i]);
2315 void
2316 spa_claim_notify(zio_t *zio)
2318 spa_t *spa = zio->io_spa;
2320 if (zio->io_error)
2321 return;
2323 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2324 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2325 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2326 mutex_exit(&spa->spa_props_lock);
2329 typedef struct spa_load_error {
2330 boolean_t sle_verify_data;
2331 uint64_t sle_meta_count;
2332 uint64_t sle_data_count;
2333 } spa_load_error_t;
2335 static void
2336 spa_load_verify_done(zio_t *zio)
2338 blkptr_t *bp = zio->io_bp;
2339 spa_load_error_t *sle = zio->io_private;
2340 dmu_object_type_t type = BP_GET_TYPE(bp);
2341 int error = zio->io_error;
2342 spa_t *spa = zio->io_spa;
2344 abd_free(zio->io_abd);
2345 if (error) {
2346 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2347 type != DMU_OT_INTENT_LOG)
2348 atomic_inc_64(&sle->sle_meta_count);
2349 else
2350 atomic_inc_64(&sle->sle_data_count);
2353 mutex_enter(&spa->spa_scrub_lock);
2354 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2355 cv_broadcast(&spa->spa_scrub_io_cv);
2356 mutex_exit(&spa->spa_scrub_lock);
2360 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2361 * By default, we set it to 1/16th of the arc.
2363 static uint_t spa_load_verify_shift = 4;
2364 static int spa_load_verify_metadata = B_TRUE;
2365 static int spa_load_verify_data = B_TRUE;
2367 static int
2368 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2369 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2371 zio_t *rio = arg;
2372 spa_load_error_t *sle = rio->io_private;
2374 (void) zilog, (void) dnp;
2377 * Note: normally this routine will not be called if
2378 * spa_load_verify_metadata is not set. However, it may be useful
2379 * to manually set the flag after the traversal has begun.
2381 if (!spa_load_verify_metadata)
2382 return (0);
2385 * Sanity check the block pointer in order to detect obvious damage
2386 * before using the contents in subsequent checks or in zio_read().
2387 * When damaged consider it to be a metadata error since we cannot
2388 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2390 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2391 atomic_inc_64(&sle->sle_meta_count);
2392 return (0);
2395 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2396 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2397 return (0);
2399 if (!BP_IS_METADATA(bp) &&
2400 (!spa_load_verify_data || !sle->sle_verify_data))
2401 return (0);
2403 uint64_t maxinflight_bytes =
2404 arc_target_bytes() >> spa_load_verify_shift;
2405 size_t size = BP_GET_PSIZE(bp);
2407 mutex_enter(&spa->spa_scrub_lock);
2408 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2409 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2410 spa->spa_load_verify_bytes += size;
2411 mutex_exit(&spa->spa_scrub_lock);
2413 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2414 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2415 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2416 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2417 return (0);
2420 static int
2421 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2423 (void) dp, (void) arg;
2425 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2426 return (SET_ERROR(ENAMETOOLONG));
2428 return (0);
2431 static int
2432 spa_load_verify(spa_t *spa)
2434 zio_t *rio;
2435 spa_load_error_t sle = { 0 };
2436 zpool_load_policy_t policy;
2437 boolean_t verify_ok = B_FALSE;
2438 int error = 0;
2440 zpool_get_load_policy(spa->spa_config, &policy);
2442 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2443 policy.zlp_maxmeta == UINT64_MAX)
2444 return (0);
2446 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2447 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2448 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2449 DS_FIND_CHILDREN);
2450 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2451 if (error != 0)
2452 return (error);
2455 * Verify data only if we are rewinding or error limit was set.
2456 * Otherwise nothing except dbgmsg care about it to waste time.
2458 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2459 (policy.zlp_maxdata < UINT64_MAX);
2461 rio = zio_root(spa, NULL, &sle,
2462 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2464 if (spa_load_verify_metadata) {
2465 if (spa->spa_extreme_rewind) {
2466 spa_load_note(spa, "performing a complete scan of the "
2467 "pool since extreme rewind is on. This may take "
2468 "a very long time.\n (spa_load_verify_data=%u, "
2469 "spa_load_verify_metadata=%u)",
2470 spa_load_verify_data, spa_load_verify_metadata);
2473 error = traverse_pool(spa, spa->spa_verify_min_txg,
2474 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2475 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2478 (void) zio_wait(rio);
2479 ASSERT0(spa->spa_load_verify_bytes);
2481 spa->spa_load_meta_errors = sle.sle_meta_count;
2482 spa->spa_load_data_errors = sle.sle_data_count;
2484 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2485 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2486 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2487 (u_longlong_t)sle.sle_data_count);
2490 if (spa_load_verify_dryrun ||
2491 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2492 sle.sle_data_count <= policy.zlp_maxdata)) {
2493 int64_t loss = 0;
2495 verify_ok = B_TRUE;
2496 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2497 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2499 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2500 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2501 spa->spa_load_txg_ts);
2502 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2503 loss);
2504 fnvlist_add_uint64(spa->spa_load_info,
2505 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2506 fnvlist_add_uint64(spa->spa_load_info,
2507 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2508 } else {
2509 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2512 if (spa_load_verify_dryrun)
2513 return (0);
2515 if (error) {
2516 if (error != ENXIO && error != EIO)
2517 error = SET_ERROR(EIO);
2518 return (error);
2521 return (verify_ok ? 0 : EIO);
2525 * Find a value in the pool props object.
2527 static void
2528 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2530 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2531 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2535 * Find a value in the pool directory object.
2537 static int
2538 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2540 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2541 name, sizeof (uint64_t), 1, val);
2543 if (error != 0 && (error != ENOENT || log_enoent)) {
2544 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2545 "[error=%d]", name, error);
2548 return (error);
2551 static int
2552 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2554 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2555 return (SET_ERROR(err));
2558 boolean_t
2559 spa_livelist_delete_check(spa_t *spa)
2561 return (spa->spa_livelists_to_delete != 0);
2564 static boolean_t
2565 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2567 (void) z;
2568 spa_t *spa = arg;
2569 return (spa_livelist_delete_check(spa));
2572 static int
2573 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2575 spa_t *spa = arg;
2576 zio_free(spa, tx->tx_txg, bp);
2577 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2578 -bp_get_dsize_sync(spa, bp),
2579 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2580 return (0);
2583 static int
2584 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2586 int err;
2587 zap_cursor_t zc;
2588 zap_attribute_t za;
2589 zap_cursor_init(&zc, os, zap_obj);
2590 err = zap_cursor_retrieve(&zc, &za);
2591 zap_cursor_fini(&zc);
2592 if (err == 0)
2593 *llp = za.za_first_integer;
2594 return (err);
2598 * Components of livelist deletion that must be performed in syncing
2599 * context: freeing block pointers and updating the pool-wide data
2600 * structures to indicate how much work is left to do
2602 typedef struct sublist_delete_arg {
2603 spa_t *spa;
2604 dsl_deadlist_t *ll;
2605 uint64_t key;
2606 bplist_t *to_free;
2607 } sublist_delete_arg_t;
2609 static void
2610 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2612 sublist_delete_arg_t *sda = arg;
2613 spa_t *spa = sda->spa;
2614 dsl_deadlist_t *ll = sda->ll;
2615 uint64_t key = sda->key;
2616 bplist_t *to_free = sda->to_free;
2618 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2619 dsl_deadlist_remove_entry(ll, key, tx);
2622 typedef struct livelist_delete_arg {
2623 spa_t *spa;
2624 uint64_t ll_obj;
2625 uint64_t zap_obj;
2626 } livelist_delete_arg_t;
2628 static void
2629 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2631 livelist_delete_arg_t *lda = arg;
2632 spa_t *spa = lda->spa;
2633 uint64_t ll_obj = lda->ll_obj;
2634 uint64_t zap_obj = lda->zap_obj;
2635 objset_t *mos = spa->spa_meta_objset;
2636 uint64_t count;
2638 /* free the livelist and decrement the feature count */
2639 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2640 dsl_deadlist_free(mos, ll_obj, tx);
2641 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2642 VERIFY0(zap_count(mos, zap_obj, &count));
2643 if (count == 0) {
2644 /* no more livelists to delete */
2645 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2646 DMU_POOL_DELETED_CLONES, tx));
2647 VERIFY0(zap_destroy(mos, zap_obj, tx));
2648 spa->spa_livelists_to_delete = 0;
2649 spa_notify_waiters(spa);
2654 * Load in the value for the livelist to be removed and open it. Then,
2655 * load its first sublist and determine which block pointers should actually
2656 * be freed. Then, call a synctask which performs the actual frees and updates
2657 * the pool-wide livelist data.
2659 static void
2660 spa_livelist_delete_cb(void *arg, zthr_t *z)
2662 spa_t *spa = arg;
2663 uint64_t ll_obj = 0, count;
2664 objset_t *mos = spa->spa_meta_objset;
2665 uint64_t zap_obj = spa->spa_livelists_to_delete;
2667 * Determine the next livelist to delete. This function should only
2668 * be called if there is at least one deleted clone.
2670 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2671 VERIFY0(zap_count(mos, ll_obj, &count));
2672 if (count > 0) {
2673 dsl_deadlist_t *ll;
2674 dsl_deadlist_entry_t *dle;
2675 bplist_t to_free;
2676 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2677 dsl_deadlist_open(ll, mos, ll_obj);
2678 dle = dsl_deadlist_first(ll);
2679 ASSERT3P(dle, !=, NULL);
2680 bplist_create(&to_free);
2681 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2682 z, NULL);
2683 if (err == 0) {
2684 sublist_delete_arg_t sync_arg = {
2685 .spa = spa,
2686 .ll = ll,
2687 .key = dle->dle_mintxg,
2688 .to_free = &to_free
2690 zfs_dbgmsg("deleting sublist (id %llu) from"
2691 " livelist %llu, %lld remaining",
2692 (u_longlong_t)dle->dle_bpobj.bpo_object,
2693 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2694 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2695 sublist_delete_sync, &sync_arg, 0,
2696 ZFS_SPACE_CHECK_DESTROY));
2697 } else {
2698 VERIFY3U(err, ==, EINTR);
2700 bplist_clear(&to_free);
2701 bplist_destroy(&to_free);
2702 dsl_deadlist_close(ll);
2703 kmem_free(ll, sizeof (dsl_deadlist_t));
2704 } else {
2705 livelist_delete_arg_t sync_arg = {
2706 .spa = spa,
2707 .ll_obj = ll_obj,
2708 .zap_obj = zap_obj
2710 zfs_dbgmsg("deletion of livelist %llu completed",
2711 (u_longlong_t)ll_obj);
2712 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2713 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2717 static void
2718 spa_start_livelist_destroy_thread(spa_t *spa)
2720 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2721 spa->spa_livelist_delete_zthr =
2722 zthr_create("z_livelist_destroy",
2723 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2724 minclsyspri);
2727 typedef struct livelist_new_arg {
2728 bplist_t *allocs;
2729 bplist_t *frees;
2730 } livelist_new_arg_t;
2732 static int
2733 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2734 dmu_tx_t *tx)
2736 ASSERT(tx == NULL);
2737 livelist_new_arg_t *lna = arg;
2738 if (bp_freed) {
2739 bplist_append(lna->frees, bp);
2740 } else {
2741 bplist_append(lna->allocs, bp);
2742 zfs_livelist_condense_new_alloc++;
2744 return (0);
2747 typedef struct livelist_condense_arg {
2748 spa_t *spa;
2749 bplist_t to_keep;
2750 uint64_t first_size;
2751 uint64_t next_size;
2752 } livelist_condense_arg_t;
2754 static void
2755 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2757 livelist_condense_arg_t *lca = arg;
2758 spa_t *spa = lca->spa;
2759 bplist_t new_frees;
2760 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2762 /* Have we been cancelled? */
2763 if (spa->spa_to_condense.cancelled) {
2764 zfs_livelist_condense_sync_cancel++;
2765 goto out;
2768 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2769 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2770 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2773 * It's possible that the livelist was changed while the zthr was
2774 * running. Therefore, we need to check for new blkptrs in the two
2775 * entries being condensed and continue to track them in the livelist.
2776 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2777 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2778 * we need to sort them into two different bplists.
2780 uint64_t first_obj = first->dle_bpobj.bpo_object;
2781 uint64_t next_obj = next->dle_bpobj.bpo_object;
2782 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2783 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2785 bplist_create(&new_frees);
2786 livelist_new_arg_t new_bps = {
2787 .allocs = &lca->to_keep,
2788 .frees = &new_frees,
2791 if (cur_first_size > lca->first_size) {
2792 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2793 livelist_track_new_cb, &new_bps, lca->first_size));
2795 if (cur_next_size > lca->next_size) {
2796 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2797 livelist_track_new_cb, &new_bps, lca->next_size));
2800 dsl_deadlist_clear_entry(first, ll, tx);
2801 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2802 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2804 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2805 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2806 bplist_destroy(&new_frees);
2808 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2809 dsl_dataset_name(ds, dsname);
2810 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2811 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2812 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2813 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2814 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2815 (u_longlong_t)cur_next_size,
2816 (u_longlong_t)first->dle_bpobj.bpo_object,
2817 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2818 out:
2819 dmu_buf_rele(ds->ds_dbuf, spa);
2820 spa->spa_to_condense.ds = NULL;
2821 bplist_clear(&lca->to_keep);
2822 bplist_destroy(&lca->to_keep);
2823 kmem_free(lca, sizeof (livelist_condense_arg_t));
2824 spa->spa_to_condense.syncing = B_FALSE;
2827 static void
2828 spa_livelist_condense_cb(void *arg, zthr_t *t)
2830 while (zfs_livelist_condense_zthr_pause &&
2831 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2832 delay(1);
2834 spa_t *spa = arg;
2835 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2836 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2837 uint64_t first_size, next_size;
2839 livelist_condense_arg_t *lca =
2840 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2841 bplist_create(&lca->to_keep);
2844 * Process the livelists (matching FREEs and ALLOCs) in open context
2845 * so we have minimal work in syncing context to condense.
2847 * We save bpobj sizes (first_size and next_size) to use later in
2848 * syncing context to determine if entries were added to these sublists
2849 * while in open context. This is possible because the clone is still
2850 * active and open for normal writes and we want to make sure the new,
2851 * unprocessed blockpointers are inserted into the livelist normally.
2853 * Note that dsl_process_sub_livelist() both stores the size number of
2854 * blockpointers and iterates over them while the bpobj's lock held, so
2855 * the sizes returned to us are consistent which what was actually
2856 * processed.
2858 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2859 &first_size);
2860 if (err == 0)
2861 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2862 t, &next_size);
2864 if (err == 0) {
2865 while (zfs_livelist_condense_sync_pause &&
2866 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2867 delay(1);
2869 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2870 dmu_tx_mark_netfree(tx);
2871 dmu_tx_hold_space(tx, 1);
2872 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2873 if (err == 0) {
2875 * Prevent the condense zthr restarting before
2876 * the synctask completes.
2878 spa->spa_to_condense.syncing = B_TRUE;
2879 lca->spa = spa;
2880 lca->first_size = first_size;
2881 lca->next_size = next_size;
2882 dsl_sync_task_nowait(spa_get_dsl(spa),
2883 spa_livelist_condense_sync, lca, tx);
2884 dmu_tx_commit(tx);
2885 return;
2889 * Condensing can not continue: either it was externally stopped or
2890 * we were unable to assign to a tx because the pool has run out of
2891 * space. In the second case, we'll just end up trying to condense
2892 * again in a later txg.
2894 ASSERT(err != 0);
2895 bplist_clear(&lca->to_keep);
2896 bplist_destroy(&lca->to_keep);
2897 kmem_free(lca, sizeof (livelist_condense_arg_t));
2898 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2899 spa->spa_to_condense.ds = NULL;
2900 if (err == EINTR)
2901 zfs_livelist_condense_zthr_cancel++;
2905 * Check that there is something to condense but that a condense is not
2906 * already in progress and that condensing has not been cancelled.
2908 static boolean_t
2909 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2911 (void) z;
2912 spa_t *spa = arg;
2913 if ((spa->spa_to_condense.ds != NULL) &&
2914 (spa->spa_to_condense.syncing == B_FALSE) &&
2915 (spa->spa_to_condense.cancelled == B_FALSE)) {
2916 return (B_TRUE);
2918 return (B_FALSE);
2921 static void
2922 spa_start_livelist_condensing_thread(spa_t *spa)
2924 spa->spa_to_condense.ds = NULL;
2925 spa->spa_to_condense.first = NULL;
2926 spa->spa_to_condense.next = NULL;
2927 spa->spa_to_condense.syncing = B_FALSE;
2928 spa->spa_to_condense.cancelled = B_FALSE;
2930 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2931 spa->spa_livelist_condense_zthr =
2932 zthr_create("z_livelist_condense",
2933 spa_livelist_condense_cb_check,
2934 spa_livelist_condense_cb, spa, minclsyspri);
2937 static void
2938 spa_spawn_aux_threads(spa_t *spa)
2940 ASSERT(spa_writeable(spa));
2942 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2944 spa_start_indirect_condensing_thread(spa);
2945 spa_start_livelist_destroy_thread(spa);
2946 spa_start_livelist_condensing_thread(spa);
2948 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2949 spa->spa_checkpoint_discard_zthr =
2950 zthr_create("z_checkpoint_discard",
2951 spa_checkpoint_discard_thread_check,
2952 spa_checkpoint_discard_thread, spa, minclsyspri);
2956 * Fix up config after a partly-completed split. This is done with the
2957 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2958 * pool have that entry in their config, but only the splitting one contains
2959 * a list of all the guids of the vdevs that are being split off.
2961 * This function determines what to do with that list: either rejoin
2962 * all the disks to the pool, or complete the splitting process. To attempt
2963 * the rejoin, each disk that is offlined is marked online again, and
2964 * we do a reopen() call. If the vdev label for every disk that was
2965 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2966 * then we call vdev_split() on each disk, and complete the split.
2968 * Otherwise we leave the config alone, with all the vdevs in place in
2969 * the original pool.
2971 static void
2972 spa_try_repair(spa_t *spa, nvlist_t *config)
2974 uint_t extracted;
2975 uint64_t *glist;
2976 uint_t i, gcount;
2977 nvlist_t *nvl;
2978 vdev_t **vd;
2979 boolean_t attempt_reopen;
2981 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2982 return;
2984 /* check that the config is complete */
2985 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2986 &glist, &gcount) != 0)
2987 return;
2989 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2991 /* attempt to online all the vdevs & validate */
2992 attempt_reopen = B_TRUE;
2993 for (i = 0; i < gcount; i++) {
2994 if (glist[i] == 0) /* vdev is hole */
2995 continue;
2997 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2998 if (vd[i] == NULL) {
3000 * Don't bother attempting to reopen the disks;
3001 * just do the split.
3003 attempt_reopen = B_FALSE;
3004 } else {
3005 /* attempt to re-online it */
3006 vd[i]->vdev_offline = B_FALSE;
3010 if (attempt_reopen) {
3011 vdev_reopen(spa->spa_root_vdev);
3013 /* check each device to see what state it's in */
3014 for (extracted = 0, i = 0; i < gcount; i++) {
3015 if (vd[i] != NULL &&
3016 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3017 break;
3018 ++extracted;
3023 * If every disk has been moved to the new pool, or if we never
3024 * even attempted to look at them, then we split them off for
3025 * good.
3027 if (!attempt_reopen || gcount == extracted) {
3028 for (i = 0; i < gcount; i++)
3029 if (vd[i] != NULL)
3030 vdev_split(vd[i]);
3031 vdev_reopen(spa->spa_root_vdev);
3034 kmem_free(vd, gcount * sizeof (vdev_t *));
3037 static int
3038 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3040 const char *ereport = FM_EREPORT_ZFS_POOL;
3041 int error;
3043 spa->spa_load_state = state;
3044 (void) spa_import_progress_set_state(spa_guid(spa),
3045 spa_load_state(spa));
3047 gethrestime(&spa->spa_loaded_ts);
3048 error = spa_load_impl(spa, type, &ereport);
3051 * Don't count references from objsets that are already closed
3052 * and are making their way through the eviction process.
3054 spa_evicting_os_wait(spa);
3055 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3056 if (error) {
3057 if (error != EEXIST) {
3058 spa->spa_loaded_ts.tv_sec = 0;
3059 spa->spa_loaded_ts.tv_nsec = 0;
3061 if (error != EBADF) {
3062 (void) zfs_ereport_post(ereport, spa,
3063 NULL, NULL, NULL, 0);
3066 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3067 spa->spa_ena = 0;
3069 (void) spa_import_progress_set_state(spa_guid(spa),
3070 spa_load_state(spa));
3072 return (error);
3075 #ifdef ZFS_DEBUG
3077 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3078 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3079 * spa's per-vdev ZAP list.
3081 static uint64_t
3082 vdev_count_verify_zaps(vdev_t *vd)
3084 spa_t *spa = vd->vdev_spa;
3085 uint64_t total = 0;
3087 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3088 vd->vdev_root_zap != 0) {
3089 total++;
3090 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3091 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3093 if (vd->vdev_top_zap != 0) {
3094 total++;
3095 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3096 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3098 if (vd->vdev_leaf_zap != 0) {
3099 total++;
3100 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3101 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3104 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3105 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3108 return (total);
3110 #else
3111 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3112 #endif
3115 * Determine whether the activity check is required.
3117 static boolean_t
3118 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3119 nvlist_t *config)
3121 uint64_t state = 0;
3122 uint64_t hostid = 0;
3123 uint64_t tryconfig_txg = 0;
3124 uint64_t tryconfig_timestamp = 0;
3125 uint16_t tryconfig_mmp_seq = 0;
3126 nvlist_t *nvinfo;
3128 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3129 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3130 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3131 &tryconfig_txg);
3132 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3133 &tryconfig_timestamp);
3134 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3135 &tryconfig_mmp_seq);
3138 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3141 * Disable the MMP activity check - This is used by zdb which
3142 * is intended to be used on potentially active pools.
3144 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3145 return (B_FALSE);
3148 * Skip the activity check when the MMP feature is disabled.
3150 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3151 return (B_FALSE);
3154 * If the tryconfig_ values are nonzero, they are the results of an
3155 * earlier tryimport. If they all match the uberblock we just found,
3156 * then the pool has not changed and we return false so we do not test
3157 * a second time.
3159 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3160 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3161 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3162 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3163 return (B_FALSE);
3166 * Allow the activity check to be skipped when importing the pool
3167 * on the same host which last imported it. Since the hostid from
3168 * configuration may be stale use the one read from the label.
3170 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3171 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3173 if (hostid == spa_get_hostid(spa))
3174 return (B_FALSE);
3177 * Skip the activity test when the pool was cleanly exported.
3179 if (state != POOL_STATE_ACTIVE)
3180 return (B_FALSE);
3182 return (B_TRUE);
3186 * Nanoseconds the activity check must watch for changes on-disk.
3188 static uint64_t
3189 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3191 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3192 uint64_t multihost_interval = MSEC2NSEC(
3193 MMP_INTERVAL_OK(zfs_multihost_interval));
3194 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3195 multihost_interval);
3198 * Local tunables determine a minimum duration except for the case
3199 * where we know when the remote host will suspend the pool if MMP
3200 * writes do not land.
3202 * See Big Theory comment at the top of mmp.c for the reasoning behind
3203 * these cases and times.
3206 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3208 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3209 MMP_FAIL_INT(ub) > 0) {
3211 /* MMP on remote host will suspend pool after failed writes */
3212 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3213 MMP_IMPORT_SAFETY_FACTOR / 100;
3215 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3216 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3217 "import_intervals=%llu", (u_longlong_t)import_delay,
3218 (u_longlong_t)MMP_FAIL_INT(ub),
3219 (u_longlong_t)MMP_INTERVAL(ub),
3220 (u_longlong_t)import_intervals);
3222 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3223 MMP_FAIL_INT(ub) == 0) {
3225 /* MMP on remote host will never suspend pool */
3226 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3227 ub->ub_mmp_delay) * import_intervals);
3229 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3230 "mmp_interval=%llu ub_mmp_delay=%llu "
3231 "import_intervals=%llu", (u_longlong_t)import_delay,
3232 (u_longlong_t)MMP_INTERVAL(ub),
3233 (u_longlong_t)ub->ub_mmp_delay,
3234 (u_longlong_t)import_intervals);
3236 } else if (MMP_VALID(ub)) {
3238 * zfs-0.7 compatibility case
3241 import_delay = MAX(import_delay, (multihost_interval +
3242 ub->ub_mmp_delay) * import_intervals);
3244 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3245 "import_intervals=%llu leaves=%u",
3246 (u_longlong_t)import_delay,
3247 (u_longlong_t)ub->ub_mmp_delay,
3248 (u_longlong_t)import_intervals,
3249 vdev_count_leaves(spa));
3250 } else {
3251 /* Using local tunings is the only reasonable option */
3252 zfs_dbgmsg("pool last imported on non-MMP aware "
3253 "host using import_delay=%llu multihost_interval=%llu "
3254 "import_intervals=%llu", (u_longlong_t)import_delay,
3255 (u_longlong_t)multihost_interval,
3256 (u_longlong_t)import_intervals);
3259 return (import_delay);
3263 * Perform the import activity check. If the user canceled the import or
3264 * we detected activity then fail.
3266 static int
3267 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3269 uint64_t txg = ub->ub_txg;
3270 uint64_t timestamp = ub->ub_timestamp;
3271 uint64_t mmp_config = ub->ub_mmp_config;
3272 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3273 uint64_t import_delay;
3274 hrtime_t import_expire;
3275 nvlist_t *mmp_label = NULL;
3276 vdev_t *rvd = spa->spa_root_vdev;
3277 kcondvar_t cv;
3278 kmutex_t mtx;
3279 int error = 0;
3281 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3282 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3283 mutex_enter(&mtx);
3286 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3287 * during the earlier tryimport. If the txg recorded there is 0 then
3288 * the pool is known to be active on another host.
3290 * Otherwise, the pool might be in use on another host. Check for
3291 * changes in the uberblocks on disk if necessary.
3293 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3294 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3295 ZPOOL_CONFIG_LOAD_INFO);
3297 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3298 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3299 vdev_uberblock_load(rvd, ub, &mmp_label);
3300 error = SET_ERROR(EREMOTEIO);
3301 goto out;
3305 import_delay = spa_activity_check_duration(spa, ub);
3307 /* Add a small random factor in case of simultaneous imports (0-25%) */
3308 import_delay += import_delay * random_in_range(250) / 1000;
3310 import_expire = gethrtime() + import_delay;
3312 while (gethrtime() < import_expire) {
3313 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3314 NSEC2SEC(import_expire - gethrtime()));
3316 vdev_uberblock_load(rvd, ub, &mmp_label);
3318 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3319 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3320 zfs_dbgmsg("multihost activity detected "
3321 "txg %llu ub_txg %llu "
3322 "timestamp %llu ub_timestamp %llu "
3323 "mmp_config %#llx ub_mmp_config %#llx",
3324 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3325 (u_longlong_t)timestamp,
3326 (u_longlong_t)ub->ub_timestamp,
3327 (u_longlong_t)mmp_config,
3328 (u_longlong_t)ub->ub_mmp_config);
3330 error = SET_ERROR(EREMOTEIO);
3331 break;
3334 if (mmp_label) {
3335 nvlist_free(mmp_label);
3336 mmp_label = NULL;
3339 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3340 if (error != -1) {
3341 error = SET_ERROR(EINTR);
3342 break;
3344 error = 0;
3347 out:
3348 mutex_exit(&mtx);
3349 mutex_destroy(&mtx);
3350 cv_destroy(&cv);
3353 * If the pool is determined to be active store the status in the
3354 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3355 * available from configuration read from disk store them as well.
3356 * This allows 'zpool import' to generate a more useful message.
3358 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3359 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3360 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3362 if (error == EREMOTEIO) {
3363 const char *hostname = "<unknown>";
3364 uint64_t hostid = 0;
3366 if (mmp_label) {
3367 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3368 hostname = fnvlist_lookup_string(mmp_label,
3369 ZPOOL_CONFIG_HOSTNAME);
3370 fnvlist_add_string(spa->spa_load_info,
3371 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3374 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3375 hostid = fnvlist_lookup_uint64(mmp_label,
3376 ZPOOL_CONFIG_HOSTID);
3377 fnvlist_add_uint64(spa->spa_load_info,
3378 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3382 fnvlist_add_uint64(spa->spa_load_info,
3383 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3384 fnvlist_add_uint64(spa->spa_load_info,
3385 ZPOOL_CONFIG_MMP_TXG, 0);
3387 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3390 if (mmp_label)
3391 nvlist_free(mmp_label);
3393 return (error);
3396 static int
3397 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3399 uint64_t hostid;
3400 const char *hostname;
3401 uint64_t myhostid = 0;
3403 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3404 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3405 hostname = fnvlist_lookup_string(mos_config,
3406 ZPOOL_CONFIG_HOSTNAME);
3408 myhostid = zone_get_hostid(NULL);
3410 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3411 cmn_err(CE_WARN, "pool '%s' could not be "
3412 "loaded as it was last accessed by "
3413 "another system (host: %s hostid: 0x%llx). "
3414 "See: https://openzfs.github.io/openzfs-docs/msg/"
3415 "ZFS-8000-EY",
3416 spa_name(spa), hostname, (u_longlong_t)hostid);
3417 spa_load_failed(spa, "hostid verification failed: pool "
3418 "last accessed by host: %s (hostid: 0x%llx)",
3419 hostname, (u_longlong_t)hostid);
3420 return (SET_ERROR(EBADF));
3424 return (0);
3427 static int
3428 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3430 int error = 0;
3431 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3432 int parse;
3433 vdev_t *rvd;
3434 uint64_t pool_guid;
3435 const char *comment;
3436 const char *compatibility;
3439 * Versioning wasn't explicitly added to the label until later, so if
3440 * it's not present treat it as the initial version.
3442 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3443 &spa->spa_ubsync.ub_version) != 0)
3444 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3446 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3447 spa_load_failed(spa, "invalid config provided: '%s' missing",
3448 ZPOOL_CONFIG_POOL_GUID);
3449 return (SET_ERROR(EINVAL));
3453 * If we are doing an import, ensure that the pool is not already
3454 * imported by checking if its pool guid already exists in the
3455 * spa namespace.
3457 * The only case that we allow an already imported pool to be
3458 * imported again, is when the pool is checkpointed and we want to
3459 * look at its checkpointed state from userland tools like zdb.
3461 #ifdef _KERNEL
3462 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3463 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3464 spa_guid_exists(pool_guid, 0)) {
3465 #else
3466 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3467 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3468 spa_guid_exists(pool_guid, 0) &&
3469 !spa_importing_readonly_checkpoint(spa)) {
3470 #endif
3471 spa_load_failed(spa, "a pool with guid %llu is already open",
3472 (u_longlong_t)pool_guid);
3473 return (SET_ERROR(EEXIST));
3476 spa->spa_config_guid = pool_guid;
3478 nvlist_free(spa->spa_load_info);
3479 spa->spa_load_info = fnvlist_alloc();
3481 ASSERT(spa->spa_comment == NULL);
3482 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3483 spa->spa_comment = spa_strdup(comment);
3485 ASSERT(spa->spa_compatibility == NULL);
3486 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3487 &compatibility) == 0)
3488 spa->spa_compatibility = spa_strdup(compatibility);
3490 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3491 &spa->spa_config_txg);
3493 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3494 spa->spa_config_splitting = fnvlist_dup(nvl);
3496 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3497 spa_load_failed(spa, "invalid config provided: '%s' missing",
3498 ZPOOL_CONFIG_VDEV_TREE);
3499 return (SET_ERROR(EINVAL));
3503 * Create "The Godfather" zio to hold all async IOs
3505 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3506 KM_SLEEP);
3507 for (int i = 0; i < max_ncpus; i++) {
3508 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3509 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3510 ZIO_FLAG_GODFATHER);
3514 * Parse the configuration into a vdev tree. We explicitly set the
3515 * value that will be returned by spa_version() since parsing the
3516 * configuration requires knowing the version number.
3518 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3519 parse = (type == SPA_IMPORT_EXISTING ?
3520 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3521 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3522 spa_config_exit(spa, SCL_ALL, FTAG);
3524 if (error != 0) {
3525 spa_load_failed(spa, "unable to parse config [error=%d]",
3526 error);
3527 return (error);
3530 ASSERT(spa->spa_root_vdev == rvd);
3531 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3532 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3534 if (type != SPA_IMPORT_ASSEMBLE) {
3535 ASSERT(spa_guid(spa) == pool_guid);
3538 return (0);
3542 * Recursively open all vdevs in the vdev tree. This function is called twice:
3543 * first with the untrusted config, then with the trusted config.
3545 static int
3546 spa_ld_open_vdevs(spa_t *spa)
3548 int error = 0;
3551 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3552 * missing/unopenable for the root vdev to be still considered openable.
3554 if (spa->spa_trust_config) {
3555 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3556 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3557 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3558 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3559 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3560 } else {
3561 spa->spa_missing_tvds_allowed = 0;
3564 spa->spa_missing_tvds_allowed =
3565 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3567 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3568 error = vdev_open(spa->spa_root_vdev);
3569 spa_config_exit(spa, SCL_ALL, FTAG);
3571 if (spa->spa_missing_tvds != 0) {
3572 spa_load_note(spa, "vdev tree has %lld missing top-level "
3573 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3574 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3576 * Although theoretically we could allow users to open
3577 * incomplete pools in RW mode, we'd need to add a lot
3578 * of extra logic (e.g. adjust pool space to account
3579 * for missing vdevs).
3580 * This limitation also prevents users from accidentally
3581 * opening the pool in RW mode during data recovery and
3582 * damaging it further.
3584 spa_load_note(spa, "pools with missing top-level "
3585 "vdevs can only be opened in read-only mode.");
3586 error = SET_ERROR(ENXIO);
3587 } else {
3588 spa_load_note(spa, "current settings allow for maximum "
3589 "%lld missing top-level vdevs at this stage.",
3590 (u_longlong_t)spa->spa_missing_tvds_allowed);
3593 if (error != 0) {
3594 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3595 error);
3597 if (spa->spa_missing_tvds != 0 || error != 0)
3598 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3600 return (error);
3604 * We need to validate the vdev labels against the configuration that
3605 * we have in hand. This function is called twice: first with an untrusted
3606 * config, then with a trusted config. The validation is more strict when the
3607 * config is trusted.
3609 static int
3610 spa_ld_validate_vdevs(spa_t *spa)
3612 int error = 0;
3613 vdev_t *rvd = spa->spa_root_vdev;
3615 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3616 error = vdev_validate(rvd);
3617 spa_config_exit(spa, SCL_ALL, FTAG);
3619 if (error != 0) {
3620 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3621 return (error);
3624 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3625 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3626 "some vdevs");
3627 vdev_dbgmsg_print_tree(rvd, 2);
3628 return (SET_ERROR(ENXIO));
3631 return (0);
3634 static void
3635 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3637 spa->spa_state = POOL_STATE_ACTIVE;
3638 spa->spa_ubsync = spa->spa_uberblock;
3639 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3640 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3641 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3642 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3643 spa->spa_claim_max_txg = spa->spa_first_txg;
3644 spa->spa_prev_software_version = ub->ub_software_version;
3647 static int
3648 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3650 vdev_t *rvd = spa->spa_root_vdev;
3651 nvlist_t *label;
3652 uberblock_t *ub = &spa->spa_uberblock;
3653 boolean_t activity_check = B_FALSE;
3656 * If we are opening the checkpointed state of the pool by
3657 * rewinding to it, at this point we will have written the
3658 * checkpointed uberblock to the vdev labels, so searching
3659 * the labels will find the right uberblock. However, if
3660 * we are opening the checkpointed state read-only, we have
3661 * not modified the labels. Therefore, we must ignore the
3662 * labels and continue using the spa_uberblock that was set
3663 * by spa_ld_checkpoint_rewind.
3665 * Note that it would be fine to ignore the labels when
3666 * rewinding (opening writeable) as well. However, if we
3667 * crash just after writing the labels, we will end up
3668 * searching the labels. Doing so in the common case means
3669 * that this code path gets exercised normally, rather than
3670 * just in the edge case.
3672 if (ub->ub_checkpoint_txg != 0 &&
3673 spa_importing_readonly_checkpoint(spa)) {
3674 spa_ld_select_uberblock_done(spa, ub);
3675 return (0);
3679 * Find the best uberblock.
3681 vdev_uberblock_load(rvd, ub, &label);
3684 * If we weren't able to find a single valid uberblock, return failure.
3686 if (ub->ub_txg == 0) {
3687 nvlist_free(label);
3688 spa_load_failed(spa, "no valid uberblock found");
3689 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3692 if (spa->spa_load_max_txg != UINT64_MAX) {
3693 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3694 (u_longlong_t)spa->spa_load_max_txg);
3696 spa_load_note(spa, "using uberblock with txg=%llu",
3697 (u_longlong_t)ub->ub_txg);
3701 * For pools which have the multihost property on determine if the
3702 * pool is truly inactive and can be safely imported. Prevent
3703 * hosts which don't have a hostid set from importing the pool.
3705 activity_check = spa_activity_check_required(spa, ub, label,
3706 spa->spa_config);
3707 if (activity_check) {
3708 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3709 spa_get_hostid(spa) == 0) {
3710 nvlist_free(label);
3711 fnvlist_add_uint64(spa->spa_load_info,
3712 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3713 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3716 int error = spa_activity_check(spa, ub, spa->spa_config);
3717 if (error) {
3718 nvlist_free(label);
3719 return (error);
3722 fnvlist_add_uint64(spa->spa_load_info,
3723 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3724 fnvlist_add_uint64(spa->spa_load_info,
3725 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3726 fnvlist_add_uint16(spa->spa_load_info,
3727 ZPOOL_CONFIG_MMP_SEQ,
3728 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3732 * If the pool has an unsupported version we can't open it.
3734 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3735 nvlist_free(label);
3736 spa_load_failed(spa, "version %llu is not supported",
3737 (u_longlong_t)ub->ub_version);
3738 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3741 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3742 nvlist_t *features;
3745 * If we weren't able to find what's necessary for reading the
3746 * MOS in the label, return failure.
3748 if (label == NULL) {
3749 spa_load_failed(spa, "label config unavailable");
3750 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3751 ENXIO));
3754 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3755 &features) != 0) {
3756 nvlist_free(label);
3757 spa_load_failed(spa, "invalid label: '%s' missing",
3758 ZPOOL_CONFIG_FEATURES_FOR_READ);
3759 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3760 ENXIO));
3764 * Update our in-core representation with the definitive values
3765 * from the label.
3767 nvlist_free(spa->spa_label_features);
3768 spa->spa_label_features = fnvlist_dup(features);
3771 nvlist_free(label);
3774 * Look through entries in the label nvlist's features_for_read. If
3775 * there is a feature listed there which we don't understand then we
3776 * cannot open a pool.
3778 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3779 nvlist_t *unsup_feat;
3781 unsup_feat = fnvlist_alloc();
3783 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3784 NULL); nvp != NULL;
3785 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3786 if (!zfeature_is_supported(nvpair_name(nvp))) {
3787 fnvlist_add_string(unsup_feat,
3788 nvpair_name(nvp), "");
3792 if (!nvlist_empty(unsup_feat)) {
3793 fnvlist_add_nvlist(spa->spa_load_info,
3794 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3795 nvlist_free(unsup_feat);
3796 spa_load_failed(spa, "some features are unsupported");
3797 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3798 ENOTSUP));
3801 nvlist_free(unsup_feat);
3804 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3805 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3806 spa_try_repair(spa, spa->spa_config);
3807 spa_config_exit(spa, SCL_ALL, FTAG);
3808 nvlist_free(spa->spa_config_splitting);
3809 spa->spa_config_splitting = NULL;
3813 * Initialize internal SPA structures.
3815 spa_ld_select_uberblock_done(spa, ub);
3817 return (0);
3820 static int
3821 spa_ld_open_rootbp(spa_t *spa)
3823 int error = 0;
3824 vdev_t *rvd = spa->spa_root_vdev;
3826 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3827 if (error != 0) {
3828 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3829 "[error=%d]", error);
3830 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3832 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3834 return (0);
3837 static int
3838 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3839 boolean_t reloading)
3841 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3842 nvlist_t *nv, *mos_config, *policy;
3843 int error = 0, copy_error;
3844 uint64_t healthy_tvds, healthy_tvds_mos;
3845 uint64_t mos_config_txg;
3847 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3848 != 0)
3849 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3852 * If we're assembling a pool from a split, the config provided is
3853 * already trusted so there is nothing to do.
3855 if (type == SPA_IMPORT_ASSEMBLE)
3856 return (0);
3858 healthy_tvds = spa_healthy_core_tvds(spa);
3860 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3861 != 0) {
3862 spa_load_failed(spa, "unable to retrieve MOS config");
3863 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3867 * If we are doing an open, pool owner wasn't verified yet, thus do
3868 * the verification here.
3870 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3871 error = spa_verify_host(spa, mos_config);
3872 if (error != 0) {
3873 nvlist_free(mos_config);
3874 return (error);
3878 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3880 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3883 * Build a new vdev tree from the trusted config
3885 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3886 if (error != 0) {
3887 nvlist_free(mos_config);
3888 spa_config_exit(spa, SCL_ALL, FTAG);
3889 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3890 error);
3891 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3895 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3896 * obtained by scanning /dev/dsk, then it will have the right vdev
3897 * paths. We update the trusted MOS config with this information.
3898 * We first try to copy the paths with vdev_copy_path_strict, which
3899 * succeeds only when both configs have exactly the same vdev tree.
3900 * If that fails, we fall back to a more flexible method that has a
3901 * best effort policy.
3903 copy_error = vdev_copy_path_strict(rvd, mrvd);
3904 if (copy_error != 0 || spa_load_print_vdev_tree) {
3905 spa_load_note(spa, "provided vdev tree:");
3906 vdev_dbgmsg_print_tree(rvd, 2);
3907 spa_load_note(spa, "MOS vdev tree:");
3908 vdev_dbgmsg_print_tree(mrvd, 2);
3910 if (copy_error != 0) {
3911 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3912 "back to vdev_copy_path_relaxed");
3913 vdev_copy_path_relaxed(rvd, mrvd);
3916 vdev_close(rvd);
3917 vdev_free(rvd);
3918 spa->spa_root_vdev = mrvd;
3919 rvd = mrvd;
3920 spa_config_exit(spa, SCL_ALL, FTAG);
3923 * We will use spa_config if we decide to reload the spa or if spa_load
3924 * fails and we rewind. We must thus regenerate the config using the
3925 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3926 * pass settings on how to load the pool and is not stored in the MOS.
3927 * We copy it over to our new, trusted config.
3929 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3930 ZPOOL_CONFIG_POOL_TXG);
3931 nvlist_free(mos_config);
3932 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3933 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3934 &policy) == 0)
3935 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3936 spa_config_set(spa, mos_config);
3937 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3940 * Now that we got the config from the MOS, we should be more strict
3941 * in checking blkptrs and can make assumptions about the consistency
3942 * of the vdev tree. spa_trust_config must be set to true before opening
3943 * vdevs in order for them to be writeable.
3945 spa->spa_trust_config = B_TRUE;
3948 * Open and validate the new vdev tree
3950 error = spa_ld_open_vdevs(spa);
3951 if (error != 0)
3952 return (error);
3954 error = spa_ld_validate_vdevs(spa);
3955 if (error != 0)
3956 return (error);
3958 if (copy_error != 0 || spa_load_print_vdev_tree) {
3959 spa_load_note(spa, "final vdev tree:");
3960 vdev_dbgmsg_print_tree(rvd, 2);
3963 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3964 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3966 * Sanity check to make sure that we are indeed loading the
3967 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3968 * in the config provided and they happened to be the only ones
3969 * to have the latest uberblock, we could involuntarily perform
3970 * an extreme rewind.
3972 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3973 if (healthy_tvds_mos - healthy_tvds >=
3974 SPA_SYNC_MIN_VDEVS) {
3975 spa_load_note(spa, "config provided misses too many "
3976 "top-level vdevs compared to MOS (%lld vs %lld). ",
3977 (u_longlong_t)healthy_tvds,
3978 (u_longlong_t)healthy_tvds_mos);
3979 spa_load_note(spa, "vdev tree:");
3980 vdev_dbgmsg_print_tree(rvd, 2);
3981 if (reloading) {
3982 spa_load_failed(spa, "config was already "
3983 "provided from MOS. Aborting.");
3984 return (spa_vdev_err(rvd,
3985 VDEV_AUX_CORRUPT_DATA, EIO));
3987 spa_load_note(spa, "spa must be reloaded using MOS "
3988 "config");
3989 return (SET_ERROR(EAGAIN));
3993 error = spa_check_for_missing_logs(spa);
3994 if (error != 0)
3995 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3997 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3998 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3999 "guid sum (%llu != %llu)",
4000 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4001 (u_longlong_t)rvd->vdev_guid_sum);
4002 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4003 ENXIO));
4006 return (0);
4009 static int
4010 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4012 int error = 0;
4013 vdev_t *rvd = spa->spa_root_vdev;
4016 * Everything that we read before spa_remove_init() must be stored
4017 * on concreted vdevs. Therefore we do this as early as possible.
4019 error = spa_remove_init(spa);
4020 if (error != 0) {
4021 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4022 error);
4023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4027 * Retrieve information needed to condense indirect vdev mappings.
4029 error = spa_condense_init(spa);
4030 if (error != 0) {
4031 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4032 error);
4033 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4036 return (0);
4039 static int
4040 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4042 int error = 0;
4043 vdev_t *rvd = spa->spa_root_vdev;
4045 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4046 boolean_t missing_feat_read = B_FALSE;
4047 nvlist_t *unsup_feat, *enabled_feat;
4049 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4050 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4051 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4054 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4055 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4056 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4059 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4060 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4061 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4064 enabled_feat = fnvlist_alloc();
4065 unsup_feat = fnvlist_alloc();
4067 if (!spa_features_check(spa, B_FALSE,
4068 unsup_feat, enabled_feat))
4069 missing_feat_read = B_TRUE;
4071 if (spa_writeable(spa) ||
4072 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4073 if (!spa_features_check(spa, B_TRUE,
4074 unsup_feat, enabled_feat)) {
4075 *missing_feat_writep = B_TRUE;
4079 fnvlist_add_nvlist(spa->spa_load_info,
4080 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4082 if (!nvlist_empty(unsup_feat)) {
4083 fnvlist_add_nvlist(spa->spa_load_info,
4084 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4087 fnvlist_free(enabled_feat);
4088 fnvlist_free(unsup_feat);
4090 if (!missing_feat_read) {
4091 fnvlist_add_boolean(spa->spa_load_info,
4092 ZPOOL_CONFIG_CAN_RDONLY);
4096 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4097 * twofold: to determine whether the pool is available for
4098 * import in read-write mode and (if it is not) whether the
4099 * pool is available for import in read-only mode. If the pool
4100 * is available for import in read-write mode, it is displayed
4101 * as available in userland; if it is not available for import
4102 * in read-only mode, it is displayed as unavailable in
4103 * userland. If the pool is available for import in read-only
4104 * mode but not read-write mode, it is displayed as unavailable
4105 * in userland with a special note that the pool is actually
4106 * available for open in read-only mode.
4108 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4109 * missing a feature for write, we must first determine whether
4110 * the pool can be opened read-only before returning to
4111 * userland in order to know whether to display the
4112 * abovementioned note.
4114 if (missing_feat_read || (*missing_feat_writep &&
4115 spa_writeable(spa))) {
4116 spa_load_failed(spa, "pool uses unsupported features");
4117 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4118 ENOTSUP));
4122 * Load refcounts for ZFS features from disk into an in-memory
4123 * cache during SPA initialization.
4125 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4126 uint64_t refcount;
4128 error = feature_get_refcount_from_disk(spa,
4129 &spa_feature_table[i], &refcount);
4130 if (error == 0) {
4131 spa->spa_feat_refcount_cache[i] = refcount;
4132 } else if (error == ENOTSUP) {
4133 spa->spa_feat_refcount_cache[i] =
4134 SPA_FEATURE_DISABLED;
4135 } else {
4136 spa_load_failed(spa, "error getting refcount "
4137 "for feature %s [error=%d]",
4138 spa_feature_table[i].fi_guid, error);
4139 return (spa_vdev_err(rvd,
4140 VDEV_AUX_CORRUPT_DATA, EIO));
4145 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4146 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4147 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4148 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4152 * Encryption was added before bookmark_v2, even though bookmark_v2
4153 * is now a dependency. If this pool has encryption enabled without
4154 * bookmark_v2, trigger an errata message.
4156 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4157 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4158 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4161 return (0);
4164 static int
4165 spa_ld_load_special_directories(spa_t *spa)
4167 int error = 0;
4168 vdev_t *rvd = spa->spa_root_vdev;
4170 spa->spa_is_initializing = B_TRUE;
4171 error = dsl_pool_open(spa->spa_dsl_pool);
4172 spa->spa_is_initializing = B_FALSE;
4173 if (error != 0) {
4174 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4178 return (0);
4181 static int
4182 spa_ld_get_props(spa_t *spa)
4184 int error = 0;
4185 uint64_t obj;
4186 vdev_t *rvd = spa->spa_root_vdev;
4188 /* Grab the checksum salt from the MOS. */
4189 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4190 DMU_POOL_CHECKSUM_SALT, 1,
4191 sizeof (spa->spa_cksum_salt.zcs_bytes),
4192 spa->spa_cksum_salt.zcs_bytes);
4193 if (error == ENOENT) {
4194 /* Generate a new salt for subsequent use */
4195 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4196 sizeof (spa->spa_cksum_salt.zcs_bytes));
4197 } else if (error != 0) {
4198 spa_load_failed(spa, "unable to retrieve checksum salt from "
4199 "MOS [error=%d]", error);
4200 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4203 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4204 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4205 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4206 if (error != 0) {
4207 spa_load_failed(spa, "error opening deferred-frees bpobj "
4208 "[error=%d]", error);
4209 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4213 * Load the bit that tells us to use the new accounting function
4214 * (raid-z deflation). If we have an older pool, this will not
4215 * be present.
4217 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4218 if (error != 0 && error != ENOENT)
4219 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4221 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4222 &spa->spa_creation_version, B_FALSE);
4223 if (error != 0 && error != ENOENT)
4224 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4227 * Load the persistent error log. If we have an older pool, this will
4228 * not be present.
4230 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4231 B_FALSE);
4232 if (error != 0 && error != ENOENT)
4233 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4235 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4236 &spa->spa_errlog_scrub, B_FALSE);
4237 if (error != 0 && error != ENOENT)
4238 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4241 * Load the livelist deletion field. If a livelist is queued for
4242 * deletion, indicate that in the spa
4244 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4245 &spa->spa_livelists_to_delete, B_FALSE);
4246 if (error != 0 && error != ENOENT)
4247 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4250 * Load the history object. If we have an older pool, this
4251 * will not be present.
4253 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4254 if (error != 0 && error != ENOENT)
4255 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4258 * Load the per-vdev ZAP map. If we have an older pool, this will not
4259 * be present; in this case, defer its creation to a later time to
4260 * avoid dirtying the MOS this early / out of sync context. See
4261 * spa_sync_config_object.
4264 /* The sentinel is only available in the MOS config. */
4265 nvlist_t *mos_config;
4266 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4267 spa_load_failed(spa, "unable to retrieve MOS config");
4268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4271 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4272 &spa->spa_all_vdev_zaps, B_FALSE);
4274 if (error == ENOENT) {
4275 VERIFY(!nvlist_exists(mos_config,
4276 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4277 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4278 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4279 } else if (error != 0) {
4280 nvlist_free(mos_config);
4281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4282 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4284 * An older version of ZFS overwrote the sentinel value, so
4285 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4286 * destruction to later; see spa_sync_config_object.
4288 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4290 * We're assuming that no vdevs have had their ZAPs created
4291 * before this. Better be sure of it.
4293 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4295 nvlist_free(mos_config);
4297 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4299 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4300 B_FALSE);
4301 if (error && error != ENOENT)
4302 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4304 if (error == 0) {
4305 uint64_t autoreplace = 0;
4307 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4308 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4309 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4310 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4311 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4312 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4313 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4314 spa->spa_autoreplace = (autoreplace != 0);
4318 * If we are importing a pool with missing top-level vdevs,
4319 * we enforce that the pool doesn't panic or get suspended on
4320 * error since the likelihood of missing data is extremely high.
4322 if (spa->spa_missing_tvds > 0 &&
4323 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4324 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4325 spa_load_note(spa, "forcing failmode to 'continue' "
4326 "as some top level vdevs are missing");
4327 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4330 return (0);
4333 static int
4334 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4336 int error = 0;
4337 vdev_t *rvd = spa->spa_root_vdev;
4340 * If we're assembling the pool from the split-off vdevs of
4341 * an existing pool, we don't want to attach the spares & cache
4342 * devices.
4346 * Load any hot spares for this pool.
4348 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4349 B_FALSE);
4350 if (error != 0 && error != ENOENT)
4351 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4352 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4353 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4354 if (load_nvlist(spa, spa->spa_spares.sav_object,
4355 &spa->spa_spares.sav_config) != 0) {
4356 spa_load_failed(spa, "error loading spares nvlist");
4357 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4360 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4361 spa_load_spares(spa);
4362 spa_config_exit(spa, SCL_ALL, FTAG);
4363 } else if (error == 0) {
4364 spa->spa_spares.sav_sync = B_TRUE;
4368 * Load any level 2 ARC devices for this pool.
4370 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4371 &spa->spa_l2cache.sav_object, B_FALSE);
4372 if (error != 0 && error != ENOENT)
4373 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4374 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4375 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4376 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4377 &spa->spa_l2cache.sav_config) != 0) {
4378 spa_load_failed(spa, "error loading l2cache nvlist");
4379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4382 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4383 spa_load_l2cache(spa);
4384 spa_config_exit(spa, SCL_ALL, FTAG);
4385 } else if (error == 0) {
4386 spa->spa_l2cache.sav_sync = B_TRUE;
4389 return (0);
4392 static int
4393 spa_ld_load_vdev_metadata(spa_t *spa)
4395 int error = 0;
4396 vdev_t *rvd = spa->spa_root_vdev;
4399 * If the 'multihost' property is set, then never allow a pool to
4400 * be imported when the system hostid is zero. The exception to
4401 * this rule is zdb which is always allowed to access pools.
4403 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4404 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4405 fnvlist_add_uint64(spa->spa_load_info,
4406 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4407 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4411 * If the 'autoreplace' property is set, then post a resource notifying
4412 * the ZFS DE that it should not issue any faults for unopenable
4413 * devices. We also iterate over the vdevs, and post a sysevent for any
4414 * unopenable vdevs so that the normal autoreplace handler can take
4415 * over.
4417 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4418 spa_check_removed(spa->spa_root_vdev);
4420 * For the import case, this is done in spa_import(), because
4421 * at this point we're using the spare definitions from
4422 * the MOS config, not necessarily from the userland config.
4424 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4425 spa_aux_check_removed(&spa->spa_spares);
4426 spa_aux_check_removed(&spa->spa_l2cache);
4431 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4433 error = vdev_load(rvd);
4434 if (error != 0) {
4435 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4436 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4439 error = spa_ld_log_spacemaps(spa);
4440 if (error != 0) {
4441 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4442 error);
4443 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4447 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4449 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4450 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4451 spa_config_exit(spa, SCL_ALL, FTAG);
4453 return (0);
4456 static int
4457 spa_ld_load_dedup_tables(spa_t *spa)
4459 int error = 0;
4460 vdev_t *rvd = spa->spa_root_vdev;
4462 error = ddt_load(spa);
4463 if (error != 0) {
4464 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4465 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4468 return (0);
4471 static int
4472 spa_ld_load_brt(spa_t *spa)
4474 int error = 0;
4475 vdev_t *rvd = spa->spa_root_vdev;
4477 error = brt_load(spa);
4478 if (error != 0) {
4479 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4480 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4483 return (0);
4486 static int
4487 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4489 vdev_t *rvd = spa->spa_root_vdev;
4491 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4492 boolean_t missing = spa_check_logs(spa);
4493 if (missing) {
4494 if (spa->spa_missing_tvds != 0) {
4495 spa_load_note(spa, "spa_check_logs failed "
4496 "so dropping the logs");
4497 } else {
4498 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4499 spa_load_failed(spa, "spa_check_logs failed");
4500 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4501 ENXIO));
4506 return (0);
4509 static int
4510 spa_ld_verify_pool_data(spa_t *spa)
4512 int error = 0;
4513 vdev_t *rvd = spa->spa_root_vdev;
4516 * We've successfully opened the pool, verify that we're ready
4517 * to start pushing transactions.
4519 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4520 error = spa_load_verify(spa);
4521 if (error != 0) {
4522 spa_load_failed(spa, "spa_load_verify failed "
4523 "[error=%d]", error);
4524 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4525 error));
4529 return (0);
4532 static void
4533 spa_ld_claim_log_blocks(spa_t *spa)
4535 dmu_tx_t *tx;
4536 dsl_pool_t *dp = spa_get_dsl(spa);
4539 * Claim log blocks that haven't been committed yet.
4540 * This must all happen in a single txg.
4541 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4542 * invoked from zil_claim_log_block()'s i/o done callback.
4543 * Price of rollback is that we abandon the log.
4545 spa->spa_claiming = B_TRUE;
4547 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4548 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4549 zil_claim, tx, DS_FIND_CHILDREN);
4550 dmu_tx_commit(tx);
4552 spa->spa_claiming = B_FALSE;
4554 spa_set_log_state(spa, SPA_LOG_GOOD);
4557 static void
4558 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4559 boolean_t update_config_cache)
4561 vdev_t *rvd = spa->spa_root_vdev;
4562 int need_update = B_FALSE;
4565 * If the config cache is stale, or we have uninitialized
4566 * metaslabs (see spa_vdev_add()), then update the config.
4568 * If this is a verbatim import, trust the current
4569 * in-core spa_config and update the disk labels.
4571 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4572 spa->spa_load_state == SPA_LOAD_IMPORT ||
4573 spa->spa_load_state == SPA_LOAD_RECOVER ||
4574 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4575 need_update = B_TRUE;
4577 for (int c = 0; c < rvd->vdev_children; c++)
4578 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4579 need_update = B_TRUE;
4582 * Update the config cache asynchronously in case we're the
4583 * root pool, in which case the config cache isn't writable yet.
4585 if (need_update)
4586 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4589 static void
4590 spa_ld_prepare_for_reload(spa_t *spa)
4592 spa_mode_t mode = spa->spa_mode;
4593 int async_suspended = spa->spa_async_suspended;
4595 spa_unload(spa);
4596 spa_deactivate(spa);
4597 spa_activate(spa, mode);
4600 * We save the value of spa_async_suspended as it gets reset to 0 by
4601 * spa_unload(). We want to restore it back to the original value before
4602 * returning as we might be calling spa_async_resume() later.
4604 spa->spa_async_suspended = async_suspended;
4607 static int
4608 spa_ld_read_checkpoint_txg(spa_t *spa)
4610 uberblock_t checkpoint;
4611 int error = 0;
4613 ASSERT0(spa->spa_checkpoint_txg);
4614 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4616 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4617 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4618 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4620 if (error == ENOENT)
4621 return (0);
4623 if (error != 0)
4624 return (error);
4626 ASSERT3U(checkpoint.ub_txg, !=, 0);
4627 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4628 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4629 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4630 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4632 return (0);
4635 static int
4636 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4638 int error = 0;
4640 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4641 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4644 * Never trust the config that is provided unless we are assembling
4645 * a pool following a split.
4646 * This means don't trust blkptrs and the vdev tree in general. This
4647 * also effectively puts the spa in read-only mode since
4648 * spa_writeable() checks for spa_trust_config to be true.
4649 * We will later load a trusted config from the MOS.
4651 if (type != SPA_IMPORT_ASSEMBLE)
4652 spa->spa_trust_config = B_FALSE;
4655 * Parse the config provided to create a vdev tree.
4657 error = spa_ld_parse_config(spa, type);
4658 if (error != 0)
4659 return (error);
4661 spa_import_progress_add(spa);
4664 * Now that we have the vdev tree, try to open each vdev. This involves
4665 * opening the underlying physical device, retrieving its geometry and
4666 * probing the vdev with a dummy I/O. The state of each vdev will be set
4667 * based on the success of those operations. After this we'll be ready
4668 * to read from the vdevs.
4670 error = spa_ld_open_vdevs(spa);
4671 if (error != 0)
4672 return (error);
4675 * Read the label of each vdev and make sure that the GUIDs stored
4676 * there match the GUIDs in the config provided.
4677 * If we're assembling a new pool that's been split off from an
4678 * existing pool, the labels haven't yet been updated so we skip
4679 * validation for now.
4681 if (type != SPA_IMPORT_ASSEMBLE) {
4682 error = spa_ld_validate_vdevs(spa);
4683 if (error != 0)
4684 return (error);
4688 * Read all vdev labels to find the best uberblock (i.e. latest,
4689 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4690 * get the list of features required to read blkptrs in the MOS from
4691 * the vdev label with the best uberblock and verify that our version
4692 * of zfs supports them all.
4694 error = spa_ld_select_uberblock(spa, type);
4695 if (error != 0)
4696 return (error);
4699 * Pass that uberblock to the dsl_pool layer which will open the root
4700 * blkptr. This blkptr points to the latest version of the MOS and will
4701 * allow us to read its contents.
4703 error = spa_ld_open_rootbp(spa);
4704 if (error != 0)
4705 return (error);
4707 return (0);
4710 static int
4711 spa_ld_checkpoint_rewind(spa_t *spa)
4713 uberblock_t checkpoint;
4714 int error = 0;
4716 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4717 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4719 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4720 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4721 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4723 if (error != 0) {
4724 spa_load_failed(spa, "unable to retrieve checkpointed "
4725 "uberblock from the MOS config [error=%d]", error);
4727 if (error == ENOENT)
4728 error = ZFS_ERR_NO_CHECKPOINT;
4730 return (error);
4733 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4734 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4737 * We need to update the txg and timestamp of the checkpointed
4738 * uberblock to be higher than the latest one. This ensures that
4739 * the checkpointed uberblock is selected if we were to close and
4740 * reopen the pool right after we've written it in the vdev labels.
4741 * (also see block comment in vdev_uberblock_compare)
4743 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4744 checkpoint.ub_timestamp = gethrestime_sec();
4747 * Set current uberblock to be the checkpointed uberblock.
4749 spa->spa_uberblock = checkpoint;
4752 * If we are doing a normal rewind, then the pool is open for
4753 * writing and we sync the "updated" checkpointed uberblock to
4754 * disk. Once this is done, we've basically rewound the whole
4755 * pool and there is no way back.
4757 * There are cases when we don't want to attempt and sync the
4758 * checkpointed uberblock to disk because we are opening a
4759 * pool as read-only. Specifically, verifying the checkpointed
4760 * state with zdb, and importing the checkpointed state to get
4761 * a "preview" of its content.
4763 if (spa_writeable(spa)) {
4764 vdev_t *rvd = spa->spa_root_vdev;
4766 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4767 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4768 int svdcount = 0;
4769 int children = rvd->vdev_children;
4770 int c0 = random_in_range(children);
4772 for (int c = 0; c < children; c++) {
4773 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4775 /* Stop when revisiting the first vdev */
4776 if (c > 0 && svd[0] == vd)
4777 break;
4779 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4780 !vdev_is_concrete(vd))
4781 continue;
4783 svd[svdcount++] = vd;
4784 if (svdcount == SPA_SYNC_MIN_VDEVS)
4785 break;
4787 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4788 if (error == 0)
4789 spa->spa_last_synced_guid = rvd->vdev_guid;
4790 spa_config_exit(spa, SCL_ALL, FTAG);
4792 if (error != 0) {
4793 spa_load_failed(spa, "failed to write checkpointed "
4794 "uberblock to the vdev labels [error=%d]", error);
4795 return (error);
4799 return (0);
4802 static int
4803 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4804 boolean_t *update_config_cache)
4806 int error;
4809 * Parse the config for pool, open and validate vdevs,
4810 * select an uberblock, and use that uberblock to open
4811 * the MOS.
4813 error = spa_ld_mos_init(spa, type);
4814 if (error != 0)
4815 return (error);
4818 * Retrieve the trusted config stored in the MOS and use it to create
4819 * a new, exact version of the vdev tree, then reopen all vdevs.
4821 error = spa_ld_trusted_config(spa, type, B_FALSE);
4822 if (error == EAGAIN) {
4823 if (update_config_cache != NULL)
4824 *update_config_cache = B_TRUE;
4827 * Redo the loading process with the trusted config if it is
4828 * too different from the untrusted config.
4830 spa_ld_prepare_for_reload(spa);
4831 spa_load_note(spa, "RELOADING");
4832 error = spa_ld_mos_init(spa, type);
4833 if (error != 0)
4834 return (error);
4836 error = spa_ld_trusted_config(spa, type, B_TRUE);
4837 if (error != 0)
4838 return (error);
4840 } else if (error != 0) {
4841 return (error);
4844 return (0);
4848 * Load an existing storage pool, using the config provided. This config
4849 * describes which vdevs are part of the pool and is later validated against
4850 * partial configs present in each vdev's label and an entire copy of the
4851 * config stored in the MOS.
4853 static int
4854 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4856 int error = 0;
4857 boolean_t missing_feat_write = B_FALSE;
4858 boolean_t checkpoint_rewind =
4859 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4860 boolean_t update_config_cache = B_FALSE;
4862 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4863 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4865 spa_load_note(spa, "LOADING");
4867 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4868 if (error != 0)
4869 return (error);
4872 * If we are rewinding to the checkpoint then we need to repeat
4873 * everything we've done so far in this function but this time
4874 * selecting the checkpointed uberblock and using that to open
4875 * the MOS.
4877 if (checkpoint_rewind) {
4879 * If we are rewinding to the checkpoint update config cache
4880 * anyway.
4882 update_config_cache = B_TRUE;
4885 * Extract the checkpointed uberblock from the current MOS
4886 * and use this as the pool's uberblock from now on. If the
4887 * pool is imported as writeable we also write the checkpoint
4888 * uberblock to the labels, making the rewind permanent.
4890 error = spa_ld_checkpoint_rewind(spa);
4891 if (error != 0)
4892 return (error);
4895 * Redo the loading process again with the
4896 * checkpointed uberblock.
4898 spa_ld_prepare_for_reload(spa);
4899 spa_load_note(spa, "LOADING checkpointed uberblock");
4900 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4901 if (error != 0)
4902 return (error);
4906 * Retrieve the checkpoint txg if the pool has a checkpoint.
4908 error = spa_ld_read_checkpoint_txg(spa);
4909 if (error != 0)
4910 return (error);
4913 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4914 * from the pool and their contents were re-mapped to other vdevs. Note
4915 * that everything that we read before this step must have been
4916 * rewritten on concrete vdevs after the last device removal was
4917 * initiated. Otherwise we could be reading from indirect vdevs before
4918 * we have loaded their mappings.
4920 error = spa_ld_open_indirect_vdev_metadata(spa);
4921 if (error != 0)
4922 return (error);
4925 * Retrieve the full list of active features from the MOS and check if
4926 * they are all supported.
4928 error = spa_ld_check_features(spa, &missing_feat_write);
4929 if (error != 0)
4930 return (error);
4933 * Load several special directories from the MOS needed by the dsl_pool
4934 * layer.
4936 error = spa_ld_load_special_directories(spa);
4937 if (error != 0)
4938 return (error);
4941 * Retrieve pool properties from the MOS.
4943 error = spa_ld_get_props(spa);
4944 if (error != 0)
4945 return (error);
4948 * Retrieve the list of auxiliary devices - cache devices and spares -
4949 * and open them.
4951 error = spa_ld_open_aux_vdevs(spa, type);
4952 if (error != 0)
4953 return (error);
4956 * Load the metadata for all vdevs. Also check if unopenable devices
4957 * should be autoreplaced.
4959 error = spa_ld_load_vdev_metadata(spa);
4960 if (error != 0)
4961 return (error);
4963 error = spa_ld_load_dedup_tables(spa);
4964 if (error != 0)
4965 return (error);
4967 error = spa_ld_load_brt(spa);
4968 if (error != 0)
4969 return (error);
4972 * Verify the logs now to make sure we don't have any unexpected errors
4973 * when we claim log blocks later.
4975 error = spa_ld_verify_logs(spa, type, ereport);
4976 if (error != 0)
4977 return (error);
4979 if (missing_feat_write) {
4980 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4983 * At this point, we know that we can open the pool in
4984 * read-only mode but not read-write mode. We now have enough
4985 * information and can return to userland.
4987 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4988 ENOTSUP));
4992 * Traverse the last txgs to make sure the pool was left off in a safe
4993 * state. When performing an extreme rewind, we verify the whole pool,
4994 * which can take a very long time.
4996 error = spa_ld_verify_pool_data(spa);
4997 if (error != 0)
4998 return (error);
5001 * Calculate the deflated space for the pool. This must be done before
5002 * we write anything to the pool because we'd need to update the space
5003 * accounting using the deflated sizes.
5005 spa_update_dspace(spa);
5008 * We have now retrieved all the information we needed to open the
5009 * pool. If we are importing the pool in read-write mode, a few
5010 * additional steps must be performed to finish the import.
5012 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5013 spa->spa_load_max_txg == UINT64_MAX)) {
5014 uint64_t config_cache_txg = spa->spa_config_txg;
5016 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5019 * In case of a checkpoint rewind, log the original txg
5020 * of the checkpointed uberblock.
5022 if (checkpoint_rewind) {
5023 spa_history_log_internal(spa, "checkpoint rewind",
5024 NULL, "rewound state to txg=%llu",
5025 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5029 * Traverse the ZIL and claim all blocks.
5031 spa_ld_claim_log_blocks(spa);
5034 * Kick-off the syncing thread.
5036 spa->spa_sync_on = B_TRUE;
5037 txg_sync_start(spa->spa_dsl_pool);
5038 mmp_thread_start(spa);
5041 * Wait for all claims to sync. We sync up to the highest
5042 * claimed log block birth time so that claimed log blocks
5043 * don't appear to be from the future. spa_claim_max_txg
5044 * will have been set for us by ZIL traversal operations
5045 * performed above.
5047 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5050 * Check if we need to request an update of the config. On the
5051 * next sync, we would update the config stored in vdev labels
5052 * and the cachefile (by default /etc/zfs/zpool.cache).
5054 spa_ld_check_for_config_update(spa, config_cache_txg,
5055 update_config_cache);
5058 * Check if a rebuild was in progress and if so resume it.
5059 * Then check all DTLs to see if anything needs resilvering.
5060 * The resilver will be deferred if a rebuild was started.
5062 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5063 vdev_rebuild_restart(spa);
5064 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5065 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5066 spa_async_request(spa, SPA_ASYNC_RESILVER);
5070 * Log the fact that we booted up (so that we can detect if
5071 * we rebooted in the middle of an operation).
5073 spa_history_log_version(spa, "open", NULL);
5075 spa_restart_removal(spa);
5076 spa_spawn_aux_threads(spa);
5079 * Delete any inconsistent datasets.
5081 * Note:
5082 * Since we may be issuing deletes for clones here,
5083 * we make sure to do so after we've spawned all the
5084 * auxiliary threads above (from which the livelist
5085 * deletion zthr is part of).
5087 (void) dmu_objset_find(spa_name(spa),
5088 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5091 * Clean up any stale temporary dataset userrefs.
5093 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5095 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5096 vdev_initialize_restart(spa->spa_root_vdev);
5097 vdev_trim_restart(spa->spa_root_vdev);
5098 vdev_autotrim_restart(spa);
5099 spa_config_exit(spa, SCL_CONFIG, FTAG);
5102 spa_import_progress_remove(spa_guid(spa));
5103 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5105 spa_load_note(spa, "LOADED");
5107 return (0);
5110 static int
5111 spa_load_retry(spa_t *spa, spa_load_state_t state)
5113 spa_mode_t mode = spa->spa_mode;
5115 spa_unload(spa);
5116 spa_deactivate(spa);
5118 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5120 spa_activate(spa, mode);
5121 spa_async_suspend(spa);
5123 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5124 (u_longlong_t)spa->spa_load_max_txg);
5126 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5130 * If spa_load() fails this function will try loading prior txg's. If
5131 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5132 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5133 * function will not rewind the pool and will return the same error as
5134 * spa_load().
5136 static int
5137 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5138 int rewind_flags)
5140 nvlist_t *loadinfo = NULL;
5141 nvlist_t *config = NULL;
5142 int load_error, rewind_error;
5143 uint64_t safe_rewind_txg;
5144 uint64_t min_txg;
5146 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5147 spa->spa_load_max_txg = spa->spa_load_txg;
5148 spa_set_log_state(spa, SPA_LOG_CLEAR);
5149 } else {
5150 spa->spa_load_max_txg = max_request;
5151 if (max_request != UINT64_MAX)
5152 spa->spa_extreme_rewind = B_TRUE;
5155 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5156 if (load_error == 0)
5157 return (0);
5158 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5160 * When attempting checkpoint-rewind on a pool with no
5161 * checkpoint, we should not attempt to load uberblocks
5162 * from previous txgs when spa_load fails.
5164 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5165 spa_import_progress_remove(spa_guid(spa));
5166 return (load_error);
5169 if (spa->spa_root_vdev != NULL)
5170 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5172 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5173 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5175 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5176 nvlist_free(config);
5177 spa_import_progress_remove(spa_guid(spa));
5178 return (load_error);
5181 if (state == SPA_LOAD_RECOVER) {
5182 /* Price of rolling back is discarding txgs, including log */
5183 spa_set_log_state(spa, SPA_LOG_CLEAR);
5184 } else {
5186 * If we aren't rolling back save the load info from our first
5187 * import attempt so that we can restore it after attempting
5188 * to rewind.
5190 loadinfo = spa->spa_load_info;
5191 spa->spa_load_info = fnvlist_alloc();
5194 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5195 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5196 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5197 TXG_INITIAL : safe_rewind_txg;
5200 * Continue as long as we're finding errors, we're still within
5201 * the acceptable rewind range, and we're still finding uberblocks
5203 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5204 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5205 if (spa->spa_load_max_txg < safe_rewind_txg)
5206 spa->spa_extreme_rewind = B_TRUE;
5207 rewind_error = spa_load_retry(spa, state);
5210 spa->spa_extreme_rewind = B_FALSE;
5211 spa->spa_load_max_txg = UINT64_MAX;
5213 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5214 spa_config_set(spa, config);
5215 else
5216 nvlist_free(config);
5218 if (state == SPA_LOAD_RECOVER) {
5219 ASSERT3P(loadinfo, ==, NULL);
5220 spa_import_progress_remove(spa_guid(spa));
5221 return (rewind_error);
5222 } else {
5223 /* Store the rewind info as part of the initial load info */
5224 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5225 spa->spa_load_info);
5227 /* Restore the initial load info */
5228 fnvlist_free(spa->spa_load_info);
5229 spa->spa_load_info = loadinfo;
5231 spa_import_progress_remove(spa_guid(spa));
5232 return (load_error);
5237 * Pool Open/Import
5239 * The import case is identical to an open except that the configuration is sent
5240 * down from userland, instead of grabbed from the configuration cache. For the
5241 * case of an open, the pool configuration will exist in the
5242 * POOL_STATE_UNINITIALIZED state.
5244 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5245 * the same time open the pool, without having to keep around the spa_t in some
5246 * ambiguous state.
5248 static int
5249 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5250 nvlist_t *nvpolicy, nvlist_t **config)
5252 spa_t *spa;
5253 spa_load_state_t state = SPA_LOAD_OPEN;
5254 int error;
5255 int locked = B_FALSE;
5256 int firstopen = B_FALSE;
5258 *spapp = NULL;
5261 * As disgusting as this is, we need to support recursive calls to this
5262 * function because dsl_dir_open() is called during spa_load(), and ends
5263 * up calling spa_open() again. The real fix is to figure out how to
5264 * avoid dsl_dir_open() calling this in the first place.
5266 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5267 mutex_enter(&spa_namespace_lock);
5268 locked = B_TRUE;
5271 if ((spa = spa_lookup(pool)) == NULL) {
5272 if (locked)
5273 mutex_exit(&spa_namespace_lock);
5274 return (SET_ERROR(ENOENT));
5277 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5278 zpool_load_policy_t policy;
5280 firstopen = B_TRUE;
5282 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5283 &policy);
5284 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5285 state = SPA_LOAD_RECOVER;
5287 spa_activate(spa, spa_mode_global);
5289 if (state != SPA_LOAD_RECOVER)
5290 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5291 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5293 zfs_dbgmsg("spa_open_common: opening %s", pool);
5294 error = spa_load_best(spa, state, policy.zlp_txg,
5295 policy.zlp_rewind);
5297 if (error == EBADF) {
5299 * If vdev_validate() returns failure (indicated by
5300 * EBADF), it indicates that one of the vdevs indicates
5301 * that the pool has been exported or destroyed. If
5302 * this is the case, the config cache is out of sync and
5303 * we should remove the pool from the namespace.
5305 spa_unload(spa);
5306 spa_deactivate(spa);
5307 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5308 spa_remove(spa);
5309 if (locked)
5310 mutex_exit(&spa_namespace_lock);
5311 return (SET_ERROR(ENOENT));
5314 if (error) {
5316 * We can't open the pool, but we still have useful
5317 * information: the state of each vdev after the
5318 * attempted vdev_open(). Return this to the user.
5320 if (config != NULL && spa->spa_config) {
5321 *config = fnvlist_dup(spa->spa_config);
5322 fnvlist_add_nvlist(*config,
5323 ZPOOL_CONFIG_LOAD_INFO,
5324 spa->spa_load_info);
5326 spa_unload(spa);
5327 spa_deactivate(spa);
5328 spa->spa_last_open_failed = error;
5329 if (locked)
5330 mutex_exit(&spa_namespace_lock);
5331 *spapp = NULL;
5332 return (error);
5336 spa_open_ref(spa, tag);
5338 if (config != NULL)
5339 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5342 * If we've recovered the pool, pass back any information we
5343 * gathered while doing the load.
5345 if (state == SPA_LOAD_RECOVER && config != NULL) {
5346 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5347 spa->spa_load_info);
5350 if (locked) {
5351 spa->spa_last_open_failed = 0;
5352 spa->spa_last_ubsync_txg = 0;
5353 spa->spa_load_txg = 0;
5354 mutex_exit(&spa_namespace_lock);
5357 if (firstopen)
5358 zvol_create_minors_recursive(spa_name(spa));
5360 *spapp = spa;
5362 return (0);
5366 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5367 nvlist_t *policy, nvlist_t **config)
5369 return (spa_open_common(name, spapp, tag, policy, config));
5373 spa_open(const char *name, spa_t **spapp, const void *tag)
5375 return (spa_open_common(name, spapp, tag, NULL, NULL));
5379 * Lookup the given spa_t, incrementing the inject count in the process,
5380 * preventing it from being exported or destroyed.
5382 spa_t *
5383 spa_inject_addref(char *name)
5385 spa_t *spa;
5387 mutex_enter(&spa_namespace_lock);
5388 if ((spa = spa_lookup(name)) == NULL) {
5389 mutex_exit(&spa_namespace_lock);
5390 return (NULL);
5392 spa->spa_inject_ref++;
5393 mutex_exit(&spa_namespace_lock);
5395 return (spa);
5398 void
5399 spa_inject_delref(spa_t *spa)
5401 mutex_enter(&spa_namespace_lock);
5402 spa->spa_inject_ref--;
5403 mutex_exit(&spa_namespace_lock);
5407 * Add spares device information to the nvlist.
5409 static void
5410 spa_add_spares(spa_t *spa, nvlist_t *config)
5412 nvlist_t **spares;
5413 uint_t i, nspares;
5414 nvlist_t *nvroot;
5415 uint64_t guid;
5416 vdev_stat_t *vs;
5417 uint_t vsc;
5418 uint64_t pool;
5420 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5422 if (spa->spa_spares.sav_count == 0)
5423 return;
5425 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5426 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5427 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5428 if (nspares != 0) {
5429 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5430 (const nvlist_t * const *)spares, nspares);
5431 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5432 &spares, &nspares));
5435 * Go through and find any spares which have since been
5436 * repurposed as an active spare. If this is the case, update
5437 * their status appropriately.
5439 for (i = 0; i < nspares; i++) {
5440 guid = fnvlist_lookup_uint64(spares[i],
5441 ZPOOL_CONFIG_GUID);
5442 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5443 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5444 if (spa_spare_exists(guid, &pool, NULL) &&
5445 pool != 0ULL) {
5446 vs->vs_state = VDEV_STATE_CANT_OPEN;
5447 vs->vs_aux = VDEV_AUX_SPARED;
5448 } else {
5449 vs->vs_state =
5450 spa->spa_spares.sav_vdevs[i]->vdev_state;
5457 * Add l2cache device information to the nvlist, including vdev stats.
5459 static void
5460 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5462 nvlist_t **l2cache;
5463 uint_t i, j, nl2cache;
5464 nvlist_t *nvroot;
5465 uint64_t guid;
5466 vdev_t *vd;
5467 vdev_stat_t *vs;
5468 uint_t vsc;
5470 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5472 if (spa->spa_l2cache.sav_count == 0)
5473 return;
5475 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5476 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5477 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5478 if (nl2cache != 0) {
5479 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5480 (const nvlist_t * const *)l2cache, nl2cache);
5481 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5482 &l2cache, &nl2cache));
5485 * Update level 2 cache device stats.
5488 for (i = 0; i < nl2cache; i++) {
5489 guid = fnvlist_lookup_uint64(l2cache[i],
5490 ZPOOL_CONFIG_GUID);
5492 vd = NULL;
5493 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5494 if (guid ==
5495 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5496 vd = spa->spa_l2cache.sav_vdevs[j];
5497 break;
5500 ASSERT(vd != NULL);
5502 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5503 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5504 vdev_get_stats(vd, vs);
5505 vdev_config_generate_stats(vd, l2cache[i]);
5511 static void
5512 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5514 zap_cursor_t zc;
5515 zap_attribute_t za;
5517 if (spa->spa_feat_for_read_obj != 0) {
5518 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5519 spa->spa_feat_for_read_obj);
5520 zap_cursor_retrieve(&zc, &za) == 0;
5521 zap_cursor_advance(&zc)) {
5522 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5523 za.za_num_integers == 1);
5524 VERIFY0(nvlist_add_uint64(features, za.za_name,
5525 za.za_first_integer));
5527 zap_cursor_fini(&zc);
5530 if (spa->spa_feat_for_write_obj != 0) {
5531 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5532 spa->spa_feat_for_write_obj);
5533 zap_cursor_retrieve(&zc, &za) == 0;
5534 zap_cursor_advance(&zc)) {
5535 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5536 za.za_num_integers == 1);
5537 VERIFY0(nvlist_add_uint64(features, za.za_name,
5538 za.za_first_integer));
5540 zap_cursor_fini(&zc);
5544 static void
5545 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5547 int i;
5549 for (i = 0; i < SPA_FEATURES; i++) {
5550 zfeature_info_t feature = spa_feature_table[i];
5551 uint64_t refcount;
5553 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5554 continue;
5556 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5561 * Store a list of pool features and their reference counts in the
5562 * config.
5564 * The first time this is called on a spa, allocate a new nvlist, fetch
5565 * the pool features and reference counts from disk, then save the list
5566 * in the spa. In subsequent calls on the same spa use the saved nvlist
5567 * and refresh its values from the cached reference counts. This
5568 * ensures we don't block here on I/O on a suspended pool so 'zpool
5569 * clear' can resume the pool.
5571 static void
5572 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5574 nvlist_t *features;
5576 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5578 mutex_enter(&spa->spa_feat_stats_lock);
5579 features = spa->spa_feat_stats;
5581 if (features != NULL) {
5582 spa_feature_stats_from_cache(spa, features);
5583 } else {
5584 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5585 spa->spa_feat_stats = features;
5586 spa_feature_stats_from_disk(spa, features);
5589 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5590 features));
5592 mutex_exit(&spa->spa_feat_stats_lock);
5596 spa_get_stats(const char *name, nvlist_t **config,
5597 char *altroot, size_t buflen)
5599 int error;
5600 spa_t *spa;
5602 *config = NULL;
5603 error = spa_open_common(name, &spa, FTAG, NULL, config);
5605 if (spa != NULL) {
5607 * This still leaves a window of inconsistency where the spares
5608 * or l2cache devices could change and the config would be
5609 * self-inconsistent.
5611 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5613 if (*config != NULL) {
5614 uint64_t loadtimes[2];
5616 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5617 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5618 fnvlist_add_uint64_array(*config,
5619 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5621 fnvlist_add_uint64(*config,
5622 ZPOOL_CONFIG_ERRCOUNT,
5623 spa_approx_errlog_size(spa));
5625 if (spa_suspended(spa)) {
5626 fnvlist_add_uint64(*config,
5627 ZPOOL_CONFIG_SUSPENDED,
5628 spa->spa_failmode);
5629 fnvlist_add_uint64(*config,
5630 ZPOOL_CONFIG_SUSPENDED_REASON,
5631 spa->spa_suspended);
5634 spa_add_spares(spa, *config);
5635 spa_add_l2cache(spa, *config);
5636 spa_add_feature_stats(spa, *config);
5641 * We want to get the alternate root even for faulted pools, so we cheat
5642 * and call spa_lookup() directly.
5644 if (altroot) {
5645 if (spa == NULL) {
5646 mutex_enter(&spa_namespace_lock);
5647 spa = spa_lookup(name);
5648 if (spa)
5649 spa_altroot(spa, altroot, buflen);
5650 else
5651 altroot[0] = '\0';
5652 spa = NULL;
5653 mutex_exit(&spa_namespace_lock);
5654 } else {
5655 spa_altroot(spa, altroot, buflen);
5659 if (spa != NULL) {
5660 spa_config_exit(spa, SCL_CONFIG, FTAG);
5661 spa_close(spa, FTAG);
5664 return (error);
5668 * Validate that the auxiliary device array is well formed. We must have an
5669 * array of nvlists, each which describes a valid leaf vdev. If this is an
5670 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5671 * specified, as long as they are well-formed.
5673 static int
5674 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5675 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5676 vdev_labeltype_t label)
5678 nvlist_t **dev;
5679 uint_t i, ndev;
5680 vdev_t *vd;
5681 int error;
5683 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5686 * It's acceptable to have no devs specified.
5688 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5689 return (0);
5691 if (ndev == 0)
5692 return (SET_ERROR(EINVAL));
5695 * Make sure the pool is formatted with a version that supports this
5696 * device type.
5698 if (spa_version(spa) < version)
5699 return (SET_ERROR(ENOTSUP));
5702 * Set the pending device list so we correctly handle device in-use
5703 * checking.
5705 sav->sav_pending = dev;
5706 sav->sav_npending = ndev;
5708 for (i = 0; i < ndev; i++) {
5709 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5710 mode)) != 0)
5711 goto out;
5713 if (!vd->vdev_ops->vdev_op_leaf) {
5714 vdev_free(vd);
5715 error = SET_ERROR(EINVAL);
5716 goto out;
5719 vd->vdev_top = vd;
5721 if ((error = vdev_open(vd)) == 0 &&
5722 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5723 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5724 vd->vdev_guid);
5727 vdev_free(vd);
5729 if (error &&
5730 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5731 goto out;
5732 else
5733 error = 0;
5736 out:
5737 sav->sav_pending = NULL;
5738 sav->sav_npending = 0;
5739 return (error);
5742 static int
5743 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5745 int error;
5747 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5749 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5750 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5751 VDEV_LABEL_SPARE)) != 0) {
5752 return (error);
5755 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5756 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5757 VDEV_LABEL_L2CACHE));
5760 static void
5761 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5762 const char *config)
5764 int i;
5766 if (sav->sav_config != NULL) {
5767 nvlist_t **olddevs;
5768 uint_t oldndevs;
5769 nvlist_t **newdevs;
5772 * Generate new dev list by concatenating with the
5773 * current dev list.
5775 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5776 &olddevs, &oldndevs));
5778 newdevs = kmem_alloc(sizeof (void *) *
5779 (ndevs + oldndevs), KM_SLEEP);
5780 for (i = 0; i < oldndevs; i++)
5781 newdevs[i] = fnvlist_dup(olddevs[i]);
5782 for (i = 0; i < ndevs; i++)
5783 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5785 fnvlist_remove(sav->sav_config, config);
5787 fnvlist_add_nvlist_array(sav->sav_config, config,
5788 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5789 for (i = 0; i < oldndevs + ndevs; i++)
5790 nvlist_free(newdevs[i]);
5791 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5792 } else {
5794 * Generate a new dev list.
5796 sav->sav_config = fnvlist_alloc();
5797 fnvlist_add_nvlist_array(sav->sav_config, config,
5798 (const nvlist_t * const *)devs, ndevs);
5803 * Stop and drop level 2 ARC devices
5805 void
5806 spa_l2cache_drop(spa_t *spa)
5808 vdev_t *vd;
5809 int i;
5810 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5812 for (i = 0; i < sav->sav_count; i++) {
5813 uint64_t pool;
5815 vd = sav->sav_vdevs[i];
5816 ASSERT(vd != NULL);
5818 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5819 pool != 0ULL && l2arc_vdev_present(vd))
5820 l2arc_remove_vdev(vd);
5825 * Verify encryption parameters for spa creation. If we are encrypting, we must
5826 * have the encryption feature flag enabled.
5828 static int
5829 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5830 boolean_t has_encryption)
5832 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5833 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5834 !has_encryption)
5835 return (SET_ERROR(ENOTSUP));
5837 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5841 * Pool Creation
5844 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5845 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5847 spa_t *spa;
5848 const char *altroot = NULL;
5849 vdev_t *rvd;
5850 dsl_pool_t *dp;
5851 dmu_tx_t *tx;
5852 int error = 0;
5853 uint64_t txg = TXG_INITIAL;
5854 nvlist_t **spares, **l2cache;
5855 uint_t nspares, nl2cache;
5856 uint64_t version, obj, ndraid = 0;
5857 boolean_t has_features;
5858 boolean_t has_encryption;
5859 boolean_t has_allocclass;
5860 spa_feature_t feat;
5861 const char *feat_name;
5862 const char *poolname;
5863 nvlist_t *nvl;
5865 if (props == NULL ||
5866 nvlist_lookup_string(props, "tname", &poolname) != 0)
5867 poolname = (char *)pool;
5870 * If this pool already exists, return failure.
5872 mutex_enter(&spa_namespace_lock);
5873 if (spa_lookup(poolname) != NULL) {
5874 mutex_exit(&spa_namespace_lock);
5875 return (SET_ERROR(EEXIST));
5879 * Allocate a new spa_t structure.
5881 nvl = fnvlist_alloc();
5882 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5883 (void) nvlist_lookup_string(props,
5884 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5885 spa = spa_add(poolname, nvl, altroot);
5886 fnvlist_free(nvl);
5887 spa_activate(spa, spa_mode_global);
5889 if (props && (error = spa_prop_validate(spa, props))) {
5890 spa_deactivate(spa);
5891 spa_remove(spa);
5892 mutex_exit(&spa_namespace_lock);
5893 return (error);
5897 * Temporary pool names should never be written to disk.
5899 if (poolname != pool)
5900 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5902 has_features = B_FALSE;
5903 has_encryption = B_FALSE;
5904 has_allocclass = B_FALSE;
5905 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5906 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5907 if (zpool_prop_feature(nvpair_name(elem))) {
5908 has_features = B_TRUE;
5910 feat_name = strchr(nvpair_name(elem), '@') + 1;
5911 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5912 if (feat == SPA_FEATURE_ENCRYPTION)
5913 has_encryption = B_TRUE;
5914 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
5915 has_allocclass = B_TRUE;
5919 /* verify encryption params, if they were provided */
5920 if (dcp != NULL) {
5921 error = spa_create_check_encryption_params(dcp, has_encryption);
5922 if (error != 0) {
5923 spa_deactivate(spa);
5924 spa_remove(spa);
5925 mutex_exit(&spa_namespace_lock);
5926 return (error);
5929 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
5930 spa_deactivate(spa);
5931 spa_remove(spa);
5932 mutex_exit(&spa_namespace_lock);
5933 return (ENOTSUP);
5936 if (has_features || nvlist_lookup_uint64(props,
5937 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5938 version = SPA_VERSION;
5940 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5942 spa->spa_first_txg = txg;
5943 spa->spa_uberblock.ub_txg = txg - 1;
5944 spa->spa_uberblock.ub_version = version;
5945 spa->spa_ubsync = spa->spa_uberblock;
5946 spa->spa_load_state = SPA_LOAD_CREATE;
5947 spa->spa_removing_phys.sr_state = DSS_NONE;
5948 spa->spa_removing_phys.sr_removing_vdev = -1;
5949 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5950 spa->spa_indirect_vdevs_loaded = B_TRUE;
5953 * Create "The Godfather" zio to hold all async IOs
5955 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5956 KM_SLEEP);
5957 for (int i = 0; i < max_ncpus; i++) {
5958 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5959 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5960 ZIO_FLAG_GODFATHER);
5964 * Create the root vdev.
5966 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5968 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5970 ASSERT(error != 0 || rvd != NULL);
5971 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5973 if (error == 0 && !zfs_allocatable_devs(nvroot))
5974 error = SET_ERROR(EINVAL);
5976 if (error == 0 &&
5977 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5978 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
5979 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
5981 * instantiate the metaslab groups (this will dirty the vdevs)
5982 * we can no longer error exit past this point
5984 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5985 vdev_t *vd = rvd->vdev_child[c];
5987 vdev_metaslab_set_size(vd);
5988 vdev_expand(vd, txg);
5992 spa_config_exit(spa, SCL_ALL, FTAG);
5994 if (error != 0) {
5995 spa_unload(spa);
5996 spa_deactivate(spa);
5997 spa_remove(spa);
5998 mutex_exit(&spa_namespace_lock);
5999 return (error);
6003 * Get the list of spares, if specified.
6005 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6006 &spares, &nspares) == 0) {
6007 spa->spa_spares.sav_config = fnvlist_alloc();
6008 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6009 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6010 nspares);
6011 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6012 spa_load_spares(spa);
6013 spa_config_exit(spa, SCL_ALL, FTAG);
6014 spa->spa_spares.sav_sync = B_TRUE;
6018 * Get the list of level 2 cache devices, if specified.
6020 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6021 &l2cache, &nl2cache) == 0) {
6022 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6023 NV_UNIQUE_NAME, KM_SLEEP));
6024 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6025 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6026 nl2cache);
6027 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6028 spa_load_l2cache(spa);
6029 spa_config_exit(spa, SCL_ALL, FTAG);
6030 spa->spa_l2cache.sav_sync = B_TRUE;
6033 spa->spa_is_initializing = B_TRUE;
6034 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6035 spa->spa_is_initializing = B_FALSE;
6038 * Create DDTs (dedup tables).
6040 ddt_create(spa);
6042 * Create BRT table and BRT table object.
6044 brt_create(spa);
6046 spa_update_dspace(spa);
6048 tx = dmu_tx_create_assigned(dp, txg);
6051 * Create the pool's history object.
6053 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6054 spa_history_create_obj(spa, tx);
6056 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6057 spa_history_log_version(spa, "create", tx);
6060 * Create the pool config object.
6062 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6063 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6064 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6066 if (zap_add(spa->spa_meta_objset,
6067 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6068 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6069 cmn_err(CE_PANIC, "failed to add pool config");
6072 if (zap_add(spa->spa_meta_objset,
6073 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6074 sizeof (uint64_t), 1, &version, tx) != 0) {
6075 cmn_err(CE_PANIC, "failed to add pool version");
6078 /* Newly created pools with the right version are always deflated. */
6079 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6080 spa->spa_deflate = TRUE;
6081 if (zap_add(spa->spa_meta_objset,
6082 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6083 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6084 cmn_err(CE_PANIC, "failed to add deflate");
6089 * Create the deferred-free bpobj. Turn off compression
6090 * because sync-to-convergence takes longer if the blocksize
6091 * keeps changing.
6093 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6094 dmu_object_set_compress(spa->spa_meta_objset, obj,
6095 ZIO_COMPRESS_OFF, tx);
6096 if (zap_add(spa->spa_meta_objset,
6097 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6098 sizeof (uint64_t), 1, &obj, tx) != 0) {
6099 cmn_err(CE_PANIC, "failed to add bpobj");
6101 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6102 spa->spa_meta_objset, obj));
6105 * Generate some random noise for salted checksums to operate on.
6107 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6108 sizeof (spa->spa_cksum_salt.zcs_bytes));
6111 * Set pool properties.
6113 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6114 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6115 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6116 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6117 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6118 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6120 if (props != NULL) {
6121 spa_configfile_set(spa, props, B_FALSE);
6122 spa_sync_props(props, tx);
6125 for (int i = 0; i < ndraid; i++)
6126 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6128 dmu_tx_commit(tx);
6130 spa->spa_sync_on = B_TRUE;
6131 txg_sync_start(dp);
6132 mmp_thread_start(spa);
6133 txg_wait_synced(dp, txg);
6135 spa_spawn_aux_threads(spa);
6137 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6140 * Don't count references from objsets that are already closed
6141 * and are making their way through the eviction process.
6143 spa_evicting_os_wait(spa);
6144 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6145 spa->spa_load_state = SPA_LOAD_NONE;
6147 spa_import_os(spa);
6149 mutex_exit(&spa_namespace_lock);
6151 return (0);
6155 * Import a non-root pool into the system.
6158 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6160 spa_t *spa;
6161 const char *altroot = NULL;
6162 spa_load_state_t state = SPA_LOAD_IMPORT;
6163 zpool_load_policy_t policy;
6164 spa_mode_t mode = spa_mode_global;
6165 uint64_t readonly = B_FALSE;
6166 int error;
6167 nvlist_t *nvroot;
6168 nvlist_t **spares, **l2cache;
6169 uint_t nspares, nl2cache;
6172 * If a pool with this name exists, return failure.
6174 mutex_enter(&spa_namespace_lock);
6175 if (spa_lookup(pool) != NULL) {
6176 mutex_exit(&spa_namespace_lock);
6177 return (SET_ERROR(EEXIST));
6181 * Create and initialize the spa structure.
6183 (void) nvlist_lookup_string(props,
6184 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6185 (void) nvlist_lookup_uint64(props,
6186 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6187 if (readonly)
6188 mode = SPA_MODE_READ;
6189 spa = spa_add(pool, config, altroot);
6190 spa->spa_import_flags = flags;
6193 * Verbatim import - Take a pool and insert it into the namespace
6194 * as if it had been loaded at boot.
6196 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6197 if (props != NULL)
6198 spa_configfile_set(spa, props, B_FALSE);
6200 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6201 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6202 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6203 mutex_exit(&spa_namespace_lock);
6204 return (0);
6207 spa_activate(spa, mode);
6210 * Don't start async tasks until we know everything is healthy.
6212 spa_async_suspend(spa);
6214 zpool_get_load_policy(config, &policy);
6215 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6216 state = SPA_LOAD_RECOVER;
6218 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6220 if (state != SPA_LOAD_RECOVER) {
6221 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6222 zfs_dbgmsg("spa_import: importing %s", pool);
6223 } else {
6224 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6225 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6227 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6230 * Propagate anything learned while loading the pool and pass it
6231 * back to caller (i.e. rewind info, missing devices, etc).
6233 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6235 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6237 * Toss any existing sparelist, as it doesn't have any validity
6238 * anymore, and conflicts with spa_has_spare().
6240 if (spa->spa_spares.sav_config) {
6241 nvlist_free(spa->spa_spares.sav_config);
6242 spa->spa_spares.sav_config = NULL;
6243 spa_load_spares(spa);
6245 if (spa->spa_l2cache.sav_config) {
6246 nvlist_free(spa->spa_l2cache.sav_config);
6247 spa->spa_l2cache.sav_config = NULL;
6248 spa_load_l2cache(spa);
6251 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6252 spa_config_exit(spa, SCL_ALL, FTAG);
6254 if (props != NULL)
6255 spa_configfile_set(spa, props, B_FALSE);
6257 if (error != 0 || (props && spa_writeable(spa) &&
6258 (error = spa_prop_set(spa, props)))) {
6259 spa_unload(spa);
6260 spa_deactivate(spa);
6261 spa_remove(spa);
6262 mutex_exit(&spa_namespace_lock);
6263 return (error);
6266 spa_async_resume(spa);
6269 * Override any spares and level 2 cache devices as specified by
6270 * the user, as these may have correct device names/devids, etc.
6272 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6273 &spares, &nspares) == 0) {
6274 if (spa->spa_spares.sav_config)
6275 fnvlist_remove(spa->spa_spares.sav_config,
6276 ZPOOL_CONFIG_SPARES);
6277 else
6278 spa->spa_spares.sav_config = fnvlist_alloc();
6279 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6280 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6281 nspares);
6282 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6283 spa_load_spares(spa);
6284 spa_config_exit(spa, SCL_ALL, FTAG);
6285 spa->spa_spares.sav_sync = B_TRUE;
6287 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6288 &l2cache, &nl2cache) == 0) {
6289 if (spa->spa_l2cache.sav_config)
6290 fnvlist_remove(spa->spa_l2cache.sav_config,
6291 ZPOOL_CONFIG_L2CACHE);
6292 else
6293 spa->spa_l2cache.sav_config = fnvlist_alloc();
6294 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6295 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6296 nl2cache);
6297 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6298 spa_load_l2cache(spa);
6299 spa_config_exit(spa, SCL_ALL, FTAG);
6300 spa->spa_l2cache.sav_sync = B_TRUE;
6304 * Check for any removed devices.
6306 if (spa->spa_autoreplace) {
6307 spa_aux_check_removed(&spa->spa_spares);
6308 spa_aux_check_removed(&spa->spa_l2cache);
6311 if (spa_writeable(spa)) {
6313 * Update the config cache to include the newly-imported pool.
6315 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6319 * It's possible that the pool was expanded while it was exported.
6320 * We kick off an async task to handle this for us.
6322 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6324 spa_history_log_version(spa, "import", NULL);
6326 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6328 mutex_exit(&spa_namespace_lock);
6330 zvol_create_minors_recursive(pool);
6332 spa_import_os(spa);
6334 return (0);
6337 nvlist_t *
6338 spa_tryimport(nvlist_t *tryconfig)
6340 nvlist_t *config = NULL;
6341 const char *poolname, *cachefile;
6342 spa_t *spa;
6343 uint64_t state;
6344 int error;
6345 zpool_load_policy_t policy;
6347 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6348 return (NULL);
6350 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6351 return (NULL);
6354 * Create and initialize the spa structure.
6356 mutex_enter(&spa_namespace_lock);
6357 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6358 spa_activate(spa, SPA_MODE_READ);
6361 * Rewind pool if a max txg was provided.
6363 zpool_get_load_policy(spa->spa_config, &policy);
6364 if (policy.zlp_txg != UINT64_MAX) {
6365 spa->spa_load_max_txg = policy.zlp_txg;
6366 spa->spa_extreme_rewind = B_TRUE;
6367 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6368 poolname, (longlong_t)policy.zlp_txg);
6369 } else {
6370 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6373 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6374 == 0) {
6375 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6376 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6377 } else {
6378 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6382 * spa_import() relies on a pool config fetched by spa_try_import()
6383 * for spare/cache devices. Import flags are not passed to
6384 * spa_tryimport(), which makes it return early due to a missing log
6385 * device and missing retrieving the cache device and spare eventually.
6386 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6387 * the correct configuration regardless of the missing log device.
6389 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6391 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6394 * If 'tryconfig' was at least parsable, return the current config.
6396 if (spa->spa_root_vdev != NULL) {
6397 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6398 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6399 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6400 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6401 spa->spa_uberblock.ub_timestamp);
6402 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6403 spa->spa_load_info);
6404 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6405 spa->spa_errata);
6408 * If the bootfs property exists on this pool then we
6409 * copy it out so that external consumers can tell which
6410 * pools are bootable.
6412 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6413 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6416 * We have to play games with the name since the
6417 * pool was opened as TRYIMPORT_NAME.
6419 if (dsl_dsobj_to_dsname(spa_name(spa),
6420 spa->spa_bootfs, tmpname) == 0) {
6421 char *cp;
6422 char *dsname;
6424 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6426 cp = strchr(tmpname, '/');
6427 if (cp == NULL) {
6428 (void) strlcpy(dsname, tmpname,
6429 MAXPATHLEN);
6430 } else {
6431 (void) snprintf(dsname, MAXPATHLEN,
6432 "%s/%s", poolname, ++cp);
6434 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6435 dsname);
6436 kmem_free(dsname, MAXPATHLEN);
6438 kmem_free(tmpname, MAXPATHLEN);
6442 * Add the list of hot spares and level 2 cache devices.
6444 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6445 spa_add_spares(spa, config);
6446 spa_add_l2cache(spa, config);
6447 spa_config_exit(spa, SCL_CONFIG, FTAG);
6450 spa_unload(spa);
6451 spa_deactivate(spa);
6452 spa_remove(spa);
6453 mutex_exit(&spa_namespace_lock);
6455 return (config);
6459 * Pool export/destroy
6461 * The act of destroying or exporting a pool is very simple. We make sure there
6462 * is no more pending I/O and any references to the pool are gone. Then, we
6463 * update the pool state and sync all the labels to disk, removing the
6464 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6465 * we don't sync the labels or remove the configuration cache.
6467 static int
6468 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6469 boolean_t force, boolean_t hardforce)
6471 int error;
6472 spa_t *spa;
6474 if (oldconfig)
6475 *oldconfig = NULL;
6477 if (!(spa_mode_global & SPA_MODE_WRITE))
6478 return (SET_ERROR(EROFS));
6480 mutex_enter(&spa_namespace_lock);
6481 if ((spa = spa_lookup(pool)) == NULL) {
6482 mutex_exit(&spa_namespace_lock);
6483 return (SET_ERROR(ENOENT));
6486 if (spa->spa_is_exporting) {
6487 /* the pool is being exported by another thread */
6488 mutex_exit(&spa_namespace_lock);
6489 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6491 spa->spa_is_exporting = B_TRUE;
6494 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6495 * reacquire the namespace lock, and see if we can export.
6497 spa_open_ref(spa, FTAG);
6498 mutex_exit(&spa_namespace_lock);
6499 spa_async_suspend(spa);
6500 if (spa->spa_zvol_taskq) {
6501 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6502 taskq_wait(spa->spa_zvol_taskq);
6504 mutex_enter(&spa_namespace_lock);
6505 spa_close(spa, FTAG);
6507 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6508 goto export_spa;
6510 * The pool will be in core if it's openable, in which case we can
6511 * modify its state. Objsets may be open only because they're dirty,
6512 * so we have to force it to sync before checking spa_refcnt.
6514 if (spa->spa_sync_on) {
6515 txg_wait_synced(spa->spa_dsl_pool, 0);
6516 spa_evicting_os_wait(spa);
6520 * A pool cannot be exported or destroyed if there are active
6521 * references. If we are resetting a pool, allow references by
6522 * fault injection handlers.
6524 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6525 error = SET_ERROR(EBUSY);
6526 goto fail;
6529 if (spa->spa_sync_on) {
6530 vdev_t *rvd = spa->spa_root_vdev;
6532 * A pool cannot be exported if it has an active shared spare.
6533 * This is to prevent other pools stealing the active spare
6534 * from an exported pool. At user's own will, such pool can
6535 * be forcedly exported.
6537 if (!force && new_state == POOL_STATE_EXPORTED &&
6538 spa_has_active_shared_spare(spa)) {
6539 error = SET_ERROR(EXDEV);
6540 goto fail;
6544 * We're about to export or destroy this pool. Make sure
6545 * we stop all initialization and trim activity here before
6546 * we set the spa_final_txg. This will ensure that all
6547 * dirty data resulting from the initialization is
6548 * committed to disk before we unload the pool.
6550 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6551 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6552 vdev_autotrim_stop_all(spa);
6553 vdev_rebuild_stop_all(spa);
6556 * We want this to be reflected on every label,
6557 * so mark them all dirty. spa_unload() will do the
6558 * final sync that pushes these changes out.
6560 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6561 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6562 spa->spa_state = new_state;
6563 vdev_config_dirty(rvd);
6564 spa_config_exit(spa, SCL_ALL, FTAG);
6568 * If the log space map feature is enabled and the pool is
6569 * getting exported (but not destroyed), we want to spend some
6570 * time flushing as many metaslabs as we can in an attempt to
6571 * destroy log space maps and save import time. This has to be
6572 * done before we set the spa_final_txg, otherwise
6573 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6574 * spa_should_flush_logs_on_unload() should be called after
6575 * spa_state has been set to the new_state.
6577 if (spa_should_flush_logs_on_unload(spa))
6578 spa_unload_log_sm_flush_all(spa);
6580 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6581 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6582 spa->spa_final_txg = spa_last_synced_txg(spa) +
6583 TXG_DEFER_SIZE + 1;
6584 spa_config_exit(spa, SCL_ALL, FTAG);
6588 export_spa:
6589 spa_export_os(spa);
6591 if (new_state == POOL_STATE_DESTROYED)
6592 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6593 else if (new_state == POOL_STATE_EXPORTED)
6594 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6596 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6597 spa_unload(spa);
6598 spa_deactivate(spa);
6601 if (oldconfig && spa->spa_config)
6602 *oldconfig = fnvlist_dup(spa->spa_config);
6604 if (new_state != POOL_STATE_UNINITIALIZED) {
6605 if (!hardforce)
6606 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6607 spa_remove(spa);
6608 } else {
6610 * If spa_remove() is not called for this spa_t and
6611 * there is any possibility that it can be reused,
6612 * we make sure to reset the exporting flag.
6614 spa->spa_is_exporting = B_FALSE;
6617 mutex_exit(&spa_namespace_lock);
6618 return (0);
6620 fail:
6621 spa->spa_is_exporting = B_FALSE;
6622 spa_async_resume(spa);
6623 mutex_exit(&spa_namespace_lock);
6624 return (error);
6628 * Destroy a storage pool.
6631 spa_destroy(const char *pool)
6633 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6634 B_FALSE, B_FALSE));
6638 * Export a storage pool.
6641 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6642 boolean_t hardforce)
6644 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6645 force, hardforce));
6649 * Similar to spa_export(), this unloads the spa_t without actually removing it
6650 * from the namespace in any way.
6653 spa_reset(const char *pool)
6655 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6656 B_FALSE, B_FALSE));
6660 * ==========================================================================
6661 * Device manipulation
6662 * ==========================================================================
6666 * This is called as a synctask to increment the draid feature flag
6668 static void
6669 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6671 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6672 int draid = (int)(uintptr_t)arg;
6674 for (int c = 0; c < draid; c++)
6675 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6679 * Add a device to a storage pool.
6682 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6684 uint64_t txg, ndraid = 0;
6685 int error;
6686 vdev_t *rvd = spa->spa_root_vdev;
6687 vdev_t *vd, *tvd;
6688 nvlist_t **spares, **l2cache;
6689 uint_t nspares, nl2cache;
6691 ASSERT(spa_writeable(spa));
6693 txg = spa_vdev_enter(spa);
6695 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6696 VDEV_ALLOC_ADD)) != 0)
6697 return (spa_vdev_exit(spa, NULL, txg, error));
6699 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6701 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6702 &nspares) != 0)
6703 nspares = 0;
6705 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6706 &nl2cache) != 0)
6707 nl2cache = 0;
6709 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6710 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6712 if (vd->vdev_children != 0 &&
6713 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6714 return (spa_vdev_exit(spa, vd, txg, error));
6718 * The virtual dRAID spares must be added after vdev tree is created
6719 * and the vdev guids are generated. The guid of their associated
6720 * dRAID is stored in the config and used when opening the spare.
6722 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6723 rvd->vdev_children)) == 0) {
6724 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6725 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6726 nspares = 0;
6727 } else {
6728 return (spa_vdev_exit(spa, vd, txg, error));
6732 * We must validate the spares and l2cache devices after checking the
6733 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6735 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6736 return (spa_vdev_exit(spa, vd, txg, error));
6739 * If we are in the middle of a device removal, we can only add
6740 * devices which match the existing devices in the pool.
6741 * If we are in the middle of a removal, or have some indirect
6742 * vdevs, we can not add raidz or dRAID top levels.
6744 if (spa->spa_vdev_removal != NULL ||
6745 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6746 for (int c = 0; c < vd->vdev_children; c++) {
6747 tvd = vd->vdev_child[c];
6748 if (spa->spa_vdev_removal != NULL &&
6749 tvd->vdev_ashift != spa->spa_max_ashift) {
6750 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6752 /* Fail if top level vdev is raidz or a dRAID */
6753 if (vdev_get_nparity(tvd) != 0)
6754 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6757 * Need the top level mirror to be
6758 * a mirror of leaf vdevs only
6760 if (tvd->vdev_ops == &vdev_mirror_ops) {
6761 for (uint64_t cid = 0;
6762 cid < tvd->vdev_children; cid++) {
6763 vdev_t *cvd = tvd->vdev_child[cid];
6764 if (!cvd->vdev_ops->vdev_op_leaf) {
6765 return (spa_vdev_exit(spa, vd,
6766 txg, EINVAL));
6773 for (int c = 0; c < vd->vdev_children; c++) {
6774 tvd = vd->vdev_child[c];
6775 vdev_remove_child(vd, tvd);
6776 tvd->vdev_id = rvd->vdev_children;
6777 vdev_add_child(rvd, tvd);
6778 vdev_config_dirty(tvd);
6781 if (nspares != 0) {
6782 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6783 ZPOOL_CONFIG_SPARES);
6784 spa_load_spares(spa);
6785 spa->spa_spares.sav_sync = B_TRUE;
6788 if (nl2cache != 0) {
6789 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6790 ZPOOL_CONFIG_L2CACHE);
6791 spa_load_l2cache(spa);
6792 spa->spa_l2cache.sav_sync = B_TRUE;
6796 * We can't increment a feature while holding spa_vdev so we
6797 * have to do it in a synctask.
6799 if (ndraid != 0) {
6800 dmu_tx_t *tx;
6802 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6803 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6804 (void *)(uintptr_t)ndraid, tx);
6805 dmu_tx_commit(tx);
6809 * We have to be careful when adding new vdevs to an existing pool.
6810 * If other threads start allocating from these vdevs before we
6811 * sync the config cache, and we lose power, then upon reboot we may
6812 * fail to open the pool because there are DVAs that the config cache
6813 * can't translate. Therefore, we first add the vdevs without
6814 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6815 * and then let spa_config_update() initialize the new metaslabs.
6817 * spa_load() checks for added-but-not-initialized vdevs, so that
6818 * if we lose power at any point in this sequence, the remaining
6819 * steps will be completed the next time we load the pool.
6821 (void) spa_vdev_exit(spa, vd, txg, 0);
6823 mutex_enter(&spa_namespace_lock);
6824 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6825 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6826 mutex_exit(&spa_namespace_lock);
6828 return (0);
6832 * Attach a device to a mirror. The arguments are the path to any device
6833 * in the mirror, and the nvroot for the new device. If the path specifies
6834 * a device that is not mirrored, we automatically insert the mirror vdev.
6836 * If 'replacing' is specified, the new device is intended to replace the
6837 * existing device; in this case the two devices are made into their own
6838 * mirror using the 'replacing' vdev, which is functionally identical to
6839 * the mirror vdev (it actually reuses all the same ops) but has a few
6840 * extra rules: you can't attach to it after it's been created, and upon
6841 * completion of resilvering, the first disk (the one being replaced)
6842 * is automatically detached.
6844 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6845 * should be performed instead of traditional healing reconstruction. From
6846 * an administrators perspective these are both resilver operations.
6849 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6850 int rebuild)
6852 uint64_t txg, dtl_max_txg;
6853 vdev_t *rvd = spa->spa_root_vdev;
6854 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6855 vdev_ops_t *pvops;
6856 char *oldvdpath, *newvdpath;
6857 int newvd_isspare;
6858 int error;
6860 ASSERT(spa_writeable(spa));
6862 txg = spa_vdev_enter(spa);
6864 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6866 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6867 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6868 error = (spa_has_checkpoint(spa)) ?
6869 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6870 return (spa_vdev_exit(spa, NULL, txg, error));
6873 if (rebuild) {
6874 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6875 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6877 if (dsl_scan_resilvering(spa_get_dsl(spa)))
6878 return (spa_vdev_exit(spa, NULL, txg,
6879 ZFS_ERR_RESILVER_IN_PROGRESS));
6880 } else {
6881 if (vdev_rebuild_active(rvd))
6882 return (spa_vdev_exit(spa, NULL, txg,
6883 ZFS_ERR_REBUILD_IN_PROGRESS));
6886 if (spa->spa_vdev_removal != NULL)
6887 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6889 if (oldvd == NULL)
6890 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6892 if (!oldvd->vdev_ops->vdev_op_leaf)
6893 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6895 pvd = oldvd->vdev_parent;
6897 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6898 VDEV_ALLOC_ATTACH) != 0)
6899 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6901 if (newrootvd->vdev_children != 1)
6902 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6904 newvd = newrootvd->vdev_child[0];
6906 if (!newvd->vdev_ops->vdev_op_leaf)
6907 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6909 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6910 return (spa_vdev_exit(spa, newrootvd, txg, error));
6913 * log, dedup and special vdevs should not be replaced by spares.
6915 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
6916 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
6917 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6921 * A dRAID spare can only replace a child of its parent dRAID vdev.
6923 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
6924 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
6925 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6928 if (rebuild) {
6930 * For rebuilds, the top vdev must support reconstruction
6931 * using only space maps. This means the only allowable
6932 * vdevs types are the root vdev, a mirror, or dRAID.
6934 tvd = pvd;
6935 if (pvd->vdev_top != NULL)
6936 tvd = pvd->vdev_top;
6938 if (tvd->vdev_ops != &vdev_mirror_ops &&
6939 tvd->vdev_ops != &vdev_root_ops &&
6940 tvd->vdev_ops != &vdev_draid_ops) {
6941 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6945 if (!replacing) {
6947 * For attach, the only allowable parent is a mirror or the root
6948 * vdev.
6950 if (pvd->vdev_ops != &vdev_mirror_ops &&
6951 pvd->vdev_ops != &vdev_root_ops)
6952 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6954 pvops = &vdev_mirror_ops;
6955 } else {
6957 * Active hot spares can only be replaced by inactive hot
6958 * spares.
6960 if (pvd->vdev_ops == &vdev_spare_ops &&
6961 oldvd->vdev_isspare &&
6962 !spa_has_spare(spa, newvd->vdev_guid))
6963 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6966 * If the source is a hot spare, and the parent isn't already a
6967 * spare, then we want to create a new hot spare. Otherwise, we
6968 * want to create a replacing vdev. The user is not allowed to
6969 * attach to a spared vdev child unless the 'isspare' state is
6970 * the same (spare replaces spare, non-spare replaces
6971 * non-spare).
6973 if (pvd->vdev_ops == &vdev_replacing_ops &&
6974 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6975 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6976 } else if (pvd->vdev_ops == &vdev_spare_ops &&
6977 newvd->vdev_isspare != oldvd->vdev_isspare) {
6978 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6981 if (newvd->vdev_isspare)
6982 pvops = &vdev_spare_ops;
6983 else
6984 pvops = &vdev_replacing_ops;
6988 * Make sure the new device is big enough.
6990 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6991 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6994 * The new device cannot have a higher alignment requirement
6995 * than the top-level vdev.
6997 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6998 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7001 * If this is an in-place replacement, update oldvd's path and devid
7002 * to make it distinguishable from newvd, and unopenable from now on.
7004 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
7005 spa_strfree(oldvd->vdev_path);
7006 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
7007 KM_SLEEP);
7008 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5,
7009 "%s/%s", newvd->vdev_path, "old");
7010 if (oldvd->vdev_devid != NULL) {
7011 spa_strfree(oldvd->vdev_devid);
7012 oldvd->vdev_devid = NULL;
7017 * If the parent is not a mirror, or if we're replacing, insert the new
7018 * mirror/replacing/spare vdev above oldvd.
7020 if (pvd->vdev_ops != pvops)
7021 pvd = vdev_add_parent(oldvd, pvops);
7023 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7024 ASSERT(pvd->vdev_ops == pvops);
7025 ASSERT(oldvd->vdev_parent == pvd);
7028 * Extract the new device from its root and add it to pvd.
7030 vdev_remove_child(newrootvd, newvd);
7031 newvd->vdev_id = pvd->vdev_children;
7032 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7033 vdev_add_child(pvd, newvd);
7036 * Reevaluate the parent vdev state.
7038 vdev_propagate_state(pvd);
7040 tvd = newvd->vdev_top;
7041 ASSERT(pvd->vdev_top == tvd);
7042 ASSERT(tvd->vdev_parent == rvd);
7044 vdev_config_dirty(tvd);
7047 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7048 * for any dmu_sync-ed blocks. It will propagate upward when
7049 * spa_vdev_exit() calls vdev_dtl_reassess().
7051 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7053 vdev_dtl_dirty(newvd, DTL_MISSING,
7054 TXG_INITIAL, dtl_max_txg - TXG_INITIAL);
7056 if (newvd->vdev_isspare) {
7057 spa_spare_activate(newvd);
7058 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7061 oldvdpath = spa_strdup(oldvd->vdev_path);
7062 newvdpath = spa_strdup(newvd->vdev_path);
7063 newvd_isspare = newvd->vdev_isspare;
7066 * Mark newvd's DTL dirty in this txg.
7068 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7071 * Schedule the resilver or rebuild to restart in the future. We do
7072 * this to ensure that dmu_sync-ed blocks have been stitched into the
7073 * respective datasets.
7075 if (rebuild) {
7076 newvd->vdev_rebuild_txg = txg;
7078 vdev_rebuild(tvd);
7079 } else {
7080 newvd->vdev_resilver_txg = txg;
7082 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7083 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) {
7084 vdev_defer_resilver(newvd);
7085 } else {
7086 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7087 dtl_max_txg);
7091 if (spa->spa_bootfs)
7092 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7094 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7097 * Commit the config
7099 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7101 spa_history_log_internal(spa, "vdev attach", NULL,
7102 "%s vdev=%s %s vdev=%s",
7103 replacing && newvd_isspare ? "spare in" :
7104 replacing ? "replace" : "attach", newvdpath,
7105 replacing ? "for" : "to", oldvdpath);
7107 spa_strfree(oldvdpath);
7108 spa_strfree(newvdpath);
7110 return (0);
7114 * Detach a device from a mirror or replacing vdev.
7116 * If 'replace_done' is specified, only detach if the parent
7117 * is a replacing or a spare vdev.
7120 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7122 uint64_t txg;
7123 int error;
7124 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7125 vdev_t *vd, *pvd, *cvd, *tvd;
7126 boolean_t unspare = B_FALSE;
7127 uint64_t unspare_guid = 0;
7128 char *vdpath;
7130 ASSERT(spa_writeable(spa));
7132 txg = spa_vdev_detach_enter(spa, guid);
7134 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7137 * Besides being called directly from the userland through the
7138 * ioctl interface, spa_vdev_detach() can be potentially called
7139 * at the end of spa_vdev_resilver_done().
7141 * In the regular case, when we have a checkpoint this shouldn't
7142 * happen as we never empty the DTLs of a vdev during the scrub
7143 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7144 * should never get here when we have a checkpoint.
7146 * That said, even in a case when we checkpoint the pool exactly
7147 * as spa_vdev_resilver_done() calls this function everything
7148 * should be fine as the resilver will return right away.
7150 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7151 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7152 error = (spa_has_checkpoint(spa)) ?
7153 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7154 return (spa_vdev_exit(spa, NULL, txg, error));
7157 if (vd == NULL)
7158 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7160 if (!vd->vdev_ops->vdev_op_leaf)
7161 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7163 pvd = vd->vdev_parent;
7166 * If the parent/child relationship is not as expected, don't do it.
7167 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7168 * vdev that's replacing B with C. The user's intent in replacing
7169 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7170 * the replace by detaching C, the expected behavior is to end up
7171 * M(A,B). But suppose that right after deciding to detach C,
7172 * the replacement of B completes. We would have M(A,C), and then
7173 * ask to detach C, which would leave us with just A -- not what
7174 * the user wanted. To prevent this, we make sure that the
7175 * parent/child relationship hasn't changed -- in this example,
7176 * that C's parent is still the replacing vdev R.
7178 if (pvd->vdev_guid != pguid && pguid != 0)
7179 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7182 * Only 'replacing' or 'spare' vdevs can be replaced.
7184 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7185 pvd->vdev_ops != &vdev_spare_ops)
7186 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7188 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7189 spa_version(spa) >= SPA_VERSION_SPARES);
7192 * Only mirror, replacing, and spare vdevs support detach.
7194 if (pvd->vdev_ops != &vdev_replacing_ops &&
7195 pvd->vdev_ops != &vdev_mirror_ops &&
7196 pvd->vdev_ops != &vdev_spare_ops)
7197 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7200 * If this device has the only valid copy of some data,
7201 * we cannot safely detach it.
7203 if (vdev_dtl_required(vd))
7204 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7206 ASSERT(pvd->vdev_children >= 2);
7209 * If we are detaching the second disk from a replacing vdev, then
7210 * check to see if we changed the original vdev's path to have "/old"
7211 * at the end in spa_vdev_attach(). If so, undo that change now.
7213 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7214 vd->vdev_path != NULL) {
7215 size_t len = strlen(vd->vdev_path);
7217 for (int c = 0; c < pvd->vdev_children; c++) {
7218 cvd = pvd->vdev_child[c];
7220 if (cvd == vd || cvd->vdev_path == NULL)
7221 continue;
7223 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7224 strcmp(cvd->vdev_path + len, "/old") == 0) {
7225 spa_strfree(cvd->vdev_path);
7226 cvd->vdev_path = spa_strdup(vd->vdev_path);
7227 break;
7233 * If we are detaching the original disk from a normal spare, then it
7234 * implies that the spare should become a real disk, and be removed
7235 * from the active spare list for the pool. dRAID spares on the
7236 * other hand are coupled to the pool and thus should never be removed
7237 * from the spares list.
7239 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7240 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7242 if (last_cvd->vdev_isspare &&
7243 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7244 unspare = B_TRUE;
7249 * Erase the disk labels so the disk can be used for other things.
7250 * This must be done after all other error cases are handled,
7251 * but before we disembowel vd (so we can still do I/O to it).
7252 * But if we can't do it, don't treat the error as fatal --
7253 * it may be that the unwritability of the disk is the reason
7254 * it's being detached!
7256 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7259 * Remove vd from its parent and compact the parent's children.
7261 vdev_remove_child(pvd, vd);
7262 vdev_compact_children(pvd);
7265 * Remember one of the remaining children so we can get tvd below.
7267 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7270 * If we need to remove the remaining child from the list of hot spares,
7271 * do it now, marking the vdev as no longer a spare in the process.
7272 * We must do this before vdev_remove_parent(), because that can
7273 * change the GUID if it creates a new toplevel GUID. For a similar
7274 * reason, we must remove the spare now, in the same txg as the detach;
7275 * otherwise someone could attach a new sibling, change the GUID, and
7276 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7278 if (unspare) {
7279 ASSERT(cvd->vdev_isspare);
7280 spa_spare_remove(cvd);
7281 unspare_guid = cvd->vdev_guid;
7282 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7283 cvd->vdev_unspare = B_TRUE;
7287 * If the parent mirror/replacing vdev only has one child,
7288 * the parent is no longer needed. Remove it from the tree.
7290 if (pvd->vdev_children == 1) {
7291 if (pvd->vdev_ops == &vdev_spare_ops)
7292 cvd->vdev_unspare = B_FALSE;
7293 vdev_remove_parent(cvd);
7297 * We don't set tvd until now because the parent we just removed
7298 * may have been the previous top-level vdev.
7300 tvd = cvd->vdev_top;
7301 ASSERT(tvd->vdev_parent == rvd);
7304 * Reevaluate the parent vdev state.
7306 vdev_propagate_state(cvd);
7309 * If the 'autoexpand' property is set on the pool then automatically
7310 * try to expand the size of the pool. For example if the device we
7311 * just detached was smaller than the others, it may be possible to
7312 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7313 * first so that we can obtain the updated sizes of the leaf vdevs.
7315 if (spa->spa_autoexpand) {
7316 vdev_reopen(tvd);
7317 vdev_expand(tvd, txg);
7320 vdev_config_dirty(tvd);
7323 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7324 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7325 * But first make sure we're not on any *other* txg's DTL list, to
7326 * prevent vd from being accessed after it's freed.
7328 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7329 for (int t = 0; t < TXG_SIZE; t++)
7330 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7331 vd->vdev_detached = B_TRUE;
7332 vdev_dirty(tvd, VDD_DTL, vd, txg);
7334 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7335 spa_notify_waiters(spa);
7337 /* hang on to the spa before we release the lock */
7338 spa_open_ref(spa, FTAG);
7340 error = spa_vdev_exit(spa, vd, txg, 0);
7342 spa_history_log_internal(spa, "detach", NULL,
7343 "vdev=%s", vdpath);
7344 spa_strfree(vdpath);
7347 * If this was the removal of the original device in a hot spare vdev,
7348 * then we want to go through and remove the device from the hot spare
7349 * list of every other pool.
7351 if (unspare) {
7352 spa_t *altspa = NULL;
7354 mutex_enter(&spa_namespace_lock);
7355 while ((altspa = spa_next(altspa)) != NULL) {
7356 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7357 altspa == spa)
7358 continue;
7360 spa_open_ref(altspa, FTAG);
7361 mutex_exit(&spa_namespace_lock);
7362 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7363 mutex_enter(&spa_namespace_lock);
7364 spa_close(altspa, FTAG);
7366 mutex_exit(&spa_namespace_lock);
7368 /* search the rest of the vdevs for spares to remove */
7369 spa_vdev_resilver_done(spa);
7372 /* all done with the spa; OK to release */
7373 mutex_enter(&spa_namespace_lock);
7374 spa_close(spa, FTAG);
7375 mutex_exit(&spa_namespace_lock);
7377 return (error);
7380 static int
7381 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7382 list_t *vd_list)
7384 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7386 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7388 /* Look up vdev and ensure it's a leaf. */
7389 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7390 if (vd == NULL || vd->vdev_detached) {
7391 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7392 return (SET_ERROR(ENODEV));
7393 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7394 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7395 return (SET_ERROR(EINVAL));
7396 } else if (!vdev_writeable(vd)) {
7397 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7398 return (SET_ERROR(EROFS));
7400 mutex_enter(&vd->vdev_initialize_lock);
7401 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7404 * When we activate an initialize action we check to see
7405 * if the vdev_initialize_thread is NULL. We do this instead
7406 * of using the vdev_initialize_state since there might be
7407 * a previous initialization process which has completed but
7408 * the thread is not exited.
7410 if (cmd_type == POOL_INITIALIZE_START &&
7411 (vd->vdev_initialize_thread != NULL ||
7412 vd->vdev_top->vdev_removing)) {
7413 mutex_exit(&vd->vdev_initialize_lock);
7414 return (SET_ERROR(EBUSY));
7415 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7416 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7417 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7418 mutex_exit(&vd->vdev_initialize_lock);
7419 return (SET_ERROR(ESRCH));
7420 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7421 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7422 mutex_exit(&vd->vdev_initialize_lock);
7423 return (SET_ERROR(ESRCH));
7424 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7425 vd->vdev_initialize_thread != NULL) {
7426 mutex_exit(&vd->vdev_initialize_lock);
7427 return (SET_ERROR(EBUSY));
7430 switch (cmd_type) {
7431 case POOL_INITIALIZE_START:
7432 vdev_initialize(vd);
7433 break;
7434 case POOL_INITIALIZE_CANCEL:
7435 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7436 break;
7437 case POOL_INITIALIZE_SUSPEND:
7438 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7439 break;
7440 case POOL_INITIALIZE_UNINIT:
7441 vdev_uninitialize(vd);
7442 break;
7443 default:
7444 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7446 mutex_exit(&vd->vdev_initialize_lock);
7448 return (0);
7452 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7453 nvlist_t *vdev_errlist)
7455 int total_errors = 0;
7456 list_t vd_list;
7458 list_create(&vd_list, sizeof (vdev_t),
7459 offsetof(vdev_t, vdev_initialize_node));
7462 * We hold the namespace lock through the whole function
7463 * to prevent any changes to the pool while we're starting or
7464 * stopping initialization. The config and state locks are held so that
7465 * we can properly assess the vdev state before we commit to
7466 * the initializing operation.
7468 mutex_enter(&spa_namespace_lock);
7470 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7471 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7472 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7474 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7475 &vd_list);
7476 if (error != 0) {
7477 char guid_as_str[MAXNAMELEN];
7479 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7480 "%llu", (unsigned long long)vdev_guid);
7481 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7482 total_errors++;
7486 /* Wait for all initialize threads to stop. */
7487 vdev_initialize_stop_wait(spa, &vd_list);
7489 /* Sync out the initializing state */
7490 txg_wait_synced(spa->spa_dsl_pool, 0);
7491 mutex_exit(&spa_namespace_lock);
7493 list_destroy(&vd_list);
7495 return (total_errors);
7498 static int
7499 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7500 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7502 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7504 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7506 /* Look up vdev and ensure it's a leaf. */
7507 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7508 if (vd == NULL || vd->vdev_detached) {
7509 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7510 return (SET_ERROR(ENODEV));
7511 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7512 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7513 return (SET_ERROR(EINVAL));
7514 } else if (!vdev_writeable(vd)) {
7515 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7516 return (SET_ERROR(EROFS));
7517 } else if (!vd->vdev_has_trim) {
7518 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7519 return (SET_ERROR(EOPNOTSUPP));
7520 } else if (secure && !vd->vdev_has_securetrim) {
7521 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7522 return (SET_ERROR(EOPNOTSUPP));
7524 mutex_enter(&vd->vdev_trim_lock);
7525 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7528 * When we activate a TRIM action we check to see if the
7529 * vdev_trim_thread is NULL. We do this instead of using the
7530 * vdev_trim_state since there might be a previous TRIM process
7531 * which has completed but the thread is not exited.
7533 if (cmd_type == POOL_TRIM_START &&
7534 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) {
7535 mutex_exit(&vd->vdev_trim_lock);
7536 return (SET_ERROR(EBUSY));
7537 } else if (cmd_type == POOL_TRIM_CANCEL &&
7538 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7539 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7540 mutex_exit(&vd->vdev_trim_lock);
7541 return (SET_ERROR(ESRCH));
7542 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7543 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7544 mutex_exit(&vd->vdev_trim_lock);
7545 return (SET_ERROR(ESRCH));
7548 switch (cmd_type) {
7549 case POOL_TRIM_START:
7550 vdev_trim(vd, rate, partial, secure);
7551 break;
7552 case POOL_TRIM_CANCEL:
7553 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7554 break;
7555 case POOL_TRIM_SUSPEND:
7556 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7557 break;
7558 default:
7559 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7561 mutex_exit(&vd->vdev_trim_lock);
7563 return (0);
7567 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7568 * TRIM threads for each child vdev. These threads pass over all of the free
7569 * space in the vdev's metaslabs and issues TRIM commands for that space.
7572 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7573 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7575 int total_errors = 0;
7576 list_t vd_list;
7578 list_create(&vd_list, sizeof (vdev_t),
7579 offsetof(vdev_t, vdev_trim_node));
7582 * We hold the namespace lock through the whole function
7583 * to prevent any changes to the pool while we're starting or
7584 * stopping TRIM. The config and state locks are held so that
7585 * we can properly assess the vdev state before we commit to
7586 * the TRIM operation.
7588 mutex_enter(&spa_namespace_lock);
7590 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7591 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7592 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7594 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7595 rate, partial, secure, &vd_list);
7596 if (error != 0) {
7597 char guid_as_str[MAXNAMELEN];
7599 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7600 "%llu", (unsigned long long)vdev_guid);
7601 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7602 total_errors++;
7606 /* Wait for all TRIM threads to stop. */
7607 vdev_trim_stop_wait(spa, &vd_list);
7609 /* Sync out the TRIM state */
7610 txg_wait_synced(spa->spa_dsl_pool, 0);
7611 mutex_exit(&spa_namespace_lock);
7613 list_destroy(&vd_list);
7615 return (total_errors);
7619 * Split a set of devices from their mirrors, and create a new pool from them.
7622 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7623 nvlist_t *props, boolean_t exp)
7625 int error = 0;
7626 uint64_t txg, *glist;
7627 spa_t *newspa;
7628 uint_t c, children, lastlog;
7629 nvlist_t **child, *nvl, *tmp;
7630 dmu_tx_t *tx;
7631 const char *altroot = NULL;
7632 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7633 boolean_t activate_slog;
7635 ASSERT(spa_writeable(spa));
7637 txg = spa_vdev_enter(spa);
7639 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7640 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7641 error = (spa_has_checkpoint(spa)) ?
7642 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7643 return (spa_vdev_exit(spa, NULL, txg, error));
7646 /* clear the log and flush everything up to now */
7647 activate_slog = spa_passivate_log(spa);
7648 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7649 error = spa_reset_logs(spa);
7650 txg = spa_vdev_config_enter(spa);
7652 if (activate_slog)
7653 spa_activate_log(spa);
7655 if (error != 0)
7656 return (spa_vdev_exit(spa, NULL, txg, error));
7658 /* check new spa name before going any further */
7659 if (spa_lookup(newname) != NULL)
7660 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7663 * scan through all the children to ensure they're all mirrors
7665 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7666 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7667 &children) != 0)
7668 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7670 /* first, check to ensure we've got the right child count */
7671 rvd = spa->spa_root_vdev;
7672 lastlog = 0;
7673 for (c = 0; c < rvd->vdev_children; c++) {
7674 vdev_t *vd = rvd->vdev_child[c];
7676 /* don't count the holes & logs as children */
7677 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7678 !vdev_is_concrete(vd))) {
7679 if (lastlog == 0)
7680 lastlog = c;
7681 continue;
7684 lastlog = 0;
7686 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7687 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7689 /* next, ensure no spare or cache devices are part of the split */
7690 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7691 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7692 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7694 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7695 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7697 /* then, loop over each vdev and validate it */
7698 for (c = 0; c < children; c++) {
7699 uint64_t is_hole = 0;
7701 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7702 &is_hole);
7704 if (is_hole != 0) {
7705 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7706 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7707 continue;
7708 } else {
7709 error = SET_ERROR(EINVAL);
7710 break;
7714 /* deal with indirect vdevs */
7715 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7716 &vdev_indirect_ops)
7717 continue;
7719 /* which disk is going to be split? */
7720 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7721 &glist[c]) != 0) {
7722 error = SET_ERROR(EINVAL);
7723 break;
7726 /* look it up in the spa */
7727 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7728 if (vml[c] == NULL) {
7729 error = SET_ERROR(ENODEV);
7730 break;
7733 /* make sure there's nothing stopping the split */
7734 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7735 vml[c]->vdev_islog ||
7736 !vdev_is_concrete(vml[c]) ||
7737 vml[c]->vdev_isspare ||
7738 vml[c]->vdev_isl2cache ||
7739 !vdev_writeable(vml[c]) ||
7740 vml[c]->vdev_children != 0 ||
7741 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7742 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7743 error = SET_ERROR(EINVAL);
7744 break;
7747 if (vdev_dtl_required(vml[c]) ||
7748 vdev_resilver_needed(vml[c], NULL, NULL)) {
7749 error = SET_ERROR(EBUSY);
7750 break;
7753 /* we need certain info from the top level */
7754 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7755 vml[c]->vdev_top->vdev_ms_array);
7756 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7757 vml[c]->vdev_top->vdev_ms_shift);
7758 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7759 vml[c]->vdev_top->vdev_asize);
7760 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7761 vml[c]->vdev_top->vdev_ashift);
7763 /* transfer per-vdev ZAPs */
7764 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7765 VERIFY0(nvlist_add_uint64(child[c],
7766 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7768 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7769 VERIFY0(nvlist_add_uint64(child[c],
7770 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7771 vml[c]->vdev_parent->vdev_top_zap));
7774 if (error != 0) {
7775 kmem_free(vml, children * sizeof (vdev_t *));
7776 kmem_free(glist, children * sizeof (uint64_t));
7777 return (spa_vdev_exit(spa, NULL, txg, error));
7780 /* stop writers from using the disks */
7781 for (c = 0; c < children; c++) {
7782 if (vml[c] != NULL)
7783 vml[c]->vdev_offline = B_TRUE;
7785 vdev_reopen(spa->spa_root_vdev);
7788 * Temporarily record the splitting vdevs in the spa config. This
7789 * will disappear once the config is regenerated.
7791 nvl = fnvlist_alloc();
7792 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7793 kmem_free(glist, children * sizeof (uint64_t));
7795 mutex_enter(&spa->spa_props_lock);
7796 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7797 mutex_exit(&spa->spa_props_lock);
7798 spa->spa_config_splitting = nvl;
7799 vdev_config_dirty(spa->spa_root_vdev);
7801 /* configure and create the new pool */
7802 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7803 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7804 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7805 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7806 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7807 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7808 spa_generate_guid(NULL));
7809 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
7810 (void) nvlist_lookup_string(props,
7811 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
7813 /* add the new pool to the namespace */
7814 newspa = spa_add(newname, config, altroot);
7815 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
7816 newspa->spa_config_txg = spa->spa_config_txg;
7817 spa_set_log_state(newspa, SPA_LOG_CLEAR);
7819 /* release the spa config lock, retaining the namespace lock */
7820 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7822 if (zio_injection_enabled)
7823 zio_handle_panic_injection(spa, FTAG, 1);
7825 spa_activate(newspa, spa_mode_global);
7826 spa_async_suspend(newspa);
7829 * Temporarily stop the initializing and TRIM activity. We set the
7830 * state to ACTIVE so that we know to resume initializing or TRIM
7831 * once the split has completed.
7833 list_t vd_initialize_list;
7834 list_create(&vd_initialize_list, sizeof (vdev_t),
7835 offsetof(vdev_t, vdev_initialize_node));
7837 list_t vd_trim_list;
7838 list_create(&vd_trim_list, sizeof (vdev_t),
7839 offsetof(vdev_t, vdev_trim_node));
7841 for (c = 0; c < children; c++) {
7842 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7843 mutex_enter(&vml[c]->vdev_initialize_lock);
7844 vdev_initialize_stop(vml[c],
7845 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
7846 mutex_exit(&vml[c]->vdev_initialize_lock);
7848 mutex_enter(&vml[c]->vdev_trim_lock);
7849 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
7850 mutex_exit(&vml[c]->vdev_trim_lock);
7854 vdev_initialize_stop_wait(spa, &vd_initialize_list);
7855 vdev_trim_stop_wait(spa, &vd_trim_list);
7857 list_destroy(&vd_initialize_list);
7858 list_destroy(&vd_trim_list);
7860 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
7861 newspa->spa_is_splitting = B_TRUE;
7863 /* create the new pool from the disks of the original pool */
7864 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
7865 if (error)
7866 goto out;
7868 /* if that worked, generate a real config for the new pool */
7869 if (newspa->spa_root_vdev != NULL) {
7870 newspa->spa_config_splitting = fnvlist_alloc();
7871 fnvlist_add_uint64(newspa->spa_config_splitting,
7872 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
7873 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
7874 B_TRUE));
7877 /* set the props */
7878 if (props != NULL) {
7879 spa_configfile_set(newspa, props, B_FALSE);
7880 error = spa_prop_set(newspa, props);
7881 if (error)
7882 goto out;
7885 /* flush everything */
7886 txg = spa_vdev_config_enter(newspa);
7887 vdev_config_dirty(newspa->spa_root_vdev);
7888 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
7890 if (zio_injection_enabled)
7891 zio_handle_panic_injection(spa, FTAG, 2);
7893 spa_async_resume(newspa);
7895 /* finally, update the original pool's config */
7896 txg = spa_vdev_config_enter(spa);
7897 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
7898 error = dmu_tx_assign(tx, TXG_WAIT);
7899 if (error != 0)
7900 dmu_tx_abort(tx);
7901 for (c = 0; c < children; c++) {
7902 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
7903 vdev_t *tvd = vml[c]->vdev_top;
7906 * Need to be sure the detachable VDEV is not
7907 * on any *other* txg's DTL list to prevent it
7908 * from being accessed after it's freed.
7910 for (int t = 0; t < TXG_SIZE; t++) {
7911 (void) txg_list_remove_this(
7912 &tvd->vdev_dtl_list, vml[c], t);
7915 vdev_split(vml[c]);
7916 if (error == 0)
7917 spa_history_log_internal(spa, "detach", tx,
7918 "vdev=%s", vml[c]->vdev_path);
7920 vdev_free(vml[c]);
7923 spa->spa_avz_action = AVZ_ACTION_REBUILD;
7924 vdev_config_dirty(spa->spa_root_vdev);
7925 spa->spa_config_splitting = NULL;
7926 nvlist_free(nvl);
7927 if (error == 0)
7928 dmu_tx_commit(tx);
7929 (void) spa_vdev_exit(spa, NULL, txg, 0);
7931 if (zio_injection_enabled)
7932 zio_handle_panic_injection(spa, FTAG, 3);
7934 /* split is complete; log a history record */
7935 spa_history_log_internal(newspa, "split", NULL,
7936 "from pool %s", spa_name(spa));
7938 newspa->spa_is_splitting = B_FALSE;
7939 kmem_free(vml, children * sizeof (vdev_t *));
7941 /* if we're not going to mount the filesystems in userland, export */
7942 if (exp)
7943 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
7944 B_FALSE, B_FALSE);
7946 return (error);
7948 out:
7949 spa_unload(newspa);
7950 spa_deactivate(newspa);
7951 spa_remove(newspa);
7953 txg = spa_vdev_config_enter(spa);
7955 /* re-online all offlined disks */
7956 for (c = 0; c < children; c++) {
7957 if (vml[c] != NULL)
7958 vml[c]->vdev_offline = B_FALSE;
7961 /* restart initializing or trimming disks as necessary */
7962 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
7963 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
7964 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
7966 vdev_reopen(spa->spa_root_vdev);
7968 nvlist_free(spa->spa_config_splitting);
7969 spa->spa_config_splitting = NULL;
7970 (void) spa_vdev_exit(spa, NULL, txg, error);
7972 kmem_free(vml, children * sizeof (vdev_t *));
7973 return (error);
7977 * Find any device that's done replacing, or a vdev marked 'unspare' that's
7978 * currently spared, so we can detach it.
7980 static vdev_t *
7981 spa_vdev_resilver_done_hunt(vdev_t *vd)
7983 vdev_t *newvd, *oldvd;
7985 for (int c = 0; c < vd->vdev_children; c++) {
7986 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
7987 if (oldvd != NULL)
7988 return (oldvd);
7992 * Check for a completed replacement. We always consider the first
7993 * vdev in the list to be the oldest vdev, and the last one to be
7994 * the newest (see spa_vdev_attach() for how that works). In
7995 * the case where the newest vdev is faulted, we will not automatically
7996 * remove it after a resilver completes. This is OK as it will require
7997 * user intervention to determine which disk the admin wishes to keep.
7999 if (vd->vdev_ops == &vdev_replacing_ops) {
8000 ASSERT(vd->vdev_children > 1);
8002 newvd = vd->vdev_child[vd->vdev_children - 1];
8003 oldvd = vd->vdev_child[0];
8005 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8006 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8007 !vdev_dtl_required(oldvd))
8008 return (oldvd);
8012 * Check for a completed resilver with the 'unspare' flag set.
8013 * Also potentially update faulted state.
8015 if (vd->vdev_ops == &vdev_spare_ops) {
8016 vdev_t *first = vd->vdev_child[0];
8017 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8019 if (last->vdev_unspare) {
8020 oldvd = first;
8021 newvd = last;
8022 } else if (first->vdev_unspare) {
8023 oldvd = last;
8024 newvd = first;
8025 } else {
8026 oldvd = NULL;
8029 if (oldvd != NULL &&
8030 vdev_dtl_empty(newvd, DTL_MISSING) &&
8031 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8032 !vdev_dtl_required(oldvd))
8033 return (oldvd);
8035 vdev_propagate_state(vd);
8038 * If there are more than two spares attached to a disk,
8039 * and those spares are not required, then we want to
8040 * attempt to free them up now so that they can be used
8041 * by other pools. Once we're back down to a single
8042 * disk+spare, we stop removing them.
8044 if (vd->vdev_children > 2) {
8045 newvd = vd->vdev_child[1];
8047 if (newvd->vdev_isspare && last->vdev_isspare &&
8048 vdev_dtl_empty(last, DTL_MISSING) &&
8049 vdev_dtl_empty(last, DTL_OUTAGE) &&
8050 !vdev_dtl_required(newvd))
8051 return (newvd);
8055 return (NULL);
8058 static void
8059 spa_vdev_resilver_done(spa_t *spa)
8061 vdev_t *vd, *pvd, *ppvd;
8062 uint64_t guid, sguid, pguid, ppguid;
8064 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8066 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8067 pvd = vd->vdev_parent;
8068 ppvd = pvd->vdev_parent;
8069 guid = vd->vdev_guid;
8070 pguid = pvd->vdev_guid;
8071 ppguid = ppvd->vdev_guid;
8072 sguid = 0;
8074 * If we have just finished replacing a hot spared device, then
8075 * we need to detach the parent's first child (the original hot
8076 * spare) as well.
8078 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8079 ppvd->vdev_children == 2) {
8080 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8081 sguid = ppvd->vdev_child[1]->vdev_guid;
8083 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8085 spa_config_exit(spa, SCL_ALL, FTAG);
8086 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8087 return;
8088 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8089 return;
8090 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8093 spa_config_exit(spa, SCL_ALL, FTAG);
8096 * If a detach was not performed above replace waiters will not have
8097 * been notified. In which case we must do so now.
8099 spa_notify_waiters(spa);
8103 * Update the stored path or FRU for this vdev.
8105 static int
8106 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8107 boolean_t ispath)
8109 vdev_t *vd;
8110 boolean_t sync = B_FALSE;
8112 ASSERT(spa_writeable(spa));
8114 spa_vdev_state_enter(spa, SCL_ALL);
8116 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8117 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8119 if (!vd->vdev_ops->vdev_op_leaf)
8120 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8122 if (ispath) {
8123 if (strcmp(value, vd->vdev_path) != 0) {
8124 spa_strfree(vd->vdev_path);
8125 vd->vdev_path = spa_strdup(value);
8126 sync = B_TRUE;
8128 } else {
8129 if (vd->vdev_fru == NULL) {
8130 vd->vdev_fru = spa_strdup(value);
8131 sync = B_TRUE;
8132 } else if (strcmp(value, vd->vdev_fru) != 0) {
8133 spa_strfree(vd->vdev_fru);
8134 vd->vdev_fru = spa_strdup(value);
8135 sync = B_TRUE;
8139 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8143 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8145 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8149 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8151 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8155 * ==========================================================================
8156 * SPA Scanning
8157 * ==========================================================================
8160 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8162 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8164 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8165 return (SET_ERROR(EBUSY));
8167 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8171 spa_scan_stop(spa_t *spa)
8173 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8174 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8175 return (SET_ERROR(EBUSY));
8176 return (dsl_scan_cancel(spa->spa_dsl_pool));
8180 spa_scan(spa_t *spa, pool_scan_func_t func)
8182 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8184 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8185 return (SET_ERROR(ENOTSUP));
8187 if (func == POOL_SCAN_RESILVER &&
8188 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8189 return (SET_ERROR(ENOTSUP));
8192 * If a resilver was requested, but there is no DTL on a
8193 * writeable leaf device, we have nothing to do.
8195 if (func == POOL_SCAN_RESILVER &&
8196 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8197 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8198 return (0);
8201 return (dsl_scan(spa->spa_dsl_pool, func));
8205 * ==========================================================================
8206 * SPA async task processing
8207 * ==========================================================================
8210 static void
8211 spa_async_remove(spa_t *spa, vdev_t *vd)
8213 if (vd->vdev_remove_wanted) {
8214 vd->vdev_remove_wanted = B_FALSE;
8215 vd->vdev_delayed_close = B_FALSE;
8216 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8219 * We want to clear the stats, but we don't want to do a full
8220 * vdev_clear() as that will cause us to throw away
8221 * degraded/faulted state as well as attempt to reopen the
8222 * device, all of which is a waste.
8224 vd->vdev_stat.vs_read_errors = 0;
8225 vd->vdev_stat.vs_write_errors = 0;
8226 vd->vdev_stat.vs_checksum_errors = 0;
8228 vdev_state_dirty(vd->vdev_top);
8230 /* Tell userspace that the vdev is gone. */
8231 zfs_post_remove(spa, vd);
8234 for (int c = 0; c < vd->vdev_children; c++)
8235 spa_async_remove(spa, vd->vdev_child[c]);
8238 static void
8239 spa_async_probe(spa_t *spa, vdev_t *vd)
8241 if (vd->vdev_probe_wanted) {
8242 vd->vdev_probe_wanted = B_FALSE;
8243 vdev_reopen(vd); /* vdev_open() does the actual probe */
8246 for (int c = 0; c < vd->vdev_children; c++)
8247 spa_async_probe(spa, vd->vdev_child[c]);
8250 static void
8251 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8253 if (!spa->spa_autoexpand)
8254 return;
8256 for (int c = 0; c < vd->vdev_children; c++) {
8257 vdev_t *cvd = vd->vdev_child[c];
8258 spa_async_autoexpand(spa, cvd);
8261 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8262 return;
8264 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8267 static __attribute__((noreturn)) void
8268 spa_async_thread(void *arg)
8270 spa_t *spa = (spa_t *)arg;
8271 dsl_pool_t *dp = spa->spa_dsl_pool;
8272 int tasks;
8274 ASSERT(spa->spa_sync_on);
8276 mutex_enter(&spa->spa_async_lock);
8277 tasks = spa->spa_async_tasks;
8278 spa->spa_async_tasks = 0;
8279 mutex_exit(&spa->spa_async_lock);
8282 * See if the config needs to be updated.
8284 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8285 uint64_t old_space, new_space;
8287 mutex_enter(&spa_namespace_lock);
8288 old_space = metaslab_class_get_space(spa_normal_class(spa));
8289 old_space += metaslab_class_get_space(spa_special_class(spa));
8290 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8291 old_space += metaslab_class_get_space(
8292 spa_embedded_log_class(spa));
8294 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8296 new_space = metaslab_class_get_space(spa_normal_class(spa));
8297 new_space += metaslab_class_get_space(spa_special_class(spa));
8298 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8299 new_space += metaslab_class_get_space(
8300 spa_embedded_log_class(spa));
8301 mutex_exit(&spa_namespace_lock);
8304 * If the pool grew as a result of the config update,
8305 * then log an internal history event.
8307 if (new_space != old_space) {
8308 spa_history_log_internal(spa, "vdev online", NULL,
8309 "pool '%s' size: %llu(+%llu)",
8310 spa_name(spa), (u_longlong_t)new_space,
8311 (u_longlong_t)(new_space - old_space));
8316 * See if any devices need to be marked REMOVED.
8318 if (tasks & SPA_ASYNC_REMOVE) {
8319 spa_vdev_state_enter(spa, SCL_NONE);
8320 spa_async_remove(spa, spa->spa_root_vdev);
8321 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8322 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8323 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8324 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8325 (void) spa_vdev_state_exit(spa, NULL, 0);
8328 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8329 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8330 spa_async_autoexpand(spa, spa->spa_root_vdev);
8331 spa_config_exit(spa, SCL_CONFIG, FTAG);
8335 * See if any devices need to be probed.
8337 if (tasks & SPA_ASYNC_PROBE) {
8338 spa_vdev_state_enter(spa, SCL_NONE);
8339 spa_async_probe(spa, spa->spa_root_vdev);
8340 (void) spa_vdev_state_exit(spa, NULL, 0);
8344 * If any devices are done replacing, detach them.
8346 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8347 tasks & SPA_ASYNC_REBUILD_DONE ||
8348 tasks & SPA_ASYNC_DETACH_SPARE) {
8349 spa_vdev_resilver_done(spa);
8353 * Kick off a resilver.
8355 if (tasks & SPA_ASYNC_RESILVER &&
8356 !vdev_rebuild_active(spa->spa_root_vdev) &&
8357 (!dsl_scan_resilvering(dp) ||
8358 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8359 dsl_scan_restart_resilver(dp, 0);
8361 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8362 mutex_enter(&spa_namespace_lock);
8363 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8364 vdev_initialize_restart(spa->spa_root_vdev);
8365 spa_config_exit(spa, SCL_CONFIG, FTAG);
8366 mutex_exit(&spa_namespace_lock);
8369 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8370 mutex_enter(&spa_namespace_lock);
8371 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8372 vdev_trim_restart(spa->spa_root_vdev);
8373 spa_config_exit(spa, SCL_CONFIG, FTAG);
8374 mutex_exit(&spa_namespace_lock);
8377 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8378 mutex_enter(&spa_namespace_lock);
8379 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8380 vdev_autotrim_restart(spa);
8381 spa_config_exit(spa, SCL_CONFIG, FTAG);
8382 mutex_exit(&spa_namespace_lock);
8386 * Kick off L2 cache whole device TRIM.
8388 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8389 mutex_enter(&spa_namespace_lock);
8390 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8391 vdev_trim_l2arc(spa);
8392 spa_config_exit(spa, SCL_CONFIG, FTAG);
8393 mutex_exit(&spa_namespace_lock);
8397 * Kick off L2 cache rebuilding.
8399 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8400 mutex_enter(&spa_namespace_lock);
8401 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8402 l2arc_spa_rebuild_start(spa);
8403 spa_config_exit(spa, SCL_L2ARC, FTAG);
8404 mutex_exit(&spa_namespace_lock);
8408 * Let the world know that we're done.
8410 mutex_enter(&spa->spa_async_lock);
8411 spa->spa_async_thread = NULL;
8412 cv_broadcast(&spa->spa_async_cv);
8413 mutex_exit(&spa->spa_async_lock);
8414 thread_exit();
8417 void
8418 spa_async_suspend(spa_t *spa)
8420 mutex_enter(&spa->spa_async_lock);
8421 spa->spa_async_suspended++;
8422 while (spa->spa_async_thread != NULL)
8423 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8424 mutex_exit(&spa->spa_async_lock);
8426 spa_vdev_remove_suspend(spa);
8428 zthr_t *condense_thread = spa->spa_condense_zthr;
8429 if (condense_thread != NULL)
8430 zthr_cancel(condense_thread);
8432 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8433 if (discard_thread != NULL)
8434 zthr_cancel(discard_thread);
8436 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8437 if (ll_delete_thread != NULL)
8438 zthr_cancel(ll_delete_thread);
8440 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8441 if (ll_condense_thread != NULL)
8442 zthr_cancel(ll_condense_thread);
8445 void
8446 spa_async_resume(spa_t *spa)
8448 mutex_enter(&spa->spa_async_lock);
8449 ASSERT(spa->spa_async_suspended != 0);
8450 spa->spa_async_suspended--;
8451 mutex_exit(&spa->spa_async_lock);
8452 spa_restart_removal(spa);
8454 zthr_t *condense_thread = spa->spa_condense_zthr;
8455 if (condense_thread != NULL)
8456 zthr_resume(condense_thread);
8458 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8459 if (discard_thread != NULL)
8460 zthr_resume(discard_thread);
8462 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8463 if (ll_delete_thread != NULL)
8464 zthr_resume(ll_delete_thread);
8466 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8467 if (ll_condense_thread != NULL)
8468 zthr_resume(ll_condense_thread);
8471 static boolean_t
8472 spa_async_tasks_pending(spa_t *spa)
8474 uint_t non_config_tasks;
8475 uint_t config_task;
8476 boolean_t config_task_suspended;
8478 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8479 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8480 if (spa->spa_ccw_fail_time == 0) {
8481 config_task_suspended = B_FALSE;
8482 } else {
8483 config_task_suspended =
8484 (gethrtime() - spa->spa_ccw_fail_time) <
8485 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8488 return (non_config_tasks || (config_task && !config_task_suspended));
8491 static void
8492 spa_async_dispatch(spa_t *spa)
8494 mutex_enter(&spa->spa_async_lock);
8495 if (spa_async_tasks_pending(spa) &&
8496 !spa->spa_async_suspended &&
8497 spa->spa_async_thread == NULL)
8498 spa->spa_async_thread = thread_create(NULL, 0,
8499 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8500 mutex_exit(&spa->spa_async_lock);
8503 void
8504 spa_async_request(spa_t *spa, int task)
8506 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8507 mutex_enter(&spa->spa_async_lock);
8508 spa->spa_async_tasks |= task;
8509 mutex_exit(&spa->spa_async_lock);
8513 spa_async_tasks(spa_t *spa)
8515 return (spa->spa_async_tasks);
8519 * ==========================================================================
8520 * SPA syncing routines
8521 * ==========================================================================
8525 static int
8526 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8527 dmu_tx_t *tx)
8529 bpobj_t *bpo = arg;
8530 bpobj_enqueue(bpo, bp, bp_freed, tx);
8531 return (0);
8535 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8537 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8541 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8543 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8546 static int
8547 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8549 zio_t *pio = arg;
8551 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8552 pio->io_flags));
8553 return (0);
8556 static int
8557 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8558 dmu_tx_t *tx)
8560 ASSERT(!bp_freed);
8561 return (spa_free_sync_cb(arg, bp, tx));
8565 * Note: this simple function is not inlined to make it easier to dtrace the
8566 * amount of time spent syncing frees.
8568 static void
8569 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8571 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8572 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8573 VERIFY(zio_wait(zio) == 0);
8577 * Note: this simple function is not inlined to make it easier to dtrace the
8578 * amount of time spent syncing deferred frees.
8580 static void
8581 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8583 if (spa_sync_pass(spa) != 1)
8584 return;
8587 * Note:
8588 * If the log space map feature is active, we stop deferring
8589 * frees to the next TXG and therefore running this function
8590 * would be considered a no-op as spa_deferred_bpobj should
8591 * not have any entries.
8593 * That said we run this function anyway (instead of returning
8594 * immediately) for the edge-case scenario where we just
8595 * activated the log space map feature in this TXG but we have
8596 * deferred frees from the previous TXG.
8598 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8599 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8600 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8601 VERIFY0(zio_wait(zio));
8604 static void
8605 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8607 char *packed = NULL;
8608 size_t bufsize;
8609 size_t nvsize = 0;
8610 dmu_buf_t *db;
8612 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8615 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8616 * information. This avoids the dmu_buf_will_dirty() path and
8617 * saves us a pre-read to get data we don't actually care about.
8619 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8620 packed = vmem_alloc(bufsize, KM_SLEEP);
8622 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8623 KM_SLEEP) == 0);
8624 memset(packed + nvsize, 0, bufsize - nvsize);
8626 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8628 vmem_free(packed, bufsize);
8630 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8631 dmu_buf_will_dirty(db, tx);
8632 *(uint64_t *)db->db_data = nvsize;
8633 dmu_buf_rele(db, FTAG);
8636 static void
8637 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8638 const char *config, const char *entry)
8640 nvlist_t *nvroot;
8641 nvlist_t **list;
8642 int i;
8644 if (!sav->sav_sync)
8645 return;
8648 * Update the MOS nvlist describing the list of available devices.
8649 * spa_validate_aux() will have already made sure this nvlist is
8650 * valid and the vdevs are labeled appropriately.
8652 if (sav->sav_object == 0) {
8653 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8654 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8655 sizeof (uint64_t), tx);
8656 VERIFY(zap_update(spa->spa_meta_objset,
8657 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8658 &sav->sav_object, tx) == 0);
8661 nvroot = fnvlist_alloc();
8662 if (sav->sav_count == 0) {
8663 fnvlist_add_nvlist_array(nvroot, config,
8664 (const nvlist_t * const *)NULL, 0);
8665 } else {
8666 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8667 for (i = 0; i < sav->sav_count; i++)
8668 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8669 B_FALSE, VDEV_CONFIG_L2CACHE);
8670 fnvlist_add_nvlist_array(nvroot, config,
8671 (const nvlist_t * const *)list, sav->sav_count);
8672 for (i = 0; i < sav->sav_count; i++)
8673 nvlist_free(list[i]);
8674 kmem_free(list, sav->sav_count * sizeof (void *));
8677 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8678 nvlist_free(nvroot);
8680 sav->sav_sync = B_FALSE;
8684 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8685 * The all-vdev ZAP must be empty.
8687 static void
8688 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8690 spa_t *spa = vd->vdev_spa;
8692 if (vd->vdev_root_zap != 0 &&
8693 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8694 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8695 vd->vdev_root_zap, tx));
8697 if (vd->vdev_top_zap != 0) {
8698 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8699 vd->vdev_top_zap, tx));
8701 if (vd->vdev_leaf_zap != 0) {
8702 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8703 vd->vdev_leaf_zap, tx));
8705 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8706 spa_avz_build(vd->vdev_child[i], avz, tx);
8710 static void
8711 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8713 nvlist_t *config;
8716 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8717 * its config may not be dirty but we still need to build per-vdev ZAPs.
8718 * Similarly, if the pool is being assembled (e.g. after a split), we
8719 * need to rebuild the AVZ although the config may not be dirty.
8721 if (list_is_empty(&spa->spa_config_dirty_list) &&
8722 spa->spa_avz_action == AVZ_ACTION_NONE)
8723 return;
8725 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8727 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8728 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8729 spa->spa_all_vdev_zaps != 0);
8731 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8732 /* Make and build the new AVZ */
8733 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8734 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8735 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8737 /* Diff old AVZ with new one */
8738 zap_cursor_t zc;
8739 zap_attribute_t za;
8741 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8742 spa->spa_all_vdev_zaps);
8743 zap_cursor_retrieve(&zc, &za) == 0;
8744 zap_cursor_advance(&zc)) {
8745 uint64_t vdzap = za.za_first_integer;
8746 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8747 vdzap) == ENOENT) {
8749 * ZAP is listed in old AVZ but not in new one;
8750 * destroy it
8752 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8753 tx));
8757 zap_cursor_fini(&zc);
8759 /* Destroy the old AVZ */
8760 VERIFY0(zap_destroy(spa->spa_meta_objset,
8761 spa->spa_all_vdev_zaps, tx));
8763 /* Replace the old AVZ in the dir obj with the new one */
8764 VERIFY0(zap_update(spa->spa_meta_objset,
8765 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8766 sizeof (new_avz), 1, &new_avz, tx));
8768 spa->spa_all_vdev_zaps = new_avz;
8769 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8770 zap_cursor_t zc;
8771 zap_attribute_t za;
8773 /* Walk through the AVZ and destroy all listed ZAPs */
8774 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8775 spa->spa_all_vdev_zaps);
8776 zap_cursor_retrieve(&zc, &za) == 0;
8777 zap_cursor_advance(&zc)) {
8778 uint64_t zap = za.za_first_integer;
8779 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8782 zap_cursor_fini(&zc);
8784 /* Destroy and unlink the AVZ itself */
8785 VERIFY0(zap_destroy(spa->spa_meta_objset,
8786 spa->spa_all_vdev_zaps, tx));
8787 VERIFY0(zap_remove(spa->spa_meta_objset,
8788 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8789 spa->spa_all_vdev_zaps = 0;
8792 if (spa->spa_all_vdev_zaps == 0) {
8793 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8794 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8795 DMU_POOL_VDEV_ZAP_MAP, tx);
8797 spa->spa_avz_action = AVZ_ACTION_NONE;
8799 /* Create ZAPs for vdevs that don't have them. */
8800 vdev_construct_zaps(spa->spa_root_vdev, tx);
8802 config = spa_config_generate(spa, spa->spa_root_vdev,
8803 dmu_tx_get_txg(tx), B_FALSE);
8806 * If we're upgrading the spa version then make sure that
8807 * the config object gets updated with the correct version.
8809 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
8810 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
8811 spa->spa_uberblock.ub_version);
8813 spa_config_exit(spa, SCL_STATE, FTAG);
8815 nvlist_free(spa->spa_config_syncing);
8816 spa->spa_config_syncing = config;
8818 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
8821 static void
8822 spa_sync_version(void *arg, dmu_tx_t *tx)
8824 uint64_t *versionp = arg;
8825 uint64_t version = *versionp;
8826 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8829 * Setting the version is special cased when first creating the pool.
8831 ASSERT(tx->tx_txg != TXG_INITIAL);
8833 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
8834 ASSERT(version >= spa_version(spa));
8836 spa->spa_uberblock.ub_version = version;
8837 vdev_config_dirty(spa->spa_root_vdev);
8838 spa_history_log_internal(spa, "set", tx, "version=%lld",
8839 (longlong_t)version);
8843 * Set zpool properties.
8845 static void
8846 spa_sync_props(void *arg, dmu_tx_t *tx)
8848 nvlist_t *nvp = arg;
8849 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
8850 objset_t *mos = spa->spa_meta_objset;
8851 nvpair_t *elem = NULL;
8853 mutex_enter(&spa->spa_props_lock);
8855 while ((elem = nvlist_next_nvpair(nvp, elem))) {
8856 uint64_t intval;
8857 const char *strval, *fname;
8858 zpool_prop_t prop;
8859 const char *propname;
8860 const char *elemname = nvpair_name(elem);
8861 zprop_type_t proptype;
8862 spa_feature_t fid;
8864 switch (prop = zpool_name_to_prop(elemname)) {
8865 case ZPOOL_PROP_VERSION:
8866 intval = fnvpair_value_uint64(elem);
8868 * The version is synced separately before other
8869 * properties and should be correct by now.
8871 ASSERT3U(spa_version(spa), >=, intval);
8872 break;
8874 case ZPOOL_PROP_ALTROOT:
8876 * 'altroot' is a non-persistent property. It should
8877 * have been set temporarily at creation or import time.
8879 ASSERT(spa->spa_root != NULL);
8880 break;
8882 case ZPOOL_PROP_READONLY:
8883 case ZPOOL_PROP_CACHEFILE:
8885 * 'readonly' and 'cachefile' are also non-persistent
8886 * properties.
8888 break;
8889 case ZPOOL_PROP_COMMENT:
8890 strval = fnvpair_value_string(elem);
8891 if (spa->spa_comment != NULL)
8892 spa_strfree(spa->spa_comment);
8893 spa->spa_comment = spa_strdup(strval);
8895 * We need to dirty the configuration on all the vdevs
8896 * so that their labels get updated. We also need to
8897 * update the cache file to keep it in sync with the
8898 * MOS version. It's unnecessary to do this for pool
8899 * creation since the vdev's configuration has already
8900 * been dirtied.
8902 if (tx->tx_txg != TXG_INITIAL) {
8903 vdev_config_dirty(spa->spa_root_vdev);
8904 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8906 spa_history_log_internal(spa, "set", tx,
8907 "%s=%s", elemname, strval);
8908 break;
8909 case ZPOOL_PROP_COMPATIBILITY:
8910 strval = fnvpair_value_string(elem);
8911 if (spa->spa_compatibility != NULL)
8912 spa_strfree(spa->spa_compatibility);
8913 spa->spa_compatibility = spa_strdup(strval);
8915 * Dirty the configuration on vdevs as above.
8917 if (tx->tx_txg != TXG_INITIAL) {
8918 vdev_config_dirty(spa->spa_root_vdev);
8919 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
8922 spa_history_log_internal(spa, "set", tx,
8923 "%s=%s", nvpair_name(elem), strval);
8924 break;
8926 case ZPOOL_PROP_INVAL:
8927 if (zpool_prop_feature(elemname)) {
8928 fname = strchr(elemname, '@') + 1;
8929 VERIFY0(zfeature_lookup_name(fname, &fid));
8931 spa_feature_enable(spa, fid, tx);
8932 spa_history_log_internal(spa, "set", tx,
8933 "%s=enabled", elemname);
8934 break;
8935 } else if (!zfs_prop_user(elemname)) {
8936 ASSERT(zpool_prop_feature(elemname));
8937 break;
8939 zfs_fallthrough;
8940 default:
8942 * Set pool property values in the poolprops mos object.
8944 if (spa->spa_pool_props_object == 0) {
8945 spa->spa_pool_props_object =
8946 zap_create_link(mos, DMU_OT_POOL_PROPS,
8947 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
8948 tx);
8951 /* normalize the property name */
8952 if (prop == ZPOOL_PROP_INVAL) {
8953 propname = elemname;
8954 proptype = PROP_TYPE_STRING;
8955 } else {
8956 propname = zpool_prop_to_name(prop);
8957 proptype = zpool_prop_get_type(prop);
8960 if (nvpair_type(elem) == DATA_TYPE_STRING) {
8961 ASSERT(proptype == PROP_TYPE_STRING);
8962 strval = fnvpair_value_string(elem);
8963 VERIFY0(zap_update(mos,
8964 spa->spa_pool_props_object, propname,
8965 1, strlen(strval) + 1, strval, tx));
8966 spa_history_log_internal(spa, "set", tx,
8967 "%s=%s", elemname, strval);
8968 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
8969 intval = fnvpair_value_uint64(elem);
8971 if (proptype == PROP_TYPE_INDEX) {
8972 const char *unused;
8973 VERIFY0(zpool_prop_index_to_string(
8974 prop, intval, &unused));
8976 VERIFY0(zap_update(mos,
8977 spa->spa_pool_props_object, propname,
8978 8, 1, &intval, tx));
8979 spa_history_log_internal(spa, "set", tx,
8980 "%s=%lld", elemname,
8981 (longlong_t)intval);
8983 switch (prop) {
8984 case ZPOOL_PROP_DELEGATION:
8985 spa->spa_delegation = intval;
8986 break;
8987 case ZPOOL_PROP_BOOTFS:
8988 spa->spa_bootfs = intval;
8989 break;
8990 case ZPOOL_PROP_FAILUREMODE:
8991 spa->spa_failmode = intval;
8992 break;
8993 case ZPOOL_PROP_AUTOTRIM:
8994 spa->spa_autotrim = intval;
8995 spa_async_request(spa,
8996 SPA_ASYNC_AUTOTRIM_RESTART);
8997 break;
8998 case ZPOOL_PROP_AUTOEXPAND:
8999 spa->spa_autoexpand = intval;
9000 if (tx->tx_txg != TXG_INITIAL)
9001 spa_async_request(spa,
9002 SPA_ASYNC_AUTOEXPAND);
9003 break;
9004 case ZPOOL_PROP_MULTIHOST:
9005 spa->spa_multihost = intval;
9006 break;
9007 default:
9008 break;
9010 } else {
9011 ASSERT(0); /* not allowed */
9017 mutex_exit(&spa->spa_props_lock);
9021 * Perform one-time upgrade on-disk changes. spa_version() does not
9022 * reflect the new version this txg, so there must be no changes this
9023 * txg to anything that the upgrade code depends on after it executes.
9024 * Therefore this must be called after dsl_pool_sync() does the sync
9025 * tasks.
9027 static void
9028 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9030 if (spa_sync_pass(spa) != 1)
9031 return;
9033 dsl_pool_t *dp = spa->spa_dsl_pool;
9034 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9036 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9037 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9038 dsl_pool_create_origin(dp, tx);
9040 /* Keeping the origin open increases spa_minref */
9041 spa->spa_minref += 3;
9044 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9045 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9046 dsl_pool_upgrade_clones(dp, tx);
9049 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9050 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9051 dsl_pool_upgrade_dir_clones(dp, tx);
9053 /* Keeping the freedir open increases spa_minref */
9054 spa->spa_minref += 3;
9057 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9058 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9059 spa_feature_create_zap_objects(spa, tx);
9063 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9064 * when possibility to use lz4 compression for metadata was added
9065 * Old pools that have this feature enabled must be upgraded to have
9066 * this feature active
9068 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9069 boolean_t lz4_en = spa_feature_is_enabled(spa,
9070 SPA_FEATURE_LZ4_COMPRESS);
9071 boolean_t lz4_ac = spa_feature_is_active(spa,
9072 SPA_FEATURE_LZ4_COMPRESS);
9074 if (lz4_en && !lz4_ac)
9075 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9079 * If we haven't written the salt, do so now. Note that the
9080 * feature may not be activated yet, but that's fine since
9081 * the presence of this ZAP entry is backwards compatible.
9083 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9084 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9085 VERIFY0(zap_add(spa->spa_meta_objset,
9086 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9087 sizeof (spa->spa_cksum_salt.zcs_bytes),
9088 spa->spa_cksum_salt.zcs_bytes, tx));
9091 rrw_exit(&dp->dp_config_rwlock, FTAG);
9094 static void
9095 vdev_indirect_state_sync_verify(vdev_t *vd)
9097 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9098 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9100 if (vd->vdev_ops == &vdev_indirect_ops) {
9101 ASSERT(vim != NULL);
9102 ASSERT(vib != NULL);
9105 uint64_t obsolete_sm_object = 0;
9106 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9107 if (obsolete_sm_object != 0) {
9108 ASSERT(vd->vdev_obsolete_sm != NULL);
9109 ASSERT(vd->vdev_removing ||
9110 vd->vdev_ops == &vdev_indirect_ops);
9111 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9112 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9113 ASSERT3U(obsolete_sm_object, ==,
9114 space_map_object(vd->vdev_obsolete_sm));
9115 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9116 space_map_allocated(vd->vdev_obsolete_sm));
9118 ASSERT(vd->vdev_obsolete_segments != NULL);
9121 * Since frees / remaps to an indirect vdev can only
9122 * happen in syncing context, the obsolete segments
9123 * tree must be empty when we start syncing.
9125 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9129 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9130 * async write queue depth in case it changed. The max queue depth will
9131 * not change in the middle of syncing out this txg.
9133 static void
9134 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9136 ASSERT(spa_writeable(spa));
9138 vdev_t *rvd = spa->spa_root_vdev;
9139 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9140 zfs_vdev_queue_depth_pct / 100;
9141 metaslab_class_t *normal = spa_normal_class(spa);
9142 metaslab_class_t *special = spa_special_class(spa);
9143 metaslab_class_t *dedup = spa_dedup_class(spa);
9145 uint64_t slots_per_allocator = 0;
9146 for (int c = 0; c < rvd->vdev_children; c++) {
9147 vdev_t *tvd = rvd->vdev_child[c];
9149 metaslab_group_t *mg = tvd->vdev_mg;
9150 if (mg == NULL || !metaslab_group_initialized(mg))
9151 continue;
9153 metaslab_class_t *mc = mg->mg_class;
9154 if (mc != normal && mc != special && mc != dedup)
9155 continue;
9158 * It is safe to do a lock-free check here because only async
9159 * allocations look at mg_max_alloc_queue_depth, and async
9160 * allocations all happen from spa_sync().
9162 for (int i = 0; i < mg->mg_allocators; i++) {
9163 ASSERT0(zfs_refcount_count(
9164 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9166 mg->mg_max_alloc_queue_depth = max_queue_depth;
9168 for (int i = 0; i < mg->mg_allocators; i++) {
9169 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9170 zfs_vdev_def_queue_depth;
9172 slots_per_allocator += zfs_vdev_def_queue_depth;
9175 for (int i = 0; i < spa->spa_alloc_count; i++) {
9176 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9177 mca_alloc_slots));
9178 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9179 mca_alloc_slots));
9180 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9181 mca_alloc_slots));
9182 normal->mc_allocator[i].mca_alloc_max_slots =
9183 slots_per_allocator;
9184 special->mc_allocator[i].mca_alloc_max_slots =
9185 slots_per_allocator;
9186 dedup->mc_allocator[i].mca_alloc_max_slots =
9187 slots_per_allocator;
9189 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9190 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9191 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9194 static void
9195 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9197 ASSERT(spa_writeable(spa));
9199 vdev_t *rvd = spa->spa_root_vdev;
9200 for (int c = 0; c < rvd->vdev_children; c++) {
9201 vdev_t *vd = rvd->vdev_child[c];
9202 vdev_indirect_state_sync_verify(vd);
9204 if (vdev_indirect_should_condense(vd)) {
9205 spa_condense_indirect_start_sync(vd, tx);
9206 break;
9211 static void
9212 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9214 objset_t *mos = spa->spa_meta_objset;
9215 dsl_pool_t *dp = spa->spa_dsl_pool;
9216 uint64_t txg = tx->tx_txg;
9217 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9219 do {
9220 int pass = ++spa->spa_sync_pass;
9222 spa_sync_config_object(spa, tx);
9223 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9224 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9225 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9226 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9227 spa_errlog_sync(spa, txg);
9228 dsl_pool_sync(dp, txg);
9230 if (pass < zfs_sync_pass_deferred_free ||
9231 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9233 * If the log space map feature is active we don't
9234 * care about deferred frees and the deferred bpobj
9235 * as the log space map should effectively have the
9236 * same results (i.e. appending only to one object).
9238 spa_sync_frees(spa, free_bpl, tx);
9239 } else {
9241 * We can not defer frees in pass 1, because
9242 * we sync the deferred frees later in pass 1.
9244 ASSERT3U(pass, >, 1);
9245 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9246 &spa->spa_deferred_bpobj, tx);
9249 brt_sync(spa, txg);
9250 ddt_sync(spa, txg);
9251 dsl_scan_sync(dp, tx);
9252 svr_sync(spa, tx);
9253 spa_sync_upgrades(spa, tx);
9255 spa_flush_metaslabs(spa, tx);
9257 vdev_t *vd = NULL;
9258 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9259 != NULL)
9260 vdev_sync(vd, txg);
9263 * Note: We need to check if the MOS is dirty because we could
9264 * have marked the MOS dirty without updating the uberblock
9265 * (e.g. if we have sync tasks but no dirty user data). We need
9266 * to check the uberblock's rootbp because it is updated if we
9267 * have synced out dirty data (though in this case the MOS will
9268 * most likely also be dirty due to second order effects, we
9269 * don't want to rely on that here).
9271 if (pass == 1 &&
9272 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9273 !dmu_objset_is_dirty(mos, txg)) {
9275 * Nothing changed on the first pass, therefore this
9276 * TXG is a no-op. Avoid syncing deferred frees, so
9277 * that we can keep this TXG as a no-op.
9279 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9280 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9281 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9282 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9283 break;
9286 spa_sync_deferred_frees(spa, tx);
9287 } while (dmu_objset_is_dirty(mos, txg));
9291 * Rewrite the vdev configuration (which includes the uberblock) to
9292 * commit the transaction group.
9294 * If there are no dirty vdevs, we sync the uberblock to a few random
9295 * top-level vdevs that are known to be visible in the config cache
9296 * (see spa_vdev_add() for a complete description). If there *are* dirty
9297 * vdevs, sync the uberblock to all vdevs.
9299 static void
9300 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9302 vdev_t *rvd = spa->spa_root_vdev;
9303 uint64_t txg = tx->tx_txg;
9305 for (;;) {
9306 int error = 0;
9309 * We hold SCL_STATE to prevent vdev open/close/etc.
9310 * while we're attempting to write the vdev labels.
9312 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9314 if (list_is_empty(&spa->spa_config_dirty_list)) {
9315 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9316 int svdcount = 0;
9317 int children = rvd->vdev_children;
9318 int c0 = random_in_range(children);
9320 for (int c = 0; c < children; c++) {
9321 vdev_t *vd =
9322 rvd->vdev_child[(c0 + c) % children];
9324 /* Stop when revisiting the first vdev */
9325 if (c > 0 && svd[0] == vd)
9326 break;
9328 if (vd->vdev_ms_array == 0 ||
9329 vd->vdev_islog ||
9330 !vdev_is_concrete(vd))
9331 continue;
9333 svd[svdcount++] = vd;
9334 if (svdcount == SPA_SYNC_MIN_VDEVS)
9335 break;
9337 error = vdev_config_sync(svd, svdcount, txg);
9338 } else {
9339 error = vdev_config_sync(rvd->vdev_child,
9340 rvd->vdev_children, txg);
9343 if (error == 0)
9344 spa->spa_last_synced_guid = rvd->vdev_guid;
9346 spa_config_exit(spa, SCL_STATE, FTAG);
9348 if (error == 0)
9349 break;
9350 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9351 zio_resume_wait(spa);
9356 * Sync the specified transaction group. New blocks may be dirtied as
9357 * part of the process, so we iterate until it converges.
9359 void
9360 spa_sync(spa_t *spa, uint64_t txg)
9362 vdev_t *vd = NULL;
9364 VERIFY(spa_writeable(spa));
9367 * Wait for i/os issued in open context that need to complete
9368 * before this txg syncs.
9370 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9371 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9372 ZIO_FLAG_CANFAIL);
9375 * Now that there can be no more cloning in this transaction group,
9376 * but we are still before issuing frees, we can process pending BRT
9377 * updates.
9379 brt_pending_apply(spa, txg);
9382 * Lock out configuration changes.
9384 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9386 spa->spa_syncing_txg = txg;
9387 spa->spa_sync_pass = 0;
9389 for (int i = 0; i < spa->spa_alloc_count; i++) {
9390 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9391 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9392 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9396 * If there are any pending vdev state changes, convert them
9397 * into config changes that go out with this transaction group.
9399 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9400 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9401 /* Avoid holding the write lock unless actually necessary */
9402 if (vd->vdev_aux == NULL) {
9403 vdev_state_clean(vd);
9404 vdev_config_dirty(vd);
9405 continue;
9408 * We need the write lock here because, for aux vdevs,
9409 * calling vdev_config_dirty() modifies sav_config.
9410 * This is ugly and will become unnecessary when we
9411 * eliminate the aux vdev wart by integrating all vdevs
9412 * into the root vdev tree.
9414 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9415 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9416 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9417 vdev_state_clean(vd);
9418 vdev_config_dirty(vd);
9420 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9421 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9423 spa_config_exit(spa, SCL_STATE, FTAG);
9425 dsl_pool_t *dp = spa->spa_dsl_pool;
9426 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9428 spa->spa_sync_starttime = gethrtime();
9429 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9430 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9431 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9432 NSEC_TO_TICK(spa->spa_deadman_synctime));
9435 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9436 * set spa_deflate if we have no raid-z vdevs.
9438 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9439 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9440 vdev_t *rvd = spa->spa_root_vdev;
9442 int i;
9443 for (i = 0; i < rvd->vdev_children; i++) {
9444 vd = rvd->vdev_child[i];
9445 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9446 break;
9448 if (i == rvd->vdev_children) {
9449 spa->spa_deflate = TRUE;
9450 VERIFY0(zap_add(spa->spa_meta_objset,
9451 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9452 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9456 spa_sync_adjust_vdev_max_queue_depth(spa);
9458 spa_sync_condense_indirect(spa, tx);
9460 spa_sync_iterate_to_convergence(spa, tx);
9462 #ifdef ZFS_DEBUG
9463 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9465 * Make sure that the number of ZAPs for all the vdevs matches
9466 * the number of ZAPs in the per-vdev ZAP list. This only gets
9467 * called if the config is dirty; otherwise there may be
9468 * outstanding AVZ operations that weren't completed in
9469 * spa_sync_config_object.
9471 uint64_t all_vdev_zap_entry_count;
9472 ASSERT0(zap_count(spa->spa_meta_objset,
9473 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9474 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9475 all_vdev_zap_entry_count);
9477 #endif
9479 if (spa->spa_vdev_removal != NULL) {
9480 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9483 spa_sync_rewrite_vdev_config(spa, tx);
9484 dmu_tx_commit(tx);
9486 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9487 spa->spa_deadman_tqid = 0;
9490 * Clear the dirty config list.
9492 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9493 vdev_config_clean(vd);
9496 * Now that the new config has synced transactionally,
9497 * let it become visible to the config cache.
9499 if (spa->spa_config_syncing != NULL) {
9500 spa_config_set(spa, spa->spa_config_syncing);
9501 spa->spa_config_txg = txg;
9502 spa->spa_config_syncing = NULL;
9505 dsl_pool_sync_done(dp, txg);
9507 for (int i = 0; i < spa->spa_alloc_count; i++) {
9508 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9509 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9510 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9514 * Update usable space statistics.
9516 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9517 != NULL)
9518 vdev_sync_done(vd, txg);
9520 metaslab_class_evict_old(spa->spa_normal_class, txg);
9521 metaslab_class_evict_old(spa->spa_log_class, txg);
9523 spa_sync_close_syncing_log_sm(spa);
9525 spa_update_dspace(spa);
9527 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9528 vdev_autotrim_kick(spa);
9531 * It had better be the case that we didn't dirty anything
9532 * since vdev_config_sync().
9534 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9535 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9536 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9538 while (zfs_pause_spa_sync)
9539 delay(1);
9541 spa->spa_sync_pass = 0;
9544 * Update the last synced uberblock here. We want to do this at
9545 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9546 * will be guaranteed that all the processing associated with
9547 * that txg has been completed.
9549 spa->spa_ubsync = spa->spa_uberblock;
9550 spa_config_exit(spa, SCL_CONFIG, FTAG);
9552 spa_handle_ignored_writes(spa);
9555 * If any async tasks have been requested, kick them off.
9557 spa_async_dispatch(spa);
9561 * Sync all pools. We don't want to hold the namespace lock across these
9562 * operations, so we take a reference on the spa_t and drop the lock during the
9563 * sync.
9565 void
9566 spa_sync_allpools(void)
9568 spa_t *spa = NULL;
9569 mutex_enter(&spa_namespace_lock);
9570 while ((spa = spa_next(spa)) != NULL) {
9571 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9572 !spa_writeable(spa) || spa_suspended(spa))
9573 continue;
9574 spa_open_ref(spa, FTAG);
9575 mutex_exit(&spa_namespace_lock);
9576 txg_wait_synced(spa_get_dsl(spa), 0);
9577 mutex_enter(&spa_namespace_lock);
9578 spa_close(spa, FTAG);
9580 mutex_exit(&spa_namespace_lock);
9584 * ==========================================================================
9585 * Miscellaneous routines
9586 * ==========================================================================
9590 * Remove all pools in the system.
9592 void
9593 spa_evict_all(void)
9595 spa_t *spa;
9598 * Remove all cached state. All pools should be closed now,
9599 * so every spa in the AVL tree should be unreferenced.
9601 mutex_enter(&spa_namespace_lock);
9602 while ((spa = spa_next(NULL)) != NULL) {
9604 * Stop async tasks. The async thread may need to detach
9605 * a device that's been replaced, which requires grabbing
9606 * spa_namespace_lock, so we must drop it here.
9608 spa_open_ref(spa, FTAG);
9609 mutex_exit(&spa_namespace_lock);
9610 spa_async_suspend(spa);
9611 mutex_enter(&spa_namespace_lock);
9612 spa_close(spa, FTAG);
9614 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9615 spa_unload(spa);
9616 spa_deactivate(spa);
9618 spa_remove(spa);
9620 mutex_exit(&spa_namespace_lock);
9623 vdev_t *
9624 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9626 vdev_t *vd;
9627 int i;
9629 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9630 return (vd);
9632 if (aux) {
9633 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9634 vd = spa->spa_l2cache.sav_vdevs[i];
9635 if (vd->vdev_guid == guid)
9636 return (vd);
9639 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9640 vd = spa->spa_spares.sav_vdevs[i];
9641 if (vd->vdev_guid == guid)
9642 return (vd);
9646 return (NULL);
9649 void
9650 spa_upgrade(spa_t *spa, uint64_t version)
9652 ASSERT(spa_writeable(spa));
9654 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9657 * This should only be called for a non-faulted pool, and since a
9658 * future version would result in an unopenable pool, this shouldn't be
9659 * possible.
9661 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9662 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9664 spa->spa_uberblock.ub_version = version;
9665 vdev_config_dirty(spa->spa_root_vdev);
9667 spa_config_exit(spa, SCL_ALL, FTAG);
9669 txg_wait_synced(spa_get_dsl(spa), 0);
9672 static boolean_t
9673 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9675 (void) spa;
9676 int i;
9677 uint64_t vdev_guid;
9679 for (i = 0; i < sav->sav_count; i++)
9680 if (sav->sav_vdevs[i]->vdev_guid == guid)
9681 return (B_TRUE);
9683 for (i = 0; i < sav->sav_npending; i++) {
9684 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
9685 &vdev_guid) == 0 && vdev_guid == guid)
9686 return (B_TRUE);
9689 return (B_FALSE);
9692 boolean_t
9693 spa_has_l2cache(spa_t *spa, uint64_t guid)
9695 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
9698 boolean_t
9699 spa_has_spare(spa_t *spa, uint64_t guid)
9701 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
9705 * Check if a pool has an active shared spare device.
9706 * Note: reference count of an active spare is 2, as a spare and as a replace
9708 static boolean_t
9709 spa_has_active_shared_spare(spa_t *spa)
9711 int i, refcnt;
9712 uint64_t pool;
9713 spa_aux_vdev_t *sav = &spa->spa_spares;
9715 for (i = 0; i < sav->sav_count; i++) {
9716 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
9717 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
9718 refcnt > 2)
9719 return (B_TRUE);
9722 return (B_FALSE);
9725 uint64_t
9726 spa_total_metaslabs(spa_t *spa)
9728 vdev_t *rvd = spa->spa_root_vdev;
9730 uint64_t m = 0;
9731 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
9732 vdev_t *vd = rvd->vdev_child[c];
9733 if (!vdev_is_concrete(vd))
9734 continue;
9735 m += vd->vdev_ms_count;
9737 return (m);
9741 * Notify any waiting threads that some activity has switched from being in-
9742 * progress to not-in-progress so that the thread can wake up and determine
9743 * whether it is finished waiting.
9745 void
9746 spa_notify_waiters(spa_t *spa)
9749 * Acquiring spa_activities_lock here prevents the cv_broadcast from
9750 * happening between the waiting thread's check and cv_wait.
9752 mutex_enter(&spa->spa_activities_lock);
9753 cv_broadcast(&spa->spa_activities_cv);
9754 mutex_exit(&spa->spa_activities_lock);
9758 * Notify any waiting threads that the pool is exporting, and then block until
9759 * they are finished using the spa_t.
9761 void
9762 spa_wake_waiters(spa_t *spa)
9764 mutex_enter(&spa->spa_activities_lock);
9765 spa->spa_waiters_cancel = B_TRUE;
9766 cv_broadcast(&spa->spa_activities_cv);
9767 while (spa->spa_waiters != 0)
9768 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
9769 spa->spa_waiters_cancel = B_FALSE;
9770 mutex_exit(&spa->spa_activities_lock);
9773 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
9774 static boolean_t
9775 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
9777 spa_t *spa = vd->vdev_spa;
9779 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
9780 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9781 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
9782 activity == ZPOOL_WAIT_TRIM);
9784 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
9785 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
9787 mutex_exit(&spa->spa_activities_lock);
9788 mutex_enter(lock);
9789 mutex_enter(&spa->spa_activities_lock);
9791 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
9792 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
9793 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
9794 mutex_exit(lock);
9796 if (in_progress)
9797 return (B_TRUE);
9799 for (int i = 0; i < vd->vdev_children; i++) {
9800 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
9801 activity))
9802 return (B_TRUE);
9805 return (B_FALSE);
9809 * If use_guid is true, this checks whether the vdev specified by guid is
9810 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
9811 * is being initialized/trimmed. The caller must hold the config lock and
9812 * spa_activities_lock.
9814 static int
9815 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
9816 zpool_wait_activity_t activity, boolean_t *in_progress)
9818 mutex_exit(&spa->spa_activities_lock);
9819 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9820 mutex_enter(&spa->spa_activities_lock);
9822 vdev_t *vd;
9823 if (use_guid) {
9824 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
9825 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
9826 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9827 return (EINVAL);
9829 } else {
9830 vd = spa->spa_root_vdev;
9833 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
9835 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9836 return (0);
9840 * Locking for waiting threads
9841 * ---------------------------
9843 * Waiting threads need a way to check whether a given activity is in progress,
9844 * and then, if it is, wait for it to complete. Each activity will have some
9845 * in-memory representation of the relevant on-disk state which can be used to
9846 * determine whether or not the activity is in progress. The in-memory state and
9847 * the locking used to protect it will be different for each activity, and may
9848 * not be suitable for use with a cvar (e.g., some state is protected by the
9849 * config lock). To allow waiting threads to wait without any races, another
9850 * lock, spa_activities_lock, is used.
9852 * When the state is checked, both the activity-specific lock (if there is one)
9853 * and spa_activities_lock are held. In some cases, the activity-specific lock
9854 * is acquired explicitly (e.g. the config lock). In others, the locking is
9855 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
9856 * thread releases the activity-specific lock and, if the activity is in
9857 * progress, then cv_waits using spa_activities_lock.
9859 * The waiting thread is woken when another thread, one completing some
9860 * activity, updates the state of the activity and then calls
9861 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
9862 * needs to hold its activity-specific lock when updating the state, and this
9863 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
9865 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
9866 * and because it is held when the waiting thread checks the state of the
9867 * activity, it can never be the case that the completing thread both updates
9868 * the activity state and cv_broadcasts in between the waiting thread's check
9869 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
9871 * In order to prevent deadlock, when the waiting thread does its check, in some
9872 * cases it will temporarily drop spa_activities_lock in order to acquire the
9873 * activity-specific lock. The order in which spa_activities_lock and the
9874 * activity specific lock are acquired in the waiting thread is determined by
9875 * the order in which they are acquired in the completing thread; if the
9876 * completing thread calls spa_notify_waiters with the activity-specific lock
9877 * held, then the waiting thread must also acquire the activity-specific lock
9878 * first.
9881 static int
9882 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
9883 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
9885 int error = 0;
9887 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
9889 switch (activity) {
9890 case ZPOOL_WAIT_CKPT_DISCARD:
9891 *in_progress =
9892 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
9893 zap_contains(spa_meta_objset(spa),
9894 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
9895 ENOENT);
9896 break;
9897 case ZPOOL_WAIT_FREE:
9898 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
9899 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
9900 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
9901 spa_livelist_delete_check(spa));
9902 break;
9903 case ZPOOL_WAIT_INITIALIZE:
9904 case ZPOOL_WAIT_TRIM:
9905 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
9906 activity, in_progress);
9907 break;
9908 case ZPOOL_WAIT_REPLACE:
9909 mutex_exit(&spa->spa_activities_lock);
9910 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9911 mutex_enter(&spa->spa_activities_lock);
9913 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
9914 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9915 break;
9916 case ZPOOL_WAIT_REMOVE:
9917 *in_progress = (spa->spa_removing_phys.sr_state ==
9918 DSS_SCANNING);
9919 break;
9920 case ZPOOL_WAIT_RESILVER:
9921 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev)))
9922 break;
9923 zfs_fallthrough;
9924 case ZPOOL_WAIT_SCRUB:
9926 boolean_t scanning, paused, is_scrub;
9927 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
9929 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
9930 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
9931 paused = dsl_scan_is_paused_scrub(scn);
9932 *in_progress = (scanning && !paused &&
9933 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
9934 break;
9936 default:
9937 panic("unrecognized value for activity %d", activity);
9940 return (error);
9943 static int
9944 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
9945 boolean_t use_tag, uint64_t tag, boolean_t *waited)
9948 * The tag is used to distinguish between instances of an activity.
9949 * 'initialize' and 'trim' are the only activities that we use this for.
9950 * The other activities can only have a single instance in progress in a
9951 * pool at one time, making the tag unnecessary.
9953 * There can be multiple devices being replaced at once, but since they
9954 * all finish once resilvering finishes, we don't bother keeping track
9955 * of them individually, we just wait for them all to finish.
9957 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
9958 activity != ZPOOL_WAIT_TRIM)
9959 return (EINVAL);
9961 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
9962 return (EINVAL);
9964 spa_t *spa;
9965 int error = spa_open(pool, &spa, FTAG);
9966 if (error != 0)
9967 return (error);
9970 * Increment the spa's waiter count so that we can call spa_close and
9971 * still ensure that the spa_t doesn't get freed before this thread is
9972 * finished with it when the pool is exported. We want to call spa_close
9973 * before we start waiting because otherwise the additional ref would
9974 * prevent the pool from being exported or destroyed throughout the
9975 * potentially long wait.
9977 mutex_enter(&spa->spa_activities_lock);
9978 spa->spa_waiters++;
9979 spa_close(spa, FTAG);
9981 *waited = B_FALSE;
9982 for (;;) {
9983 boolean_t in_progress;
9984 error = spa_activity_in_progress(spa, activity, use_tag, tag,
9985 &in_progress);
9987 if (error || !in_progress || spa->spa_waiters_cancel)
9988 break;
9990 *waited = B_TRUE;
9992 if (cv_wait_sig(&spa->spa_activities_cv,
9993 &spa->spa_activities_lock) == 0) {
9994 error = EINTR;
9995 break;
9999 spa->spa_waiters--;
10000 cv_signal(&spa->spa_waiters_cv);
10001 mutex_exit(&spa->spa_activities_lock);
10003 return (error);
10007 * Wait for a particular instance of the specified activity to complete, where
10008 * the instance is identified by 'tag'
10011 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10012 boolean_t *waited)
10014 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10018 * Wait for all instances of the specified activity complete
10021 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10024 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10027 sysevent_t *
10028 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10030 sysevent_t *ev = NULL;
10031 #ifdef _KERNEL
10032 nvlist_t *resource;
10034 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10035 if (resource) {
10036 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10037 ev->resource = resource;
10039 #else
10040 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10041 #endif
10042 return (ev);
10045 void
10046 spa_event_post(sysevent_t *ev)
10048 #ifdef _KERNEL
10049 if (ev) {
10050 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10051 kmem_free(ev, sizeof (*ev));
10053 #else
10054 (void) ev;
10055 #endif
10059 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10060 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10061 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10062 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10063 * or zdb as real changes.
10065 void
10066 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10068 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10071 /* state manipulation functions */
10072 EXPORT_SYMBOL(spa_open);
10073 EXPORT_SYMBOL(spa_open_rewind);
10074 EXPORT_SYMBOL(spa_get_stats);
10075 EXPORT_SYMBOL(spa_create);
10076 EXPORT_SYMBOL(spa_import);
10077 EXPORT_SYMBOL(spa_tryimport);
10078 EXPORT_SYMBOL(spa_destroy);
10079 EXPORT_SYMBOL(spa_export);
10080 EXPORT_SYMBOL(spa_reset);
10081 EXPORT_SYMBOL(spa_async_request);
10082 EXPORT_SYMBOL(spa_async_suspend);
10083 EXPORT_SYMBOL(spa_async_resume);
10084 EXPORT_SYMBOL(spa_inject_addref);
10085 EXPORT_SYMBOL(spa_inject_delref);
10086 EXPORT_SYMBOL(spa_scan_stat_init);
10087 EXPORT_SYMBOL(spa_scan_get_stats);
10089 /* device manipulation */
10090 EXPORT_SYMBOL(spa_vdev_add);
10091 EXPORT_SYMBOL(spa_vdev_attach);
10092 EXPORT_SYMBOL(spa_vdev_detach);
10093 EXPORT_SYMBOL(spa_vdev_setpath);
10094 EXPORT_SYMBOL(spa_vdev_setfru);
10095 EXPORT_SYMBOL(spa_vdev_split_mirror);
10097 /* spare statech is global across all pools) */
10098 EXPORT_SYMBOL(spa_spare_add);
10099 EXPORT_SYMBOL(spa_spare_remove);
10100 EXPORT_SYMBOL(spa_spare_exists);
10101 EXPORT_SYMBOL(spa_spare_activate);
10103 /* L2ARC statech is global across all pools) */
10104 EXPORT_SYMBOL(spa_l2cache_add);
10105 EXPORT_SYMBOL(spa_l2cache_remove);
10106 EXPORT_SYMBOL(spa_l2cache_exists);
10107 EXPORT_SYMBOL(spa_l2cache_activate);
10108 EXPORT_SYMBOL(spa_l2cache_drop);
10110 /* scanning */
10111 EXPORT_SYMBOL(spa_scan);
10112 EXPORT_SYMBOL(spa_scan_stop);
10114 /* spa syncing */
10115 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10116 EXPORT_SYMBOL(spa_sync_allpools);
10118 /* properties */
10119 EXPORT_SYMBOL(spa_prop_set);
10120 EXPORT_SYMBOL(spa_prop_get);
10121 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10123 /* asynchronous event notification */
10124 EXPORT_SYMBOL(spa_event_notify);
10126 /* BEGIN CSTYLED */
10127 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10128 "log2 fraction of arc that can be used by inflight I/Os when "
10129 "verifying pool during import");
10130 /* END CSTYLED */
10132 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10133 "Set to traverse metadata on pool import");
10135 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10136 "Set to traverse data on pool import");
10138 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10139 "Print vdev tree to zfs_dbgmsg during pool import");
10141 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10142 "Percentage of CPUs to run an IO worker thread");
10144 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10145 "Number of threads per IO worker taskqueue");
10147 /* BEGIN CSTYLED */
10148 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10149 "Allow importing pool with up to this number of missing top-level "
10150 "vdevs (in read-only mode)");
10151 /* END CSTYLED */
10153 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10154 ZMOD_RW, "Set the livelist condense zthr to pause");
10156 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10157 ZMOD_RW, "Set the livelist condense synctask to pause");
10159 /* BEGIN CSTYLED */
10160 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10161 INT, ZMOD_RW,
10162 "Whether livelist condensing was canceled in the synctask");
10164 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10165 INT, ZMOD_RW,
10166 "Whether livelist condensing was canceled in the zthr function");
10168 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10169 ZMOD_RW,
10170 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10171 "was being condensed");
10172 /* END CSTYLED */