ZTS: Add LUKS sanity test
[zfs.git] / module / zfs / zap.c
blob40e7bcf3ed1f8c853820ef6e5ac63620fddca138
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright 2023 Alexander Stetsenko <alex.stetsenko@gmail.com>
26 * Copyright (c) 2023, Klara Inc.
30 * This file contains the top half of the zfs directory structure
31 * implementation. The bottom half is in zap_leaf.c.
33 * The zdir is an extendable hash data structure. There is a table of
34 * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
35 * each a constant size and hold a variable number of directory entries.
36 * The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
38 * The pointer table holds a power of 2 number of pointers.
39 * (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
40 * by the pointer at index i in the table holds entries whose hash value
41 * has a zd_prefix_len - bit prefix
44 #include <sys/spa.h>
45 #include <sys/dmu.h>
46 #include <sys/dnode.h>
47 #include <sys/zfs_context.h>
48 #include <sys/zfs_znode.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/zap.h>
51 #include <sys/zap_impl.h>
52 #include <sys/zap_leaf.h>
55 * If zap_iterate_prefetch is set, we will prefetch the entire ZAP object
56 * (all leaf blocks) when we start iterating over it.
58 * For zap_cursor_init(), the callers all intend to iterate through all the
59 * entries. There are a few cases where an error (typically i/o error) could
60 * cause it to bail out early.
62 * For zap_cursor_init_serialized(), there are callers that do the iteration
63 * outside of ZFS. Typically they would iterate over everything, but we
64 * don't have control of that. E.g. zfs_ioc_snapshot_list_next(),
65 * zcp_snapshots_iter(), and other iterators over things in the MOS - these
66 * are called by /sbin/zfs and channel programs. The other example is
67 * zfs_readdir() which iterates over directory entries for the getdents()
68 * syscall. /sbin/ls iterates to the end (unless it receives a signal), but
69 * userland doesn't have to.
71 * Given that the ZAP entries aren't returned in a specific order, the only
72 * legitimate use cases for partial iteration would be:
74 * 1. Pagination: e.g. you only want to display 100 entries at a time, so you
75 * get the first 100 and then wait for the user to hit "next page", which
76 * they may never do).
78 * 2. You want to know if there are more than X entries, without relying on
79 * the zfs-specific implementation of the directory's st_size (which is
80 * the number of entries).
82 static int zap_iterate_prefetch = B_TRUE;
85 * Enable ZAP shrinking. When enabled, empty sibling leaf blocks will be
86 * collapsed into a single block.
88 int zap_shrink_enabled = B_TRUE;
90 int fzap_default_block_shift = 14; /* 16k blocksize */
92 static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
93 static int zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx);
95 void
96 fzap_byteswap(void *vbuf, size_t size)
98 uint64_t block_type = *(uint64_t *)vbuf;
100 if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
101 zap_leaf_byteswap(vbuf, size);
102 else {
103 /* it's a ptrtbl block */
104 byteswap_uint64_array(vbuf, size);
108 void
109 fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
111 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
112 zap->zap_ismicro = FALSE;
114 zap->zap_dbu.dbu_evict_func_sync = zap_evict_sync;
115 zap->zap_dbu.dbu_evict_func_async = NULL;
117 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT, 0);
118 zap->zap_f.zap_block_shift = highbit64(zap->zap_dbuf->db_size) - 1;
120 zap_phys_t *zp = zap_f_phys(zap);
122 * explicitly zero it since it might be coming from an
123 * initialized microzap
125 memset(zap->zap_dbuf->db_data, 0, zap->zap_dbuf->db_size);
126 zp->zap_block_type = ZBT_HEADER;
127 zp->zap_magic = ZAP_MAGIC;
129 zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
131 zp->zap_freeblk = 2; /* block 1 will be the first leaf */
132 zp->zap_num_leafs = 1;
133 zp->zap_num_entries = 0;
134 zp->zap_salt = zap->zap_salt;
135 zp->zap_normflags = zap->zap_normflags;
136 zp->zap_flags = flags;
138 /* block 1 will be the first leaf */
139 for (int i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
140 ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
143 * set up block 1 - the first leaf
145 dmu_buf_t *db;
146 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
147 1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
148 dmu_buf_will_dirty(db, tx);
150 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
151 l->l_dbuf = db;
153 zap_leaf_init(l, zp->zap_normflags != 0);
155 kmem_free(l, sizeof (zap_leaf_t));
156 dmu_buf_rele(db, FTAG);
159 static int
160 zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
162 if (RW_WRITE_HELD(&zap->zap_rwlock))
163 return (1);
164 if (rw_tryupgrade(&zap->zap_rwlock)) {
165 dmu_buf_will_dirty(zap->zap_dbuf, tx);
166 return (1);
168 return (0);
172 * Generic routines for dealing with the pointer & cookie tables.
175 static int
176 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
177 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
178 dmu_tx_t *tx)
180 uint64_t newblk;
181 int bs = FZAP_BLOCK_SHIFT(zap);
182 int hepb = 1<<(bs-4);
183 /* hepb = half the number of entries in a block */
185 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
186 ASSERT(tbl->zt_blk != 0);
187 ASSERT(tbl->zt_numblks > 0);
189 if (tbl->zt_nextblk != 0) {
190 newblk = tbl->zt_nextblk;
191 } else {
192 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
193 tbl->zt_nextblk = newblk;
194 ASSERT0(tbl->zt_blks_copied);
195 dmu_prefetch_by_dnode(zap->zap_dnode, 0,
196 tbl->zt_blk << bs, tbl->zt_numblks << bs,
197 ZIO_PRIORITY_SYNC_READ);
201 * Copy the ptrtbl from the old to new location.
204 uint64_t b = tbl->zt_blks_copied;
205 dmu_buf_t *db_old;
206 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
207 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
208 if (err != 0)
209 return (err);
211 /* first half of entries in old[b] go to new[2*b+0] */
212 dmu_buf_t *db_new;
213 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
214 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
215 dmu_buf_will_dirty(db_new, tx);
216 transfer_func(db_old->db_data, db_new->db_data, hepb);
217 dmu_buf_rele(db_new, FTAG);
219 /* second half of entries in old[b] go to new[2*b+1] */
220 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
221 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
222 dmu_buf_will_dirty(db_new, tx);
223 transfer_func((uint64_t *)db_old->db_data + hepb,
224 db_new->db_data, hepb);
225 dmu_buf_rele(db_new, FTAG);
227 dmu_buf_rele(db_old, FTAG);
229 tbl->zt_blks_copied++;
231 dprintf("copied block %llu of %llu\n",
232 (u_longlong_t)tbl->zt_blks_copied,
233 (u_longlong_t)tbl->zt_numblks);
235 if (tbl->zt_blks_copied == tbl->zt_numblks) {
236 (void) dmu_free_range(zap->zap_objset, zap->zap_object,
237 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
239 tbl->zt_blk = newblk;
240 tbl->zt_numblks *= 2;
241 tbl->zt_shift++;
242 tbl->zt_nextblk = 0;
243 tbl->zt_blks_copied = 0;
245 dprintf("finished; numblocks now %llu (%uk entries)\n",
246 (u_longlong_t)tbl->zt_numblks, 1<<(tbl->zt_shift-10));
249 return (0);
252 static int
253 zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
254 dmu_tx_t *tx)
256 int bs = FZAP_BLOCK_SHIFT(zap);
258 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
259 ASSERT(tbl->zt_blk != 0);
261 dprintf("storing %llx at index %llx\n", (u_longlong_t)val,
262 (u_longlong_t)idx);
264 uint64_t blk = idx >> (bs-3);
265 uint64_t off = idx & ((1<<(bs-3))-1);
267 dmu_buf_t *db;
268 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
269 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
270 if (err != 0)
271 return (err);
272 dmu_buf_will_dirty(db, tx);
274 if (tbl->zt_nextblk != 0) {
275 uint64_t idx2 = idx * 2;
276 uint64_t blk2 = idx2 >> (bs-3);
277 uint64_t off2 = idx2 & ((1<<(bs-3))-1);
278 dmu_buf_t *db2;
280 err = dmu_buf_hold_by_dnode(zap->zap_dnode,
281 (tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
282 DMU_READ_NO_PREFETCH);
283 if (err != 0) {
284 dmu_buf_rele(db, FTAG);
285 return (err);
287 dmu_buf_will_dirty(db2, tx);
288 ((uint64_t *)db2->db_data)[off2] = val;
289 ((uint64_t *)db2->db_data)[off2+1] = val;
290 dmu_buf_rele(db2, FTAG);
293 ((uint64_t *)db->db_data)[off] = val;
294 dmu_buf_rele(db, FTAG);
296 return (0);
299 static int
300 zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
302 int bs = FZAP_BLOCK_SHIFT(zap);
304 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
306 uint64_t blk = idx >> (bs-3);
307 uint64_t off = idx & ((1<<(bs-3))-1);
309 dmu_buf_t *db;
310 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
311 (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
312 if (err != 0)
313 return (err);
314 *valp = ((uint64_t *)db->db_data)[off];
315 dmu_buf_rele(db, FTAG);
317 if (tbl->zt_nextblk != 0) {
319 * read the nextblk for the sake of i/o error checking,
320 * so that zap_table_load() will catch errors for
321 * zap_table_store.
323 blk = (idx*2) >> (bs-3);
325 err = dmu_buf_hold_by_dnode(zap->zap_dnode,
326 (tbl->zt_nextblk + blk) << bs, FTAG, &db,
327 DMU_READ_NO_PREFETCH);
328 if (err == 0)
329 dmu_buf_rele(db, FTAG);
331 return (err);
335 * Routines for growing the ptrtbl.
338 static void
339 zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
341 for (int i = 0; i < n; i++) {
342 uint64_t lb = src[i];
343 dst[2 * i + 0] = lb;
344 dst[2 * i + 1] = lb;
348 static int
349 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
352 * The pointer table should never use more hash bits than we
353 * have (otherwise we'd be using useless zero bits to index it).
354 * If we are within 2 bits of running out, stop growing, since
355 * this is already an aberrant condition.
357 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
358 return (SET_ERROR(ENOSPC));
360 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
362 * We are outgrowing the "embedded" ptrtbl (the one
363 * stored in the header block). Give it its own entire
364 * block, which will double the size of the ptrtbl.
366 ASSERT3U(zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
367 ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
368 ASSERT0(zap_f_phys(zap)->zap_ptrtbl.zt_blk);
370 uint64_t newblk = zap_allocate_blocks(zap, 1);
371 dmu_buf_t *db_new;
372 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
373 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
374 DMU_READ_NO_PREFETCH);
375 if (err != 0)
376 return (err);
377 dmu_buf_will_dirty(db_new, tx);
378 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
379 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
380 dmu_buf_rele(db_new, FTAG);
382 zap_f_phys(zap)->zap_ptrtbl.zt_blk = newblk;
383 zap_f_phys(zap)->zap_ptrtbl.zt_numblks = 1;
384 zap_f_phys(zap)->zap_ptrtbl.zt_shift++;
386 ASSERT3U(1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift, ==,
387 zap_f_phys(zap)->zap_ptrtbl.zt_numblks <<
388 (FZAP_BLOCK_SHIFT(zap)-3));
390 return (0);
391 } else {
392 return (zap_table_grow(zap, &zap_f_phys(zap)->zap_ptrtbl,
393 zap_ptrtbl_transfer, tx));
397 static void
398 zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
400 dmu_buf_will_dirty(zap->zap_dbuf, tx);
401 mutex_enter(&zap->zap_f.zap_num_entries_mtx);
402 ASSERT(delta > 0 || zap_f_phys(zap)->zap_num_entries >= -delta);
403 zap_f_phys(zap)->zap_num_entries += delta;
404 mutex_exit(&zap->zap_f.zap_num_entries_mtx);
407 static uint64_t
408 zap_allocate_blocks(zap_t *zap, int nblocks)
410 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
411 uint64_t newblk = zap_f_phys(zap)->zap_freeblk;
412 zap_f_phys(zap)->zap_freeblk += nblocks;
413 return (newblk);
416 static void
417 zap_leaf_evict_sync(void *dbu)
419 zap_leaf_t *l = dbu;
421 rw_destroy(&l->l_rwlock);
422 kmem_free(l, sizeof (zap_leaf_t));
425 static zap_leaf_t *
426 zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
428 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
430 uint64_t blkid = zap_allocate_blocks(zap, 1);
431 dmu_buf_t *db = NULL;
433 VERIFY0(dmu_buf_hold_by_dnode(zap->zap_dnode,
434 blkid << FZAP_BLOCK_SHIFT(zap), NULL, &db,
435 DMU_READ_NO_PREFETCH));
438 * Create the leaf structure and stash it on the dbuf. If zap was
439 * recent shrunk or truncated, the dbuf might have been sitting in the
440 * cache waiting to be evicted, and so still have the old leaf attached
441 * to it. If so, just reuse it.
443 zap_leaf_t *l = dmu_buf_get_user(db);
444 if (l == NULL) {
445 l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
446 l->l_blkid = blkid;
447 l->l_dbuf = db;
448 rw_init(&l->l_rwlock, NULL, RW_NOLOCKDEP, NULL);
449 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL,
450 &l->l_dbuf);
451 dmu_buf_set_user(l->l_dbuf, &l->l_dbu);
452 } else {
453 ASSERT3U(l->l_blkid, ==, blkid);
454 ASSERT3P(l->l_dbuf, ==, db);
457 rw_enter(&l->l_rwlock, RW_WRITER);
458 dmu_buf_will_dirty(l->l_dbuf, tx);
460 zap_leaf_init(l, zap->zap_normflags != 0);
462 zap_f_phys(zap)->zap_num_leafs++;
464 return (l);
468 fzap_count(zap_t *zap, uint64_t *count)
470 ASSERT(!zap->zap_ismicro);
471 mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
472 *count = zap_f_phys(zap)->zap_num_entries;
473 mutex_exit(&zap->zap_f.zap_num_entries_mtx);
474 return (0);
478 * Routines for obtaining zap_leaf_t's
481 void
482 zap_put_leaf(zap_leaf_t *l)
484 rw_exit(&l->l_rwlock);
485 dmu_buf_rele(l->l_dbuf, NULL);
488 static zap_leaf_t *
489 zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
491 ASSERT(blkid != 0);
493 zap_leaf_t *l = kmem_zalloc(sizeof (zap_leaf_t), KM_SLEEP);
494 rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
495 rw_enter(&l->l_rwlock, RW_WRITER);
496 l->l_blkid = blkid;
497 l->l_bs = highbit64(db->db_size) - 1;
498 l->l_dbuf = db;
500 dmu_buf_init_user(&l->l_dbu, zap_leaf_evict_sync, NULL, &l->l_dbuf);
501 zap_leaf_t *winner = dmu_buf_set_user(db, &l->l_dbu);
503 rw_exit(&l->l_rwlock);
504 if (winner != NULL) {
505 /* someone else set it first */
506 zap_leaf_evict_sync(&l->l_dbu);
507 l = winner;
511 * lhr_pad was previously used for the next leaf in the leaf
512 * chain. There should be no chained leafs (as we have removed
513 * support for them).
515 ASSERT0(zap_leaf_phys(l)->l_hdr.lh_pad1);
518 * There should be more hash entries than there can be
519 * chunks to put in the hash table
521 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
523 /* The chunks should begin at the end of the hash table */
524 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
525 &zap_leaf_phys(l)->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
527 /* The chunks should end at the end of the block */
528 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
529 (uintptr_t)zap_leaf_phys(l), ==, l->l_dbuf->db_size);
531 return (l);
534 static int
535 zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
536 zap_leaf_t **lp)
538 dmu_buf_t *db;
540 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
543 * If system crashed just after dmu_free_long_range in zfs_rmnode, we
544 * would be left with an empty xattr dir in delete queue. blkid=0
545 * would be passed in when doing zfs_purgedir. If that's the case we
546 * should just return immediately. The underlying objects should
547 * already be freed, so this should be perfectly fine.
549 if (blkid == 0)
550 return (SET_ERROR(ENOENT));
552 int bs = FZAP_BLOCK_SHIFT(zap);
553 int err = dmu_buf_hold_by_dnode(zap->zap_dnode,
554 blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
555 if (err != 0)
556 return (err);
558 ASSERT3U(db->db_object, ==, zap->zap_object);
559 ASSERT3U(db->db_offset, ==, blkid << bs);
560 ASSERT3U(db->db_size, ==, 1 << bs);
561 ASSERT(blkid != 0);
563 zap_leaf_t *l = dmu_buf_get_user(db);
565 if (l == NULL)
566 l = zap_open_leaf(blkid, db);
568 rw_enter(&l->l_rwlock, lt);
570 * Must lock before dirtying, otherwise zap_leaf_phys(l) could change,
571 * causing ASSERT below to fail.
573 if (lt == RW_WRITER)
574 dmu_buf_will_dirty(db, tx);
575 ASSERT3U(l->l_blkid, ==, blkid);
576 ASSERT3P(l->l_dbuf, ==, db);
577 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_block_type, ==, ZBT_LEAF);
578 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
580 *lp = l;
581 return (0);
584 static int
585 zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
587 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
589 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
590 ASSERT3U(idx, <,
591 (1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
592 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
593 return (0);
594 } else {
595 return (zap_table_load(zap, &zap_f_phys(zap)->zap_ptrtbl,
596 idx, valp));
600 static int
601 zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
603 ASSERT(tx != NULL);
604 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
606 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk == 0) {
607 ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
608 return (0);
609 } else {
610 return (zap_table_store(zap, &zap_f_phys(zap)->zap_ptrtbl,
611 idx, blk, tx));
615 static int
616 zap_set_idx_range_to_blk(zap_t *zap, uint64_t idx, uint64_t nptrs, uint64_t blk,
617 dmu_tx_t *tx)
619 int bs = FZAP_BLOCK_SHIFT(zap);
620 int epb = bs >> 3; /* entries per block */
621 int err = 0;
623 ASSERT(tx != NULL);
624 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
627 * Check for i/o errors
629 for (int i = 0; i < nptrs; i += epb) {
630 uint64_t blk;
631 err = zap_idx_to_blk(zap, idx + i, &blk);
632 if (err != 0) {
633 return (err);
637 for (int i = 0; i < nptrs; i++) {
638 err = zap_set_idx_to_blk(zap, idx + i, blk, tx);
639 ASSERT0(err); /* we checked for i/o errors above */
640 if (err != 0)
641 break;
644 return (err);
647 #define ZAP_PREFIX_HASH(pref, pref_len) ((pref) << (64 - (pref_len)))
650 * Each leaf has single range of entries (block pointers) in the ZAP ptrtbl.
651 * If two leaves are siblings, their ranges are adjecent and contain the same
652 * number of entries. In order to find out if a leaf has a sibling, we need to
653 * check the range corresponding to the sibling leaf. There is no need to check
654 * all entries in the range, we only need to check the frist and the last one.
656 static uint64_t
657 check_sibling_ptrtbl_range(zap_t *zap, uint64_t prefix, uint64_t prefix_len)
659 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
661 uint64_t h = ZAP_PREFIX_HASH(prefix, prefix_len);
662 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
663 uint64_t pref_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift - prefix_len;
664 uint64_t nptrs = (1 << pref_diff);
665 uint64_t first;
666 uint64_t last;
668 ASSERT3U(idx+nptrs, <=, (1UL << zap_f_phys(zap)->zap_ptrtbl.zt_shift));
670 if (zap_idx_to_blk(zap, idx, &first) != 0)
671 return (0);
673 if (zap_idx_to_blk(zap, idx + nptrs - 1, &last) != 0)
674 return (0);
676 if (first != last)
677 return (0);
678 return (first);
681 static int
682 zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
684 uint64_t blk;
686 ASSERT(zap->zap_dbuf == NULL ||
687 zap_f_phys(zap) == zap->zap_dbuf->db_data);
689 /* Reality check for corrupt zap objects (leaf or header). */
690 if ((zap_f_phys(zap)->zap_block_type != ZBT_LEAF &&
691 zap_f_phys(zap)->zap_block_type != ZBT_HEADER) ||
692 zap_f_phys(zap)->zap_magic != ZAP_MAGIC) {
693 return (SET_ERROR(EIO));
696 uint64_t idx = ZAP_HASH_IDX(h, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
697 int err = zap_idx_to_blk(zap, idx, &blk);
698 if (err != 0)
699 return (err);
700 err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
702 ASSERT(err ||
703 ZAP_HASH_IDX(h, zap_leaf_phys(*lp)->l_hdr.lh_prefix_len) ==
704 zap_leaf_phys(*lp)->l_hdr.lh_prefix);
705 return (err);
708 static int
709 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l,
710 const void *tag, dmu_tx_t *tx, zap_leaf_t **lp)
712 zap_t *zap = zn->zn_zap;
713 uint64_t hash = zn->zn_hash;
714 int err;
715 int old_prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
717 ASSERT3U(old_prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
718 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
720 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
721 zap_leaf_phys(l)->l_hdr.lh_prefix);
723 if (zap_tryupgradedir(zap, tx) == 0 ||
724 old_prefix_len == zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
725 /* We failed to upgrade, or need to grow the pointer table */
726 objset_t *os = zap->zap_objset;
727 uint64_t object = zap->zap_object;
729 zap_put_leaf(l);
730 *lp = l = NULL;
731 zap_unlockdir(zap, tag);
732 err = zap_lockdir(os, object, tx, RW_WRITER,
733 FALSE, FALSE, tag, &zn->zn_zap);
734 zap = zn->zn_zap;
735 if (err != 0)
736 return (err);
737 ASSERT(!zap->zap_ismicro);
739 while (old_prefix_len ==
740 zap_f_phys(zap)->zap_ptrtbl.zt_shift) {
741 err = zap_grow_ptrtbl(zap, tx);
742 if (err != 0)
743 return (err);
746 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
747 if (err != 0)
748 return (err);
750 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len != old_prefix_len) {
751 /* it split while our locks were down */
752 *lp = l;
753 return (0);
756 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
757 ASSERT3U(old_prefix_len, <, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
758 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
759 zap_leaf_phys(l)->l_hdr.lh_prefix);
761 int prefix_diff = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
762 (old_prefix_len + 1);
763 uint64_t sibling =
764 (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
766 /* check for i/o errors before doing zap_leaf_split */
767 for (int i = 0; i < (1ULL << prefix_diff); i++) {
768 uint64_t blk;
769 err = zap_idx_to_blk(zap, sibling + i, &blk);
770 if (err != 0)
771 return (err);
772 ASSERT3U(blk, ==, l->l_blkid);
775 zap_leaf_t *nl = zap_create_leaf(zap, tx);
776 zap_leaf_split(l, nl, zap->zap_normflags != 0);
778 /* set sibling pointers */
779 for (int i = 0; i < (1ULL << prefix_diff); i++) {
780 err = zap_set_idx_to_blk(zap, sibling + i, nl->l_blkid, tx);
781 ASSERT0(err); /* we checked for i/o errors above */
784 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_prefix_len, >, 0);
786 if (hash & (1ULL << (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len))) {
787 /* we want the sibling */
788 zap_put_leaf(l);
789 *lp = nl;
790 } else {
791 zap_put_leaf(nl);
792 *lp = l;
795 return (0);
798 static void
799 zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l,
800 const void *tag, dmu_tx_t *tx)
802 zap_t *zap = zn->zn_zap;
803 int shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
804 int leaffull = (zap_leaf_phys(l)->l_hdr.lh_prefix_len == shift &&
805 zap_leaf_phys(l)->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
807 zap_put_leaf(l);
809 if (leaffull || zap_f_phys(zap)->zap_ptrtbl.zt_nextblk) {
811 * We are in the middle of growing the pointer table, or
812 * this leaf will soon make us grow it.
814 if (zap_tryupgradedir(zap, tx) == 0) {
815 objset_t *os = zap->zap_objset;
816 uint64_t zapobj = zap->zap_object;
818 zap_unlockdir(zap, tag);
819 int err = zap_lockdir(os, zapobj, tx,
820 RW_WRITER, FALSE, FALSE, tag, &zn->zn_zap);
821 zap = zn->zn_zap;
822 if (err != 0)
823 return;
826 /* could have finished growing while our locks were down */
827 if (zap_f_phys(zap)->zap_ptrtbl.zt_shift == shift)
828 (void) zap_grow_ptrtbl(zap, tx);
832 static int
833 fzap_checkname(zap_name_t *zn)
835 uint32_t maxnamelen = zn->zn_normbuf_len;
836 uint64_t len = (uint64_t)zn->zn_key_orig_numints * zn->zn_key_intlen;
837 /* Only allow directory zap to have longname */
838 if (len > maxnamelen ||
839 (len > ZAP_MAXNAMELEN &&
840 zn->zn_zap->zap_dnode->dn_type != DMU_OT_DIRECTORY_CONTENTS))
841 return (SET_ERROR(ENAMETOOLONG));
842 return (0);
845 static int
846 fzap_checksize(uint64_t integer_size, uint64_t num_integers)
848 /* Only integer sizes supported by C */
849 switch (integer_size) {
850 case 1:
851 case 2:
852 case 4:
853 case 8:
854 break;
855 default:
856 return (SET_ERROR(EINVAL));
859 if (integer_size * num_integers > ZAP_MAXVALUELEN)
860 return (SET_ERROR(E2BIG));
862 return (0);
865 static int
866 fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
868 int err = fzap_checkname(zn);
869 if (err != 0)
870 return (err);
871 return (fzap_checksize(integer_size, num_integers));
875 * Routines for manipulating attributes.
878 fzap_lookup(zap_name_t *zn,
879 uint64_t integer_size, uint64_t num_integers, void *buf,
880 char *realname, int rn_len, boolean_t *ncp)
882 zap_leaf_t *l;
883 zap_entry_handle_t zeh;
885 int err = fzap_checkname(zn);
886 if (err != 0)
887 return (err);
889 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
890 if (err != 0)
891 return (err);
892 err = zap_leaf_lookup(l, zn, &zeh);
893 if (err == 0) {
894 if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
895 zap_put_leaf(l);
896 return (err);
899 err = zap_entry_read(&zeh, integer_size, num_integers, buf);
900 (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
901 if (ncp) {
902 *ncp = zap_entry_normalization_conflict(&zeh,
903 zn, NULL, zn->zn_zap);
907 zap_put_leaf(l);
908 return (err);
912 fzap_add_cd(zap_name_t *zn,
913 uint64_t integer_size, uint64_t num_integers,
914 const void *val, uint32_t cd, const void *tag, dmu_tx_t *tx)
916 zap_leaf_t *l;
917 int err;
918 zap_entry_handle_t zeh;
919 zap_t *zap = zn->zn_zap;
921 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
922 ASSERT(!zap->zap_ismicro);
923 ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
925 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
926 if (err != 0)
927 return (err);
928 retry:
929 err = zap_leaf_lookup(l, zn, &zeh);
930 if (err == 0) {
931 err = SET_ERROR(EEXIST);
932 goto out;
934 if (err != ENOENT)
935 goto out;
937 err = zap_entry_create(l, zn, cd,
938 integer_size, num_integers, val, &zeh);
940 if (err == 0) {
941 zap_increment_num_entries(zap, 1, tx);
942 } else if (err == EAGAIN) {
943 err = zap_expand_leaf(zn, l, tag, tx, &l);
944 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
945 if (err == 0)
946 goto retry;
949 out:
950 if (l != NULL) {
951 if (err == ENOSPC)
952 zap_put_leaf(l);
953 else
954 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
956 return (err);
960 fzap_add(zap_name_t *zn,
961 uint64_t integer_size, uint64_t num_integers,
962 const void *val, const void *tag, dmu_tx_t *tx)
964 int err = fzap_check(zn, integer_size, num_integers);
965 if (err != 0)
966 return (err);
968 return (fzap_add_cd(zn, integer_size, num_integers,
969 val, ZAP_NEED_CD, tag, tx));
973 fzap_update(zap_name_t *zn,
974 int integer_size, uint64_t num_integers, const void *val,
975 const void *tag, dmu_tx_t *tx)
977 zap_leaf_t *l;
978 int err;
979 boolean_t create;
980 zap_entry_handle_t zeh;
981 zap_t *zap = zn->zn_zap;
983 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
984 err = fzap_check(zn, integer_size, num_integers);
985 if (err != 0)
986 return (err);
988 err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
989 if (err != 0)
990 return (err);
991 retry:
992 err = zap_leaf_lookup(l, zn, &zeh);
993 create = (err == ENOENT);
994 ASSERT(err == 0 || err == ENOENT);
996 if (create) {
997 err = zap_entry_create(l, zn, ZAP_NEED_CD,
998 integer_size, num_integers, val, &zeh);
999 if (err == 0)
1000 zap_increment_num_entries(zap, 1, tx);
1001 } else {
1002 err = zap_entry_update(&zeh, integer_size, num_integers, val);
1005 if (err == EAGAIN) {
1006 err = zap_expand_leaf(zn, l, tag, tx, &l);
1007 zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
1008 if (err == 0)
1009 goto retry;
1012 if (l != NULL) {
1013 if (err == ENOSPC)
1014 zap_put_leaf(l);
1015 else
1016 zap_put_leaf_maybe_grow_ptrtbl(zn, l, tag, tx);
1018 return (err);
1022 fzap_length(zap_name_t *zn,
1023 uint64_t *integer_size, uint64_t *num_integers)
1025 zap_leaf_t *l;
1026 int err;
1027 zap_entry_handle_t zeh;
1029 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
1030 if (err != 0)
1031 return (err);
1032 err = zap_leaf_lookup(l, zn, &zeh);
1033 if (err != 0)
1034 goto out;
1036 if (integer_size != NULL)
1037 *integer_size = zeh.zeh_integer_size;
1038 if (num_integers != NULL)
1039 *num_integers = zeh.zeh_num_integers;
1040 out:
1041 zap_put_leaf(l);
1042 return (err);
1046 fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
1048 zap_leaf_t *l;
1049 int err;
1050 zap_entry_handle_t zeh;
1052 err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
1053 if (err != 0)
1054 return (err);
1055 err = zap_leaf_lookup(l, zn, &zeh);
1056 if (err == 0) {
1057 zap_entry_remove(&zeh);
1058 zap_increment_num_entries(zn->zn_zap, -1, tx);
1060 if (zap_leaf_phys(l)->l_hdr.lh_nentries == 0 &&
1061 zap_shrink_enabled)
1062 return (zap_shrink(zn, l, tx));
1064 zap_put_leaf(l);
1065 return (err);
1068 void
1069 fzap_prefetch(zap_name_t *zn)
1071 uint64_t blk;
1072 zap_t *zap = zn->zn_zap;
1074 uint64_t idx = ZAP_HASH_IDX(zn->zn_hash,
1075 zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1076 if (zap_idx_to_blk(zap, idx, &blk) != 0)
1077 return;
1078 int bs = FZAP_BLOCK_SHIFT(zap);
1079 dmu_prefetch_by_dnode(zap->zap_dnode, 0, blk << bs, 1 << bs,
1080 ZIO_PRIORITY_SYNC_READ);
1084 * Helper functions for consumers.
1087 uint64_t
1088 zap_create_link(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1089 const char *name, dmu_tx_t *tx)
1091 return (zap_create_link_dnsize(os, ot, parent_obj, name, 0, tx));
1094 uint64_t
1095 zap_create_link_dnsize(objset_t *os, dmu_object_type_t ot, uint64_t parent_obj,
1096 const char *name, int dnodesize, dmu_tx_t *tx)
1098 uint64_t new_obj;
1100 new_obj = zap_create_dnsize(os, ot, DMU_OT_NONE, 0, dnodesize, tx);
1101 VERIFY(new_obj != 0);
1102 VERIFY0(zap_add(os, parent_obj, name, sizeof (uint64_t), 1, &new_obj,
1103 tx));
1105 return (new_obj);
1109 zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
1110 char *name, uint64_t namelen)
1112 zap_cursor_t zc;
1113 int err;
1115 if (mask == 0)
1116 mask = -1ULL;
1118 zap_attribute_t *za = zap_attribute_long_alloc();
1119 for (zap_cursor_init(&zc, os, zapobj);
1120 (err = zap_cursor_retrieve(&zc, za)) == 0;
1121 zap_cursor_advance(&zc)) {
1122 if ((za->za_first_integer & mask) == (value & mask)) {
1123 if (strlcpy(name, za->za_name, namelen) >= namelen)
1124 err = SET_ERROR(ENAMETOOLONG);
1125 break;
1128 zap_cursor_fini(&zc);
1129 zap_attribute_free(za);
1130 return (err);
1134 zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
1136 zap_cursor_t zc;
1137 int err = 0;
1139 zap_attribute_t *za = zap_attribute_long_alloc();
1140 for (zap_cursor_init(&zc, os, fromobj);
1141 zap_cursor_retrieve(&zc, za) == 0;
1142 (void) zap_cursor_advance(&zc)) {
1143 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1144 err = SET_ERROR(EINVAL);
1145 break;
1147 err = zap_add(os, intoobj, za->za_name,
1148 8, 1, &za->za_first_integer, tx);
1149 if (err != 0)
1150 break;
1152 zap_cursor_fini(&zc);
1153 zap_attribute_free(za);
1154 return (err);
1158 zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1159 uint64_t value, dmu_tx_t *tx)
1161 zap_cursor_t zc;
1162 int err = 0;
1164 zap_attribute_t *za = zap_attribute_long_alloc();
1165 for (zap_cursor_init(&zc, os, fromobj);
1166 zap_cursor_retrieve(&zc, za) == 0;
1167 (void) zap_cursor_advance(&zc)) {
1168 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1169 err = SET_ERROR(EINVAL);
1170 break;
1172 err = zap_add(os, intoobj, za->za_name,
1173 8, 1, &value, tx);
1174 if (err != 0)
1175 break;
1177 zap_cursor_fini(&zc);
1178 zap_attribute_free(za);
1179 return (err);
1183 zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
1184 dmu_tx_t *tx)
1186 zap_cursor_t zc;
1187 int err = 0;
1189 zap_attribute_t *za = zap_attribute_long_alloc();
1190 for (zap_cursor_init(&zc, os, fromobj);
1191 zap_cursor_retrieve(&zc, za) == 0;
1192 (void) zap_cursor_advance(&zc)) {
1193 uint64_t delta = 0;
1195 if (za->za_integer_length != 8 || za->za_num_integers != 1) {
1196 err = SET_ERROR(EINVAL);
1197 break;
1200 err = zap_lookup(os, intoobj, za->za_name, 8, 1, &delta);
1201 if (err != 0 && err != ENOENT)
1202 break;
1203 delta += za->za_first_integer;
1204 err = zap_update(os, intoobj, za->za_name, 8, 1, &delta, tx);
1205 if (err != 0)
1206 break;
1208 zap_cursor_fini(&zc);
1209 zap_attribute_free(za);
1210 return (err);
1214 zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1216 char name[20];
1218 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1219 return (zap_add(os, obj, name, 8, 1, &value, tx));
1223 zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
1225 char name[20];
1227 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1228 return (zap_remove(os, obj, name, tx));
1232 zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
1234 char name[20];
1236 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
1237 return (zap_lookup(os, obj, name, 8, 1, &value));
1241 zap_add_int_key(objset_t *os, uint64_t obj,
1242 uint64_t key, uint64_t value, dmu_tx_t *tx)
1244 char name[20];
1246 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1247 return (zap_add(os, obj, name, 8, 1, &value, tx));
1251 zap_update_int_key(objset_t *os, uint64_t obj,
1252 uint64_t key, uint64_t value, dmu_tx_t *tx)
1254 char name[20];
1256 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1257 return (zap_update(os, obj, name, 8, 1, &value, tx));
1261 zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
1263 char name[20];
1265 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1266 return (zap_lookup(os, obj, name, 8, 1, valuep));
1270 zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
1271 dmu_tx_t *tx)
1273 uint64_t value = 0;
1275 if (delta == 0)
1276 return (0);
1278 int err = zap_lookup(os, obj, name, 8, 1, &value);
1279 if (err != 0 && err != ENOENT)
1280 return (err);
1281 value += delta;
1282 if (value == 0)
1283 err = zap_remove(os, obj, name, tx);
1284 else
1285 err = zap_update(os, obj, name, 8, 1, &value, tx);
1286 return (err);
1290 zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
1291 dmu_tx_t *tx)
1293 char name[20];
1295 (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
1296 return (zap_increment(os, obj, name, delta, tx));
1300 * Routines for iterating over the attributes.
1304 fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
1306 int err = ENOENT;
1307 zap_entry_handle_t zeh;
1308 zap_leaf_t *l;
1310 /* retrieve the next entry at or after zc_hash/zc_cd */
1311 /* if no entry, return ENOENT */
1314 * If we are reading from the beginning, we're almost certain to
1315 * iterate over the entire ZAP object. If there are multiple leaf
1316 * blocks (freeblk > 2), prefetch the whole object (up to
1317 * dmu_prefetch_max bytes), so that we read the leaf blocks
1318 * concurrently. (Unless noprefetch was requested via
1319 * zap_cursor_init_noprefetch()).
1321 if (zc->zc_hash == 0 && zap_iterate_prefetch &&
1322 zc->zc_prefetch && zap_f_phys(zap)->zap_freeblk > 2) {
1323 dmu_prefetch_by_dnode(zap->zap_dnode, 0, 0,
1324 zap_f_phys(zap)->zap_freeblk << FZAP_BLOCK_SHIFT(zap),
1325 ZIO_PRIORITY_ASYNC_READ);
1328 if (zc->zc_leaf) {
1329 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1332 * The leaf was either shrunk or split.
1334 if ((zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_block_type == 0) ||
1335 (ZAP_HASH_IDX(zc->zc_hash,
1336 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix_len) !=
1337 zap_leaf_phys(zc->zc_leaf)->l_hdr.lh_prefix)) {
1338 zap_put_leaf(zc->zc_leaf);
1339 zc->zc_leaf = NULL;
1343 again:
1344 if (zc->zc_leaf == NULL) {
1345 err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
1346 &zc->zc_leaf);
1347 if (err != 0)
1348 return (err);
1350 l = zc->zc_leaf;
1352 err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
1354 if (err == ENOENT) {
1355 if (zap_leaf_phys(l)->l_hdr.lh_prefix_len == 0) {
1356 zc->zc_hash = -1ULL;
1357 zc->zc_cd = 0;
1358 } else {
1359 uint64_t nocare = (1ULL <<
1360 (64 - zap_leaf_phys(l)->l_hdr.lh_prefix_len)) - 1;
1362 zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
1363 zc->zc_cd = 0;
1365 if (zc->zc_hash == 0) {
1366 zc->zc_hash = -1ULL;
1367 } else {
1368 zap_put_leaf(zc->zc_leaf);
1369 zc->zc_leaf = NULL;
1370 goto again;
1375 if (err == 0) {
1376 zc->zc_hash = zeh.zeh_hash;
1377 zc->zc_cd = zeh.zeh_cd;
1378 za->za_integer_length = zeh.zeh_integer_size;
1379 za->za_num_integers = zeh.zeh_num_integers;
1380 if (zeh.zeh_num_integers == 0) {
1381 za->za_first_integer = 0;
1382 } else {
1383 err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
1384 ASSERT(err == 0 || err == EOVERFLOW);
1386 err = zap_entry_read_name(zap, &zeh,
1387 za->za_name_len, za->za_name);
1388 ASSERT(err == 0);
1390 za->za_normalization_conflict =
1391 zap_entry_normalization_conflict(&zeh,
1392 NULL, za->za_name, zap);
1394 rw_exit(&zc->zc_leaf->l_rwlock);
1395 return (err);
1398 static void
1399 zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
1401 uint64_t lastblk = 0;
1404 * NB: if a leaf has more pointers than an entire ptrtbl block
1405 * can hold, then it'll be accounted for more than once, since
1406 * we won't have lastblk.
1408 for (int i = 0; i < len; i++) {
1409 zap_leaf_t *l;
1411 if (tbl[i] == lastblk)
1412 continue;
1413 lastblk = tbl[i];
1415 int err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
1416 if (err == 0) {
1417 zap_leaf_stats(zap, l, zs);
1418 zap_put_leaf(l);
1423 void
1424 fzap_get_stats(zap_t *zap, zap_stats_t *zs)
1426 int bs = FZAP_BLOCK_SHIFT(zap);
1427 zs->zs_blocksize = 1ULL << bs;
1430 * Set zap_phys_t fields
1432 zs->zs_num_leafs = zap_f_phys(zap)->zap_num_leafs;
1433 zs->zs_num_entries = zap_f_phys(zap)->zap_num_entries;
1434 zs->zs_num_blocks = zap_f_phys(zap)->zap_freeblk;
1435 zs->zs_block_type = zap_f_phys(zap)->zap_block_type;
1436 zs->zs_magic = zap_f_phys(zap)->zap_magic;
1437 zs->zs_salt = zap_f_phys(zap)->zap_salt;
1440 * Set zap_ptrtbl fields
1442 zs->zs_ptrtbl_len = 1ULL << zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1443 zs->zs_ptrtbl_nextblk = zap_f_phys(zap)->zap_ptrtbl.zt_nextblk;
1444 zs->zs_ptrtbl_blks_copied =
1445 zap_f_phys(zap)->zap_ptrtbl.zt_blks_copied;
1446 zs->zs_ptrtbl_zt_blk = zap_f_phys(zap)->zap_ptrtbl.zt_blk;
1447 zs->zs_ptrtbl_zt_numblks = zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1448 zs->zs_ptrtbl_zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1450 if (zap_f_phys(zap)->zap_ptrtbl.zt_numblks == 0) {
1451 /* the ptrtbl is entirely in the header block. */
1452 zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1453 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
1454 } else {
1455 dmu_prefetch_by_dnode(zap->zap_dnode, 0,
1456 zap_f_phys(zap)->zap_ptrtbl.zt_blk << bs,
1457 zap_f_phys(zap)->zap_ptrtbl.zt_numblks << bs,
1458 ZIO_PRIORITY_SYNC_READ);
1460 for (int b = 0; b < zap_f_phys(zap)->zap_ptrtbl.zt_numblks;
1461 b++) {
1462 dmu_buf_t *db;
1463 int err;
1465 err = dmu_buf_hold_by_dnode(zap->zap_dnode,
1466 (zap_f_phys(zap)->zap_ptrtbl.zt_blk + b) << bs,
1467 FTAG, &db, DMU_READ_NO_PREFETCH);
1468 if (err == 0) {
1469 zap_stats_ptrtbl(zap, db->db_data,
1470 1<<(bs-3), zs);
1471 dmu_buf_rele(db, FTAG);
1478 * Find last allocated block and update freeblk.
1480 static void
1481 zap_trunc(zap_t *zap)
1483 uint64_t nentries;
1484 uint64_t lastblk;
1486 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1488 if (zap_f_phys(zap)->zap_ptrtbl.zt_blk > 0) {
1489 /* External ptrtbl */
1490 nentries = (1 << zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1491 lastblk = zap_f_phys(zap)->zap_ptrtbl.zt_blk +
1492 zap_f_phys(zap)->zap_ptrtbl.zt_numblks - 1;
1493 } else {
1494 /* Embedded ptrtbl */
1495 nentries = (1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
1496 lastblk = 0;
1499 for (uint64_t idx = 0; idx < nentries; idx++) {
1500 uint64_t blk;
1501 if (zap_idx_to_blk(zap, idx, &blk) != 0)
1502 return;
1503 if (blk > lastblk)
1504 lastblk = blk;
1507 ASSERT3U(lastblk, <, zap_f_phys(zap)->zap_freeblk);
1509 zap_f_phys(zap)->zap_freeblk = lastblk + 1;
1513 * ZAP shrinking algorithm.
1515 * We shrink ZAP recuresively removing empty leaves. We can remove an empty leaf
1516 * only if it has a sibling. Sibling leaves have the same prefix length and
1517 * their prefixes differ only by the least significant (sibling) bit. We require
1518 * both siblings to be empty. This eliminates a need to rehash the non-empty
1519 * remaining leaf. When we have removed one of two empty sibling, we set ptrtbl
1520 * entries of the removed leaf to point out to the remaining leaf. Prefix length
1521 * of the remaining leaf is decremented. As a result, it has a new prefix and it
1522 * might have a new sibling. So, we repeat the process.
1524 * Steps:
1525 * 1. Check if a sibling leaf (sl) exists and it is empty.
1526 * 2. Release the leaf (l) if it has the sibling bit (slbit) equal to 1.
1527 * 3. Release the sibling (sl) to derefer it again with WRITER lock.
1528 * 4. Upgrade zapdir lock to WRITER (once).
1529 * 5. Derefer released leaves again.
1530 * 6. If it is needed, recheck whether both leaves are still siblings and empty.
1531 * 7. Set ptrtbl pointers of the removed leaf (slbit 1) to point out to blkid of
1532 * the remaining leaf (slbit 0).
1533 * 8. Free disk block of the removed leaf (dmu_free_range).
1534 * 9. Decrement prefix_len of the remaining leaf.
1535 * 10. Repeat the steps.
1537 static int
1538 zap_shrink(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx)
1540 zap_t *zap = zn->zn_zap;
1541 int64_t zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1542 uint64_t hash = zn->zn_hash;
1543 uint64_t prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
1544 uint64_t prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
1545 boolean_t trunc = B_FALSE;
1546 int err = 0;
1548 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
1549 ASSERT3U(prefix_len, <=, zap_f_phys(zap)->zap_ptrtbl.zt_shift);
1550 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
1551 ASSERT3U(ZAP_HASH_IDX(hash, prefix_len), ==, prefix);
1553 boolean_t writer = B_FALSE;
1556 * To avoid deadlock always deref leaves in the same order -
1557 * sibling 0 first, then sibling 1.
1559 while (prefix_len) {
1560 zap_leaf_t *sl;
1561 int64_t prefix_diff = zt_shift - prefix_len;
1562 uint64_t sl_prefix = prefix ^ 1;
1563 uint64_t sl_hash = ZAP_PREFIX_HASH(sl_prefix, prefix_len);
1564 int slbit = prefix & 1;
1566 ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nentries, ==, 0);
1569 * Check if there is a sibling by reading ptrtbl ptrs.
1571 if (check_sibling_ptrtbl_range(zap, sl_prefix, prefix_len) == 0)
1572 break;
1575 * sibling 1, unlock it - we haven't yet dereferenced sibling 0.
1577 if (slbit == 1) {
1578 zap_put_leaf(l);
1579 l = NULL;
1583 * Dereference sibling leaf and check if it is empty.
1585 if ((err = zap_deref_leaf(zap, sl_hash, tx, RW_READER,
1586 &sl)) != 0)
1587 break;
1589 ASSERT3U(ZAP_HASH_IDX(sl_hash, prefix_len), ==, sl_prefix);
1592 * Check if we have a sibling and it is empty.
1594 if (zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len ||
1595 zap_leaf_phys(sl)->l_hdr.lh_nentries != 0) {
1596 zap_put_leaf(sl);
1597 break;
1600 zap_put_leaf(sl);
1603 * If there two empty sibling, we have work to do, so
1604 * we need to lock ZAP ptrtbl as WRITER.
1606 if (!writer && (writer = zap_tryupgradedir(zap, tx)) == 0) {
1607 /* We failed to upgrade */
1608 if (l != NULL) {
1609 zap_put_leaf(l);
1610 l = NULL;
1614 * Usually, the right way to upgrade from a READER lock
1615 * to a WRITER lock is to call zap_unlockdir() and
1616 * zap_lockdir(), but we do not have a tag. Instead,
1617 * we do it in more sophisticated way.
1619 rw_exit(&zap->zap_rwlock);
1620 rw_enter(&zap->zap_rwlock, RW_WRITER);
1621 dmu_buf_will_dirty(zap->zap_dbuf, tx);
1623 zt_shift = zap_f_phys(zap)->zap_ptrtbl.zt_shift;
1624 writer = B_TRUE;
1628 * Here we have WRITER lock for ptrtbl.
1629 * Now, we need a WRITER lock for both siblings leaves.
1630 * Also, we have to recheck if the leaves are still siblings
1631 * and still empty.
1633 if (l == NULL) {
1634 /* sibling 0 */
1635 if ((err = zap_deref_leaf(zap, (slbit ? sl_hash : hash),
1636 tx, RW_WRITER, &l)) != 0)
1637 break;
1640 * The leaf isn't empty anymore or
1641 * it was shrunk/split while our locks were down.
1643 if (zap_leaf_phys(l)->l_hdr.lh_nentries != 0 ||
1644 zap_leaf_phys(l)->l_hdr.lh_prefix_len != prefix_len)
1645 break;
1648 /* sibling 1 */
1649 if ((err = zap_deref_leaf(zap, (slbit ? hash : sl_hash), tx,
1650 RW_WRITER, &sl)) != 0)
1651 break;
1654 * The leaf isn't empty anymore or
1655 * it was shrunk/split while our locks were down.
1657 if (zap_leaf_phys(sl)->l_hdr.lh_nentries != 0 ||
1658 zap_leaf_phys(sl)->l_hdr.lh_prefix_len != prefix_len) {
1659 zap_put_leaf(sl);
1660 break;
1663 /* If we have gotten here, we have a leaf to collapse */
1664 uint64_t idx = (slbit ? prefix : sl_prefix) << prefix_diff;
1665 uint64_t nptrs = (1ULL << prefix_diff);
1666 uint64_t sl_blkid = sl->l_blkid;
1669 * Set ptrtbl entries to point out to the slibling 0 blkid
1671 if ((err = zap_set_idx_range_to_blk(zap, idx, nptrs, l->l_blkid,
1672 tx)) != 0) {
1673 zap_put_leaf(sl);
1674 break;
1678 * Free sibling 1 disk block.
1680 int bs = FZAP_BLOCK_SHIFT(zap);
1681 if (sl_blkid == zap_f_phys(zap)->zap_freeblk - 1)
1682 trunc = B_TRUE;
1684 (void) dmu_free_range(zap->zap_objset, zap->zap_object,
1685 sl_blkid << bs, 1 << bs, tx);
1686 zap_put_leaf(sl);
1688 zap_f_phys(zap)->zap_num_leafs--;
1691 * Update prefix and prefix_len.
1693 zap_leaf_phys(l)->l_hdr.lh_prefix >>= 1;
1694 zap_leaf_phys(l)->l_hdr.lh_prefix_len--;
1696 prefix = zap_leaf_phys(l)->l_hdr.lh_prefix;
1697 prefix_len = zap_leaf_phys(l)->l_hdr.lh_prefix_len;
1700 if (trunc)
1701 zap_trunc(zap);
1703 if (l != NULL)
1704 zap_put_leaf(l);
1706 return (err);
1709 /* CSTYLED */
1710 ZFS_MODULE_PARAM(zfs, , zap_iterate_prefetch, INT, ZMOD_RW,
1711 "When iterating ZAP object, prefetch it");
1713 /* CSTYLED */
1714 ZFS_MODULE_PARAM(zfs, , zap_shrink_enabled, INT, ZMOD_RW,
1715 "Enable ZAP shrinking");