ZTS: Add LUKS sanity test
[zfs.git] / module / zfs / btree.c
blob9c52083603f1c60532f7a69a806e4251a0a51a23
1 /*
2 * CDDL HEADER START
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
13 * CDDL HEADER END
16 * Copyright (c) 2019 by Delphix. All rights reserved.
19 #include <sys/btree.h>
20 #include <sys/bitops.h>
21 #include <sys/zfs_context.h>
23 kmem_cache_t *zfs_btree_leaf_cache;
26 * Control the extent of the verification that occurs when zfs_btree_verify is
27 * called. Primarily used for debugging when extending the btree logic and
28 * functionality. As the intensity is increased, new verification steps are
29 * added. These steps are cumulative; intensity = 3 includes the intensity = 1
30 * and intensity = 2 steps as well.
32 * Intensity 1: Verify that the tree's height is consistent throughout.
33 * Intensity 2: Verify that a core node's children's parent pointers point
34 * to the core node.
35 * Intensity 3: Verify that the total number of elements in the tree matches the
36 * sum of the number of elements in each node. Also verifies that each node's
37 * count obeys the invariants (less than or equal to maximum value, greater than
38 * or equal to half the maximum minus one).
39 * Intensity 4: Verify that each element compares less than the element
40 * immediately after it and greater than the one immediately before it using the
41 * comparator function. For core nodes, also checks that each element is greater
42 * than the last element in the first of the two nodes it separates, and less
43 * than the first element in the second of the two nodes.
44 * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside
45 * of each node is poisoned appropriately. Note that poisoning always occurs if
46 * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal
47 * operation.
49 * Intensity 4 and 5 are particularly expensive to perform; the previous levels
50 * are a few memory operations per node, while these levels require multiple
51 * operations per element. In addition, when creating large btrees, these
52 * operations are called at every step, resulting in extremely slow operation
53 * (while the asymptotic complexity of the other steps is the same, the
54 * importance of the constant factors cannot be denied).
56 uint_t zfs_btree_verify_intensity = 0;
59 * Convenience functions to silence warnings from memcpy/memmove's
60 * return values and change argument order to src, dest.
62 static void
63 bcpy(const void *src, void *dest, size_t size)
65 (void) memcpy(dest, src, size);
68 static void
69 bmov(const void *src, void *dest, size_t size)
71 (void) memmove(dest, src, size);
74 static boolean_t
75 zfs_btree_is_core(struct zfs_btree_hdr *hdr)
77 return (hdr->bth_first == -1);
80 #ifdef _ILP32
81 #define BTREE_POISON 0xabadb10c
82 #else
83 #define BTREE_POISON 0xabadb10cdeadbeef
84 #endif
86 static void
87 zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
89 #ifdef ZFS_DEBUG
90 size_t size = tree->bt_elem_size;
91 if (zfs_btree_is_core(hdr)) {
92 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
93 for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
94 i++) {
95 node->btc_children[i] =
96 (zfs_btree_hdr_t *)BTREE_POISON;
98 (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f,
99 (BTREE_CORE_ELEMS - hdr->bth_count) * size);
100 } else {
101 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
102 (void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size);
103 (void) memset(leaf->btl_elems +
104 (hdr->bth_first + hdr->bth_count) * size, 0x0f,
105 tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) -
106 (hdr->bth_first + hdr->bth_count) * size);
108 #endif
111 static inline void
112 zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
113 uint32_t idx, uint32_t count)
115 #ifdef ZFS_DEBUG
116 size_t size = tree->bt_elem_size;
117 if (zfs_btree_is_core(hdr)) {
118 ASSERT3U(idx, >=, hdr->bth_count);
119 ASSERT3U(idx, <=, BTREE_CORE_ELEMS);
120 ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS);
121 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
122 for (uint32_t i = 1; i <= count; i++) {
123 node->btc_children[idx + i] =
124 (zfs_btree_hdr_t *)BTREE_POISON;
126 (void) memset(node->btc_elems + idx * size, 0x0f, count * size);
127 } else {
128 ASSERT3U(idx, <=, tree->bt_leaf_cap);
129 ASSERT3U(idx + count, <=, tree->bt_leaf_cap);
130 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
131 (void) memset(leaf->btl_elems +
132 (hdr->bth_first + idx) * size, 0x0f, count * size);
134 #endif
137 static inline void
138 zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
139 uint32_t idx)
141 #ifdef ZFS_DEBUG
142 size_t size = tree->bt_elem_size;
143 if (zfs_btree_is_core(hdr)) {
144 ASSERT3U(idx, <, BTREE_CORE_ELEMS);
145 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
146 zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON;
147 VERIFY3P(node->btc_children[idx + 1], ==, cval);
148 for (size_t i = 0; i < size; i++)
149 VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f);
150 } else {
151 ASSERT3U(idx, <, tree->bt_leaf_cap);
152 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
153 if (idx >= tree->bt_leaf_cap - hdr->bth_first)
154 return;
155 for (size_t i = 0; i < size; i++) {
156 VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx)
157 * size + i], ==, 0x0f);
160 #endif
163 void
164 zfs_btree_init(void)
166 zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache",
167 BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0);
170 void
171 zfs_btree_fini(void)
173 kmem_cache_destroy(zfs_btree_leaf_cache);
176 static void *
177 zfs_btree_leaf_alloc(zfs_btree_t *tree)
179 if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
180 return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP));
181 else
182 return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP));
185 static void
186 zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr)
188 if (tree->bt_leaf_size == BTREE_LEAF_SIZE)
189 return (kmem_cache_free(zfs_btree_leaf_cache, ptr));
190 else
191 return (kmem_free(ptr, tree->bt_leaf_size));
194 void
195 zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *),
196 bt_find_in_buf_f bt_find_in_buf, size_t size)
198 zfs_btree_create_custom(tree, compar, bt_find_in_buf, size,
199 BTREE_LEAF_SIZE);
202 static void *
203 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
204 const void *value, zfs_btree_index_t *where);
206 void
207 zfs_btree_create_custom(zfs_btree_t *tree,
208 int (*compar) (const void *, const void *),
209 bt_find_in_buf_f bt_find_in_buf,
210 size_t size, size_t lsize)
212 size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems);
214 ASSERT3U(size, <=, esize / 2);
215 memset(tree, 0, sizeof (*tree));
216 tree->bt_compar = compar;
217 tree->bt_find_in_buf = (bt_find_in_buf == NULL) ?
218 zfs_btree_find_in_buf : bt_find_in_buf;
219 tree->bt_elem_size = size;
220 tree->bt_leaf_size = lsize;
221 tree->bt_leaf_cap = P2ALIGN_TYPED(esize / size, 2, size_t);
222 tree->bt_height = -1;
223 tree->bt_bulk = NULL;
227 * Find value in the array of elements provided. Uses a simple binary search.
229 static void *
230 zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems,
231 const void *value, zfs_btree_index_t *where)
233 uint32_t max = nelems;
234 uint32_t min = 0;
235 while (max > min) {
236 uint32_t idx = (min + max) / 2;
237 uint8_t *cur = buf + idx * tree->bt_elem_size;
238 int comp = tree->bt_compar(cur, value);
239 if (comp < 0) {
240 min = idx + 1;
241 } else if (comp > 0) {
242 max = idx;
243 } else {
244 where->bti_offset = idx;
245 where->bti_before = B_FALSE;
246 return (cur);
250 where->bti_offset = max;
251 where->bti_before = B_TRUE;
252 return (NULL);
256 * Find the given value in the tree. where may be passed as null to use as a
257 * membership test or if the btree is being used as a map.
259 void *
260 zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where)
262 if (tree->bt_height == -1) {
263 if (where != NULL) {
264 where->bti_node = NULL;
265 where->bti_offset = 0;
267 ASSERT0(tree->bt_num_elems);
268 return (NULL);
272 * If we're in bulk-insert mode, we check the last spot in the tree
273 * and the last leaf in the tree before doing the normal search,
274 * because for most workloads the vast majority of finds in
275 * bulk-insert mode are to insert new elements.
277 zfs_btree_index_t idx;
278 size_t size = tree->bt_elem_size;
279 if (tree->bt_bulk != NULL) {
280 zfs_btree_leaf_t *last_leaf = tree->bt_bulk;
281 int comp = tree->bt_compar(last_leaf->btl_elems +
282 (last_leaf->btl_hdr.bth_first +
283 last_leaf->btl_hdr.bth_count - 1) * size, value);
284 if (comp < 0) {
286 * If what they're looking for is after the last
287 * element, it's not in the tree.
289 if (where != NULL) {
290 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
291 where->bti_offset =
292 last_leaf->btl_hdr.bth_count;
293 where->bti_before = B_TRUE;
295 return (NULL);
296 } else if (comp == 0) {
297 if (where != NULL) {
298 where->bti_node = (zfs_btree_hdr_t *)last_leaf;
299 where->bti_offset =
300 last_leaf->btl_hdr.bth_count - 1;
301 where->bti_before = B_FALSE;
303 return (last_leaf->btl_elems +
304 (last_leaf->btl_hdr.bth_first +
305 last_leaf->btl_hdr.bth_count - 1) * size);
307 if (tree->bt_compar(last_leaf->btl_elems +
308 last_leaf->btl_hdr.bth_first * size, value) <= 0) {
310 * If what they're looking for is after the first
311 * element in the last leaf, it's in the last leaf or
312 * it's not in the tree.
314 void *d = tree->bt_find_in_buf(tree,
315 last_leaf->btl_elems +
316 last_leaf->btl_hdr.bth_first * size,
317 last_leaf->btl_hdr.bth_count, value, &idx);
319 if (where != NULL) {
320 idx.bti_node = (zfs_btree_hdr_t *)last_leaf;
321 *where = idx;
323 return (d);
327 zfs_btree_core_t *node = NULL;
328 uint32_t child = 0;
329 uint32_t depth = 0;
332 * Iterate down the tree, finding which child the value should be in
333 * by comparing with the separators.
335 for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height;
336 node = (zfs_btree_core_t *)node->btc_children[child], depth++) {
337 ASSERT3P(node, !=, NULL);
338 void *d = tree->bt_find_in_buf(tree, node->btc_elems,
339 node->btc_hdr.bth_count, value, &idx);
340 EQUIV(d != NULL, !idx.bti_before);
341 if (d != NULL) {
342 if (where != NULL) {
343 idx.bti_node = (zfs_btree_hdr_t *)node;
344 *where = idx;
346 return (d);
348 ASSERT(idx.bti_before);
349 child = idx.bti_offset;
353 * The value is in this leaf, or it would be if it were in the
354 * tree. Find its proper location and return it.
356 zfs_btree_leaf_t *leaf = (depth == 0 ?
357 (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node);
358 void *d = tree->bt_find_in_buf(tree, leaf->btl_elems +
359 leaf->btl_hdr.bth_first * size,
360 leaf->btl_hdr.bth_count, value, &idx);
362 if (where != NULL) {
363 idx.bti_node = (zfs_btree_hdr_t *)leaf;
364 *where = idx;
367 return (d);
371 * To explain the following functions, it is useful to understand the four
372 * kinds of shifts used in btree operation. First, a shift is a movement of
373 * elements within a node. It is used to create gaps for inserting new
374 * elements and children, or cover gaps created when things are removed. A
375 * shift has two fundamental properties, each of which can be one of two
376 * values, making four types of shifts. There is the direction of the shift
377 * (left or right) and the shape of the shift (parallelogram or isoceles
378 * trapezoid (shortened to trapezoid hereafter)). The shape distinction only
379 * applies to shifts of core nodes.
381 * The names derive from the following imagining of the layout of a node:
383 * Elements: * * * * * * * ... * * *
384 * Children: * * * * * * * * ... * * *
386 * This layout follows from the fact that the elements act as separators
387 * between pairs of children, and that children root subtrees "below" the
388 * current node. A left and right shift are fairly self-explanatory; a left
389 * shift moves things to the left, while a right shift moves things to the
390 * right. A parallelogram shift is a shift with the same number of elements
391 * and children being moved, while a trapezoid shift is a shift that moves one
392 * more children than elements. An example follows:
394 * A parallelogram shift could contain the following:
395 * _______________
396 * \* * * * \ * * * ... * * *
397 * * \ * * * *\ * * * ... * * *
398 * ---------------
399 * A trapezoid shift could contain the following:
400 * ___________
401 * * / * * * \ * * * ... * * *
402 * * / * * * *\ * * * ... * * *
403 * ---------------
405 * Note that a parallelogram shift is always shaped like a "left-leaning"
406 * parallelogram, where the starting index of the children being moved is
407 * always one higher than the starting index of the elements being moved. No
408 * "right-leaning" parallelogram shifts are needed (shifts where the starting
409 * element index and starting child index being moved are the same) to achieve
410 * any btree operations, so we ignore them.
413 enum bt_shift_shape {
414 BSS_TRAPEZOID,
415 BSS_PARALLELOGRAM
418 enum bt_shift_direction {
419 BSD_LEFT,
420 BSD_RIGHT
424 * Shift elements and children in the provided core node by off spots. The
425 * first element moved is idx, and count elements are moved. The shape of the
426 * shift is determined by shape. The direction is determined by dir.
428 static inline void
429 bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
430 uint32_t count, uint32_t off, enum bt_shift_shape shape,
431 enum bt_shift_direction dir)
433 size_t size = tree->bt_elem_size;
434 ASSERT(zfs_btree_is_core(&node->btc_hdr));
436 uint8_t *e_start = node->btc_elems + idx * size;
437 uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size :
438 e_start + off * size);
439 bmov(e_start, e_out, count * size);
441 zfs_btree_hdr_t **c_start = node->btc_children + idx +
442 (shape == BSS_TRAPEZOID ? 0 : 1);
443 zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off :
444 c_start + off);
445 uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
446 bmov(c_start, c_out, c_count * sizeof (*c_start));
450 * Shift elements and children in the provided core node left by one spot.
451 * The first element moved is idx, and count elements are moved. The
452 * shape of the shift is determined by trap; true if the shift is a trapezoid,
453 * false if it is a parallelogram.
455 static inline void
456 bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
457 uint32_t count, enum bt_shift_shape shape)
459 bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT);
463 * Shift elements and children in the provided core node right by one spot.
464 * Starts with elements[idx] and children[idx] and one more child than element.
466 static inline void
467 bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx,
468 uint32_t count, enum bt_shift_shape shape)
470 bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT);
474 * Shift elements and children in the provided leaf node by off spots.
475 * The first element moved is idx, and count elements are moved. The direction
476 * is determined by left.
478 static inline void
479 bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx,
480 uint32_t count, uint32_t off, enum bt_shift_direction dir)
482 size_t size = tree->bt_elem_size;
483 zfs_btree_hdr_t *hdr = &node->btl_hdr;
484 ASSERT(!zfs_btree_is_core(hdr));
486 if (count == 0)
487 return;
488 uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size;
489 uint8_t *out = (dir == BSD_LEFT ? start - off * size :
490 start + off * size);
491 bmov(start, out, count * size);
495 * Grow leaf for n new elements before idx.
497 static void
498 bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
499 uint32_t n)
501 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
502 ASSERT(!zfs_btree_is_core(hdr));
503 ASSERT3U(idx, <=, hdr->bth_count);
504 uint32_t capacity = tree->bt_leaf_cap;
505 ASSERT3U(hdr->bth_count + n, <=, capacity);
506 boolean_t cl = (hdr->bth_first >= n);
507 boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity);
509 if (cl && (!cr || idx <= hdr->bth_count / 2)) {
510 /* Grow left. */
511 hdr->bth_first -= n;
512 bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT);
513 } else if (cr) {
514 /* Grow right. */
515 bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n,
516 BSD_RIGHT);
517 } else {
518 /* Grow both ways. */
519 uint32_t fn = hdr->bth_first -
520 (capacity - (hdr->bth_count + n)) / 2;
521 hdr->bth_first -= fn;
522 bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT);
523 bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx,
524 n - fn, BSD_RIGHT);
526 hdr->bth_count += n;
530 * Shrink leaf for count elements starting from idx.
532 static void
533 bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx,
534 uint32_t n)
536 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
537 ASSERT(!zfs_btree_is_core(hdr));
538 ASSERT3U(idx, <=, hdr->bth_count);
539 ASSERT3U(idx + n, <=, hdr->bth_count);
541 if (idx <= (hdr->bth_count - n) / 2) {
542 bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT);
543 zfs_btree_poison_node_at(tree, hdr, 0, n);
544 hdr->bth_first += n;
545 } else {
546 bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n,
547 BSD_LEFT);
548 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n);
550 hdr->bth_count -= n;
554 * Move children and elements from one core node to another. The shape
555 * parameter behaves the same as it does in the shift logic.
557 static inline void
558 bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx,
559 uint32_t count, zfs_btree_core_t *dest, uint32_t didx,
560 enum bt_shift_shape shape)
562 size_t size = tree->bt_elem_size;
563 ASSERT(zfs_btree_is_core(&source->btc_hdr));
564 ASSERT(zfs_btree_is_core(&dest->btc_hdr));
566 bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size,
567 count * size);
569 uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0);
570 bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1),
571 dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1),
572 c_count * sizeof (*source->btc_children));
575 static inline void
576 bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx,
577 uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx)
579 size_t size = tree->bt_elem_size;
580 ASSERT(!zfs_btree_is_core(&source->btl_hdr));
581 ASSERT(!zfs_btree_is_core(&dest->btl_hdr));
583 bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size,
584 dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size,
585 count * size);
589 * Find the first element in the subtree rooted at hdr, return its value and
590 * put its location in where if non-null.
592 static void *
593 zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
594 zfs_btree_index_t *where)
596 zfs_btree_hdr_t *node;
598 for (node = hdr; zfs_btree_is_core(node);
599 node = ((zfs_btree_core_t *)node)->btc_children[0])
602 ASSERT(!zfs_btree_is_core(node));
603 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
604 if (where != NULL) {
605 where->bti_node = node;
606 where->bti_offset = 0;
607 where->bti_before = B_FALSE;
609 return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]);
612 /* Insert an element and a child into a core node at the given offset. */
613 static void
614 zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent,
615 uint32_t offset, zfs_btree_hdr_t *new_node, void *buf)
617 size_t size = tree->bt_elem_size;
618 zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
619 ASSERT3P(par_hdr, ==, new_node->bth_parent);
620 ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS);
622 if (zfs_btree_verify_intensity >= 5) {
623 zfs_btree_verify_poison_at(tree, par_hdr,
624 par_hdr->bth_count);
626 /* Shift existing elements and children */
627 uint32_t count = par_hdr->bth_count - offset;
628 bt_shift_core_right(tree, parent, offset, count,
629 BSS_PARALLELOGRAM);
631 /* Insert new values */
632 parent->btc_children[offset + 1] = new_node;
633 bcpy(buf, parent->btc_elems + offset * size, size);
634 par_hdr->bth_count++;
638 * Insert new_node into the parent of old_node directly after old_node, with
639 * buf as the dividing element between the two.
641 static void
642 zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node,
643 zfs_btree_hdr_t *new_node, void *buf)
645 ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent);
646 size_t size = tree->bt_elem_size;
647 zfs_btree_core_t *parent = old_node->bth_parent;
650 * If this is the root node we were splitting, we create a new root
651 * and increase the height of the tree.
653 if (parent == NULL) {
654 ASSERT3P(old_node, ==, tree->bt_root);
655 tree->bt_num_nodes++;
656 zfs_btree_core_t *new_root =
657 kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS *
658 size, KM_SLEEP);
659 zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr;
660 new_root_hdr->bth_parent = NULL;
661 new_root_hdr->bth_first = -1;
662 new_root_hdr->bth_count = 1;
664 old_node->bth_parent = new_node->bth_parent = new_root;
665 new_root->btc_children[0] = old_node;
666 new_root->btc_children[1] = new_node;
667 bcpy(buf, new_root->btc_elems, size);
669 tree->bt_height++;
670 tree->bt_root = new_root_hdr;
671 zfs_btree_poison_node(tree, new_root_hdr);
672 return;
676 * Since we have the new separator, binary search for where to put
677 * new_node.
679 zfs_btree_hdr_t *par_hdr = &parent->btc_hdr;
680 zfs_btree_index_t idx;
681 ASSERT(zfs_btree_is_core(par_hdr));
682 VERIFY3P(tree->bt_find_in_buf(tree, parent->btc_elems,
683 par_hdr->bth_count, buf, &idx), ==, NULL);
684 ASSERT(idx.bti_before);
685 uint32_t offset = idx.bti_offset;
686 ASSERT3U(offset, <=, par_hdr->bth_count);
687 ASSERT3P(parent->btc_children[offset], ==, old_node);
690 * If the parent isn't full, shift things to accommodate our insertions
691 * and return.
693 if (par_hdr->bth_count != BTREE_CORE_ELEMS) {
694 zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf);
695 return;
699 * We need to split this core node into two. Currently there are
700 * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for
701 * BTREE_CORE_ELEMS + 2. Some of the children will be part of the
702 * current node, and the others will be moved to the new core node.
703 * There are BTREE_CORE_ELEMS + 1 elements including the new one. One
704 * will be used as the new separator in our parent, and the others
705 * will be split among the two core nodes.
707 * Usually we will split the node in half evenly, with
708 * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we
709 * instead move only about a quarter of the elements (and children) to
710 * the new node. Since the average state after a long time is a 3/4
711 * full node, shortcutting directly to that state improves efficiency.
713 * We do this in two stages: first we split into two nodes, and then we
714 * reuse our existing logic to insert the new element and child.
716 uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ?
717 2 : 4)) - 1, 2);
718 uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1;
719 ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2);
720 tree->bt_num_nodes++;
721 zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) +
722 BTREE_CORE_ELEMS * size, KM_SLEEP);
723 zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr;
724 new_par_hdr->bth_parent = par_hdr->bth_parent;
725 new_par_hdr->bth_first = -1;
726 new_par_hdr->bth_count = move_count;
727 zfs_btree_poison_node(tree, new_par_hdr);
729 par_hdr->bth_count = keep_count;
731 bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent,
732 0, BSS_TRAPEZOID);
734 /* Store the new separator in a buffer. */
735 uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP);
736 bcpy(parent->btc_elems + keep_count * size, tmp_buf,
737 size);
738 zfs_btree_poison_node(tree, par_hdr);
740 if (offset < keep_count) {
741 /* Insert the new node into the left half */
742 zfs_btree_insert_core_impl(tree, parent, offset, new_node,
743 buf);
746 * Move the new separator to the existing buffer.
748 bcpy(tmp_buf, buf, size);
749 } else if (offset > keep_count) {
750 /* Insert the new node into the right half */
751 new_node->bth_parent = new_parent;
752 zfs_btree_insert_core_impl(tree, new_parent,
753 offset - keep_count - 1, new_node, buf);
756 * Move the new separator to the existing buffer.
758 bcpy(tmp_buf, buf, size);
759 } else {
761 * Move the new separator into the right half, and replace it
762 * with buf. We also need to shift back the elements in the
763 * right half to accommodate new_node.
765 bt_shift_core_right(tree, new_parent, 0, move_count,
766 BSS_TRAPEZOID);
767 new_parent->btc_children[0] = new_node;
768 bcpy(tmp_buf, new_parent->btc_elems, size);
769 new_par_hdr->bth_count++;
771 kmem_free(tmp_buf, size);
772 zfs_btree_poison_node(tree, par_hdr);
774 for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++)
775 new_parent->btc_children[i]->bth_parent = new_parent;
777 for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++)
778 ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent);
781 * Now that the node is split, we need to insert the new node into its
782 * parent. This may cause further splitting.
784 zfs_btree_insert_into_parent(tree, &parent->btc_hdr,
785 &new_parent->btc_hdr, buf);
788 /* Insert an element into a leaf node at the given offset. */
789 static void
790 zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
791 uint32_t idx, const void *value)
793 size_t size = tree->bt_elem_size;
794 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
795 ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap);
797 if (zfs_btree_verify_intensity >= 5) {
798 zfs_btree_verify_poison_at(tree, &leaf->btl_hdr,
799 leaf->btl_hdr.bth_count);
802 bt_grow_leaf(tree, leaf, idx, 1);
803 uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size;
804 bcpy(value, start, size);
807 static void
808 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr);
810 /* Helper function for inserting a new value into leaf at the given index. */
811 static void
812 zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf,
813 const void *value, uint32_t idx)
815 size_t size = tree->bt_elem_size;
816 uint32_t capacity = tree->bt_leaf_cap;
819 * If the leaf isn't full, shift the elements after idx and insert
820 * value.
822 if (leaf->btl_hdr.bth_count != capacity) {
823 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
824 return;
828 * Otherwise, we split the leaf node into two nodes. If we're not bulk
829 * inserting, each is of size (capacity / 2). If we are bulk
830 * inserting, we move a quarter of the elements to the new node so
831 * inserts into the old node don't cause immediate splitting but the
832 * tree stays relatively dense. Since the average state after a long
833 * time is a 3/4 full node, shortcutting directly to that state
834 * improves efficiency. At the end of the bulk insertion process
835 * we'll need to go through and fix up any nodes (the last leaf and
836 * its ancestors, potentially) that are below the minimum.
838 * In either case, we're left with one extra element. The leftover
839 * element will become the new dividing element between the two nodes.
841 uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1;
842 uint32_t keep_count = capacity - move_count - 1;
843 ASSERT3U(keep_count, >=, 1);
844 /* If we insert on left. move one more to keep leaves balanced. */
845 if (idx < keep_count) {
846 keep_count--;
847 move_count++;
849 tree->bt_num_nodes++;
850 zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree);
851 zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr;
852 new_hdr->bth_parent = leaf->btl_hdr.bth_parent;
853 new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) +
854 (idx >= keep_count && idx <= keep_count + move_count / 2);
855 new_hdr->bth_count = move_count;
856 zfs_btree_poison_node(tree, new_hdr);
858 if (tree->bt_bulk != NULL && leaf == tree->bt_bulk)
859 tree->bt_bulk = new_leaf;
861 /* Copy the back part to the new leaf. */
862 bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0);
864 /* We store the new separator in a buffer we control for simplicity. */
865 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
866 bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size,
867 buf, size);
869 bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count);
871 if (idx < keep_count) {
872 /* Insert into the existing leaf. */
873 zfs_btree_insert_leaf_impl(tree, leaf, idx, value);
874 } else if (idx > keep_count) {
875 /* Insert into the new leaf. */
876 zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count -
877 1, value);
878 } else {
880 * Insert planned separator into the new leaf, and use
881 * the new value as the new separator.
883 zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf);
884 bcpy(value, buf, size);
888 * Now that the node is split, we need to insert the new node into its
889 * parent. This may cause further splitting, bur only of core nodes.
891 zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr,
892 buf);
893 kmem_free(buf, size);
896 static uint32_t
897 zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
899 void *buf;
900 if (zfs_btree_is_core(hdr)) {
901 buf = ((zfs_btree_core_t *)hdr)->btc_elems;
902 } else {
903 buf = ((zfs_btree_leaf_t *)hdr)->btl_elems +
904 hdr->bth_first * tree->bt_elem_size;
906 zfs_btree_index_t idx;
907 zfs_btree_core_t *parent = hdr->bth_parent;
908 VERIFY3P(tree->bt_find_in_buf(tree, parent->btc_elems,
909 parent->btc_hdr.bth_count, buf, &idx), ==, NULL);
910 ASSERT(idx.bti_before);
911 ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count);
912 ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr);
913 return (idx.bti_offset);
917 * Take the b-tree out of bulk insert mode. During bulk-insert mode, some
918 * nodes may violate the invariant that non-root nodes must be at least half
919 * full. All nodes violating this invariant should be the last node in their
920 * particular level. To correct the invariant, we take values from their left
921 * neighbor until they are half full. They must have a left neighbor at their
922 * level because the last node at a level is not the first node unless it's
923 * the root.
925 static void
926 zfs_btree_bulk_finish(zfs_btree_t *tree)
928 ASSERT3P(tree->bt_bulk, !=, NULL);
929 ASSERT3P(tree->bt_root, !=, NULL);
930 zfs_btree_leaf_t *leaf = tree->bt_bulk;
931 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
932 zfs_btree_core_t *parent = hdr->bth_parent;
933 size_t size = tree->bt_elem_size;
934 uint32_t capacity = tree->bt_leaf_cap;
937 * The invariant doesn't apply to the root node, if that's the only
938 * node in the tree we're done.
940 if (parent == NULL) {
941 tree->bt_bulk = NULL;
942 return;
945 /* First, take elements to rebalance the leaf node. */
946 if (hdr->bth_count < capacity / 2) {
948 * First, find the left neighbor. The simplest way to do this
949 * is to call zfs_btree_prev twice; the first time finds some
950 * ancestor of this node, and the second time finds the left
951 * neighbor. The ancestor found is the lowest common ancestor
952 * of leaf and the neighbor.
954 zfs_btree_index_t idx = {
955 .bti_node = hdr,
956 .bti_offset = 0
958 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
959 ASSERT(zfs_btree_is_core(idx.bti_node));
960 zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node;
961 uint32_t common_idx = idx.bti_offset;
963 VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL);
964 ASSERT(!zfs_btree_is_core(idx.bti_node));
965 zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node;
966 zfs_btree_hdr_t *l_hdr = idx.bti_node;
967 uint32_t move_count = (capacity / 2) - hdr->bth_count;
968 ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=,
969 capacity / 2);
971 if (zfs_btree_verify_intensity >= 5) {
972 for (uint32_t i = 0; i < move_count; i++) {
973 zfs_btree_verify_poison_at(tree, hdr,
974 leaf->btl_hdr.bth_count + i);
978 /* First, shift elements in leaf back. */
979 bt_grow_leaf(tree, leaf, 0, move_count);
981 /* Next, move the separator from the common ancestor to leaf. */
982 uint8_t *separator = common->btc_elems + common_idx * size;
983 uint8_t *out = leaf->btl_elems +
984 (hdr->bth_first + move_count - 1) * size;
985 bcpy(separator, out, size);
988 * Now we move elements from the tail of the left neighbor to
989 * fill the remaining spots in leaf.
991 bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count -
992 (move_count - 1), move_count - 1, leaf, 0);
995 * Finally, move the new last element in the left neighbor to
996 * the separator.
998 bcpy(l_neighbor->btl_elems + (l_hdr->bth_first +
999 l_hdr->bth_count - move_count) * size, separator, size);
1001 /* Adjust the node's counts, and we're done. */
1002 bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count,
1003 move_count);
1005 ASSERT3U(l_hdr->bth_count, >=, capacity / 2);
1006 ASSERT3U(hdr->bth_count, >=, capacity / 2);
1010 * Now we have to rebalance any ancestors of leaf that may also
1011 * violate the invariant.
1013 capacity = BTREE_CORE_ELEMS;
1014 while (parent->btc_hdr.bth_parent != NULL) {
1015 zfs_btree_core_t *cur = parent;
1016 zfs_btree_hdr_t *hdr = &cur->btc_hdr;
1017 parent = hdr->bth_parent;
1019 * If the invariant isn't violated, move on to the next
1020 * ancestor.
1022 if (hdr->bth_count >= capacity / 2)
1023 continue;
1026 * Because the smallest number of nodes we can move when
1027 * splitting is 2, we never need to worry about not having a
1028 * left sibling (a sibling is a neighbor with the same parent).
1030 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1031 ASSERT3U(parent_idx, >, 0);
1032 zfs_btree_core_t *l_neighbor =
1033 (zfs_btree_core_t *)parent->btc_children[parent_idx - 1];
1034 uint32_t move_count = (capacity / 2) - hdr->bth_count;
1035 ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=,
1036 capacity / 2);
1038 if (zfs_btree_verify_intensity >= 5) {
1039 for (uint32_t i = 0; i < move_count; i++) {
1040 zfs_btree_verify_poison_at(tree, hdr,
1041 hdr->bth_count + i);
1044 /* First, shift things in the right node back. */
1045 bt_shift_core(tree, cur, 0, hdr->bth_count, move_count,
1046 BSS_TRAPEZOID, BSD_RIGHT);
1048 /* Next, move the separator to the right node. */
1049 uint8_t *separator = parent->btc_elems + ((parent_idx - 1) *
1050 size);
1051 uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size);
1052 bcpy(separator, e_out, size);
1055 * Now, move elements and children from the left node to the
1056 * right. We move one more child than elements.
1058 move_count--;
1059 uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count;
1060 bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0,
1061 BSS_TRAPEZOID);
1064 * Finally, move the last element in the left node to the
1065 * separator's position.
1067 move_idx--;
1068 bcpy(l_neighbor->btc_elems + move_idx * size, separator, size);
1070 l_neighbor->btc_hdr.bth_count -= move_count + 1;
1071 hdr->bth_count += move_count + 1;
1073 ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2);
1074 ASSERT3U(hdr->bth_count, >=, capacity / 2);
1076 zfs_btree_poison_node(tree, &l_neighbor->btc_hdr);
1078 for (uint32_t i = 0; i <= hdr->bth_count; i++)
1079 cur->btc_children[i]->bth_parent = cur;
1082 tree->bt_bulk = NULL;
1083 zfs_btree_verify(tree);
1087 * Insert value into tree at the location specified by where.
1089 void
1090 zfs_btree_add_idx(zfs_btree_t *tree, const void *value,
1091 const zfs_btree_index_t *where)
1093 zfs_btree_index_t idx = {0};
1095 /* If we're not inserting in the last leaf, end bulk insert mode. */
1096 if (tree->bt_bulk != NULL) {
1097 if (where->bti_node != &tree->bt_bulk->btl_hdr) {
1098 zfs_btree_bulk_finish(tree);
1099 VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL);
1100 where = &idx;
1104 tree->bt_num_elems++;
1106 * If this is the first element in the tree, create a leaf root node
1107 * and add the value to it.
1109 if (where->bti_node == NULL) {
1110 ASSERT3U(tree->bt_num_elems, ==, 1);
1111 ASSERT3S(tree->bt_height, ==, -1);
1112 ASSERT3P(tree->bt_root, ==, NULL);
1113 ASSERT0(where->bti_offset);
1115 tree->bt_num_nodes++;
1116 zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree);
1117 tree->bt_root = &leaf->btl_hdr;
1118 tree->bt_height++;
1120 zfs_btree_hdr_t *hdr = &leaf->btl_hdr;
1121 hdr->bth_parent = NULL;
1122 hdr->bth_first = 0;
1123 hdr->bth_count = 0;
1124 zfs_btree_poison_node(tree, hdr);
1126 zfs_btree_insert_into_leaf(tree, leaf, value, 0);
1127 tree->bt_bulk = leaf;
1128 } else if (!zfs_btree_is_core(where->bti_node)) {
1130 * If we're inserting into a leaf, go directly to the helper
1131 * function.
1133 zfs_btree_insert_into_leaf(tree,
1134 (zfs_btree_leaf_t *)where->bti_node, value,
1135 where->bti_offset);
1136 } else {
1138 * If we're inserting into a core node, we can't just shift
1139 * the existing element in that slot in the same node without
1140 * breaking our ordering invariants. Instead we place the new
1141 * value in the node at that spot and then insert the old
1142 * separator into the first slot in the subtree to the right.
1144 zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node;
1147 * We can ignore bti_before, because either way the value
1148 * should end up in bti_offset.
1150 uint32_t off = where->bti_offset;
1151 zfs_btree_hdr_t *subtree = node->btc_children[off + 1];
1152 size_t size = tree->bt_elem_size;
1153 uint8_t *buf = kmem_alloc(size, KM_SLEEP);
1154 bcpy(node->btc_elems + off * size, buf, size);
1155 bcpy(value, node->btc_elems + off * size, size);
1158 * Find the first slot in the subtree to the right, insert
1159 * there.
1161 zfs_btree_index_t new_idx;
1162 VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=,
1163 NULL);
1164 ASSERT0(new_idx.bti_offset);
1165 ASSERT(!zfs_btree_is_core(new_idx.bti_node));
1166 zfs_btree_insert_into_leaf(tree,
1167 (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0);
1168 kmem_free(buf, size);
1170 zfs_btree_verify(tree);
1174 * Return the first element in the tree, and put its location in where if
1175 * non-null.
1177 void *
1178 zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where)
1180 if (tree->bt_height == -1) {
1181 ASSERT0(tree->bt_num_elems);
1182 return (NULL);
1184 return (zfs_btree_first_helper(tree, tree->bt_root, where));
1188 * Find the last element in the subtree rooted at hdr, return its value and
1189 * put its location in where if non-null.
1191 static void *
1192 zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr,
1193 zfs_btree_index_t *where)
1195 zfs_btree_hdr_t *node;
1197 for (node = hdr; zfs_btree_is_core(node); node =
1198 ((zfs_btree_core_t *)node)->btc_children[node->bth_count])
1201 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node;
1202 if (where != NULL) {
1203 where->bti_node = node;
1204 where->bti_offset = node->bth_count - 1;
1205 where->bti_before = B_FALSE;
1207 return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) *
1208 btree->bt_elem_size);
1212 * Return the last element in the tree, and put its location in where if
1213 * non-null.
1215 void *
1216 zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where)
1218 if (tree->bt_height == -1) {
1219 ASSERT0(tree->bt_num_elems);
1220 return (NULL);
1222 return (zfs_btree_last_helper(tree, tree->bt_root, where));
1226 * This function contains the logic to find the next node in the tree. A
1227 * helper function is used because there are multiple internal consumemrs of
1228 * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each
1229 * node after we've finished with it.
1231 static void *
1232 zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1233 zfs_btree_index_t *out_idx,
1234 void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *))
1236 if (idx->bti_node == NULL) {
1237 ASSERT3S(tree->bt_height, ==, -1);
1238 return (NULL);
1241 uint32_t offset = idx->bti_offset;
1242 if (!zfs_btree_is_core(idx->bti_node)) {
1244 * When finding the next element of an element in a leaf,
1245 * there are two cases. If the element isn't the last one in
1246 * the leaf, in which case we just return the next element in
1247 * the leaf. Otherwise, we need to traverse up our parents
1248 * until we find one where our ancestor isn't the last child
1249 * of its parent. Once we do, the next element is the
1250 * separator after our ancestor in its parent.
1252 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1253 uint32_t new_off = offset + (idx->bti_before ? 0 : 1);
1254 if (leaf->btl_hdr.bth_count > new_off) {
1255 out_idx->bti_node = &leaf->btl_hdr;
1256 out_idx->bti_offset = new_off;
1257 out_idx->bti_before = B_FALSE;
1258 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1259 new_off) * tree->bt_elem_size);
1262 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1263 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1264 node != NULL; node = node->btc_hdr.bth_parent) {
1265 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1266 ASSERT(zfs_btree_is_core(hdr));
1267 uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1268 if (done_func != NULL)
1269 done_func(tree, prev);
1270 if (i == hdr->bth_count) {
1271 prev = hdr;
1272 continue;
1274 out_idx->bti_node = hdr;
1275 out_idx->bti_offset = i;
1276 out_idx->bti_before = B_FALSE;
1277 return (node->btc_elems + i * tree->bt_elem_size);
1279 if (done_func != NULL)
1280 done_func(tree, prev);
1282 * We've traversed all the way up and been at the end of the
1283 * node every time, so this was the last element in the tree.
1285 return (NULL);
1288 /* If we were before an element in a core node, return that element. */
1289 ASSERT(zfs_btree_is_core(idx->bti_node));
1290 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1291 if (idx->bti_before) {
1292 out_idx->bti_before = B_FALSE;
1293 return (node->btc_elems + offset * tree->bt_elem_size);
1297 * The next element from one in a core node is the first element in
1298 * the subtree just to the right of the separator.
1300 zfs_btree_hdr_t *child = node->btc_children[offset + 1];
1301 return (zfs_btree_first_helper(tree, child, out_idx));
1305 * Return the next valued node in the tree. The same address can be safely
1306 * passed for idx and out_idx.
1308 void *
1309 zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1310 zfs_btree_index_t *out_idx)
1312 return (zfs_btree_next_helper(tree, idx, out_idx, NULL));
1316 * Return the previous valued node in the tree. The same value can be safely
1317 * passed for idx and out_idx.
1319 void *
1320 zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx,
1321 zfs_btree_index_t *out_idx)
1323 if (idx->bti_node == NULL) {
1324 ASSERT3S(tree->bt_height, ==, -1);
1325 return (NULL);
1328 uint32_t offset = idx->bti_offset;
1329 if (!zfs_btree_is_core(idx->bti_node)) {
1331 * When finding the previous element of an element in a leaf,
1332 * there are two cases. If the element isn't the first one in
1333 * the leaf, in which case we just return the previous element
1334 * in the leaf. Otherwise, we need to traverse up our parents
1335 * until we find one where our previous ancestor isn't the
1336 * first child. Once we do, the previous element is the
1337 * separator after our previous ancestor.
1339 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1340 if (offset != 0) {
1341 out_idx->bti_node = &leaf->btl_hdr;
1342 out_idx->bti_offset = offset - 1;
1343 out_idx->bti_before = B_FALSE;
1344 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1345 offset - 1) * tree->bt_elem_size);
1347 zfs_btree_hdr_t *prev = &leaf->btl_hdr;
1348 for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent;
1349 node != NULL; node = node->btc_hdr.bth_parent) {
1350 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1351 ASSERT(zfs_btree_is_core(hdr));
1352 uint32_t i = zfs_btree_find_parent_idx(tree, prev);
1353 if (i == 0) {
1354 prev = hdr;
1355 continue;
1357 out_idx->bti_node = hdr;
1358 out_idx->bti_offset = i - 1;
1359 out_idx->bti_before = B_FALSE;
1360 return (node->btc_elems + (i - 1) * tree->bt_elem_size);
1363 * We've traversed all the way up and been at the start of the
1364 * node every time, so this was the first node in the tree.
1366 return (NULL);
1370 * The previous element from one in a core node is the last element in
1371 * the subtree just to the left of the separator.
1373 ASSERT(zfs_btree_is_core(idx->bti_node));
1374 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1375 zfs_btree_hdr_t *child = node->btc_children[offset];
1376 return (zfs_btree_last_helper(tree, child, out_idx));
1380 * Get the value at the provided index in the tree.
1382 * Note that the value returned from this function can be mutated, but only
1383 * if it will not change the ordering of the element with respect to any other
1384 * elements that could be in the tree.
1386 void *
1387 zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx)
1389 ASSERT(!idx->bti_before);
1390 size_t size = tree->bt_elem_size;
1391 if (!zfs_btree_is_core(idx->bti_node)) {
1392 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node;
1393 return (leaf->btl_elems + (leaf->btl_hdr.bth_first +
1394 idx->bti_offset) * size);
1396 zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node;
1397 return (node->btc_elems + idx->bti_offset * size);
1400 /* Add the given value to the tree. Must not already be in the tree. */
1401 void
1402 zfs_btree_add(zfs_btree_t *tree, const void *node)
1404 zfs_btree_index_t where = {0};
1405 VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL);
1406 zfs_btree_add_idx(tree, node, &where);
1409 /* Helper function to free a tree node. */
1410 static void
1411 zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node)
1413 tree->bt_num_nodes--;
1414 if (!zfs_btree_is_core(node)) {
1415 zfs_btree_leaf_free(tree, node);
1416 } else {
1417 kmem_free(node, sizeof (zfs_btree_core_t) +
1418 BTREE_CORE_ELEMS * tree->bt_elem_size);
1423 * Remove the rm_hdr and the separator to its left from the parent node. The
1424 * buffer that rm_hdr was stored in may already be freed, so its contents
1425 * cannot be accessed.
1427 static void
1428 zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node,
1429 zfs_btree_hdr_t *rm_hdr)
1431 size_t size = tree->bt_elem_size;
1432 uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1;
1433 zfs_btree_hdr_t *hdr = &node->btc_hdr;
1435 * If the node is the root node and rm_hdr is one of two children,
1436 * promote the other child to the root.
1438 if (hdr->bth_parent == NULL && hdr->bth_count <= 1) {
1439 ASSERT3U(hdr->bth_count, ==, 1);
1440 ASSERT3P(tree->bt_root, ==, node);
1441 ASSERT3P(node->btc_children[1], ==, rm_hdr);
1442 tree->bt_root = node->btc_children[0];
1443 node->btc_children[0]->bth_parent = NULL;
1444 zfs_btree_node_destroy(tree, hdr);
1445 tree->bt_height--;
1446 return;
1449 uint32_t idx;
1450 for (idx = 0; idx <= hdr->bth_count; idx++) {
1451 if (node->btc_children[idx] == rm_hdr)
1452 break;
1454 ASSERT3U(idx, <=, hdr->bth_count);
1457 * If the node is the root or it has more than the minimum number of
1458 * children, just remove the child and separator, and return.
1460 if (hdr->bth_parent == NULL ||
1461 hdr->bth_count > min_count) {
1463 * Shift the element and children to the right of rm_hdr to
1464 * the left by one spot.
1466 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1467 BSS_PARALLELOGRAM);
1468 hdr->bth_count--;
1469 zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1);
1470 return;
1473 ASSERT3U(hdr->bth_count, ==, min_count);
1476 * Now we try to take a node from a neighbor. We check left, then
1477 * right. If the neighbor exists and has more than the minimum number
1478 * of elements, we move the separator between us and them to our
1479 * node, move their closest element (last for left, first for right)
1480 * to the separator, and move their closest child to our node. Along
1481 * the way we need to collapse the gap made by idx, and (for our right
1482 * neighbor) the gap made by removing their first element and child.
1484 * Note: this logic currently doesn't support taking from a neighbor
1485 * that isn't a sibling (i.e. a neighbor with a different
1486 * parent). This isn't critical functionality, but may be worth
1487 * implementing in the future for completeness' sake.
1489 zfs_btree_core_t *parent = hdr->bth_parent;
1490 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1492 zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1493 parent->btc_children[parent_idx - 1]);
1494 if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1495 /* We can take a node from the left neighbor. */
1496 ASSERT(zfs_btree_is_core(l_hdr));
1497 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr;
1500 * Start by shifting the elements and children in the current
1501 * node to the right by one spot.
1503 bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID);
1506 * Move the separator between node and neighbor to the first
1507 * element slot in the current node.
1509 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1510 size;
1511 bcpy(separator, node->btc_elems, size);
1513 /* Move the last child of neighbor to our first child slot. */
1514 node->btc_children[0] =
1515 neighbor->btc_children[l_hdr->bth_count];
1516 node->btc_children[0]->bth_parent = node;
1518 /* Move the last element of neighbor to the separator spot. */
1519 uint8_t *take_elem = neighbor->btc_elems +
1520 (l_hdr->bth_count - 1) * size;
1521 bcpy(take_elem, separator, size);
1522 l_hdr->bth_count--;
1523 zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1);
1524 return;
1527 zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1528 NULL : parent->btc_children[parent_idx + 1]);
1529 if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1530 /* We can take a node from the right neighbor. */
1531 ASSERT(zfs_btree_is_core(r_hdr));
1532 zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr;
1535 * Shift elements in node left by one spot to overwrite rm_hdr
1536 * and the separator before it.
1538 bt_shift_core_left(tree, node, idx, hdr->bth_count - idx,
1539 BSS_PARALLELOGRAM);
1542 * Move the separator between node and neighbor to the last
1543 * element spot in node.
1545 uint8_t *separator = parent->btc_elems + parent_idx * size;
1546 bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size,
1547 size);
1550 * Move the first child of neighbor to the last child spot in
1551 * node.
1553 node->btc_children[hdr->bth_count] = neighbor->btc_children[0];
1554 node->btc_children[hdr->bth_count]->bth_parent = node;
1556 /* Move the first element of neighbor to the separator spot. */
1557 uint8_t *take_elem = neighbor->btc_elems;
1558 bcpy(take_elem, separator, size);
1559 r_hdr->bth_count--;
1562 * Shift the elements and children of neighbor to cover the
1563 * stolen elements.
1565 bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count,
1566 BSS_TRAPEZOID);
1567 zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1);
1568 return;
1572 * In this case, neither of our neighbors can spare an element, so we
1573 * need to merge with one of them. We prefer the left one,
1574 * arbitrarily. Move the separator into the leftmost merging node
1575 * (which may be us or the left neighbor), and then move the right
1576 * merging node's elements. Once that's done, we go back and delete
1577 * the element we're removing. Finally, go into the parent and delete
1578 * the right merging node and the separator. This may cause further
1579 * merging.
1581 zfs_btree_hdr_t *new_rm_hdr, *keep_hdr;
1582 uint32_t new_idx = idx;
1583 if (l_hdr != NULL) {
1584 keep_hdr = l_hdr;
1585 new_rm_hdr = hdr;
1586 new_idx += keep_hdr->bth_count + 1;
1587 } else {
1588 ASSERT3P(r_hdr, !=, NULL);
1589 keep_hdr = hdr;
1590 new_rm_hdr = r_hdr;
1591 parent_idx++;
1594 ASSERT(zfs_btree_is_core(keep_hdr));
1595 ASSERT(zfs_btree_is_core(new_rm_hdr));
1597 zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr;
1598 zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr;
1600 if (zfs_btree_verify_intensity >= 5) {
1601 for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) {
1602 zfs_btree_verify_poison_at(tree, keep_hdr,
1603 keep_hdr->bth_count + i);
1607 /* Move the separator into the left node. */
1608 uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size;
1609 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1610 size;
1611 bcpy(separator, e_out, size);
1612 keep_hdr->bth_count++;
1614 /* Move all our elements and children into the left node. */
1615 bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep,
1616 keep_hdr->bth_count, BSS_TRAPEZOID);
1618 uint32_t old_count = keep_hdr->bth_count;
1620 /* Update bookkeeping */
1621 keep_hdr->bth_count += new_rm_hdr->bth_count;
1622 ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1);
1625 * Shift the element and children to the right of rm_hdr to
1626 * the left by one spot.
1628 ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr);
1629 bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx,
1630 BSS_PARALLELOGRAM);
1631 keep_hdr->bth_count--;
1633 /* Reparent all our children to point to the left node. */
1634 zfs_btree_hdr_t **new_start = keep->btc_children +
1635 old_count - 1;
1636 for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++)
1637 new_start[i]->bth_parent = keep;
1638 for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) {
1639 ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep);
1640 ASSERT3P(keep->btc_children[i], !=, rm_hdr);
1642 zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1);
1644 new_rm_hdr->bth_count = 0;
1645 zfs_btree_remove_from_node(tree, parent, new_rm_hdr);
1646 zfs_btree_node_destroy(tree, new_rm_hdr);
1649 /* Remove the element at the specific location. */
1650 void
1651 zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where)
1653 size_t size = tree->bt_elem_size;
1654 zfs_btree_hdr_t *hdr = where->bti_node;
1655 uint32_t idx = where->bti_offset;
1657 ASSERT(!where->bti_before);
1658 if (tree->bt_bulk != NULL) {
1660 * Leave bulk insert mode. Note that our index would be
1661 * invalid after we correct the tree, so we copy the value
1662 * we're planning to remove and find it again after
1663 * bulk_finish.
1665 uint8_t *value = zfs_btree_get(tree, where);
1666 uint8_t *tmp = kmem_alloc(size, KM_SLEEP);
1667 bcpy(value, tmp, size);
1668 zfs_btree_bulk_finish(tree);
1669 VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL);
1670 kmem_free(tmp, size);
1671 hdr = where->bti_node;
1672 idx = where->bti_offset;
1675 tree->bt_num_elems--;
1677 * If the element happens to be in a core node, we move a leaf node's
1678 * element into its place and then remove the leaf node element. This
1679 * makes the rebalance logic not need to be recursive both upwards and
1680 * downwards.
1682 if (zfs_btree_is_core(hdr)) {
1683 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1684 zfs_btree_hdr_t *left_subtree = node->btc_children[idx];
1685 void *new_value = zfs_btree_last_helper(tree, left_subtree,
1686 where);
1687 ASSERT3P(new_value, !=, NULL);
1689 bcpy(new_value, node->btc_elems + idx * size, size);
1691 hdr = where->bti_node;
1692 idx = where->bti_offset;
1693 ASSERT(!where->bti_before);
1697 * First, we'll update the leaf's metadata. Then, we shift any
1698 * elements after the idx to the left. After that, we rebalance if
1699 * needed.
1701 ASSERT(!zfs_btree_is_core(hdr));
1702 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
1703 ASSERT3U(hdr->bth_count, >, 0);
1705 uint32_t min_count = (tree->bt_leaf_cap / 2) - 1;
1708 * If we're over the minimum size or this is the root, just overwrite
1709 * the value and return.
1711 if (hdr->bth_count > min_count || hdr->bth_parent == NULL) {
1712 bt_shrink_leaf(tree, leaf, idx, 1);
1713 if (hdr->bth_parent == NULL) {
1714 ASSERT0(tree->bt_height);
1715 if (hdr->bth_count == 0) {
1716 tree->bt_root = NULL;
1717 tree->bt_height--;
1718 zfs_btree_node_destroy(tree, &leaf->btl_hdr);
1721 zfs_btree_verify(tree);
1722 return;
1724 ASSERT3U(hdr->bth_count, ==, min_count);
1727 * Now we try to take a node from a sibling. We check left, then
1728 * right. If they exist and have more than the minimum number of
1729 * elements, we move the separator between us and them to our node
1730 * and move their closest element (last for left, first for right) to
1731 * the separator. Along the way we need to collapse the gap made by
1732 * idx, and (for our right neighbor) the gap made by removing their
1733 * first element.
1735 * Note: this logic currently doesn't support taking from a neighbor
1736 * that isn't a sibling. This isn't critical functionality, but may be
1737 * worth implementing in the future for completeness' sake.
1739 zfs_btree_core_t *parent = hdr->bth_parent;
1740 uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr);
1742 zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL :
1743 parent->btc_children[parent_idx - 1]);
1744 if (l_hdr != NULL && l_hdr->bth_count > min_count) {
1745 /* We can take a node from the left neighbor. */
1746 ASSERT(!zfs_btree_is_core(l_hdr));
1747 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr;
1750 * Move our elements back by one spot to make room for the
1751 * stolen element and overwrite the element being removed.
1753 bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT);
1755 /* Move the separator to our first spot. */
1756 uint8_t *separator = parent->btc_elems + (parent_idx - 1) *
1757 size;
1758 bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size);
1760 /* Move our neighbor's last element to the separator. */
1761 uint8_t *take_elem = neighbor->btl_elems +
1762 (l_hdr->bth_first + l_hdr->bth_count - 1) * size;
1763 bcpy(take_elem, separator, size);
1765 /* Delete our neighbor's last element. */
1766 bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1);
1767 zfs_btree_verify(tree);
1768 return;
1771 zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ?
1772 NULL : parent->btc_children[parent_idx + 1]);
1773 if (r_hdr != NULL && r_hdr->bth_count > min_count) {
1774 /* We can take a node from the right neighbor. */
1775 ASSERT(!zfs_btree_is_core(r_hdr));
1776 zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr;
1779 * Move our elements after the element being removed forwards
1780 * by one spot to make room for the stolen element and
1781 * overwrite the element being removed.
1783 bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1,
1784 1, BSD_LEFT);
1786 /* Move the separator between us to our last spot. */
1787 uint8_t *separator = parent->btc_elems + parent_idx * size;
1788 bcpy(separator, leaf->btl_elems + (hdr->bth_first +
1789 hdr->bth_count - 1) * size, size);
1791 /* Move our neighbor's first element to the separator. */
1792 uint8_t *take_elem = neighbor->btl_elems +
1793 r_hdr->bth_first * size;
1794 bcpy(take_elem, separator, size);
1796 /* Delete our neighbor's first element. */
1797 bt_shrink_leaf(tree, neighbor, 0, 1);
1798 zfs_btree_verify(tree);
1799 return;
1803 * In this case, neither of our neighbors can spare an element, so we
1804 * need to merge with one of them. We prefer the left one, arbitrarily.
1805 * After remove we move the separator into the leftmost merging node
1806 * (which may be us or the left neighbor), and then move the right
1807 * merging node's elements. Once that's done, we go back and delete
1808 * the element we're removing. Finally, go into the parent and delete
1809 * the right merging node and the separator. This may cause further
1810 * merging.
1812 zfs_btree_hdr_t *rm_hdr, *k_hdr;
1813 if (l_hdr != NULL) {
1814 k_hdr = l_hdr;
1815 rm_hdr = hdr;
1816 } else {
1817 ASSERT3P(r_hdr, !=, NULL);
1818 k_hdr = hdr;
1819 rm_hdr = r_hdr;
1820 parent_idx++;
1822 ASSERT(!zfs_btree_is_core(k_hdr));
1823 ASSERT(!zfs_btree_is_core(rm_hdr));
1824 ASSERT3U(k_hdr->bth_count, ==, min_count);
1825 ASSERT3U(rm_hdr->bth_count, ==, min_count);
1826 zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr;
1827 zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr;
1829 if (zfs_btree_verify_intensity >= 5) {
1830 for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) {
1831 zfs_btree_verify_poison_at(tree, k_hdr,
1832 k_hdr->bth_count + i);
1837 * Remove the value from the node. It will go below the minimum,
1838 * but we'll fix it in no time.
1840 bt_shrink_leaf(tree, leaf, idx, 1);
1842 /* Prepare space for elements to be moved from the right. */
1843 uint32_t k_count = k_hdr->bth_count;
1844 bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count);
1845 ASSERT3U(k_hdr->bth_count, ==, min_count * 2);
1847 /* Move the separator into the first open spot. */
1848 uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size;
1849 uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size;
1850 bcpy(separator, out, size);
1852 /* Move our elements to the left neighbor. */
1853 bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1);
1855 /* Remove the emptied node from the parent. */
1856 zfs_btree_remove_from_node(tree, parent, rm_hdr);
1857 zfs_btree_node_destroy(tree, rm_hdr);
1858 zfs_btree_verify(tree);
1861 /* Remove the given value from the tree. */
1862 void
1863 zfs_btree_remove(zfs_btree_t *tree, const void *value)
1865 zfs_btree_index_t where = {0};
1866 VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL);
1867 zfs_btree_remove_idx(tree, &where);
1870 /* Return the number of elements in the tree. */
1871 ulong_t
1872 zfs_btree_numnodes(zfs_btree_t *tree)
1874 return (tree->bt_num_elems);
1878 * This function is used to visit all the elements in the tree before
1879 * destroying the tree. This allows the calling code to perform any cleanup it
1880 * needs to do. This is more efficient than just removing the first element
1881 * over and over, because it removes all rebalancing. Once the destroy_nodes()
1882 * function has been called, no other btree operations are valid until it
1883 * returns NULL, which point the only valid operation is zfs_btree_destroy().
1885 * example:
1887 * zfs_btree_index_t *cookie = NULL;
1888 * my_data_t *node;
1890 * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL)
1891 * free(node->ptr);
1892 * zfs_btree_destroy(tree);
1895 void *
1896 zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie)
1898 if (*cookie == NULL) {
1899 if (tree->bt_height == -1)
1900 return (NULL);
1901 *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP);
1902 return (zfs_btree_first(tree, *cookie));
1905 void *rval = zfs_btree_next_helper(tree, *cookie, *cookie,
1906 zfs_btree_node_destroy);
1907 if (rval == NULL) {
1908 tree->bt_root = NULL;
1909 tree->bt_height = -1;
1910 tree->bt_num_elems = 0;
1911 kmem_free(*cookie, sizeof (**cookie));
1912 tree->bt_bulk = NULL;
1914 return (rval);
1917 static void
1918 zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1920 if (zfs_btree_is_core(hdr)) {
1921 zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr;
1922 for (uint32_t i = 0; i <= hdr->bth_count; i++)
1923 zfs_btree_clear_helper(tree, btc->btc_children[i]);
1926 zfs_btree_node_destroy(tree, hdr);
1929 void
1930 zfs_btree_clear(zfs_btree_t *tree)
1932 if (tree->bt_root == NULL) {
1933 ASSERT0(tree->bt_num_elems);
1934 return;
1937 zfs_btree_clear_helper(tree, tree->bt_root);
1938 tree->bt_num_elems = 0;
1939 tree->bt_root = NULL;
1940 tree->bt_num_nodes = 0;
1941 tree->bt_height = -1;
1942 tree->bt_bulk = NULL;
1945 void
1946 zfs_btree_destroy(zfs_btree_t *tree)
1948 ASSERT0(tree->bt_num_elems);
1949 ASSERT3P(tree->bt_root, ==, NULL);
1952 /* Verify that every child of this node has the correct parent pointer. */
1953 static void
1954 zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1956 if (!zfs_btree_is_core(hdr))
1957 return;
1959 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1960 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1961 VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr);
1962 zfs_btree_verify_pointers_helper(tree, node->btc_children[i]);
1966 /* Verify that every node has the correct parent pointer. */
1967 static void
1968 zfs_btree_verify_pointers(zfs_btree_t *tree)
1970 if (tree->bt_height == -1) {
1971 VERIFY3P(tree->bt_root, ==, NULL);
1972 return;
1974 VERIFY3P(tree->bt_root->bth_parent, ==, NULL);
1975 zfs_btree_verify_pointers_helper(tree, tree->bt_root);
1979 * Verify that all the current node and its children satisfy the count
1980 * invariants, and return the total count in the subtree rooted in this node.
1982 static uint64_t
1983 zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
1985 if (!zfs_btree_is_core(hdr)) {
1986 if (tree->bt_root != hdr && tree->bt_bulk &&
1987 hdr != &tree->bt_bulk->btl_hdr) {
1988 VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1);
1991 return (hdr->bth_count);
1992 } else {
1994 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
1995 uint64_t ret = hdr->bth_count;
1996 if (tree->bt_root != hdr && tree->bt_bulk == NULL)
1997 VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1);
1998 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
1999 ret += zfs_btree_verify_counts_helper(tree,
2000 node->btc_children[i]);
2003 return (ret);
2008 * Verify that all nodes satisfy the invariants and that the total number of
2009 * elements is correct.
2011 static void
2012 zfs_btree_verify_counts(zfs_btree_t *tree)
2014 EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1);
2015 if (tree->bt_height == -1) {
2016 return;
2018 VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==,
2019 tree->bt_num_elems);
2023 * Check that the subtree rooted at this node has a uniform height. Returns
2024 * the number of nodes under this node, to help verify bt_num_nodes.
2026 static uint64_t
2027 zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr,
2028 int32_t height)
2030 if (!zfs_btree_is_core(hdr)) {
2031 VERIFY0(height);
2032 return (1);
2035 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2036 uint64_t ret = 1;
2037 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2038 ret += zfs_btree_verify_height_helper(tree,
2039 node->btc_children[i], height - 1);
2041 return (ret);
2045 * Check that the tree rooted at this node has a uniform height, and that the
2046 * bt_height in the tree is correct.
2048 static void
2049 zfs_btree_verify_height(zfs_btree_t *tree)
2051 EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2052 if (tree->bt_height == -1) {
2053 return;
2056 VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root,
2057 tree->bt_height), ==, tree->bt_num_nodes);
2061 * Check that the elements in this node are sorted, and that if this is a core
2062 * node, the separators are properly between the subtrees they separaate and
2063 * that the children also satisfy this requirement.
2065 static void
2066 zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2068 size_t size = tree->bt_elem_size;
2069 if (!zfs_btree_is_core(hdr)) {
2070 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2071 for (uint32_t i = 1; i < hdr->bth_count; i++) {
2072 VERIFY3S(tree->bt_compar(leaf->btl_elems +
2073 (hdr->bth_first + i - 1) * size,
2074 leaf->btl_elems +
2075 (hdr->bth_first + i) * size), ==, -1);
2077 return;
2080 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2081 for (uint32_t i = 1; i < hdr->bth_count; i++) {
2082 VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size,
2083 node->btc_elems + i * size), ==, -1);
2085 for (uint32_t i = 0; i < hdr->bth_count; i++) {
2086 uint8_t *left_child_last = NULL;
2087 zfs_btree_hdr_t *left_child_hdr = node->btc_children[i];
2088 if (zfs_btree_is_core(left_child_hdr)) {
2089 zfs_btree_core_t *left_child =
2090 (zfs_btree_core_t *)left_child_hdr;
2091 left_child_last = left_child->btc_elems +
2092 (left_child_hdr->bth_count - 1) * size;
2093 } else {
2094 zfs_btree_leaf_t *left_child =
2095 (zfs_btree_leaf_t *)left_child_hdr;
2096 left_child_last = left_child->btl_elems +
2097 (left_child_hdr->bth_first +
2098 left_child_hdr->bth_count - 1) * size;
2100 int comp = tree->bt_compar(node->btc_elems + i * size,
2101 left_child_last);
2102 if (comp <= 0) {
2103 panic("btree: compar returned %d (expected 1) at "
2104 "%px %d: compar(%px, %px)", comp, node, i,
2105 node->btc_elems + i * size, left_child_last);
2108 uint8_t *right_child_first = NULL;
2109 zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1];
2110 if (zfs_btree_is_core(right_child_hdr)) {
2111 zfs_btree_core_t *right_child =
2112 (zfs_btree_core_t *)right_child_hdr;
2113 right_child_first = right_child->btc_elems;
2114 } else {
2115 zfs_btree_leaf_t *right_child =
2116 (zfs_btree_leaf_t *)right_child_hdr;
2117 right_child_first = right_child->btl_elems +
2118 right_child_hdr->bth_first * size;
2120 comp = tree->bt_compar(node->btc_elems + i * size,
2121 right_child_first);
2122 if (comp >= 0) {
2123 panic("btree: compar returned %d (expected -1) at "
2124 "%px %d: compar(%px, %px)", comp, node, i,
2125 node->btc_elems + i * size, right_child_first);
2128 for (uint32_t i = 0; i <= hdr->bth_count; i++)
2129 zfs_btree_verify_order_helper(tree, node->btc_children[i]);
2132 /* Check that all elements in the tree are in sorted order. */
2133 static void
2134 zfs_btree_verify_order(zfs_btree_t *tree)
2136 EQUIV(tree->bt_height == -1, tree->bt_root == NULL);
2137 if (tree->bt_height == -1) {
2138 return;
2141 zfs_btree_verify_order_helper(tree, tree->bt_root);
2144 #ifdef ZFS_DEBUG
2145 /* Check that all unused memory is poisoned correctly. */
2146 static void
2147 zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr)
2149 size_t size = tree->bt_elem_size;
2150 if (!zfs_btree_is_core(hdr)) {
2151 zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr;
2152 for (size_t i = 0; i < hdr->bth_first * size; i++)
2153 VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2154 size_t esize = tree->bt_leaf_size -
2155 offsetof(zfs_btree_leaf_t, btl_elems);
2156 for (size_t i = (hdr->bth_first + hdr->bth_count) * size;
2157 i < esize; i++)
2158 VERIFY3U(leaf->btl_elems[i], ==, 0x0f);
2159 } else {
2160 zfs_btree_core_t *node = (zfs_btree_core_t *)hdr;
2161 for (size_t i = hdr->bth_count * size;
2162 i < BTREE_CORE_ELEMS * size; i++)
2163 VERIFY3U(node->btc_elems[i], ==, 0x0f);
2165 for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS;
2166 i++) {
2167 VERIFY3P(node->btc_children[i], ==,
2168 (zfs_btree_hdr_t *)BTREE_POISON);
2171 for (uint32_t i = 0; i <= hdr->bth_count; i++) {
2172 zfs_btree_verify_poison_helper(tree,
2173 node->btc_children[i]);
2177 #endif
2179 /* Check that unused memory in the tree is still poisoned. */
2180 static void
2181 zfs_btree_verify_poison(zfs_btree_t *tree)
2183 #ifdef ZFS_DEBUG
2184 if (tree->bt_height == -1)
2185 return;
2186 zfs_btree_verify_poison_helper(tree, tree->bt_root);
2187 #endif
2190 void
2191 zfs_btree_verify(zfs_btree_t *tree)
2193 if (zfs_btree_verify_intensity == 0)
2194 return;
2195 zfs_btree_verify_height(tree);
2196 if (zfs_btree_verify_intensity == 1)
2197 return;
2198 zfs_btree_verify_pointers(tree);
2199 if (zfs_btree_verify_intensity == 2)
2200 return;
2201 zfs_btree_verify_counts(tree);
2202 if (zfs_btree_verify_intensity == 3)
2203 return;
2204 zfs_btree_verify_order(tree);
2206 if (zfs_btree_verify_intensity == 4)
2207 return;
2208 zfs_btree_verify_poison(tree);
2211 /* BEGIN CSTYLED */
2212 ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW,
2213 "Enable btree verification. Levels above 4 require ZFS be built "
2214 "with debugging");
2215 /* END CSTYLED */